
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Realzeit-Computersysteme

Synthesizing Communication-Centric
Automotive Cyber-Physical Systems

Licong Zhang

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Andreas Jossen
Prüfer der Dissertation:

1. Prof. Dr. sc. Samarjit Chakraborty

2. Prof. Dr. Petru Eles, Linköping University, Schweden

Die Dissertation wurde am 31.07.2017 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
23.05.2018 angenommen.

Abstract

Recent development in the automotive industry is currently revolutionizing the function-
ality of modern vehicles. Especially in the domain of infotainment and driver assistance
systems, increasingly more new functions are being developed to make the cars safe, intel-
ligent, convenient and comfortable for the drivers and passengers. With this enrichment
of functionality, the E/E architecture of such system has also grown substantially in both
size and complexity. This development introduces new challenges for meeting traditional
requirements like real-time capability, resource efficiency due to the increasing size and
complexity as well as emerging requirements like flexibility, adaptability, safety and secu-
rity. To be able to address these challenges and scale into the future, the automotive E/E
architecture also has to evolve. Towards this, several developing trends have been gathering
increasing momentum, including, e.g., ECU consolidation, application of automotive Eth-
ernet, adaptive platform, connectivity and Cyber-Physical System (CPS). Simultaneously,
new design/synthesis approaches as well as frameworks need to be developed to facilitate
the evolution of the E/E architecture along these directions and meet the existing and
emerging design requirements.

This thesis addresses the problem of synthesizing communication-centric automotive
CPS. The automotive E/E architecture is of a distributed nature where the Electronic
Control Units (ECUs) are connected through different bus systems. The communication
system plays an important role in the functional performance and non-functional properties
of the applications and often becomes the bottleneck problem in the design of such systems.
This thesis investigates the design of automotive CPS with the focus on the communication
bus systems. In particular, it proposes three approaches addressing broadly three different
requirements in the design of such systems, namely the real-time capability, flexibility/re-
configurability and resource efficiency.

The first approach addresses the problem of co-synthesizing task and communication
schedules for an Ethernet-based time-triggered system. Ethernet has recently emerged as
one promising candidate for the next generation automotive communication system. To-
wards the real-time requirements, some recent Ethernet protocols like the Time-Sensitive
Networking (TSN) offer time-triggered communication, which is suitable for safety-critical
and time-critical applications with stringent timing requirements. The proposed approach
combines the task scheduling and communication scheduling in a synchronized manner
and optimizes schedules according to application-level timing objectives. It further takes
into account a number of Ethernet-specific timing parameters such as synchronization pre-
cision. The schedule synthesis problem is translated into a Mixed-Integer Programming
(MIP) problem. This approach is able to handle one or multiple timing objectives such
as application response time, end-to-end delay and their combinations and is scalable to
systems of industrial size.

The second problem addressed in this thesis is the schedule management for the case of
Plug-and-Play (PnP) and software update. In recent years, increasingly more new software

iii

applications are deployed in cars and this trend is expected to continue. However, the design
and development cycle of software is much shorter than the life cycle of a vehicle and thus
the functionality of a car could easily become outdated. Therefore, there have been emerg-
ing requirements on the software update and deployment of new software applications after
sales. Towards this, the underlying E/E architecture has to offer a certain level of flexibility.
One important issue here is the allocation of computation and communication resources.
Addressing this problem, this thesis proposes a schedule management framework to obtain,
synthesize and manage schedules efficiently online for Ethernet-based time-triggered sys-
tems in the automotive context. This framework is based on a client-server architecture and
each side consists of a web module, a synthesis module and a configuration pool. It utilizes
the Internet access of modern vehicles to exploit the computation and storage capacity on
the server in a cloud-computing manner and can facilitate the reuse of generated schedule
sets. In the synthesis module, a four-stage strategy is introduced to reduce the synthesis
time and the disturbance to existing applications.

A further problem considered is the resource-efficient design in the context of CPS.
Towards this, an approach to design resource-aware CPS over hybrid communication bus
is proposed. Such a bus protocol offers both time-triggered (TT) and event-triggered (ET)
communication. The TT communication offers higher timing predictability, which can po-
tentially be translated into better control performance. However, such resource is often
quite limited. Towards this, a resource-aware switching scheme for distributed embedded
control applications is introduced in this thesis and illustrated using the FlexRay protocol.
In the proposed approach, a combination of TT and ET communication is used to reject a
disturbance and the strategy allows a control application to reside on the TT communica-
tion for an amount of samples that would be optimal for the overall control performance.
Furthermore, it allows a control application to release TT resource before it is settled to
make more efficient utilization of the resource. The proposed scheme involves both a con-
trol design method that optimizes the control performance and guarantees the switching
stability and an online scheduling algorithm to dynamically determine the allocation of the
TT communication to multiple control applications at run-time to optimize overall control
performance. It further addresses the implementation challenges of the dynamic switching
between TT and ET communication on the FlexRay protocol.

In summary, this thesis addresses the design/synthesis of the distributed automotive
CPS. It proposes three new design approaches that address mainly the requirements on
real-time capability, flexibility/reconfigurability and resource efficiency respectively. The
approaches target at emerging fields like automotive Ethernet, Plug-and-Play and CPS and
therefore quite relevant for the future. The methods proposed in this thesis might serve
as the basis for further design solutions towards new in-vehicle communication architec-
tures, adaptive platforms and cross-layer design in the CPS oriented fashion for the next
generation E/E architecture that scales to the evolving requirements in the automotive
domain.

iv

Kurzfassung (German Abstract)

Die jüngste Entwicklung in der Automobilindustrie revolutioniert derzeit die Funktion-
alität moderner Fahrzeuge. Vor allem im Bereich der Infotainment- und Fahrerassisten-
zsysteme werden immer mehr neue Funktionen entwickelt, um die Autos sicher, intelligent
und bequem für die Fahrer und die Passagiere zu machen. Mit dieser Anreicherung der
Funktionalität ist die E/E-Architektur eines solchen Systems auch in Größe und Kom-
plexität erheblich gewachsen. Diese Entwicklung stellt neue Herausforderungen für die
Erfüllung traditioneller Anforderungen wie Echtzeitfähigkeit, Ressourceneffizienz durch die
zunehmende Größe und Komplexität und auch entstehender Anforderungen wie Flexi-
bilität, Adaptivität, Safety und Security vor. Um diese Herausforderungen zu begegnen
und in die Zukunft zu skalieren, muss sich auch die E/E-Architektur weiterentwickeln. Auf
diese Weise haben einige Entwicklungstrends an Schwung gewonnen, darunter z.B. ECU-
Konsolidierung, Einsatz von Automotive Ethernet, adaptive Plattform, Konnektivität und
Cyber-Physisches System (CPS). Gleichzeitig müssen neue Design-/Syntheseansätze sowie
Frameworks entwickelt werden, um die Evolution der E/E-Architektur in diesen Richtungen
zu erleichtern und die bestehenden und aufkommenden Designanforderungen zu erfüllen.

Die vorliegende Doktorarbeit befasst sich mit dem Problem der Synthese von kommu-
nikationszentrierten Automotiven CPS. Die Automotive E/E-Architektur hat eine verteilte
Struktur, wo die Steuergeräte (ECUs) über unterschiedliche Bussysteme verbunden sind.
Das Kommunikationssystem spielt eine wichtige Rolle bei der funktionalen Leistung und
den nicht funktionalen Eigenschaften der Applikationen und wird oft zum Engpassproblem
bei der Entwurf solcher Systeme. Diese Doktorarbeit untersucht den Entwurf von Automo-
tiven CPS mit dem Fokus auf die Kommunikationssysteme. Insbesondere sind drei Ansätze
beim Entwurf solcher Systeme vorgestellt, die sich mit drei verschiedener Anforderungen
beschäftigen, nämlich der Echtzeitfähigkeit, der Flexibilität/Rekonfigurierbarkeit und der
Ressourceneffizienz.

Der erste Ansatz befasst sich mit dem Problem der Co-Synthese von Task- und Kom-
munikationsschedules für ein auf Ethernet-basiertes zeitgesteuertes System. Ethernet hat
sich kürzlich als ein vielversprechender Kandidat für die nächste Generation Automotive
Kommunikationssystem entstanden. Für die Echtzeitanforderungen bieten einige neuere
Ethernet-Protokolle wie Time-Sensitive Networking (TSN) eine zeitgesteuerte Kommunika-
tion an, das für sicherheitskritische und zeitkritische Anwendungen mit strengen Timing-
Anforderungen geeignet ist. Der vorgestellte Ansatz kombiniert die Task-Scheduling und
die Kommunikationsscheduling in einer synchronisierten Weise und optimiert die Schedules
nach den Timing-Zielen auf der Anwendungsebene. Eine Reihe von Ethernet-spezifischen
Timing-Parametern wie Synchronisationsgenauigkeit werden auch berücksichtigt. Das Prob-
lem der Schedule-Synthese wird in ein Mixed-Integer Programming (MIP) Problem übersetzt.
Dieser Ansatz ist in der Lage, ein oder mehrere zeitliche Ziele wie Reaktionszeit der An-
wendung, End-to-End-Latenz und ihre Kombinationen zu behandeln und ist skalierbar auf
Systeme der industriellen Größe.

v

Das zweite Problem, das in dieser Doktorarbeit behandelt ist, ist das Schedule-Manage-
ment für den Fall von Plug-and-Play (PnP) und Software-Update. In den vergangenen
Jahren werden immer mehr neue Softwareanwendungen in Autos eingesetzt und dieser
Trend wird voraussichtlich fortsetzen. Allerdings ist der Entwurfs- und Entwicklungszyklus
von Software viel kürzer als der Lebenszyklus eines Fahrzeugs und somit könnte die Funk-
tionalität eines Autos leicht veraltet sein. Daher gibt es neue Anforderungen an Software-
Update und die Installation neuer Software-Applikationen nach dem Verkauf. Zu diesem
Zweck muss die zugrunde liegende E/E-Architektur ein gewisses Maß an Flexibilität anbi-
eten. Ein wichtiges Thema hierbei ist die Allokation von Berechnungs- und Kommunika-
tionsressourcen. Angesichts dieses Problems stellt diese Arbeit ein Schedule-Management-
Framework vor, um Schedules effizient online für Ethernet-basierte zeitgesteuerte Systeme
im automobilen Kontext zu erhalten, zu synthetisieren und zu verwalten. Dieses Framework
basiert auf einer Client-Server-Architektur und jede Seite besteht aus einem Webmodul,
einem Synthesemodul und einem Konfigurationspool. Es nutzt den Internet-Zugang von
modernen Fahrzeugen, um die Berechnungs- und Speicherkapazität auf dem Server in einer
Cloud-Computing Weise auszunutzen und die Wiederverwendung von generierten Sched-
ules zu erleichtern. Im Synthesemodul wird eine vierstufige Strategie eingeführt, um die
Synthesezeit und die Störung auf bestehende Anwendungen zu reduzieren.

Ein weiteres Problem, das behandelt ist, ist der ressourcenbewusste Entwurf in Kon-
text von CPS. Ein Ansatz zum Entwurf von ressourcenbewussten CPS über Hybrid-Kommu-
nikationsbus ist vorgestellt. Ein solches Bus-Protokoll bietet sowohl zeitgesteuerte (TT)
als auch ereignisgesteuerte (ET) Kommunikation. Die TT-Kommunikation bietet eine
höhere Timing-Vorhersagbarkeit, die potenziell in ein besseres Regelverhalten umgesetzt
werden kann. Allerdings ist diese Ressource oft sehr begrenzt. Zu diesem Zweck wird
in dieser Doktorarbeit ein ressourceneffiziente Switchingsschema für verteilte eingebettete
Regelungsapplikationen eingeführt und mit dem FlexRay Protokoll verdeutlicht. Bei dem
vorgestellten Ansatz wird eine Kombination aus TT- und ET-Kommunikation verwendet
und die Strategie ermöglicht es, dass eine Regelungsanwendung auf der TT-Kommunikation
für eine Menge von Samples liegt, die für das gesamte Regelungsverhalten optimal ist.
Darüber hinaus ermöglicht er eine Regelungsanwendung, TT-Ressource freizugeben, bevor
sie eingeschwungen wird, um eine effizientere Nutzung der Ressource zu ermöglichen. Das
vorgestellte Schema beinhaltet sowohl eine Regelerentwurfsmethode, die das Regelsver-
halten optimiert und die Switchingstabilität gewährleistet, und einen Online-Scheduling-
Algorithmus, um die Allokation der TT-Kommunikation zu mehreren Regelungsapplikatio-
nen zur Laufzeit dynamisch zu bestimmen, um das gesamte Regelverhalten zu optimieren.
Der Ansatz befasst sich darüber hinaus mit der Implementierungsherausforderung der dy-
namischen Umschaltung zwischen TT und ET Kommunikation auf dem FlexRay Protokoll.

Zusammenfassend behandelt diese Doktorarbeit die Entwurf/Synthese der verteilten
Automotiven CPS. Die stellt drei neue Entwurfsansätze vor, die vor allem die Anforderun-
gen an Echtzeitfähigkeit, Flexibilität/Rekonfigurierbarkeit und Ressourceneffizienz behan-
deln. Die Ansätze zielen auf entstehende Felder wie Automotive Ethernet, Plug-and-Play
und CPS, und deswegen sind für die Zukunft relevant. Die in dieser Doktorarbeit vorgestell-
ten Methoden könnten als Grundlage für weitere Lösungen für neue Kommunikationsar-
chitekturen, adaptive Plattformen und CPS-orientiertes Cross-Layer-Design für die E/E-
Architektur der nächsten Generation dienen, die die wandelnde Anforderungen in dem
Automobilbereich erfüllen wird.

vi

vii

Acknowledgements

This thesis is the result of the research work conducted at the Chair of Real-Time
Computer Systems at the Technical University of Munich. It would not have been possible
without the support of many people.

First of all, I would like to express my sincere gratitude to Prof. Samarjit Chakraborty
for his guidance, support, advice and also encouragement. I would like to thank him for
introducing me into this interesting topic and guiding me through the whole research work.
I would also like to thank Prof. Petru Eles for agreeing to be the reviewer and co-examiner
of this thesis and Prof. Andreas Jossen for heading the examination committee.

I would also like to thank all my colleges at the Chair of Real-Time Computer Systems.
It has been a great pleasure to know them and work with them. Many research works have
resulted from the discussions and collaborations with them. In addition, they have made
the work at RCS much more enjoyable.

I am also grateful for the colleges that I have worked with from the RACE project
and from other institutions that I have collaborated with. I have certainly benefited a lot
from the collaborations on various challenging and interesting topics.

Finally, I would like to thank my family for the continuous support as well as encour-
agement.

ix

Contents

Abstract iii

Kurzfassung v

Acknowledgements ix

1 Introduction 1

1.1 Motivation . 2

1.2 Background . 3

1.2.1 Automotive E/E Architecture . 3

1.2.2 In-Vehicle Communication and Bus Systems 5

1.2.3 Software Architecture . 9

1.3 Trends, Requirements and Challenges . 11

1.3.1 Current and Future Trends . 11

1.3.2 Design Requirements and Challenges 15

1.4 Scheduling and Schedule Synthesis . 20

1.5 Design of CPS . 25

1.6 Thesis Contributions . 27

1.7 Organization and Publications . 30

1.7.1 Organization . 30

1.7.2 Publications . 30

2 Schedule Co-Synthesis for Ethernet-based Time-Triggered Systems 33

2.1 Introduction . 34

2.2 Related Work . 37

2.3 Problem Formulation . 38

2.4 Approach . 41

2.4.1 Constraints . 41

2.4.2 Constraint Formulation as MIP . 44

xi

Contents

2.4.3 Objectives . 45

2.4.4 Objective Formulation as MIP . 46

2.4.5 Generalized Constraints and Objectives 46

2.5 Experimental Results . 47

2.5.1 Case Study . 48

2.5.2 Results and Discussions . 50

2.5.3 Scalability Analysis . 54

2.6 Concluding Remarks . 55

3 Schedule Management for Cloud-based Automotive Software Systems 57

3.1 Introduction . 58

3.2 Related Works . 61

3.3 Problem Formulation . 62

3.3.1 Architectural Setting . 62

3.3.2 Schedule Management Problem . 65

3.4 Approach . 66

3.4.1 Request and Configuration . 66

3.4.2 Client-Server Architecture . 67

3.4.3 Configuration Pool . 67

3.4.4 Web Module . 68

3.4.5 Synthesis Module . 68

3.4.6 Request-based Schedule Management Flow 71

3.5 Experimental Results . 73

3.6 Concluding Remarks . 79

4 Designing Resource-aware CPS over Hybrid Communication Networks 81

4.1 Introduction . 82

4.2 Related Works . 84

4.3 Problem Formulation . 85

4.3.1 FlexRay-based ECU Network . 85

4.3.2 Distributed Feedback Control Systems 86

4.3.3 Motivational Example and Problem Formulation 92

4.3.4 Problem Formulation . 94

4.4 Control Design . 94

4.4.1 Switching Stability . 95

4.4.2 Controller Design . 95

4.5 Resource-Aware Switching Scheme . 96

4.5.1 The Proposed Switching Scheme . 97

4.5.2 Offline Evaluation of Switching Sequences 98

4.5.3 Online Switching based on Performance Prediction 100

4.5.4 Middleware-based Slot Sharing . 104

4.6 Experimental Results . 105

4.6.1 Case Study . 105

xii

Contents

4.6.2 Results and Discussions . 106

4.7 Concluding Remarks . 110

5 Concluding Remarks 111

5.1 Summary . 111

5.2 Future Works . 113

5.3 Outlook . 115

Bibliography 117

List of Figures 127

List of Tables 133

xiii

Chapter 1
Introduction

Modern vehicles are becoming increasingly safer, more intelligent and driver friendly. In

recent years, increasingly more new functions in domains like telematics/infotainment, Ad-

vanced Driver Assistance System (ADAS) are deployed in cars to assist the drivers. Ex-

amples of such functions include the navigation system, better Human Machine Interface

(HMI), head-up display, surround view, parking assistant, Adaptive Cruise Control (ACC),

Lane Departure Warning (LDW), etc. This trend of increase and enhancement of func-

tionality is going to continue and autonomous and self-driving vehicles will soon become a

reality. Underneath these functions that can be experienced by the user lies the Electri-

cal/Electronic (E/E) architecture, which provides the basic services like the computation

and communication for these functions. To keep up with the development pace on the

functional level and be able to scale to the future, the underlying E/E architecture also

has to evolve. Towards this, the requirements and challenges out of the recent develop-

ment trends have to be addressed. These requirements include, e.g., real-time capability,

resource-efficiency, flexibility, adaptivity, safety, security, etc. This thesis at hand proposes

approaches to address several such design requirements and challenges on the topic of syn-

thesis of communication-centric automotive Cyber-Physical System (CPS). In particular,

these approaches synthesize schedules and partly also control parameters for distributed

automotive E/E systems based on Ethernet and FlexRay towards real-time capability, re-

configurability and resource-efficiency. This chapter provides an introduction to the back-

ground, problem setting and the motivation of the thesis.

1

Chapter 1. Introduction

Chapter outline: This chapter is organized as follows. Firstly, the motivation of this

thesis is explained in Section 1.1. This is followed by the introduction to the background

in Section 1.2, including the automotive E/E architecture, the in-vehicle communication

networks and the software architecture. Then a summary of the of the current and fu-

ture development trends as well as the design requirements and challenges is provided in

Section 1.3. Section 1.4 and Section 1.5 explain respectively two central topics related to

this thesis, namely the scheduling and schedule synthesis problem and the design of CPS.

Section 1.6 then summarizes the main contributions of this thesis. Finally, the organization

of the thesis and the list of corresponding publications are provided in Section 1.7.

1.1 Motivation

The automotive E/E system is currently at the forefront of innovations from various dis-

ciplines like computer science, electrical engineering, control and mechanical engineering.

Modern vehicles are being equipped with software-based applications of increasing sophis-

tication, intelligence and connectivity, which considerably enhance the safety, convenience

and comfort of the driving experience. Vehicle dynamics control systems, ADASs, naviga-

tion and connected telematics systems are just a few examples of such applications. On the

functional level, more efficient algorithms in areas like computer vision, machine learning,

Global Positioning System (GPS), augmented reality have contributed much to the rapid

development in the domain of telematics, ADAS and autonomous driving. On the system

level, the development and deployment of these software applications are made possible by

more powerful hardware devices [1], better communication technologies and the advance-

ment in software technologies.

The drastic growth of number and complexity of applications on the functional level

has also profound influence on the underlying E/E architecture. Firstly, as a result of

such development, the size and complexity of the automotive E/E architecture has been

steadily increasing. Already in 2009, a premium-class vehicle could contain up to 100 Elec-

tronic Control Units (ECUs) running about 100 million lines of code [2]. As this trend

of increasing size and complexity continues, and it will certainly do [3, 4], there will be

many challenges that need to be addressed for the E/E architecture to be scalable for the

future. Such challenges are on a wide spectrum of aspects, for example communication

network, software architecture, Operating System (OS), hardware, etc. New or stronger

requirements on issues like real-time capability, flexibility, scalability, resource-efficiency,

safety and security need to be met.

On the other hand, the recent developments both inside and outside the automotive

domain also offer opportunities and new technologies that can be leveraged on to address

the challenges. For example, the development in the topic of connectivity has enabled

modern cars the connection to other cars, intelligent infrastructure units and even back-

end servers. This connectivity can be utilized to get access to information and outsource

2

1.2. Background

computation or storage demands. A further one is the development in the communication

technologies. The communication system in the automotive domain has been restricted

to the domain-specific protocols like Controller Area Network (CAN), FlexRay and Media

Oriented Systems Transport (MOST), which are tailored to the specific requirements in the

automotive domain. However, increasingly more communication technologies from other

domains can be applied to the automotive systems, for example Ethernet and higher layer

protocols like Transmission Control Protocol (TCP), User Datagram Protocol (UDP), In-

ternet Protocol (IP) and Service Oriented Communications (SOC) can be either directly

used in or adapted to the automotive domain. Thirdly, control applications take up a

fair amount of applications in a car. Recent development in CPS-oriented design methods

might also contribute to the cross-layer design in automotive E/E systems for more efficient

design. Besides these, the safety topic can be approached by methods inspired from the

avionics domain (like redundancy, Safety Integration Levels (SILs)), and to address the

security topic, existing methods in network security can be exploited.

The automotive E/E architecture is a broad field and it is difficult to address all the

aforementioned problems and aspects within the scope of one thesis. In the context of this

thesis, the main focus is on the aspects of real-time capability, flexibility/reconfigurability

and resource-efficiency. The real-time capability is one essential requirements in industrial

embedded systems, because many of the applications here are safety- and time-critical. For

these applications, not only the functional correctness, but also the non-functional correct-

ness like timing need to be guaranteed. Flexibility/reconfigurability of the E/E system is a

relatively new yet increasingly more important topic. New functionalities, particularly in

the ADAS and infortainment domain, are developed with an accelerating pace. The ability

of automotive E/E system to allow software updates and installation of new functions has

therefore become an important future requirement. Furthermore, as the system grows in

size and complexity and as increasingly more applications are integrated and consolidated

on the processing units, resource-efficient design represents another essential design require-

ment. Therefore, this thesis presents three approaches related to the synthesis of schedules

for the software tasks and the messages in the automotive E/E, with a particular focus on

the communication network. These three approaches cover the three aforementioned fronts

of design requirements and address the corresponding design and engineering challenges.

1.2 Background

1.2.1 Automotive E/E Architecture

The automotive E/E system consists of different electrical, electronic and software compo-

nents. The architecture of such a system can be divided into several layers. For example,

[3] describes four different layers of the E/E architecture, namely the function scope, the

3

Chapter 1. Introduction

function and software architecture, the communication architecture, the component archi-

tecture. The functional scope [3] deals with the functional software, which can directly

be experienced by the customers. Below the function scope is the function and software

architecture [3], where the software functions are treated as blocks with input and output

interfaces and several blocks may have data dependency between them. Here the actual

function a software block is performing is abstracted and only the interfaces and the depen-

dencies are important. On the communication architecture layer [3], the software blocks

are then partitioned and mapped onto the ECUs. The data between the blocks are mapped

onto the communication buses. The lowest layer is the topology component layer [3], where

the ECUs are connected by bus systems and the power supply networks. In the scope of

this thesis, we are primarily concerned with the function and software architecture layer

and the communication layer.

The E/E architecture of a vehicle consists mainly of a number of ECUs, which are

processors that the computation part of the E/E system is mapped on. These ECUs are

connected through bus systems, where data between the ECUs are transmitted. The ECUs

are typically organized in several different clusters (or functional domains [5, 6]), where

each cluster is responsible for a specific category of applications. Examples of functional

domains include the powertrain domain (e.g., engine and transmission control), the chassis

domain (e.g. steering and braking control), the body and comfort domain (e.g., the control

of doors, seats, lighting and air conditioning) and the infotainment domain (e.g., telematics

and entertainment). In general, different functional domains have different requirements on

the communication [6]. For example, in the chassis domain, the data for control applica-

tions are transmitted. These data are usually small (e.g., several bytes) but have stringent

requirement on the timing properties (e.g., latency, jitter, etc.). On the other hand, the

amount of data that needs to be transmitted on the bus systems in the infotainment domain

is much larger, but the requirement on the timing properties is less strict. Therefore, the

bus system used to connect different clusters are usually different.

A software application can consist of one or more software components that are ex-

ecuted on the ECUs. The whole application performs an independent function, e.g., a

control loop. Each software component is a sub-module of an application and the compo-

nents may have data dependencies. The application can be aggregated on one single ECU

or distributed over multiple ECUs. The software components are implemented as tasks,

where each task represents the execution of a piece of software code. If the component is

executed more than once, each execution instance can be referred to as a task instance,

denoting one occurrence of the task. A task can be periodic, i.e., triggered periodically by

a schedule table, or event-triggered, i.e., it gets triggered only by the occurrence of spe-

cific events. The data between the tasks are transmitted over the communication system.

Therefore the ECUs in each cluster are connected through one or more bus systems. The

software on the ECUs consists of multiple layers. The software applications performing the

actual functions, e.g., related to the control of the vehicle or interaction with the driver,

are on the application software layer. Below the applications, there could also be one or

4

1.2. Background

Central Gateway

CAN Ethernet

Off-Board Systems / Diagnosis

Chassis Powertrain Infotainment Body / Comfort

FlexRay HS-CAN MOST LS-CAN

LIN

Figure 1.1: This figure shows a schematic example of an automotive E/E architecture in
terms of communication bus systems. This figure is adapted from [7].

more layers of software components that provide the basic services to the application soft-

ware, e.g., operating system, communication driver and Input/Output (I/O) drivers. The

in-vehicle communication and the software architecture will be explained in detail in the

following part of this chapter.

1.2.2 In-Vehicle Communication and Bus Systems

Typical bus protocols include CAN, Local Interconnect Network (LIN), MOST, FlexRay

and Ethernet. Each bus protocol has its advantages and is suitable for functional domains

with certain requirements. For example, the FlexRay or High-Speed-CAN is primarily used

for the chassis domain, High-Speed CAN for the powertrain, Low-Speed CAN and LIN for

the body domain and MOST and Ethernet for the infotaiment domain. The ECU/bus

clusters are then connected to a central gateway, through which the data can be forwarded

between different clusters, as shown in Figure 1.1. The in-vehicle communication forms one

of the most important design aspects of the automotive E/E architecture.

FlexRay

FlexRay is a bus protocol developed by the FlexRay consortium and published in 2005

as version 2.1 [8] and in 2010 as version 3.0 [9]. It is hybrid protocol offering both time-

triggered and event-triggered communication. It is organized as a series of communication

cycles. In each cycle, a static segment implements the Time Division Multiple Access

(TDMA) scheme, where messages are assigned pre-defined time slots. An optional dynamic

segment employs the event-triggered Flexible Time Division Multiple Access (FTDMA)

5

Chapter 1. Introduction

scheme. Therefore, the FlexRay protocol combines both the advantages like determinism

of the time-triggered communication and those like efficient resource utilization of the event-

triggered communication. To support the time-triggered scheme, the clocks of the network

nodes are synchronized to provide a global time. FlexRay allows the use of line topology as

well as star topology and provides two channels (Channel A and B) that could be utilized

either for bandwidth enhancement or redundancy [10, 11]. Due to the deterministic nature

of the FlexRay (static segment), it is suitable for transmission of safety-critical data with

strict timing requirements. On the other hand, due to the higher cost, compared to, e.g.,

CAN bus, its usage is still quite limited. However, FlexRay still gains ground in the chassis

domain [10] in many types of cars produced by Original Equipment Manufacturers (OEMs)

like BMW [7].

Ethernet

Ethernet is originally widely used for connecting computers and has a long history dating

back to 1973 [12]. The Ethernet protocol has undergone a long process of development.

Originally the Ethernet protocol features a Carrier Sense Multiple Access/Collision Detec-

tion (CSMA/CD) Media Access Control (MAC) with half-duplex links, where messages

have to content for channel access and in the case of a collision, all messages will wait

for a random backoff period [12]. Therefore, the message transmission of the CSMA/CD

based Ethernet is not deterministic at all. Since then, full-duplex links are introduced to

detach the sending and receiving link and switches (or bridges) are introduced to forward

the Ethernet frames. In addition, priority operation is introduced to differentiate frames

of different timing requirements [13]. Therefore, full-duplex switched Ethernet becomes a

point-to-point network and has no collision between the network nodes anymore. The con-

tention for communication bandwidth is transformed into the queueing time of messages

in the output port of the switches.

Recent development of the IEEE protocol family include Audio Video Bridging (AVB),

Time-Sensitive Networking (TSN) protocols, where both are a collection of amendments to

the existing Ethernet protocols. The AVB, incorporated in the IEEE802.1Q standard [14],

introduces several new features like clock synchronization, stream reservation protocol and

the credit-based shaper. The AVB thus allows bandwidth reservation for the streams (e.g.,

of audio and video data) and avoids the starvation of low priority traffic by the streaming

data using the credit-based fair queueing. The TSN [15] protocol is the successor of AVB

and offers new features to improve the real-time capability of the network. Currently, the

TSN protocols have not yet been fully specified, but some parts are published, includ-

ing, amongst others, the Enhancements for Scheduled Traffic (IEEE802.1Qbv) [16] and the

Frame Preemption (IEEE802.1Qbu) [17]. The IEEE802.1Qbv amendment introduces the

mechanism supporting scheduled time-triggered transmission of messages. This is achieved

by closing the gates of transmission control for the non-time-triggered queues when time-

triggered traffic arrives and opening the gates again once the transmission is finished [16].

The frame preemption allows more critical messages to preempt less critical messages so

that the blocking time is reduced [17]. Both mechanisms are targeted at improving the

6

1.2. Background

real-time properties of time-critical messages and can be used either individually or in

combination [17].

Besides the IEEE protocol family, there are also several proprietary Ethernet proto-

cols. The most notable of them are PROFINET [18] and EtherCAT [19] in the industrial

automation domain and the Avionics Full Duplex Switched Ethernet (AFDX) [20] and

AS6802 (TTEthernet) [21] primarily targeted at the avionics domain. These protocols

offer tailored solutions to the individual domain or application system. In general, the

PROFINET and AS6802 protocols show some similarities to the TSN protocol, where the

network traffic is divided into several categories and for the applications with most stringent

real-time requirements, the time-triggered (or scheduled) traffic is used.

Currently, Ethernet is already used for diagnosis and applied in the infotainment

domain, having the potential to replace MOST [11, 22]. In the future, it is considered a

promising candidate for serving as the backbone between domains [23], and even be applied

in the safety-critical domains. There are also already research platforms employing Ether-

net as the dominant communication system [24]. However, there are still several hurdles

to overcome for a wide application of Ethernet in the automotive domain. Firstly, the new

Ethernet protocols like AVB and TSN are still relatively new. The suitability of these pro-

tocols are still yet to be proved, especially for the safety-critical domains, where real-time

capability is usually an important requirement. Furthermore, compared to conventional bus

systems, there are still not sufficient work on the design and analysis methods as well as tool

support. Finally, cost reason also plays an important role, due to the cost-sensitive nature

of the automotive industry. Implementing Ethernet means also making the corresponding

hardware and software compatible. This introduces considerable cost on hardware/software

components as well as the cost for development, testing and validation. The cost issue is

partly addressed by the introduction of BroadR-Reach technology [25], featuring a Physical

(PHY) layer based on an unshielded single twisted pair of wire, thus considerably reducing

the wiring cost. Currently 100 Mbit/s is already available and deployed in some vehicles

with an upgrade to 1 Gbit/s in the near future [26].

CAN, LIN and MOST

CAN bus was introduced by Robert Bosch GmbH in 1986 and has since then become one

of the most widely used bus systems in automobiles. CAN offers different versions of data

rates up to 1 Mbit/s [26]. Most used versions of CAN are the High-Speed-CAN [27] with

a common data rate of 500 kbit/s [11] and the Low-Speed-CAN [28] with a common data

rate of 125 kbit/s [11], although a range of different data rates are supported by the both.

A payload size of up to 8 bytes per message is supported by CAN. The actual use of CAN

in different domains depends strongly on the manufacturer and the vehicle type. In gen-

eral, this bus finds prevalent deployment in the powertrain domain (High-Speed-CAN), the

body domain (Low-Speed-CAN) and sometimes also in the chassis domain (High-Speed-

CAN). CAN implements an event-triggered communication scheme and is a decentralized

broadcast bus. The collision between different senders are resolved through the collision

7

Chapter 1. Introduction

resolution mechanism known as Carrier Sense Multiple Access/Collision Resolution (CS-

MA/CR). Pre-defined priorities are assigned to CAN messages and when two messages

are sent simultaneously, the one with higher priority will gain access of the bus. Although

CAN has been the most prevalent bus system used in the automotive domain, it has several

limitations, which constrain its potential for recent and future applications like ADAS. One

limitation is the limited bandwidth and payload size. Towards this, the extension of CAN

with Flexible Date-Rate (CAN FD) [29] has been developed that increases the payload

size to 64 bytes without increasing the transmission time. This is achieved by using a new

frame format and switching the data rate inside a frame. This protocol is also backward

compatible with CAN [26]. The other limitation is the non-determinism and possible long

latencies and large jitter, especially for lower priority messages on a loaded bus, although

timing analysis techniques for CAN are commonly known [30]. There have also been ef-

forts addressing this issue. A notable extension is the Time Triggered CAN (TTCAN) [31]

protocol. The TTCAN employs both time-triggered communication based on TDMA and

event-triggered communication based on CSMA/CR. The time is organized in cycles and

in each cycle, some time slots are reserved for certain ECUs for time-triggered transmission

and some are offered for contention-based transmission. For the TDMA scheme, the net-

work nodes are synchronized. However, due to no enhancement of the data rate and other

reasons, TTCAN is not widely implemented [26]. It is expected that CAN will be replaced

by FlexRay in the domain of chassis and powertrain [11].

The development of LIN started in the later 1990s by the LIN consortium to find

a cheaper alternative to the Low-Speed-CAN bus for the body domain to connect simple

nodes like doors, seats, etc. [11] The current version of the specification is Version 2.1 re-

leased in 2006. The LIN bus offers a bandwidth of up to 20 kBits/s and implements a

master/slave based communication [3, 11]. One LIN cluster consists of one master node

and multiple slave nodes. The communication is primarily based on a polling mechanism

where the master node sends periodically a header with message ID and the corresponding

slave node sends the data in the response field. The header and the response together form

a LIN frame and the time slots are configured to accommodate the frames. Such a frame is

called an unconditional frame. The communication relation is pre-configured and defined

in the LIN Description File (LDF). Since only one slave node is responding to a header

simultaneously, there is not collision in this case. To support also event-triggered commu-

nication, the latest version of LIN has also added other frame types like the event-triggered

frame, sporadic frame and diagnostic frame [11]. The event-triggered frame allows multiple

slave nodes to respond simultaneously and if a collision is detected, the master node will

initialize a round of polling with unconditional frame through all the slave nodes.

MOST is another commonly used bus protocol, primarily targeted at telematics and

multimedia applications [11]. The most commonly used topology in MOST is a ring topol-

ogy where the ECUs are connected point-to-point with a direction [11, 32]. One ECU

serves as the Master and sends frames. The rest (slaves) synchronize to the master

and read or write data into the frames [11]. The supported data rates of MOST are

25 Mbit/s (MOST25), 50 Mbit/s (MOST50) and 150 Mbit/s (MOST150). The protocol

8

1.2. Background

supports both time-triggered (synchronous) and event-triggered (asynchronous) communi-

cation. MOST is expected to be replaced by Ethernet in the infotainment domain [11, 22].

SOC and Middleware Solutions

Traditionally the configuration of the communication network in vehicles is quite static.

Communication signals are mapped into Protocol Data Units (PDUs) and then into frames.

The communication relation (e.g., the sender and receivers) and the schedules (or prior-

ities) are pre-defined at design and development phase and usually cannot be changed

afterwards. Th́ıs paradigm might not be suitable for future applications and E/E architec-

ture, which demand a more flexible communication paradigm. Therefore, there have been

some efforts to apply and adapt SOC and middleware solutions for the in-vehicle commu-

nication. Examples of such efforts include the Scalable service-oriented Middleware over

IP (SOME/IP) [33] and Data Distribution Service (DDS) [34]. Such protocols are based

on the publish/subscribe mechanism and a network node can offer service of certain data

(or topic) and others can subscribe and de-subscribe this data. Many of such protocols are

based on Ethernet. But there are also solutions that are based on existing automotive bus

protocols like CAN [35].

1.2.3 Software Architecture

A modern ECU is becoming increasingly complex in terms of software. For example, an

ECU can contain multiple software components of different applications. In addition, an

ECU needs to have I/Os and connection to the bus system. Therefore, besides the func-

tional software components, there is a need for basis software components like OS and

drivers and services for the I/Os and the bus protocols. To handle this complexity, the

software of an ECU is usually divided into different layers. For example, there is usually

a basis software layer between the hardware, i.e., the microcontroller, and the application

software that implements the basic software components for the scheduling, I/Os and com-

munication services, so that the microcontroller and the basic services are abstracted from

the application software. Optionally there could also be an Runtime Environment (RTE)

layer to handle the coordination and communication between the software components.

Another important issue that needs to be addressed is the reusability of the the software.

To address these issues, the automotive industry has spent much effort in standardizing the

software architecture.

OSEK/VDX

In the 1990s, some Germany automotive OEMs and suppliers have formed the Offene

Systeme und deren Schnittstellen fur die Elektronik in Kraftfahrzeugen (OSEK) consor-

tium towards standardizing the software architecture [3]. Later this was merged with the

french effort Vehicle Distribution eXecutive (VDX) and resulted in the OSEK/VDX stan-

dards [37]. The OSEK/VDX specifies several aspects of the software architecture, includ-

ing the OS (OSEK-OS and OSEK-Time), the communication module (OSEK-COM), the

9

Chapter 1. Introduction

ECU Hardware

…

Application

SW Component

AUTOSAR

Interface

Sensor

SW Component

AUTOSAR

Interface

Actuator

SW Component

AUTOSAR

Interface

Application

SW Component

AUTOSAR

Interface

Standardized

Interface

Standardized

AUTOSAR

Interface

Standardized

Interface

AUTOSAR

Interface

AUTOSAR

Interface

Services Communication
ECU

Abstraction

Complex

Drivers

Operating

System Standardized

Interface

Standardized

Interface

Standardized

Interface

Standardized

Interface

S
ta

n
d
a
rd

iz
e
d

In
te

rfa
c
e Basic Software

Runtime Environment (RTE)

AUTOSAR

Software

Figure 1.2: This figure shows the reference architecture from Automotive Open System
Architecture (AUTOSAR). This architecture consists of three software layers, namely the
basic software layer, the runtime environment and the application software layer. The
interfaces between the software components are standardized. This figure is reproduced
from [36].

network management (OSEK-NM) and the implementation language (OSEK-OIL). The

OSEK-OS implements the event-triggered scheduling scheme [3, 38]. The OSEK-TIME is

the time-triggered version of OSEK-OS [3].

AUTOSAR

The AUTOSAR standards were published by a world wide partnership [39]. Amongst other

aspects, the AUTOSAR standards define a reference software architecture, the interfaces

between the different components and development methods [39]. In terms of OS, the

AUTOSAR-OS is backward compatible with the OSEK-OS. The reference architecture de-

fined in the AUTOSAR standards is shown in Figure 1.2, where the software of an ECU

is divided into three layers, namely the basic software layer, the RTE and the application

software layer. The basic software layer provides the basic services and abstracts these

services from the application software components. This layer can be further divided into

the Microcontroller Abstraction Layer, the ECU Abstraction Layer and the Service Layer.

The RTE serves as the coordination of the communication between the application soft-

ware components and between the application software and basic software. The application

software layer contains mainly the software components that perform actual functions, e.g.,

10

1.3. Trends, Requirements and Challenges

engine control software module. The communication interfaces between the software com-

ponents are also defined by AUTOSAR. Here the interfaces are defined as ports and there

are different types of ports, depending on the communication relationship, e.g., sender-

receiver or client-server. The communication and data exchange between the components

are defined using the Virtual Functional Bus (VFB). The VFB is a concept abstracted

from the actual implementation of the communication, e.g., through different bus systems

or inside the RTE, which depends on the actual mapping of the software components on

the ECUs and the available communication bus systems. Through the standardization of

the architecture and the component interfaces, modularity of the software components is

achieved and as a result, it allows the reuse of software components and reduction of the

complexity. For example, the basic as well as the application software components can

be developed by different suppliers and integrated by the OEM. Furthermore, for different

vehicle variants, where the underlying ECUs and buses are different, the same application

software components can be reused.

1.3 Trends, Requirements and Challenges

1.3.1 Current and Future Trends

The automotive systems are currently undergoing rapid development and changes. These

new developments are both on the application level and the system level. On the application

level, increasingly more software-based systems are replacing those that are traditionally

implemented with mechanical and hydraulic systems. Furthermore, new areas like the

ADAS and autonomous driving, Car2X technology and connectivity as well as E-mobility

are drawing increasingly more attention and are at the forefront of the innovations in the

automotive domain. On the system level, topics like ECU consolidation, the introduction

of Ethernet, Service Oriented Architecture (SOA) as well as safety and security are moving

to the center of the stage. Here a few of the most important development trends, both on

the application and system level that are related to the context of this thesis are listed and

explained below. Certain topics also of significance, e.g., functional safety, security and

E-mobility, are not explained here since they are not within the scope of this thesis.

Increasing Complexity and ECU Consolidation

One of the most obvious trend in the automotive embedded systems is the increase of the

size and complexity of the E/E system, as shown in Figure 1.3 ,which is the result of in-

creasingly more software applications deployed in vehicles. This trend is reflected in the

steadily increasing number of ECUs, bus systems, signals and lines of software code in mod-

ern vehicles. The main challenge here is that this increase is not sustainable with current

federated [40] architecture, where each ECU performs only specific functions. This is due

to the reason of complexity management, limited resources (e.g., communication resource),

cost and ultimately the weight and space in the vehicle. One possible way to address this

11

Chapter 1. Introduction

W110/111/112

(1961 - 1968)

N
u
m

b
e
r

o
f

E
C

U
s
 a

n
d

b
u
s
e

s

2 ECUs

7 ECUs

1 bus

30 ECUs

3 buses

52 ECUs

5 buses

~4100 signals

67 ECUs

9 buses

~6000 signals

W123

(1975 - 1986)

W210

(1995 - 2002)
W212

(since 03/2009)

W114/115

(1967 - 1976)

W124

(1984 - 1997)

W211

(2002 - 2009)

Figure 1.3: This figure shows the evolution of the E/E architecture of the Mercedes-Benz
E-class in terms of number of ECUs, buses and signals. The data are provided in [3, 26].

problem is ECU consolidation [4, 41]. As pointed out in [40], in the future, the automotive

E/E architecture is moving from the federated architecture towards an integrated architec-

ture, where the ECUs are treated as computing platforms and multiple functions can be

integrated onto one single ECU. With the ECU consolidation, the increase in the number of

ECUs could be curbed and the centralization of the software functions also helps managing

the complexity. Towards this, more sophisticated software architecture and middleware

solutions are required to integrate the software applications. One example of such archi-

tecture is the system developed in the RACE project [24, 42]. The AUTOSAR standards

also contribute to this topic by standardizing the interfaces of software components and

specifying the reference software architecture.

ADAS and Autonomous Driving

ADAS and autonomous driving is one topic that certainly stands at the center of the stage

in the automotive industry in the recent years. The development of ADAS roots back to

1978, where the first Anti-lock Braking System (ABS) system was deployed. Since then,

increasingly more functions like Traction Control System (TCS), Electronic Stability Pro-

gram (ESP) have been developed to help the drivers maintain and control the dynamics of

the vehicle. These systems are also referred to as active safety systems. It is only recently,

that more driver assistance systems like ACC, assistent/autonomous parking, traffic sign

recognition, LDW, etc., are developed and deployed in the vehicles. These driver assistance

systems are based primarily on cameras (mono-camera or stereo-camera), radars and Light

Detection and Ranging (LIDAR) sensors. Recently, companies like Google [43] and Tesla

12

1.3. Trends, Requirements and Challenges

also offer commercial autonomous driving vehicles [44, 45]. Besides the large impact of the

ADAS and the autonomous driving systems on the safety and comfort of the driving expe-

rience, they also have profound impact on the underlying E/E architectures. Firstly, the

rapid development in this domain means increasingly more software components, hardware

components and data are being added to the E/E systems, contributing considerably to the

increase in size and complexity. Secondly, the ADAS functions are usually computation-

and data-intensive functions which requires much longer execution time and much larger

data amount that needs to be processed and possibly transferred. Although, currently sen-

sor data like camera images are not directly sent on the bus systems, such possibility still

exists and need to be considered in the design trade-offs. Thirdly, though not all ADASs are

safety-critical, many of them are. This means that the requirements of these applications

on aspects like real-time capability, safety, reliability and security need to be met. Finally,

current automotive E/E architectures are grouped into domains, and all the domains are

connected to a central gateway, where the inter-domain communication is limited. How-

ever, many of the ADAS functions are cross-domain in nature [46]. These would introduce

new challenges to the current domain-based architecture.

Plug-and-Play (PnP) and Software Update

Increasingly more new and advanced functions are being developed and deployed in vehicles,

especially in the ADAS and infotainment domain. However, the design and development

cycle of software and electronics is much shorter than the life cycle of a car, which can be

up to about 15 years [1], not to mention the additional years of the design and development

of the car. Therefore, with the current static architecture, it is difficult for a vehicle to be

equipped with the newest software functions. It would be advantageous for the customer, if

the new software functions can be installed or existing software functions be updated after

the car has been sold. This topic is commonly referred to as software update and PnP.

Currently, software updates are already available for some vehicles. However, this update

is currently only limited to some specific ECUs, e.g., the Headunit. The software update

and PnP of new applications are currently not yet standard practice. To enable this, there

are several challenges that need to be addressed, including the connectivity for software

download and dynamic platform that supports the deployment of the software and the

reconfiguration of the system, e.g., the re-allocation of the computation and communication

resources.

Connectivity

Another important trend in modern automotive industry is connectivity. Modern car now

connect to other cars, road infrastructure units through wireless technologies [47]. This fam-

ily of technologies are often referred to as Car2X technologies or Intelligent Transportation

System (ITS). The connectivity of course offers a lot of advantages and at the same time

brings new design challenges to the E/E systems. On one hand, the connectivity enables

cars to connect to other vehicles and road side units in the surroundings for driver assistance

or vehicle coordination functions. It also allows the vehicles the connection to the cloud

and back-end servers, which can provide live information, online software updates and even

13

Chapter 1. Introduction

computation capacity to the vehicles. On the other hand, it also poses challenges in terms

of security, reliable communication and extra latencies if some functions are cloud-based.

Automotive Ethernet

Conventional bus systems in the automotive domain include CAN, LIN, MOST and FlexRay.

These protocols are very different in nature and are designed to accommodate requirements

of applications in different domains. Although these bus protocols were tailored to fulfill

the requirements of their corresponding domain, as the size and complexity of the system

increase, these bus protocols are slowly reaching their limits, and not meeting the future re-

quirements in terms of higher bandwidth, flexibility, scalability, etc. Furthermore, although

updating the current bus systems is possible (e.g., CAN FD and TTCAN), they do not

provide a solution that can be scaled into the future. Therefore, the automotive industry

has been exploring a new bus protocol that are sufficiently tested and proved and meet the

steadily more complex requirements in the automotive domain. One promising candidate

is the Ethernet protocol, which has been widely used in the Internet and office networks.

Recent development in the Ethernet protocols like AVB [14] and TSN [15] can possibly

also meet the requirements of the applications in the automotive domain. Another major

advantage of Ethernet is that it is used and supported by a much larger community than

the automotive industry. This means that the methods, tools, experiences and expertise

of the other communities can be transferred to the automotive domain. One example is

that the BroadR-Reach technology [25], which is de-factor standard PHY layer technology

in automotive Ethernet, was developed by Broadcom. Although there has been a lot of

work going on in the automotive Ethernet in recent years, there is, however, not yet a clear

and standardized definition of what is automotive Ethernet. Instead, there are a collection

of many relevant IEEE standards [14, 16, 17] that offer a wide spectrum of features and

not all of the features are implemented in vehicles and which features to implement might

depend on the OEMs. In addition, although there has been predictions that Ethernet is

going to replace current bus systems, it is still not clear about the time line and art of

this. It is, however, expected [11, 22] that Etherent will firstly replace MOST in the in-

fotainment domain, then serve as a back-bone between the different domains [23]. Since

the recent standards of Ethernet have only been finalized recently (AVB in 2011 and TSN

only partially finalized in 2015 and 2016), there still needs to be considerable effort in the

design, analysis methods and tool support for these new protocols before Ethernet can be

deployed in full fledge in vehicles.

CPS

CPSs has emerged as one important research domain in the past decade [48–51]. The mo-

tivation behind this domain is that currently increasingly more control-centric embedded

systems are deployed in real-life applications. As conventional embedded systems focus

more on the side of the embedded computing units, the CPS paradigm emphasizes on the

tight interaction between the computational units and the physical processes to be con-

trolled. This paradigm enables the consideration of control design and embedded platform

14

1.3. Trends, Requirements and Challenges

design in a holistic manner, thus preventing false assumptions of the other side and re-

ducing the design conservativeness. By employing the CPS-oriented methods, it is usually

possible to optimize the control and system design jointly according to certain objectives

like control performance, resource utilization, etc [52, 53].

1.3.2 Design Requirements and Challenges

The developing trends in the automotive domain mentioned above bring new opportunities

to explore and at the same time introduce new challenges to be addressed in the E/E

systems. Important requirements as well as challenges concerning this thesis are listed as

the following.

Real-Time Requirements

Real-time requirements refer mainly to the requirements on the timing properties of ap-

plications. These properties include for example the response time of the software tasks,

the transport latency of the messages, the end-to-end latency and response time of the

distributed applications, the jitter and etc. For applications with real-time requirements,

some or all of these timing properties need to fulfill certain requirements, e.g., the values

are smaller than a given threshold value, which is also known as the deadline.

Increasingly more applications in the automotive domain are control applications.

Many of such applications are safety- and time-critical and therefore the real-time capa-

bility that the underlying E/E system can provide is one of the major requirements that

need to be fulfilled. For example, for a given feedback control loop, the sampling pe-

riod [54, 55] and the end-to-end delay [56–58] plays an important role in the performance

of these applications. The airbag system is another example of application with stringent

timing requirements, where the airbag needs to be activated fast enough after the crash to

protect the driver and the passengers and the failure to comply with this requirement will

lead to catastrophic results. A further reason for the real-time capability is the possibility

of the optimization of the functional performance. The functional design of the applications

sometimes relies on the timing properties that can be guaranteed by the software imple-

mentation of the applications [55, 56]. If better real-time properties can be provided, it is

possible to design functions that can achieve better performance.

The real-time capability has always been one of the major requirements in the automo-

tive embedded systems. However, as increasingly more safety-critical control applications

are implemented in the vehicles and many of such applications are time-critical, further

challenges are imposed. Firstly, increasingly more software and messages bring growing

complexity for the design methods [26, 59]. Secondly, there are increasingly more applica-

tions that are of inter-domain nature [23, 46], e.g., some ADAS systems. This requires the

cross-domain communication, which spans over two or more (heterogeneous) bus clusters

thus complicates the design and analysis since possibly different bus protocols, gateways

and processor scheduling schemes need to be considered.

15

Chapter 1. Introduction

Design and Analysis for Communication Protocols

The design and analysis for the communication protocols is an essential topic for the au-

tomotive E/E architecture. There could be several aspects of requirements on the commu-

nication bus systems. One of the most important is the timing properties. These include,

e.g., the transport latency and jitter. Other important requirements include the bandwidth,

fault-tolerance, cost, etc [11]. The communication protocols like CAN and FlexRay specify

the basic mechanisms. However, there are still a number of parameters to be configured,

e.g., priority, schedule, signal-to-frame mapping, etc. The analysis refers to the process of

determining whether the requirements are met given a set of values for the parameters. For

example, one important analysis here is the timing analysis. For safety- and time-critical

systems, the worst-time timing guarantee needs to be provided to ensure the non-functional

safety of the system. There have been numerous works on the timing analysis of bus pro-

tocols, including CAN [30], FlexRay [60, 61] and Ethernet [62–64], and end-to-end timing

analysis methods [65–67]. The design of the communication refers to the process of choosing

the values of the parameters so that the requirements are met, and possibly some objectives

can be optimized. Towards this, efficient design methods are important. Manual or ad hoc

design of the parameters can be a tedious and error-prone process. Automated design ap-

proaches are more efficient and safe in comparison. One important set of design methods

is the synthesis methods. These methods usually model the communication protocols and,

based on the models, use different synthesis or optimization methods to obtain the desired

parameters [55, 59, 68, 69]. The actual method used depends a lot on the nature of the

protocol. Section 1.4 will provide a detailed description of the synthesis methods.

There are several challenges for this aspect. Firstly, new protocols introduce new models,

which need to be derived and efficiently formulated. For example, the modeling of the

switched Ethernet is different from conventional broadcast bus systems. AVB and TSN

standards introduce further features, which are quite challenging to model, both for the

analysis and for the design problem. Secondly, the evolving requirements and increasing

size also pose additional challenges. It is known that for both design and analysis methods,

the computational effort required increases as the size of the system increases. Therefore,

as the size of the system increases, the problem could become intractable using the existing

methods. Timing analysis techniques usually involves a certain level of pessimism and this

pessimism could also grow with the size of the system. More complex requirement, e.g.,

in the ADAS domain, also poses challenges. Furthermore, in future applications where the

connection with the cloud is involved, the parameters and timing between the vehicle and

the cloud need to be considered. In addition, incremental design is yet another challenge.

The design of automotive systems usually follows an iterative design paradigm [70, 71].

This means that when new components are added to the system, the design of the existing

components are kept as less changed as possible, to reduce the cost of re-design, re-test

and re-validation. Such a scheme requires also extensible design [70, 72] as well as efficient

incremental design methods [71].

16

1.3. Trends, Requirements and Challenges

Resource-Efficient Design

There are several types of resources in embedded systems, including, e.g., the compu-

tation resources, the memory resources, the communication resources and battery re-

sources [52, 73]. The computation resource refers to the computation capacity of the pro-

cessors. In the case of a single-core processor, the computation resource can be translated

into the computation time. The execution of each software task requires a certain amount

of time, and in the case of multiple tasks running on the same processor, a specific com-

putation time needs to be allocated to each. There are typically two levels of memory on

a processor, the cache, or on-chip memory, and the main memory. The cache is faster but

of higher cost, and therefore can only be equipped with limited size [74]. The communica-

tion resource refers to the resource that is used to send messages between the processors

and can generally be interpreted as the bandwidth of a communication bus or a network

link. It should be pointed out that the exact definition of the computation, memory and

communication resource depends strongly on the underlying mechanism or protocol (e.g.,

OS for the computation resource and bus protocol for the communication resource).

Resource limitation is one common problem in embedded systems. This is especially

true for the cost-sensitive automotive industry. Aligned with the trend of ECU consolida-

tion, there are increasingly more software components sharing the same processor or the

same bus system. Although the processors are also becoming more powerful, computation

resources are still limited. The communication resource on the other hand, can become

a bottleneck problem even more easily. The processors can be replaced by more powerful

ones and even additional processors can be added. The bus protocol specification usu-

ally stays static and adding an extra bus requires considerable more effort (e.g., in design,

development, testing and validation). Therefore, the communication resources easily be-

comes scarce. Hence, the automotive industry has to adopt extensions like CAN FD or

new communication protocols like Ethernet. In addition, the design and development in

the automotive domain usually follows an iterative approach, where the existing configura-

tions are usually inherited by later design series and only changed when necessary to save

the cost for test and validation. Therefore, the resource-efficiency not only needs to be

considered for the current design, but potentially also for future design [71]. A third reason

is that there are usually some design conservativeness for safety purposes. Engineers for the

function design and the system design need to take some assumption of the other side. In

safety-critical applications, this assumption tends to be conservativeness so that the safety

can be guaranteed [53, 73]. This design margin also consumes certain amount of embedded

resources. Finally, as mentioned by some research works [54], sometimes some trade-off

between different requirements can be made between the resource consumption and the

functional performance. Therefore, when complying with the functional requirements, it

would be possible to trade some functional performance with resource conservation.

The resource-efficient design also faces some challenges. The first challenge is due to

the growing size and complexity of the system again, which makes the modeling and op-

timization more difficult. The other challenge is ensuring the safety of the system. When

not adequate resources are provided because of resource conservation, the functional and

17

Chapter 1. Introduction

non-functional correctness of the application can be jeopardized, thus leading to severe

consequences for the safety-critical systems.

Flexible and Reconfigurable Design

Flexibility and adaptivity is another requirement that is becoming increasingly evident in

the automotive domain. Traditionally, the configuration of the E/E system has been quite

static. On the ECU side, the software components are compiled with the operating system

into one single binary file and flashed onto the hardware and the software on most ECUs

does not change during the entire life cycle of the vehicle. Similarly for the communication

bus systems, the communication relationship between the ECUs and the mapping from

signal-to-frame and frame-to-schedule- (or priority) are statically configured. The reason

for this is that for safety-critical systems, the reduction of uncertainty contributes to the

verifiability and determinism of the system [75].

However, this static paradigm might not be suitable for future requirements anymore.

First of all, the rapid development in the ADAS and infotainment domain leads to increas-

ingly more software functions developed in recent years. However, the design and develop-

ment cycle of software is much shorter than the life cycle of a car. Therefore, the software

functions of a car can easily become ’outdated’. It would be advantageous for the customer,

if newly developed applications can be downloaded and installed on vehicles already sold.

This ability is also known as PnP [4, 24, 76]. Furthermore, as the vehicle becomes increas-

ingly software-intensive, the necessity of constant software updates has become obvious.

These software updates can be used to fix flaws or add additional features. For example,

Tesla has enabled the autonomous driving feature by remote software updates [44, 45]. To

enable the software updates and PnP, the underlying system needs to possess certain level

of flexibility and re-configurability, so that software can be updated, exchanged, installed

and the necessary resources for them can be allocated and re-allocated. Secondly, there are

increasingly more software applications that are multi-mode applications. Different oper-

ating modes might require different level of embedded resources. Towards resource-efficient

design, it would be advantageous, if the embedded resources can be re-allocated. Both

of the aforementioned aspects are reinforced by the increasing complexity and the ECU

consolidation, where more applications are sharing the same resources.

There exist of course many challenges towards flexible and adaptive systems. The first

one is the connectivity to the central servers, where the software can be downloaded. This

challenges is currently being addressed by the development in the connected drive technolo-

gies, where increasingly more cars have access to this connection. The second challenge is

the resource allocation problem. For PnP, software updates with changed resource require-

ments and multi-mode scenarios, the computation and communication resources need to be

re-allocated online. One problem here is the online computation of the resource configura-

tions. The other one is the ability of the system to re-allocate resources. Further challenges

include the safety and security of the whole process. In terms of safety, the safe operation

of the system during the re-configuration needs to be guaranteed. The security issue also

plays an important role here since the connection to the outside opens up possible access of

18

1.3. Trends, Requirements and Challenges

the attackers and during the reconfiguration process, the system could become vulnerable

to security attackers.

Cross-Layer Design

Traditionally the design of automotive systems are relatively separate in different layers,

the hardware, basis software, architecture and scheduling and application layer. With this

paradigm the design of each layer has to make assumptions of the others. To guarantee

the safety, such assumptions are usually quite conservative, therefore not leading to the

most efficient utilization of resources. In recent years, there has been increasing effort in

the cross-layer design of such systems. For example, hardware/software co-design has been

one major direction [77], where the hardware and software system are co-designed accord-

ing to different optimization objectives. Another emerging trend aligned with the CPS

thinking is the control/platform co-design (sometimes also referred to control/architecture

co-design) [52–56, 78, 79]. It has been identified that there is a strong interplay between

the embedded systems and control design [53, 55, 56, 58]. This interplay can be exploited

to reduce the design conservativeness while guaranteeing the correct functional behaviour

by co-designing the control parameters and the embedded system parameters. It also of-

fers design trade-offs between cross-layer objectives. One main challenge that needs to be

addressed is the complexity problem. Many design methods like synthesis approaches are

subject to the complexity problem, i.e., as the size of the system increases, the computa-

tional effort required grows drastically and beyond a certain point becomes not practical

or event not tractable anymore. This problem is aggregated by the co-design methods in

that they combine the dimensionality of two or more layers. A second challenge is the

heterogeneity of the design and analysis methods across layers. For example, in the case of

control/platform co-design, the set of design principles of the control engineering are quite

different from those of embedded systems. Therefore, co-design methods have to deal with

the inconsistency between these two sets of approaches, which adds to the complexity of

the problem.

Further Requirements and Challenges

Besides the requirements mentioned above, there are certainly other requirements of impor-

tance. Since these requirements are out of the scope of this thesis, only a brief description is

provided here. One example is the safety requirement. As increasingly more safety-critical

functions are being deployed in modern vehicles, the correctness of these applications needs

to be guaranteed, both the functional and non-functional correctness. Furthermore, fault-

tolerance capability, especially fail-operational and fail-safe capability will be an essential

topic for future autonomous driving vehicles [42, 80]. Another important requirement is

security. As the modern vehicles are becoming increasingly softwarenized, the security

problem has become a major topic [81]. Originally, the diagnosis port of the vehicle is

considered to be the most vulnerable point. But as the vehicles are becoming increas-

ingly networked, the security challenges have grown. On the other hand, the resources on

the embedded systems are quite limited, therefore full-fledged security mechanism used in

19

Chapter 1. Introduction

computer and network domain might not be applicable. Rather a light-weight security is

desirable for automotive systems [82].

1.4 Scheduling and Schedule Synthesis

Scheduling is one important topic in real-time embedded systems and is the one that is

most directly related to the real-time properties of the systems. The issue of scheduling

arises from the problem of resource sharing and resource allocation. For example, on a

processing unit, the computational resource can be translated to the computation time of

software tasks and for a processing unit with a single core, only one task can access the

computational resource at the same time. Similarly, when multiple messages are to be

transmitted on a bus system and each message requires a certain transmission time, only

one message can be sent on the bus simultaneous. To allocate the embedded resources like

computation and communication, a certain scheduling scheme is necessary. The scheduling

schemes on the processors and for the communication bus are quite diversified and depend

on the corresponding OS or the bus protocols. However, in general, we could classify the

scheduling schemes into two broad categories, namely the time-triggered scheme and the

event-triggered scheme.

Time-Triggered and Event-Triggered Scheme

In the case of time-triggered scheme, the processes (e.g., software tasks and message trans-

mission) are triggered by time-based schedules, which are usually implemented by periodical

clock interrupts [83]. There are time-triggered schemes for both processor scheduling, e.g.,

OSEK-Time [38], and the bus scheduling, e.g., Time-Triggered Protocol (TTP) [84] and

the FlexRay static segment [8, 9]. These schedules are usually computed offline and the op-

erating systems or the bus protocols ensure that the schedules are kept at runtime. On the

other hand, in the event-triggered scheme, the tasks and messages are triggered by events.

Such events could be the production of a data, the finishing of a task or I/O interrupts.

Examples of such scheduling schemes include the OSEK [38] on the processors and the

CAN bus for communication.

Both scheduling schemes have their own advantages and disadvantages. The first ad-

vantage of time-triggered scheme is that the timing properties of the tasks and messages

are more deterministic and thus providing the possibility of schedule optimization for dif-

ferent objectives (e.g., latency). Furthermore, the time-triggered scheme offers the easier

composition of schedules. For example, if multiple sets of time-triggered schedules are to

be integrated, the timing properties of each individual sets are not interfering with each

other if there is no collision. In the case of collision, there exist approaches to integrate

the schedules and resolve the collision [26, 85]. There are of course disadvantages of such

scheduling schemes. The first one is the implementation overhead. For example, in a dis-

tributed time-triggered system, a synchronization protocol is required to synchronize the

clocks of the network nodes and establish a concept of global time [83]. In general, this

20

1.4. Scheduling and Schedule Synthesis

synchronization needs to be quite precise for the scheduling to be efficient. The synchro-

nization requires also that the participating nodes are time-aware (e.g., FlexRay and TSN),

which usually means more expensive hardware equipment. A second disadvantage of time-

triggered scheduling is the lack of flexibility. Usually the schedules are pre-computed and

static, and reconfiguration is not straightforward. In addition, the time-triggered scheduling

often leads to less efficient utilization of resources, especially for messages of event-based

nature. In comparison, the event-triggered scheduling scheme is more flexible, requires

less overhead and makes more efficient utilization of the resources. In such a scheduling

scheme, the task execution and message transmission is based on events and do not need

to be confined to pre-defined time slots. When a task or message is added to the system or

the resource requirement changes (e.g., execution time or transmission time), only analysis

on timing and load needs to be performed to guarantee the schedulablity and the real-time

properties, and if the requirements are meet, the configuration for the existing tasks and

messages do not need to be re-computed. Secondly, event-triggered scheduling schemes

requires less overhead. With few exceptions (e.g., FlexRay dynamic segment), the event-

triggered systems do not need time synchronization since the global time is not needed on

the system level. Finally, event-triggered schemes make more efficient utilization of the

resources. For example, in the case of a task or message is not triggered, the corresponding

computation time or bandwidth can be utilized by other tasks or messages, compared to

the time-triggered scheme, where the specific time slots need to be reserved to certain tasks

and messages even if they are not triggered. The first disadvantage of the event-triggered

scheme is that it is not deterministic. In the best case, a worst-case timing guarantee can be

provided by static analysis. However, this timing guarantee tends to be over-conservative

and the scalability of the timing analysis techniques to larger systems is still a problem.

The worst-case timing guarantee does not eliminate jitter, which is the timing difference

between different instances of the task execution or message transmission. This jitter can

have negative influence on the performance of the applications.

There exists, of course, scheduling schemes that contains a mixture of time-triggered

and event-triggered schemes. Examples of this include the FlexRay protocol, commonly

referred to as a hybrid protocol, and the TSN Ethernet protocol. The mixed scheduling

scheme is often coupled with the mixed-criticality system, although the later term refers

to the actual criticality of the applications, not on the scheduling scheme itself. For such

systems using mixed scheduling schemes, one important problem is to reduce or eliminate

the interference of the event-triggered part on the time-triggered part. This can usually

achieved by time isolation. For example, the FlexRay protocol implements the two schedul-

ing schemes on two different segments and TSN achieves this by implementing gate-open

and gate-close events on the transmission control on the output ports of the switches [16].

In general, the applications tend to be of a mixed-criticality nature, where certain applica-

tions are more suitable using the time-triggered scheme and others using the event-triggered

scheme. This mixed requirements can also happen within the same bus cluster. Therefore,

hybrid protocols are gaining ground in the automotive domain.

21

Chapter 1. Introduction

Topology Computation (OS) Model

… …

… …

Communication Model

… … …

… ……

… …

Application Model

Mapping

…

Requirements

Timing

Extensibility

Functional Performance

…

Model Formulation

…

Synthesis / Optimization

MILP

SMT

PSO

Simulated Annealing

Tabu Search

… …

Network Schedules

… … …

… ……

… …

Task Schedules

… …

… …

Other Parameters

Specification / Requirements Objectives

Modeling and Synthesis

Results

Figure 1.4: This figure shows the general flow of schedule synthesis approaches.

22

1.4. Scheduling and Schedule Synthesis

Schedule Synthesis

In the context of this thesis, applications with stringent real-time requirements like control

applications are targeted. Therefore the primary concern of this thesis is the time-triggered

scheduling scheme. For such a scheduling scheme, one essential issue that needs to be ad-

dressed is the computation of the time-triggered schedules. Such schedules can be computed

manually or in an ad hoc fashion. However, the problem is that this process is tedious,

error-prone and easily becomes intractable when the system gets large. Therefore, the more

efficient way is to automatically synthesize the schedules.

Figure 1.4 shows a schematic for the schedule synthesis methods. The prerequisite for

the schedule synthesis is efficient and precise modeling of the system. On one hand, the

design specification, e.g., the hardware topology, scheduling of the OS and communication

protocols, the applications, mapping, and requirements like timing requirements are mod-

eled. On the other hand, optional optimization objectives can be modeled. Based on the

models, the constraints of the problem can be formulated and the schedules are the design

parameters to be determined, where the design space is specified by the constraints. The

whole problem can be formulated into a mathematical programming (e.g., Mixed Integer

Linear Program (MILP)) or an Satisfiability Modulo Theories (SMT) problem and be solved

with specific solvers. Often the constraints are difficult for a closed-form mathematical for-

mulation or the formulated problem is too complex to solve. In this case, meta-heuristic

or heuristic methods can be employed. The synthesis problem can also be divided into

different iterations or some pre-design can be done to prune the design space. Further-

more, for optimization problems, which is more computational expensive than a synthesis

problem without optimization, trade-offs between the optimality and computational effort

can be made. If the models are accurate and the constraint formulations are correct, the

resulted schedules are guaranteed to be safe, i.e., meeting the system constraints and design

requirements.

The main advantage of the synthesis approaches is the automated design and the pos-

sibility for systematic optimization. Modern vehicles contain increasingly more software

components and thousands of signals (see Figure 1.3). Although the design can usually

be broken done into functional domains or subsystems, the problem is still too complex

for manual design. The schedule synthesis approaches relieve the engineers from tedious

and error-prone manual design and the results are also guaranteed to be safe, provided

the modeling is correct. Design optimization is also an important issue in current and fu-

ture systems with diverse requirements, e.g., on the real-time capability, reliability, safety,

etc. Schedule synthesis methods offer the possibility for systematic optimization and even

trade-offs between different optimization objectives [54].

There have also been some recent development on this topic. One trend is the co-

synthesis of schedules and parameters on other layers, e.g., on the functional layer. Towards

this, there have been considerable effort in control/platform co-design, which synthesizes

jointly the schedules and the control parameters. There exist also other methods combining

the schedule synthesis with other layers [77]. Another emerging trend is the online schedule

synthesis. Schedule synthesis is usually done offline during design and development phase.

23

Chapter 1. Introduction

However, as already mentioned in the current and future trends, the requirement on the

flexibility of the system increases. Towards this requirement, there has been increasing

effort to address the online schedule synthesis problem. Such effort targets at the ability

of automotive systems to dynamically adapt the schedules and resource allocation during

run-time to accommodate newly installed applications, software updates or multi-mode ap-

plications. However, for both of these directions, there are still considerable hurdles to be

overcome.

Real-Time Systems

A real-time system differs from the non-real-time system by the importance of time. As

defined in [83], no only the correctness of the logical computations, but also the time when

the results are produced matter for the correctness of the system behavior in a real-time

system. In the embedded systems community, the real-time requirement is usually defined

by the deadline, a time where a specific process needs to be completed or a result needs to

be produced. The deadline can also be classified into soft, firm and hard deadline [83]. In

the case of soft deadline, the result will still be useful if the deadline is missed. Otherwise

the deadline is firm. If severe consequences can happen by missing a firm deadline, it is

referred to as a hard deadline. If a system has at lease one hard deadline, then it is a hard

real-time system, otherwise it is a soft real-time system [83]. In general, a deadline miss in a

soft real-time system could lead to deterioration of the desired performance and a deadline

miss in a hard real-time system could lead to catastrophic results.

There are different timing properties for real-time system: (i) Task response time:

This refers to the time between the release of a task, i.e., the task is ready to run, and

the completion of the execution of the task. (ii) Message response time: Similar to the

task response time, the message response time denotes the time between the time when

the message is ready to be transmitted and the time when the transmission finishes. (iii)

End-to-end timing: A distributed application might consists of several tasks with data

dependency and these data are sent on the network as messages. The end-to-end timing is

determined by the interplay between the tasks and messages. For example, the end-to-end

latency (or end-to-end delay) refers to the time between the start of the execution of the

first task in a chain and the completion of the last task in the chain. In the case of an

application consisting of tasks of an acyclic graph, the end-to-end latency has to be defined

according to specific requirements. The end-to-end latency is particularly important for

certain application like feedback control loops. To achieve a low end-to-end latency, low

response time for the tasks and messages as well as the synchronicity between them are

important. Sometimes the end-to-end response time is also important to applications that

need to be finished as soon as possible. This refers to the time between the release time of

the first task and the completion of the last task. (iv) Jitter: Jitter is also an important

timing property and generally refers to the difference between the timing between two

different instances of a task or message. Besides the latency and response time, jitter

sometimes also plays an important role in the timing requirements of applications.

24

1.5. Design of CPS

Plant

Controller

S A
states

reference control

input

Plant

Controller

S A
states

reference control

input

…

Figure 1.5: This figure shows a schematic example of the automotive CPS. The software
implementation of the control system is partitioned and mapped on the distributed archi-
tecture.

1.5 Design of CPS

CPS is a concept that has emerged in the past decade [48–50], as a result of increasingly

more software implementation of embedded control systems in industrial applications, the

increasing size of such systems and the tighter interaction between the computational units

and the physical processes to be controlled. The design of CPS involves mainly two com-

munities, namely the control and the embedded systems community. The control engineers

design the controller on the application level, while the embedded systems engineers design

the system level parameters like the software partition, mapping and scheduling. As the

size of the systems increases, both communities have become aware of the importance of

interaction and cooperation.

Embedded Control Systems

Embedded control systems are usually implemented as software running on processors. The

feedback control system is a common form of control systems. Such a system consists in

general of three logical components, namely the sensor, the controller and the actuator.

The sensor measures the measurable states of the plant, i.e., the physical process to be

controlled. The controller computes the controller input and the actuator exerts this on

the physical system. In an embedded control system, the sensor, controller and actuator

25

Chapter 1. Introduction

functions are implemented as software tasks. In a distributed case, the software tasks could

be mapped on different ECUs and the data between them, e.g., sensor data or control

input, are sent on the communication buses. Figure 1.5 shows a schematic representation

of a CPS. This implementation has several constraints on the control system. Firstly,

software tasks take some time to execute, and for sophisticated controllers, this time is

often not negligible. In addition, the communication and the interplay between the tasks

and messages introduce extra time. This means that there is often a non-negligible delay

between the sensing process and the actuation process and this delay could be subject to

jitter. Secondly, there is usually limited resources on embedded systems, not enough to

run the tasks as frequent as possible. This means that the controller action can only be

triggered at certain period, referred to as sampling period. Common control applications

are triggered periodically, but there are also controllers that are not triggered periodically,

e.g., in event-triggered control [86]. It has been identified, that the sampling period and the

delay have considerable influence on the control performance of the system. Conventionally,

the controller and the embedded system are designed separately by engineers of different

expertise and background. In this case, both sides have to make some assumptions on the

other side. For control applications, which are usually safety-critical, this assumption tends

to be conservative [53, 73]. As a result, the system design might not be optimized in terms

of control performance or resource efficiency.

Control/Platform Co-Design

Over the years, both the control and embedded systems communities have made efforts on

exploiting the interaction between the controller design and platform design to enhance the

efficiency of the designed systems. A group of works that have been drawing increasing

attention recently is the control/platform co-design [54, 55, 78, 87]. These works consider

both the controller design and the platform design as a holistic problem and simultaneous

synthesize the control and platform parameters. The design process is similar to that of

schedule synthesis shown in Figure 1.4. The difference is that besides the specification

and objectives for the platform design, those for the control design is also considered. The

specification of control design includes, e.g., the model of system dynamics, controller type,

control stability and requirements for the control performance. The objectives for the con-

troller design can be the control performance of one or multiple control metrics. Once these

models are obtained, they are formulated into a co-synthesis or co-optimization problem and

solved. Due to the different nature of modeling in control and platform, it is often difficult

to find a closed-form formulation for the combined problem. Therefore, control/platform

co-design methods usually employ some heuristic methods and (or) staged optimization

methods, e.g., an iterative approach [78, 79] or some pre-design steps [54]. The result of

the co-design are the platform and control parameters, possibly jointly optimized towards

certain objectives. The advantages of such co-design approaches are automated design and

optimized results. The automated design of both the control and platform parameters

can relieve engineers from tedious and costly process of testing and integration of both

controllers and their implementation. Secondly, the control/platform co-design can reduce

26

1.6. Thesis Contributions

the conservativeness in the separate design process and therefore achieving more efficient

design. It also allows the optimization of the parameters towards certain objectives and

even offer engineers the design trade-off between different objectives. The challenges for

the control/platform co-design, as already mentioned in the explanation on cross-layer de-

sign, are the complexity and heterogeneity problem. The combination of the design space

of both the control and platform design considerably increases the complexity of the de-

sign/synthesis problem, thus limiting the scalability of such approaches. In addition, the

co-design methods have to deal with a heterogeneous design space, i.e, the platform and

control design employ completely different methods and paradigms. Therefore, inconsis-

tency in modeling and design methods introduces some challenge in bringing both sides

under one single problem. Besides these two, an extra challenge is to deal with dynamic

behaviour of such systems. Existing co-design methods address mainly the static design of

CPS. The co-design enabling dynamic behaviour, e.g., switched control systems and adap-

tive platform, has not yet been sufficiently addressed, although there have been some initial

efforts on this [56].

1.6 Thesis Contributions

As discussed previously in this chapter, the increasing number of software-based applica-

tions mapping on the E/E architecture has resulted in the increasing size and complexity.

This has introduced challenges for meeting traditional requirements on real-time capability,

resource-efficiency and emerging requirements on flexibility, adaptivity, safety and security.

Towards this, this thesis proposes three new approaches to address respectively the require-

ments of real-time capability, flexibility/reconfigurability and resource-efficiency and cover

emerging topics of automotive Ethernet and CPS. The main contributions of this thesis are

listed below.

• The first contribution is an approach to co-synthesize task and communication sched-

ules for an Ethernet-based time-triggered system.

Many of the applications in the automotive domain are safety-critical and time-critical

applications. These applications have stringent requirements on the timing proper-

ties like latency and jitter. Moreover, for most distributed applications, it is the

application-level timing (or end-to-end timing) that really matters for the safety

and performance of the application. Ethernet has recently emerged as a promis-

ing candidate for the next generation in-vehicle communication protocol. To fulfill

the real-time requirements, some Ethernet protocols like TSN and AS6802 implement

time-triggered traffic to offer deterministic communication.

The proposed approach formulates the schedule synthesis and optimization problem

into a Mixed Integer Program (MIP) problem. It specifies the constraints for network

27

Chapter 1. Introduction

communication, task scheduling as well as the interaction between the tasks and com-

munication. It further considers the switched Ethernet topology and specific timing

properties like the synchronization precision. In addition, application-level timing

objectives are also formulated and a multi-objective optimization method is proposed

that can handle different timing objectives and their combinations. The proposed

method is independent of task and communication configurations as well as network

topologies and device performance parameters. The experimental results show the

applicability of the method towards synthesizing combined task and network schedule

according to timing objectives and that it can be scaled to system of reasonably large

size.

• The second contribution is a schedule management framework for the case of PnP

and software updates in cloud-based future automotive software systems.

The development in the ADAS and infotainment domain has led to the development

of increasingly more new software applications. When the car is moving towards

autonomous driving, this trend is likely to accelerate. However, the design and de-

velopment cycle of software and electronics is much shorter than the life cycle of a

car. Therefore, there have been emerging requirements on the update of software and

the PnP of new applications. To allow this, the platform needs to possess a certain

level of flexibility. One important issue here is the allocation of communication and

computation resources. In the case of time-triggered systems, the schedules need to

be obtained online.

Towards this, this thesis proposes a schedule management framework to generate and

manage time-triggered schedules for the PnP and software update scenario. This

software framework is based on a client-server architecture and utilizes both the com-

putation and storage resource onboard the vehicle and in backend servers using the

connectivity of the vehicle to the cloud. Each side contains a management module,

a synthesis module, a web module and a configuration pool. The synthesis module

is used to synthesize schedules online. The web module communicates the client and

the server and the management module oversees the whole process. The configura-

tion pool is used to store schedule configurations to facilitate their reuse and reduce

synthesis efforts. In the web module, websocket secure is used to allow bilateral com-

munication and offer secure communication. When a reconfiguration request comes,

the client starts its own process while sending the request to the server. Both sides

search for valid configuration in the configuration pool and if such a configuration

can not be found, a synthesis process is started to compute schedules. The fastest

result, either from the client or the server, will be taken. In the synthesis process,

a four-staged strategy is proposed to make a trade-off between the synthesis time

and disturbance to existing applications on one side and the chance of accommodat-

ing new applications on the other. The four stages range from incremental design

to complete re-synthesis and gradually increase the number of applications to be re-

synthesized. The proposed framework is prototypically implemented on a Raspberry

28

1.6. Thesis Contributions

Pi as the client and a notebook computer as the server. The experiment shows that

the framework can efficiently generate and manage schedules online and the combined

usage of both onboard and cloud-computing efficiently reduces the schedule synthesis

time. Furthermore, the four-staged strategy offers a transition from low synthesis

time and disturbance to existing applications to higher chances of accommodating

new applications.

• A further contribution is a scheme for resource-efficient implementation of CPS based

on hybrid communication protocols.

Efficient utilization of resource is an important design requirement. Hybrid protocols

like FlexRay offer both Time-Triggered (TT) and Event-Triggered (ET) communi-

cation. The TT communication offers higher timing predictability, but the amount

of such resources are often quite limited and expensive due to various reasons. By

allowing a control application to switch between TT and ET communication, valuable

TT resource can be shared between different control applications thus conserving TT

resource while achieving better control performance than pure ET based implemen-

tation.

The scheme proposed in this thesis follows this switching paradigm. However, the

proposed scheme allows a control application only to use as much TT resource as

meaningful and switch it back to ET resource as soon as possible, possibly before

it is settled. This allows the released TT resource to be utilized by other control

applications as soon as possible so that the overall control performance of the system

is enhanced. Firstly, an automated control design method is proposed to synthesize

controllers for both the TT and ET case jointly so that the combined performance is

optimized and the switching stability between the two cases is guaranteed. The whole

process employs a Particle Swarm Optimization (PSO) based method for performance

optimization and uses a Linear Matrix Inequity (LMI) based feasibility check. When

the controllers for both cases are designed, a table containing meaningful switching

sequences is generated for each control application. The table contains the minimal

number of switching sequences that can be used to predict the control performance

given a particular situation. At run-time, when a disturbance arrives, an online

scheduling algorithm is executed to compute the allocation of the TT resource and the

switching sequences of the control applications. This online algorithm is based on the

control performance prediction using the table of switching sequences and computes

the current best solution according to the overall control performance. Furthermore,

the challenge of implementing the switching between TT and ET communication

compliant to the FlexRay protocol and Commercial-Off-The-Shelf (COTS) tools is

addressed by a middleware based solution. The results show that the proposed scheme

can offer a trade-off between the utilization of TT communication resource and the

control performance. Compared to existing switching schemes, the proposed scheme

can achieve better control performance with the same resource utilization.

29

Chapter 1. Introduction

1.7 Organization and Publications

1.7.1 Organization

This thesis is organized in the following way. This chapter provides the basic introduction

to the context of this thesis, where the motivation, background, current and future trends as

well as the requirements and challenges are explained. From Chapter 2 to Chapter 4, three

new approaches addressing the challenges mentioned are presented. In Chapter 2, a method

on the co-synthesis of task- and network schedules for the Ethernet-based time-triggered

system is presented. This is followed by the description of a proposed framework for the

schedule management framework for the cloud-based future automotive software systems in

Chapter 3. Chapter 4 then presents a scheme for the resource-efficient implementation of a

resource-efficient CPS based on the hybrid communication protocols. Finally in Chapter 5,

the concluding remarks as well as the future outlook are provided.

1.7.2 Publications

The contributions presented in Chapter 2 are closely related to the following publications

and mainly appeared in (1):

(1) Licong Zhang, Dip Goswami, Reinhard Schneider, Samarjit Chakraborty, Task- and

Network-Level Schedule Co-Synthesis of Ethernet-Based Time-Triggered Systems, in

Proc. of Asia and South Pacific Design Automation Conference (ASP-DAC), 2014.

(2) Reinhard Scheider, Licong Zhang, Dip Goswami, Alejandro Masrur, Samarjit

Chakraborty, Compositional Analysis of Switched Ethernet Topologies, in Proc. of

Design, Automation and Test in Europe (DATE), 2013.

(3) Licong Zhang, Reinhard Schneider, Alejandro Masrur, Martin Becker, Martin Geier,

Samarjit Chakraborty, Timing Challenges in Automotive Software Architectures, in

International Conference on Software Engineering (ICSE) Companion, 2013.

The contributions presented in Chapter 3 are closely related to the following publications

and mainly appeared in (4):

(4) Licong Zhang, Debayan Roy, Philipp Mundhenk, Samarjit Chakraborty, Schedule

Management Framework for Cloud-Based Future Automotive Software Systems, in

Proc. of IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), 2016.

30

1.7. Organization and Publications

(5) Philipp Mundhenk, Ghizlane Tibba, Licong Zhang, Felix Reimann, Debayan Roy,

Samarjit Chakraborty, Dynamic Platforms for Uncertainty Management in Future

Automotive E/E Architectures, in Proc. of Design Automation Conference (DAC),

2017.

The approaches presented in Chapter 4 are closely related to the following publications:

(6) Diptesh Majumdar, Licong Zhang, Purandar Bhaduri, Samarjit Chakraborty, Recon-

figurable Communication Middleware for FlexRay-Based Distributed Embedded Sys-

tems, in Proc. of IEEE International Conference on Embedded and Real-Time Com-

puting Systems and Applications (RTCSA), 2015.

(7) Debayan Roy, Licong Zhang, Wanli Chang, Dip Goswami, Samarjit Chakraborty,

Multi-Objective Co-Optimization of FlexRay-Based Distributed Control Systems, in

Proc. of IEEE Real-Time and Embedded Technology and Applications Synposium

(RTAS), 2016.

The following publications are not directly part of this thesis, but are generally on the topic

of automotive CPS and thus related to this thesis:

(8) Debayan Roy, Licong Zhang, Samarjit Chakraborty, Automated Synthesis of Cyber-

Physical Systems from Joint Controller/Architecture Specifications, in Proc. of IEEE

International Forum on Specification and Design Languages (FDL), 2016.

(9) Wanli Chang, Debayan Roy, Licong Zhang, Samarjit Chakraborty, Model-based De-

sign of Resource-Efficient Automotive Control Software, in Proc. of IEEE/ACM In-

ternational Conference on Computer-Aided Design (ICCAD), 2016.

(10) Ghizlane Tibba, Christoph Malz, Christoph Stoermer, Natarajan Nagarajan,

Licong Zhang, Samarjit Chakraborty, Testing Automotive Embedded Systems under

X-in-the-Loop Setups, in Proc. of IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), 2016.

(11) Qi Zhu, Hengyi Liang, Licong Zhang, Debayan Roy, Wenchao Li, Samarjit

Chakraborty, Extensibility-Driven Automotive In-Vehicle Architecture Design, in

Proc. of Design Automation Conference (DAC), 2017.

(12) Ramesh S, Birgit Vogel-Heuser, Wanli Chang, Debayan Roy, Licong Zhang, Samarjit

Chakraborty, Specification, Verification and Design of Evolving Automotive Software,

in Proc. of Design Automation Conference (DAC), 2017.

31

Chapter 1. Introduction

The following publications are not directly related to the topic of this thesis, but the works

fall in the broad domain of CPS:

(13) Sangyoung Park, Licong Zhang, Samarjit Chakraborty, Design Space Exploration of

Drone Infrastructure for Large-Scale Delivery Services, in Proc. of IEEE/ACM In-

ternational Conference on Computer-Aided Design (ICCAD), 2016.

(14) Sangyoung Park, Licong Zhang, Samarjit Chakraborty, Battery Assignment and

Scheduling for Drone Delivery Bussinesses, in Proc. of IEEE/ACM International

Symposium on Low Power Electronics and Design (ISLPED), 2016.

32

Chapter 2
Schedule Co-Synthesis for Ethernet-based

Time-Triggered Systems

This chapter introduces an approach for the schedule synthesis for the Ethernet-based

time-triggered systems. In particular, it addresses the problem of co-synthesizing task and

communication schedules according to application-level timing objectives. As mentioned in

Chapter 1, some of the applications in the automotive domain are safety-critical and time-

critical functions, which have very stringent timing requirements on the properties like

latency, jitter. Many of such applications are distributed, where the dependent software

tasks belonging to the same application are mapped on different nodes on the network

and the data between them are transmitted over the communication network. For such

applications, the typical scheduling scheme used is the time-triggered scheme. Recently,

Ethernet-based protocols are gaining ground in industrial domains, e.g., AS6802 standard

or the TSN standards. Such protocols offer support for time-triggered traffic in the Ethernet

network in a mixed-criticality fashion. Considering the fact that for many distributed appli-

cations like the feedback control loop, it is the application-level timing that really matters,

the approach presented in this chapter combines the task scheduling and communication

scheduling in a synchronized manner and optimizes schedules according to application-level

timing objectives. The approach further takes into account a number of Ethernet-specific

timing parameters such as interframe gap and synchronization precision. The scheduling

synthesis problem is formulated as a MIP problem. The approach is able to handle one or

multiple timing objectives such as application response time, end-to-end delay and their

33

Chapter 2. Schedule Co-Synthesis for Ethernet-based Time-Triggered Systems

combinations. The experimental results show the applicability of the proposed approach

using an industrial size case study and further show that the approach scales to systems

with reasonably large size.

Chapter outline: This chapter is divided into six sections. A general introduction into the

context is provided in Section 2.1, where the motivation, the overview and the contributions

of this work are explained. In Section 2.2, the related work is reviewed. In Section 2.3, the

setup considered in this chapter, an Ethernet-based time-triggered system, is presented.

This is followed by the proposed approach in Section 2.4, the major part of which is the

formulation of the constraints and the objectives in the schedule synthesis problem of such

a system. The experimental results and evaluations are presented in Section 2.5 before the

concluding remarks in Section 2.6.

2.1 Introduction

Recently, several Ethernet based protocols are developed and adopted in real-time safety-

critical domains. The examples are EtherCAT and PROFINET [18] in industrial automa-

tion, AFDX [20] and AS6802 [21] in avionics and the AVB networks [14]. The majority

of these protocols are based on the original Ethernet standard IEEE802.3 and employ a

switched network paradigm. That is, switches are used to connect the end stations via

full-duplex links. A full-duplex link consists of two independent directed links and allows

simultaneous transmission in both directions. The upper part of Figure 2.1 shows an ex-

ample of such a network with four end stations and two switches.

In an Ethernet-based network, the end stations communicate by exchanging mes-

sages as Ethernet frames. The frames are forwarded link by link via the switches from the

sender to receiver end station. In general, when the frames are forwarded to the same link

simultaneously, they are stored in a queue and sent according to an output scheduler (e.g.,

strict priority), as shown in Figure 2.2. Thus, the queueing in switches results in a queueing

delay which further depends on many factors such as the topology, traffic load and often

introduces a considerably large delay. Although there exist several approaches that provide

analytical bounds for the worst-case latency [62–64], this sort of network still suffers from

non-deterministic temporal behaviour and it is difficult to achieve very low latencies. This

makes the traditional Ethernet-based networks unsuitable for safety-critical applications

with stringent timing requirements. To address this problem, most of such protocols offer

mixed-criticality services by dividing the traffic into different classes, applied to commu-

nication with different timing requirements. For example, PROFINET has Isochronous

Real-Time (IRT), Real-Time (RT) and Non-Real-Time (NRT) services in decreasing tim-

ing guarantee. Similarly, the traffic in AS6802 is divided into TT, Rate-Constrained (RC)

and Best-Effort (BE) traffic and in AVB networks Class A/Class B are differentiated with

normal prioritized frames.

In the above context, the traffic class designed to provide most strict timing guarantee

34

2.1. Introduction

Frame 1
Link 1

Link 2

Link 3

Link 5

Link 4

Frame 2

Frame 3

End Station (Processing Unit)

1

2

3

4

5 6
Frame 4

Switch

Link 2 (2->5)

Link 3 (5->6)

Link 4 (6->3)

Link 5 (6->4)
t

Link 2 (5->2)

Link 1 (1->5)

Transmission Time

Schedule

Figure 2.1: An example of time-triggered traffic in switched Ethernet network.

is the time-triggered traffic. Examples of this traffic class include the IRT in PROFINET,

the TT traffic in AS6802 and the time-triggered traffic in the IEEE802.1Qbv standard [16].

The actual implementation of the time-triggered traffic class may vary from one protocol

to another, but the basic idea is to schedule the frames so that the delays introduced by

queueing in switches can be minimized or eliminated, thus achieving low network latency

and jitter. Certain mechanisms are used to remove the influence from other traffic classes

so that the frame transmission follows the pre-defined schedule. For example, PROFINET

uses a dedicated time period in a cycle to transmit IRT frames. All the frames in this

traffic class are sent and forwarded in the network according to a pre-configured schedule.

A schedule defines the exact time point when the end stations and switches send the frames

on the Ethernet links. As shown in Figure 2.1, the schedules should be chosen such that

the frame transmission times do not collide with each other and thus ensuring deterministic

temporal behavior with low latency and jitter. In this work, we consider the time-triggered

traffic. Communication of other traffic classes can be added to the system without in-

fluencing the timing properties of time-triggered communication. We present our method

considering the time-triggered traffic in a general switched Ethernet network. Our method

35

Chapter 2. Schedule Co-Synthesis for Ethernet-based Time-Triggered Systems

processing
delay

queuing
delay

…P
O
R
T

P
O
R
T

PORT

PORT

frame
forwarding

PU PU PU PU

SW SW SW SW

Figure 2.2: This figure shows a simplified schematic for the frame forwarding and the delay
for a priority-based switched Ethernet network. PU and SW refer respectively to processing
unit and switch.

can be tailored to fit into specific protocols such as PROFINET, AS6802 or TSN.

In a distributed system, a number of functions (or applications) are performed by a

combination of tasks running on the end stations and data exchange by the communication

over the network. For example, a distributed control system might have its sensing, com-

puting and actuating tasks mapped onto different end stations and sensing/control data is

sent via the network. In such cases, the performance of an application depends on sched-

ules of both tasks and communication. Since optimal communication schedules may not

necessarily result in optimal schedules at the application-level, the above problem can not

be simplified to that of the communication schedules alone. Figure 2.3 shows an example of

the comparison between synchronized and unsynchronized task and network schedules and

the resulting end-to-end latency. Moreover, the representation of design objectives is often

itself a problem. For example, the design objective can be to minimize the overall latency

of all applications while placing emphasis on certain ones. Such design requirements need

multi-objective formulation. In this work, we aim to optimize the schedules for the tasks

running on the end stations and for communication over the network considering one or

multiple optimization objectives.

Contributions: The method proposed here is for the application-level schedule synthe-

sis of distributed systems using time-triggered traffic in Ethernet communication. In this

approach, the scheduling problem is formulated as a Mixed Integer Programming (MIP)

model. Furthermore, different optimization objectives are considered and a multi-objective

36

2.2. Related Work

… …

… …

…

…

…

…

…

…

period

period

end-to-end latency

end-to-end latency

(a)

(b)

Figure 2.3: Difference between (a) a synchronous task and network schedule and (b) an
asynchronous task and network schedule.

optimization problem formulated. We use Gurobi [88] to obtain a solution for the MIP

formulation. Although there are a few recent works [59, 89] towards optimizing communi-

cation schedules in this context, our work focuses on application-level optimization. Using

an industrial size case study, we illustrate various design aspects of such Ethernet-based

time-triggered systems by considering different optimization objectives. In addition, we

have also introduced generalized constraint and objective formulations for the end-to-end

timing. To the best of our knowledge, this is the first work to consider the interplay between

the task and communication schedules of a time-triggered Ethernet-based distributed sys-

tem and optimize the schedules according to the (multi-)objectives at the application-level.

2.2 Related Work

The research works that are related to this context can be divided into three groups.

(i) Firstly, there have been some works on the general time-triggered architecture [83,

90, 91]. These works introduced the time-triggered architecture and presented general tech-

niques to deal with with time-triggered systems without addressing the actual protocols.

(ii) There have also been many research works on the schedule synthesis for FlexRay-

based systems [55, 68, 69, 92]. These works deal with both network [68] and application

37

Chapter 2. Schedule Co-Synthesis for Ethernet-based Time-Triggered Systems

level schedules [55, 69, 92]. However, FlexRay as a communication protocol differs consid-

erably from a switched Ethernet network and works in [55, 68, 69] can not be applied in a

straightforward manner.

(iii) The third group of related works address the synthesis and optimization problem

in time-triggered Ethernet networks [59, 89, 93, 94]. Towards this, [93] proposed a model

formulation for the schedule synthesis for the PROFINET IRT which is the time-triggered

traffic pattern in PROFINET. Similarly, [59] formulated the complete model of the time-

triggered traffic in TTEthernet (AS6802) in SMT, which is later complemented by [89] for

the bandwidth reservation of RC traffic. Further, [94] proposed an alternative schedule

synthesis method of TTEthernet based on Tabu search, such that the deadlines of TT and

RC messages are satisfied and end-to-end delays of RC messages are minimized. These

approaches, however, focus mainly on the schedule synthesis for the network. As already

explained in Section 2.1, for the distributed applications, it is usually the application-level

timing that is important. Compared to these related works, this approach at hand considers

both the task and network scheduling and complex application-level timing objectives.

2.3 Problem Formulation

We consider a distributed system whose physical topology consists of a number of end

stations connected by a switched Ethernet network. We denote the system as a graph

G(V, E), where vertices V denote the set of network nodes (end stations and switches) and

edges E denote the full-duplex Ethernet links. To differentiate between different types of

nodes, we denote an end station as vei ∈ V and a switch as vsi ∈ V. A full-duplex link

connecting two nodes vm and vn is denoted by lm,n ∈ E and ln,m ∈ E , each representing a

directed link from vm to vn and from vn to vm. In the distributed setup under consideration,

we consider the following components which are described using an example shown in

Figure 2.4.

Application tasks: We define a task running on an end station as an application task. We

consider periodic application tasks τi which are characterized by a tuple τi = {τi.p, τi.o, τi.e}
consisting of the period, offset and the Worst-Case Execution Time (WCET) respectively.

In the example shown in Figure 2.4, there are five applications tasks τ1 to τ5, which are

running in five different end stations.

Communication tasks: ci = {fi, ci.tr, ci.o, ci.p} can be used to define a communication

task ci. Each communication task is associated with an unique Ethernet frame with frame

length fi.f l. We define a path as a route from the sender to one receiver. For example,

in Figure 2.5, c1.ph1 is one path from ve1 to ve3. Further, ci.tr denotes the path tree which

consists of all the paths from a particular sender station to the receiver stations. A path tree

may contain one path ci.tr = ci.ph1 or multiple paths ci.tr = {ci.ph1, ci.ph2, . . . , ci.phαi},
depending on whether the uni-cast or multi-cast operation is applied. For example, in

38

2.3. Problem Formulation

Figure 2.4: An example of a distributed system of applications a1 to a3, application tasks
τ1 to τ5 and communication tasks c1 and c2. This figure shows the task mapping and task
chains of applications.

t

Figure 2.5: This figure shows the path tree and schedules of the communication task c1 of
the example in Figure 2.4.

Figure 2.4 and Figure 2.5, path tree of c1 contains three paths c1.ph1, c1.ph2 and c1.ph3.

Furthermore, ci.o denotes the set of sending schedules of frame fi on all the Ethernet links

in the path tree. A single schedule on link lm,n is represented as ci.o
lm,n . In Figure 2.5, the

communication task c1 involves six Ethernet links and there is one schedule for each link as

indicated in Figure 2.5. Finally, ci.p denotes the period of the communication task. Note

that as oppose to the traditional task, the communication task here represents the whole

process of sending, forwarding and receiving a frame over the network.

Applications: An application ai is a collection of certain application tasks and commu-

nication tasks that perform an independent function. An application is characterized by

the tuple ai = {ai.tc, ai.p, ai.rt, ai.lz}. Here, ai.tc is the task chain, containing the ap-

plication and communication tasks that constitute the application in the temporal order.

39

Chapter 2. Schedule Co-Synthesis for Ethernet-based Time-Triggered Systems

t

Beginning of period

Figure 2.6: This figure shows the task chain and schedules of application a1 in the example
in Figure 2.4.

Three applications a1, a2 and a3 are shown in Figure 2.4. We further denote the tasks

contained in the task chain as ai.tj , where 1 ≤ j ≤ βi with ai.t1 and ai.tβi denoting the

first and last task respectively. Each task in the task chain either represents an application

or a communication task. Figure 2.6 shows the details of task chain a1.tc. There are three

tasks in a1, β1 = 3 with a1.t1 = τ1, a1.t2 = c1 and a1.t3 = τ2. ai.p denotes the period of the

application and all the application and communication tasks share the same period with

the application. That is, τ1.p = c1.p = τ2.p = a1.p in the above example. Finally, ai.rt,

ai.lz are the response time and the end-to-end latency, which represent the time between

the start of the period and the end of last task and the time between the start of the first

task and end of last task. The significance of these two parameters will be discussed in

details in the following sections.

Additional timing restrictions: In this work, we consider all the end stations as sin-

gle processors running under a time-triggered non-preemptive scheduling scheme. Such

scheduling scheme is common in safety-critical domains in particular. If an application

task finishes its execution, it needs some time before the data can be packed in frames

and sent on the network. This time interval has an upper bound which is denoted by sd.

Similarly, once a frame arrives at an end station, it needs some time to get unpacked and

processed before the data can be utilized by the corresponding application task. We assume

that this time has an upper bound denoted as rd. On the network, we use the general case

where each Ethernet switch possesses a dispatcher and each frame arriving at a switch is

forwarded according to a schedule. The maximum processing delay of a frame in a switch

40

2.4. Approach

is bounded by pd. That is, pd is the time between reception of the last bit on the input

port and the earliest possible transmission of the first bit on the output port. It should be

noted that store-and-forward and cut-through mechanism [13] can be modeled by setting

pd an appropriate value. We further denote the bandwidth as bw – time to send one bit

on the link and interframe gap as ifg – minimal link idle time between the transmission of

two consecutive frames. The precision, i.e., the maximum difference between the any two

clocks in the system is denoted as sync. In this work, all the schedules are referenced to

the local time of the network nodes and we pad a sync in the constraints with schedules

from different nodes.

2.4 Approach

In this work, we present a framework to co-synthesize schedules for all the application

tasks τi and communication tasks ci such that some high-level objectives are optimized.

We characterize the distributed system described in the previous section by the following

set of constraints and objectives.

2.4.1 Constraints

(C1) Collision free application tasks: This condition ensures that on every single

processor, one application task is triggered only when the processor is idle, i.e., after the

last task is finished. We define the set of all application tasks as T and that of those

mapped on an end station vem as T (vem). This condition can be formulated as:

∀m, vem ∈ V, ∀i, j, i 6= j, τi, τj ∈ T (vem)

τi.p× ki + τi.o+ τi.e < τj .p× kj + τj .o

or

τj .p× kj + τj .o+ τj .e < τi.p× ki + τi.o (2.1)

where

∀ki ∈
[
0,
LCM(τi.p, τj .p)

τi.p
− 1

]
∀kj ∈

[
0,
LCM(τi.p, τj .p)

τj .p
− 1

]
.

and LCM(τi.p, τj .p) denotes the least common multiple of periods τi.p and τj .p. In Fig-

ure 2.4, T = {τ1, τ2, τ3, τ4, τ5} and T (ve1) = τ1 for example. Although there is only one

41

Chapter 2. Schedule Co-Synthesis for Ethernet-based Time-Triggered Systems

application task mapped on each end station in this example, there can be multiple appli-

cations tasks running on an end station as we will see in the experimental section. The

constraint (2.1) is applicable to those scenarios.

(C2) Collision free communication tasks: To ensure there is no collision of frames

being sent on a single directed Ethernet link, a frame can only start its transmission ifg

time units after the last frame is finished. We define C as the set of all communication tasks

and C(lm,n) as the set whose path trees contain link lm,n. This condition can be formulated

as:

∀m,n, lm,n ∈ E , ∀i, j, ci, cj ∈ C(lm,n)

ci.p×ki+ci.olm,n +fi.f l/bw+ifg<cj .p× kj+cj .olm,n

or

cj .p×kj+cj .olm,n +fj .f l/bw+ ifg< ci.p×ki+ ci.o
lm,n (2.2)

where

∀ki ∈
[
0,
LCM(ci.p, cj .p)

ci.p
− 1

]
∀kj ∈

[
0,
LCM(ci.p, cj .p)

cj .p
− 1

]
.

In Figure 2.4, C = {c1, c2}, C(l6,8) = {c1} and similarly, C(l7,6) = {c2}. Although there

is only one communication task mapped on each link lm,n in this example, there can be

multiple communication tasks sharing the same link. The constraint (2.2) is applicable to

those scenarios.

(C3) Path dependency in communication: In a communication task, a frame can

only be forwarded along the paths in the correct temporal order. We further represent

the schedule ci.o
lm,n on the link lm,n as ci.o

lm,n [phj , q] or simply ci.o[phj , q], i.e., the qth

schedule in path phj . Here, q = 1 and q = γi,j represent the first and last schedule. The

data dependency of the communication can be formulated as:

∀i, ci ∈ C,∀j ∈ [1, αi], ∀q ∈ [2, γi,j]

ci.o[phj , q − 1]+fi.f l/bw+pd+sync<ci.o[phj , q] . (2.3)

It should be noted that fi.f l/bw represents the transmission time of the frame fi for a

given bandwidth bw. In Figure 2.5, let us consider the path c1.ph1. Here, γ1,1 = 3 and

the three schedules c1.o
l1,6 [ph1, 1], c1.o

l6,7 [ph1, 2] and c1.o
l7,3 [ph1, 3] should be in the correct

temporal order satisfying the constraint (2.3). Note that c1.o
l1,6 [ph1, 1], c1.o

l1,6 [ph2, 1] and

c1.o
l1,6 [ph3, 1] represent the same schedule since all three paths share the same link l1,6.

42

2.4. Approach

(C4) Data dependency in applications: Due to data dependency, the application and

communication tasks in the task chain of an application have to be executed in the correct

temporal order. In a task chain, two consecutive tasks must be one of the following cases:

(i) both application tasks, (ii) an application task followed by a communication task (iii) a

communication task followed by an application task. We define the set of all applications

as A. This condition can be formulated as follows:

∀i, ai ∈ A,∀j ∈ [1, βi − 1]

if ai.tj = τh ∈ T ∧ ai.tj+1 = τg ∈ T then

τh.o+ τh.e < τg.o (2.4)

if ai.tj = τh ∈ T ∧ ai.tj+1 = cg ∈ C then

τh.o+ τh.e+ sd < cg.o[phu, 1] (2.5)

if ai.tj = ch ∈ C ∧ ai.tj+1 = τg ∈ T then

ch.o[phv, γh,v] + fh.f l/bw + sync+ rd < τg.o . (2.6)

where phu is any path within the path tree and phv represents the path which is utilized by

the corresponding application. For illustration, let us consider the example in Figure 2.4.

For application a1 in Figure 2.6, the application task τ1 is followed by c1 and the schedules

τ1.o and c1.o
l1,6 are constrained by (2.5). Similarly, c1 is followed by τ2 and the schedules

c1.o
l7,3 and τ2.o are constrained by (2.6).

(C5) Application response time constraint: The response time of an application ai
is given by:

ai.rt = ai.tβi .o+ ai.tβi .e(+sync) . (2.7)

We denote the response time of an application as the time when the last task in the

corresponding task chain is finished from the beginning of period. If observed from the

local time of the sender station, the sync can be omitted. Figure 2.7 shows an example of

response time of two tasks ai and aj . In ai, ai.tβ1 .o 6= beginning of period possibly because

of unavailability of (computation or network) resources. In many real-life time-triggered

systems, the platform status information needs to be updated within a maximum tolerable

time bound which is reflected by response time of an application. A hard constraint on

maximum tolerable response time ai.rtmax can be enforced by adding the condition

ai.rt < ai.rtmax, ∀i, ai ∈ A . (2.8)

(C6) Application end-to-end latency constraint: End-to-end latency of an applica-

tion can be formulated as:

ai.lz = ai.tβi .o+ ai.tβi .e− ai.t1.o(+sync) . (2.9)

43

Chapter 2. Schedule Co-Synthesis for Ethernet-based Time-Triggered Systems

…

…

Figure 2.7: Response time and end-to-end latency.

Clearly, the end-to-end latency of an application is the time between the start of the first

task and the finishing of the last task of its task chain. Similar to the response time, a

maximum tolerable end-to-end latency can be enforced by the condition

ai.lz < ai.lzmax,∀i, ai ∈ A . (2.10)

Figure 2.7 illustrates the difference between the response time and the end-to-end latency.

When ai.tβ1 .o = beginning of period, ai.rt = ai.lz. The application a2 in Figure 2.7 shows

such an example. On the other hand, when ai.tβ1 .o 6= beginning of period,

ai.rt = ai.lz + ai.t1.o .

One such example is the application ai in Figure 2.7.

2.4.2 Constraint Formulation as MIP

Here, we discuss how the constraints and optimization objectives described in the previous

section can be converted into a MIP problem. Towards this, each constraint should be

represented as a single inequity or equation. The constraints (C3) to (C6) are already in

the form of a single inequity. Since the constraints (C1) and (C2) are either-or conditions,

they have to be converted by introducing a binary decision variable [95]. Thus, (C1) can

be represented as

44

2.4. Approach

∀n, ven ∈ V,∀i, j, i 6= j, τi, τj ∈ T (vem),∀q ∈ [1, λ]

τi.p× ki + τi.o+ τi.e < τj .p× kj + τj .o+ yq ×Mq

τj .p× kj + τj .o+ τj .e < τi.p× ki + τi.o+ (1− yq)×Mq. (2.11)

where yq denotes the introduced binary variable, λ represents the total number of pos-

sible collisions between application tasks and Mq is a sufficiently large constant. Similar

conversion can be applied to (C2).

2.4.3 Objectives

Given the above representation of a time-triggered system, we consider three different

classes of objectives. Let us consider a set of N applications A(obj) ∈ A.

(O1) Max/avg response time:

∀i, ai ∈ A(obj)

A(obj).rtmax = max(ai.rt)

A(obj).rtavg =
∑

ai.rt/N (2.12)

(O2) Max/avg end-to-end latency

∀i, ai ∈ A(obj)

A(obj).lzmax = max(ai.lz)

A(obj).lzavg =
∑

ai.lz/N (2.13)

(O3) Multi-objective optimization : Multi-objective optimization problem is also im-

portant. For example, a system designer may want to minimize the maximal response

time of all the applications while putting certain emphasis on several applications with

more stringent timing requirements. Here we formulate such multi-optimization problem

by formulating the overall objective function as a weighted sum of all sub-objectives. The

designer can adjust the weight according to the timing requirement of the system.

∀i, obji ∈ OBJ
objM =

∑
obji × wi (2.14)

where OBJ denotes the set of objectives in the form of (O1) or (O2) and objM denotes the

weighted multi-objective function.

45

Chapter 2. Schedule Co-Synthesis for Ethernet-based Time-Triggered Systems

2.4.4 Objective Formulation as MIP

The implementation of objective function as the response time or end-to-end latency of a

single application or the average value of multiple applications is straight forward. When

the objective is the maximum value of several applications, the minimax problem can be

formulated in MIP by introducing a continuous variable z [95]. Thus the minimax objective

functions can be converted to

obj = z,∀i, ai ∈ A(obj), ai.rt ≤ z, ai.lz ≤ z . (2.15)

Such an objective will introduce an extra continuous variable z and N inequities, which

must be added to the constraints. Further, a multi-objective function can be formulated

as (2.14).

2.4.5 Generalized Constraints and Objectives

In the aforementioned constraints, we have taken the following assumptions: (i) The exe-

cution of the whole application is finished within the period of the application and there

is no application spanning across different periods. (ii) The release time of an application

is at the beginning of the period. (iii) the response time and the end-to-end latency of an

applications is smaller than the sampling period. These assumptions are valid for a system

requiring ultra-low end-to-end delay and jitter, which is the purpose of implementing a

such a time-triggered system. The constraints and the objectives can be relaxed for a more

generalized case as the following

(C7) Generalized path dependency constraint: The path dependency constraint in

(C3) can further be extended in to the following form, where σci,q is an integer variable

taking the value of 0 to 2. When σ takes the value 0, it is an identical constraint as (C3).

However, this generalization allows the consideration of scenarios in the case of σ = 1 and

σ = 2 in Figure 2.8.

∀i, ci ∈ C,∀j ∈ [1, αi], ∀q ∈ [2, γi,j]

ci.o[phj , q − 1]+fi.f l/bw+pd+sync<ci.o[phj , q] + ci.p · σci,q. (2.16)

(C8) Generalized data dependency constraint: Similar to (C7), for the data depen-

dency constraint, (C4) can be extended to the following form, where σti,j again is an integer

variable.

46

2.5. Experimental Results

∀i, ai ∈ A,∀j ∈ [1, βi − 1]

if ai.tj = τh ∈ T ∧ ai.tj+1 = τg ∈ T then

τh.o+ τh.e < τg.o+ ai.p · σti,j (2.17)

if ai.tj = τh ∈ T ∧ ai.tj+1 = cg ∈ C then

τh.o+ τh.e+ sd < cg.o[phu, 1] + ai.p · σti,j (2.18)

if ai.tj = ch ∈ C ∧ ai.tj+1 = τg ∈ T then

ch.o[phv, γh,v] + fh.f l/bw + sync+ rd < τg.o+ ai.p · σti,j . (2.19)

Considering (C7) and (C8), we can also extend the definition of the end-to-end latency and

the response time to the following form.

(D1) Generalized application end-to-end latency:

ai.lz = ai.tβi .o+ ai.tβi .e− ai.t1.o+ +ai.p · (
∑
j

σti,j +
∑
k,q

σck,q)(+sync). (2.20)

(D2) Generalized application response time:

ai.rt = ai.tβi .o+ ai.tβi .e− ai.rl + ai.p · (
∑
j

σti,j +
∑
k,q

σck,q)(+sync). (2.21)

where σti,j and σck,q are the integer variables introduced in (C7) and (C8). In addition, we

further define a release time of the application that is not at the beginning of the period

as ai.rl for the response time. In an optimization problem, when the values of (D1) and

(D2) are under minimization, the solver will automatically choose the minimal possible

value of σti,j and σck,q. As already mentioned, the values of σti,j and σck,q can take 0, 1 or 2,

corresponding to the three cases depicted in Figure 2.8. This extension allows the schedule

co-synthesis problem to consider a more generalized case and also allows the end-to-end

latency and response time larger than the period, cross-period applications. In the case

where the timing constraints are smaller than the period, σ can be replaced by a binary

decision variable, taking the value of 0 or 1.

2.5 Experimental Results

In this section, we present the experimental results to show the applicability of our ap-

proach. We present an industrial size case study of a distributed system to illustrate the

various design aspects considering different optimization objectives. Further, we present a

47

Chapter 2. Schedule Co-Synthesis for Ethernet-based Time-Triggered Systems

Figure 2.8: This figure shows the possible values of σ and the corresponding scenario. Here
we abstract the task execution and the frame transmission to just a process xi and xj .

scalability analysis and show that our formulation scales to systems with reasonably large

size. We used Gurobi 5.10 [88] for solving the MIP model and all experiments are carried

out on a computer with 1.87GHz CPU and 4GB memory.

2.5.1 Case Study

In the case study, we consider a distributed system consisting of 12 end stations connected

via a switched Ethernet network. We explore four different network topologies as shown

in Figure 2.9. For the ring topology, the frames are only allowed to be forwarded in one

direction in the ring. Further, 53 application tasks are mapped on the processors and 23

frames are sent on the network amongst which 7 are multi-cast. The application tasks and

communication tasks constitute a total of 30 applications, with 5 of them having a task

chain length of 5. The system parameters are bw = 100 Mbps, ifg = 0.96 us (12 byte),

sd = pd = rd = 10 us, sync = 5 us. The details of the system configuration is shown in

Table 2.1 to Table 2.3. The schedule synthesis problem is formulated with constraints (C1)

to (C6) and objective (O1) to (O3).

In the experiment, we define the following objectives to be minimized (response time

and latency are observed from local time of the first sender station):

• obj1: Maximal response time of all applications A.

• obj2: Maximal response time of applications a1 to a5.

• obj3: Maximal response time of applications a1 to a10.

• obj4: Average response time of all applications A.

• obj5: Maximal end-to-end latency of all applications A.

48

2.5. Experimental Results

Figure 2.9: Network topologies explored (from left to right): (a) Star, (b) Twin-star, (c)
Tree, (d) Ring.

vei τi τi.e[us] send ci receive ci
ve1 τ1,τ2,τ3,τ4,τ5 200 c1,c2,-,-,- -,-,c3,c5,c7
ve2 τ6,τ7,τ8,τ9,τ10 500 c3,c4,-,-,- -,-,c10,c17,c21
ve3 τ11,τ12,τ13,τ14 550 c5,c6,-,- -,-,c2,c4
ve4 τ15,τ16 350 c7,c8 c1,c13
ve5 τ17,τ18,τ19,τ20,τ21 500 c9,-,-,-,- -,c6,c11,c17,c18
ve6 τ22,τ23,τ24,τ25,τ26,τ27 400 c10,c11,c12,-,-,- -,-,-,c14,c15,c18
ve7 τ28,τ29,τ30,τ31,τ32 300 c13,c14,-,-,- -,-,c8,c12,c19
ve8 τ33,τ34,τ35,τ36,τ37 500 c15,c16,-,-,- -,-,c9,c23,c3
ve9 τ38,τ39,τ40,τ41 500 c17,-,-,- -,c16,c21,c9
ve10 τ42,τ43,τ44,τ45 300 c18,c19,-,- -,-,c17,c21
ve11 τ46,τ47,τ48,τ49,τ50 500 c20,-,-,-,- -,c3,c19,c22,c18
ve12 τ51,τ52,τ53 600 c21,c22,c23 c3,c10,c20

Table 2.1: Configuration of application tasks.

Depending on the higher-level goals one or more of the objectives above can be optimized.

For platform/system status applications, the response time is an important parameter

since they need to be completed as early as possible. Towards this, obj1 and obj4 are

useful objectives. Often, a subset of applications are system status applications while the

rest are usual applications. In such cases, obj2 and obj3 allow to minimize the response

time of the relevant applications. Moreover, for many applications such as feedback control

loops, the maximum end-to-end latency plays an important role. Therefore, obj5 also

has application-level relevance. In general, it is possible to form various combinations

of response time and end-to-end latency as an objective depending on the exact design

requirements. Further, in many real-life scenarios, a single objective might not suffice. In

such cases, our approach offers a multi-objective formulation. In the case study, we explore

the results considering each single objective and several multi-objective cases. In the case

of multi-objective optimization, we assign equal weights wi.

49

Chapter 2. Schedule Co-Synthesis for Ethernet-based Time-Triggered Systems

ai ai.p[ms] ai.tc ai ai.p[ms] ai.tc

a1 5 τ1,c1,τ15,c7,τ5 a16 4 τ28,c13,τ16,c8,τ30
a2 10 τ2,c2,τ13 a17 4 τ29,c14,τ25
a3 5 τ6,c3,τ3 a18 20 τ33,c15,τ26
a4 5 τ6,c3,τ37 a19 20 τ34,c16,τ39
a5 5 τ6,c3,τ47 a20 10 τ38,c17,τ9
a6 5 τ6,c3,τ51,c21,τ45 a21 10 τ38,c17,τ20
a7 10 τ7,c4,τ14 a22 10 τ38,c17,τ44
a8 10 τ11,c5,τ4 a23 10 τ42,c18,τ21
a9 10 τ12,c6,τ18 a24 10 τ42,c18,τ27
a10 10 τ17,c9,τ35 a25 10 τ42,c18,τ50
a11 10 τ17,c9,τ41 a26 10 τ43,c19,τ32
a12 5 τ22,c10,τ8 a27 10 τ43,c19,τ48
a13 5 τ22,c10,τ52,c22,τ49 a28 5 τ46,c20,τ53,c23,τ36
a14 10 τ23,c11,τ19 a29 5 τ51,c21,τ10
a15 10 τ24,c12,τ31 a30 5 τ51,c21,τ40

Table 2.2: Configuration of the applications.

ci fi.f l[B] ci fi.f l[B] ci fi.f l[B] ci fi.f l[B]

c1 64 c7 100 c13 100 c19 100
c2 80 c8 100 c14 150 c20 64
c3 64 c9 64 c15 150 c21 64
c4 80 c10 64 c16 100 c22 64
c5 80 c11 64 c17 100 c23 64
c6 100 c12 64 c18 100

Table 2.3: Frame length of communication tasks.

2.5.2 Results and Discussions

The optimization results for the star and tree topology are shown in in Table 2.4 and for the

twinstar and ring topology are shown in Table 2.5. Firstly, in the case of single objective

optimization, the first five rows of Table 2.4 and Table 2.5 show the results for four dif-

ferent topologies. The results for the tree topology is further illustrated using Figure 2.10.

Clearly, the optimality was achieved for each individual objective (in bold font). For ex-

ample, as shown in Figure 2.10, the result for obj1 for tree topology is obj1 = 2880.96 us,

which is the minimal value for obj1 among all the cases of single-objective optimization.

Similar results also can be drawn for obj2 to obj5 in Figure 2.10. Naturally, such single

objective cases often lead to non-optimal results for the others. For example, in the case of

tree topology, single objective optimization according to obj2 and obj3 leads to the minimal

value of obj2 = 1342.48 us and obj3 = 2200 us respectively, but results in the undesirable

results for obj1 as 12395 us and 18995 us respectively. It should be noted that the results of

the objectives that are not optimized (not underlined in Table 2.4 and Table 2.5) can vary

50

2.5. Experimental Results

obj STAR
1 [us] 2 [us] 3 [us] 4 [us] 5 [us]

1 2800.48 2800.48 2800.48 2164.52 2800.48
2 18995.00 1256.24 9995.00 5445.84 8944.76
3 12800.00 2200.00 2200.00 4601.62 6795.00
4 3006.48 1256.24 2206.00 1590.88 2550.24
5 10236.48 7785.76 7785.76 4485.34 1700.48
1+2 3006.48 1256.24 3006.48 2157.80 3006.48
1+3 2800.48 2200.00 2200.00 2141.23 2800.48
1+2+3 3006.48 1256.24 2206.00 1996.64 3006.48
1+4 2800.48 1650.24 2602.80 1630.01 2800.48
1+5 2900.48 2900.48 2900.48 2037.11 1700.48
1+2+3+4 3006.48 1256.24 2206.00 1590.88 2550.24
1+2+3+4+5 3056.48 1356.00 2206.00 1656.46 1700.48

obj TREE
1 [us] 2 [us] 3 [us] 4 [us] 5 [us]

1 2880.96 2880.96 2880.96 1954.47 2880.96
2 12395.00 1342.48 9995.00 6087.15 9995.00
3 18995.00 2200.00 2200.00 5104.39 10601.48
4 3092.72 1342.48 2252.00 1615.28 2590.48
5 12962.20 8624.68 8624.68 6010.64 1740.72
1+2 3092.72 1342.48 2902.00 2062.89 3092.72
1+3 2880.96 2200.00 2200.00 2027.25 2880.96
1+2+3 3092.72 1342.48 2252.00 2077.51 3092.72
1+4 2880.96 1690.48 2602.80 1659.99 2880.96
1+5 2902.00 2703.28 2902.00 2021.08 1740.72
1+2+3+4 3092.72 1342.48 2252.00 1615.28 2487.68
1+2+3+4+5 3132.96 1356.00 2252.00 1684.95 1750.00

Table 2.4: Results for the star and tree topology according to different optimization objec-
tives.

under different solver configurations. This is because it is possible that there are multiple

solutions to such an optimization problem and the results in the table show only one of

them. However, the results of objectives that are considered for optimization are indepen-

dent of the solver configuration.

Therefore, in order to achieve more balanced optimization results, multi-objective op-

timization is more desirable. In the case of multi-objective optimization, it is often possible

to achieve results close to the optimal one for all the objectives under consideration. We

again illustrate the optimization results using the tree topology. We first consider an exam-

ple shown in Figure 2.11. If the synthesis is optimized towards a combination of obj1, obj2
and obj3, the results obtained are obj1 = 3092.72 us, obj2 = 1342.48 us, obj3 = 2252 us.

Clearly, all three objectives are close or equal to the results in the single objective cases.

Similar results can be observed for the case of obj1, obj4 and obj5, as shown in Figure 2.12.

51

Chapter 2. Schedule Co-Synthesis for Ethernet-based Time-Triggered Systems

obj TWINSTAR
1 [us] 2 [us] 3 [us] 4 [us] 5 [us]

1 2820.60 2820.60 2820.60 1920.03 2820.60
2 11126.36 1256.24 9995.00 5147.35 6027.00
3 11200.00 1650.00 2200.00 4600.77 8188.52
4 3006.48 1570.36 2206.00 1597.34 2570.36
5 12504.96 9166.24 9166.24 6295.11 1700.48
1+2 3006.48 1256.24 2906.48 1801.53 3006.48.
1+3 2820.60 2200.00 2200.00 1979.30 2820.60
1+2+3 3006.48 1256.24 2260.00 2009.12 3006.48
1+4 2820.60 1670.36 2602.80 1638.19 2820.60
1+5 2900.48 2900.48 2900.48 1961.06 1700.48
1+2+3+4 3006.48 1256.24 2206.00 1597.34 2467.56
1+2+3+4+5 3056.48 1356.00 2206.00 1689.81 1700.48

obj RING
1 [us] 2 [us] 3 [us] 4 [us] 5 [us]

1 2840.72 2840.72 2840.72 2093.28 2840.72
2 12395.00 1299.36 9995.00 5915.79 8186.04
3 18995.00 2200.00 2200.00 5569.66 11904.52
4 3049.60 1299.36 2229.00 1604.08 2570.36
5 14464.28 6170.60 6170.60 4703.60 1720.60
1+2 3049.60 1299.36 3049.60 2290.29 3049.60
1+3 2840.72 2200.00 2200.00 2009.24 2840.72
1+2+3 3049.60 1299.36 2229.00 1915.68 3049.60
1+4 2840.72 1670.36 2602.80 1651.58 2840.72
1+5 2900.48 2683.16 2900.48 1972.93 1720.60
1+2+3+4 3049.60 1299.36 2229.00 1604.08 2570.36
1+2+3+4+5 3076.60 1256.00 2229.00 1682.22 1720.60

Table 2.5: Results for the twinstar and ring topology according to different optimization
objectives.

Further, we investigate the influence of the weights on the optimization results. Fig-

ure 2.13 shows the result in the case of multi-objective optimization of obj1 and obj4 for

different weight ratios w4/w1. As expected, the weight ratio of the objective can influence

the optimization result. A higher w4/w1 should imply a relatively lower obj4 which is also

reflected in Figure 2.13.

From the experimental results we can see that our formulation allows the designer

to generate schedules according to various application-level objectives. It also offers the

possibility to combine single objectives to form multi-objective optimization problems that

could meet more complicated higher-level requirements. Moreover, our approach is ap-

plicable to any network topology and configuration of applications, application tasks and

communication tasks.

52

2.5. Experimental Results

Optimization objectives

0

0.5

1

1.5

2
T

im
e

[u
s]

104

obj1: max. rt. of all

obj2: max rt. of a1 to a5

obj3: max rt.t of a1 to a10

obj4: avg. rt. of all

obj5: max lz. of all

obj
1

obj
2 obj

3
obj

4 obj
5

min

min
min min min

Figure 2.10: This figure shows the results for the single-objective optimization in the tree
topology. Detailed data are documented in Table 2.4.

Optimization objectives

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
[u

s]

obj
1
: max. rt. of all

obj
2
: max. rt. of a

1
 to a

5

obj
3
: max. rt. of a

1
 to a

10

obj
1 obj

1
+obj

2
obj

1
+obj

3
obj

1
+obj

2
+obj

3

Figure 2.11: This figure shows the
results for the multi-objective opti-
mization in the tree topology consid-
ering obj1, obj2 and obj3. Detailed
data are documented in Table 2.4.

Optimization objectives

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
[u

s]

obj
1
: max. rt. of all

obj
4
: avg. rt. of all

obj
5
: max. lz. of all

obj
1
+obj

4obj
1 obj

1
+obj

5

Figure 2.12: This figure shows the
results for the multi-objective opti-
mization in the tree topology consid-
ering obj1, obj4 and obj5. Detailed
data are documented in Table 2.4.

53

Chapter 2. Schedule Co-Synthesis for Ethernet-based Time-Triggered Systems

0 1 2 3 4 5 6 7 8 9
ratio w

4
/w

1

2800

2900

3000

3100

3200

ob
j 1

[u
s]

0 1 2 3 4 5 6 7 8 9
1600

1610

1620

1630

1640

1650

1660

1670

1680

ob
j 4

[u
s]

Figure 2.13: Results for obj1 and obj4 in a multi-objective optimization with different weight
ratio w4/w1.

2.5.3 Scalability Analysis

To show the scalability of the proposed approach, we use a series of synthetic test systems in

increasing size and measure the time required to solve the model. We construct 20 synthetic

systems with different configurations for each system size from 9 to 90 applications. Initially,

the systems employ a tree topology with three end stations and two switches. Subsequently,

we add new applications and for each additional 9 applications, we add three end stations

and one switch. All the applications consist of two application tasks and one uni-cast

communication task. The periods of applications ai.p are chosen randomly from 4, 5, 10

and 20 ms and the WCET τi.e are between 100 and 300 us. Further, the frame lengths

range from 80 to 200 bytes. Figure 2.14 shows the maximal, minimal and average runtime

of the 20 synthetic cases. It can be observed from the figure that the average synthesis

time for 90 applications is less than 200 seconds. Clearly, the proposed approach scales up

to a system of this size, which is a reasonable size for many application domains such as an

automotive ECU cluster. It is also interesting to note that the synthesis time for different

systems of the same size varies a lot. For example, for a system consisting 90 applications,

the case requiring shortest synthesis time needs about 20 seconds to synthesize where the

case requiring longest time needs approximately 600 seconds. The reason for this variation

lies within the system configuration and would be an interesting topic to explore for future

work.

54

2.6. Concluding Remarks

0 20 40 60 80 100
Number of applications

0

100

200

300

400

500

600
ru

nt
im

e
[s

]
avg
max
min

Figure 2.14: Number of applications vs. runtime.

2.6 Concluding Remarks

In this chapter, an approach to co-synthesize task and network schedules for an Ethernet-

based time-triggered system is presented. We target at the time-triggered traffic in Ethernet

and synthesize synchronous task and network schedules to optimize application-level timing

objectives. The mathematical models of the constraints and the objectives in such a sys-

tem is provided and the problem is formulated into a MIP problem. We further introduce

the formulations for more generalized constraints. The proposed approach is independent

of task and communication configurations as well as network topologies and device per-

formance. An industrial-sized case study is used to show the applicability of the method

towards optimization of complex timing objectives and the experimental results also show

that it can be scaled to system of reasonably large size.

Real-time requirement is the main focus of the approach proposed in this chapter. As

future work, this approach can be extended to the synthesis of task and network schedules

according to further objectives like the extensibility of the schedules. Another possible

future work in this direction is the examination of the relationship between the synthesis

time and the system configuration. It has been shown in the scalability analysis in the

experimental results that for the system of the same size, the required synthesis time varies

a lot. The investigation of this problem could possibly lead to the identification of the

relationship between system configuration and the computational effort of the synthesis.

The results can certainly contribute to the scalability of similar synthesis approaches.

55

Chapter 3
Schedule Management for Cloud-based

Automotive Software Systems

A framework for the schedule management problem for cloud-based future automotive

software systems is presented in this chapter. The innovation in the automotive domain

is shifting considerably to the E/E system and software. The evolution cycle of the elec-

tronic system and the software is significantly shorter than the life cycle of a vehicle and

therefore the functionality of a vehicle might become ’outdated’ easily in the future. Thus,

it would be advantageous if new applications can be installed or existing applications can

be upgraded via cloud services after sales in a PnP fashion. This requires that the under-

lying system possesses a certain degree of adaptivity and reconfigurability. One important

issue in this case is the allocation of computation and communication resources. In the

case of a time-triggered system, the task and network schedules need to be adapted to

accommodate new applications. Towards addressing this problem, we propose a schedule

management framework to obtain, synthesize and manage schedules efficiently online for

Ethernet-based time-triggered systems in the automotive context. This framework is based

on a client-server architecture and each side consists of a web module, a synthesis mod-

ule and a configuration pool. It utilizes the Internet access of modern vehicles to exploit

the computation and storage capacity on the server in a cloud-computing manner and can

facilitate the reuse of generated schedule sets. In the synthesis module, a four-stage strat-

egy is introduced to reduce the synthesis time and the disturbance to existing applications.

The experimental results show that the proposed framework can be applied to generate and

57

Chapter 3. Schedule Management for Cloud-based Automotive Software Systems

manage schedules online and benefit from both onboard and cloud-based schedule synthesis.

The result also shows the applicability of the introduced four-stage synthesis strategy.

Chapter outline: This chapter is divided into six sections. Section 3.1 provides the

introduction to the problem and explains the contributions. Section 3.2 then reviews the

related work. The architectural setting and the formulation of the schedule management

problem is explained in Section 3.3. This is followed by the proposed approach, which is

presented in Section 3.4. The experimental results and evaluation are then provided in

Section 3.5, which is followed by the concluding remarks in Section 3.6.

3.1 Introduction

Increasingly more software applications are being deployed in the automotive embedded

systems in recent years, including, e.g., applications for driver assistance systems, infotain-

ment and safety-critical control systems. These software applications might need constant

updates from the OEM. Some OEMs are already offering after-market updates of certain

softwares to the end user. Currently these software updates are limited to the infotainment

domain, however, it is likely that in the future increasingly more software modules can

be updated after sales. Moreover, novel applications can be designed and developed in a

relatively shorter time, compared to the life cycle of a car. Therefore, in the future, it

would be advantageous both for the car manufacturers and the customers if it is possible to

install new applications that are developed after sales. Towards addressing this problem,

one emerging trend in automotive embedded systems is the PnP capability of software ap-

plications, which enables the end user to install a new application or upgrade an existing

one either by downloading it from the cloud or with a storage device like a USB stick. In a

more futuristic scenario, which is in line with the autonomous vehicle concept, a vehicle can

automatically detect the driving condition and download on demand the software applica-

tions that are suitable for the specific situation in a PnP fashion. For example, in heavy

rain condition, a more sophisticated image processing algorithm can be downloaded and

activated for the autonomous parking. In such a case, instead of pre-installing everything

onboard the vehicle, the most up-to-date software functionalities can be accessed through

cloud service when needed.

However, there still remain many challenges to be addressed for the PnP capability

of applications. This is because the feature demands certain flexibility in the underlying

system, in which case the application software, the system software and the communication

services can be (partially) reconfigured to accommodate the new applications or new up-

dates. However, current automotive embedded systems do not support PnP in a straight

forward manner. One challenge is that according to the current automotive supply chain,

ECUs are often equipped with one single independent function or an aggregate of several

functions and the ECUs and their softwares are delivered by the supplier as black-boxes.

However, as the size and complexity of the E/E architecture of vehicles increase, this might

58

3.1. Introduction

Configuration Pool

M
a

n
a

g
e
m

e
n

t
M

o
d

u
le

Web Module

Synthesis Module

Websocket

Secure

Formulation &

Interpretation

Schedule

Synthesis

Internet through

WLAN or

3G/LTE/4G

Configuration Pool

M
a

n
a

g
e
m

e
n

t
M

o
d

u
le

Web Module

Synthesis Module

Websocket

Secure

Formulation &

Interpretation

Schedule

Synthesis

Offline

Schedule Synthesis
Request Deployment

Server Client

Figure 3.1: Software architecture of the proposed framework.

not be sustainable due to cost, space and complexity reasons. It is expected, that in the

future, the E/E architecture of vehicles will shift from a federated architecture to an in-

tegrated architecture [40], where an ECU is treated as a computing platform and tasks

from multiple applications can be mapped onto one ECU, as opposed to the current ar-

chitecture, where each ECU is relatively function-specific. A further challenge lies in the

deployment of new software components. Currently, the software on the ECU is built into

one single binary file and flashed onto the hardware. Towards overcoming this hurdle, there

are already some research works on operating systems and runtime environments that can

accommodate new software modules [24, 96, 97] without re-flashing the whole ECU. In

addition, there exist also proposals to extend AUTOSAR to allow the replacement of a

software module [98].

Another important issue in a PnP scenario is the (re-)allocation of the computation

and communication resources to accommodate the new applications or the updated applica-

tions with modified requirements on computation and communication resources. The work

at hand addresses this problem, in particular, the schedule generation and management

for an Ethernet-based time-triggered system in such context. Time-triggered paradigm

is a typical design choice for an embedded system of stringent timing requirements, e.g.,

safety-critical control applications and other time-critical real-time applications, since it

can deliver deterministic timing behavior. These time-triggered systems rely mainly on a

schedule table, where the task triggering time and the transmission time of the messages is

specified. In this chapter, we consider an Ethernet-based time-triggered distributed plat-

form, which has been gaining ground in the industrial domains. Ethernet is considered one

59

Chapter 3. Schedule Management for Cloud-based Automotive Software Systems

of the promising candidates for future in-vehicle communication network and is gradually

replacing conventional automotive bus systems. Some more recent Ethernet protocols also

support the time-triggered traffic. Examples of these protocols include the AS6802 [21]

protocol and the upcoming TSN standards [15]. In such a system, the PnP feature imposes

challenges on the resource re-allocation in several aspects, including, e.g., the generation of

the schedules, the deployment of the schedules and the safety of the reconfiguration pro-

cess. In this work, we focus on the problem of how the task and message schedules can be

obtained, taking into account, the requirements for an after-market reconfiguration, e.g., a

PnP scenario.

Typically such a schedule set is synthesized offline. However, to enable the PnP fea-

ture, a schedule set needs to be obtained online, so that the plug-in applications can be

accommodated without taking the car to the manufacturer’s garage. Modern premium

vehicles are already equipped with the access to the Internet, and there are intensive re-

search works on the connected car concept for allowing a vehicle to be able to connect

to other vehicles or infrastructure units and servers. This connectivity can be utilized to

provide solutions to this problem. Towards addressing this problem, several alternatives

can be considered, including (i) pre-calculate the schedules offline, store them on a server

and fetch them online, (ii) generate schedule sets onboard the vehicle, or (iii) utilizing the

cloud-computing concept to generate schedule set on the server. Each of these alternatives

has its advantages and disadvantages, which will be analyzed in Section 3.3.

In this chapter, we propose a schedule management framework for obtaining the sched-

ules online for reconfiguration, combining the aforementioned alternatives. This software

framework is based on a client-server architecture and contains on each side a configura-

tion pool, a synthesis module and a web module. The configuration pool can store valid

schedule configurations to facilitate their efficient reuse. In addition, schedule sets can also

be pre-calculated offline and stored in the server to reduce the online synthesis effort. The

synthesis module on both the client and the server can be used to calculate schedules. Here

a four-stage re-scheduling strategy is introduced to offer a trade-off between the chance of

accommodating new applications on one hand and the synthesis time and the disturbance

to existing applications on the other. It includes a simple incremental design, two levels of

conflict-based re-scheduling and a complete re-scheduling. The conflict-based re-scheduling

is based on identifying the conflict of tasks and shared resources between the new and exist-

ing applications and re-schedules only existing applications with conflict. The web module,

based on websocket secure, provides a secure communication channel between the client

and the server, so that the client can fetch schedules from the server or use the computa-

tion capacity of the server for online schedule synthesis. This framework offers a balance

between offline and online schedule synthesis and utilizes both the storage and computation

capacity on the server to efficiently obtain and manage schedules in a reconfiguration sce-

nario, e.g., installing new applications. The proposed software framework is implemented

using a Raspberry Pi 2 as client to represent an onboard ECU and a laptop computer to

represent a server, which can be managed and maintained by the car manufacturers. The

60

3.2. Related Works

result has shown the applicability of the proposed framework.

Contributions: In this chapter, we propose a schedule management framework that ad-

dresses the problem of generating and managing schedules for time-triggered systems in

the context of PnP of future cloud-based automotive software systems. The framework uti-

lizes the computation and storage capacity both onboard the vehicle and a server through

cloud-computing. It can generate schedule sets online as well as store them and enable

their reuse. We also introduce a four-stage scheduling scheme that starts from a simple

incremental design, and step-by-step increases the number of existing applications to be

re-scheduled based on identifying task and resource conflict. It offers a trade-off between

the chance of accommodating new applications and the synthesis time as well as the dis-

turbance to existing applications.

3.2 Related Works

The related research works can be roughly divided into four different categories.

(i) The schedule synthesis problem for time-triggered systems is a heavily researched

subject. [59] has proposed an SMT formulation for the schedule synthesis problem for the

time-triggered Ethernet traffic. [89, 94] have considered in addition how the time-triggered

schedules can be synthesized taking the rate-constrained traffic also into consideration.

[99, 100] addressed the problem of task and communication schedule co-synthesis. How-

ever, these approaches only addressed the offline schedule synthesis problem. On the other

hand, this work at hand does not focus on proposing a new formulation, but addresses the

problem of providing software framework support for the online schedule generation and

management.

(ii) Several related works addressed the problem of incremental scheduling scheme.

[71] has proposed heuristics based incremental design for a system based on TDMA pro-

tocol, with the objective to minimize the modification cost of existing schedules. [89] has

considered the incremental design for time-triggered Ethernet using backtracking, but with-

out any specific metric. The conflict-based incremental design method we propose in this

framework has similar motivation as [71], but it can be fitted into a schedule synthesis

framework without using additional optimization metrics.

(iii) There are also several works on the configuration and reconfiguration of time-

triggered Ethernet networks. [101] has proposed a configuration agent which can be used

to calculate new schedules based on traffic parameters learned. In addition, in [102], a

method is proposed to analyze traffic parameters based on measurements. These related

works mainly focused on the analysis of parameters for asynchronous traffic to make it

synchronous, and not on a software framework addressing the challenges and requirements

of obtaining schedules online, which is the focus of this work at hand.

61

Chapter 3. Schedule Management for Cloud-based Automotive Software Systems

Figure 3.2: An example of Ethernet-based time-triggered system.

(iv) A few papers addressed the problem of PnP in the automotive setting. [96, 103]

have considered the integration of new software components into the system. In [96], an

Android-based framework is proposed that allows the plug-and-play of software compo-

nents. [97, 104] proposed a runtime environment, which supports the plug-and-play of

software components. However, [97, 104] did not address the problem of obtaining the

schedule parameters for reconfiguration. [96] considered an online schedulablility analysis

module for the priority-based scheduling scheme. But this cannot be applied to time-

triggered systems, which require a schedule table.

3.3 Problem Formulation

3.3.1 Architectural Setting

Typically, an E/E architecture of a vehicle consists of several clusters of ECUs. Each cluster

of ECUs are connected by a bus system, e.g., FlexRay, CAN or Ethernet. A distributed

application is partitioned into a set of tasks. The tasks are often mapped on different ECUs

and the data between the tasks are transmitted via messages over the communication bus.

Some of the automotive applications have stringent timing requirements. Safety-critical

applications are typical examples of such applications. Other non-safety-critical applica-

tions might also exhibit periodic nature and low latency and low jitter can considerably

increase their performance. The time-triggered architecture has gained increasing popular-

ity in recent years for its deterministic nature and the possibility of achieving low latency

and jitter. Therefore, it is suitable for the aforementioned applications. In a time-triggered

distributed system, tasks are executed and messages are transmitted according to pre-

calculated schedules. Consequently the schedule calculation forms an important step in the

design and development of such systems.

62

3.3. Problem Formulation

Ethernet-based Time-Triggered Distributed System

We consider an Ethernet-based time-triggered distributed platform, consisting of a set of

ECUs communicating over a switched Ethernet network. In this setting, we consider the

time-triggered non-preemptive scheduling scheme on the ECUs and the time-triggered traf-

fic in the full-duplex switched Ethernet for communication. Furthermore, we consider that

the clocks of the ECUs are synchronized to the network. A more detailed description of

this architectural setting can be found in Section 2.3 of Chapter 2. Here we provide a

brief recap of the system and adapt the notations slightly for the purpose of this chapter.

The network architecture can be denoted as a graph G(V, E), where V and E denote re-

spectively the nodes (ECUs and switches) and the links between them. An ECU in the

network can be denoted as vei and a switch as vsi . A full-duplex Ethernet link is repre-

sented as lm,n and ln,m, denoting respectively the directed link from nodes vm to vn and

from vn to vm. Such a distributed system typically consists of a set of applications. Each

application ai is composed of a number of dependent tasks and the communication via

network between the tasks. Each task, τi, is represented by a tuple {τi.E, τi.p, τi.e, τi.o}
denoting task mapping, period, offset and WCET respectively. Data between dependent

tasks mapped on different ECUs are packed into frames and transferred over the Ethernet

network. Each frame (similar to communication task in Chapter 2), fi, is represented by

a tuple {fi.l, fi.p, fi.ph, fi.o} denoting the corresponding frame length, period, the set of

dataflow paths and the set of link offsets respectively. Here, a dataflow path defines an

ordered set of links from the source ECU to one destination ECU. In the case of multi-

cast, a frame has several dataflow paths, each leading to one of the destination ECUs. In

the example shown in Figure 3.2, we have considered a multi-cast frame f1 transferred

from ve1 to ve2 and ve3. Here, f1.ph = {f1.ph1, f1.ph2}, where f1.ph1 = {l1,4, l4,2} and

f1.ph2 = {l1,4, l4,5, l5,3}. Furthermore, in the time-triggered communication, a frame must

traverse each link according to some pre-calculated schedule. Therefore, fi.o represents a

set of values where a value fi.o
lm,n corresponds to the frame offset in the link lm,n. An

application thus consists of an ordered chain of tasks and frame dataflow paths. In Fig-

ure 3.2, we can define two applications a1 and a2 for which the task chains can be written

as a1.tc = {τ1, f1.ph1, τ2} and a2.tc = {τ1, f1.ph2, τ3} respectively.

The variables of an application that need to be obtained for a scheduling problem are

the offsets of tasks and the transmission offsets of the frames on the links. We define this

vector as ai.o. The latency of the application ai is defined as the time delay between the

beginning of the first task and the end of the last task in a task chain in an application

instance. For each application, we denote the maximal allowed latency of an application as

ai.lz. Furthermore, we divide the applications into two categories, namely the basic appli-

cations and plug-in applications. The basic applications are the applications that provide

basic functions of the ECU cluster (e.g., braking and steering control) and are deployed

and fixed in the system. The functional correctness as well as the timing behaviour of

these applications are rigorously tested and validated and the task and communication

schedules cannot be modified. The plug-in applications are the plug-and-playable applica-

tions. These applications can be installed or updated after sales and their schedules can

63

Chapter 3. Schedule Management for Cloud-based Automotive Software Systems

be changed provided that the timing constraints are satisfied. Therefore, we denote the

possibility of re-scheduling an application as a boolean parameter ai.rs. The parameters

for an application ai ∈ A include the period, task partition and mapping, the WCET of the

tasks on the task side, the length and data flow paths of the frames on the communication

side, the latency constraint and the possibility of re-scheduling. We represent this param-

eter set as ai.ω. The parameters of an application depends on the application software

implementation, the hardware characteristics and can be obtained, provided the details of

the software and hardware architecture are known. An application can then be represented

by a tuple {ai.ω, ai,o}, and an application set A as {A.ω,A.o}.

The Scheduling Problem

The scheduling problem in this architectural setting then boils down to the problem of

finding the task and frame offsets A.o of all applications given the parameters hw.ω and

A.ω. The hardware parameters hw.ω here include the network topology G(V, E) and the

related device timing parameters. These timing parameters include: (i) network bandwidth

bw, (ii) interframe gap ifg, i.e., the minimum idle time between two consecutive frame

transmissions on a link, (iii) precision sync, i.e., the maximum clock-skew in the network,

(iv) message packetization delay sd, i.e., the upper bound on the time taken by a sender

ECU to packetize a data into a frame and subsequently make it available in the sending

buffer, (v) message depacketization delay rd, i.e., the upper bound on the time taken by

a receiver ECU to depacketize a frame to retrieve the data and make it available to the

destination task, and (vi) switch propagation delay pd, i.e., the upper bound on the time

taken by a switch to read the destination address, decide the link to which it must forward

the frame and subsequently make it available in the corresponding sending buffer. In this

context, the schedules for basic applications are synthesized offline and kept unchanged.

Plug-in applications can be mapped on this schedule set either by (i) simple incremental

scheduling, where all schedules of the existing applications are kept fixed and formulated

into constraints, (ii) conflict-based re-scheduling, where only existing plug-in applications

with conflicts with the new applications are rescheduled, or (iii) complete re-scheduling,

where all schedules of the plug-in applications are rescheduled to accommodate the new

ones. Both the simple incremental scheduling and the complete re-scheduling problem are

well-studied in related works and can be formulated into a constraint programming problem,

as discussed in details in the related works [59, 89, 99, 100]. The conflict-based scheduling

will be explained in Section 3.4. Examples of constraints in this case include the following,

where the detailed mathematical formulations can be found in Section 2.4 in Chapter 2:

• Non-overlapping tasks and frames: No two task instances mapped onto the same

ECU should overlap with each other and no two frame instances on the same link

should overlap with each other.

• Path dependency in communication frames: The forwarding of the frames in the

network should follow the correct order of links in the corresponding virtual link.

64

3.3. Problem Formulation

• Data dependency in applications: In a task chain, the tasks and the data transmission

should follow the correct temporal order specified by the data dependency.

• Max. application latency: The latency of an application should be smaller than a

certain value.

3.3.2 Schedule Management Problem

As already mentioned, PnP feature of automotive embedded systems requires that the sys-

tem possesses a certain degree of reconfigurability, where communication and computation

resources need to be allocated for the new plug-in applications. In terms of a time-triggered

architecture considered in this work, one important issue is to obtain the new schedules,

where the reservation of the processor time and the communication bandwidth needs to

be recalculated and deployed. In the context of this chapter, we assume that when a new

application is installed/removed, or an update of the application changes its resource re-

quirements, the parameters of the application ai.ω are pre-calculated for the vehicle variant

and deployed with the software. For example, the WCET of tasks can be obtained by either

formal verification or by intensive testing and validation on actual hardware of the specific

vehicle variant before the application is released. Based on this and the information on

existing applications in the ECU cluster, a new schedule set needs to be obtained that can

accommodate the new or updated application in the time-triggered system under consid-

eration.

Towards this, there are several alternatives that can be considered. (i) One possible

solution would be to obtain offline the schedules for a specific application and deliver it with

the software. (ii) Another alternative would be to synthesize schedules offline and stored

them on a server. Once an application is installed, the vehicle fetches the corresponding

schedule set that matches the requirement. (iii) A third method is to synthesize the sched-

ules online. This can be done either onboard the vehicle or on the server through cloud

computing. (i) would not be applicable, since the schedule synthesis depends on the full

knowledge on the hardware parameters and the parameters of all the existing applications

in the target system. (ii) would be applicable in the case where an ECU cluster can accom-

modate all the related applications, i.e., the basic and plug-in applications. In this case, a

’Master’ schedule set can be synthesized offline with all applications and the schedules for a

particular scenario can be generated by removing the applications not needed. However, as

mentioned in Section 3.1, one of the motivation for plug-and-play is that new applications

are constantly developed, but the E/E architecture of the vehicle remains relatively static

for the life cycle of the vehicle. The number of available applications can easily exceed what

a system can accommodate. In that case, multiple schedule sets need to be synthesized and

maintained to cover all possible combinations of applications that can be accommodated by

the system. The number of schedule sets can easily explode as the number of applications

increases. In this case, method (ii) would require the server to maintain a huge number of

65

Chapter 3. Schedule Management for Cloud-based Automotive Software Systems

schedule sets, which adds to the complexity and also the time needed to retrieve a valid

schedule set. Furthermore, this might not be necessary if some of the application combina-

tions do not appear in practice. Method (iii), however, results in the online solving of the

scheduling problem, which might lead to much longer time for obtaining the schedules.

The problem this chapter addresses is how to efficiently obtain new schedules online

and manage the schedules, while considering the requirements like low latency for obtain-

ing the schedule configuration in a plug-and-play scenario. This can be done by combining

(ii) and (iii), exploiting the advantages on both sides and by utilizing the storage and

computation capacity on the server.

3.4 Approach

In this section, we describe the proposed software framework for the schedule management.

We first start by the definition of the request and configuration of the schedules. Then the

client-server model of the software and each individual software component are explained.

Finally, we explain the management flow of the framework.

3.4.1 Request and Configuration

We firstly define a configuration format to serve as the interface between different soft-

ware components and between the client and the server. The configuration format termed

TTCON is an XSD (XML Schema Definition) and can be used to represent the system

described in Section 3.4. This format contains mainly three parts, namely the hardware

specific parameters hw.ω, the application parameters A.ω and the application schedules

A.o. The TTCON format can be used to represent a valid schedule configuration or a

request. In a configuration, the task and communication schedules A.o have valid values

for all applications. In a request, the schedules of the applications are left blank, indicating

that they need to be determined. We define the set of applications in the current config-

uration as Ao = Ab ∪ Aao, which is a combination of the set of basic applications Ab and

plug-in applications Aao. The new set of applications that are requested to be activated is

denoted as An = Ab∪Aan. Note that we assume in this work, the basic applications cannot

be installed or deleted in a plug-and-play fashion and the schedules of them are kept un-

changed. In the case of request for a new schedule set, a request Cr consists of the hardware

specific parameters hw.ω, the application parameters of An = Ab ∪Aan and the application

schedules of An, where all the values of the schedules are blank. The configuration and the

request can then be passed between the software modules, where the schedules of the whole

application set are determined. This will result in a new configuration Cn, which can be

used for deployment.

66

3.4. Approach

3.4.2 Client-Server Architecture

The proposed schedule management framework follows a client-server based architecture.

The client can be mapped on an ECU onboard the vehicle and the server can be mapped

on a server computer that can be maintained by the car manufacturer. The client and the

server are connected through the Internet. Both the client and the server consist of four

components, namely the management module, the configuration pool, the web module and

the synthesis module.

The management module is responsible for the whole process control. The configura-

tion pool stores valid configurations, which can be reused. The web module is responsible

for the communication between the server and client. The client can send requests to the

server, while the server can send result configurations back to the client. If a new schedule

configuration is obtained locally, the client can also send it to the server to update the

server configuration pool. The web module uses websocket secure, which has a layer of

Secure Sockets Layer/Transport Layer Security (SSL/TLS) and therefore provides a cer-

tain level of security to the client-server communication. The synthesis module provides

the ability to synthesize or partially synthesize schedules online. Here, we use a four-step

strategy, starting from a simple incremental design to a complete rescheduling of all plug-in

applications. The software architecture of the proposed framework is shown in Figure 3.1.

The aforementioned components will be explained in detail in the rest of this section.

3.4.3 Configuration Pool

The configuration pool is used to store and manage valid configurations. There are mainly

two access methods of the configuration pool, namely (i) retrieving a configuration and

(ii) updating the pool. On both the client and the server, a request can be passed to the

configuration pool to check if a valid configuration already exists. This is done by comparing

the hardware parameters hw.ω and the application parameters A.ω in the request Cr and

the possible candidate configurations in the pool. If the set of applications in a request

matches exactly or is a subset of the application set of a configuration in the pool, the

specific configuration can be retrieved and utilized. The later case can be dealt with by

removing the parameters and schedules of the applications that are not in the request.

Configurations obtained through synthesis can also be added to the configuration pool

so that it can be reused later. Considering the limited storage size on the client side,

only a limited number of configurations are stored on the client. The configuration pool

can be updated and managed, e.g., by keeping the latest or the most frequently used

configurations. To efficiently utilize the capacity of the pool, if a new valid configuration

is added to the pool, it is firstly checked if the applications contained is a superset of

any of the configurations in the pool. If such a case is true, the new configuration simply

replaces the existing one and inherits its properties (e.g., the frequency of reuse). On the

server side, it is reasonable to assume that a more powerful computer with much larger

67

Chapter 3. Schedule Management for Cloud-based Automotive Software Systems

storage size is used, where many more configurations can be stored. In this case, schedules

can be reused between different vehicles of the same variant. The configuration pool thus

offers the possibility of reutilizing previous configurations so that the online synthesis effort

can be reduced. In addition, schedules can also be synthesized offline and stored in the

configuration pool of the server.

3.4.4 Web Module

The web module is responsible for the communication between the server and the client

and uses the websocket secure protocol. Websocket is a protocol commonly used in the

implementation of modern web browsers and web servers and is already beginning to be

applied in the connected car area for transmission of information. Compared to the Hyper-

text Transfer Protocol (HTTP) protocol, websocket also allows full-duplex communication

and therefore is suitable in this case for the server to send the result configuration back

to the client. The websocket secure provides additional security for the communication

between the server and the client with an additional layer of SSL/TLS, where certificates

and encrypted data transmission are used. In this module, we define the following com-

munication between the client and server: (i) Request : The client opens a connection to

the server and sends the request file Cr and the current configuration Co to the server.

(ii) Response: The server sends back a response to the client. This response can either

contain a valid configuration file fetched from the configuration pool or synthesized by the

server, or a request denial, where the server is unable to obtain a valid configuration (e.g.,

the problem is infeasible). (iii) Abort : The client can also notify the server to stop trying

to obtain a configuration, when a valid schedule is already obtained locally on the client

side. (iv) Update: If the schedules are synthesized locally, the Abort method is followed

by an update method, where the client sends the local result to the server to update the

configuration pool. In the Request, Response and the Update method, a configuration

needs to be sent. If the configuration file is larger than the maximum TCP packet size, it

will be fragmented at the sending side and assembled at the receiving side. A connection is

always started by the client and closed by the client once it has received a Response from

the server or after sending the Abort and Update message to the server.

3.4.5 Synthesis Module

The function of the synthesis module is to find a feasible schedule set for the tasks and

messages. It utilizes a constraint programming solver, and is able to process the request,

formulate the constraint programming problem, solve the problem and generate the cor-

responding schedule configuration. In this module, we introduce a four-stage synthesis

strategy. In the first stage, we use a simple incremental design, where the schedules of all

remaining existing applications are kept unchanged and the new applications are mapped

68

3.4. Approach

Algorithm 1 Four-stage scheduling scheme

Input: Co, Cr
Output: Cn
Initialization: stage = 1, Cn = ∅
1: while stage ≤ 4 do
2: [Ak, Au] = preProcessing(Co, Cr, stage)
3: M = modelFormulation(Co, Cr, Ak, Au)
4: [S, isSolved] = solver(M)
5: if isSolved == true then
6: break
7: end if
8: stage = stage+ 1
9: end while

10: if isSolved == true then
11: Cn = generateConfiguration(S,Co, Cr)
12: end if

13: return Cn

upon it. If a feasible solution cannot be found, we use a method with task conflict based

backtracking as a second stage, where the existing plug-in applications which share com-

mon tasks with new applications are also rescheduled. In the third stage, a scheme with

resource conflict based backtracking is employed, where the existing plug-in applications

which have tasks mapped on common ECUs with the tasks of the new applications are

rescheduled. If all previous stages fail to find a feasible solution, a complete rescheduling

of all the applications except the basic ones is carried out. One objective for the four-stage

synthesis strategy is to minimize the disturbance to the schedules of existing applications.

Compared to this approach, using only simple incremental design would seriously reduce

the chance of accommodating new applications, even if the system has enough resources.

On the other hand, rescheduling all existing plug-in applications every time would possibly

result in much longer synthesis time and disturb the existing applications, which may not

be necessary. In the introduced strategy, we are essentially making a trade-off between the

chances of accommodating new applications on one side and disturbance to existing appli-

cations and the synthesis time on the other. As we move from stage one to stage four, more

existing applications are rescheduled, and therefore both the chances of accommodating

the new applications and the synthesis time increase. Here, we use the conflict of tasks and

computation resources as a metric for selecting the existing applications to reschedule. The

reason is that the existing applications with common tasks and common task mappings are

more likely to constrain the possibility of accommodating new applications. Here we do

not consider frame mapping conflict since compared to the ECUs, the network might be

relatively less loaded [100].

Algorithm 1 describes this four-stage scheme. This approach adopts an iterative scheme

(Line 1-9). Here stage represents the current scheduling scheme used, where 1 to 4 de-

note respectively the simple incremental design, the task conflict based rescheduling, the

resource conflict based rescheduling and the complete rescheduling. This difference is made

69

Chapter 3. Schedule Management for Cloud-based Automotive Software Systems

no

yes

next stage
pre-processing

model formulation

solver

configuration generation

is solved ?

determine which applications are
reschedulable

formulate constraint
programming problem

solve model

generate configuration

Figure 3.3: The flow diagram for the synthesis module. The left hand side shows the flow
diagram for the synthesis module. The right hand side shows the processes and the input
and output.

new application

accommodation

synthesis time

in general

disturbance to

existing applications

in
cr

ea
si

n
g

in
cr

ea
si

n
g

in
cr

ea
si

n
g

Stage 1
incremental design

Stage 2
task conflict based re-scheduling

Stage 3
ECU resource based re-scheduling

Stage 4
complete re-synthesis

Figure 3.4: This figure shows the comparison between the four stages. From stage 1 to stage
4, the synthesis time, the disturbance and the chance of accommodating new applications
all grow. For the first two, this increase has negative effects and for the third one, the
increase has positive effects.

in the pre-processing stage (Line 2), where the applications in Aan is divided into two sets:

(i) the non-reschedulable set Ak and the reschedulable set Au. Ak and Au can be calculated

for stage 1 to stage 4 according to Eq. (3.1) to Eq. (3.4) respectively. Here, \ represents

the set difference and for example An\Ak represents the applications that are in An but

not in Ak. In the case of stage 2 and stage 3, the application set Aτ with task conflict

70

3.4. Approach

and AE with resource conflict can be obtained using Eq. (3.5) and Eq. (3.6). Therefore,

the corresponding Ak and Au are generated and used by the model formulation component

(Line 3) and the solver component (Line 4) to synthesize the schedules. If a valid solution

can be obtained (Line 5) in one stage, the configuration is generated (Line 11) and returned.

Otherwise the algorithm moves to the next stage (Line 8). If no feasible schedule set can

be found in stage four, the synthesis module will not return a valid configuration.

Ak = Ao ∩ An,Au = An\Ak (3.1)

Ak = (Ao ∩ An)\Aτ ,Au = An\Ak (3.2)

Ak = (Ao ∩ An)\AE ,Au = An\Ak (3.3)

Ak = Ab,An = Aan (3.4)

Aτ = {ai|ai ∈ Aao ∩ Aan ∧ ∃
aj∈Aa

n\Aa
o

∃
τk∈ai.tc
τl∈aj .tc

τk = τl} (3.5)

AE = {ai|ai ∈ Aao ∩ Aan ∧ ∃
aj∈Aa

n\Aa
o

∃
τk∈ai.tc
τl∈aj .tc

τk.E = τl.E} (3.6)

3.4.6 Request-based Schedule Management Flow

Figure 3.5 and Figure 3.6 shows respectively the program flow of the client and the server.

Each session is triggered by the request from the client for obtaining a new schedule con-

figuration. The management module firstly generates a request Cr based on the set of

applications to be activated along with the hardware specific parameters and the param-

eters of the basic applications. Then it checks the local configuration pool for an existing

configuration. If no valid configuration can be found, it simultaneously starts the web mod-

ule and the synthesis module and waits for the result from both. The management module,

the web module and synthesis module are mapped on different threads so that they can

be executed asynchronously. The web module then initiates a connection to the server,

sends the request and waits for a response. The synthesis module then tries to synthesize

a feasible schedule set according to the four-stage strategy explained in Section 3.4.5. If

a valid schedule set can be synthesized, a new configuration is generated and returned to

the management module. Otherwise, the synthesis module will deny the request. If a valid

configuration is returned from either side, the management module tries to stop the other

71

Chapter 3. Schedule Management for Cloud-based Automotive Software Systems

generate request

check for

send request
to server

wait for results
preprocessing &

model formulation

schedule synthesis

generate newresults received

receive response
from server

request denied

send abort/result
to server

current
configuration

generate request

check for
valid configuration

deploy
configuration

send request
to server

wait for results
pre-processing &

model formulation

schedule synthesis

generate new
configuration

next
stage

results received

receive response
from server

Web Module

Management Module

Synthesis Module

requested
application set

request denied

add to
configuration pool

Configuration Pool

no yes

yes

no

yes

no for all
stages

send abort/result
to server local result

Figure 3.5: Management flow on the client side.

side, saves the new configuration into the configuration pool and passes the new configu-

ration for reconfiguration. In the case where a result is obtained locally, the management

module will use the the Abort and Update method in the web module to stop the effort of

the server and send it the local result so that the configuration pool on the server can be

updated. When both sides deny the request, the management module will deny the request

and does not allow for a reconfiguration.

On the server side, the session starts when a request from the client is received by the

web module. It then checks its configuration pool and if a valid configuration can be found,

it sends the result back to the client. Otherwise, it will start the synthesis module and try to

find a feasible schedule set. Once a valid configuration is obtained, the server sends the re-

sult back to the client through the web module Response method. If no feasible schedule set

can be obtained, it will send a request denial to the client also using the Response method.

If an Abort message followed by an Update message is received from the client, the server

tries to stop the current process and adds the configuration result into its configuration pool.

72

3.5. Experimental Results

receive request
from client

send response
to client

check for
valid configuration

add to
configuration pool

Synthesis Module

request denial

valid configuration

Management Module

Web Module

yes
no

no

pre-processing &
model formulation

schedule synthesis

generate new
configuration

next
stage

yesno for all
stages

abort/update from
client

Configuration Pool

Figure 3.6: Management flow on the server side.

3.5 Experimental Results

Towards the evaluation of the applicability and performance of the proposed software frame-

work, we have implemented the client on a Raspberry Pi 2 Model B and the server on a

laptop computer. The client side has a 900 MHz quad-core ARM Cortex A7 processor and

Raspbian OS. The server is running on a Windows machine with an Intel Core i7-4600

CPU. Both sides are connected to the Internet through WLAN connection. One of the

implementation challenges here is the portability of the constraint solver on the Raspberry

Pi platform. Both on the client and the server, we use Gecode [105] as the constraint solver.

We have evaluated several choices of solver including Gecode, Gurobi and Z3. Gecode is

the only solver that can be compiled on the Raspberry Pi and is in general faster than

Gurobi and Z3 for this particular constraint programming problem. The websocket secure

implementation from [106] is also used as part of the implementation of the web module.

In the experiments conducted, we use a synthetic case study. The hardware architec-

ture consists of 10 ECUs connected by 4 switches. 100 applications are randomly generated.

73

Chapter 3. Schedule Management for Cloud-based Automotive Software Systems

Number of applications
10 20 30 40 50 60 70

T
im

e
[s

]

0

2

4

6

8

10

12

14
only from server
framework
only from client

- server result usedx

Figure 3.7: Schedule synthesis time of the proposed framework for a sample request series,
compared to only using the cloud-based result or the result on the client in the case of 0
seconds additional overhead provision.

Number of applications
10 20 30 40 50 60 70

T
im

e
[s

]

0

2

4

6

8

10

12

14
only from server
framework
only from client

o

x

- client result used

- server result used

Figure 3.8: Schedule synthesis time of the proposed framework for a sample request series,
compared to only using the cloud-based result or the result on the client in the case of 1.5
seconds additional overhead provision.

Each can have a length of two to seven tasks (a message is sent between any two consecutive

tasks). The periods of the applications are randomly chosen from a pool of 5, 10, 15 and

20 ms. The WCET of the tasks are between 300 us and 700 us. The frame lengths are se-

lected from discrete values of 64, 80, 96, 112 and 128 bytes. Different applications can share

common tasks and messages. We consider 10 applications as basic applications and their

task and message schedules are synthesized offline and kept unchanged during the whole

experiment. The other 90 applications are plug-in applications, which can be installed on

74

3.5. Experimental Results

Number of applications
10 20 30 40 50 60 70

T
im

e
[s

]

0

5

10

15
only from server
framework
only from client

o - client result used

- server result usedx

Figure 3.9: Schedule synthesis time of the proposed framework for a sample request series,
compared to only using the cloud-based result or the result on the client in the case of 3
seconds additional overhead.

Number of applications
10 20 30 40 50 60 70

S
ch

ed
ul

in
g

st
ag

e

Stage 1

Stage 2

Stage 3

Stage 4

Figure 3.10: Scheduling stages used for a sample request series.

the system. In this experiment we consider the case where a system starts with the basic

applications and the plug-in applications are mapped incrementally. For this purpose, we

generated 20 different request series of adding the plug-in applications. For each request

series, we stop adding applications when a feasible schedule set cannot be found or by a

timeout of the solver (60 seconds for each scheduling stage on the laptop computer).

In our implementation, we have only used the security mechanism of the websocket

secure for the communication. In the final application scenario, however, more complex

authentication and security protocols could be required, if the schedules are obtained from

the cloud, which will introduce additional timing overhead. Therefore, we have considered

75

Chapter 3. Schedule Management for Cloud-based Automotive Software Systems

three different cases, where an additional delay of 0, 1.5 and 3 seconds is introduced on

the server respectively. We use this additional delay as a representation of the overhead

provision for these additional mechanisms that could be required.

Figure 3.7, Figure 3.8 and Figure 3.9 show the result from one request series for the

case of additional server delay of 0, 1.5 and 3 seconds, respectively. The blue solid line

shows the time required by the framework in each step in the series against the number

of applications in the system. The round symbol and the cross symbol denote that the

result is taken from the client and the server respectively. In comparison, the red dashed

line shows the time taken for synthesizing the schedules only on the Raspberry Pi and the

black dotted line shows the time taken for synthesizing the schedules only on the server

through cloud-computing. The data for these two are generated by not stopping the local

synthesis module and turning off the Abort and Result method in the web module, so

that both the time taken by local synthesis and cloud-based synthesis is recorded. We can

observe from the three figures that the time taken on the Raspberry Pi (red dashed) is

quite small (1 to 2 seconds) when there are few applications mapped on the system and

increases considerably (10 to 14 seconds) when the number of applications grows. On the

other hand, the time taken by only using the cloud-computing fluctuates around a certain

level depending on the additional delay. The reason for this is that the Raspberry Pi has a

limited computational capacity and therefore the time to obtain a schedule is very sensitive

to the complexity of the synthesis problem. For example, in the large fluctuations between

48 and 65 applications in the red dashed line, the peaks and the troughs denote different

scheduling stages used, which can be observed from Figure 3.10. On the other hand, the

laptop is much faster and therefore the synthesis time is relatively small and the time taken

by cloud-based synthesis is dominated by the web framework time (e.g., establishing con-

nections, transmission of request and response and the overhead provision). In Figure 3.7,

when the cloud-based synthesis has zero additional delay, the framework always uses the

result from the server, which is considerably faster. In Figure 3.8 and Figure 3.9, where

additional overhead provision is considered, in some of the cases, the client result is faster.

Especially in the case of Figure 3.9, when the number of applications is less than 40, the

result is obtained locally on the client for the majority of the cases. However, when the

system size gets larger and the problem becomes more complex, the server result is used,

avoiding the long time of the local synthesis, as shown by the spikes in the red dashed line

between 48 and 65 applications. Therefore, by using the proposed framework, we can take

the advantage of both the local synthesis and cloud-based synthesis. In addition, sometimes

there could be uncertainties in the network latency in the cloud environment (e.g., the spike

at the size of 20 in the black dotted line in Figure 3.9 or at the size of 27 in Figure 3.8). In

such a case, the local synthesis result will be used if it is faster.

Figure 3.10 shows in addition the scheduling stages used in the four-step strategy in

the same request series. The round, square, plus and cross symbols denote the stage 1, 2,

3 and 4 of the schedule synthesis scheme respectively. It can be observed from the figure

that when the number of applications are small (until 28), new plug-in applications can be

accommodated by stage 1, i.e., simple incremental design. However, the next application

76

3.5. Experimental Results

Stage 1 Stage 2 Stage 3 Stage 4 Total

Delay = 0 s
Client 0.19% 0.00% 0.00% 0.00% 0.19%
Server 82.72% 5.67% 6.51% 4.91% 99.81%

Delay = 1.5 s
Client 29.84% 0.19% 0.00% 0.00% 30.03%
Server 53.07% 5.48% 6.51% 4.91% 69.97%

Delay = 3 s
Client 67.33% 2.36% 0.00% 0.00% 69.69%
Server 15.58% 3.31% 6.51% 4.91% 30.31%

Total 82.91% 5.67% 6.51% 4.91% 100.00%

Table 3.1: Percentage share of the scheduling stages and whether the client or server result
is taken for all the steps in the 20 request series.

cannot be added to the system using stage 1, and therefore the synthesis module goes to

stage 3 by rescheduling existing applications with the common resources. Afterwards, as

the number of applications increases, it is becoming more difficult to use simply stage 1,

and therefore stage 2, 3 and 4 are employed to synthesize the schedules. Combining with

the red dashed line in Figure 3.7 to Figure 3.9, it can also be observed that the complexity

and the time required by the synthesis also increases from stage 1 to stage 4. Furthermore,

from the size of 30 to 65 applications, we can see that sometimes a stage 1 scheduling

becomes possible again after a higher stage rescheduling. This shows that the four-stage

scheduling scheme can offer a dynamic balance between the chance of accommodating new

applications and the rescheduling effort.

Table 3.1 summaries the scheduling stage used for all the steps in the 20 request

series for different additional server overhead. It also shows whether the client result or

the server result is used. Firstly, we can observe from the table that in the majority of the

steps (82.91%), a new application can be accommodated using scheduling stage 1. However,

stages 2, 3, 4 are also employed in some steps. Secondly, in the case where additional server

delay is zero, almost all results are obtained through the cloud. As the additional delay

increases, increasingly more results can be obtained from the client. In the case where the

additional delay is 3 seconds, in 69.69% of the steps, the result can be obtained from the

client, mostly the steps using stage 1.

Figure 3.11 shows the scheduling stages used, which result is taken and the time taken

for obtaining the schedules in most of the steps in the 20 request series for the case of

1.5 seconds additional server delay. Several steps, where the time is much longer than 20

seconds, are not included in the figure for the purpose of clear illustration. The result for

synthesizing on the client, using the proposed framework and using only the server is shown

in (a), (b) and (c) respectively. From plot (a), we can see that in general, the schedule

synthesis time increases from stage 1 to stage 4. Please note that the time for a specific

stage also includes the time taken by all previous stages where no feasible schedules can be

77

Chapter 3. Schedule Management for Cloud-based Automotive Software Systems

Figure 3.11: Comparison of the synthesis time between the proposed framework and only
using the server result or only using the client result in the case of 1.5 seconds additional
overhead.

found. Figure 3.11 (c) shows that by only using the cloud-based synthesis, the time taken

by stage 3, 4 and part of stage 2 is considerable reduced. However, the time taken by part

78

3.6. Concluding Remarks

of stage 1 is increased, which can be accounted for by the web framework time. The result

in plot (b) shows that the proposed framework applies the reduced time from the cloud for

stages 2, 3 and 4, while preserving the fast results of the local synthesis in stage 1.

In this experiment we have used a Raspberry Pi as a representative ECU. It should be

noted that actual ECU hardware might differ from the hardware used in the experiments.

For example, there are now faster ECUs available and in the future the ECUs are going

to become more powerful. Our intention here is to illustrate the framework and provide a

proof of concept. The actual numbers in the final application scenario depends heavily on

the hardware platform. However, the experimental results have shown that the proposed

framework can always benefit from both sides and handle different situations robustly.

3.6 Concluding Remarks

In this chapter, we propose a schedule management framework for a schedule reconfigura-

tion in the PnP scenario in future automotive embedded systems. The framework enables

online schedule generation and management for an Ethernet-based time-triggered system.

It utilizes the Internet access to allow a mixture of schedule generation and storage both

locally and in a cloud-computing fashion.

One possible future work in this direction is to exploit the multi-core architecture of the

processors to place different scheduling schemes parallel so that the schedule synthesis time

can be further reduced. Furthermore, approaches in extensibility-aware scheduling can be

utilized here so that more applications can be accommodated using incremental scheduling.

This chapter addresses the online schedule generation and management problem. However,

there are still many challenges that need to be addressed for the PnP capability and recon-

figurability of future automotive embedded systems. Besides those mentioned in Section 3.1,

one main issue that still needs to be addressed in the online reconfiguration of schedules

is the safety issue. Although the time-triggered schedules are by design correct, we under-

stand that for safety-critical applications, currently intensive testing and validation is done

offline for both the functional and timing behaviour by the automotive industry. However,

formal verification and methods might provide some solution to this problem in the future.

79

Chapter 4
Designing Resource-aware CPS over

Hybrid Communication Networks

This chapter introduces a scheme towards resource-efficient CPS over hybrid communica-

tion protocols. Resource-aware design has been drawing increasingly more attention in the

context of CPS during the recent years. The communication resource is one of the most

important resources in a distributed embedded system and easily becomes a bottleneck

problem as the size of the system increases. In this chapter, we address the problem of

designing resource-aware CPS over the hybrid communication bus. Such a bus protocol

offers both TT and ET communication. The TT communication offers higher timing pre-

dictability, which can potentially be translated into better control performance. However,

such resource is often quite limited in safety-critical systems. It has been shown that it

is possible to reduce the usage of TT communication by letting a control application use

it only when necessary and use ET communication when it suffices [56]. Towards this,

we introduce in this chapter, a resource-aware switching scheme for distributed embedded

control applications and illustrate our method using the FlexRay communication protocol

commonly used in the automotive domain. In the proposed approach, we use a combina-

tion of TT and ET communication to reject a disturbance and the strategy allows a control

application to reside on the TT communication for an amount of samples that would be

optimal for the overall control performance. This involves both an offline control design

method that optimizes the control performance and guarantee the switching stability and

81

Chapter 4. Designing Resource-aware CPS over Hybrid Communication Networks

an online scheduling algorithm to dynamically determine the allocation of the TT commu-

nication to multiple control applications at run-time. The experimental results show that

the proposed approach can achieve good control performance with reduced consumption of

TT communication bandwidth.

Chapter outline: This chapter is divided into seven sections. A general introduction

is provided in Section 4.1, which explains the motivation, overview and contributions of

this chapter. This is followed by the related works in Section 4.2. Section 4.3 provides

the background and problem formulation. Then Section 4.4 explains the proposed control

design method. This is followed by the presentation of the resource-aware switching scheme

in Section 4.5, including the switching scheme, the offline generation of switching sequence

model, the online scheduling algorithm and a middleware-based solution to address the

implementation challenges. Section 4.6 presents the experimental results and Section 4.7

provides the concluding remarks.

4.1 Introduction

Modern industrial embedded systems are experiencing rapid increase in size and complex-

ity. In the automotive domain, for example, there are already up to 100 ECUs in a premium

vehicle and software for such a vehicle contains 100 millions lines of code [2]. As increas-

ingly more functions are mapped on the E/E architecture, providing adequate embedded

resources like communication resource, computation resource and memory resource is be-

coming a bottleneck problem. Therefore in the recent years, engineers and researchers

have become conscious, that systematic approach for resource-efficient design of embedded

systems is necessary [73, 107]. Especially the efficient utilization of the communication

resource is an important issue, since new processing units can be added to the system or

existing ones replaced by more powerful ones, while adding or upgrading one communica-

tion bus introduces a lot of development costs for the design, testing and validation process.

The wide variety of functional/timing requirements in the modern distributed systems

(e.g., automotive E/E architecture) had made hybrid protocols like the FlexRay bus an at-

tractive option as the communication medium. Such hybrid protocols offer both TT and

ET communication, thus making it suitable for systems with mixed-criticality applications.

In this work, we consider a system consisting of multiple distributed embedded control

applications over the FlexRay bus [8, 9]. The FlexRay protocol offers the TT and ET com-

munication respectively on the static segment and dynamic segment. Messages assigned

to the TT communication are transmitted in pre-defined time slots and thus the timing is

temporally predictable. For the ET communication, the timing of the message transmission

varies depending on the network load at run-time and is thus much less predictable. It is

therefore difficult to synchronize the communication with the software tasks on processing

units, hence often results in much larger end-to-end delays.

Embedded control applications are implemented as software components that run on

82

4.1. Introduction

the processing units. In a distributed system, multiple dependent tasks are mapped on

different processing units connected by a communication bus. Therefore, the task and mes-

sage scheduling determines the timing properties like the sampling period and the sensor-

to-actuator delay, which in turn influence the performance of the control applications. In

general, if the sensor-to-actuator delay is small, it is possible to design controllers to achieve

better control performance (e.g., smaller settling time). On the other hand, larger sensor-

to-actuator delay might limit the design choices for the controllers and thus constrain the

achievable control performance. Therefore, deterministic communication is desirable for

distributed control applications to achieve a better control performance.

However, the deterministic TT communication resource that can be provided is usu-

ally limited. In FlexRay for example, the TT slots are considered more ’expensive’ than

the ET slots due to multiple reasons. Firstly, the design process in the automotive industry

usually follows an iterative scheme, and during each design iteration, new functions can

be mapped onto the system, while the current bus configuration and the message-to-slot

mapping are kept unchanged for as much as possible. Hence, in each design iteration, not

only the current requirements, but also those for possible future applications need to be

considered. This design paradigm, considering the extensibility of the bus configuration,

requires the saving of TT slots as much as possible. Secondly, the TT communication has

a poor bandwidth utilization. The length of TT slots are often configured with respect to

the whole system and therefore tend to be large enough so that different types of messages

can fit in. The choice of multiplexing data in one slot is not always available. If such a

slot is used to transmit a few bytes, the rest of the bandwidth is wasted. Furthermore, if

a time-triggered slot is assigned, even if there is no data to be send in the corresponding

cycle, the slot is still occupied. Therefore, from a resource saving perspective, it is desirable

to use a TT slot only if necessary.

Therefore, there have been some initial works [56, 108] on resource-aware design

through switching the controllers between the TT and ET communication, thus achieving

savings of expensive TT resource while providing better control performance than using

purely ET communication. However, there are still many challenges to be addressed and

places to be optimized towards designing an efficient, safe and practical switching scheme.

Firstly, the switching scheme can be optimized to achieve better control performance. Sec-

ondly, a systematic design method for such a control scheme guaranteeing the safety while

optimizing the control performance and resource utilization is necessary. Furthermore, im-

plementation hurdles introduced by the protocols and the commercial-off-the-shelf (COTS)

tools need to be addressed for such a scheme to be practical.

Here we address the aforementioned challenges and propose a resource-efficient switch-

ing scheme that allows a control application to dynamically switch between the TT and

ET communication. The TT communication resource can thus be shared between multiple

control applications. To enhance the overall performance, we allow a control application

to switch to TT communication and resides there for several samples and switch back to

ET communication before it is settled so that the TT resource can be released earlier to

be utilized by other control applications. We propose an online scheduling algorithm that

83

Chapter 4. Designing Resource-aware CPS over Hybrid Communication Networks

decides at run-time the resource allocation and switching sequence so that the overall con-

trol performance is optimized. Furthermore, we introduce a automated design algorithm to

design both controllers in the TT and ET case so that the switching stability is guaranteed

and the combined performance is optimized. In addition, we address the implementation

challenges of the proposed scheme. The experiments show the applicability and advantages

of the proposed scheme and that it can achieve better control performance than existing

switching schemes.

Contributions: The main contribution of this chapter are the following: (i) We propose

a switching scheme to let a control application use both the TT and ET communication

to make a trade-off between TT resource consumption and the control performance. Com-

pared to similar existing switching schemes [56], we allow a control application to switch

back to ET communication before it is settled to make more efficient utilization of the TT

communication. (ii) We propose a systematic control design method that automatically

designs the controllers for both the TT and ET case according to a joint performance ob-

jective while guaranteeing the switching stability. (iii) We propose a scheduling scheme

that dynamically arbitrates the TT resource to optimize performance of the system at run-

time. The proposed scheme is based on an offline evaluation of the switching sequences and

an online scheduling algorithm that dynamically allocates the TT resource and determines

the switching sequence. Furthermore, we address the implementation challenges for the

switching on FlexRay protocol using a middleware solution by extending the framework

in [109] onto the ET resource.

4.2 Related Works

We divide the related works in the following categories.

(i) The resource-efficient design and implementation of control applications have been

studied in the recent literature under the area control/plaform co-design or control/schedul-

ing co-design [110–115]. The main focus has been on improving either computational [110,

111, 115] or communication resource usage [113, 114]. The idea is to reduce the effec-

tive sampling frequency such that either computational or communication or both resource

usage [116] are reduced. Further, there has been considerable amount of research on im-

proving resource efficiency in the context of Networked Control System (NCS) [117–119].

Recently, there have also been many works on the co-synthesis of control and platform

parameters [54, 78, 79]. There are also many works addressing the particular constraints

in the automotive domain [120–125]. These related works mainly focus on the design of

control and platform parameters in the static case, i.e., the schedules and the controllers

do not change at run-time. In this work, we consider a case where the controllers and the

communication resource allocation changes at run-time. Therefore, the results there can

84

4.3. Problem Formulation

not be directly applied in our context.

(ii) Towards distributed embedded control system that are changing at runtime, a

number of related works proposed the run-time switching scheme between the TT and ET

communication with the objective of achieving decent control performance with reduced

consumption of the TT resources [121, 123, 126]. This work at hand follows similar de-

sign philosophy, but differs from these works from the following aspects. These works do

not address the problem of systematic control design. Usually the controllers are already

given and do not provide the best control performance. Secondly, they allow only a control

application to switch back to ET when the system is settled, therefore possibly using the

TT communication longer than necessary. In the work at hand, we propose an automated

controller design method that optimizes the joint performance and addresses the problem of

switching stability. We further allow a controller to switch back to ET as early as possible

with the switching stability ensured by the control design, so that more efficient utilization

of the TT resource can be achieved, which in turn results in better overall control perfor-

mance of the system.

4.3 Problem Formulation

4.3.1 FlexRay-based ECU Network

FlexRay-based ECU network is a commonly used architecture in the automotive setting,

especially in safety-critical domains like the chassis domain. Such a system consists of

a number of ECUs connected by the FlexRay bus. An ECU is a processing unit in the

automotive context and has a host micro-controller running the real-time operating sys-

tem that manages the resources and the execution of tasks according to their schedules.

Distributed applications are partitioned into software components with data dependency

that are mapped onto different ECUs and the data between them are transmitted over the

FlexRay network.

The FlexRay communication protocol is organized as a sequence of communication

cycles of equal length. In FlexRay 2.1 [8], the series of communication cycles is repeated

every 64 cycles and the cycle counter counts from 0 to 63. Each cycle consists of a static

segment (ST) and a dynamic segment (DYN).1 The communication paradigm in the static

segment is based on the Time Division Multiple Access (TDMA) scheme. The whole seg-

ment is partitioned into static slots of equal length, which we denote as ∆. The static slots

are indexed as S = {1, ..., SST }, where SST is the largest static slot number. If a message

is assigned to a specific slot, the transmission of the message takes place exactly within

the static slot. Consequently, the static segment provides a deterministic communication

1There are also a Symbol Window and a Network Idle Time (NIT), which are not used for transmitting
payload data.

85

Chapter 4. Designing Resource-aware CPS over Hybrid Communication Networks

schedule, which might be exploited to realize constant and optimized timing properties

for the distributed application if the tasks are also properly synchronized. The dynamic

segment of FlexRay is subdivided into equal-lengthed mini-slots of duration δ. Each mini-

slot can be indexed by a mini-slot counter starting from 1 up to SDYN . Similar to the

static segment, the communication slots that indicate time windows for admissible message

transmissions are labeled with slot numbers S = {SST + 1, ..., SST + SDYN} as depicted in

Figure 4.1. However, the communication scheme in the dynamic segment follows a Flexible

TDMA (FTDMA) policy. In this case, if a message is sent in a cycle, it will consume a slot

Si of duration k · δ. If a message is not transmitted, only one mini-slot of length δ is con-

sumed. In contrast to the static segment, where each communication slot is of fixed length

∆, the length of the dynamic slots depends on the size of the messages being transmitted.

Hence, the messages transmitted in the dynamic segment may experience variable delays

depending on the workload of the messages transmitted in lower slot numbers. Further, if

there are not enough mini-slots available to transmit mi in its assigned slot Si the message

gets displaced and is transmitted in the next available cycle. A FlexRay schedule can be

denoted as Θ = (Si, Bi, Ri), where Si,Bi,Ri denote respectively the communication slot,

the base cycle and the repetition rate. Si ∈ {1, ..., SST } denotes a slot in the static segment,

and Si ∈ {SST + 1, ..., SST + SDYN} is a slot in the dynamic segment. The repetition rate

specifies the number of cycles that elapse between two feasible message transmissions and

takes the value Ri = {2r | r ∈ N0, r ≤ 6}. The base cycle denotes the first cycle a message

is allowed to be transmitted within 64 cycles and is constrained by Bi < Ri. Figure 4.1

shows an example of FlexRay schedules.

4.3.2 Distributed Feedback Control Systems

Distributed control applications: A feedback control loop implemented on a distributed

embedded platform can be partitioned into three software tasks. (i) The sensor task senses

the measurable states of the system. (ii) The controller task computes the control input

based on the sensor measurements and the control gains. (iii) The control input is then

applied to the physical system by the actuator task. These tasks can be mapped on different

processing units and the data between them is transmitted over the communication bus.

In this work, we denote a feedback control applications as Ci and the sensor, controller

and actuator task as τi,s, τi,c and τi,a respectively. We further consider that the sensor

and controller tasks are mapped on the same processing unit and the control input is sent

through message mi on the FlexRay bus, as shown in Figure 4.2.

TT and ET case: The tasks are triggered periodically and the time between two instances

of the sensor task can be denoted as the sampling period h. In this chapter, we consider

a time-triggered operating system on the processing units. The time difference between

the begin of the sensor task and the end of the actuator task represents the sensor-to-

actuator delay d. This delay depends strongly on the interplay between the task and

86

4.3. Problem Formulation

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10

slot number Si

minislotsstatic slots

2 3 4

communication cycle

… …

cycle counter

slot

0

2

3

4

5

62

63

.

.

.
.

.

.

1

1 2 3 4 5 6

(a) (b)

Figure 4.1: FlexRay communication: (a) The structure of communication cycles, static
segment and dynamic segment. (b) An example of different messages mapped on both the
static and dynamic segment.

ECU 1 ECU 2

communication bus

dynamic
system

sensor actuator

Figure 4.2: A distributed control application.

message schedules. If the tasks and messages are properly synchronized and optimized,

this delay can be very small. Otherwise, it might lead to much larger delay. As already

mentioned above, if the message mi is transmitted on the static segment, the transmission

time of the message is deterministic. Therefore, it is easy to design schedule to achieve

very low sensor-to-actuator delay. On the other hand, if the message mi is mapped on

the dynamic segment, the transmission time depends on the run-time conditions of all the

87

Chapter 4. Designing Resource-aware CPS over Hybrid Communication Networks

ECU 1

ECU 2

BUS

(a)

(b)

ECU 1

ECU 2

BUS

Figure 4.3: The sensor-to-actuator delay in both the case of TT communication and ET
communication.

messages which have higher priorities. Therefore, it is difficult to obtain synchronized task

and message schedules, thus leading to much larger delay, close to the sampling period.

Figure 4.3 illustrate these two cases. Here we consider that the task schedules are properly

synchronized to the TT slot schedules so that very low sensor-to-actuator delay can be

achieved, i.e. d � h. On the other hand, if the message is transmitted on the dynamic

segment, the system experiences a sensor-to-actuator delay of approximately one sampling

period, i.e., d ≈ h.

Feedback control system: We consider LMI systems in the context of this chapter. The

continuous-time dynamics of such a system can be represented as

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t), (4.1)

88

4.3. Problem Formulation

where x(t), y(t) and u(t) denote the system states, the system output and control input

at time t and A, B, C denote respectively the system, input and output matrix. In

the embedded implementation, the system needs to be sampled at a sampling period h

and experiences a sensor-to-actuator delay d. The discretized system dynamics can be

represented as

x[k + 1] = Φx[k] + Γu[k]

y[k + 1] = Cx[k] (4.2)

where

Φ = eAh, Γ =

∫ h

0
eAsBds (4.3)

Here we consider two cases. For the TT case, the sensor-to-actuator delay is very small,

i.e., τ � h, the state feedback controller can be designed as

u[k] = Ktx[k] + Ftr. (4.4)

For the ET case, where τ ≈ h, the state feedback controller can be represented as [127]

u[k] = Kex[k − 1] + Fer. (4.5)

where Kt,Ft,Ke,Fe represent respectively the feedback and static feedforware gain for the

TT and ET case.

Controller design: We use pole placement technique for the controller design. For a

system of n states, n poles can be placed when designing the controller. The discrete-time

system requires stable poles to lie within the unit circle. The design of the control gains

Kt in TT case is quite straight forward with Ackermann’s formula

K = −
[
0 0 · · · 1

]
γ−1H(Φ), (4.6)

where γ is the controllability matrix and

γ =
[
Γ ΦΓ · · · Φn−1Γ

]
H(Φ) = (Φ− p1I)(Φ− p2I) · · · (Φ− pnI).

Here p =
[
p1 p2 · · · pn

]
represent the closed-loop poles. The static feedforward gain

can be computed using

F =
1

C(I− Φ− ΓK)−1Γ
. (4.7)

89

Chapter 4. Designing Resource-aware CPS over Hybrid Communication Networks

The design of controllers for the one sample delay case is more complicated. Towards this,

[127] has proposed a method for pole placement. This method first transforms the system

into the controllable canonical form as

z[k] = Tx[k], x[k] = T−1z[k] (4.8)

where T is a nonsingular transformation matrix. The system in controllable canonical form

can be represented as

z[k + 1] = Φcz[k] + Γcu[k] (4.9)

Phic =


0 1 · · · 0

0 1 · · · 0

0 1 · · · 0

· · · · · · · · · · · ·
a1 · · · an−1 an

 , Γc =


0

0
...

1

 (4.10)

The control input u[k] can then be transformed into

u[k] = Kx[k − 1] = K̂z[k − 1]

= K̂1z1[k − 1] + K̂2z2[k − 1] + · · ·+ K̂nzn[k − 1]

= K̂1z1[k − 1] + K̂2z1[k] + · · ·+ K̂nzn−1[k] (4.11)

where K = K̂T . By introducing a new state z0[k] = z1[k − 1], the system states can be

augmented to Z[k] = [z0[k], z[k]]T and the closed-loop augmented system becomes a n+ 1

system as

Z[k + 1] = ΦclZ[k]

Phicl =


0 · · · 0 0

0 · · · 0 0

0 · · · 1 0

· · · · · · · · · · · ·
K̂1 · · · (an−1 + K̂n) an

 (4.12)

where the characteristic equation can be obtained by

λn+1 − anλn − · · · − (a1 + K̂2)λ− K̂1 = 0 (4.13)

In comparison, where a system are placed with n+ 1 poles p = [−p1,−p2, · · · − pn+1], the

characteristic equation is

90

4.3. Problem Formulation

(λ+ p1)(λ+ p2)(λ+ p3) · · · (λ+ pn+1) = 0

λn+1 + f1(p)λ
n + f2λ

n−1 · · ·+ fn(p) = 0 (4.14)

By comparing the coefficients, the corresponding gain values K̂n can be obtained and

the original gains K can be computed by K = K̂T . One further condition here is that

f1(p) =
∑n+1

1 pi. Therefore the system is only stabilizable if

n+1∑
i=1

pi = −an (4.15)

Therefore, the condition of the stabilizable system is

|an| < (n+ 1). (4.16)

That is, if this condition is not fullfilled, there does not exist a pole set that can stabilize

the system. In addition, intuitively, we can also observe that the pole placement for the

one-sample delay case is more constrained than that of the zero delay case. In this chapter,

these two methods will be used for the design of the TT and ET case respectively.

Performance metric and disturbance model: To measure the performance of a control

system, there could be different metrics, including cost function, settling time, overshoot,

etc. In the context of this chapter, without the loss of generality, we consider the primary

goal of the control system is disturbance rejection. Therefore, we use the settling time to

measure the control performance. The settling time ξ of a controller denotes the time need

to reach and remain within 1% of the reference value [54]. The smaller the settling time

is, the faster the control system can reject a disturbance, and thus the better the control

performance is. We consider the case that the disturbance to a control system comes at

the beginning of the control sample and for an individual control application, a disturbance

only comes when the last one has been rejected. The disturbances of different control

applications can come with random offsets. Furthermore, we also take into consideration,

the limit of the actuator umax, which is the maximal control input that the actuator can

exert on the physical system.

Stability of switched control systems: For a set of discrete-time Linear Time-Invariant

(LTI) system in the form of

x[k + 1] = Φcl,kx[k], (4.17)

where Φcl,k denote the closed-loop system matrix of each system in the set. The necessary

and sufficient condition [128, 129] that the arbitrary switching between them is stable is

that there exists a positive definite matrix P , such that the following condition is satisfied

91

Chapter 4. Designing Resource-aware CPS over Hybrid Communication Networks

∀k, ΦT
cl,kPΦcl,k − P < 0. (4.18)

V (x) = xTPx is the Common Quadratic Lyapunov Function (CQLF) of the set.

4.3.3 Motivational Example and Problem Formulation

Towards designing such a distributed control system, there are two conventional ways. Ei-

ther the message is transmitted using the TT communication, where the system experiences

a negligible delay. This allows the design of faster controllers so that the system can reject

disturbance faster. However, it will consume valuable TT communication resources. On

the other hand, the usage of ET communication lead to much larger delay (closer to h),

where comparatively slower controller can be designed. Towards this trade-off, [56] has

shown that a solution in between can be achieved by allowing the controller to be switched

at run-time and only use the TT slots when necessary, thus allowing the TT slot to be

shared between multiple control applications to enhance the performance. However, there

is still room for optimization, as shown in the following motivational example.

Motivational example: We consider an example consisting of two distributed controllers

C1 and C2. Both are a DC motor position control system with the following continuous-time

dynamics

ẋ(t) =

0 1 0

0 −10 1

0 −0.02 −2

x(t) +

0

0

2

u(t)

y(t) =
[
1 0 0

]
x(t). (4.19)

Both controllers have a sampling period of 50 ms. The controllers are designed so that

the closed-loop poles for the TT and ET case are respectively pt = [0.3606, 0.4224, 0.4956],

pe = [0.6171, 0.6816, 0.6153, 0.5974]. We assume that a disturbance for both controllers

comes simultaneously at the beginning of the sampling period and the control goal is to

reject this disturbance as fast as possible. Here we consider four different schemes: (1)

Both C1 and C2 use the TT slot. (2) Both C1 and C2 use the ET slot. (3) C1 switches to

the TT slot as soon as possible and stay there for a dwell time defined as larger than the

settling time of the TT case and makes the TT slot available for C2, as proposed in [56].

(4) C1 switches to the TT slot first and uses it for several samples (possibly before settled)

and then switches back to ET and releases the TT slot for C2. For both switched schemes,

we only use one TT slot. Figure 4.4 and Figure 4.5 show respectively the response of C1

and C2 for the four schemes. In Figure 4.4, the settling time of C1 in four cases have the

following relation ship: (1) = (3) = (4) < (2). For C2 in Figure 4.5, this relationship is

(1) < (4) < (3) < (2). The details of the settling time and resource consumption are shown

92

4.3. Problem Formulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time [s]

-2

0

2

4

6

8

10

12

y
(o

ut
pu

t)
Scheme 1 (TT)
Scheme 2 (ET)
Scheme 3 (Switched)
Scheme 4 (Proposed Switched)

Figure 4.4: Response of C1 for the four schemes.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time [s]

-2

0

2

4

6

8

10

12

y
(o

ut
pu

t)

Scheme 1 (TT)
Scheme 2 (ET)
Scheme 3 (Switched)
Scheme 4 (Proposed Switched)

Figure 4.5: Response of C2 for the four schemes.

in Table 4.1. As it can be observed in the results, scheme (1) has the lowest average settling

time, but consumes two TT slots. Scheme (2) consumes no TT slots, but has relatively high

settling times. Scheme (3) and (4) both uses one TT slot, but the average settling time of

(4) is considerably lower than (3). This is due to the reason that the TT slot is released

much earlier by C1 so that it can be used by C2 to enhance the control performance. In this

work, we exploit this fact to design a switching scheme that makes more efficient utilization

of the communication resources while offering better control performance.

93

Chapter 4. Designing Resource-aware CPS over Hybrid Communication Networks

Scheme TT slots J1[s] J2[s] Javg[s]

1 2 0.55 0.55 0.55
2 0 1.15 1.15 1.15
3 1 0.55 0.95 0.75
4 1 0.55 0.65 0.60

Table 4.1: Comparison of control performance and resource utilization in the motivational
example.

4.3.4 Problem Formulation

In this chapter, we consider the case that a group of M controllers where Ci ∈ C are mapped

on a FlexRay based ECU network. Each controller is divided into the sensor, controller and

actuator tasks denoted respectively as τi,s, τi,c, τi,a. The sensor tasks and the controller

tasks are mapped onto the same ECU and the control input mi is transmitted over the

FlexRay network. The control systems C have the sampling period h. N TT slots, where

N < M , are available and each control application also has an ET slot. Each control system

Ci has two subsystems: (i) Ci,t uses the controller in Eq. (4.4) and the control gains Ki,t

and Fi,t. (ii) Ci,e uses the controller in Eq. (4.5) and the control gains Ki,e and Fi,e.

The switching case we consider is the following. For each control application, when a

disturbance arrives, the controller firstly uses ni,e samples of Ci,e and then switches to Ci,t
and uses ni,t samples before switching back to Ci,e remain there until settled. Both ni,e
and ni,t can take the value ni,e ≥ 0 and ni,t ≥ 0. M control applications are allowed to

share the N TT communication slots and one TT slot can be occupied by only one control

application simultaneously. When a control application is not using the TT slot, it uses

the ET slot assigned to it.

In this work, we address the following two problems. The first problem is to design

controllers Ki,t and Fi,t for Ci,t and Ki,e and Fi,e for Ci,e so that the switching between

Ci,t and Ci,e is stable and the combined performance is optimized. The second problem

is to design a scheme that decides the allocation of the TT slots as well as the switching

sequence for each control application so that the overall control performance is optimized.

This problem involves the design of ni,t and ni,e for all the controllers not yet settled.

4.4 Control Design

In this section, we introduce an automated controller design approach that designs jointly

the controllers for both the TT and ET case so that the switching between these two

subsystems are stable and the joint performance is optimized.

94

4.4. Control Design

4.4.1 Switching Stability

To ensure the switching stability, we need to design the controllers for both cases in Eq. (4.4)

and Eq. (4.5) so that a CQLF exists. To establish this condition, we first transform the

close-loop system in both cases into the same form. Towards this, we define a new state

vector z[k] = [x[k], x[k − 1]]T . The closed-loop system for both TT and ET case can be

represented respectively as Eq. (4.20) and Eq. (4.21),

z[k + 1] =

[
Φ + ΓKt 0

I 0

]
z[k] = Φcl,tz[k], (4.20)

z[k + 1] =

[
Φ ΓKe

I 0

]
z[k] = Φcl,ez[k]. (4.21)

Therefore, if there exists a positive definite matrix P so that the LMI in Eq. (4.22) are

satisfied, the switching between the two systems are stable. This condition will be used in

the control design method to ensure the switching stability of the designed controllers.

ΦT
cl,tPΦcl,t − P < 0

ΦT
cl,ePΦcl,e − P < 0 (4.22)

4.4.2 Controller Design

The goal of control design is to design the gains Ki,t, Fi,t for Ci,t and Ki,e, Fi,e for Ci,e that

the control performance is optimized and the switching stability between the two cases is

guaranteed. Towards this, it is impossible to provide a closed-form formulation, especially

considering the LMI equations in Eq. (4.22) and the actuator limit. Therefore, we propose

an controller design method based on the particle swarm optimization (PSO).

Particle swarm optimization: PSO is one common method that can be employed to

solve non-convex, non-linear optimization problems and has been used for controller design

in related works [107]. The basic principle of PSO is to use the evolution of the particles (or

parameter set) to approach the optimal solution. Firstly, a group of particles are randomly

generated and a number of iterations are carried out where in each iteration, the particles

update their position. This update is guided by the local best point - the best point that a

particle has reached - and the global best point - the best point that has been reached by

all participles. In each iteration, the position of a particle σj,n is computed by adding the

current position σj,c and the velocity vj,n,

σj,n = σj,c + vj,n. (4.23)

This velocity is in turn computed by the following equation,

95

Chapter 4. Designing Resource-aware CPS over Hybrid Communication Networks

vj,n = α0vj,c + α1R(0, 1)(σj,lb − σj,c) + α2R(0, 1)(σgb − σj,c), (4.24)

where vi,c, σi,b, σgb denote respectively the current velocity, the local best point and the

global best point. α0, α1 and α2 are constants that can be configured. R(0, 1) denotes the

random number generation between 0 and 1. The optimization process will finish once all

the particles converge or the number of iterations is reached.

Automated design flow: The proposed design flow is illustrated in Algorithm 2. For

simplicity and clarity reasons, we drop the subscript i in the algorithm description denoting

the ith control application, since the controllers are design for each individual control

application separately. The inputs Φ, Γ, C represent the discrete-time system matrices of

the plant dynamics. h and ulim denote the sampling period and the actuator limit. The

outputs are the control gains Kt, Ft for Ct and Ke, Fe for Ce. Line 2 - 8 generate a number

of valid particles, where each particle σj denotes a set of poles for both the TT and ET

case. Line 4 generates randomly a pole set and Line 5 checks the validity of the set. Once

the particles are initialized, they are moved for a specified number of iterations in Line 11

- 19. Line 13 moves the particle according to Eq. (4.23) and Eq. (4.24). Line 14 checks the

validity of the updated pole set, designs the control gains and evaluates the performance.

The local and global best points are updated throughout the iterations. Finally, the results

of the global best point are returned. Algorithm 3 explains the function jointDesign. Here

p in the input denotes the poles set, which is a vector of 2 · nStates, where nStates is

the number of the states of the system. The output J is the control performance, i.e., the

settling time. Line 1 first augments the system for the ET case and also adds one additional

pole to the pole set according to the control design method introduced in [127]. Recall in

Section 4.3 we explained that this method requires nStates + 1 poles and the system is

only stabilizable under certain conditions. If the system is stabilizable, Line 3 and Line 4

use pole placement techniques to design control gains for both the TT and ET case. The

existence of the switching stability is checked in Line 5 using the LMI derived in Eq. (4.22).

Line 7 - 8 then evaluates the performance of both cases through simulation and the joint

performance is computed as a weighted sum of individual performance in Line 11. Valid

control design is returned if Ce is stabilizable, a CQLF between Ct and Ce exists and the

actuator limit is not exceeded.

4.5 Resource-Aware Switching Scheme

As shown in the motivational example in Section 4.3, by allowing one controller to switch

back to the ET case before it is completely settled, it can release the TT resource much

earlier with small trade-off in the performance. This TT resource can be utilized by other

controllers to significantly increase their performance so that better overall performance

of the system can be achieved. However, to obtain the optimal switching sequence is not

96

4.5. Resource-Aware Switching Scheme

Algorithm 2 Joint Control Design for Ct and Ce

Input: Φ,Γ,C,h,ulim
Output: Kt,Ft,Ke,Fe
Parameters: nParticles,nIterations,α0,α1,α2

1: nStates = getNumberOfStates(Φ)
2: for j = 1 to nParticles do
3: while true do
4: σj = generatePoles(2 ∗ nStates) # generate random poles within unit circle
5: [valid,Kt, Ft,Ke, Fe, J] = jointDesign(σj ,Φ,Γ, C, h, ulim) # check if result is valid
6: breakIFTrue(valid)
7: end while
8: end for
9: {σj,lb} = initializeLocalBest()

10: σgb = initializeGlobalBest()
11: for n = 1 to nIterations do
12: for j = 1 to nParticles do
13: σj = updateParticle(σj , α0, α1, α2) # update the value of poles for the particle
14: [valid,Kt, Ft,Ke, Fe, J] = jointDesign(σj ,Φ,Γ, C, h, ulim) # check if result is valid
15: σj,lb = updateLocalBest(σj,lb, σj , J, valid)
16: σgb = updateGlobalBest(σgb, σj , J, valid)
17: end for
18: breakIfCoverged{σj}
19: end for
20: [valid,Kt, Ft,Ke, Fe, J] = jointDesign(σgb,Φ,Γ, C, h, ulim) # compute gains for the best case

21: return Kt,Ft, Ke, Fe

a trivial matter. In this section, we propose an online scheduling approach that decide

dynamically the allocation of the TT resource and the switching of the controller so that

the overall control performance of the system can be achieved.

4.5.1 The Proposed Switching Scheme

We first divide the state of a control application Ci into two general states, namely the

steady state and the transient state. The transient state refers to the state between the

arrival of a disturbance and time when the disturbance is rejected, i.e., the system is set-

tled. In the proposed switching scheme, when a control application is in the steady state,

ET communication is used and the controller resides in Ci,e. When a disturbance arrives,

the control application enters the transient state. It will first stay in Ci,e for ni,e samples,

where ni,e ≥ 0. It then switch to Ci,t and utilizes the TT communication for ni,t samples,

where ni,t ≥ 0. The controller then switches back to Ci,e no matter whether it is still in

transient state or has returned to the steady state and stay there until it is settled. Since

the control design method proposed in Section 4.4 ensures the switching stability, the sys-

tem will not become unstable if it is switched back from the TT to the ET case in the

transient state. The goal here is to optimize the overall control performance of a system

consisting of multiple control applications by deciding on the scheduling of the utilization

97

Chapter 4. Designing Resource-aware CPS over Hybrid Communication Networks

Algorithm 3 Function jointDesign - joint design for Ct and Ce

Input: Φ,Γ,C,h,ulim,p
Output: valid,Kt,Ft,Ke,Fe,J
Parameters: wt,we
Initialization: valid = false
1: [p∗, isStabilizable] = augmentPoles(p,Φ,Γ, C) # augment system in ET case
2: returnIfFalse(isStabilizable)
3: [Kt, Ft] = placePolesTT(p∗)# pole placement for TT case
4: [Ke, Fe] = placePolesET(p∗)# pole placement for ET case
5: exist = checkCQLF(Φ,Γ,Kt, Ft,Ke, Fe)# check if a CQLF exists
6: returnIfFalse(exist)
7: [Jt, umax,t] = evalPerfTT(Φ,Γi,Kt, Ft, h)# performance evaluation for TT case
8: [Je, umax,e] = evalPerfET(Φ,Γi,Ke, Fe, h)# performance evaluation for ET case
9: returnIfFalse(umax,t ≤ ulim and umax,t ≤ ulim)

10: J = wtJt + weJe
11: valid = true

12: return valid,Kt,Ft,Ke,Fe,J

of the TT communication, which also can be translated into the problem of deciding ni,e
and ni,t for each controller.

Towards this, we propose a online scheduling algorithm based on the prediction of the

settling time of the controllers currently in the transient state. In a system of multiple

control applications, when the disturbance for one or multiple control applications arrive,

this algorithm is executed once to schedule the TT resource utilization and thus the switch-

ing sequence of the controllers so that the overall control performance is optimized. The

overall control performance can either be a weighted average or the maximal value of the

settling time of all controllers. The system will then follow the schedules computed until

all disturbances are rejected. In the case when a new disturbance arrives, the schedules are

updated.

We divide the proposed scheme into two parts. The first part is the offline evaluation

of the switching sequences. For this, we generate a table containing necessary information

about the relation between the switching sequence and the resulted control performance.

The tables for the controllers are then stored and a scheduling algorithm is employed at

run-time to predict the settling time from the tables and decide dynamically the allocation

of the TT resource and the switching sequence of all the controllers. Figure 4.6 illustrates

this switching scheme. In the following part of this section, we explain the approach used

to generate the table through offline evaluation of the switching sequences and the online

scheduling algorithm based on performance prediction.

4.5.2 Offline Evaluation of Switching Sequences

The online decision is based on the prediction of the settling time of the individual con-

trollers, i.e., given a particular situation, what is the remaining time that is needed for the

98

4.5. Resource-Aware Switching Scheme

… …… …

TT Case

Comm: TT Slot

Controller:

ET Case

Comm: ET Slot

Controller:

ET Case

Comm: ET Slot

Controller:

Steady State Transient State Steady State

Joint Optimal
Control Design

Online
Scheduling
Algorithm

Figure 4.6: The proposed switching scheme.

system to settle. Towards this, we first compute offline the possible switching sequences of

each individual controller and obtain a table containing the meaningful switching sequences

and their corresponding control performance, i.e., the settling time. Given a control system

Ci of sampling period h and designed control gains Ki,t and Fi,t for Ci,t and Ki,e and Fi,e
for Ci,e, the performance of the control system Ji depends directly on the number of ET

samples used ni,e and the sample TT samples used ni,t before switching back to ET again.

Here we would like to obtain for each control system a minimal table Λi containing entries

λi,j = [ni,e,j , ni,t,j , Ji,j] ∈ Λi that captures the relation between the switching sequence

[ni,e, ni,t] and the control performance Ji. This is done through offline simulation of the

control system with the switching sequences and reducing redundant results. Algorithm 4

shows the algorithm to generate such a table.

Line 1 first evaluates the number of samples nSamples to reject a disturbance in

the ET case. Line 2 - 8 then iterates all possible combinations of nt and ne provides that

nt+ne ≤ nSamples. The performance of each sequence is evaluated in Line 3. The switch-

ing sequence is added to the table, only when the actuator limit is not exceeded. The table

obtained till Line 8 is the full table capturing all valid switching sequences. However, in or-

der to reduce the computational complexity of the online scheduling, we further reduce the

99

Chapter 4. Designing Resource-aware CPS over Hybrid Communication Networks

Algorithm 4 Offline Evaluation of Switching Sequences

Input: Φ,Γ,C,h,Kt,Ft,Ke,Fe,ulim
Output: Λ
Initialization: Λ = ∅
1: nSamples = evalPerfET(Φ,Γ, C, h,Ke, Fe)/h

obtain a full table with all valid switching sequences
2: for all ne,nt, where ne ≥ 0, nt ≥ 0 and ne + nt ≤ nSamples do
3: [J, umax] = evalPerfSW(Φ,Γ, C, h,Kt, Ft,Ke, Fe, ne, nt)
4: if umax ≤ ulim then
5: λ = [ne, nt, J]
6: Λ = addEntry(Λ, λ)
7: end if
8: end for

table reduction
9: for all ne,∃λj ∈ Λ and λj .ne == ne do

10: Λne
= getAllSequencesWithCondition(Λ, ne == λj .ne)

11: Jne,min = min(Λne
.J)

12: if Jne,min ≥ nSamples ∗ h then
13: removeEntries(Λ,Λne) # remove cases: no improvement through switching
14: else
15: for all λj ∈ Λne

do
16: if ∀λk ∈ Λne

and λk.nt > λj .ntand λk.J ≥ λj .J then
17: removeEntries(Λ, {λk}) # remove cases: no improvement through more TT samples
18: end if
19: end for
20: end if
21: end for

22: return Λ

table by removing some switching sequences. Line 9 - 21 performs this reduction. Firstly,

for each possible value of ne (Line 9), if none of the switching sequences with this value of

ET samples can achieve a better performance than the non-switched case (Line 12), these

sequences are not meaningful anymore. Thus we remove all these sequences (Line 13).

Furthermore, for switching sequences with the same ne value, if for a table entry λj , all the

sequences λk with the same value of ne and larger values of nt have equal or worst perfor-

mances (Line 16), these sequences {λk} are also removed (Line 17). This is because that

assigning more TT samples would not lead to better performance. This algorithm would

generate a reduced table that preserves all the necessary information for the prediction of

the settling time. This table can then be stored for online scheduling.

4.5.3 Online Switching based on Performance Prediction

The goal of the online switching algorithm is to determine the utilization sequence of the

TT slots and thus the switching sequence of the control systems, so that the overall control

performance of the whole system is optimized. This decision algorithm is run whenever a

100

4.5. Resource-Aware Switching Scheme

DT 1ET TT 2ET ST

get TT get settled

get settledrelease TTget TTwait for TT

does not get TT

does not get TT

disturbance

Figure 4.7: States of a controller.

disturbance arrives and updates the switching sequence of the controllers based on the past

and current information.

Control application and TT slot states: Firstly, we refine the states of a control

application. A control application has the following states: (i) The disturbed state refer the

state where a disturbance just happens and no control sample has been executed yet. (ii)

The first ET state refers to the states where the controller has used several ET samples

but not yet switched to the TT samples. (iii) A control system in the TT state has already

used several TT samples. (iv) A control system in second ET state has already switched

back to the ET samples and will remain there until settled. (v) The settled state refers to

the state where the last disturbance has been rejected and the next disturbance has not

yet arrived. State (i) - (iv) correspond to the transient state (solid circle in Figure 4.7)

and state (v) corresponds to the steady state (dashed circle in Figure 4.7). The state

transition diagram as well as the corresponding utilization of TT and ET slots are shown

in Figure 4.7. We define the state of a controller Ci as πi. We refer the control system in

state (i) to (iii) as in active states (blue in Figure 4.7) and consider only these controllers

while deciding on the switching sequence. We further consider the initial sequence of

controllers ψi,o = (ni,e,o, ni,t,o), which refers to the number of samples that the controller

has already used when the algorithm is started. Non-zero initial sequence can happen

when a disturbance for a control applications arrives when the disturbances of other control

applications have not yet been rejected. Furthermore, for each TT slot, an variable ρj is

defined denoting the control application that is currently using the TT slot.

Performance objective: The performance objective is to optimize the overall perfor-

mance of the active control systems. This can either be configured as the average settling

time or the maximal value of settling times. Without the loss of generality, we consider first

the average settling time. The overall control performance Jo can be defined as Jo =
∑
wiJi,

101

Chapter 4. Designing Resource-aware CPS over Hybrid Communication Networks

Algorithm 5 Online Scheduling

Input: C,Π,Ψo,ρ,{Λi},W
Output: Ψi,n,εb
1: [Ca,Πa] = collectActiveCons(C,Π)
2: E = generateValidSlotMapping(Ca,Πa, ρ) # generate all valid slot mapping
3: [εb, {ηb}, Jεb , {ωb}] = initializeBestResults()

iterate through all mapping
4: for all εk ∈ E do

iterate through TT slots in a mapping
5: for all εk,j ∈ εk do
6: [ηb, J

η
b , ωb] = initializeBestOrderAndSchedules()

7: Hk,j = generateValidOrder(εk,j ,Π, ρ)
iterate through all orderings

8: for all ηk,j,m ∈ Hk,j do
9: Ω = generateValidSchedules(ηk,j,m,Ψo)

10: for all ωn ∈ Ω do
11: J = evaluatePerformance(ωn,Ψi,o, {Λi},W)
12: if J < Jηb then
13: [ηb, J

η
b , ωb] = updateBestOrderAndSchedules(ηk,j,m, ωn, J,Ψo)

14: end if
15: end for
16: end for
17: [εk, {ηb}k, Jεk, {ωb}k] = addToSlotMapping(ηb, J

η
b , ωb)

18: end for
19: [εb, {ηb}, Jεo,b, {ωb}] = updateBestSlotMapping(εk, {ηb}k, Jεb , {ωb}k)
20: end for
21: Ψn = generateFutureSchedules(εb, {ηb}, {ωb}) # translate results for future schedules

22: return Ψn,εb

where Ji denotes the performance of a control applications currently in active states. Con-

trol applications already in the second ET state are not considered since they will remain

with the ET slot until settled and do not need to be considered for scheduling.

Scheduling algorithm: Algorithm 5 shows the proposed online scheduling algorithm. It

evaluates all valid schedules of for the TT resource allocation and returns the best one

in terms of the overall control performance that is allowed by the switching scheme. The

input of the algorithm contains C - the control applications, Π - the states of the control

applications where πi ∈ Π, Ψo - the old sample counter for each control application where

ψi,o ∈ Ψo, ρ - current states of the TT slots, {Λi} - the tables for the switching sequences for

each control application and W - the weights of the control applications where wi ∈W . The

output consists of Ψn - the new sample counter for the future schedules and εb - the mapping

of control applications to TT slots for the future. Line 1 of the algorithm collects the control

applications in active states, i.e., in disturbed state, first ET state or TT state and only

these control applications will be considered in the scheduling. Line 2 then generates all

possible controller to TT slot mappings with the constraint that the control applications

currently in TT states remains mapped to the TT slot currently being used. Line 4 - 20

then evaluates all valid schedules. For each slot mapping εk and the corresponding set of

102

4.5. Resource-Aware Switching Scheme

controllers mapped to slot j (Line 4 and Line 5), the set of valid ordering (permutation) is

generated (Line 7), where ηk,j,m = (C1, C2, ...) and C1 is the first control application in the

ordering. This is also constrained by the current state of the control applications where the

control application in TT state is the first in the ordering. For each of the valid ordering,

we iterate though possible schedules ωn ∈ Ω, where ωn is defined as (n1e, n
1
t , n

2
e, n

2
t ...), where

[n1e, n
1
t] are the number of ET and TT samples for the control application that is first in

the ordering ηk,j,m, [n2e, n
2
t] are the second and so on. The valid schedule ωn is constrained

by the following condition,

∀(Ci ∈ ηk,j,m ∧ Ci = Cp), λk = [npi,e + npi,e,o, n
p
i,t + npi,t,o, J

p
i] ∈ Λi, (4.25)

∀(Ci, Cq ∈ ηk,j,m ∧ Ci = Cp ∧ Cq = Cp+1), npi,e + npi,t ≤ n
p+1
q,e ∨ np+1

q,e = np+1
q,t = 0, (4.26)

∀(Ci ∈ ηk,j,m ∧ Ci = C1 ∧ πi is in TT state), n1i,e = 0. (4.27)

Eq. (4.25) enforces the condition that the combination of the ET and TT samples for Ci
in the ordering ηk,j,m must exist in the switching sequence table that is generated offline.

This condition guarantees that the switching sequence is a valid one. Eq. (4.26) further

enforced when Ci and Cq are two control application in the consecutive order, either np+1
q,e -

the number of ET samples for the following control application is larger or equal to the sum

of ET npi,e and TT npi,t samples of the preceding one, or the following one has zero ET and

TT samples - it is not considered to use the TT communication. This condition ensures

that the TT slot can only be used by one control application simultaneously. Eq. (4.27)

then enforces the condition that if the first control applications in the ordering is in a TT

state, it will not be switched back to the first ET state again. Then Line 8 - 16 evaluates

the performance of all the ordering and and schedules for the slot mapping εk with the slot

j and Line 17 adds up the result to εk. For both the generation of the schedules and the

evaluation of the performance, the old sample counter Ψi,o needs to be considered since

the matching with the switching sequence table needs to use the accumulated number of

samples. Line 19 then updates the best slot mapping εb. Line 4 - 20 will then return the

slot mapping εb with the best control performance J εk and the corresponding orderings for

each TT slot {ηb} and schedules {ωb}. Line 21 finally generate the future schedules Ψi,n.

This and the TT slot assignment εb will be returned.

We use an example to illustrate Algorithm 5. Consider we have four control applica-

tions C1 to C4 and two TT slots indexed as 1 and 2 are available. C1 is currently in the TT

state and using slot 1, while C2 to C4 are in the settled state. A disturbance for both C2 and

C3 comes simultaneously and the online scheduling algorithm is triggered. From Line 1, we

obtain the active control applications as Ca = {C1, C2, C3}. Line 2 then generates the valid

control application groups with respect to the control application states. In this case, the

valid groups ε1 = {{C1, C2}, C3}, ε2 = {{C1, C3}, C2}, ε3 = {C1, {C2, C3}} are generated in

103

Chapter 4. Designing Resource-aware CPS over Hybrid Communication Networks

Line 2. For the evaluation of performance for each group, we use ε1 to illustrate this. For

ε1,1 = {C1, C2}, only one permutation is possible η1,1,1 = {C1, C2} since C1 is currently in

TT state and has to be the first in the permutation. For ε1,2 = C3, only one permutation

is possible. Line 8 to 16 then evaluates the performance of all the switching sequences

possible for the permutation {C1, C2} according to constraints in Eq (4.25) to Eq (4.27)

and select the one with the best performance. During the evaluation of the performance,

the old sample counter Ψo has to be considered. In this case, the old sample counter for

ψ1,o, ψ2,o and ψ3,o have the following values n1,e,o ≥ 0, n1,t,o ≥ 0,n1,e,o = 0, n1,t,o = 0

and n1,e,o = 0, n1,t,o = 0. Therefore n1,e,o and n1,t,o have to be considered when iterating

through valid schedules or evaluating performance. Similarly, this is done for the permu-

tation in ε1,2. The sum of the performance for both ε1,1 and ε1,2 is the best performance

for ε1. Then Line 21 select the best control application grouping and generate the future

schedules.

We can make a trade-off between the computation effort and the possibility of achiev-

ing optimality. Towards this, the condition in Eq. (4.26) can be tightened as Eq. (4.28),

i.e., once a TT slot becomes available, it will be immediately assigned to another control

application that is not yet settled. This considerably reduces the computation complexity

of the algorithm by reducing the number of permutations that need to be evaluated.

∀(Ci, Cq ∈ ηk,j,m ∧ Ci = Cp ∧ Cq = Cp+1), npi,e + npi,t = np+1
q,e ∨ np+1

q,e = np+1
q,t = 0, (4.28)

4.5.4 Middleware-based Slot Sharing

One important challenge for the switching scheme upon FlexRay protocol, which the re-

lated approaches have not addressed, is the actual implementation of the switching between

the TT and ET communication. The FlexRay protocol itself does not support run-time

switching of messages between the TT and ET slots. The Flexray configuration is per-

formed offline and the communication cannot be reconfigured in a straightforward manner

unless the whole FlexRay cluster is shut down and reconfigured.

Towards addressing this problem, we propose a middleware based solution to imple-

ment the switching between two schedules by extending the framework in [109] onto the

dynamic segment. This solution is illustrated in Figure 4.8. The dynamic switching be-

tween the TT and ET are realized by inserting a software layer between the application

data and the communication controllers. This software layer detaches the mapping of the

data to signals and dynamically decides which data goes into which signal on the software

level according to a slot sharing policy, which can be computed by the online scheduling

algorithm. This software layer can be implemented in a lightweight fashion by a sender

slot sharing task - scheduled after the data are ready and just before the slot starts - and a

receiver slot sharing task - scheduled just after the slot finishes. To allow the receiver task

to know and filter the corresponding data, an ID field is inserted into the TT slot before

104

4.6. Experimental Results

… …… ……

data mapping middleware

data mapping middleware

ID

ID

Sending ECU

Receiving ECUs

FlexRay

Figure 4.8: Middleware-based slot sharing.

the actual payload data, denoting the index of the control application that is currently

using the TT slot. This middleware is also compatible to COTS development tools like

Matlab/Simulink. One limitation of the slot sharing scheme, which is the limitation of all

similar switching schemes based on FlexRay, is that the slot sharing and switching is only

allowed between applications whose tasks that are sending data are mapped on the same

ECU. Dynamic slot sharing between the ECUs are not possible, limited by the FlexRay

protocol.

4.6 Experimental Results

In this section, we use a case study to illustrate the advantages and the applicability of the

proposed switching scheme using simulation results.

4.6.1 Case Study

We consider a case study consisting of four control applications C1 to C4. We use two

different plant models derived from common automotive applications. The first one is the

DC motor position control (DCP) given in Eq. (4.19) and the second one is the cruise

control system (CC) [54], whose continuous-time dynamics can be represented as

105

Chapter 4. Designing Resource-aware CPS over Hybrid Communication Networks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
on

tr
ol

 P
er

fo
rm

an
ce

(S
et

tli
ng

 T
im

e
[s

])

TT ET
Joint Desgin

TT ET TT ET TT ET
Separate DesignJoint DesginSeparate Design

DCP CC

Figure 4.9: Comparison between the control performance of both TT and ET case using
separate and joint design.

ẋ(t) =

 0 1 0

0 0 1

−6.0476 −5.2856 −0.238

x(t) +

 0

0

2.4767

u(t)

y(t) =
[
1 0 0

]
x(t). (4.29)

We assign the plant model in Eq. (4.19) to C1 and C2 and the plant model in Eq. (4.29) to

C3 and C4. All the control applications are have a sampling period of 40 ms.

4.6.2 Results and Discussions

Control design: Figure 4.9 shows the results of the controller design for both plant models.

It can be observed from the figure that for the DCP system, the joint design can achieve

as good control performance as the separate design. For CC, the joint design results in the

same performance for the ET case, but for the TT case, the settling time is larger than the

separate design. This might be due to the extra constraints for the existence of the CQLF,

which render the poles in the separate design not possible.

Switching sequence and performance: We then generate the table for the switching

sequences as explained in Algorithm 4 in Section 4.5. Figure 4.10 shows the comparison

between different switching sequences for DCP plant model. Different lines represents the

switching sequence with respectively 0, 2, 5 and 10 ET samples before switching to the

TT case and the x-axis value shows the number of TT samples that are used before the

controller switches back to ET. In the case of x-axis value is equal to 0, it is the same with

106

4.6. Experimental Results

0 5 10 15 20 25
Number of TT Samples (n

t
)

0

0.2

0.4

0.6

0.8

1
C

on
tr

ol
 P

er
fo

rm
an

ce
(S

et
tli

ng
 T

im
e

[s
])

0 ET samples
2 ET samples
5 ET samples
10 ET samples
Stored in table (0 ET)
Stored in table (2 ET)
Stored in table (5 ET)
Stored in Table (10 ET)

Figure 4.10: Comparison between switching sequences for DCP. Lines: ET samples before
switching to TT. X-axis: TT samples before switching back to ET. Markers: entries stored
in table.

pure ET case and has the same control performance. When the controller switches to TT,

if the number of TT samples is small, the settling time might even increase (e.g.,blue dotted

and magenta dashed line). This might be due to frequent switching. As the number of TT

samples increase, the settling time shows an decreasing trend and after several samples,

the settling time remains the same. This means that using extra TT resource does not

increase the control performance. The markers shown in the figure denotes the meaningful

switching sequences that are stored in the table for online scheduling for the set of 0, 2, 5

and 10 ET samples before switching to TT. Other sequences either exceeds the actuator

limit or would waste TT resources.

Online algorithm: In order to evaluate the performance of the online scheduling algo-

rithm, we first consider the scenario when a disturbance of all four control applications

arrive at the same time. The results are obtained using the simplified algorithm with con-

straint in Eq. (4.28), i.e., the TT slot is assigned immediately when it becomes available.

Here we consider two cases of available TT slots. For case (a) N = 1, one TT slot is available

and for case (b) N = 2, two TT slots are available. Figure 4.11 and Figure 4.12 shows the

control response and the utilization of the TT slots for the four applications for case (a)

and (b) respectively. From Figure 4.11, we see that the scheduling algorithm assigns firstly

5 TT samples to C4 and therefore the disturbance C4 is rejected faster. It then assigns

3 and 2 samples of TT slots to C2 and C1 respectively and finally 4 TT samples to C3.

In Figure 4.12, there could be simultaneously two TT samples, and both the TT slots are

assigned to C3 and C4 first and then to C1, C2. In both (a) and (b), the scheduler assigns

107

Chapter 4. Designing Resource-aware CPS over Hybrid Communication Networks

0 0.5 1 1.5
Time [s]

-2

0

2

4

6

8

10

12
y

(o
ut

pu
t)

C
1

C
2

C
3

C
4

C
1
 TT Samples

C
2
 TT Samples

C
3
 TT Samples

C
4
 TT Samples

Figure 4.11: Output trajectories of the four control applications sharing one TT slot in the
case of simultaneous disturbance. The markers show the TT samples.

0 0.5 1 1.5
Time [s]

-2

0

2

4

6

8

10

12

y
(o

ut
pu

t)

C
1

C
2

C
3

C
4

C
1
 TT Samples

C
2
 TT Samples

C
3
 TT Samples

C
4
 TT Samples

Figure 4.12: Output trajectories of the four control applications sharing two TT slots in
the case of simultaneous disturbance. The markers show the TT samples.

the TT slots to C3 and C4 first, which are both of plant CC. Intuitively, the reason could be

this plant takes longer to settle (see Figure 4.9) and assign TT slot first to them might en-

hance the performance more. Furthermore, Table 4.2 shows the comparison of the resource

utilization and the overall control performance between (i) the purely TT case, (ii) the

purely ET case, (iii) the switching scheme proposed in [56] and (iv) the switching scheme

proposed in this chapter. For scheme (iii), we further consider the case of using separately

design controllers and jointly designed controllers (s) that guarantees the switching stabil-

ity. The results show that the control performance and the consumption of TT resources of

the proposed scheme lies between the pure TT and pure ET case and close to the TT case.

108

4.6. Experimental Results

1 TT slot
Scheme TT slots J1[s] J2[s] J3[s] J4[s] Javg[s]

i 4 0.56 0.56 0.48 0.48 0.52
ii 0 0.96 0.96 1.44 1.44 1.20
iii (s) 1 0.96 0.96 0.68 1.16 0.94
iii 1 0.96 0.96 0.48 0.92 0.83
iv 1 0.72 0.64 0.92 0.60 0.72

2 TT slots
Scheme TT slots J1[s] J2[s] J3[s] J4[s] Javg[s]
i 4 0.56 0.56 0.48 0.48 0.52
ii 0 0.96 0.96 1.44 1.44 1.20
iii (s) 2 0.92 0.92 0.68 0.68 0.80
iii 2 0.88 0.88 0.48 0.48 0.68
iv 2 0.64 0.64 0.60 0.60 0.62

Table 4.2: Comparison of the control performance and the resource utilization for schemes
(i) - (iv).

0 50 100 150 200 250 300
Disturbance Sequences

0

0.2

0.4

0.6

0.8

1

1.2

C
on

tr
ol

 P
er

fo
rm

an
ce

(S
et

tli
ng

 T
im

e
[s

])

Figure 4.13: The average control performance of C1 to C4 with 300 randomly generated
disturbance sequences. The blue solid line shows the performance of the pure TT case and
the red dashed line the pure ET case.

The proposed scheme also achieves better controller performance for both cases of scheme

(iii). It can also be observed that assigning more TT slots can increase the performance in

both the proposed scheme and scheme (iii). What is also notable is that in the case of 2

TT slots for C3 and C4 in the proposed scheme, the control performance is actually little

better than the pure TT case with poles from the joint design. This corresponds to the

similar valley in the curves in Figure 4.10, although Figure 4.10 shows the result from DCP

and C3 and C4 have the plant CC. We then randomly generate 300 disturbance sequences,

where each disturbance sequence includes one disturbance for each control application but

109

Chapter 4. Designing Resource-aware CPS over Hybrid Communication Networks

the arrival time between the disturbances are different. Figure 4.13 shows the average

control performance using the proposed approach with 1 TT slot, compared to the case of

pure TT and pure ET. The results confirm that the proposed scheme can strike a trade-off

between resource utilization and the control performance and in most cases offers a control

performance close to the pure TT case.

4.7 Concluding Remarks

In this chapter, we proposed a resource-aware switching scheme for distributed control

applications based on hybrid communication protocols. We allow each control application

to switch between TT and ET communication to make use of TT resource to enhance

the control performance. Valuable TT communication resources can be shared between

multiple controllers to enhance the overall performance of the system. We further allow

a control application to release the TT communication resource and switch back to ET

case before a disturbance is rejected to make more efficient utilization of the TT resource.

Towards this, we proposed an automated design method that can design both the controllers

for TT and ET case to optimize joint control performance while guaranteeing the stability

of the switching. A scheduling scheme is proposed based on the offline evaluation of the

switching sequences and the online scheduling algorithm to dynamically allocate the TT

communication to different controllers at run-time. The experimental results have shown

that the proposed scheme offers a trade-off between the TT resource consumption and the

control performance and achieves better control performance compared to existing switching

schemes.

110

Chapter 5
Concluding Remarks

The rapid development in the functionality of modern vehicles, especially in the ADAS

and infotainment domain, has imposed new challenges upon the design of underlying E/E

architecture. With the increasing size and complexity of the E/E architecture, meeting con-

ventional requirements like real-time capability, resource-efficiency as well as new require-

ments like flexibility, adaptability and safety has become more challenging. This thesis

investigates the problem of design and synthesis of automotive CPS with focus on dis-

tributed systems, where the communication network plays an important role. Design and

synthesis approaches are proposed to address the requirements like real-time capability,

flexibility/reconfigurability and resource-efficiency for such systems.

5.1 Summary

Firstly, one approach is introduced to co-synthesize task and communication schedules

for an Ethernet-based time-triggered system. The approach targets at the time-triggered

traffic in recent Ethernet protocols and synthesizes the task and communication schedules

in a synchronized manner. It considers the application-level timing, where the interplay

between the task and network schedules plays an important role. Compared to network

timing, the application-level timing is more important for the functional performance of the

distributed applications. This approach formulates important constraints for the scheduling

111

Chapter 5. Concluding Remarks

problem and handles multi-objective optimization, where different application-level timing

objectives and their combinations are considered. It further considers the switched Ethernet

topology and specific parameters like the synchronization precision. The proposed approach

is independent of task and communication configurations as well as network topologies and

device performance. An industrial-sized case study is used to show the applicability of the

method towards optimization of complex timing objectives and the experimental results

also show that it can be scaled to system of reasonably large size.

Secondly, a schedule management framework is proposed to generate and manage on-

line time-triggered schedules for the case of PnP and software updates. The framework

employs a client-server architecture and utilizes both the computation and storage resource

onboard the vehicle and in backend servers through the cloud-computing fashion. When a

request for the re-computation of the schedules arrives, the framework can synthesize the

schedules on an embedded platform as well as send the request through the cloud to the

server to be synthesized. It will then select the fastest results and thus reduce the time for

obtaining schedules, paving the way for future cloud-based PnP of software functions. In

the synthesis process, it implements a four-staged strategy where the synthesis scales from

incremental design to a complete re-synthesis, thus offering trade-off between the synthesis

time and disturbance to existing applications on one side and the chance of accommodating

new applications on the other. A configuration pool is proposed to facilitate the reuse of

schedule configurations and thus reduce the synthesis overhead. A prototype of this soft-

ware framework is developed using a Raspberry Pi as the client and a notebook computer

as the server. The results show that the proposed framework can efficiently generate and

manage schedules online, synthesize schedules in a time meaningful for PnP and use the

staged synthesis strategy to offer trade-off between synthesis time, disturbance to existing

applications and the chance of accommodating new applications.

Finally, a resource-efficient scheme is proposed for CPS based on hybrid communica-

tion protocols. This scheme allows a control application to switch between the TT and ET

communication to conserve valuable TT communication resource. Compared to existing

switching schemes in this setting, the approach proposed in this thesis allows a control ap-

plication to use as much TT resource as meaningful and switch back to ET resource before

the system has settled. This allows the TT resource to be released as early as possible so

that it can be utilized by other control applications to enhance the overall control perfor-

mance. Towards this, a PSO based control design method is proposed to automatically

design controllers for the TT and ET case in a joint way and guarantee the switching sta-

bility. For the computation of the TT resource allocation, an online scheduling algorithm

is proposed to dynamically compute the allocation of the TT resource and the switching

sequence of the control applications so that the overall control performance is optimized.

This online algorithm is based on the prediction of the remaining settling time, which can

be drawn from a switching sequence table generated offline. The results have shown that

the proposed scheme can strike a balance between TT resource utilization and the con-

trol performance and achieves better control performance compared to existing switching

schemes with the same resource utilization.

112

5.2. Future Works

5.2 Future Works

The approaches proposed in this thesis can be further extended in different aspects. In this

section, the possible extensions and future works are discussed.

Extensibility driven schedule synthesis: The approach explained in Chapter 2 ad-

dresses mainly the real-time requirements. This work can further be extended to the re-

quirements on the extensibility of the schedules. The extensibility-driven schedule synthesis

is an important research direction. The motivation comes from the fact that in the auto-

motive domain, the systems are designed in an iterative manner. In each iteration, new

software applications and possibly ECUs are added to the system. During this process,

the schedules of the existing applications are kept as unchanged as possible. Especially

for safety-critical applications, the configurations and parameters need rigorous testing and

validation. If the schedules are changed during a design iteration, the existing applications

need to be tested and validated again, which introduces a lot of overhead and costs. There-

fore, it would be advantageous, if the schedules are designed to be extensible in the first

place. That is, more future schedules can be added to this schedule set without changing

the existing schedules. In the context of TTP and FlexRay, there have already been some

works on extensible scheduling [70, 72]. However, the communication systems considered

there are of bus topology. The problem becomes much more challenging, when it comes

to switched Ethernet, which is a point-to-point network that can take different network

topologies. There are some works on extensible scheduling for time-triggered Ethernet [89].

But the intention there is to make the schedules porous for the best-effort traffic and the

method is also relatively simple. To synthesize time-triggered Ethernet schedules that are

extensible to future time-triggered traffic is still an open problem. The main challenge here

is the much higher complexity compared to the protocols of bus topologies and the handling

of the interplay between different links and routes.

Co-synthesis of mixed-criticality networks: Another possible future work in line

with Chapter 2 is the co-synthesis of mixed criticality networks. Conventional automotive

bus systems are tailored to the specific requirements of the domain. However, since the au-

tomotive E/E system has become increasingly of a mixed criticality nature, communication

protocols offering mixed-criticality traffics have become popular. FlexRay, for example, is

a mixed-criticality bus offering both TT and ET traffics. The recent Ethernet protocols

also offer different classes of traffics, including scheduled traffic, rate-constraint traffic and

best effort traffic. Traditionally, the schedule synthesis mainly refers to the time-triggered

scheduling scheme. However, it is also possible to synthesize the configuration parameters

for ET traffics. For example, priorities of CAN messages as well as Ethernet frames can also

be synthesized. For these traffics, it is difficult to find a closed form solution for the prob-

lem. Rather, heuristic or meta-heuristic methods can be used in combination with timing

analysis techniques to synthesize the parameters. An even more challenging yet meaningful

problem is to co-synthesize the time-triggered as well as event-triggered traffics together,

113

Chapter 5. Concluding Remarks

since in the case of Ethernet, the scheduling of the time-triggered traffic influences strongly

the event-triggered traffic. The co-design of the mixed-criticality communication can eval-

uate the trade-off between the bandwidth assignment to the different classes of traffics and

thus making more efficient utilization of the available bandwidth. This might also offer a

basis for the abstraction of the communication network, which in turn contributes to the

modularization of the software and the flexibility and adaptivity of the platform.

Communication abstraction: The approach introduced in Chapter 3 as well as par-

tially in Chapter 4 contributes to the reconfigurability of the platform in that it allows

the reallocation of the communication resources. Compared to the current configuration of

the communication in automotive E/E architecture, where the data-to-message, message-

to-schedule mapping is statically configured, the proposed approaches allow to a certain

extend, the underlying communication resources to be re-distributed. An extension in this

direction is the abstraction of the communication resources from the application software,

where it is not necessary for the application software to be aware of the actual communi-

cation resources that transmit the data. On the other hand, the requirements for the data

are specified on the application level and middleware solutions are employed to dynami-

cally assign communication resources to the application data. In the same direction, there

have been some middleware solutions that abstract the communication, e.g., SOME/IP

and DDS. However, there are still many challenges to be overcome, including meeting the

real-time requirements and efficient utilization of the bandwidth. Towards these, schedule

synthesis and timing analysis techniques need to be properly integrated into the middleware

solutions.

Parallelization of synthesis approaches: One future direction for the approach ex-

plained in Chapter 3 is the parallelization of the synthesis approaches. A four-staged

strategy for the schedule synthesis is employed in this thesis, which can make a trade-off

between the objectives of reducing the synthesis time and the disturbance to existing appli-

cations and increasing the chance of accommodating new applications. However, the four

steps are still implemented in a serial manner. Modern processors are increasingly equipped

with multiple cores. If the multi-core architecture can be utilized to parallelize the differ-

ent schedule synthesis approaches, an even reduced synthesis time can be achieved, thus

making the PnP of software applications in a cloud-based setting event more convenient.

The main challenges to be addressed here are the implementation challenges.

Control/platform co-design: The approach proposed in Chapter 4 falls broadly into

the category of control/platform co-design or co-synthesis. Although there have been many

recent works addressing this problem in the CPS domain, this field is still a relatively open

field with a lot of opportunities to explore. The main goal here is to consider the design

problem of controller on the application level and of platform on the system level jointly

to remove the design conservativeness and thus achieving better performance or reduced

resource utilization. In the direction of the approach explained in Chapter 4, there are

several possibilities of extension. Firstly, sample drops can be added to the TT and ET

114

5.3. Outlook

case considered in this thesis to obtain a more comprehensive situation. Secondly, event-

triggered and self-triggered control can also be included into the picture, where a control

application does not use any communication resource if it is not needed, thus achieving

more resource savings, also for the ET communication. Thirdly, towards online prediction of

control performance, machine learning techniques can possibly be utilized to train regression

models or decision trees that requires less computational effort online and can cope with

different initial states. As already mentioned, there are a lot of opportunities to explore

towards safe, resource-efficient design of CPS. The main challenges to overcome here is the

complexity problem and the heterogeneity of the modeling and design methods for control

and embedded systems.

5.3 Outlook

As the technology in automotive domain advances, connected self-driving vehicles will be-

come a reality in a not so distant future. As the functionality of modern cars becomes

increasingly more powerful, the underlying E/E architecture as well as the design methods

will certainly evolve. Towards this, emerging trends like ECU consolidation, Ethernet-based

communication architecture, adaptive platform, connectivity and CPS-oriented design are

likely to continue and gather momentum. This thesis provides several solutions in the de-

sign/synthesis of automotive CPS addressing several requirements that either arise from

or are strengthened by these developing trends. Therefore, these solutions are relevant

and might serve as the basis for further work towards designing future automotive E/E

systems.

115

Bibliography

[1] M. Broy, I. H. Kruger, A. Pretschner, and C. Salzmann, “Engineering automotive

software,” Proceedings of the IEEE, vol. 95, no. 2, pp. 356–373, 2007.

[2] R. N. Charette, “This car runs on code,” IEEE spectrum, vol. 46, no. 3, p. 3, 2009.

[3] T. Streichert and M. Traub, Elektrik/Elektronik-Architekturen im Kraftfahrzeug:

Modellierung und Bewertung von Echtzeitsystemen. Springer-Verlag, 2012.

[4] C. Buckl, B. Schätz, M. Fehling, K. Kuhn, C. Klein et al., “Mehr software (im)

wagen: Informations-und kommunikationstechnik (ikt) als motor der elektromobilität

der zukunft,” Abschlussbericht des BMBF-geförderten Verbundvorhabens “eCar-IKT-

Systemarchitektur für Elektromobilität, 2011.

[5] F. Simonot-Lion, “In car embedded electronic architectures: How to ensure their

safety,” IFAC Proceedings Volumes, vol. 36, no. 13, pp. 1–8, 2003.

[6] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in automotive com-

munication systems,” Proceedings of the IEEE, vol. 93, no. 6, pp. 1204–1223, 2005.

[7] B. Group et al., Der neue BMW 7er: Entwicklung und Technik. Springer-Verlag,

2009.

[8] F. Consortium et al., “Flexray communications system protocol specification version

2.1,” 2005.

[9] ——, “Flexray communication systems protocol specification, version 3.0.1,” 2010.

[10] M. Rausch, FlexRay: Grundlagen, Funktionsweise, Anwendung. Hanser Verlag,

2008.

[11] W. Zimmermann and R. Schmidgall, Bussysteme in der fahrzeugtechnik: protokolle,

standards und softwarearchitektur. Springer-Verlag, 2014.

117

Bibliography

[12] C. Spurgeon, Ethernet: the definitive guide. ” O’Reilly Media, Inc.”, 2000.

[13] R. Seifert and J. Edwards, The All-New Switch Book: The Complete Guide to LAN

Switching Technology. John Wiley & Sons, 2008.

[14] “Ieee standard for local and metropolitan area networks–media access control (mac)

bridges and virtual bridged local area networks,” IEEE Std 802.1Q-2011 (Revision

of IEEE Std 802.1Q-2005), pp. 1–1365, Aug 2011.

[15] “Time-sensitve networking task group,” http://www.ieee802.org/1/pages/tsn.html,

accessed: 2017-06-28.

[16] “Ieee standard for local and metropolitan area networks – bridges and bridged net-

works - amendment 25: Enhancements for scheduled traffic,” IEEE Std 802.1Qbv-

2015 (Amendment to IEEE Std 802.1Q— as amended by IEEE Std 802.1Qca-2015,

IEEE Std 802.1Qcd-2015, and IEEE Std 802.1Q—/Cor 1-2015), pp. 1–57, March

2016.

[17] “Ieee standard for local and metropolitan area networks – bridges and bridged net-

works – amendment 26: Frame preemption,” IEEE Std 802.1Qbu-2016 (Amendment

to IEEE Std 802.1Q-2014), pp. 1–52, Aug 2016.

[18] R. Pigan and M. Metter, Automating with PROFINET: Industrial communication

based on Industrial Ethernet. John Wiley & Sons, 2008.

[19] D. Jansen and H. Buttner, “Real-time ethernet: the ethercat solution,” Computing

and Control Engineering, vol. 15, no. 1, pp. 16–21, 2004.

[20] A. D. N. Part, “7: Avionics full duplex switched ethernet (afdx) network,” ARINC

Specification 664p7, vol. 7, 2005.

[21] S. AS6802, “Time-triggered ethernet,” SAE International, 2011.

[22] L. L. Bello, “The case for ethernet in automotive communications,” ACM SIGBED

Review, vol. 8, no. 4, pp. 7–15, 2011.

[23] ——, “Novel trends in automotive networks: A perspective on ethernet and the ieee

audio video bridging,” in Proceedings of the 2014 IEEE Emerging Technology and

Factory Automation (ETFA), Sept 2014, pp. 1–8.

[24] S. Sommer, A. Camek, K. Becker, C. Buckl, A. Zirkler, L. Fiege, M. Armbruster,

G. Spiegelberg, and A. Knoll, “Race: A centralized platform computer based archi-

tecture for automotive applications,” in Electric Vehicle Conference (IEVC), 2013

IEEE International. IEEE, 2013, pp. 1–6.

[25] “Open alliance sig,” http://www.opensig.org, accessed: 2017-06-28.

118

http://www.ieee802.org/1/pages/tsn.html
http://www.opensig.org

Bibliography Bibliography

[26] F. Sagstetter, “Schedule synthesis for time-triggered automotive architectures,” Ph.D.

dissertation, Universitätsbibliothek der TU München, 2016.

[27] “Road vehicles – controller area network (can) – part 2: High-speed medium access

unit,” ISO 11898-2:2016, pp. 1–30, Jun 2016.

[28] “Road vehicles – controller area network (can) – part 3: Low-speed, fault-tolerant,

medium-dependent interface,” ISO 11898-3:2006, pp. 1–25, Jun 2006.

[29] F. Hartwich et al., “Can with flexible data-rate,” in Proc. iCC, 2012, pp. 1–9.

[30] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area network (can)

schedulability analysis: Refuted, revisited and revised,” Real-Time Systems, vol. 35,

no. 3, pp. 239–272, 2007.

[31] “Road vehicles – controller area network (can) – part 4: Time-triggered communica-

tion,” ISO 11898-4:2004, pp. 1–32, Aug 2008.

[32] K. Borgeest, Elektronik in der Fahrzeugtechnik. Springer, 2010.

[33] L. Völker, “Some/ip-die middleware für ethernetbasierte kommunikation,” Hanser

automotive networks, 2013.

[34] G. Pardo-Castellote, “Omg data-distribution service: Architectural overview,” in Dis-

tributed Computing Systems Workshops, 2003. Proceedings. 23rd International Con-

ference on. IEEE, 2003, pp. 200–206.

[35] M. Wagner, S. Schildt, and M. Poehnl, “Service-oriented communication for controller

area networks,” in Vehicular Technology Conference (VTC-Fall), 2016 IEEE 84th.

IEEE, 2016, pp. 1–5.

[36] AUTOSAR, “Virtual functional bus autosar cp release 4.3.0.”

[37] “Road vehicles – open interface for embedded automotive applications – part 1: Gen-

eral structure and terms, definitions and abbreviated terms,” ISO 17356-1:2005, pp.

1–21, Jan 2005.

[38] “Road vehicles – open interface for embedded automotive applications – part 3: Os-

ek/vdx operating system (os),” ISO 17356-3:2005, pp. 1–61, Nov 2005.

[39] “Autosar,” https://www.autosar.org, accessed: 2017-06-28.

[40] M. Di Natale and A. L. Sangiovanni-Vincentelli, “Moving from federated to integrated

architectures in automotive: The role of standards, methods and tools,” Proceedings

of the IEEE, vol. 98, no. 4, pp. 603–620, 2010.

119

https://www.autosar.org

Bibliography

[41] S. Chakraborty, M. Lukasiewycz, C. Buckl, S. Fahmy, N. Chang, S. Park, Y. Kim,

P. Leteinturier, and H. Adlkofer, “Embedded systems and software challenges in

electric vehicles,” in Proceedings of the conference on design, automation and test in

Europe. EDA Consortium, 2012, pp. 424–429.

[42] K. Becker, J. Frtunikj, M. Felser, L. Fiege, C. Buckl, S. Rothbauer, L. Zhang, and

C. Klein, “Race rte: a runtime environment for robust fault-tolerant vehicle func-

tions,” in CARS 2015-Critical Automotive applications: Robustness & Safety, 2015.

[43] J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar, and B. Litkouhi, “Towards

a viable autonomous driving research platform,” in Intelligent Vehicles Symposium

(IV), 2013 IEEE. IEEE, 2013, pp. 763–770.

[44] E. Ackerman, “Tesla model s: Summer software update will enable autonomous driv-

ing,” IEEE Spectrum Cars That Think, 2016.

[45] R. Bradley, “Tesla autopilot, the electric-vehicle maker sent its cars a software update

that suddenly made autonomous driving a reality,” 2016.

[46] H.-T. Lim, B. Krebs, L. Volker, and P. Zahrer, “Performance evaluation of the inter-

domain communication in a switched ethernet based in-car network,” in Local Com-

puter Networks (LCN), 2011 IEEE 36th Conference on. IEEE, 2011, pp. 101–108.

[47] P. Papadimitratos, A. De La Fortelle, K. Evenssen, R. Brignolo, and S. Cosenza, “Ve-

hicular communication systems: Enabling technologies, applications, and future out-

look on intelligent transportation,” IEEE Communications Magazine, vol. 47, no. 11,

2009.

[48] E. A. Lee, “Cyber-physical systems-are computing foundations adequate,” in Po-

sition Paper for NSF Workshop On Cyber-Physical Systems: Research Motivation,

Techniques and Roadmap, vol. 2, 2006.

[49] ——, “Cyber physical systems: Design challenges,” in Object oriented real-time dis-

tributed computing (isorc), 2008 11th ieee international symposium on. IEEE, 2008,

pp. 363–369.

[50] W. Wolf, “Cyber-physical systems,” Computer, vol. 42, no. 3, pp. 88–89, 2009.

[51] S. Chakraborty, M. A. Al Faruque, W. Chang, D. Goswami, M. Wolf, and Q. Zhu,

“Automotive cyber-physical systems: A tutorial introduction,” IEEE Design & Test,

vol. 33, no. 4, pp. 92–108, 2016.

[52] W. Chang and S. Chakraborty, “Resource-aware automotive control systems

design: A cyber-physical systems approach,” Foundations and Trends in Electronic

Design Automation, vol. 10, no. 4, pp. 249–369, 2016. [Online]. Available:

https://doi.org/10.1561/1000000045

120

https://doi.org/10.1561/1000000045

Bibliography Bibliography

[53] D. Roy, L. Zhang, W. Chang, and S. Chakraborty, “Automated synthesis of cyber-

physical systems from joint controller/architecture specifications,” in Specification

and Design Languages (FDL), 2016 Forum on. IEEE, 2016, pp. 1–8.

[54] D. Roy, L. Zhang, W. Chang, D. Goswami, and S. Chakraborty, “Multi-objective

co-optimization of flexray-based distributed control systems,” in Real-Time and Em-

bedded Technology and Applications Symposium (RTAS), 2016 IEEE. IEEE, 2016,

pp. 1–12.

[55] D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty, “Time-triggered

implementations of mixed-criticality automotive software,” in Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2012. IEEE, 2012, pp. 1227–1232.

[56] D. Goswami, R. Schneider, and S. Chakraborty, “Re-engineering cyber-physical con-

trol applications for hybrid communication protocols,” in Design, Automation & Test

in Europe Conference & Exhibition (DATE), 2011. IEEE, 2011, pp. 1–6.

[57] M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty, “Modular schedul-

ing of distributed heterogeneous time-triggered automotive systems,” in Design Au-

tomation Conference (ASP-DAC), 2012 17th Asia and South Pacific. IEEE, 2012,

pp. 665–670.

[58] E. Bini and A. Cervin, “Delay-aware period assignment in control systems,” in Real-

Time Systems Symposium, 2008. IEEE, 2008, pp. 291–300.

[59] W. Steiner, “An evaluation of smt-based schedule synthesis for time-triggered multi-

hop networks,” in Real-Time Systems Symposium (RTSS), 2010 IEEE 31st. IEEE,

2010, pp. 375–384.

[60] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei, “Timing analysis of the flexray

communication protocol,” in Real-Time Systems, 2006. 18th Euromicro Conference

on. IEEE, 2006, pp. 11–pp.

[61] U. D. Bordoloi, B. Tanasa, P. Eles, and Z. Peng, “On the timing analysis of the

dynamic segment of flexray,” in Industrial Embedded Systems (SIES), 2012 7th IEEE

International Symposium on. IEEE, 2012, pp. 94–101.

[62] J. Diemer, D. Thiele, and R. Ernst, “Formal worst-case timing analysis of ethernet

topologies with strict-priority and avb switching,” in Industrial Embedded Systems

(SIES), 2012 7th IEEE International Symposium on. IEEE, 2012, pp. 1–10.

[63] R. Schneider, L. Zhang, D. Goswami, A. Masrur, and S. Chakraborty, “Compositional

analysis of switched ethernet topologies,” in Proceedings of the Conference on Design,

Automation and Test in Europe. EDA Consortium, 2013, pp. 1099–1104.

121

Bibliography

[64] F. Reimann, S. Graf, F. Streit, M. Glaß, and J. Teich, “Timing analysis of ether-

net avb-based automotive e/e architectures,” in Emerging Technologies & Factory

Automation (ETFA), 2013 IEEE 18th Conference on. IEEE, 2013, pp. 1–8.

[65] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse, “System architecture evaluation

using modular performance analysis: a case study,” International Journal on Software

Tools for Technology Transfer (STTT), vol. 8, no. 6, pp. 649–667, 2006.

[66] A. Hagiescu, U. D. Bordoloi, S. Chakraborty, P. Sampath, P. V. V. Ganesan, and

S. Ramesh, “Performance analysis of flexray-based ecu networks,” in Design Automa-

tion Conference, 2007. DAC’07. 44th ACM/IEEE. IEEE, 2007, pp. 284–289.

[67] D. B. Chokshi and P. Bhaduri, “Performance analysis of flexray-based systems using

real-time calculus, revisited,” in Proceedings of the 2010 ACM Symposium on Applied

Computing. ACM, 2010, pp. 351–356.

[68] M. Lukasiewycz, M. Glaß, J. Teich, and P. Milbredt, “Flexray schedule optimization

of the static segment,” in Proceedings of the 7th IEEE/ACM international conference

on Hardware/software codesign and system synthesis. ACM, 2009, pp. 363–372.

[69] H. Zeng, M. Di Natale, A. Ghosal, and A. Sangiovanni-Vincentelli, “Schedule opti-

mization of time-triggered systems communicating over the flexray static segment,”

IEEE Transactions on Industrial Informatics, vol. 7, no. 1, pp. 1–17, 2011.

[70] R. Schneider, D. Goswami, S. Chakraborty, U. Bordoloi, P. Eles, and Z. Peng, “Quan-

tifying notions of extensibility in flexray schedule synthesis,” ACM Transactions on

Design Automation of Electronic Systems (TODAES), vol. 19, no. 4, p. 32, 2014.

[71] P. Pop, P. Eles, Z. Peng, and T. Pop, “Scheduling and mapping in an incremental

design methodology for distributed real-time embedded systems,” Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, vol. 12, no. 8, pp. 793–811, 2004.

[72] W. Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-Vincentelli, “Ex-

tensible and scalable time triggered scheduling,” in Application of Concurrency to

System Design, 2005. ACSD 2005. Fifth International Conference on. IEEE, 2005,

pp. 132–141.

[73] W. Chang, D. Roy, L. Zhang, and S. Chakraborty, “Model-based design of resource-

efficient automotive control software,” in Proceedings of the 35th International Con-

ference on Computer-Aided Design. ACM, 2016, p. 34.

[74] W. Chang, D. Goswami, S. Chakraborty, L. Ju, C. J. Xue, and S. Andalam, “Memory-

aware embedded control systems design,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 36, no. 4, pp. 586–599, 2017.

122

Bibliography Bibliography

[75] P. Mundhenk, G. Tibba, L. Zhang, F. Reimann, D. Roy, and S. Chakraborty, “Dy-

namic platforms for uncertainty management in future automotive e/e architectures,”

in Proceedings of the 54th Annual Design Automation Conference 2017. ACM, 2017,

p. 15.

[76] D. Gangadharan, J. H. Kim, O. Sokolsky, B. Kim, C.-W. Lin, S. Shiraishi, and I. Lee,

“Platform-based plug and play of automotive safety features: Challenges and direc-

tions,” in Embedded and Real-Time Computing Systems and Applications (RTCSA),

2016 IEEE 22nd International Conference on. IEEE, 2016, pp. 76–84.

[77] J. Teich, “Hardware/software codesign: The past, the present, and predicting the

future,” Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp. 1411–

1430, 2012.

[78] S. Samii, A. Cervin, P. Eles, and Z. Peng, “Integrated scheduling and synthesis of

control applications on distributed embedded systems,” in Proceedings of the confer-

ence on design, automation and test in Europe. European Design and Automation

Association, 2009, pp. 57–62.

[79] A. Aminifar, P. Eles, Z. Peng, and A. Cervin, “Control-quality driven design of cyber-

physical systems with robustness guarantees,” in Proceedings of the Conference on

Design, Automation and Test in Europe. EDA Consortium, 2013, pp. 1093–1098.

[80] M. Buechel, J. Frtunikj, K. Becker, S. Sommer, C. Buckl, M. Armbruster, A. Marek,

A. Zirkler, C. Klein, and A. Knoll, “An automated electric vehicle prototype show-

ing new trends in automotive architectures,” in Intelligent Transportation Systems

(ITSC), 2015 IEEE 18th International Conference on. IEEE, 2015, pp. 1274–1279.

[81] F. Sagstetter, M. Lukasiewycz, S. Steinhorst, M. Wolf, A. Bouard, W. R. Harris,

S. Jha, T. Peyrin, A. Poschmann, and S. Chakraborty, “Security challenges in auto-

motive hardware/software architecture design,” in Proceedings of the Conference on

Design, Automation and Test in Europe. EDA Consortium, 2013, pp. 458–463.

[82] P. Mundhenk, S. Steinhorst, M. Lukasiewycz, S. A. Fahmy, and S. Chakraborty,

“Lightweight authentication for secure automotive networks,” in Proceedings of the

2015 Design, Automation & Test in Europe Conference & Exhibition, ser. DATE

’15. San Jose, CA, USA: EDA Consortium, 2015, pp. 285–288. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2755753.2755816

[83] H. Kopetz, Real-time systems: design principles for distributed embedded applications.

Springer Science & Business Media, 2011.

[84] H. Kopetz and G. Grunsteidl, “Ttp-a time-triggered protocol for fault-tolerant real-

time systems,” in Fault-Tolerant Computing, 1993. FTCS-23. Digest of Papers., The

Twenty-Third International Symposium on. IEEE, 1993, pp. 524–533.

123

http://dl.acm.org/citation.cfm?id=2755753.2755816

Bibliography

[85] F. Sagstetter, M. Lukasiewycz, and S. Chakraborty, “Schedule integration for time-

triggered systems,” in Design Automation Conference (ASP-DAC), 2013 18th Asia

and South Pacific. IEEE, 2013, pp. 53–58.

[86] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,” IEEE

Transactions on Automatic Control, vol. 52, no. 9, pp. 1680–1685, 2007.

[87] D. Goswami, R. Schneider, and S. Chakraborty, “Co-design of cyber-physical systems

via controllers with flexible delay constraints,” in Proceedings of the 16th Asia and

South Pacific Design Automation Conference. IEEE Press, 2011, pp. 225–230.

[88] “Gurobi optimization,” http://www.gurobi.com, accessed: 2017-06-28.

[89] W. Steiner, “Synthesis of static communication schedules for mixed-criticality sys-

tems,” in Object/Component/Service-Oriented Real-Time Distributed Computing

Workshops (ISORCW), 2011 14th IEEE International Symposium on. IEEE, 2011,

pp. 11–18.

[90] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings of the IEEE,

vol. 91, no. 1, pp. 112–126, 2003.

[91] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, “The time-triggered ether-

net (tte) design,” in Object-Oriented Real-Time Distributed Computing, 2005. ISORC

2005. Eighth IEEE International Symposium on. IEEE, 2005, pp. 22–33.

[92] R. Schneider, D. Goswami, S. Zafar, M. Lukasiewycz, and S. Chakraborty,

“Constraint-driven synthesis and tool-support for flexray-based automotive control

systems,” in Proceedings of the seventh IEEE/ACM/IFIP international conference

on Hardware/software codesign and system synthesis. ACM, 2011, pp. 139–148.

[93] Z. Hanzalek, P. Burget, and P. Sucha, “Profinet io irt message scheduling with tem-

poral constraints,” IEEE Transactions on Industrial Informatics, vol. 6, no. 3, pp.

369–380, 2010.

[94] D. Tamas-Selicean, P. Pop, and W. Steiner, “Synthesis of communication sched-

ules for ttethernet-based mixed-criticality systems,” in Proceedings of the eighth

IEEE/ACM/IFIP international conference on Hardware/software codesign and sys-

tem synthesis. ACM, 2012, pp. 473–482.

[95] H. P. Williams, Model building in mathematical programming. John Wiley & Sons,

2013.

[96] J.-W. Yoo, Y. Lee, D. Kim, and K. Park, “An android-based automotive middleware

architecture for plug-and-play of applications,” in Open Systems (ICOS), 2012 IEEE

Conference on. IEEE, 2012, pp. 1–6.

124

http://www.gurobi.com

Bibliography Bibliography

[97] C. Buckl, M. Geisinger, D. Gulati, F. J. Ruiz-Bertol, and A. Knoll, “Chromosome:

A run-time environment for plug & play-capable embedded real-time systems,” ACM

SIGBED Review, vol. 11, no. 3, pp. 36–39, 2014.

[98] A. Zeeb, “Plug and play solution for autosar software components,” ATZelektronik

worldwide, vol. 7, no. 1, pp. 16–21, 2012.

[99] L. Zhang, D. Goswami, R. Schneider, and S. Chakraborty, “Task-and network-level

schedule co-synthesis of ethernet-based time-triggered systems,” in Design Automa-

tion Conference (ASP-DAC), 2014 19th Asia and South Pacific. IEEE, 2014, pp.

119–124.

[100] S. S. Craciunas and R. S. Oliver, “Smt-based task-and network-level static schedule

generation for time-triggered networked systems,” in Proceedings of the 22nd Inter-

national Conference on Real-Time Networks and Systems. ACM, 2014, p. 45.

[101] M. Gutiérrez, W. Steiner, R. Dobrin, and S. Punnekkat, “A configuration agent based

on the time-triggered paradigm for real-time networks,” in Factory Communication

Systems (WFCS), 2015 IEEE World Conference on. IEEE, 2015, pp. 1–4.

[102] ——, “Learning the parameters of periodic traffic based on network measurements,”

in Measurements & Networking (M&N), 2015 IEEE International Workshop on.

IEEE, 2015, pp. 1–6.

[103] H. Martorell, J.-C. Fabre, M. Roy, and R. Valentin, “Towards dynamic updates in

autosar,” in SAFECOMP 2013-Workshop CARS (2nd Workshop on Critical Auto-

motive applications: Robustness & Safety) of the 32nd International Conference on

Computer Safety, Reliability and Security, 2013, p. NA.

[104] J. Frtunikj, V. Rupanov, A. Camek, C. Buckl, and A. Knoll, “A safety aware run-time

environment for adaptive automotive control systems,” Embedded real-time software

and systems (ERTS2), vol. 3, 2014.

[105] “Gecode generic constraint development environment,” http://www.gecode.org, ac-

cessed: 2017-06-28.

[106] “Github ole christian eidheim,” https://github.com/eidheim, accessed: 2017-06-28.

[107] W. Chang and S. Chakraborty, “Resource-aware automotive control systems

design: A cyber-physical systems approach,” Foundations and Trends in Electronic

Design Automation, vol. 10, no. 4, pp. 249–369, 2016. [Online]. Available:

https://doi.org/10.1561/1000000045

[108] A. M. Annaswamy, D. Soudbakhsh, R. Schneider, D. Goswami, and S. Chakraborty,

“Arbitrated network control systems: A co-design of control and platform for cyber-

physical systems,” in Control of cyber-physical systems. Springer International Pub-

lishing, 2013, pp. 339–356.

125

http://www.gecode.org
https://github.com/eidheim
https://doi.org/10.1561/1000000045

Bibliography

[109] D. Majumdar, L. Zhang, P. Bhaduri, and S. Chakraborty, “Reconfigurable commu-

nication middleware for flex ray-based distributed embedded systems,” in Embedded

and Real-Time Computing Systems and Applications (RTCSA), 2015 IEEE 21st In-

ternational Conference on. IEEE, 2015, pp. 159–166.

[110] E. Bini and A. Cervin, “Delay-aware period assignment in control systems,” in IEEE

RTSS, 2008.

[111] A. Cervin and P. Alriksson, “Optimal on-line scheduling of multiple control tasks: A

case study,” in ECRTS, 2006.

[112] R. Castane, P. Mart́ı, M. Velasco, and A. Cervin, “Resource management for control

tasks based on the transient dynamics of closed-loop systems,” in ECRTS, 2006.

[113] R. Postoyan, P. Tabuada, D. Nesic, and A. A. Martinez, “Event-triggered and self-

triggered stabilization of distributed networked control systems,” in IEEE Control

Decision Conference (CDC), 2011.

[114] M. M. Jr. and P. Tabuada, “On event-triggered and self-triggered control over sen-

sor/actuator networks,” in IEEE Control Decision Conference (CDC), 2008.

[115] F. Zhang, K. Szwaykowska, W. Wolf, and V. J. Mooney, “Task scheduling for con-

trol oriented requirements for Cyber-Physical Systems,” in IEEE Real-Time Systems

Symposium (RTSS), 2008.

[116] P. Naghshtabrizi and J. Hespanha, “Analysis of distributed control systems with

shared communication and computation resource,” in ACC, 2009.

[117] R. Alur, A. D’Innocenzo, K. H. Johansson, G. J. Pappas, and G. Weiss, “Composi-

tional modeling and analysis of multi-hop control networks,” IEEE Transactions on

Automatic Control, vol. 56, no. 10, pp. 2345–2357, 2011.

[118] M. Pajic, S. Sundaram, G. J. Pappas, and R. Mangharam, “The wireless control net-

work: A new approach for control over networks,” IEEE Transactions on Automatic

Control, vol. 56, no. 10, pp. 2305–2318, 2011.

[119] X. Wang and M. Lemmon, “Event-triggering in distributed networked control sys-

tems,” IEEE Transactions on Automatic Control, vol. 56, no. 3, pp. 586–601, 2011.

[120] S. Samii, P. Eles, Z. Peng, and A. Cervin, “Design optimization and synthesis of

FlexRay parameters for embedded control applications,” in DELTA, 2011.

[121] A. Masrur, D. Goswami, S. Chakraborty, J.-J. Chen, A. Annaswamy, and A. Banerjee,

“Timing analysis of cyber-physical applications for hybrid communication protocols,”

in DATE, 2012.

[122] D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty, “Time-triggered

implementations of mixed-criticality automotive software,” in DATE, 2012.

126

Bibliography Bibliography

[123] A. Masrur, D. Goswami, R. Schneider, H. Voit, A. Annaswamy, and S. Chakraborty,

“Schedulability analysis of distributed cyber-physical applications on mixed time-

/event-triggered bus architectures with retransmissions,” in DATE, 2012.

[124] D. Goswami, R. Schneider, and S. Chakraborty, “Co-design of Cyber-Physical Sys-

tems via controllers with flexible delay constraints,” in Asia and South Pacific Design

Automation Conference (ASP-DAC), 2011.

[125] R. Schneider, D. Goswami, S. Zafar, M. Lukasiewycz, and S. Chakraborty,

“Constraint-driven synthesis and tool-support for FlexRay-Based automotive control

systems,” in International Conference on Hardware/Software Codesign and System

Synthesis (CODES+ISSS), 2011.

[126] D. Goswami, R. Schneider, and S. Chakraborty, “Re-engineering cyber-physical con-

trol applications for hybrid communication protocols,” in DATE, 2011.

[127] ——, “Relaxing signal delay constraints in distributed embedded controllers,” IEEE

Transactions on Control Systems Technology, vol. 22, no. 6, pp. 2337–2345, 2014.

[128] Z. Sun and S. S. Ge, Stability theory of switched dynamical systems. Springer Science

& Business Media, 2011.

[129] O. Mason and R. Shorten, “On common quadratic lyapunov functions for stable

discrete-time lti systems,” IMA Journal of Applied Mathematics, vol. 69, no. 3, pp.

271–283, 2004.

127

List of Figures

1.1 This figure shows a schematic example of an automotive E/E architecture in
terms of communication bus systems. This figure is adapted from [7]. . . . 5

1.2 This figure shows the reference architecture from AUTOSAR. This architec-
ture consists of three software layers, namely the basic software layer, the
runtime environment and the application software layer. The interfaces be-
tween the software components are standardized. This figure is reproduced
from [36]. 10

1.3 This figure shows the evolution of the E/E architecture of the Mercedes-
Benz E-class in terms of number of ECUs, buses and signals. The data are
provided in [3, 26]. 12

1.4 This figure shows the general flow of schedule synthesis approaches. 22

1.5 This figure shows a schematic example of the automotive CPS. The soft-
ware implementation of the control system is partitioned and mapped on
the distributed architecture. 25

2.1 An example of time-triggered traffic in switched Ethernet network. 35

2.2 This figure shows a simplified schematic for the frame forwarding and the
delay for a priority-based switched Ethernet network. PU and SW refer
respectively to processing unit and switch. 36

2.3 Difference between (a) a synchronous task and network schedule and (b) an
asynchronous task and network schedule. 37

2.4 An example of a distributed system of applications a1 to a3, application
tasks τ1 to τ5 and communication tasks c1 and c2. This figure shows the task
mapping and task chains of applications. 39

2.5 This figure shows the path tree and schedules of the communication task c1
of the example in Figure 2.4. 39

2.6 This figure shows the task chain and schedules of application a1 in the ex-
ample in Figure 2.4. 40

2.7 Response time and end-to-end latency. 44

2.8 This figure shows the possible values of σ and the corresponding scenario.
Here we abstract the task execution and the frame transmission to just a
process xi and xj . 48

129

Bibliography

2.9 Network topologies explored (from left to right): (a) Star, (b) Twin-star, (c)
Tree, (d) Ring. 49

2.10 This figure shows the results for the single-objective optimization in the tree
topology. Detailed data are documented in Table 2.4. 53

2.11 This figure shows the results for the multi-objective optimization in the tree
topology considering obj1, obj2 and obj3. Detailed data are documented in
Table 2.4. 53

2.12 This figure shows the results for the multi-objective optimization in the tree
topology considering obj1, obj4 and obj5. Detailed data are documented in
Table 2.4. 53

2.13 Results for obj1 and obj4 in a multi-objective optimization with different
weight ratio w4/w1. 54

2.14 Number of applications vs. runtime. 55

3.1 Software architecture of the proposed framework. 59

3.2 An example of Ethernet-based time-triggered system. 62

3.3 The flow diagram for the synthesis module. The left hand side shows the flow
diagram for the synthesis module. The right hand side shows the processes
and the input and output. 70

3.4 This figure shows the comparison between the four stages. From stage 1 to
stage 4, the synthesis time, the disturbance and the chance of accommodating
new applications all grow. For the first two, this increase has negative effects
and for the third one, the increase has positive effects. 70

3.5 Management flow on the client side. 72

3.6 Management flow on the server side. 73

3.7 Schedule synthesis time of the proposed framework for a sample request
series, compared to only using the cloud-based result or the result on the
client in the case of 0 seconds additional overhead provision. 74

3.8 Schedule synthesis time of the proposed framework for a sample request
series, compared to only using the cloud-based result or the result on the
client in the case of 1.5 seconds additional overhead provision. 74

3.9 Schedule synthesis time of the proposed framework for a sample request
series, compared to only using the cloud-based result or the result on the
client in the case of 3 seconds additional overhead. 75

3.10 Scheduling stages used for a sample request series. 75

3.11 Comparison of the synthesis time between the proposed framework and only
using the server result or only using the client result in the case of 1.5 seconds
additional overhead. 78

4.1 FlexRay communication: (a) The structure of communication cycles, static
segment and dynamic segment. (b) An example of different messages mapped
on both the static and dynamic segment. 87

4.2 A distributed control application. 87

4.3 The sensor-to-actuator delay in both the case of TT communication and ET
communication. 88

130

Bibliography List of Figures

4.4 Response of C1 for the four schemes. 93

4.5 Response of C2 for the four schemes. 93

4.6 The proposed switching scheme. 99

4.7 States of a controller. 101

4.8 Middleware-based slot sharing. 105

4.9 Comparison between the control performance of both TT and ET case using
separate and joint design. 106

4.10 Comparison between switching sequences for DCP. Lines: ET samples before
switching to TT. X-axis: TT samples before switching back to ET. Markers:
entries stored in table. 107

4.11 Output trajectories of the four control applications sharing one TT slot in
the case of simultaneous disturbance. The markers show the TT samples. . 108

4.12 Output trajectories of the four control applications sharing two TT slots in
the case of simultaneous disturbance. The markers show the TT samples. . 108

4.13 The average control performance of C1 to C4 with 300 randomly generated
disturbance sequences. The blue solid line shows the performance of the pure
TT case and the red dashed line the pure ET case. 109

131

List of Tables

2.1 Configuration of application tasks. 49

2.2 Configuration of the applications. 50

2.3 Frame length of communication tasks. 50

2.4 Results for the star and tree topology according to different optimization
objectives. 51

2.5 Results for the twinstar and ring topology according to different optimization
objectives. 52

3.1 Percentage share of the scheduling stages and whether the client or server
result is taken for all the steps in the 20 request series. 77

4.1 Comparison of control performance and resource utilization in the motiva-
tional example. 94

4.2 Comparison of the control performance and the resource utilization for schemes
(i) - (iv). 109

133

List of Acronyms

ABS Anti-lock Braking System.

ACC Adaptive Cruise Control.

ADAS Advanced Driver Assistance System.

AFDX Avionics Full Duplex Switched Ethernet.

AUTOSAR Automotive Open System Architecture.

AVB Audio Video Bridging.

BE Best-Effort.

CAN Controller Area Network.

CAN FD CAN with Flexible Date-Rate.

COTS Commercial-Off-The-Shelf.

CPS Cyber-Physical System.

CQLF Common Quadratic Lyapunov Function.

CSMA/CD Carrier Sense Multiple Access/Collision De-

tection.

CSMA/CR Carrier Sense Multiple Access/Collision Res-

olution.

DDS Data Distribution Service.

E/E Electrical/Electronic.

ECU Electronic Control Unit.

ESP Electronic Stability Program.

ET Event-Triggered.

FTDMA Flexible Time Division Multiple Access.

135

Bibliography

GPS Global Positioning System.

HMI Human Machine Interface.

HTTP Hypertext Transfer Protocol.

I/O Input/Output.

IP Internet Protocol.

IRT Isochronous Real-Time.

ITS Intelligent Transportation System.

LDW Lane Departure Warning.

LIDAR Light Detection and Ranging.

LIN Local Interconnect Network.

LMI Linear Matrix Inequity.

LTI Linear Time-Invariant.

MAC Media Access Control.

MILP Mixed Integer Linear Program.

MIP Mixed Integer Program.

MOST Media Oriented Systems Transport.

NCS Networked Control System.

NRT Non-Real-Time.

OEM Original Equipment Manufacturer.

OS Operating System.

OSEK Offene Systeme und deren Schnittstellen fur

die Elektronik in Kraftfahrzeugen.

PDU Protocol Data Unit.

PHY Physical.

PnP Plug-and-Play.

PSO Particle Swarm Optimization.

RC Rate-Constrained.

RT Real-Time.

RTE Runtime Environment.

SIL Safety Integration Level.

SMT Satisfiability Modulo Theories.

SOA Service Oriented Architecture.

SOC Service Oriented Communications.

136

Bibliography List of Acronyms

SOME/IP Scalable service-oriented Middleware over IP.

SSL/TLS Secure Sockets Layer/Transport Layer Secu-

rity.

TCP Transmission Control Protocol.

TCS Traction Control System.

TDMA Time Division Multiple Access.

TSN Time-Sensitive Networking.

TT Time-Triggered.

TTCAN Time Triggered CAN.

TTP Time-Triggered Protocol.

UDP User Datagram Protocol.

VDX Vehicle Distribution eXecutive.

VFB Virtual Functional Bus.

WCET Worst-Case Execution Time.

137

	Abstract
	Kurzfassung
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 Automotive E/E Architecture
	1.2.2 In-Vehicle Communication and Bus Systems
	1.2.3 Software Architecture

	1.3 Trends, Requirements and Challenges
	1.3.1 Current and Future Trends
	1.3.2 Design Requirements and Challenges

	1.4 Scheduling and Schedule Synthesis
	1.5 Design of CPS
	1.6 Thesis Contributions
	1.7 Organization and Publications
	1.7.1 Organization
	1.7.2 Publications

	2 Schedule Co-Synthesis for Ethernet-based Time-Triggered Systems
	2.1 Introduction
	2.2 Related Work
	2.3 Problem Formulation
	2.4 Approach
	2.4.1 Constraints
	2.4.2 Constraint Formulation as MIP
	2.4.3 Objectives
	2.4.4 Objective Formulation as MIP
	2.4.5 Generalized Constraints and Objectives

	2.5 Experimental Results
	2.5.1 Case Study
	2.5.2 Results and Discussions
	2.5.3 Scalability Analysis

	2.6 Concluding Remarks

	3 Schedule Management for Cloud-based Automotive Software Systems
	3.1 Introduction
	3.2 Related Works
	3.3 Problem Formulation
	3.3.1 Architectural Setting
	3.3.2 Schedule Management Problem

	3.4 Approach
	3.4.1 Request and Configuration
	3.4.2 Client-Server Architecture
	3.4.3 Configuration Pool
	3.4.4 Web Module
	3.4.5 Synthesis Module
	3.4.6 Request-based Schedule Management Flow

	3.5 Experimental Results
	3.6 Concluding Remarks

	4 Designing Resource-aware CPS over Hybrid Communication Networks
	4.1 Introduction
	4.2 Related Works
	4.3 Problem Formulation
	4.3.1 FlexRay-based ECU Network
	4.3.2 Distributed Feedback Control Systems
	4.3.3 Motivational Example and Problem Formulation
	4.3.4 Problem Formulation

	4.4 Control Design
	4.4.1 Switching Stability
	4.4.2 Controller Design

	4.5 Resource-Aware Switching Scheme
	4.5.1 The Proposed Switching Scheme
	4.5.2 Offline Evaluation of Switching Sequences
	4.5.3 Online Switching based on Performance Prediction
	4.5.4 Middleware-based Slot Sharing

	4.6 Experimental Results
	4.6.1 Case Study
	4.6.2 Results and Discussions

	4.7 Concluding Remarks

	5 Concluding Remarks
	5.1 Summary
	5.2 Future Works
	5.3 Outlook

	Bibliography
	List of Figures
	List of Tables

