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Abstract Global forward modelling of the Earth’s gravitational potential, a classical problem in geophysics8

and geodesy, is relevant for a range of applications such as gravity interpretation, isostatic hypothesis testing9

or combined gravity field modeling with high and ultra-high resolution. This study presents spectral forward10

modelling with volumetric mass layers to degree 2190 for the first time based on two different levels of11

approximation. In spherical approximation, the mass layers are referred to a sphere, yielding the spherical12

topographic potential (STP). In ellipsoidal approximation where an ellipsoid of revolution provides the refer-13

ence, the ellipsoidal topographic potential (ETP) is obtained. For both types of approximation we derive a14

mass-layer concept and study it with layered data from the Earth2014 topography model at 5 arc-min resolu-15

tion. We show that the layer concept can be applied either with actual layer density or density contrasts w.r.t.16

a reference density, without discernible differences in the computed gravity functionals. To avoid aliasing and17
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truncation errors, we carefully account for increased sampling requirements due to the exponentiation of the18

boundary functions and consider all numerically relevant terms of the involved binominal series expansions.19

The main outcome of our work is a set of new spectral models of the Earth’s topographic potential relying on20

mass layer modelling in spherical and in ellipsoidal approximation. We compare both levels of approximations21

geometrically, spectrally and numerically and quantify the benefits over the frequently used rock-equivalent22

topography (RET) method. We show that by using the ETP it is possible to avoid any displacement of23

masses and quantify also the benefit of mapping-free modelling. The layer-based forward modelling is corrob-24

orated by GOCE satellite gradiometry, by in-situ gravity observations from recently released Antarctic gravity25

anomaly grids and degree correlations with spectral models of the Earth’s observed geopotential. As the main26

conclusion of this work, the mass layer approach allows more accurate modelling of the topographic potential27

because it avoids 10-20 mGal approximation errors associated with RET techniques. The spherical approxi-28

mation is suited for a range of geophysical applications, while the ellipsoidal approximation is preferable for29

applications requiring high accuracy or high resolution.30

Keywords gravity forward modelling · ellipsoidal topographic potential · harmonic combination method ·31

spherical harmonics · spherical approximation · ellipsoidal approximation · layer concept · Earth201432

1 Introduction33

1.1 Motivation and related work34

Global modelling of the Earth’s gravitational potential from its underlying mass-distribution in spherical har-35

monics is a classical problem in geophysics and geodesy (e.g. Balmino et al (1973); Rapp (1982); Rummel et al36

(1988); Wieczorek (2007, 2015)). The solution to this problem can be used for testing of topographic/isostatic37

hypothesis (Rummel et al, 1988; Göttl and Rummel, 2009; Hirt et al, 2012; Grombein et al, 2014), modelling38

of Bouguer gravity (Balmino et al, 2012; Wieczorek, 2015; Rexer et al, 2015), smoothing or reduction of39

the Earth’s gravity field and its observations (as e.g. needed for Stokes’ geodetic boundary value problem or40

improved interpolation/prediction with remove-compute-restore techniques (Grombein et al, 2014)), com-41

putation of fill-in gravity for combined gravity field models (Pavlis et al, 2007, 2012; Fecher et al, 2013),42

omission error modelling (Hirt et al, 2011; Rexer and Hirt, 2015a) and the evaluation of digital elevation43

models (Rexer et al, 2015).44

For some of the listed applications, a forward model that is as close as possible to the actual gravity field is45

desirable. Aiming at such a ’perfect’ synthetic gravitational model, an accurate mass model of the Earth is re-46

quired. Mass models deliver information about the physical geometry of Earth along with density information47

about its interior. A perfect mass model would be able to describe the masses in terms of infinitesimal small48

bodies (such as rectangular prisms or tesseroids) at all 3-D positions of Earth. Together with an adequate49

implementation of Newton’s law of gravitation, which means numerical integration over all masses (see e.g.50
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Kuhn and Seitz (2005); Grombein et al (2014)), this mass model would allow to accurately determine the51

gravitational potential of Earth. However, such a mass model in reality is not practicable as the computational52

requirements are very challenging, and more prohibitively, because the required density and geometric infor-53

mation is neither available globally nor in 3-D with adequate resolution. Today, globally-consistent physical54

surface information (usually provided in terms of digital elevation models) at best is given with a resolution55

of ∼ 12 m (TanDEM-X satellite mission: Bartusch et al (2008)) and a vertical accuracy of ∼ 4 m (Rexer56

and Hirt, 2016). At short scales (∼ 10 km or less) it is mainly the masses of the crust – the upper part of57

the lithosphere – and hydrosphere that cause substantial anomalous gravitational signals. The anomalous58

potential that originates from the Earth’s interior (upper mantle or below) has long-wavelength character.59

Satellite-borne and terrestrial observation techniques result in complete (global) high-resolution models of the60

topographic elevation, and to some extent also of the bathymetric depth, water bodies and ice-sheets (Hirt61

and Rexer, 2015), making forward modelling of short-scale (=crustal) gravity signals possible to ultra-high62

resolution, e.g. up to ∼ 2 km scale (Balmino et al, 2012) and up to ∼ 200 m scale (Hirt et al, 2013).63

In contrast, available density information for the lithosphere (crust and upper mantle, down to about 3064

km depth) is limited to a lateral resolution of about 110 km (CRUST1.0 (Laske et al, 2012) and LITHO1.065

(Pasyanos et al, 2014)). Considering the density profile (vertical resolution), which is derived mainly from66

seismic tomography, presently available models only distinguish between 8 to 10 different layers, assuming67

that the density is not varying vertically within each layer. This short review of mass models already suggests,68

that it is convenient and practicable to model Earth’s masses in terms of layers since layers are a natural way69

to describe the structure of the physical Earth.70

Forward modelling can either be conducted by Newtonian integration over Earth’s masses in the space do-71

main, e.g. by using rigorous analytical integration formulas for rectangular prisms (Nagy et al, 2000, 2002)72

or tesseroids (Grombein et al, 2013; Heck and Seitz, 2007), or in the spectral domain, by using relations73

among surface spherical harmonic coefficients of the geometric boundary surfaces. Historically (Lee and74

Kaula, 1967; Balmino et al, 1973; Rummel et al, 1988) and recently (Wieczorek, 2007, 2015; Forsberg and75

Jensen, 2015; Hirt et al, 2015) forward modelling approaches were often used in combination with “single-76

density“mass-models, also known as rock-equivalent-topography (RET) models. RET modelling involves a77

compression of all masses to a layer of constant (rock) density, resulting in approximation errors in the order78

of several dozens of mGal, see, e.g. Grombein et al (2016) and Kuhn and Hirt (2016). Therefore, it is very79

useful to have forward modelling approaches that are adapted to rigorous modelling of mass layers. These are80

available for spatial domain modelling in spherical (Kuhn and Seitz, 2005) and ellipsoidal (Grombein et al,81

2014) approximation. In spherical approximation, the topographic masses are forward-modelled relative to a82

mass-sphere. Correspondingly, in ellipsoidal approximation, a mass-ellipsoid as a much closer approximation83

of the real Earth is used to provide the reference for the forward modelling. For spectral domain modelling a84

layer-based approach only was formulated in spherical approximation (Pavlis and Rapp, 1990; Tenzer et al,85
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2010, 2015; Root et al, 2016). The spectral approach has mainly been used to create low resolution models,86

e.g. in87

– Pavlis and Rapp (1990): to d/o 360, distinguishing between 6 different terrain types corresponding to88

the explicit modelling of 4 layers – topography, ocean, ice-sheets/glaciers, lake water – as represented by89

the OSUJAN89 topographic data base90

– Tenzer et al (2010): to d/o 90, only ice-layer based on the CRUST2.0 model and the surface heights in91

GTOPO30 (U.S. Geological Survey, released 1996)92

– Tenzer et al (2015): to d/o 180 based on the CRUST1.0 model as contained in the 9 layers – topography,93

ocean, polar ice sheets, sediments (3 layers) and consolidated crust (3 layers) – of Earth’s spectral crustal94

model (ESCM180: Chen and Tenzer (2014))95

– Tenzer et al (2016): to d/o 360 based on 4 layers – topography, ocean, inland lakes/seas and ice-sheets–96

of the Earth2014 model (Hirt and Rexer, 2015)97

– Root et al (2016): to d/o 1800 based on 2 layers – topography and ocean – of GTOPO3098

and also for ultra high-resolution modelling (Balmino et al (2012): d/o 10800 based on four layers – topog-99

raphy, ocean, inland lakes/seas, ice-sheets– of the ETOPO1 model (Amante and Eakins, 2009)). Note, that100

in the work of Balmino et al (2012), Tenzer et al (2010) and Root et al (2016) the integration is facilitated101

using a binominal series. In these cited works the series expansion is evaluated only up to the third order102

term resulting in (unknown) truncation errors (see Sec. 2.3), while Pavlis and Rapp (1990) present a rigorous103

integration which is more accurate but computationally more demanding, especially for high resolutions.104

Recently, Claessens and Hirt (2013) have developed a spherical harmonic technique to model the Earth’s105

gravitational potential in ellipsoidal approximation, i.e. with respect to a reference ellipsoid. In contrast to the106

spherical concepts of Rummel et al (1988); Pavlis and Rapp (1990); Balmino et al (2012); Wieczorek (2015);107

Tenzer et al (2015) – where the topograpdhic masses are considered relative to a reference sphere – the Har-108

monic Combination Method (HCM) (Claessens and Hirt, 2013) models the topographic masses considered rel-109

ative to a reference ellipsoid. Thus, the HCM provides the gravity spectrum to the same level of approximation110

(w.r.t. the same reference) as most spherical harmonic gravity field models based on observations available111

at IAG’s International Center for Global Earth Models (ICGEM: http://icgem.gfz-potsdam.de/ICGEM/).112

This, as will be shown, is a major advantage especially when it comes to combining and comparing the113

forward models with satellite data or other terrestrial data.114

We may thus define – because of the underlying ellipsoidal approximation – Claessens and Hirt (2013) to115

provide a solution to the ellipsoidal topographic potential (ETP) while the methods based on a spherical116

approximation of the Earth’s masses provide a solution to the spherical topographic potential (STP).117

Tenzer et al (2015) and Root et al (2016) provide the framework for layer-based modelling of the STP. For118

the ETP such a framework is still missing. The HCM as formulated in Claessens and Hirt (2013) is designed119



Layer-based modelling of the Earth’s gravitational potential 5

for a single-density mass model but it can be reformulated to adopt layer-based mass models, as will be120

shown in this contribution.121

1.2 This work: contributions to spectral forward modelling122

In this contribution we formulate a new spherical harmonic approach to compute the ETP from arbitrary123

volumetric layers having laterally varying density. The approach is based on the Harmonic Combination124

Method (Claessens and Hirt, 2013) and allows the layers to be referenced to the surface of some reference125

ellipsoid. The new approach is then validated by modelling the Earth’s gravitational potential as implied by126

the masses of layers of the solid crust, ocean water, lake water and ice-sheets up to spherical harmonic degree127

2190 (∼ 10 km).128

First, we recapitulate known expressions for layer-based spherical harmonic modelling of the STP (with layers129

referenced to the sphere) (Sec. 2.1). In the next step we make the transition from the spherical to the130

ellipsoidal case and formulate new expressions for layer-based spherical harmonic modelling of the ETP (with131

layers referenced to the ellipsoid) (Sec. 2.2). Then a layer-concept based on the layers of the Earth2014 (Hirt132

and Rexer, 2015) data set (Sec. 3) and two ways of applying it within the previously introduced forward133

modelling approaches are defined (Sec. 3.1 and 3.2). The gravitational spectra and signals of the layer-based134

ETP are computed with 10 km spatial resolution (Sec. 4.1) and validated using GOCE satellite gradiometry135

(Sec. 4.2), other gravity field models (Sec. 4.3) and terrestrial observations (Sec. 4.4). Finally, differences136

between the ETP and the STP are elaborated in detail (Sec. 4.5) and conclusions are drawn (Sec. 5).137

2 Spectral forward modelling of the gravitational potential based on volumetric layers of laterally138

varying density139

Let V (P ) be the gravitational potential at a point P exterior to the Earth’s body B. Following Newton’s140

law of gravitation and neglecting the presence of atmospheric masses, it may be written as the integral over141

the Earth’s mass distribution (see e.g. Heiskanen and Moritz (1967); Sanso and Sideris (2013))142

V (P ) = G

∫
B

ρ(Q)
lPQ

dB (1)

where G is the Newtonian gravitational constant, ρ (> 0) is the density value associated with the infinitesimal143

volume element dB = r2
B sin θdrdθdλ at Q with Q ∈ B and lPQ being the Euclidean distance between P144

and the respective mass-element at Q. In order to get Eq. 1 in a spherical coordinate system (P and Q145

are then defined by the coordinate triplet: geocentric distance r, longitude λ, co-latitude θ) the reciprocal146

distance 1/lPQ has to be replaced by its spherical harmonic expansion. Rummel et al (1988) shows that Eq.147
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1 can then be represented as spherical harmonic series of the form148

V (P ) = GM

R

∞∑
n=0

n∑
m=−m

(
R

rp

)n+1{ 1
M(2n+ 1)

∫
B

(rQ
R

)n
ρ(Q) Y nm(θQ, λQ) dB

}
Y nm(θP , λP ) (2)

with the mass of Earth M , its mean radius R, the geocentric radii of the computation point rP and the source149

point rQ, the spherical harmonic degree n and order m. Y nm denote the well-known set of fully-normalised150

Laplace’s surface spherical harmonic functions151

Y nm(θ, λ) = Pnm (cos θ)

 cos(mλ) for m ≤ 0

sin(mλ) for m > 0
(3)

with Pnm being the fully-normalised (4π-normalised) associated Legendre functions of the first kind. The152

term in curly brackets in Eq. 2 now contains the integration over the Earth’s mass distribution and can153

alternatively be represented as a set of dimensionless fully-normalised coefficients154

V nm = 3
ρR3(2n+ 1)

1
4π

∫
B

(rQ
R

)n
ρ(θQ, λQ) Y nm(θQ, λQ) dB, (4)

that can be subdivided into their cosine- and sine-assigned equivalents, Cnm and Snm, according to Eq. 3,155

where M is replaced by 4/3πρR3 and with ρ being the mean density of Earth. Then Eq. 2 can be re-written156

conveniently as157

V (P ) = GM

R

∞∑
n

n∑
m=−m

(
R

rp

)n+1

V nmY nm(θP , λP ). (5)

Now, let’s consider an Earth that is subdivided into a set of volumetric mass layers Ωω (ω = [1, 2, ..., ωmax])158

fulfilling the following requirements:159

(i) ρ varying only in the lateral direction in each layer (ρ(Ωω) is radially invariant: ρ(Ωω)(θ, λ)),160

(ii) each layer having a defined upper bound (UB) and lower bound (LB) (r(Ωω)
LB ≤ r

(Ωω)
UB ),161

(iii) the layer’s boundaries being entirely inside Earth’s body (r(Ωω)
UB ≤ rB)162

(iv) the layers being uniquely separated by their boundaries (Ωω ∩Ωω+1 ≡ 0),163

(v) and the set of layers (including the remaining volumetric body inside the lower most layer boundary)164

forms a complete subset of Earth’s body (
∑

ω Ωω ≡ B).165
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Then the gravitational potential V (P ) in Eq. 5 may be written as a sum of the gravitational potential166

of each layer V (P )(Ωω)167

V (P ) =
∑
ω

V (P )(Ωω) = GM

R

∞∑
n

n∑
m=−m

(
R

rp

)n+1

V
(Ω1)
nm Y nm(θP , λP ) +

+GM

R

∞∑
n

n∑
m=−m

(
R

rp

)n+1

V
(Ω2)
nm Y nm(θP , λP ) +

+ ... +

+GM

R

∞∑
n

n∑
m=−m

(
R

rp

)n+1

V
(Ωmax)
nm Y nm(θP , λP ) =

= GM

R

∞∑
n

n∑
m=−m

(
R

rp

)n+1∑
ω

V
(Ωω)
nm Y nm(θP , λP ).

(6)

Thus, the fully-normalised coefficients in Eqs. 4 and 9 are the sum of the respective coefficients of all layers168

V nm =
∑
ω

V
(Ωω)
nm (7)

The fully-normalised potential coefficients of a layer V (Ωω)
nm are given by the global radial integration of the169

layer’s masses170

V
(Ωω)
nm = 3

ρR3(2n+ 1)
1

4π

∫
Ωω

(rQ
R

)n
ρ(Ωω)(θQ, λQ) Y nm(θQ, λQ) dΩω =

= 3
ρR3(2n+ 1)

1
4π

∫ 2π

λ=0

∫ π

θ=0

∫ r
(Ωω)
UB

r
(Ωω)
LB

(rQ
R

)n
ρ(Ωω)(θQ, λQ) Y nm(θQ, λQ) r2

Q sin θdrdθdλ
(8)

where ρ(Ωω) denotes the layers density distribution. With moving the reference radius outside the integrals171

we then write (see Rummel et al (1988))172

V
(Ωω)
nm = 3

ρR(2n+ 1)
1

4π

∫ 2π

λ=0

∫ π

θ=0
Ω(ω) Y nm(θQ, λQ) sin θdθdλ (9)

where Ω(ω) denotes the radial integration of the layer’s masses173

Ω(ω) =
∫ r

(Ωω)
UB

r
(Ωω)
LB

(rQ
R

)n+2
ρ(Ωω)(θQ, λQ) dr. (10)

Since ρ(Ωω) is assumed to be a function of λ and θ only (and thus constant in radial direction within each174

layer), the solution of the integral in Eq. 10 yields175

Ω(ω) = ρ(Ωω)(θQ, λQ) R

n+ 3

(r(Ωω)
UB

R

)n+3

−

(
r

(Ωω)
LB

R

)n+3
 . (11)
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Then consider, that the integral in Eq. 10 can also be defined with respect to the ellipsoidal radius by two176

separate integrals, e.g. by177

Ω(ω) =
∫ re

r=r(Ωω)
LB

(rQ
R

)n+2
ρ(Ωω)(θQ, λQ) dr +

∫ r
(Ωω)
UB

r=re

(rQ
R

)n+2
ρ(Ωω)(θQ, λQ) dr. (12)

The above (split) integral solution holds for all possible vertical arrangements of layer boundaries (where all,178

none or only a part of the masses of a layer are located within the reference ellipsoid), as shown in Claessens179

and Hirt (2013) for single-layer modelling. Then, with ρ(Ωω) being radially invariant, the solution to the180

integral in Eq. 12 becomes181

Ω(ω) = ρ(Ωω)(θQ, λQ) R

n+ 3

(r(Ωω)
UB

R

)n+3

−
(re
R

)n+3
 −

(r(Ωω)
LB

R

)n+3

−
(re
R

)n+3
 , (13)

which essentially is the same as Eq. 11, since
(
re
R

)n+3 cancels out in Eq. 13. Starting from this solution to182

the radial integral of the masses within a layer Ωω – which will turn out to be of mathematically convenient183

form – we will derive the potential V (P )(Ωω) of a volumetric layer in spherical approximation in section 2.1184

and in ellipsoidal approximation in section 2.2.185

2.1 Layer-based modelling with respect to a reference sphere186

The potential based on volumetric layers of laterally variable density as given by Eq. 6 modelled with respect187

to a reference sphere means – in simple words – a spherical approximation of Earth’s masses and yields the188

spherical topographic potential V STP . A solution to the layer-based STP was given already by Pavlis and189

Rapp (1990), Tenzer et al (2015) and other works (see Sect. 1) and is recapitulated in own notation here.190

The first spherical approximation that is introduced is setting191

re = R (14)

in Eq. 13, which yields the spherical approximated mass of the layer192

Ω(STP,ω) = ρ(Ωω)(θQ, λQ) R

n+ 3

(r(Ωω)
UB

R

)n+3

− 1

 −
(r(Ωω)

LB

R

)n+3

− 1

 . (15)

The second spherical approximation is made by describing the layer’s boundaries with respect to the reference193

sphere as194

r
(Ωω)
UB = R+H

(Ωω)
UB

r
(Ωω)
LB = R+H

(Ωω)
LB

(16)
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where H(Ωω)
UB and H(Ωω)

LB denote the orthometric height of the upper and the lower boundary of Ωω, respec-195

tively. We may then introduce the well known binominal expansion for both terms in square brackets in Eq.196

15 (see Rummel et al (1988))197

(
r

(Ωω)
UB

R

)n+3

− 1 =
n+3∑
k=1

n+ 3

k

(H
(Ωω)
UB

R

)k
=
n+3∑
k=1

1
k!

k∏
i=1

(n+ 4− i)
(
H

(Ωω)
UB

R

)k
(
r

(Ωω)
LB

R

)n+3

− 1 =
n+3∑
k=1

n+ 3

k

(H
(Ωω)
LB

R

)k
=
n+3∑
k=1

1
k!

k∏
i=1

(n+ 4− i)
(
H

(Ωω)
LB

R

)k (17)

and yield198

Ω(STP,ω) = ρ(Ωω)(θQ, λQ) R

n+ 3

n+3∑
k=1

n+ 3

k

(H(Ωω)
UB

R

)k
−

n+3∑
k=1

n+ 3

k

(H(Ωω)
LB

R

)k =

= ρ(Ωω)(θQ, λQ) R

n+ 3

n+3∑
k=1

n+ 3

k

(H(Ωω)
UB

R

)k
−

(
H

(Ωω)
LB

R

)k .

(18)

Inserting Eq. 18 into Eq. 9 gives, after moving the double integral into the binominal series, the solution to199

the layer’s spherical topographic potential200

V
(STP,Ωω)
nm = 3

ρ(2n+ 1)(n+ 3)

n+3∑
k=1

n+ 3

k

 ×
× 1

4π

∫ 2π

λ=0

∫ π

θ=0
ρ(Ωω)(θQ, λQ)

(H(Ωω)
UB

R

)k
−

(
H

(Ωω)
LB

R

)kY nm(θQ, λQ) sin θdθdλ

(19)

where the height function (HF) to the power k within the double integral, scaled by the density ρ(Ωω)(θQ, λQ)201

in each cell, can be expressed as a series of (fully-normalised) surface spherical harmonic coefficients of the202

layer’s height-density function (HDF)203

HDF
(STP,Ωω)
knm = 1

4π

∫ 2π

λ=0

∫ π

θ=0
ρ(Ωω)(θQ, λQ)

(H(Ωω)
UB

R

)k
−

(
H

(Ωω)
LB

R

)kY nm(θQ, λQ) sin θdθdλ.

(20)

Then we arrive at a concise expression of the layer’s spherical topographic potential204

V
(STP,Ωω)
nm = 3

ρ(2n+ 1)(n+ 3)

n+3∑
k=1

n+ 3

k

HDF
(STP,Ωω)
knm . (21)

Note that the radial integration (Eq. 10) can also be done rigorously (without using binominal series ex-205

pansions), as shown e.g. by Pavlis and Rapp (1990). However, the rigorous integration is much less efficient206

compared to an integration based on binominal series expansions (Rummel et al, 1988). Therefore, especially207
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for large nmax, the rigorous approach may become excessively computationally demanding. The rigorous208

expressions in our notation are found in appendix A.209

2.2 Layer-based modelling with respect to a reference ellipsoid210

Next, the potential based on volumetric layers of laterally variable density as given by Eq. 6 is modelled with211

respect to a reference ellipsoid. This procedure yields the ellipsoidal topographic potential V ETP . In contrast212

to the spherical variant described in Section 2.1 this modelling technique defines the layered masses with213

respect to a reference ellipsoid. The Earth is thus not approximated by a sphere and the true physical shape214

of Earth can be preserved.215

The solution to the layer-based ETP discussed next is based on the HC-method derived in Claessens and216

Hirt (2013), who applied the HC-method only to compute the ETP from a single-density (RET) model.217

The starting point is Eq. 13 that is a solution to the radial integral of a layer’s masses (Eq. 10) with respect218

to an ellipsoid, which can also be written as follows:219

Ω(ETP,ω) = ρ(Ωω)(θQ, λQ) R

n+ 3

(re
R

)n+3
(r(Ωω)

UB

re

)n+3

− 1

 −
(r(Ωω)

LB

re

)n+3

− 1

 . (22)

The layer’s boundaries in the ellipsoidal case may be described by their pseudo-ellipsoidal heights h′(Ωω)
UB and220

h′
(Ωω)
LB following221

r
(Ωω)
UB = r′e + h′

(Ωω)
UB

r
(Ωω)
LB = r′e + h′

(Ωω)
LB

(23)

measured along the direction towards the origin of the ellipsoid, akin to the geocentric coordinates needed for222

spherical harmonics (denoted approximate ellipsoidal height in Claessens and Hirt (2013)). In approximation223

the layer’s boundaries may be described by d(Ωω)
UB and d

(Ωω)
LB denoting the ellipsoidal height h taken in the224

direction towards the geocenter and thus yields225

r
(Ωω)
UB = re + d

(Ωω)
UB

r
(Ωω)
LB = re + d

(Ωω)
LB .

(24)

The error of this ellipsoidal approximation, when d
(Ωω)
UB and d

(Ωω)
LB are used instead h′

(Ωω)
UB and h′

(Ωω)
LB , is226

investigated in Sec. 4.5.227

Both square brackets terms in Eq. 22 can – equivalent to the spherical case (Eq. 17) – be expressed by the228
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binominal series expansions229

(
r

(Ωω)
UB

re

)n+3

− 1 =
n+3∑
k=1

n+ 3

k

( d
(Ωω)
UB

re

)k
=
n+3∑
k=1

1
k!

k∏
i=1

(n+ 4− i)
(
d

(Ωω)
UB

re

)k
(
r

(Ωω)
LB

re

)n+3

− 1 =
n+3∑
k=1

n+ 3

k

( d
(Ωω)
LB

re

)k
=
n+3∑
k=1

1
k!

k∏
i=1

(n+ 4− i)
(
d

(Ωω)
LB

re

)k
.

(25)

Inserting Eq. 25 and Eq. 22 into Eq. 9 gives a preliminary solution to the ETP of a layer230

V
(ETP,Ωω)
nm = 3

ρ(2n+ 1)(n+ 3)

n+3∑
k=1

n+ 3

k

 ×
× 1

4π

∫ 2π

λ=0

∫ π

θ=0

(re
R

)n+3
ρ(Ωω)(θQ, λQ)

(d(Ωω)
UB

re

)k
−

(
d

(Ωω)
LB

re

)kY nm(θQ, λQ) sin θdθdλ.

(26)

In order to get a practicable solution for the ETP that is independent of any term with degree n in the231

exponent Claessens and Hirt (2013) have introduced a second (infinite) binominal series for
(
re
R

)n+3 that232

has been derived in Claessens (2006):233

(re
R

)n+3
=
(
b

R

)n+3 (
1− e2 sin2 θ

)(−n+3
2 ) =

(
b

R

)n+3 ∞∑
j=0

(−1)j
−n+3

2

j

 e2j sin2j θ (27)

where b is the semi-minor axis of the ellipsoid and e2 is the squared first numerical eccentricity. With the234

help of fully-normalised sinusoidal Legendre weight functions K2i,2j
nm (see e.g. Appendix A in Claessens and235

Hirt (2013) for more details on the recursion relations) it is evident, that236

sin2j θ Y nm =
j∑

i=−j

K
2i,2j
nm Y n+2i,m. (28)

Inserting Eq. 28 and Eq. 27 in Eq. 26 yields coefficients of the ellipsoidal topographic potential V (ETP,Ωω)
nm237

of the layer Ωω:238

V
(ETP,Ωω)
nm = 3

ρ(2n+ 1)(n+ 3)

(
b

R

)n+3 n+3∑
k=1

n+ 3

k

 ∞∑
j=0

(−1)j
−n+3

2

j

 e2j
j∑

i=−j

K
2i,2j
nm ×

× 1
4π

∫ 2π

λ=0

∫ π

θ=0
ρ(Ωω)(θQ, λQ)

(d(Ωω)
UB

re

)k
−

(
d

(Ωω)
LB

re

)kY n+2i,m(θQ, λQ) sin θdθdλ

(29)

Again, the term within the double integral, scaled by the density ρ(θQ, λQ) in each cell, can be expressed as239

a series of (fully-normalised) surface spherical harmonic coefficients of the layer’s (ellipsoidal) height-density240
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distance to reference surface (H or d)
n ± 9km ± 4.5km ± 1km
10 2 2 2
360 4 4 3
2160 10 7 4
2190 10 7 4
5400 17 11 5
10800 29 17 7

Table 1 Order of truncation kmax of the first binominal series (Eq. 25) at various resolutions (harmonic degree n)
and locations of the layer boundary required to reduce the relative error below the 1%-level, where a = 6378137 m
≥ re ≥ b = 6356752 m.

n Θ = 0◦ Θ = 10◦ Θ = 30◦ Θ = 45◦ Θ = 60◦ Θ = 80◦ Θ = 90◦
10 1 2 3 3 3 3 3
360 1 3 4 5 6 7 7
2160 1 4 8 12 15 18 18
2190 1 4 8 12 15 18 18
5400 1 5 13 21 27 33 34
10800 1 7 21 34 46 56 57

Table 2 Order of truncation jmax of the second binominal series (Eq. 27) at various resolutions (harmonic degree n) and
co-latitude θ required to reduce the relative error below the 1%-level, where b = 6356752 m and R = 6378137 m.

function241

HDF
(ETP,Ωω)
klm = 1

4π

∫ 2π

λ=0

∫ π

θ=0
ρ(Ωω)(θQ, λQ)

(d(Ωω)
UB

re

)k
−

(
d

(Ωω)
LB

re

)kY lm(θQ, λQ) sin θdθdλ

(30)

where l = n+ 2i and we arrive at a compact expression of the layer’s ellipsoidally approximated potential242

V
(ETP,Ωω)
nm = 3

ρ(2n+ 1)(n+ 3)

(
b

R

)n+3 kmax∑
k=1

n+ 3

k

 jmax∑
j=0

(−1)j
−n+3

2

j

 e2j
j∑

i=−j

K
2i,2j
nm HDF

(ETP,Ωω)
klm

(31)

where kmax ≤ n+ 3 and jmax <∞ denote the maximum orders of the binominal series expansions. While243

kmax and jmax are much smaller than the maximum harmonic degree of the model nmax, generally, the244

number of binominal terms that are required to avoid truncation errors for different modelling parameters245

(e.g. spatial resolution) are discussed next. The rigorous expressions for the ETP of mass layers (devoid of246

binominal series expansions) are given in Appendix A.247

2.3 Convergence of binominal series expansions248

As shown above Eq. 31 contains two binominal series expansions, one incrementing by k and one by j. The249

convergence of the first series (Eq. 25), which is also found in the solution of the STP for re = R (Eq. 17),250

has been thoroughly studied e.g. by Sun and Sjöberg (2001) for various resolutions. Commonly, kmax = 7251

is considered sufficient for degree 2160. We have studied the relative amplitudes in Eq. 17 since the series252

additionally depends on re in case of the ETP. However, for a = 6378137 m and b = 6356752 m (where253
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a ≥ re ≥ b) an identical number of terms were found to be required for different re. Our investigations show254

kmax = 10 is needed to achieve convergence at the 1% level (i.e. less than 1% truncation error) at degree255

2160 (Table 1). Note, that Root et al (2016) showed that the convergence may be problematic for deep256

layers (e.g. upper mantle layers), with the boundaries’ lower bound << R. According to Root et al (2016)257

the problem can be overcome by reducing the reference radius R during the forward modelling of the affected258

layer and a subsequent rescaling of the computed coefficients.259

The second series (Eq. 27), a function of degree n and the co-latitude Θ, occurs in the ETP only. Despite260

its infinite summations it was shown to always converge (Claessens, 2006). Looking at the amplitudes of the261

series’s terms in a relative manner, at least jmax = 18 should be used to achieve convergence at the 1%262

level for degree 2160 and θ ∈
[
0; π2

]
(Table 2).263

2.4 Sampling requirements of height-density functions264

Special attention is required for the harmonic analysis of the layer’s height-density functions (e.g. by means265

of quadrature (Rexer and Hirt, 2015b)) that is needed to derive the surface spherical harmonic coefficients266

HDF
(STP,Ωω)
knm or HDF (ETP,Ωω)

klm . Due to the exponentiation of the height function by k, the band-width267

(expressed by the maximum degree N of the original height function) increases proportionally with k, following268

(Hirt and Kuhn, 2014)269

N(k) = kN. (32)

Importantly, Eq. 32 implies that the gridded height functions need to be sampled according to kmax (see270

Sec. 2.3) in order to avoid any aliasing effects. Computing the STP to degree 2160 with kmax = 7 in an271

experiment (not shown here), with the grid sampling limiting the maximum degree to degree 2700, yields272

aliasing errors of up to ∼ 20 mGal and a global root-mean-square (RMS) of 0.17 mGal. In all computations273

in this contribution, the increased sampling requirements are thus fully taken into account. A more detailed274

study of the aliasing effect is outside the scope of this paper.275

3 Layer-concept based on Earth2014276

The mass-layer concept using the STP and ETP framework presented in Sec. 2 can be applied with the four277

(geophysical) volumetric layers278

Ω1: Ice279

Ω2: Lakes280

Ω3: Ocean281

Ω4: Crust (solid rock)282

while different rock-types or sediment layers shall not be considered. It is of course possible to include more283

layers but relevant global data sets at resolutions < 111 km are not available (see section 1.1). Note, that284
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Fig. 1 Simplified scheme of the 4 geophysical layers extracted from the Earth2014 data set

vertical density functions (e.g. given by some polynomial) for the integration of ocean water columns (Tenzer285

et al, 2015) or radially varying mass density distributions in general (Root et al, 2016) were not integrated286

into the layer concept (although possible), as this is not the scope of this paper.287

The layer’s boundaries are generated from the Earth2014 data set (Hirt and Rexer, 2015) that provides a288

suite of self-consistent surface layers and masks which can be used to distinguish between ice, lake, ocean289

and solid Earth surface at 1′ resolution (∼ 2 km). Earth2014 is a freely-available composite model combining290

up-to-date digital elevation data with other gridded surface data products from different sources in terms291

of mean-sea-level heights. As such Earth2014 can be considered an up-to-date, higher resolution and more292

detailed version of the OSUJAN89 (Pavlis and Rapp, 1990), DTM2002 (Saleh and Pavlis, 2002) and ETOPO1293

(Amante and Eakins, 2009) topographic data bases, that in principle provide the same terrain types (see e.g.294

Fig. 1 in Pavlis and Rapp (1990)). We refer to Hirt and Rexer (2015) for a full account on Earth2014 data.295

In Fig. 1 a scheme of the layer-concept is given based on Earth2014 layers: bedrock layer (BED) describing296

the boundary of solid rock (green lines), surface layer (SUR) which is defined as the boundary between297

Atmosphere and Earth (red lines) and the ice-thickness layer (ICE). The difference between SUR and ICE298

describes an Earth free of ice-cover/sheets and is indicated by the orange lines. Here, a total of 10 different299

cases A) - J) are given showing the most common arrangement of layers w.r.t. mean sea level (MSL). Those300

cases and examples for occurrences on Earth are described in Table 3. Note that in both above described301

approaches the layer’s boundaries are subject to approximation since they are defined by the orthometric302

height w.r.t. the respective reference surface in a spherical harmonic frame. Effectively, thus, the geoid303

height is neglected and the reference surface conforms with the MSL line in Fig. 1. The geometry and304

approximation error due to height assumptions is further discussed in section 4.5.305

Two different possibilities exist for the choice of the densities, leading to the following two different approaches306

for layer-based forward modelling307
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Case Type Occurrence
A dry Land – bedrock below MSL e.g. Death Valley
B dry Land – bedrock above MSL most continental areas
C ocean all open oceans
D lake – bedrock and lake surface above MSL e.g. shallow parts of Great Lakes and Lake Baikal
E lake – bedrock below MSL, lake surface above MSL e.g. deep parts of Great Lakes and Lake Baikal
F lake – bedrock and lake surface below MSL e.g. Caspian Sea
G ice shelf – ice above ocean e.g. shorelines of Antarctica and Greenland
H ice/snow covered bedrock above MSL e.g. continental glaciers, Antarctica, Greenland
I ice/snow covered bedrock below MSL e.g. Antarctica
J ice/snow covered lake e.g. Lake Vostok

Table 3 Cases of layer arrangements shown in Fig. 1 and their occurrences on Earth

Layer Name Density Layer Boundary Over Land Over Ocean Over Lakes Over Ice
[ kgm3 ] Type and shelf ice

Ice-layer 917 UB SUR SUR SUR SUR
LB SUR-ICE SUR-ICE SUR-ICE SUR-ICE

Lakes-layer 1000 UB SUR-ICE SUR-ICE SUR-ICE SUR-ICE
LB SUR-ICE SUR-ICE BED SUR-ICE

Ocean-layer 1030 UB SUR-ICE SUR-ICE SUR-ICE SUR-ICE
LB SUR-ICE BED SUR-ICE SUR-ICE

Crust-layer 2670 UB BED BED BED BED
LB REF REF REF REF

Cases (c.f. Fig. 1) A,B C,G D,E,F,J H,I
Table 4 Description of layer boundaries and densities in the LCA approach using Earth2014 data; SUR: Earth2014
surface layer; ICE: Earth2014 Ice-thickness layer; BED: Earth2014 bedrock layer; ICE-SUR: Earth2014 surface removed
for ice-sheets (see yellow lines in Fig. 1); REF: reference surface.

1) LCA: layer correction approach with actual layer densities (c.f. Table 4)308

2) LRA: layer reduction approach with density contrasts (c.f. Table 5)309

which are described in the following.310

3.1 Layer correction approach (LCA)311

In this approach, the gravitational potential generated by each mass-layer is modelled with its actual density.312

Each layer thus makes a (positive) contribution to the final model, i.e. the total topographic potential, that313

can be thought of as a correction in geodetic sense. Then, the total topographic potential is the sum of314

the potential contributions of all layers. In the LCA the layer boundaries and densities for the four layers are315

selected from the Earth2014 data base as listed in Table 4. The LCA can be best understood as bottom-up316

approach as each layer from the reference surface to the surface of Earth are modelled one after another.317

This is different from the approach described next.318

3.2 Layer reduction approach (LRA)319

One can best imagine the LRA approach as top-down approach: the crustal potential is modelled using the320

uppermost boundary layer (the physical surface of Earth) and is then reduced for the effect of mass-density321
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Layer Name Density/ Layer Boundary Over Land Over Ocean Over Lakes Over Ice
-contr. [ kgm3 ] Type and shelf ice

Crust-layer 2670 UB SUR SUR SUR SUR
LB REF REF REF REF

Ice-layer -1753 UB SUR SUR SUR SUR
LB SUR-ICE SUR-ICE SUR-ICE SUR-ICE

Lakes-layer -1670 UB SUR-ICE SUR-ICE SUR-ICE SUR-ICE
LB SUR-ICE SUR-ICE BED SUR-ICE

Ocean-layer -1640 UB SUR-ICE SUR-ICE SUR-ICE SUR-ICE
LB SUR-ICE BED SUR-ICE SUR-ICE

Cases (c.f. Fig. 1) A,B C,G D,E,F,J H,I
Table 5 Description of layer boundaries and densities in the LRA approach using Earth2014 data; SUR: Earth2014
surface layer; ICE: Earth2014 Ice-thickness layer; BED: Earth2014 bedrock layer; ICE-SUR: Earth2014 surface removed
for ice-sheets (see yellow lines in Fig. 1); REF: reference surface.

anomalies expressed by density contrasts (w.r.t. the assumed crustal density) that exist in each layer beneath322

the surface, down to the reference surface. The layer boundaries and density contrasts in the LRA approach323

are listed in Table 5. When using negative density contrasts for the layers, the total topographic potential is324

the sum of the gravitational effects of each layer.325

3.3 LRA versus LCA326

Theoretically, both approaches should yield the same potential and neither of the approaches is preferable in327

terms of computational expense. However, practically small differences may remain between the approaches,328

mainly due to spherical harmonic representation errors as will be shown (see Sect. 4.1). In literature, often329

only the LRA approach based on density contrasts is considered. In Tenzer et al (2015), e.g., so called330

striping corrections to the topographic correction are computed based on density contrasts, so their procedure331

corresponds to the LRA approach.332

The cross-validation of the results of both approaches is a valuable tool for detecting inconsistencies of the333

used mass models. For example, consider334

a) a layer A intersecting with another layer B (Fig. 2, panel a) – then the overlapping space would be335

modelled twice in the LCA approach and in the LRA approach, leading to different potentials: in case of336

LCA the overlapping space would be corrected using both layers’ densities; in case of LRA the overlapping337

space would be reduced for both layers’ density contrasts. In general, the error ε associated with this kind338

of inconsistency depends on ρB if UBB is wrong, and on ρA if LBA is wrong. However, no error will339

occur in case of the LRA if UBB is wrong and layer B happens to be the crustal layer (ρB = ρcrust).340

b) a not modelled (volumetric) empty space between two layers A and B (Fig. 2, panel b) – then this space341

is not accounted for in the LCA approach at all, while the space is implicitly filled and modelled with342

crustal density in the LRA approach. Again, no error will occur in case of the LRA if UBB is wrong and343

layer B happens to be the crustal layer (ρB = ρcrust).344
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Fig. 2 Scheme and associated error of (a) intersecting layers or (b) empty space between layers in the LCA and the LRA
approach.

Acronym Approximation Layer Layer Approach Max. Degree
dV ELL Earth2014 lca ellipsoidal/ETP all LCA 2190
dV ELL Earth2014 lra ellipsoidal/ETP all LRA 2190
dV ELL ICE2014 lca ellipsoidal/ETP Ice-layer LCA 2190
dV ELL ICE2014 lra ellipsoidal/ETP Ice-layer LRA 2190
dV ELL LAKES2014 lca ellipsoidal/ETP Lakes-layer LCA 2190
dV ELL LAKES2014 lra ellipsoidal/ETP Lakes-layer LRA 2190
dV ELL OCEAN2014 lca ellipsoidal/ETP Ocean-layer LCA 2190
dV ELL OCEAN2014 lra ellipsoidal/ETP Ocean-layer LRA 2190
dV ELL CRUST2014 lca ellipsoidal/ETP Crust-layer LCA 2190
dV ELL CRUST2014 lra ellipsoidal/ETP Crust-layer LRA 2190
dV ELL RET2014 ellipsoidal/ETP all RET 2190
dV SPH Earth2014 lca spherical/STP all LCA 2160
dV SPH Earth2014 lra spherical/STP all LRA 2160
dV SPH ICE2014 lca spherical/STP Ice-layer LCA 2160
dV SPH ICE2014 lra spherical/STP Ice-layer LRA 2160
dV SPH LAKES2014 lca spherical/STP Lakes-layer LCA 2160
dV SPH LAKES2014 lra spherical/STP Lakes-layer LRA 2160
dV SPH OCEAN2014 lca spherical/STP Ocean-layer LCA 2160
dV SPH OCEAN2014 lra spherical/STP Ocean-layer LRA 2160
dV SPH CRUST2014 lca spherical/STP Crust-layer LCA 2160
dV SPH CRUST2014 lra spherical/STP Crust-layer LRA 2160
dV SPH RET2014 spherical/STP all RET 2160

Table 6 Acronyms of computed potential models in the numerical study together with used layers, type of approxi-
mation, layer approach and maximum spherical harmonic degree; ETP: ellipsoidal topographic potential; STP:spherical
topographic potential; LCA: layer correction approach; LRA:layer reduction approach; RET:rock-equivalent-topography
(=single-density modelling)

Note that it is likewise possible (and associated with less computational costs) to detect inconsistencies in345

the mass models by applying the (purely) geometric conditions listed under (ii) to (v) in Sec. 2.346

4 Results347

This section presents a numerical study based on the ellipsoidal layer-based forward-modelling technique348

(Sec. 2.2) using the volumetric layers defined in Section 3. It also shows the results of the layer-based for-349

ward modelling in spherical approximation (Sec. 2.1) for comparison purposes.350

351
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Symbol Description LCA LRA
ρ(Ω1) Ice-layer density/contrast 917 kg

m3 -1753 kg
m3

ρ(Ω2) Lakes-layer density/contrast 1000 kg
m3 -1670 kg

m3

ρ(Ω3) Ocean-layer density/contrast 1030 kg
m3 -1640 kg

m3

ρ(Ω4) Crust-layer density/contrast 2670 kg
m3 2670 kg

m3

ρ Earth’s mean density 5495.30635355977 kg
m3

R reference radius 6378137.0 m
a semi-major axis of GRS80 6378137.0 m
e2 square of first eccentricity of GRS80 0.00669438002290
M Earth’s mass 5.972581 x 1024 kg

GM Mass x Gravitational constant 3.986005 x 1014 m3

s−2

kmax maximum power 12
jmax maximum summation index 30
nmax maximum degree STP:2160; ETP:2190

nmax,DEM maximum degree of input Earth2014 DEM 2160
resolution/sampling of input Earth2014 DEM 25”

Table 7 Constants and modelling parameters used for the numerical study

4.1 Global gravitational potential from volumetric layers in ellipsoidal approximation352

The above presented techniques allow modelling the topographic gravitational potential of a single layer as353

well as the combined (total) effect of several layers via corrections or reductions. For the sake of clarity an354

overview on the computed potential fields together with their approximation level and acronyms is given in355

Table 6.356

The dimensionless degree variances357

cn =
n∑

m=−n

V
2
nm (33)

of the ETP of all layers computed using the constants given in Table 7 are shown in Fig. 3. While the single358

layers’ potentials (colored lines) are different (by a constant scale factor) for the LRA and the LCA approach,359

the sum of all layer’s potentials (black lines) yields similar spectra for both approaches. The difference is360

at least five orders of magnitude below the signal (Fig. 4, left plot), corresponding to a root-mean-square361

(RMS) of ∼ 0.001 mGal in terms of gravity disturbances evaluated at the surface of Earth (Fig. 5). The362

largest differences are found above the inland lakes, which are accompanied by error patterns distributed363

approximately along great arcs. We believe those differences stem from spherical harmonic representation364

errors (Gibbs effect), that occur over small areas with large variations in height/depth (e.g. Lake Baikal).365

The corresponding coefficient differences are given in Fig. 4 (right plot).366

We have computed a 5’ global grid of gravity disturbances from the new dV ELL Earth2014 lca model in367

spectral band of degrees 0 to 2190 at the Earth’s surface as represented by the Earth2014 SUR-layer. This368

was done by using the isGrafLab software (Bucha and Janák, 2014) along with the gradient approach for 3D369

harmonic synthesis (Hirt, 2012). In Fig. 6, the gravity disturbances from the dV ELL Earth2014 LCA model370

vary approximately between -802 and 624 mGal with an average signal strength (RMS) of ∼ 350 mGal.371
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Fig. 3 Degree variances of the ellipsoidal topographic potential models and their layers using the LCA approach (left)
and the LRA approach (right).

Fig. 4 LCA versus LRA approach: difference between the respective spectra of layer-based ETP in terms of degree
variances (left) and dimensionless coefficient differences (right)

The area of Antarctica has been selected to show the gravitational contribution of each layer to the total372

gravitational effect of the Earth2014 based mass model (Fig. 7), as each layer has a significant contribution373

over that region. The largest contributions are given by the crust- and ocean-layer, while the ice- and lake-374

layer have smaller (but still) significant contributions. Note especially that e.g. the ocean layer has significant375

contributions over continental Antarctica (and over other continents) which underlines the importance of376

explicitly modelling the ocean’s masses in order to retrieve a good approximation of the gravitational potential377

over land.378

The benefit of layer-based modelling, as done here, compared to RET-based (single-density models) modelling379
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Fig. 5 LCA versus LRA approach: difference of layer-based ETP (dV ELL Earth2014 lca - dV ELL Earth2014 lra) in
terms of gravity disturbances evaluated at the surface of the Earth, d/o 0..2190 (unit is in mGal). RMS = 0.001 mGal;
min = −0.06 mGal; max = 0.07 mGal; mean = 0.00 mGal.

obviously is largest over ice- and water-covered parts of Earth where discrepancies are of the order of ∼ 10−20380

mGal (Fig. 8). Especially over the mid-oceanic ridges and deep ocean trenches (but also over many other381

areas) notable differences are present which all can safely be interpreted as RET approximation errors (see382

Sec. 4.2). The discrepancies shown in Fig. 8 are in good agreement with the findings by Grombein et al383

(2016) and Kuhn and Hirt (2016).384

4.2 Validation of layer-based modelling using GOCE satellite gradiometry385

The successful operation of a gradiometer on board of ESA satellite Gravity Field and steady-state Ocean386

Circulation Explorer (GOCE) resulted in global gravity gradient observations which currently are the most387

consistent and accurate source for Earth’s gravity at scales up to∼ 70−80 km. Its observations as incorporated388

in the GOCE-only gravity field model GO CONS GCF 2 TIM R5 (EGM TIM R5) (Brockmann et al, 2014)389

are totally independent of any of the computed topographic potential models in this work and can therefore390

be used to quantify the benefits of layer-based modelling over RET-based modelling, thus corroborating our391

spectral layer approach. In this regard we compute regional reduction rates (RR) (Hirt et al, 2012) from 1◦392
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Fig. 6 Gravity of layer-based ETP (dV ELL Earth2014 lca) in terms of gravity disturbances evaluated at the surface
of the Earth, d/o 0..2190 (unit is in mGal). RMS = 349.45 mGal; min = −802.07 mGal; max = 623.63 mGal;
mean = −283.58 mGal.

x 1◦ blocks of band-limited gravity disturbances δg globally at the reference ellipsoid following393

RRlayer = 100 ·
(

1− RMS(δgdV ELL Earth2014−δgEGM TIM R5)
RMS(δgEGM TIM R5)

)
RRRET = 100 ·

(
1− RMS(δgdV ELL RET2014−δgEGM TIM R5)

RMS(δgEGM TIM R5)

) (34)

and investigate their differences RRlayer − RRRET (Fig. 9). The limitation of the investigation to the394

spectral band n = 160...250 is reasoned as follows: the GOCE gravity model contains the effects of isostatic395

compensation, that are not modelled in this work. Since isostatic effects are predominantly of long-wavelength396

character we exclude all degrees n < 160. We further exclude all degrees n > 250 since Brockmann et al397

(2014) showed that this is where the signal-to-noise ratio of the gradiometer observations becomes 1. RMS398

denotes the root mean square operator, applied on the respective gravity disturbances. The RR visualize399

to what extend the forward modelled gravity in the ETP models can be reduced (i.e. explained) by the400

satellite’s observations. Blue areas in Fig. 9 thus are areas where the layer-modeling – in simple words –401

agrees better with GOCE observations than RET-based modelling. Moreover, it is interesting to see that402

above the continents – predominantly above near-coastal land-areas – significant improvement through the403

layer-based modelling was achieved, although the mass-model over the continents is the same (except of404

lakes) in the case of RET-based and layer-based modelling. The reason for this behavior of course is that the405
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Fig. 7 Gravity contribution in terms of gravity disturbances (mGal) of the single layers, their combined effect and the
difference between LCA and LRA approach over the area of Antarctica.
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Fig. 8 Layer-based modelling versus RET-based (single-density) modelling : difference between the layer-based ETP and
the RET-based ETP in terms of gravity disturbances evaluated at the reference ellipsoid (unit is in mGal). RMS = 1.79
mGal; min = −45.67 mGal; max = 65.91 mGal; mean = −0.05 mGal.

gravitational signal of a bounded density contrast (which in this case is the ocean) leaks over its physical406

boundaries.407

4.3 Corroboration of layer-based modelling using other GGMs408

Any existing global gravitational model (GGM) may be used to investigate the quality of the suggested409

layer-based forward modelling. We restrict our investigations to two models which are410

1) EGM2008: the Earth Gravitational Model 2008 (Pavlis et al, 2012) which is a combined GGM using411

satellite observations, terrestrial observations and residual terrain fill-in gravity complete up to degree and412

order (d/o) 2190. EGM2008 incorporates the most complete (and up-to-date) set of terrestrial gravity413

observations of any available GGM and is therefore the best candidate to investigate the layer-based414

modelling at short-scales with real observations.415

2) RWI TOPO 2015: the Rock-Water-Ice topographic model 2015 (Grombein et al, 2016) is a forward-416

model based on layers of solid rock, water and ice derived from the same data set (Earth2014) as used417

for the layer-based ETP models in this work. Contrary to this work RWI TOPO 2015 has been generated418

from an integration in the space domain using a tesseroid approach (see Grombein et al (2013)) and419

was transformed into the spectral domain by a subsequent spherical harmonic analysis. The model is420
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Fig. 9 Layer-based modelling versus RET-based (single-density) modelling : reduction rate differences (Eq. 34) in 1◦
x 1◦ blocks using gravity from the GOCE-only model GO CONS GCF 2 TIM R5 in the band from degree 160 to 250.
Positive values denote a better agreement between layer-based modelling and GOCE observations (unit is in percent).
RMS = +5.47% ; average = +3.25%.

also complete up to d/o 2190 and is perfectly suited for a cross-validation with the suggested spectral421

approach in this work.422

Consequently the comparison with EGM2008 will allow us to judge how closely the computed models ap-423

proximate the observable gravity field at short scales while the comparison to RWI TOPO 2015 will provide424

independent feedback on the modelling technique as such. The degree correlation (DC) yn (see e.g. Wieczorek425

(2007)) of a GGM w.r.t. EGM2008 is given by426

yn = cxn(EGM2008, GGM)√
cn(EGM2008) · cn(GGM)

(35)

and indicates the degree of correlation ([−1; 1]) between the signal contained in coefficients of equal degree427

of EGM2008 and the GGM under evaluation, where cxn is the cross degree variance428

cxn(EGM2008, GGM) =
n∑

m=−n

V nm(EGM2008) · V nm(GGM). (36)

As expected the computed layer-based ETP models (dV ELL Earth2014 lca) and RWI TOPO 2015 show a429

higher correlation with EGM2008 than the RET-based model (Fig. 10 and 11). However, the degree correla-430

tion computed from the (original) spherical harmonic models reach a maximum correlation of 0.93 near degree431
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Fig. 10 Degree correlation w.r.t. EGM2008 in terms of spherical harmonic models (left panel) and in terms of their
ellipsoidal harmonic equivalents (right panel).

∼1000, after which the correlations decrease again (and stay above 0.8). This is against all expectations,432

since the short-scale signals of the gravity field are driven by the topographic masses. Hence, an increase of433

the correlation is to be expected. The reason for this behavior is that spherical harmonic models in ellipsoidal434

approximation (like EGM2008 and most other models found at ICGEM) cannot be used in small bands435

(band limited) because of dependencies among the coefficients that effect the ellipsoidal approximation. For436

instance, EGM2008 and other such models constructed in ellipsoidal approximation has to be synthesised up437

to degree 2190 to avoid erroneous striations increasing with latitude (also see Hirt et al (2015), Fig. 13 ibid).438

However, by transforming the spherical harmonic models into truly ellipsoidal harmonic models using Jekeli’s439

transform (Jekeli, 1988), a band limited investigation of the GGMs becomes possible. Then the degree cor-440

relations stay at a high level (∼ 0.92) even beyond degree ∼1000 (c.f. Fig. 10, right panel), indicating that441

the computed layer-based ETP models agree well with the short-scale gravity as contained in EGM2008.442

The difference of respective DCs reveals that the computed layer-based ETP models of this work show443

an increasingly higher correlation beyond degree 800 or so (up to 2% near degree 2160) compared to the444

RWI TOPO 2015 model (Fig. 11). Note that a higher correlation with EGM2008 is not necessarily a valid445

indicator for a better quality since EGM2008 itself a) has incomplete observations over some areas (e.g. it446

contains only GRACE over Antarctica) and contains fill-in gravity and b) is not error-free. However, we find447

the degree correlations in Fig. 10 together with the findings in the previous section (4.2) to corroborate the448

layer-based modelling approach in this work, since the agreement with EGM2008 is at least as good as that449

of RWI TOPO 2015.450

451
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Fig. 11 Differences between the (spherical harmonic) degree correlation w.r.t. EGM2008 of RWI TOPO 2015 (blue) and
dV ELL RET2014 (black) versus the degree correlation of the layer-model computed in this work (dV ELL Earth2014 lca)
in percent. Positive values denote a higher correlation of dV ELL Earth2014 lca.

AGAG pts Model Min Max Mean RMS STD relative to relative to
(#) 0..280 281..2190 [mGal] [mGal] [mGal] [mGal] [mGal] EGM2008 GOCO05s

[%] [%]
EGM2008 -356.73 219.13 -0.02 19.61 19.61 - -
GOCO05s -356.30 193.31 0.22 18.10 18.10 7.7 -

total GOCO05s dV ELL RET2014 -343.15 217.33 0.28 17.90 17.90 8.7 1.1
(181443) GOCO05s dV ELL Earth2014 -342.98 217.26 0.28 17.59 17.59 10.3 2.8

SatGravRET2014 -355.01 221.47 0.45 17.02 17.01 13.3 6.0
SatGravEarth2014 -354.90 221.61 0.45 16.67 16.66 15.0 8.0

EGM2008 -356.73 219.13 0.02 24.56 24.56 - -
only GOCO05s -356.30 193.31 0.21 21.56 21.56 12.2 -

continent GOCO05s dV ELL RET2014 -343.16 217.33 0.14 20.63 20.63 16.0 4.3
(99410) GOCO05s dV ELL Earth2014 -342.99 217.26 0.14 20.39 20.39 17.0 5.4

SatGravRET2014 -355.01 221.47 0.34 19.91 19.91 18.9 7.7
SatGravEarth2014 -354.89 221.61 0.34 19.66 19.66 20.0 8.8

EGM2008 -129.40 132.03 -0.07 10.89 10.89 - -
only GOCO05s -85.93 104.46 0.24 12.69 12.69 -16.5 -

ocean GOCO05s dV ELL RET2014 -124.57 125.06 0.45 13.87 13.87 -27.4 -9.3
(82033) GOCO05s dV ELL Earth2014 -110.40 123.17 0.46 13.41 13.40 -23.0 -5.6

SatGravRET2014 -129.81 134.08 0.59 12.65 12.63 -16.0 0.5
SatGravEarth2014 -120.34 133.18 0.59 12.07 12.06 -10.7 5.0

EGM2008 -119.99 141.34 -0.01 19.10 19.10 - -
AGAG STD GOCO05s -98.68 139.69 -0.29 17.52 17.52 8.3 -

≤2mGal GOCO05s dV ELL RET2014 -201.79 96.60 -0.17 15.76 15.76 17.5 10.1
(24315) GOCO05s dV ELL Earth2014 -200.29 93.12 -0.17 15.43 15.43 19.2 11.9

SatGravRET2014 -206.96 103.41 0.17 14.65 14.65 23.3 16.4
SatGravEarth2014 -205.40 99.22 0.18 14.30 14.30 25.1 18.4

Table 8 Descriptive statistics of residual gravity between Antarctic gravity anomaly grid (AGAG) points and various
gravitational models for four different AGAG gravity data subsets.

4.4 Combination with satellite data and validation over Antarctica452

For external validation with ground truth data we have computed combination models with GOCE and453

GRACE gravity observation data. A combination is necessary to be able to directly compare the computed454

layer-based forward models (see Table 6) with ground truth data, particularly at short scales. Also, because455

isostatic effects have rather long-wavelength character (c.f. Grombein et al (2014)) and were not taken into456

account in the forward modelling, satellite observations are used here as an accurate source of such informa-457
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tion. We use precomputed normal equation matrices for GRACE (ITG-Grace2010: Mayer-Gürr et al (2010))458

and GOCE (fifth release of time-wise method:Brockmann et al (2014)) along with the combination strategy459

described in Hirt et al (2015) (Eqs. 5-8) to create a combined model of 1) a layer-based ETP model and460

2) GRACE and GOCE information that is optimal over the area of Antarctica (and to be used with care461

outside this area, since the ETP is likely to possess a too strong weight in some spectral bands there). The462

combination in principle means a regularization of (non-regularized) GOCE and GRACE normal-equations463

using ETP coefficients with empirically designed regularization weights. We choose the weighting scheme464

A in Hirt et al (2015), which was found superior especially within the polar gap region of GOCE. The465

combination of GRACE and GOCE with the model dV ELL RET2014 and dV ELL Earth2014 lca are named466

SatGravRet2014 and SatGravEarth2014, respectively. Importantly, a combination of this kind is not possible467

with spherically approximated (STP) models, since the levels of approximation of the satellite component468

and the topography component would not be consistent (see Sect. 4.5).469

We compared the combined models with gravity observations as contained in the newly released Antarctic470

gravity anomaly grids (AGAG) (Scheinert et al, 2016). The AGAG data set is based on 13 million obser-471

vations and covers an area of 1 · 107 km2, corresponding to 73 % of the Antarctic continent (Fig. 12).472

We therefore synthesise the gravity anomaly at each AGAG point of height h above the reference surface473

from both combination models up to their maximum degree of resolution (d/o 2190). We also compute474

the gravity anomaly from the model EGM2008 (Pavlis et al, 2012) and the satellite-only model GOCO05s475

(Pail et al, 2011; Mayer-Gürr et al, 2015). The residuals – the differences between the AGAG data and476

the synthesised gravity – are taken here as an indicator of how close the observed potential (via AGAG) is477

represented by the different modelling variants. In case of the combination models, the differences between478

the AGAG gravity and modelled gravity can also be interpreted as short-scale Bouguer gravity: the AGAG479

observations are (more or less) completely reduced by the observed satellite gravity in the long wavelengths;480

in the short wavelengths the AGAG gravity is reduced for the gravitational effect of the visible topographic481

masses (=Bouguer gravity).482

For the entire AGAG data set (181443 grid points) and a subset of the most accurate grid points (24315 grid483

points with standard deviation (STD < 2 mGal) the residuals reveal that the herein created combination484

model based on the layer-approach (SatGravEarth2014) performs better than the other models under investi-485

gation (Tab. 8). The improvement of SatGravEarth2014 w.r.t. EGM2008 is 15 % using all AGAG points and486

25 % using the more accurate subset of points, while it improves over GOCO05s with 8 % using all points and487

18.5% in the subset. The improvement of layer-based modelling w.r.t. RET modelling is about 2 % over both488

areas in Antarctica, which corresponds to an RMS/STD of ∼ 0.3 mGal. The improvement is not very large489

in absolute terms but still indicative, given the differences between SatGravRet2014 and SatGravEarth2014490

gravity at the AGAG points (Fig. 12) have an RMS of ∼ 1 mGal only. Further, the positive effect of layer-491

based modelling is more notable over the ocean (5% improvement) than over land/continental Antarctica492
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Fig. 12 Antarctic gravity anomaly grid (upper left plot) and residuals with gravity anomalies synthesised from various
GGMs (unit is in mGal).

(1% improvement). Globally, this tendency was shown already in Fig. 9. Note that EGM2008 shows a better493

performance over the ocean than the other investigated models. This is to be expected and reflects that494

AGAG data and EGM2008 are observation based down to short scales. EGM2008 has DTU altimetry data495

included over the oceans while AGAG over the oceans presumably relies on ship-track-based observations;496

hence, both data sets are observation-based and thus in closer agreement than the AGAG observations with497

forward models. Also, this finding reveals limitations in currently available Antarctic bathymetry data.498

The sum of 1) GOCO05s taken (from n = 0) up to degree 280 and 2) ETP model (dV ELL RET2014 or499
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Symb. Term Direction Meaning Use in this work
N geoid height normal to ellipsoid diff. between h and H none
H̃ mean-sea-level height appr. normal to geoid distance: MSL to Ps given by DEMs and used for H
H orthometric height normal to geoid distance: geoid to Ps used to approximate the

heights in STP and
ETP modelling

h ellipsoidal height normal to ellipsoid distance: ellipsoid to Ps unusable in the modelling
because of direction

d mapped ellipsoidal height direction to geocenter distance: ellipsoid to Pm in ETP modelling under
ellipsoidal approximation

h’ pseudo-ellipsoidal height direction to geocenter distance: ellipsoid to Ps can be used in ETP modelling
to avoid mapping

Dsph mapped spherical height direction to geocenter distance: sphere to Pm in STP modelling under
spherical approximation

Hsph spherical height direction to geocenter distance: sphere to Ps in STP modelling (theoretically)
Table 9 Definition of heights and their usage in this work (see also Fig. 13); Ps: surface point; Pm: mapped surface
point; MSL: mean sea level.

dV ELL Earth2014) taken in the band 281 ≤ n ≤ 2190 shows less agreement with AGAG data (∼ 1 mGal500

more in terms of RMS/STD, see Tab. 8) than the combination models that also comprise gravity from501

GRACE, GOCE and ETP model (SatGravRET2014 and SatGravEarth2014). Thus, a quite simple combina-502

tion of the ETP and observed gravity, e.g. as done here by means of a regularisation, is better than omission503

error modelling, since the latter leads to higher residuals. Omission error modelling means the estimation of504

short-scale gravity signals that are not contained in a GGM (i.e. signals beyond the maximum degree N of505

the model) by band limited information that can, e.g., be computed from a residual terrain model (RTM506

modelling, c.f. Forsberg (1984)) or taken from a (abrupt) truncation of a topographic potential model, as507

done here.508

4.5 Modelling differences between the spherical and ellipsoidal approach509

The spherically approximated (see Sect. 2.1) and ellipsoidally approximated (see Sect. 2.2) layer-based510

forward-modelling of the potential in spherical harmonics – leading to solutions of the STP and ETP, respec-511

tively – are to be treated and interpreted differently. The STP and ETP are inherently different regarding512

the spectral and spatial-domain characteristics as will be shown next.513

514

4.5.1 Geometric differences and mapping of the layer boundaries515

Essentially, both STP and ETP are different representations of the (same) potential that is generated by the516

same masses which are defined by volumetric layers (see Sect. 2 and 3). The spherical approach assumes the517

boundaries of the layers to be referenced to some reference sphere. This is accomplished with the orthometric518

height serving as an approximation for the distance between sphere and surface point (referred to as mapped519

spherical height). The ellipsoidal approach assumes the layers to be referenced to some reference ellipsoid520

using the orthometric height as approximation for the distance between ellipsoid and surface point (referred521

to as mapped ellipsoidal height). See also Table 9 for an overview of the used heights, their definitions and522
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Fig. 13 Scheme of mapping of the Earth’s physical surface in the investigated modelling techniques: mapping situation
in STP-modelling in spherical approximation (panel A), mapping situation in ETP-modelling in ellipsoidal approximation
(panel B) and mapping-free situation in ETP-modelling without approximation by using pseudo-ellipsoidal heights h′ at
their respective latitudes ϕ′ (panel C); ϕ:geocentric latitude; B:geodetic latitude; re: ellipsoidal radius to Po; r′e: ellipsoidal
radius to P ′o; a, b: semi-major/minor axis of ellipsoid; R: spherical radius; H:orthometric height; h:ellipsoidal height; Dsph:
mapped spherical height; d:mapped ellipsoidal height; Ps: surface point; Pm: mapped surface point; tsm:distance PsPm.



Layer-based modelling of the Earth’s gravitational potential 31

Fig. 14 Mapping effects in the ETP in terms of height differences h − h′ (in metres, upper plot), latitude differences
ϕ−ϕ′(in arc-seconds, middle plot) and the resulting gravity disturbance differences δg − δ′g (in mGal, lower plot) of both
geometric effects. Note, the effects are also contained in the mapping within the STP, but projected onto the sphere.
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use. Neither of the approaches thus takes into account the geoid-ellipsoid separation (i.e. the geoid height),523

which shall not be further looked at here, nor the fact that orthometric heights are not measured along the524

direction to the geocenter, which is implicitly assumed in the spherical harmonic framework.525

The result of the latter is a displacement (often referred to as mapping) of the Earth’s physical surface526

and of all layer boundaries (Fig. 13). In case of the spherical approximation (STP) the approximation error527

introduced by the mapping is hard to be determined/interpreted, since the masses and computation point528

PS are rearranged w.r.t. a spherical reference (Fig. 13, panel A) and there is no workaround to avoid a529

displacement of masses. In case of the ellipsoidal approximation (ETP), the displacement due to mapping530

is largest at mid-latitudes and becomes zero at the poles and the equator (Fig. 13 B and Fig. 14). These531

displacements are also a part of the mapping within the STP, but (additionally) projected onto the sphere.532

At maximum, consider a point Ps with extreme elevation of h = 9 km above or h = −10 km below the533

ellipsoid and at a latitude of B = 45◦, the displacement given by the distance tsm = PsPm between surface534

point Ps and its mapped equivalent Pm becomes ∼ 30 m or 33 m, respectively (i.e. ϕ − ϕ′ ∼ 0.9′′ and535

h − h′ ∼ 5 cm). This confirms similar the findings by Balmino et al (2012). In view of 10km-resolution536

models as computed in this model mass displacements of this order hardly play a role. Nevertheless, in case537

of the ETP, displacement can be avoided by working with what we denote pseudo-ellipsoidal heights h′ (c.f.538

Appendix A for their computation). They are given at their respective geocentric latitudes ϕ′ that are defined539

along the direction towards the geocenter (Fig. 13, panel C). Working with the pseudo-ellipsoidal heights540

instead of mapped ellipsoidal heights within layer-based modelling to degree 2190 yields differences in the541

order of ±3 mGal or RMS=0.04 mGal (see Fig. 14). Accounting for the mapping is thus only required for542

applications of high accuracy or high resolution.543

544

4.5.2 Differences in the spectral domain545

The spherical harmonic coefficients of STP and ETP differ notably as can be seen from their degree variances546

(Fig. 15). The degree variances of the STP (dV SPH Earth2014 lca/lra) follow Kaula’s rule (Kaula, 1966)547

closely, which itself is close to the truly ellipsoidal harmonic spectrum of the gravity field (Rexer and Hirt,548

2015a). The degree variances of the ETP (dV ELL Earth2014 lca/lra) run below those of STP. They are549

comparable to commonly used gravity field models (e.g. those listed at ICGEM). This has already been550

found by Rexer and Hirt (2015a), who empirically derived an approximate rule of thumb that allows to551

transform degree variances from a spherically approximated model (STP) into their ellipsoidally approximated552

equivalents (ETP) (and vice versa). All spherical harmonic GGMs (of N > 2000) that (implicitly) assume553

an ellipsoidal Earth are accompanied by a “tail“of 30 degrees (from degree 2160 to 2190) with rapidly554

decreasing energy, which are needed for a proper representation of the potential. This is the very reason555

why band limited investigation are not possible with this kind of models (see Sect. 4.3) without suffering556
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Fig. 15 Spectral characteristics of the spherically (dV SPH Earth2014 lca/lra) and the ellipsoidally
(dV ELL Earth2014 lca/lra) approximated potential models in terms of degree variances, together with those of
EGM2008 and Kaula’s rule of thumb.

from erroneous striations increasing with latitude (see also Claessens and Hirt (2013); Pavlis et al (2012)).557

Spherical harmonic models in spherical approximation allow band limited investigations akin to truly ellipsoidal558

harmonic models (see Sect. 4.3).559

4.5.3 Differences in the space domain560

In the space domain rather long wavelength differences appear between the STP and the ETP at the level561

of few mGals (Fig. 16). Note that for a comparison of ETP and STP in the space domain, the ETP was562

evaluated on the surface of the reference ellipsoid while the STP was evaluated on the surface of the reference563

sphere. Similar differences were already found to reflect different mass arrangements between ETP and STP564

by Claessens and Hirt (2013) (ibid. Fig. 6a) who applied the HC-method to a single-density mass model. At565

the Earth’s surface the effect is almost of the same dimension with marginally smaller amplitudes and similar566

RMS (Fig. 17). The differences in Figs. 16 and 17 also contain the effect of mapping discussed above (h vs.567

h′ and ϕ vs. ϕ′), but they are dominated by the additional mapping of the masses from the ellipsoid onto568

the sphere.569

The differences notably differ from the ellipsoidal correction (Fig. 12 in Balmino et al (2012)) which is570

thought to correct a STP model for the difference between integrating Earth’s masses w.r.t. spherical instead571

of an ellipsoidal reference. The range of the ellipsoidal correction in Balmino et al (2012) is much smaller572

(∼ 0.005 mGal vs. ∼ 8 mGal) – even when investigating the differences in Fig. 16 in the same spectral band573

(0 ≤ n ≤ 120) – and is predominated by a zonal J2 effect. Possibly, their correction, which is only computed574
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Fig. 16 Gravity difference between the spherically (dV SPH Earth2014 lca/lra) and the ellipsoidally
(dV ELL Earth2014 lca/lra) approximated potential models in terms of gravity disturbances evaluated at the re-
spective reference surface (sphere and ellipsoid, respectively); RMS = 0.35 mGal;min = −4.66 mGal ;max = 2.84
mGal; mean = −0.08 mGal. (unit is in mGal)

Fig. 17 Gravity difference between the spherically (dV SPH Earth2014 lca/lra) and the ellipsoidally
(dV ELL Earth2014 lca/lra) approximated potential models in terms of gravity disturbances evaluated at the
Earth’s surface; RMS = 0.36 mGal;min = −2.89 mGal ;max = 2.11 mGal; mean = −0.08 mGal. (unit is in mGal)
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to the second order, is a part of the true difference between a topographic forward model in spherical and575

ellipsoidal approximation.576

577

5 Conclusions and outlook578

We presented spectral forward modelling based on volumetric mass layers to d/o 2190 at two different levels579

of approximation (spherical and ellipsoidal) and took full account of increased sampling requirements and580

all relevant terms of the involved binominal series expansions, avoiding aliasing and truncation errors due to581

early truncation of the series.582

Based on the HCM-method, we derived a new spherical harmonic approach that allows to rigorously and583

efficiently compute the ellipsoidally approximated topographic potential based on volumetric layers of lat-584

erally varying density that are referenced to an ellipsoid. A layer-concept has been established with the585

layers’ boundaries taken from the Earth2014 model, separating the masses of ice-sheets, water in inland586

lakes/seas, ocean water and solid rock with 1′ resolution. Applying the layer-concept in two ways – in a587

correction approach with actual densities or in a reduction approach with density contrasts – leads to equiv-588

alent potentials, with negligible differences (RMS∼ 0.001 mGal) that are caused by the spherical harmonic589

representation of the respective layer boundaries. The layer-based modelling approach reaches over 90 %590

correlation with EGM2008 in the band 900 ≤ n ≤ 2150 with significantly higher correlations compared to591

single-density (RET) modelling. Further, it was shown to be at least equivalent to state-of-the-art layer-based592

forward modelling in the space domain. A validation with ground truth gravity data over Antarctica shows593

that layer-based modelling improves over single-density modelling by ∼ 2%, with the improvement being594

largest over the ocean (∼ 5%). The latter was also confirmed globally by computing reduction rates with595

GOCE satellite observations as contained in GO CONS GCF 2 TIM R5. For the validation we computed a596

combination model, combining computed spherical harmonic coefficients in ellipsoidal approximation with597

satellite observations from GOCE and GRACE satellite, which is necessary in order to mitigate the problem598

of isostatically uncompensated masses in the forward models. The combination was done by means of an599

empirical regularisation of GOCE and GRACE normal equations. Using solely the most accurate ground truth600

observations (STD < 2 mGal) available, the combination model was found superior to EGM2008 and the601

satellite-only model GOCO05s (by ∼ 25% and ∼ 8% in terms of RMS). The comparison with ground truth602

data also showed that a combination of satellite data with the topographic potential, e.g. by means of a603

regularization, is to be preferred compared to omission error modelling in general.604

Depending on the level of approximation – spherical or ellipsoidal – we provided the framework to the spher-605

ical topographic potential (STP) or the ellipsoidal topographic potential (ETP), which were found to have606

substantially different spectral characteristics, yet rather small differences in the space domain. Evaluated607

at the respective reference surface or at surface of Earth the STP and ETP show differences at the level608
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of ∼ ±5 mGal (RMS = 0.4 mGal) that mainly stem from a different arrangement of masses (mapping)609

due to different geometric assumptions in the approaches. In ellipsoidal approximation the mapping, which610

was found to cause a rearrangement of masses by 30 m at maximum, can completely be avoided by using611

pseudo-ellipsoidal heights that are measured towards the geocenter. The error introduced by the mapping is612

in the order of mGal and should be taken into account in applications requiring ultra-high resolution or high613

accuracy topographic gravity.614

In the spectral domain, the STP shows substantially larger energy at short scales (comparable to that pre-615

dicted by Kaula’s rule of thumb or to the truly ellipsoidal harmonic spectrum of EGM2008) than the ETP.616

The ETP shows short scale energy comparable to other spherical harmonic GGMs that make an (implicit)617

ellipsoidal assumption of Earth, e.g. EGM2008. This feature makes the ETP coefficients suitable for a com-618

bination with satellite data, e.g. as done in this work. The dependencies among the spherical harmonic619

coefficients in ellipsoidal approximation prevent application of the harmonic models in a band-limited manner620

(i.e. no truncations at n < 2190). In contrast, spherical harmonic models in spherical approximation and621

truly ellipsoidal harmonic models are free of such dependencies and may be used in band limited form (i.e.622

truncated at n < 2190).623

In conclusion, the choice between spherical and ellipsoidal approximation in spectral forward modelling de-624

pends on the application of the final models. While STP models may be good enough for a wide range of625

geophysical applications, ETP models are more accurate and needed for high resolution applications. Current626

observation based gravitational models conform spectrally with the ellipsoidal topographic potential which627

is inevitable for geodetic applications, such as a combination with satellite and terrestrial data by means of628

regularization.629

The herein computed models are available at: http://ddfe.curtin.edu.au/models/Earth2014/potential model/.630

A Rigorous expressions - direct solution to the radial integral in modelling of the ETP and the631

STP632

In contrast to the above presented solutions to the STP (Sec. 2.1) and ETP (Sec. 2.2) that rely on a binominal series633

expansion for the solution of the radial integral (Eq. 17), and in case of the ETP also on the binominal series expansion634

in Eq. 27, here the rigorous expressions are given.635

The direct (rigorous) solution to the radial integral over the masses in a layer (Eq. 10) was given already in Eq. 11 or (in636

more generalised form) in Eq 13, respectively.637
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A.1 Rigorous solution to the STP of a volumetric mass layer638

In case of the STP, the direct integral solution to the radial integral from the lower to the upper layer bound in spherical639

approximation reads640

Ω(STP,ω) = ρ(Ωω)(θQ, λQ)
R

n+ 3

((
R+H

(Ωω)
UB

R

)n+3

−
(
R+H

(Ωω)
LB

R

)n+3)
. (37)

Inserting Eq. 37 into Eq. 9 the rigorous expression of the STP of a volumetric mass layer is641

V̂
(STP,Ωω)
nm =

3
ρ(2n+ 1)(n+ 3)

×

×
1

4π

∫ 2π

λ=0

∫ π

θ=0
ρ(Ωω)(θQ, λQ)

((
R+H

(Ωω)
UB

R

)n+3

−
(
R+H

(Ωω)
LB

R

)n+3)
Y nm(θQ, λQ) sin θdθdλ,

(38)

and with642

HDF
(STP,Ωω)
nnm =

1
4π

∫ 2π

λ=0

∫ π

θ=0
ρ(Ωω)(θQ, λQ)

((
R+H

(Ωω)
UB

R

)n+3

−
(
R+H

(Ωω)
LB

R

)n+3)
Y nm(θQ, λQ) sin θdθdλ.

(39)

we arrive at the more concise form643

V̂
(STP,Ωω)
nm =

3
ρ(2n+ 1)(n+ 3)

HDF
(STP,Ωω)
nnm . (40)

As mentioned above rigorous expressions for the STP of a layer in principal are known already in different notation, e.g. by644

Pavlis and Rapp (1990). The disadvantage of the rigorous expression in Eq. 40 is that it needs nmax spherical harmonic645

analyses of the surface function HDF
(STP,Ωω)
nnm , while the expression relying on a binominal series expansion (Eq. 21)646

only needs kmax analyses, where kmax << nmax in general (see Sec. 2.3 for convergency behavior of the binominal647

series).648

A.2 Rigorous solution to the ETP of a volumetric mass layer649

In case of the ETP, the direct integral solution to the radial integral from the lower to the upper layer bound in ellipsoidal650

approximation reads651

Ω(ETP,ω) = ρ(Ωω)(θQ, λQ)
R

n+ 3

(
re

R

)n+3
((

re + d
(Ωω)
UB

re

)n+3

−
(
re + d

(Ωω)
LB

re

)n+3)
. (41)

Inserting Eq. 41 into Eq. 9 the rigorous expression of the ETP of a volumetric mass layer is652

V̂
(ETP,Ωω)
nm =

3
ρ(2n+ 1)(n+ 3)

×

×
1

4π

∫ 2π

λ=0

∫ π

θ=0
ρ(Ωω)(θQ, λQ)

(
re

R

)n+3
((

re + d
(Ωω)
UB

re

)n+3

−
(
re + d

(Ωω)
LB

re

)n+3)
Y nm(θQ, λQ) sin θdθdλ,

(42)
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and with653

HDF
(ETP,Ωω)
nnm =

1
4π

∫ 2π

λ=0

∫ π

θ=0
ρ(Ωω)(θQ, λQ)

(
re

R

)n+3
×

×

((
re + d

(Ωω)
UB

re

)n+3

−
(
re + d

(Ωω)
LB

re

)n+3)
Y nm(θQ, λQ) sin θdθdλ.

(43)

we arrive at the more concise form654

V̂
(ETP,Ωω)
nm =

3
ρ(2n+ 1)(n+ 3)

HDF
(ETP,Ωω)
nnm . (44)

The disadvantage of the rigorous expression in Eq. 44 is that it needs nmax spherical harmonic analyses of the surface655

function HDF (ETP,Ωω)
nnm , while the expression relying on binominal series expansions (Eq. 31) only needs kmax analyses,656

where kmax << nmax in general (see Sec. 2.3 for convergency behavior of the binominal series).657

B Computation of the pseudo-ellipsoidal height h′ and its latitude ϕ′ of the surface point PS658

Given a surface point PS with ellipsoidal height h, geodetic latitude B and geocentric distance r defined by659

r2 = (r′e + h′)2 (45)

the pseudo-ellipsoidal height h′ that is running along the direction towards the geocenter (Fig. 18) can be computed660

using the cosine rules661

r2 = c2 + ((N − e2N) + h)2 − 2c((N − e2N) + h) · cos (π −B) (46)

where662

c = e2N cosB, (47)

663

N =
a√

1 − e2 · sin2 B
(48)

and664

r
′2
e = a2 1 − e2

1 − e2 · cos2 ϕ′
. (49)

The (geocentric) latitude ϕ′ can be computed using the sine rule665

sinϕ′ =
(

((N − e2N) + h) · sin (π −B)
r

)
. (50)

Then the pseudo-ellipsoidal height is retrieved with666

h′ = r − r′e. (51)
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Pail R, Fecher T, Jäggi A, Goiginger H (2011) Can GOCE help to improve temporal gravity field estimates? In: Ouwehand756

L (ed) Proceedings of the 4th International GOCE User Workshop, ESA Publication SP-696757

Pasyanos M, Masters T, Laske G, Ma Z (2014) LITHO1.0 : An updated crust and lithospheric model of the Earth. Journal758

of Geophysical Research: Solid Earth 119(3):2153–2173759

Pavlis N, Factor J, Holmes S (2007) Terrain-related gravimetric quantities computed for the next egm. In: Dergisi H (ed)760

Proceedings of the 1st International Symposium of the International Gravity Field Service, vol 18, pp 318–323761

Pavlis N, Holmes S, Kenyon S, Factor J (2012) The developement and evaluation of the Earth Gravitational Model 2008762

(EGM2008). Journal of Geophysical Research 117, DOI 10.1029/2011JB008916763

Pavlis NK, Rapp R (1990) The development of an isostatic gravitational model to degree 360 and its use in global gravity764

modelling. Geophys J Int 100:369–378765

Rapp R (1982) Degree Variances of the Earth’s Ptential, Topography and its Isostatic Compensation. Bulletin Géodéesique766
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