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Abstract

KUKA Light Weight Robot is a programmable machine with a single arm, which has
seven degree of freedom in joint space and three in cartesian space. The robot can
generate trajectories with its end effector to finish complex tasks. Executing differ-
ent actions at each time step allows the robot to move from start point to goal point
through a certain trajectory as human expected. Dynamic Movement Primitive
encodes motions by using nonlinear forcing terms for planning and control com-
plex trajectories. Extended Dynamic Movement Primitive injects task parameter
dependence into the nonlinear forcing terms for intelligent movement of robot.
This thesis aims to model task parameterized forcing terms with high level repre-
sentation of task parameter by using deep neural networks for doing sweeping task
on KUKA robot. In this work, the task parameter is extracted from RGB images
from camera. Two different approaches i.e., CNN and a combination of CNN and
RNN are developed. The neural network is used as function approximator, which
maps image and clock signal to the nonlinear forcing term directly. Additionally,
the CNN model is generalized for multiple real objects by using data augmentation.
After training the neural network, the robot is able to do sweeping task from start
position to dustpan with tracking real object in real time.
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Chapter 1

Introduction

Trajectory or motion planning is a common task in robotics. Basically, robot has
to react and move based on its environment or more specifically sensor inputs. In
dynamic environments, such as the real world, the state of objects are time variant
and space variant. This increases difficulty for robot to do the correct action. The
state space and action space of robot in the real world are essentially indefinably
large. Nowadays hard coding every possible situation for robot controller becomes
less efficient in industry. Fortunately, machine learning is field of study that ”gives
computers the ability to learn without being explicitly programmed” [Munl4]. How-
ever, it is hard to apply only a single machine learning algorithm for doing complex
tasks, i.e. it can not do End-to-End learning for long term dependency between
inputs and expected outputs. In the most case, it combines many algorithms to
finish a complex task, e.g. combining vision part, feature part and controller part
of robot. It still needs much effort to implement.

Recently, deep learning is increasingly becoming popular and important for learn-
ing representations of data. It has huge success in many fields, such as computer
vision and natural language processing, e.g., Convolutional Neural Network (CNN)
is mostly used in for visual tasks, e.g., image classification like VGGnet [SZ14]
and Recurrent Neural Network (RNN) prefers to be used for handling sequential
data [SVL14]. Theoretically, deep learning is able to approximate any kind of con-
tinues functions and can be used as Universal Function Approximator [GBCI16].
This property makes lots of machine learning enthusiasts digging into deep learning.

The aim of this work is to learn a deep neural network that gives KUKA light weights
robot ability to move correctly in on-line manner for sweeping task. Figure(l.1|shows
the overview of sweeping task. H denotes the home position of robot and G is the
goal position where robot moves to. The shape of trajectory depends on the trash
position 7. This is to say, there are infinite different shapes of trajectory which
can not be predefined. The trash position could also be changed during execution
of a motion, i.e., the robot has to track the trash in on-line manner. In this work,
the research work involves Recurrent Neural Networks and Convolutional Neural
Networks. The trash is firstly a simple object glued with a special marker. Both
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Figure 1.1: Sweeping task: robot starts from home position H and pushes trash T
into goal position (dustpan) G, where H and G are fixed, on the contrary, the trash
position 7 is unknown and could be varying in real time.

approaches are successfully evaluated on real robot for marker object. As a extended
task, the CNN is generalized for multiple real objects by using data augmentation.

1.1 Problem Statement

Dynamic Movement Primitive (DMP) provides a way for encoding motion data [INS03]
and gives robot ability to generate different trajectories. DMP model consists of
two dynamical systems with parameterized connection, where one system drives the
other one by using a clock signal. The KUKA light weight robot has three Degree
of Freedom (DoF') in Cartesian space, which are encoded with three DMPs; i.e., two
for planar movement and one for rotation of robot’s end effector.

The transform equation of the dynamical systems [PL17] is given by
70 =K(g—1x)— Dv— K(g —x)s + sKF(s) (1.1)

where s is the clock signal, F(s) is the forcing term and other components are not
relevant to this work.

The three DMPs in Cartesian space correspond three forcing terms F(s) in ([1.1)).
Hence, the robot is able to generate different trajectories by feeding the nonlinear
forcing terms into . In case of sweeping task (see Fig. , the forcing term is
not only dependent on the clock signal but also the task parameter 7, i.e., F(s,T).
If all forcing terms are zeros, then the robot moves from home position to goal
position over a straight line (see dashed line in Fig. .In a planar view, the trash
position 7 is a two dimensional variable which has x and y direction. Hence, the
forcing term is defined as F(s, 7T, 7,) [PL17]. Since the task parameter has to be
replaced with high level representation i.e. images. The goal of this work is to
find a mathematical mapping between inputs (image and clock signal) and outputs
(forcing terms), as shown in Fig. [1.2] Since there is no simulation tool available in
the lab, evaluation is done on real robot directly with a safety button.
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Mode] re—F (s, image)

-

Figure 1.2: Research purpose: build a model using deep neural network, which
end-to-end maps inputs to expected outputs.

Image

1.2 Related Work

The essential goal of this work is to learn the forcing terms F in (L.1). Pervez
et al. [PL17] have implemented an approach for learning the forcing terms. Pro-
gramming by Demonstration (PbD) is used to demonstrate in [PL17] how the robot
should move. The forcing terms of each demonstration is modeled by using Gaussian
Mixture Model (GMM). Pervez et al. also compared different regression approach
for predicting the forcing terms and evaluated on real robot. Their work is the
major background of this thesis. The dataset of this work is collected by executing
their program on robot, i.e., the predicted forcing terms of [PL17] are referred as
the ground truth outputs.

The basic idea of this research comes from [LFDAT6]. It is the most similar situation
to this work. An end-to-end Convolutional Neural Network with a special softmax
layer is introduced in [LEDAT6]. The special softmax layer transforms object posi-
tion in image into real world position. It helps a lot to this work. In their approach,
inputs are mapped into motor torques and it needs reinforcement learning to train
current movement at each time step for future reward. In our case, DMP model
is already implemented and ensures that robot moves from home position to goal
position. Hence, at each time step the forcing term can be handled independently
in this work. Different hard tasks are evaluated in [LFDAT6] and sweeping is main
task of this work. Instead of hard covering background with green stuff within the
images in [LFDAT16], the images from our data set are pretty noisy with different
objects in the background. This makes training process harder.

The rest of this report is structured as follows: Chapter 2 describes the main tech-
nical approach for solving our problem. In Chapter 3, evaluation results are shown
and interpreted. The important aspects and problems of proposed approach are dis-
cussed in Chapter 4. In the last Chapter, this thesis is concluded and an overview
of future work is imagined.
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Chapter 2

Technical Approach

2.1 Overview of Design

The whole project is divided into three stages as follows:
e collecting dataset
e implementing and training model
e cvaluating trained model on real robot

Firstly, a dataset is needed for training neural network. The dataset is collected
with one Kinect camera and two computers on Ubuntu system by running the

data/

/7 \

motionl/ = motion50/

/N [\

imgs/ | |data.txt| |imgs/| |data.txt

image0...480.png image0...480.png

Figure 2.1: Dataset structure: the data folder contains 50 motion folders, each
motion folder contains a ’imgs’ folder and text file and each imgs folder contains
about 480 RGB images
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Columns clock joint end trash forcing

description | signal angles | effector | position | terms
position

Number of |1 7 2 2 3

values

Table 2.1: Columns description in data.txt file.

existing TP-DMP model, which is implemented in [PL17]. One computer runs DMP
program for generating data and the program of collecting data is executed on the
other computer. The communication interface between the two computers works
under Robot Operating System (ROS) and all of this are implemented in C++.
Figure shows the structure of collected dataset. The dataset consists of about
24 000 samples within 50 motions. Each image has a resolution of 480 x 640 pixels.
In a single data.tzt file, the rows correspond number of samples and the columns
correspond features or labels. The detailed structure of a single row in data.txt is
given in Tab. 2.1] Tts delimiter is comma (,) for each row. As shown in Tab. 2.1}
the last three columns are forcing terms i.e. outputs, which need to be predicted.
Therefore, any other columns and images could be the inputs, which are also called
features in machine learning.

At the final stage, the well trained model is evaluated on real robot.

2.2 Relevant Methods

2.2.1 Discrete Convolution

Image convolution is widely used linear transformation in Convolutional Neural
Network. A weights matrix also called kernel is element wise multiplied with image
patch over the whole image. The resulting matrix is summed up for each image
patch respectively. Usually, the output matrix is referred to as the feature map.

The convolution formula [GBC16] is given by ({2.1)).
F(i,5)=> > I(i+m,j+n)K(m,n) (2.1)

where n is the kernel width, m the kernel height, K the kernel matrix and [ input
image matrix.

For multichannel images e.g. RGB image the formula is similar to (2.1). An ad-
ditional summation is performed over image channels. The 2-dimensional discrete
convolution on an multichannel image is given by .

Py §) =YD L(i+m, j +n)Ka(m,n) (2.2)
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where n is the kernel width, m the kernel height, ¢ the number of input channel (e.g.
for RGB image, ¢ = 3) and k the number of output channels or feature maps.

2.2.2 Activation Function

Activation functions are nonlinear transformation in deep neural network. This gives
neural network ability to approximate nonlinear complex functions. There are two
activation functions described here, i.e., tanh and ReLU, which are mainly used in
this work. Sigmoid function is included in our model as well, but it is a built in
function in LSTM cell. It is similar to tanh and therefore not explained here.

tanh

The tanh activation function is given by (2.3). Its plot is shown in Fig. 2.2 The
advantage of the tanh function is that its outputs are zero-centered and located at
range (—1,1). However, it saturates at either tail of —1 or 1, because the gradient
of tanh is almost equal to zero when its output is nears to —1 or 1 [GBCI6].

2
1 L |
0.5} A
©
s o f
-
—0.5 | -
—1F N
| | | | |
—10 -5 0 5} 10
xz

Figure 2.2: tanh activation function

RelLU

The Rectified Linear Unit (ReLU) is another popular activation function and its
formula is given by (2.4). Figure shows the ReLLU activation function. The
activation is simply thresholded at zero when its inputs are negative values. For
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10

—10 ) 0 5 10

Figure 2.3: ReLU

values at positive range, it has no saturation. Unfortunately, a ReLU neuron can
be "dead” during training. If a large gradient flows through a ReLLU neuron and its
weights are over-updated so that the inputs to ReLLU are all negative values. The
outputs of ReLU are all zeros if its inputs are all negative. It cause the neuron to
be "dead” [GBCI16].

f(z) = maz(0,x) (2.4)

2.2.3 Soft Attention

softmax

The softmax function transforms a score vector to a probability vector associ-
ated with a multinoulli distribution. The softmaz function is defined to be .
Since its output is a probability vector, the summation over all elements results
1.0 [GBC16].

exp(x;)

m (2.5)
> erp(a)

softmax(x); =

soft-argmax

The soft-argmax is an argmax operation with soft attention mechanism [LEDA16].
Let I(x,y) be a single channel image or a feature map, the soft-argmax on 2D image

is given by [2.6]
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fo= Z softmax(1);jx;;,
” 2.6
fy = softmaz(I)iy;; 20
i\j
Where (z;;,y;;) is the image-space position of the point (¢, j) in the image, I is the
2D image matrix and (f, f,) is the expected feature point in the image. I has to
be flattened into vector before softmax and is reshaped back after softmax. In
other words, this ”"softpicks” out the pixel position in image coordinate system with
the largest pixel intensity. It is called ”soft”, because its position is multiplied by a
probabilistic vector. The soft mechanism make this operation differentiable. It can
be integrated in neural network directly compared to simple argmax, which is not
differentiable and has no derivatives.

2.2.4 Long Short Term Memory

Long Short Term Memory (LSTM) is a popular gradient-based Block Cell, which
is mostly used in Recurrent Neural Network for dealing with vanishing gradient
problem. Hence, it is suited for long time dependency prediction. The used LSTM
cell in this work is based on [ZSV14] according to TensorFlow’s reference.

2.3 Implementation

2.3.1 Initial Researched Approach

The initial research purpose is trying to solve the problem of sweeping task by using
RNN. The following sections describe a mathematical model of combination of CNN
and RNN.

Data Preprocessing

As described in Sec. 2.1 the outputs of dataset are forcing terms and the inputs
consist of images, clock signal and additional robot configurations. As the images
are the only inputs of CNN, normalization of pixel value is not needed here, i.e., the
intensity of images is at range [0, 255]. Since the dataset is collected with TP-DMP
model [PL17]. In their model, a base marker is needed for localization of objects,
as shown in (a) of Fig. (left marker near the robot base). It can not be removed
during collecting data. When the convolution operator is executed on a image, each
kernel (also called filter) is shared over every image patch. The base marker looks
similar as the trash marker (see the right marker of (a) in Fig. [2.4). Hence, the base
marker is replaced with a small image patch at training phase, which is cropped
from the background of desk area, as shown in (b) of Fig. If the base marker
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were not removed, then the robot could oscillate between base marker and trash
marker, even though the base marker doesn’t affect the training error at training
phase evidently. As model is evaluated on real robot, it is removed for robot safety.
This problem will be elaborated in Chap. |4, The second preprocessing of image is
a trivial resizing operation. The original image (480 x 640) is resized to 200 x 200
for avoiding out of memory and computational efficiency.

)

(a) original image (b) image with no base marker

Figure 2.4: Image preprocessing: (a): original image, (b): Base marker is covered

In machine learning as well as deep learning, it is necessary to split data into training
and test set. Since the evaluation or testing is performed on real robot, the dataset
is divided into training set and validation set for avoiding overfitting. The collected
dataset contains 50 motions, as described in Sec. The expected moving behavior
of learned robot is that the robot can generating new motions by imitating the
motions within training set. Hence, the dataset is split with 45/5 ratio across
motions i.e. 45 motions for training and 5 motions for validation. As only 50
motions are available, random splitting is not suited to this situation. The dataset
is split according to the distribution of forcing terms, as shown in Fig. [2.5] The 5
red colored motions are picked out as validation motions and the remaining motions
are moved into training set. The criteria of choosing testing motions are shape of
curve and different value ranges. After splitting data, the training set contains 21
584 samples and the validation set has 2401 samples.

Building and Training Model

The designed model is shown in Fig.[2.6] It contains CNN, RNN and fully connected
layers. It is named to be CONVRNN here for ease of interpretation. CONVRNN
has a total of 9 layers. The first layer is a colored image with three channels i.e.
red, green and blue followed by three convolutional layers. The outputs of last con-
volutional layer are transformed into feature points by using soft-argmax operator,
as described in Sec. 2.2.3. The feature points are not be passed through fully con-
nected layers directly compared to Levine et al. [LEDA16]. A bidirectional RNN is
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(a) forcing term 1 (b) forcing term 2 (c) forcing term 3

Figure 2.5: Splitting dataset: red curves for testing and blue curves for training

inserted between CNN and fully connected layers, i.e., the feature points (x;,y;) are
considered as a sequence of two dimensional points. This makes training faster and
it achieves lower training and validation error than only using CNN for our case (see
Fig. . The outputs of RNN are concatenated with clock signal from robot as the
inputs of fully connected layers. The bidirectional RNN contains a forward layer
and a backward layer. For both directions, LSTM cell is used as memory cell. The
LSTM cell is shared within either forward or backward RNN, but not shared across
the two directions of RNN. The red and blue circles in Fig. show the LSTM cell
for both directions. The red cells or blues cell are the same cell. This bidirectional
RNN is an unfolded version, as shown in brown square of Fig. [2.6, This is to say,
each feature point (x;, y;) is passed into the same cell but at different time step. The
LSTM cells for both directions have 16 hidden units. The outputs at last time step
of both directional RNN are chosen for further computing (double lined red and
blue arrows in Fig. , because only the output of last time step contains all the
informations of all previous time steps. A bidirectional RNN is used here, because
the feature points are not a time series but only a sequence. More information can
be extracted theoretically in two directions compared to one direction. The two fully
connected layers have 24 neurons respectively. The tanh activation function is used
in fully connected layers. The reason for this is that tanh outputs a zero-centered
values as described in Sec. and the forcing term1 and forcing term 3 are zero-
centered approximately as well (see Fig. .The forcing term 2 stays almost at the
same distribution for all motions and is easy to learn. Also, the tanh outperforms
sigmoid and ReLU after several experiments.

As the soft-argmax function is described in [2.2.3] it transforms feature maps into
feature points. For CONVRNN;, the last ReLLU activation results a size of 95 x 95
feature map for each channel. To illustrate it clearly, the x position in image space

of feature point (z;,y;) is calculated by (2.7)). The y position is given by (12.8)).

01 - 94

01 --- 94
xi:Z(softmax(featuremapi)o . Dk (2.7)

" Do :
01 .- 94
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conv 3 x 3 stride 1 conv 5 X 5 stride 2
+ + ‘
RelLU | RelLU conv 5 X 5 stride 1

]

soft-argmax
Input image
200 x 200 x 3

198 x 198
FC input
num_neurons = 40
FC-24 FC-24
+ +
output tanh tanh

16
(w1, 9i)
‘ where i=[0,...,15]
<: |
|
@: Forward LSTM Cell clock signal - --------- " Bidirectional RNN

@: Backward LSTM Cell

Figure 2.6: Architecture of CONVRNN: The input is a RGB image, followed by
three convolutional layers, i.e., convl: kernel size: 3 x 3, stride 1, ReLLU activation,
depth 64, conv2: kernel size: 5 x 5, stride 2, ReLU activation, depth 64, conv3:
kernel size: 5 x 5, stride 1, ReLU activation, depth 16. All convolution operation
are performed with VALID Padding. A soft-argmax operation is performed after
last activating and results 16 feature points over 16 feature maps. The 16 feature
points go through a bidirectional RNN with 16 hidden units for both direction. The
last outputs of of forward and backward RNN are concatenated with additional
robot parameters (40 neurons), then passed through two fully connected layers with
tanh activation, which both have 24 neurons. The last layer is output layer i.e. the
forcing terms. Hence, the architecture contains a total of 9 layers including input
layer and output layer.

0 0 -~ 0
11 1
yi= Y _(softmaz(featuremapi)o | = | ) (2.8)
= S
94 94 ... 9

Where o denotes element wise product or Hadamard product, i = [0...15], k,l =
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[0...94] and feature maps have to be flattened before softmazx, the result of softmax
has to be reshaped back to 95 x 95.

As CONVRNN has 9 layers, the gradients are hard to flow through the convolutional
layers if the neural network is too deep (vanishing gradient problem [Hoc91]). A
large learning rate can cause the ReLU units to be "dead” easily. Another problem
is that the inputs of robot configurations are inserted after RNN, i.e., the goal of
CNN and RNN is to extract the trash position from images. Hence, pretraining is
needed. CONVRNN is sliced into two parts and the break point is at the outputs
of RNN. The CNN and RNN are pretrained for predicting the trash position. The
trash position neurons and the RNN outputs (32 neurons) are connected with an
additional trainable weight matrix and biases vector. This weight matrix transforms
RNN outputs to trash position, i.e., R3 — R2.  The first convolutional layer is
initialized with the weights and biases of the first layer of VGGnet [SZ14]. The loss
function is defined to be Mean Squared Error (MSE) and given by (2.9).

n

MSE = 3"~ yi) (2.9

i=1

After pretraining, this additional weight matrix and bias vector are removed. All
the outputs of RNN are computed by using pretrained CNN and RNN and saved
into text file. The predicted outputs of RNN are assumed as a representation of
trash positions. The fully connected layers are pretrained as well by using the saved
prediction of RNN outputs, clock signal. In the final step, all pretrained weights
and biases are loaded into CONVRNN for doing End-to-End training. At this
training phase, a smaller learning rate is selected for fine tuning the model. The
loss function is MSE for both pretraining and fine tuning. Adam optimizer is used
for backpropagation [KB14].

Since the training is not an one-step End-to-End training, regularization is done by
checking validation error and early stopping. This makes the pretraining easier to
be controlled by human.

Overall, the training steps are summarized as follows,
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. save trained parameters of CNN and RNN

. save predicted outputs of RNN

signal and robot configurations

. doing End-to-End training

. pretraining CNN and RNN for predicting trash position

. pretraining fully connected layers by using predicted outputs of RNN, clock

. save trained parameters of fully connected layers

. load trained parameters from the pretraining steps into CONVRNN

Hyperparameter

The used hyperparameters for this model are given in Tab. [2.2] The final model i.e.
CONVRNN contains 117579 trainable parameters. The hyperparameters can be

varying and are not defined restrictedly for reproducing the results.

Hyperparameter

Pretraining of
trash position

Pretraining of fully
connected layer

End-to-End train-
ing

batch size: 100

batch size: 100

batch size: 100

learning rate: 0.001
decayed by half every
8 epochs

learning rate: switch
from 0.01 to 0.001 and
then to 0.0001 about
every 20 epochs

learning rate: 0.0001
decayed by half every
5 epochs

numpy seed number:
1

no seed: easy to train

numpy seed number:
1

TensorFlow seed num-
ber: 1

no seed: easy to train

TensorFlow seed num-
ber: 1

Table 2.2: Hyperparameters for training CONVRNN.

2.3.2 Switch Approach from CNN + RNN to CNN

Comparison of CNN and CNN + RNN Figureshows the Mean Absolute
Error (MAE) while model is at training phase. The horizontal axis indicates the
training steps. These are only examples not the final loss of the well trained model.
The left red curve illustrates the training loss with single CNN. Its loss converges to
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a higher value than the right blue curve, which is a combination of CNN and RNN.
After few Training steps or even at the beginning of the two curves, the right one
outperforms the left one.

The reason for this is that the position matrices used in and are not nor-
malized. The model with combination of RNN and CNN does not have to normalize
the position matrices, because the output of LSTM has the activation function tanh
and its outputs are zero-centered at range (—1,1). The trash positions in collected
dataset are zero-centered at range (—1, 1) as well. Since the problem of the approach
with a single CNN is found, a second approach with a single CNN is developed and
described in the section. It has less trainable parameters than initial approach and
can be easily generalized for multiple real objects instead of a single object with
special marker.

w

~
o
°
S

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 500 1000 1500 2000

(a) Mean Absolute Error with CNN  (b) Mean Absolute Error with CNN +
RNN

Figure 2.7: CNN vs. CNN + RNN: left red curve CNN, right blue curve CNN +
RNN

2.3.3 Main Approach: Convolutional Neural Network

The basic idea of this approach is highlighting. If the position of expected object
within an image can be highlighted, then the object position in image coordinate
system can be extracted and processed for further use. Figure 2.8 shows an example
overview of this idea. The input can be either a RGB image or a gray scale image.
The model in between should be able to transform the input image to an image
with highlighted object. Once the object is highlighted, the approximate position
of this object can be easily extracted. For a single image, this can be done with a
simple linear transform on the input image. As there are infinite different images
for this work, a CNN can be used for highlighting the expected object in a complex
environment.

The following section describes how the sweeping problem for the trash glued with
a special marker can be easily solved with CNN. Also, the CNN is generalized for
multiple real objects as an extended task.
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highlighted

biect
——  Model objec

Figure 2.8: Highlighting object.

Data preprocessing

The dataset is split into training set and validation set in the same way to pre-
vious work with CONVRNN. The original image has the resolution of 480 x 640
(height xwidth). The right 480 x 480 part of images is cropped, because this can
keep the object height-width-ratio within image, if the image is resized as next step.
Then cropped images are resized to 200 x 200 pixels for computational efficiency.
The base marker is covered as well, which is also performed in previous research
work. An example of the original image and the preprocessed image can be seen in
Fig. 2.9,

-

(a) original image (b) preprocessed

Figure 2.9: Image preprocessing for CNN

Data augmentation

Doing the same task, which TP-DMP can already achieve do not highlight the ben-
efits of this approach. Therefore, the CNN is generalized for multiple real objects
instead of using a special marker object, as the existing model can only be applied
with a marker glued on target object. And doing a lot of demonstrations with real
objects by a human is a boring and inefficient process, the collected dataset is aug-
mented by removing the marker of the target object from the images and inserting
one of the small new image of real objects into the images. The markers in the im-
ages within training set and validation set are removed and replaced with a special
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patch, which has the similar color as desk in the background has. These marker-less
images are used as background images for data augmentation. An example of back-
ground images is shown in Fig. . A small random patch of the background
image will be replaced with one of the images of real objects, which are shown in
Fig. [2.10(c)} [2.10(d)}, [2.10(e)| and [2.10(f)} The full view of the four objects is shown

in Fig. [2.10(b)}

=

(a) background im- (b) four objects
age

(c) (d) (e) (f)

Figure 2.10: Data augmentation

Network architecture

The architecture of CNN is illustrated in Fig. It consists of nine layers, namely
the input layer of image, three convolutional layers, a reduced layer of feature maps,
input of fully connected layers, two fully connected layers and a linear output layer.
The inputs to the neural network are a RGB image and clock signal. The outputs to
be predicted are the nonlinear forcing terms of DMP model [PL17]. Since in order
to preserve the good properties of the DMP model, forcing terms are preferred to
be predicted instead of directly predicting the motor torque. The input image has
a dimension of 120000 (200 x 200 x 3) and the clock signal is a single scalar. Direct
concatenation of image and clock signal as input to a neural network cause the input
features hard dominated by image. Hence, the clock signal is attached into neural
network as an input neuron of the dense layer, as Levine et al. [LFDA16] did this
similar on the robot parameters in their approach.

In order to avoid vanishing gradient problem [Hoc91] and make convolutional layer
learning correct features fast, the convolutional layers are pretrained with the ob-
ject position in image coordinate system as output and image as input. This object
position differs to the predicted object position in CONVRNN. The used object po-
sition as output for pretraining in CONVRNN is collected object position, which is
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conv 3 x 3 stride 1 conv 3 X 3 stride 1  conv 3 x 3 stride 1

reduce mean
—_

Input image

200 x 200 x 3 200 > 200 200 x 200 200 x 200 soft-argmax
FC-32 FC-32
+ +
output ~ ReLU ReLU
o ®o— x
® o— y
[ @« clock signal

Figure 2.11: Architecture of CNN: The input is a RGB image, followed by three
convolutional layers, i.e., convl: kernel size: 3 x 3, stride 1, ReLLU activation, depth
8, conv2: kernel size: 3 x 3, stride 1, ReLU activation, depth 16, conv3: kernel
size: 3 x 3, stride 1, ReLU activation, depth 32. All convolution operations are
performed with SAME Padding. The outputs of last convolutional layer are reduced
using mean value over its last dimension (the channel dimension). A soft-argmax
operation is performed after reduce_mean operator and results a 2D position (z,y)
in image coordinate system. The position is concatenated with clock signal and go
through the fully connected layers. Both fully connected layers have 32 neurons
and ReLLU as nonlinear activation function. The last layer is a linear layer, which
outputs the predicted forcing terms. Hence, the CNN contains a total of nine layers
including input layer and output layer.

defined in real world coordinate system. Both input (image) and output (position)
are rescaled to zero-centered at range [—1,1). For the single object with special
marker, the output position of the marker is calculated by a simple marker detec-
tion algorithm. The data for multiple real objects are augmented by replacing the
patch from background image with new objects. For ease of processing, data are
augmented during training phase instead of doing it off-line. One of the four real ob-
ject images is randomly selected and inserted into a randomly selected background
image from the training set. The validation set is augmented in the same way as
well for validating model.

Recently, a lot of researchers tend to choose smaller kernel size e.g. VGGnet
and Resnet [HZRS16] rather than big kernel size e.g. used in Alexnet [KSHI2]. As
depicted in Fig. [2.11] all convolutional kernels have a small size of 3 x 3 and its stride
is 1. The stride is set to be 1 and SAME padding is used for keeping the size of feature
maps as same as the original image. The reason for this is that the feature maps
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of the last convolutional layer are not concatenated and feed into fully connected
layer as usual, e.g. Alexnet [KSH12]. Instead, a variant of soft attention mechanism
called soft-argmax is applied here, which is introduced in [LFDA16]. The soft-
argmax 'softpicks’ out the position or indices of the maximum value within a matrix
(see Sec. 2.2.3). It transforms a feature map into a probability matrix, then the
probability matrix is element wise multiplied with position matrices. The position
matrices for z and y directions are defined by (2.10) and (2.11)) and its increasing
direction of the values within the matrix differs to and . The increasing
direction depends on the order of predicted positions, i.e., either (horizontal, vertical)
or (vertical, horizontal).

0 0 0
My=(| . . | =100.0)/100.0 (2.10)
199 199 --- 199
01 199
0 1 --- 199
My=(|. . . | ~-100.0)/100.0 (2.11)
0 1 --- 199

Hence, the output positions have higher precision if the matrix or feature map is
bigger. In this work, the output positions are calculated by (2.12)) and ([2.13)), which
are the task parameter and defined in image coordinate system.

r = Z(softmax(F) o M)k, (2.12)
el

Y = Z(softmax(F) o M)k, (2.13)
el

Where o denotes element wise product or Hadamard product, k,{ = [0...199] and
F' is a single feature map, which has to be flattened before softmax, the result of
softmax has to be reshaped back to 200 x 200.

Unlike [LEDA16], an additional reduce_mean operator is added before soft-argmax
is performed. The soft-argmax operator is executed on the single reduced feature
map, so that it outputs only one position pair (z,y), which can be concatenated with
clock signal for further training. The reduce_mean operator is defined by .

F(i,j) = (Y Fali.j)/n (2.14)

Where F' denotes the reduced feature map, F;, is a individual feature map in the
last convolutional layer, n = [1...32], and 4, j = [0...199] are the indices of pixels.
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The fully connected layers are pretrained as well for fast convergence of subsequent
end-to-end training. The fully connected layers are pretrained with the true po-
sitions of the marker in images and clock signal as inputs. The outputs of fully
connected layers are the final outputs. All activation functions are Rectified Linear
Unit (ReLU) in the neural network. Once both convolutional layers and fully con-
nected layers are pretrained, the pretrained weights are loaded into CNN for doing
end-to-end training. The weights of convolutional layers are separately pretrained
for single object with special marker and multiple real objects, but the pretrained
weights of fully connected layers are pretrained only once and used in both marker
object and real objects for end-to-end training CNN.

Training Details

As Figure shows, the CNN has nine layers totally. It is not extremely deep
but also not that shallow. Pretraining provides a way to train deep neural network.
The whole training phase is divided in five stages for two different models. One is
used for sweeping marker object and the other one is able to handling multiple real
objects. Some stages can also be finished before other stages are completed and are
not restrictedly sequential. The five stages are described in following paragraphs.
We trained our CNN by using TensorFlow v1.0 on GPU GTX1060 6G and it takes
about 4-6 hours to train one model. The forward pass of the entire CNN takes about
20ms with python2.7 on GPU GTX1060.

Pretraining fully connected layers: The fully connected layers (FC layers)
have to be pretrained. The inputs to FC layers are task parameters and clock
signal. The tasks parameters are defined for CNN as normalized object position
(z,y) in image coordinate system. The objects positions in collected dataset are
not the expected positions in image space. It denotes the marker positions in real
world. Hence, a simple marker detection program is used to calculate the marker in
image space. Since the original image has a resolution of 480 x 640 and the inputs
image to CNN is 200 x 200, the calculated marker positions should be normalized
to range [—1,1). The positions for both x (horizontal) and y (vertical) directions
are normalized with (2.15)). The —160.0 for y direction is the offset after cropping
images in image preprocessing, which can be seen in Fig. . The normalized
positions are concatenated with clock signal and passed to fully connected layers.
The outputs of fully connected layers are the final forcing terms that needs to be
predicted in the entire model.

& = (Zraw — 240.0) /240

2.15
Y = (Yraw — 160.0 — 240.0) /240 (2.15)

Where 2,4, and ¥4, denote the raw positions, which are located at range [0,479)
and [0,639). z and y are the normalized positions in horizontal and vertical direc-
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tions.

The used gradient descent optimizer is Adam Optimizer [KB14]. The first moment
is set to be 0.9 and the second moment is set to be 0.999. The epsilon is set to be
le-8 for numerical stability. The batch size is always defined as 100 is. The learning
rate starts at 0.01, switches to 0.001 and ends at 0.0001 in every 20 epochs. If the
validation error stops decreasing or even starts increasing, then the training process
could be early stopped. The training set is random shuffled after every epoch. The
loss function is defined as mean absolute error. All weights and biases are initialized
with Xavier initializer [GBI0]. The trained weights and biases are saved as a 'npz’
file for later use. The 'npz’ file is a type of binary file, which can be used in python
for storing arrays.

Pretraining convolutional layers for marker object: Pretraining convolu-
tional layers is kind of slower and harder than pretraining fully connected layers,
because it has high dimensional input, which is a RGB image. The pixel intensity is
normalized by using . The output of pretraining the convolutional layers is the
normalized positions in image space, which are used as part of input for pretraining
fully connected layers.

Where I denotes a digital image, ¢ is the channel index and ¢j are the indices of
horizontal and vertical direction.

The used batch size and optimizer are the same as in pretraining fully connected
layers. The first and second convolutional layers are initialized with Xavier initial-
izer and the last convolutional layer is initialized with constant 1.0. The Xavier
initializer is also used to initialized the bias of the first convolutional layer. The
remaining biases are initialized with constant 0.0. Mean Squared Error is the loss
function and the training set is shuffled after every epoch as training fully connected
layers. The learning rate starts at 0.001 and ends at 0.0001 decayed by half every
3 epochs. The training process takes long time. To check if training process goes
in the right direction, feature maps can be observed by human for making decision
whether the training process can be continued or start a new training with another
hyperparameters. The training error is a indication as well. Once the convolutional
layers are well trained, its weights and biases are saved into a npz’ file.

End-to-End training CNN for marker object: The end-to-end training for
CNN is trivial. It connects the convolutional layers and fully connected layers and
loads the pretrained weights and biases from the previously saved 'npz’ files. Then
the model is trained end-to-end with a RGB image and clock signal as input and
the forcing terms as output. The settings of hyperparameters is same as pretraining
convolutional layers. The only difference is that in this case the weights and biases
are loaded into neural network instead of random initialized.
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Pretraining convolutional layers for multiple real objects: Since there is no
dataset for real objects available, the dataset of marker object is augmented, which
is described in Sec.[2.3.3] The dataset is augmented during training one by one. One
marker-less image is and randomly selected from training set as background image
and a real object is randomly selected from prepared four objects as well. A random
patch of the background image is replaced with the real object image associated
with center position of the patch. The center position of the patch is randomly
generated in batch size of 100 and is bounded at range [50, 150] for avoiding out of
edge of background image while replacing. An example of augmented pretraining
convolutional layers is shown in Fig. 2.12. The augmented image is passed into
convolutional layers for pretraining. The other settings and preprocessing steps
are the same to pretraining convolutional layers for marker object. The pretrained
weights and biases are saved into a 'npz’ file.

Figure 2.12: Augmented image for pretraining

End-to-End training CNN for multiple real objects: Unlike pretraining
step, the forcing terms are the outputs of CNN. The available dependency to forcing
terms is the image with marker object, which is collected by TP-DMP model [PL17].
Hence, a random selected patch from background image can not be used in this case.
Instead, the extracted marker positions are used for replacing patch with real ob-
jects. This is approximately equal to that the markers in the collected dataset are
replaced with new real objects. An example of augmented pretraining convolutional
layers can be seen in Fig. 2.13. As it shows, the marker is replaced with the new
object approximately. The background images inside of validation set are also ran-
domly replaced with real object for validating model during training. In this training
step, the same pretrained weights and biases of fully connected layers are loaded for
initialization of fully connected layers of CNN. Also, the pretrained weights and bi-
ases of convolutional layers for real objects are loaded into CNN. The other settings
are the same to end-to-end training CNN for marker object.

Overall, the training steps are summarized as follows,
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Figure 2.13: Augmented image for end-to-end training

1. pretraining fully connected layers by using normalized true positions in image
space and clock signal for predicting forcing terms

2. pretraining Convolutional layers for predicting object position in image space
3. load pretrained weights into whole architecture

4. doing End-to-End training

Optimization after training

Smoothing: In order to avoid oscillation of predicted positions (z,y) shown in
Fig. [2.11] a low pass filter is used for smoothing the positions on the trained CNN.
The filter is defined by (2.17). The smooth coefficient for this work is set to be 0.3.

(2,y) = (2, Y) current + (1 — @) (T, Y)prew (2.17)

Where (2,Y)current 1s the current prediction of position, (z,y)pre, is the previous
filtered position and « denotes the smooth coefficient, which is at range [0, 1].

Filtering: During training phase, all mathematical operations must be differen-
tiable if gradient descent based optimization algorithm is used. In order to make the
CNN more robust after training, the soft-argmax operator is performed on a small
window of the reduced feature map instead the whole reduced feature map (see the
gray scale image of the 5th layer, top-right in Fig. [2.11]), which is used in
in a similar situation. The center position of the small window is the position of
strongest activation in the reduced feature map. This avoids the oscillation of pre-
dicted positions in image coordinate system while robot is moving or some other
objects is appearing in the camera view. The predicted position could be "pulled’
away by some pixels without this filtering window. As long as the strongest activa-
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tion is located at the target object, the CNN should be able predicting the position
robustly.

Avoiding jumping: If the strongest activation in the reduced feature map is
changed due to some other noises e.g. human’s clothes during executing motion, it
could completely destroy the model prediction. To avoid this negative effect, the
predicted position is compared to the previous prediction. The absolute difference
between them is bounded. If the current prediction is out the boundary, then it will
be discarded and the previous prediction is used for predicting forcing terms. To
ensure the first prediction of position is correct, a program for checking strongest
activation in reduced feature map can be used before executing motion.

Hyperparameter

The used hyperparameters in this work are given in Tab. [2.3] The final model i.e.
CNN contains 7315 trainable parameters. The hyperparameters can be different
and are not defined restrictedly for reproducing the results.

Hyperparameter

Pretraining of con-
volutional layers

Pretraining of fully
connected layer

End-to-End train-
ing

batch size: 100

batch size: 100

batch size: 100

learning rate: 0.001
decayed by half every
3 epochs until 0.0001

learning rate: from
0.01 to 0.001 and then
to 0.0001 about every
20 epochs

learning rate: 0.001
decayed by half every
3 epochs until 0.0001

numpy seed number:
1

no seed: easy to train

numpy seed number:
1

TensorFlow seed num-
ber: 1

no seed: easy to train

TensorFlow seed num-
ber: 1

Smooth coefficient: o = 0.3

Filtering window size: 41 x 41

Allowed jumping pixels: <=5

Table 2.3: Hyperparameters for training model and optimization after training.
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Chapter 3

Evaluation

3.1 Experimental Setup

Communication Interface: The well-trained model needs to be evaluated on
real KUKA robot. Since the robot computer has a slow GPU, the deep learning
model has to be executed on high performance PC. A Server-Client communication
interface is implemented between neural network and robot PC by using ROS (Robot
Operating system) library. An overview of the communication interface is illustrated
in Fig. The DMP model is running on robot pc and a client program is integrated
into DMP model. The server PC builds the deep learning graph (model) and is
listening for request. The client sends clock signal as request to deep neural network,
then the server captures the current image from camera and passes the received
clock signal and captured image to neural network for computing forcing terms.
The predicted forcing terms are sent back to client side. Finally, the DMP uses the
forcing terms and sends command to robot controller for executing motions.

Robot Camera

image

response: forcing terms

2

Client e——mmmm™m  — Server
DMP ~~——W0 =~ Neural Network

request: clock signal

Figure 3.1: Communication interface: interaction between DMP model and deep
neural network using Server-Client pattern on ROS (Robot Operating System).
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Set up camera position: The camera position is fixed and has to be set at the
same position as data collecting phase. Figure |3.2] shows where the camera should
be located at. Once the green square is around the base marker, the camera is about
to be set up. The camera position is very important before executing any motions.
A wrong camera position directly affect the performance of the deep learning model,
because the model has to predict object position.

Figure 3.2: Check camera position: the green square is indication of camera pos.

3.2 Evaluation with CONVRNN

3.2.1 Evaluation on Dataset
Trash Position of Training Set

As CONVRNN are pretrained for predicting the trash position. The true position
and predicted position in training set are shown in Fig. [3.3] and the motions are
separated by small gap. The horizontal axis is the number of samples and the ver-
tical axis indicates the trash position in real world coordinate system. The training
set has 45 motions, as described in Sec. 2.1l The top diagram shows the position
of horizontal direction (x) and the bottom diagram shows the vertical direction (y)
(see Fig.[2.4). The Mean Absolute Error in both directions is given as follows:

x : 0.00395642772795
y : 0.00490720878207
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Figure 3.3: Curve fitting of marker position in training set
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Figure 3.4: Curve fitting of marker position in validation set
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Trash Position of Validation Set

Figure shows the true trash position and predicted trash position in validation
set. Since the trash is not a single point within images, the predicted distribution of
trash position is noisy. Overall, the true distribution is well fitted by the predicted
curves. The mean absolute differences in both directions are given as follows:

x :0.00641358980841
y : 0.0067520192803

Feature Maps

As convolutional layers are used in CONVRNN, it is necessary to evaluate the
feature maps (also called response map) after each convolutional layers. Figure
shows the feature maps of the first convolutional layer. Each map has the shape of
198 x 198 and 64 maps are shown as a merged 8 x 8 image. Figure |3.6| shows the
feature maps of the second convolutional layer. Each map has the shape of 97 x 97
and 64 maps are shown as a merged 8 x 8 image. These can be seen in Fig.
as well. In the first two convolutional layers, the model can already recognize the
trash marker. The goal position i.e. the dustpan is recognized as well, because
it could be a relevant information for predicting the trash position. The feature
maps of third convolutional layer are shown in Fig. These feature maps have
the resolution of 95 x 95 and 16 maps are merged into a single 4 x 4 image. The
function soft-argmax picks out the strongest activation (largest pixel intensity) at
each map. These feature points are marked with small red circle in Fig. [3.7 In the
most feature maps, the strongest point is located at the trash. But three feature
maps are different here, i.e., the 10th one, the 13th one and the last one (counted
from left to right and top to bottom). The 10th neuron is "dead”. This is the side
effect of ReLU function, as described in Sec[2.2.2] It is hard to prevent this side
effect, even the model is trained with a small learning rate or uses another variant
version of ReLLU e.g. Leaky ReLLU. The 10th and 13th feature maps are stable, i.e.,
the strongest activation are almost located at the same point during whole motion.
The red point in the last feature map oscillates a little bit around the end effector
of robot. Not all the feature points have to be located at the trash marker, because
these feature points are the inputs of RNN (see Fig. and RNN treats them as a
sequence. The memory cell inside the RNN can learn to store important information
from its inputs. Figure 3.8 shows the first feature map of the last convolutional layer
of a moving scenario. The model is able to tracking the trash in real time (marked
red circle in Fig. . The final predicted distribution of trash position against the
true distribution (see Fig. and Fig. indicate the successful prediction of trash
position.
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Figure 3.5: Feature maps after first convolutional layer
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Figure 3.6: Feature maps after second convolutional layer
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Figure 3.7: Feature maps after third convolutional layer
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) time step 0 ) time step 1 ) time step 2 ) time step 3 ) time step 4

) time step 60 (g) time step 100 ) time step 200 ) time step 240 (j) time step 280

(k) time step 320 (1) time step 360 ) time step 400 (n) time step 440 ) time step 479

Figure 3.8: First feature map after third convolutional layer of a motion at different
time step

Forcing Terms

The performance of trained model can be seen on the evaluation of forcing terms.
The predicted forcing terms and its true values of training set and validation set are
shown in Fig. and Fig. 3.9 The predicted forcing terms are not filtered and
oscillate a bit. The Mean Absolute Error is given as follows:

Training set: 0.0832534965982
Validation set: 0.126778447162
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Figure 3.10: Curve fitting of forcing terms in training set

3.2.2 Evaluation on Robot

The model is evaluated with a lot of executed motions on real robot. Two example

motions are shown in Fig. [3.11]

The blue curves indicate the predicted forcing
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terms from CONVRNN and the red curves are the predicted curves from GMM.
The target marker object is first located at the left boundary of predefined region
and the predicted forcing terms can be seen in the left plotting of Fig. [3.11} As
the curve shows, GMM and CONVRNN generate similar motions, which means the
CONVRNN has learned the behavior from GMM. Since the predicted forcing terms
from CONVRNN is unfiltered, the curve seems not smooth. The right plotting shows
the motion where the marker object starts at the right boundary. The curves have
some spiking point (forcing term3 at about time step 850), but the model correct
itself back to the right state and finishes the motion successfully. The recorded
videos are stored in DVD.

GMM vs. CONVRNN GMM vs. CONVRNN
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Figure 3.11: GMM vs. CONVRNN, left: marker at left boundary, right: marker at
right boundary

3.3 Evaluation with CNN

3.3.1 Error of End-to-End Training

The loss function of end-to-end training for both marker object and multiple real
objects is MSE. The difference between predicted value and true value in MSE equa-
tion is powered of 2. But MAE computes the direct mean value of the differences.
So the MAE is better to be used for visualization of the error.

Figure illustrates MAE during the end-to-end training for marker object (left
plotting) and real objects(right plotting). The error for marker object converges to a
lower value than for real objects, i.e., the model for multiple real objects is harder to
learn than for a single marker object. It can also be seen that the error of end-to-end
training still goes down after pretraining convolutional layers and fully connected
layers. This is to say, doing end-to-end training as last training step improves the
pretrained model significantly.
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Mean Absolute Error for end-to-end training with marker object Mean Absolute Error for end-to-end training with real objects

0 100 200 300 400 500 0 200 400 600 800
training step training step

(a) Mean Absolute Error for marker ob- (b) Mean Absolute Error for multiple
ject real objects

Figure 3.12: End-to-End training loss, left: marker object, right: real objects

3.3.2 Evaluation on Dataset

This section describes and shows the evaluation results on collected dataset and
preprocessed dataset. The part of training error is illustrated as well.

Object Position in Image Space

Since the predicted positions are some values in image coordinate system, it is mean-
ingful to evaluate the errors and accuracies of positions in training set and validation
set. The predicted position corresponds the (z,y), which is shown in Fig. 2.11] The
unit of error is pixel and the accuracy is stated in percentage. Hence, the task pa-
rameters (z,y) are de-normalized from range [—1, 1) to [0, 200) for adjusting the unit
of error in pixel. Both horizontal and vertical directions of position are evaluated
separately. The error is computed by averaging the differences between predicted
positions and true positions either over whole training set or validation set. The
resolution of the reduced feature map is 200 x 200, so 200 pixels is used as reference
value. The equation of the accuracy of predicted position is defined by (3.1)).

error
A =(1—- —) x 100 3.1
ceuracy = ( 200pi:cels) . (3.1)
Positi Marker Real Objects
osttion horizontal | vertical | horizontal | vertical
Trainine set Error in pixel 1.36 4.53 2.28 12.12
& Accuracy in % 99.32 97.74 98.86 93.94
o Error in pixel 1.42 4.27 2.27 11.96
Validation set |\ acyin % | 9929 | 97.87 | 9886 | 94.02

Table 3.1: Errors and accuracies of predicted positions in image coordinate system
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The results after pretraining convolutional layers are given in Tab. [3.1] Horizontal
and vertical correspond to de-normalized z and y in Fig. .11} It can be seen, the
accuracy for a single marker object has is higher than for real objects and the vertical
direction is harder to learn than horizontal direction.

Feature Maps

(a) feature maps after first (b) feature maps after second
convolutional layer convolutional layer

Figure 3.13: Feature maps

As convolutional layers are used in CNN; it is necessary to evaluate the feature
maps (also called response map) after each convolutional layers. An example of
the activated feature maps after ReLU operation for three convolutional layers and
the reduced feature map after convolutional layers are shown in Fig. and [3.14]
Since the size of feature maps is not decreased at every layer, all the feature maps
are human readable. The model starts learning some overall features in the first
convolutional layer and the target object already get strong activated in the most
feature maps in the second layer, which can be seen in Fig. [3.13|(a) and Fig. [3.13|(b).
Figure [3.14a) shows the feature maps after the third convolutional layer. The
target object (marker) is strong activated and all feature maps look similar. There
are only minor difference between these feature maps. Hence, it is also possible to
directly pass one of these feature maps into soft-argmax operation (see. Fig.
for computing expected position. In order to make the final reduced feature map
more robust, the mean value of these feature maps is used, which can be seen in
Fig. (b) Another alternative is passing 32 extracted positions from the 32
feature maps to the soft-argmax, but the position of strongest activated pixel with
respect to the 32 feature map varies 1-2 pixel to each other. It doesn’t bring much
more useful features compared to use only one feature map as experimented and
makes the dense layer converging slowly. Each layer is a representation of input in
neural network, but the top layers provide more informative features than bottom
layers. So the extracted features of first convolutional layer and second convolutional
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layers are not considered to be ’soft-argmaxed’ and concatenated with clock signal
for further end-to-end training.

(a) feature maps after last convolutional layer

(b) reduced feature map

Figure 3.14: Feature maps

Forcing Terms

The final output of CNN is the forcing terms. The predicted forcing terms are
first evaluated on collected validation set and training set. The results are shown
in Fig. [3.15] and Fig. |3.16| The validation set consists of 5 motions, which can be
known by looking at the broken curve of 'forcing term2’ in the middle plotting. The
training set has 45 motions. The red curve indicates the forcing terms in collected
dataset and the blue curve is predicted by CNN. The horizontal axis is just a sample
counter, which means e.g. the validation set has about 2400 observations totally and
each motion contains about 480 samples. As the figure shows, the curves of predicted
forcing terms fit the true curves well in both validation set and training set.

The corresponding quantitative results of Fig.[3.15and Fig.[3.16|are given in Tab.
The errors are calculated by averaging the absolute difference of each observation for



42

CHAPTER 3. EVALUATION

three forcing terms respectively. The approximation of accuracies is defined by (13.2)).

Where the denominators is computed by averaging the absolute value of each forcing

Accuracy = (1 — T ) x 100

Denominator

term in training set respectively.
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Figure 3.15: Curve fitting of forcing terms in validation set
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Figure 3.16: Curve fitting of forcing terms in training set
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Forcing terms Marker Real Objects
1 2 3 1 2 3
Training set Error. 0.0375 | 0.0429 | 0.1988 | 0.0793 | 0.0917 | 0.5115
Accuracy in % | 90.21 | 98.47 | 91.73 | 79.29 | 96.72 | 78.73
Validation set Error 0.0474 | 0.0384 | 0.2791 | 0.0883 | 0.0933 | 0.5851
Accuracy in % | 87.62 | 98.63 | 88.40 | 76.94 | 96.67 | 75.67
Denominator 0.3829 | 2.7950 | 2.4051 | 0.3829 | 2.7950 | 2.4051

Table 3.2: Errors and accuracies of predicted forcing terms
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Figure 3.17: GMM vs. CNN, left: marker at left boundary, right: marker at right
boundary

3.3.3 Evaluation on Robot

In order to check the performance of trained CNN on real robot, the model is
evaluated in different scenarios.

Firstly, it is necessary to make sure that our CNN has learned the correct behavior
from collected data set such that it can reproduce the results of TP-DMP in [PL17].
Both GMM model and CNN model are used for executing motions on Alvar marker
object. The marker object is first located at the left boundary of predefined region
and then at the second running it is moved to the right boundary. The predicted
forcing terms are shown in Fig. [3.17 The blue curves indicate the predicted forcing
terms of CNN and the red curves are from GMM model. The prediction of CNN
is not filtered with in this experiments, because it is good to see how robust
the CNN can perform. As the figure shows, the predicted curves oscillate a little bit
but at the right range, i.e. the predicted task parameters (z,y) are located at the
marker object in reduced feature map but not that robust (in fact, the human eyes
can not recognize, whether the robot end effector is oscillating or not). An example
of the executed motions is shown in Fig. [3.18 Images of different time steps and its
corresponding reduced feature maps are picked out and shown in Fig. [3.18]
Secondly, the CNN is evaluated on real objects. Figure [3.19 shows the executed
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Figure 3.18: Executing motion with marker object: The red circle denotes the
expected position of marker object in image coordinate system

motion with one of the trained real object, in this case a wash sponge. The red rect-
angle at the top left image in Fig. depicts the approximated predefined region
of target object in collected data set. As the images show a successful trajectory,
our CNN has good performance on real object even at out of predefined range as
well.

Figure 3.19: Executing motion with real object and the start position of object is
out of range of collected data set. The red rectangle indicates the approximate range
of start positions of target object in collected data set.

As next step, some disturbance with human hands is added into camera view and
the position of wash sponge is changed in real time. The result is shown in Fig.|3.20]
The wash sponge is pull and pushed by human hand after starting execution. The
directions of pulling and pushing are depicted with red arrows in Fig.[3.20, The end
effector of robot can follow the changing direction of the wash sponge and push it
into dustpan successfully. The predicted corresponding forcing terms to Fig. [3.20
is illustrated in Fig. |[3.21] The forcing terms are displayed at vertical axis and the
horizontal axis shows the time steps during executing motion. At about time step
200, the first forcing term and the third forcing term begin to change its trend that is
caused by changing the sponge position, which also can be seen in Fig.[3.20] At this
time, the low pass filter defined in is added into CNN compared to previous
evaluation on marker object (see Fig. before passing the predicted position into
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fully connected layers. The curve of predicted forcing terms becomes stable again
after about time step 650, because the position of the object is not pushed or pulled
anymore by human. After the experiment, the curve of predicted forcing terms are
still smooth and has no spiking points (no jump points), even human moves the
wash sponge in real time.

(f) time step 500 (g) time step 600 (h) time step 900 (i) time step 1200 (j) time step 1599

Figure 3.20: Moving object with disturbance at different time steps. The red arrows
indicate the pull or push direction during executing motion.

More evaluations are available in attached DVD.
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An example of predicted forcing terms
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Figure 3.21: Forcing terms of moving object with disturbance
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Discussion

Covering base marker: The base marker is used in [PL17] for localization of
target object during collecting data. It was glued on the desk and can be removed
when CNN is applied for permanent use on the robot. In the image preprocessing,
the base marker is removed from images because of high similarity to target marker.
Figure [4.1] shows the impact of base marker of an example motion from collected
dataset. The predicted forcing terms can jump at some time step, which can be seen
in Fig.[1.1(a)] But the prediction in Fig.[4.1(b)|has no jump compared to Fig. [1.1(a)]
if the base marker is covered. This is to say, the predicted position jumps from target
marker object to base marker when the base marker is not covered. The base marker
doesn’t affect the training error significantly, if the base marker is covered during
training, because the base marker leads to wrong prediction only at few time steps,
as it can be seen in Fig. . But it is not safe for evaluation on real robot. Hence,
it is necessary to cover the base marker.

true curve vs. predicted curve true curve vs. predicted curve
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Figure 4.1: Impact of base marker: comparison predicted motion with base marker
and without base marker
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Clock signal vs. clock signal + robot configurations: During collecting
data, a lot of additional parameters e.g. joint angles are also collected. After
research work, the only used parameter is clock signal. This is same as it used
in [PL17] and the dataset is collected by using [PL17] as well. At research phase,
several models are trained with joint angles or end effector positions. These models
work well on training set and validation set but not on real robot. It seems like
that the models are overfitted. As the trained models are tested by varying the
input features e.g. images, clock signal, joint angle. The result is that these models
are hard dominated by joint angles. The models can still predict the correct forcing
terms approximately even with wrong images as input. This is to say, the prediction
depends more on joint angles while robot is moving, which cause that robot can not
find the object position in image. But the object position is a important dependency
of forcing terms, because the collected forcing terms are calculated with clock signal
and task parameters [PL17]. Hence, besides images only clock signal is used as input

to CNN.

CNN vs. CONVRNN: The CONVRNN is also running on real robot success-
fully but only for the marker object. The initial researched CONVRNN model is
discarded when the main approach CNN is successfully developed. Firstly, the CNN
has only 7315 trainable parameters, which is much less than CONVRNN that has
117579. The program speed is improved with CNN. Secondly, the feature maps af-
ter last convolutional layer in CONVRNN are different to each other and also have
a 'dead’ feature map. In contrast to CONVRNN, the CNN has only one reduced
feature map at the end. The predicted positions can be easier controlled with a
single feature map by adding some conditions, e.g., bounding the predicted position

in reduced feature map. Hence, The second developed approach is much better than
CONVRNN.

Reduce feature map vs. 32 feature maps: Levine et al. [LFDAT6] have shown
that the model performs better by using extracted feature points than directly using
predicted position. Since in this work, a different pretraining of convolutional layers
method is used. The feature maps in the last convolutional layers look all similar
to each other. A model with extracted 32 positions is also trained during research.
It worked on real robot, but has less accuracy. Also, the 32 predicted positions are
harder controlled, e.g. smoothing positions compared to a single position for robot
safety. The soft-argmax costs more binary operations on 32 feature maps than one
reduced map, which slows the forward pass of CNN. Hence, the reduced map is
passed into soft-argmax operation instead 32 feature maps.

Number of objects: Two different models are developed. One is for single marker
object. The other one is for multiple human selected real objects. As Tab. shows,
the accuracy of a single object is much higher than multiple object, even though the
marker object has similar color to the environment color. The convolutional kernel
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in a Convolutional Neural Network is shared over each feature map. So the same
intensity of several different pixels should be activated into same value in feature
maps. As all pixels of a object can not have the same intensity value, CNN is able
to learn some useful pixels and discard noisy pixel. Hence, the marker object can
also be learned. But increasing the number of different objects makes this learning
procedure more harder.
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Chapter 5

Conclusion

This thesis shows how Task Parametrized Dynamic Movement Primitives can be
modeled by using Convolutional Neural Networks. Even out of value space of col-
lected dataset, the developed model still performs well. More specifically, the model
is generalized for multiple real objects by using data augmentation. The power
of Convolutional Neural Networks for visual task and data augmentation are way
confirmed in this work.

As the proposed approach performs much robust on object positions, the vision part
can be used for doing different tasks in the future, e.g. grasping object. It can be
also extended for more difficult sweeping tasks, e.g. classifying different multiple
real objects and pushing into different collection points.
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CHAPTER 5. CONCLUSION
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