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Abstract—Electrification and on-demand services are one of 

the main driving forces within the current automotive sector.  

This paper presents an approach to modeling and simulation of 

on-demand applications on the example of an electric taxi fleet. 

With regard to the high daily mileage and just the same idle 

times, the characteristic mobility behavior of taxis offers ideal 

conditions for electrification. To support decision-making during 

strategic and operational planning, this paper suggests a 

stochastic model based on an agent-based simulation approach. 

The simulation engine consists of an event-driven architecture. 

Customer demand requests, a customizable fleet configuration 

and infrastructure settings form the main input interface. The 

simulation output describes use of the infrastructure and the 

spatial and temporal behavior of each agent.   

We verify our basic model design first with a combustion engine 

powered taxi fleet. An additional scenario with electric vehicles 

provides insights into feasible electrification strategies for the taxi 

system in Munich. The strength of the proposed model is its 

distributed, behavior-driven architecture. This is especially 

useful for on-demand fleets, as these mobility systems are 

characterized by a mixture of centralized and decentralized 

knowledge bases.  The whole system behavior results from 

dynamic decision making. Our approach can be used to evaluate 
various mobility-as-a-service concepts. 

Keywords—On-demand mobility; mobility-as-a-service; agent-

based simulation; fleet simulation; electromobility; electric fleet; 

taxi, Vehicle Routing Problems with Pickups and Deliveries 

I.  INTRODUCTION 

Increasing urbanization and stricter environmental 
regulation require a rethinking of existing transportation 
systems. Cities are forced to find new sustainable solutions to 
handle rising mobility demand [1]. Future mobility systems 
must have a minimal environmental footprint and ensure a high 
level of service quality for the customer. It is an ongoing 
challenge to use the existing infrastructure more efficiently, 
since space in urban areas is limited. Sharing concepts can 
make a positive contribution here [2]. 

Progress in technology will also change the way we organize 
our mobility [3]. The expansion of the internet of things helps 
optimize transportation tasks on an operational level. One of 
the ongoing challenges is realization of a seamless integration 
of different modes of transport [4].  
Introduction of stricter environmental regulations will promote 
electric vehicles, as an electrified powertrain by definition has 
zero local emissions [5]. 

In this paper we take a closer look at an electrified taxi 
operation. A traditional taxi service is integrated into the public 
transportation network. It is a well-established example of a 
shared mobility system. Due to high daily and annual mileage, 
especially taxis offer a great opportunity for electrification. 
However, introduction of electric taxis is challenging. One 
reason is the well-known “chicken and egg problem” between 
vehicle propagation and growth of the infrastructure. There is a 
high dependency between the provided infrastructure and the 
chosen vehicle concept.  

To evaluate different scenarios in a prompt, economical 
manner, simulation models are used. In doing so, technical, 
ecological and commercial issues can be addressed. Depending 
on the planning issue, it is of special importance to represent 
system dynamics at an appropriate level of detail. Creation of 
various model variations in a short time requires a modular 
architecture. Furthermore, it is important to reflect key cause-
effect relationships on a suitable level of precision and to 
manage the computational effort at the same time. 

Typical planning questions in an electric taxi system are related 
to infrastructure, vehicle concept and service design. Seen from 
an infrastructural point of view, it has to be sorted out, how 
many charging points are needed for a given fleet configuration 
and where these charging stations should be located. Seen from 
the vehicle concept point of view, it has to be evaluated which 
powertrain configuration fits best for a given usage pattern. In 
addition to these technical design issues, it is also important to 
investigate how the behavior of taxis and the quality of the 
mobility service changes. One obvious behavioral adaption is 
the introduction of charging activities. We assume that taxi 
drivers, the taxi company owners and the customers accept 
only minor changes to their daily workflow or the service 
quality provided.  

II. RELATED WORK 

Because the mobility demand of fleets is stochastic in 
nature [6], fleet simulation models typically use Monte-Carlo 
methods. Service orientated on-demand planning issues are 
often related to a dial-a-ride problem [7].   
Kümmel [8] classifies taxi dispatching as a multi depot 
multiple vehicle capacitated dynamic vehicle routing problem 
with pickup and delivery time windows and deniable customer 
requests. 
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A. Strategic Planning 

Bischoff [9] presents an approach simulating electric taxis 
with help of the agent-based, mesoscopic traffic simulation 
MATSim [10]. The simulation model includes an average 
speed-based energy consumption model and a dynamic vehicle 
dispatching unit. In MATSim, each transport entity is seen as 
an individual agent that is capable of interacting with 
surrounding agents and its environment. To describe the 
spatial-temporal mobility behavior, each taxi agent 
dynamically creates his own activity plan using a vehicle 
routing engine. The primary goal is to investigate implications 
for various demand scenarios and dispatch strategies.  
Sellmair [11] looks closer into the optimization of the charging 
infrastructure design for electric taxi fleets. The basic idea is to 
maximize the economic benefit by minimizing the number of 
charging stations. His approach consists of an event-based 
simulation to represent the mobility behavior of a taxi fleet in 
Munich and an economic analysis.   
Gawlik et al. [12] investigate grid-related consequences of 
broad electrification in an urban area. To answer this question, 
it is assumed that the whole taxi system in Vienna is operated 
with electric vehicles. A fleet simulation with electric vehicles 
allows calculation of load profiles.  
Garcias [13] uses mixed integer programming for designing an 
electric taxi fleet. He focuses on the charging infrastructure and 
vehicle dispatch optimization.  
Chen [14] presents a multi agent-based approach for managing 
an electric taxi fleet. His model provides a solution to solve the 
dial-a-ride problem with the help of the simulation framework 
Anylogic [15]. Several simulation runs evaluate the 
relationship between passenger waiting time and design of a 
shared electric taxi fleet including its charging infrastructure.  
Čertický [16] proposes an open-source, agent-based simulation 
testbed for demand-responsive transportation applications. The 
testbed is built on top of the AgentPolis Simulator [17]. A 
modular system architecture enables evaluation of centralized 
and decentralized, static and dynamic algorithm for passenger 
allocation and vehicle routing problems. Scenarios with a 
single ride and ride shared taxi operation confirm the basic 
functionality of the system.  
Van Lon [18] introduces a generalized, agent-based simulator 
for a wide range of transportation and logistics problems such 
as the pickup delivery problem. Special focus is put on a 
modular, encapsulated and test-driven architecture.  

B. Operational Planning 

Operation of fleets is typically controlled by a fleet 
management system. The main tasks are order management 
and vehicle dispatching. The dispatch problem falls into the 
class of scheduling problems that is typically addressed within 
operational research domain [19].   
Lee [20] proposes a discrete, event-based simulation to 
evaluate dispatch algorithms and relocation efforts of electric 
vehicles.  
Lu [21] introduces an algorithm for dispatching battery electric 
vehicles. The proposed strategy considers the taxi demand, the 
remaining range of electric vehicles and the occupancy rate of 
the charging infrastructure.  
Mirchandani [22] gives an overview of the logistical issues 
related to deploying electric vehicles with battery swapping.   

Qu [23] proposes a discrete event-based Monte Carlo 
simulation to represent the operational behavior of electric 
taxis. His work investigates the charging influence on the 
electric grid.  
Dutta [24] investigates the possibility of exchanging energy 
between electric taxis via inductive charging.  
Tian [25] analyzes the usage pattern of 600 electric taxis in 
Shenzhen. Special focus is put on operational and charging 
behaviors. Tian [26] further introduces a real-time charging 
station recommendation system for electric taxis using data 
mining. Its prediction is based on historical recharging events 
and real-time trajectories.   
Hou [27] suggests a shared electric taxi system that allows 
passenger transfer at specific hubs. Mixed-integer 
programming is applied to maximize the number of transported 
passengers per time period. 

III. APPROACH 

This paper addresses long-term and short-term planning 
questions for electric vehicle fleets. The approach presented 
can be used for decision making processes in order to electrify 
taxi fleets for a selected region.  

Unlike existing approaches, we suggest an agent-based, 
demand-driven, decentralized fleet simulation model that is 
capable of representing dynamic, complex interactions between 
different participants on a mesoscopic level. Depending on the 
knowledge and skill level, each agent has its own behavior. All 
agents are acting independently of each other. Taxi agents, for 
example, get to accept or deny order requests. This way, the 
simulation becomes especially adaptable and flexible.  

A. Role definition  

The following paragraph addresses the basic concept. The 
chosen methodology is oriented toward the Multiagent Systems 
Engineering (MaSE) technique [28]. First we define actors and 
related tasks within the system. Fig. 1 shows a common 
scenario for the proposed electric taxi fleet simulation system.  

 
Fig. 1. UML use case diagram for the proposed electric taxi system 

Main roles are given by customer, driver, vehicle, fleet 
management agency and further infrastructure facilities, such 
as stops or charging stations. In a typical pickup and delivery 
system, a customer requests a mobility service by contacting a 
fleet agency or by hiring a vehicle directly from the roadside. 
The order communication procedure includes information on 
the desired pickup time, the location and the number of 
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passengers. The fleet agencies’ management system 
permanently collects and schedules all customer requests. 
Close to the scheduled service time, the fleet management 
system offers the pending order to a selected number of drivers 
and waits for a proposal. After a defined period of time, the 
agency evaluates received proposals and finally chooses the 
best matching offer. The winning vehicle is informed, picks up 
the customer and brings him to his desired destination. At that 
time the mobility service is terminated and the driver chooses 
his following activities. In the idle state the vehicle typically 
waits at stops (e.g. taxi stand or point of interest). Electric 
vehicles also may spend the waiting time at a charging station. 
Table I summarizes responsibilities for each role. 

TABLE I RESPONSIBILITES IDENTIFICATION 

Actor Responsibility 

Agency Receives order requests 

Agency Schedules order requests 

Agency Dispatches order requests 

Agency Controls fleet status 

Vehicle Sends updated status information to agency 

Vehicle Provides physical passenger transport 

Driver Responds to mobility service requests 

Driver Performs driving task 

Driver Ensures legal compliance with working hours 

Customer Places mobility service order 

Charging Station Provides a charging opportunity 

Stop Provides parking space 

B. Agent and Ressource Definition  

In the next step, we separate the system into active and 
passive components. An active component is described by a 
complex behavior, while passive elements show only primitive 
features. We model active elements as agents and passive 
elements as objects placed in a given environment. Each agent 
has its own life cycle and its own decision-making module. 
Interfaces provide interaction with other entities.  
In our electric taxi model we define two types of agents. We 
aggregate the vehicle and driver role and refer to this 
combination as taxi agent. This choice is made since a taxi 
shows complex behavior by providing the practical mobility 
service to its customer.   
The second agent type is the fleet agency. The reason for this 
choice is its large number of communication interfaces as well 
as complex scheduling and dispatch algorithms. 

All infrastructural roles are modelled as passive elements. A 
stop is part of the environment and provides a limited capacity 
of parking spaces. Charging stations are treated equally. The 
only difference is the additional interface to take energy from 
the grid. Since we assume a passive customer in our model, we 
abstract the latter role as a passive mobility service request.  

C. Agent – Environment Interaction 

In our model, each agent lives in a given environment with 
its own state, knowledge and behavior. We assume that every 
taxi agent has a memory to store basic location information 
about existing facilities such as taxi stands. With this 
knowledge, a taxi is able to select an appropriate location after 
completing an order event. The concrete implementation of the 
chosen filter algorithm is encapsulated to the outside world.  

The second example for an agent-to-infrastructure interaction is 
a charging request. We assume that every taxi driver has 
knowledge about the charging station positioning only, and not 
about its current occupancy state. After deciding to charge, the 
electric taxi autonomously selects all supported charging points 
inside a self-defined radius relative to its current location. If the 
search is successful, the taxi heads for the actual charging point 
and checks the actual availability of the spot at its arrival. If the 
chosen charging location is still free, the charging process can 
be initiated.  

Otherwise, the taxi needs to look for another free charging 
station or has to wait, if all other charging stations are out of 
the remaining range. As we assume a charging point to be a 
passive element, we neglect reservation possibilities. 

D. Agent – Agent Interaction 

The communication between agents is solved by a 
messaging service. This feature is especially of interest for 
executing an order request. The sequence diagram in Fig. 2 
illustrates an order request consisting of a communication act 
between a customer, a fleet agency and a taxi. 

 
Fig. 2. Order interaction protocol 
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First, a customer requests a taxi. The fleet agency receives the 
order and schedules its execution. Just before reaching the 
scheduled time, the fleet agency starts a dispatch behavior. This 
step is for finding a suitable taxi for the transportation task. The 
search continues until a taxi accepts the offered job request. In 
certain situations, several taxis have to be asked, since a driver 
may refuse the proposal. If no active taxi is able to fulfill the 
order, this customer request is finally denied. In all other cases 
the first accepting taxi creates a pickup event and drives toward 
the pickup location. The customer is then picked up and will be 
driven to his desired destination, where he is finally dropped 
off. 

For dispatching purposes, the fleet agency requires the latest 
taxi status. This is why each taxi sends status updates 
asynchronously to its connected taxi agency.   
Reasons for rejection of an order request are related to the taxi 
state. For example, if an electric car’s battery soon runs down, 
the driver will head for a suitable charging location. In cases 
where a driver wants to take a break or finish his working day, 
orders may also be refused.  

The whole system dynamically balances the order demand and 
service supply. Its performance results as the aggregation of 
single agent behaviors. With this demand-driven, auction-based 
approach, it is possible to evaluate a wide range of on-demand 
and shared mobility concepts. 

E. Agent Internal Design 

The next step is to specify the behavior of taxi agent and 
the fleet agency agent in detail.  

Taxi Agent 

The taxi agent’s behavior is realized by a finite state machine 
(Fig. 3).  

 
Fig. 3. Finite state machine for the taxi agent 

Basically, the taxi can be logged out or logged into the fleet 
management system. After performing the login action, the 
driver first heads for the most suitable stop nearby. As soon as 
the vehicle reaches the stop, the driver waits for a customer 
request or, if necessary, drives to a charging station. If a new 
order request is received and accepted, the taxi drives off to the 
pickup location. After bringing the customer to the desired 

destination (status occupied), the taxi has to decide how to 
proceed. Available destinations are a charging station, a stop or 
home. If the taxi needs to recharge, it has to drive to a charging 
point. It may happen, that another vehicle is already occupying 
the selected charging point. In this case, the taxi moves to 
another charging point or waits at the first selected station. The 
latter choice depends on the vehicle’s actual state of charge. 
This is necessary to prevent vehicles’ batteries from completely 
running down. After charging, the taxi can proceed to another 
facility or head directly to a customer. If the taxi driver has to 
stop working because he has exceeded the maximum 
permissible working hours, he can drive home. 

Fleet Agency Agent 

The fleet agency is mainly responsible for order management. 
To realize this function, different dispatch algorithms can be 
implemented. We assume in our model that all customer 
requests are spontaneous without a prebooking option. For this 
reason, scheduling and dispatching is a single step.  

The dispatch operation itself is a classical optimization 
problem. To reduce complexity, we apply a simple heuristic 
approach. The selection of suitable vehicles is done with help 
of a distance criteria such as “Nearest Idle Taxi” or “Next Idle 
Taxi at Nearest Taxi Stand”. We further reduce the solution 
space by preselecting vehicles close to the pickup location. 
Since the decision to accept or deny a job request lies 
completely in the hands of a taxi, we only send the call for 
proposal message to these taxis. Each taxi concurrently 
evaluates the given service order and proposes its costs. In the 
last step, the taxi agency ranks all proposals, selects the best 
matching taxi and sends acceptance and decline messages.  

F. Supply Control 

Since the supply of taxis varies over time, we introduce a 
closed control loop to adjust the number of active vehicles 
according to the fleet size. A bang-bang controller fits well for 
this purpose. It manages both login and logoff actions 
according to its control deviation. Since each taxi agent owns 
an independent decision-making module, the final choice to 
perform a login and logout action remains with the taxi. Login 
requests are evaluated on the basis of a minimal inactive time. 
Logoff actions show an intrinsic or extrinsic nature. Each time 
a new shift begins, the taxi samples a desired active time. As 
soon as this time is exceeded, it starts a ride home. An external 
logoff request from the vehicle controller is rated by the taxi on 
behalf of its minimal active time.  

G. Vehicle Routing 

The taxi agency agent and the taxi agent adopt its behavior 
elastically on a changing environment. This flexibility requires 
a dynamic route choice capability. The shortest path planning 
problem is a combinatorial optimization issue. Common 
solvers are based on Dijkstra [29], A* [30] or contraction 
hierarchy algorithm [31]. 

To lower the computational effort for navigation, we reduce 

the number of routing operations. This is possible for 

customer trips since we assume that those origin-destination 

relationships form a fixed, unchangeable simulation input. For 

this reason, time and energy related trip characteristics can be 
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calculated in a preprocessing step. All other routes (to 

customers, to stops, to charging points) need to be calculated 

during runtime since those rely on the latest system state. The 

routing engine requires a road network, optimization criterion 

and an origin-destination combination as input. 

IV. MODEL INTERFACES & SIMULATION CORE 

In this chapter, we characterize the input and output 

interfaces (Fig. 4) and describe the simulation core.  

 
 Fig. 4. Input and output interface definition 

A. Simulation Input 

Our simulation input interface handles time series and static 
data. It is designed to set up different scenarios in a short time. 
The following section describes each data stream in detail. 
 

Mobility Demand 

Our behavioral model is demand-driven. In this context, it has 
to be taken into account that demand data in a pickup and 
delivery system is statistically distributed and varies over the 
time of the day, the day of the week and the location.  
Origin-destination relationships for taxis meet a Poisson 
distribution [32]. In [33], we have designed a nonhomogeneous 
Poisson regression model for Munich. This enables us to scale 
the demand according to the fleet size.  

Fleet Configuration 

The fleet configuration defines the number of simulated taxi 
agents. A taxi itself consists of a vehicle concept and its own 
behavior. A vehicle concept again comprises a powertrain 
concept and thermal management unit. The behavior class is 
subdivided into auxiliary, charging, operation, order and 
routing strategies.  

Fleet Management 

The fleet management input sets the operation mode of the 
fleet agency. Since the performance of a taxi system depends 
on the balance between supply and demand, one has to choose 
both time series streams carefully. Taxi drivers anticipate the 
demand and adapt their behaviors to the situational needs. A 
performance indicator to describe these circumstances is the 
course of active taxis over time. It aggregates information 
about the shift deployment and its adaption to the changing 
demand.  

Infrastructure  

Since agents live in a common environment with shared 
infrastructure elements, locations and features of each facility 
are fixed input parameters. We classify facilities into charging 

point (CP) and stop, e.g. taxi stand (TS) or point of interest 
(POI). Stops are placed independently from charging station 
locations, so that each one has its own parking queue. Charging 
stations are separated in several charging points with inherent 
plug-ins. To represent the physical road network, we use map 
data from OpenStreetMap [34]. 

Weather 

The weather input stream includes a time series of temperature 
values with a 1 h resolution. This data enables us to calculate 
the auxiliary energy demand of electric vehicles. 

B. Simulation Core 

The simulation core is built on a discrete event approach. A 
conservative time synchronization algorithm [35] ensures 
causality between different event executions. Each agent has its 
own event list that is synchronized with a central simulator 
event list. A multi-threaded architecture improves the 
simulation performance.  

We use the multi-agent middleware JADE [36]. The platform 
is written in Java and provides features such as agent life-cycle 
management and a message service. Its implementation is 
compliant with FIPA (Foundation for Intelligent, Physical 
Agents) specifications [37]. In JADE, each agent has its own 
thread of execution. This design ensures proper encapsulation, 
since an agent cannot provide call-back functions or its own 
object reference to other agents. Agents use their 
communication interfaces to exchange data. 

C. Simulation Output 

Each simulation run creates an output database that logs 
time series data. This includes information on the temporal-
spatial behavior of a single taxi agent. It is the event handling 
that limits the maximum temporal resolution. The same applies 
for the fleet agency agent. In this context, it is of particular 
interest to calculate key performance indicators like the 
dispatch efficiency. Since the complete environment is 
observable, it is also possible to track the infrastructure 
utilization. To evaluate the service quality, the waiting time and 
further order related data can be logged.  

V. RESULTS 

We take the taxi system of Munich as an example to 
evaluate two different scenarios.  

First, we analyze a scenario with an internal combustion engine 
(ICE) powered taxi fleet. The second scenario is a taxi 
operation with battery electric vehicles (BEV). 

The demand data [33] reflects the taxi order events for one 
week within the entire metropolitan area of Munich and was 
provided by a local taxi agency, which manages around 400 
vehicles. To avoid scaling error, we choose the same fleet size 
for our simulation. This represents 11 % of all taxis in Munich. 
We sample the desired active time of the taxi between 8 hours 
and 10 hours per shift and choose the minimum inactive time 
as 0 hours. The latter choice represents an ideal two-shift 
operation. The minimum active time is 6 hours. We place all 
taxi stand facilities according to the current situation in 
Munich. To set up the initial positions of all taxis, we assume 
that one half of them are equally distributed to the home 
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locations of four major taxi companies in Munich. The other 
half is assigned to private taxi operators. We distribute their 
homes to addresses in the 18 major city districts of Munich, 
weighted by the number of inhabitants.  
The fleet agency uses a dispatch heuristic that selects the taxi 
waiting at the nearest taxi stand.  

A. Combustion Engine Scenario 

Since balance of supply and demand is essential for the 
system performance, the first analysis considers the fleet size 
control. Fig. 5 compares the temporal course of active taxis 
over a week. With an average deviation of 0.12 %, the basic 
controller functionality is proven. The same applies to the shift 
distribution in Fig. 6. The average shift duration is 9.11 hours 
with a standard deviation of 0.72 hour. 

 
Fig. 5. Course of active taxi agents over a week 

  
Fig. 6. Distribution of the shift duration over a week 

A second analysis describes the distribution of track distances 
with regard to the taxi status “On the Way to Customer” (Fig. 
7), “Occupied” (Fig. 8) and “On the Way to Stop” (Fig. 9). 
Track distances travelled to customer show a mean value of 
2.7 km (σ = 3.6 km) in the simulation compared to a mean 
value of 1.5 km (σ = 1.7 km) of the original dataset. Distances 
with customer have both a mean value of 7.2 km (σ = 9.4 km), 
since this is fixed input. The simulated mean value of distance 
without customer is 5.2 km (σ = 6.7 km) compared to the 
reference with 3.6 km (6.8 km). These results lead to the 
following conclusion. Our presented model represents the 

qualitative mobility characteristics. Primary differences relate 
to short trip distances. An explanation for this behavior is that 
all customer orders are handled centrally by a single fleet 
agency. This way, direct booking requests from the roadside 
are neglected. Because of the chosen taxi stand based dispatch 
algorithm, two extra trips to a customer and back to a stop may 
be introduced. Fig. 10 represents the variation of taxi status 
shares over one week. The course illustrates the influence of 
variable customer demand. 

 
Fig. 7. Distribution of track distances with state “On the Way to Customer” 

 
Fig. 8. Distribution of track distances for state “Occupied” 

 
Fig. 9. Distribution of track distances with state “On the Way to Stop” 
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Fig. 10. Course of taxi status shares over a week 

B. Electric Vehicle Scenario 

A second scenario assesses the possible impact of an 
electric taxi fleet. Table II gives an overview of the chosen 
electric vehicle concept and charging station configuration.  

TABLE II. ELECTRIC FLEET SCENARIO PARAMETER 

Parameter Value Unit 

Battery Capacity 51.5 kW 

Mean Total Energy Consumption 20.6 kWh/100 km 

Max. Charging Power – Type 2 Connector 3.7 kW 

Max. Charging Power – CCS Connector 40 kW 

Min. Range Limit at End of Trip 15 km 

Recharge Range Trigger at End of a Trip 30 km 

Min. State of Charge at Charge End 70 % 

Max. State of Charge at Charge End 85 % 

Max. Search Radius for Fastest Connector 4 km 

Number of AC Charging Points (Type 2) 452 - 

Number of DC Charging Points (CCS) 100 - 

 
The powertrain concept features a range of 250 km, as we 
assume a battery capacity of 51.5 kWh and a mean total energy 
consumption of 20.6 kWh/100km for real taxi usage. This 
includes both powertrain and all auxiliary consumers. Since 
taxis hardly rely on a public charging infrastructure during its 
operating mode, each vehicle has a fast charging capability 
(CCS interface). All remaining parameters are the same as in 
the first scenario.  
Based on these parameter settings, a customer has to wait for a 
taxi service 4.1 min. compared to 3.6 min. with an ICE fleet. 
This increase is a consequence of a more complex dispatch 
effort. An electric taxi may deny customer requests due to an 
insufficient remaining range. The number of served customers 
is at the same level in both scenarios. An electric taxi serves 
11.8 (σ = 4.9) orders and an ICE taxi 11.7 (σ = 3.8 km). As a 
result, orders are dispatched less equally. In total, 311 of 
40,995 service requests cannot be fulfilled by the chosen 

electric fleet. The distance driven per shift drops about 6.3 %. 
Fig. 11 compares the distance per shift for both scenarios. 
Table III summarizes main results. 

TABLE III. RESULTS OF THE BASIC ELECTRIFED SCENARIO 

Parameter ICE BEV Unit 

Mean Time to Customer 3.6 4.1 min 

Mean Number of Passengers 11.8 11.7 - 

Denied Rides 3 311 - 

Mean Distance per Shift 226 211 km 

Mean Charging Time per Shift - 127.1 min 

 

An electric vehicle agent uses about 22 % of its time for 
charging. This comes to an average charging time per shift of 
127.1 min. The time for charging is mainly taken from 
previous waiting actions at taxi stands. CCS and Type 2 
connector are almost equally in usage. The mean charging time 
at a CCS charging point is 65 min compared to 189.2 min for 
Type 2. Fig. 12 shows the number of charging taxis over the 
course of one week. The mean number is 38.2 with a minimum 
of 1 and a maximum of 115 charging vehicles at the same time. 
The average number of charging actions per vehicle is 0.86. 
80 % of all vehicles charging only once within a shift. 

 
Fig. 11. Comparison of the distance per shift 

 
Fig. 12. Course of charging vehicle over a week  
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VI. CONCLUSION 

This paper presents a behavior model to describe the 
system dynamics of a taxi fleet. The simulation system 
supports decision-making in strategic, tactical and operational 
planning for on-demand mobility systems. Since such systems 
are complex, randomized and decentralized in nature, we have 
realized a stochastic-driven, agent-based approach. 

The main benefit of the proposed architecture is its high 
flexibility due to a strong encapsulation between agents. Each 
agent has its own life-cycle and lives independently of others in 
a given environment. The entire fleet behavior is a result of a 
competition for limited resources. Taxis compete for new 
customer orders or infrastructure spaces in their environment.  

As they have only restricted knowledge of the latest system 
state, interactions between agents or its environment get 
essential. Both the communication and the internal structure of 
each agent is realized as a finite state machine. The simulation 
core forms a discrete event approach. 

Internal and external events trigger individual behaviors. The 
needed input is a stochastically distributed customer order 
stream, an infrastructure and fleet configuration, a fleet 
management strategy, a road network and a weather stream. 
Each simulation run generates data about use of the 
infrastructure, the temporal-spatial behavior of each agent and 
the mobility service quality.  

Scenarios with a combustion engine and an electric taxi fleet 
provide evidence of the basic functionality. Results show that 
an electric taxi operation in Munich is possible with a 
powertrain designed for at least a 250 km range in real taxi 
usage.  

The next steps are to include a roadside pickup model and 
evaluate further vehicle and dispatch strategies. It is a plan to 
evaluate different mobility concepts, such as shared, 
autonomous vehicle fleet.  
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