
Computing Possible Driving Corridors for Automated Vehicles

Sebastian Söntges and Matthias Althoff1

Abstract— Motion planning in dynamic traffic scenes is a
challenging problem. In particular, since it is unknown during
planning whether a certain decision, such as passing another
traffic participant on the left or right, will result in a safe
and comfortable motion. Exhaustive exploration of all principle
driving paths is computationally expensive, so that one typically
reverts to heuristics—this, however can be unsatisfactory in
situations when the heuristics fail to find a solution although
it exists. We address this problem by computing the union
of all possible motions for a sequence of high-level decisions
(e.g. overtake vehicle on the left and then another one on the
right), which we refer to as a driving corridor. Our proposed
algorithm is over-approximative, i.e. the union of driving
corridors provably encloses all possible motions. Thus, if the set
of reachable positions within a driving corridor becomes empty,
the corresponding sequence of high-level decisions is infeasible
and can be discarded by the motion planner. Driving corridors
also facilitate selecting high-level plans: Large driving corridors
should be preferred since they provide more opportunities for
optimizing motions and are more robust towards unpredicted
changes. Numerical examples demonstrate the usefulness of our
approach.

I. INTRODUCTION

There exist two major techniques for motion planning
of automated vehicles: Graph-based search techniques and
variational-based optimization techniques [1], [2]. While
graph-based techniques explore the search space by discretiz-
ing the action space or the state space, they can implicitly ex-
plore high-level decisions, such as passing another vehicle on
the left or right [3]. The situation is different for variational-
based optimization techniques. Continuous optimization can
get stuck in local minima [4], [5] and requires a high-level
strategy upfront to set up constraints for collision avoidance
[6], [7]. These constraints define the driving corridor of the
vehicle and how obstacles are passed. Even though a graph-
based planner does not necessarily require a set of promising
high-level plans, it certainly speeds up the search process.

Due to the aforementioned necessity for variational-based
optimization and the benefits for graph-based search, there is
a high interest in finding feasible high-level plans. High-level
decision making is often implemented by state-machines
and traffic situation-specific rules [2], [8], [9]. More general
situations can be handled by planners which search different
combinations of high-level actions [10]. One difficulty in
these approaches is to guarantee physical feasibility of the
planned action sequence. This issue is addressed in [3]
by discovering possible maneuvers through sampling of

1Sebastian Söntges and Matthias Althoff are with the Department of
Informatics, Technical University of Munich (TUM), Boltzmannstraße
3, 85748 Garching, Germany. Corresponding email: {soentges,
althoff}@in.tum.de

feasible trajectories. The sampled trajectories are grouped
by topological properties in the spatial-time domain into
different high-level maneuvers. Topology-based approaches
like path homotopy or homology are used in a range of
applications in robotics for high-level classification of paths
[11]. However, these techniques cannot be applied directly
to automated driving, since path homotopy and homology
requires the paths to share the same goal configurations [5].
A combined approach which integrates topological analysis
in a trajectory optimization formulation with mixed-integer
programming is presented in [12]. However, the proposed
method examines the topology by a cell-decomposition of a
two-dimensional workspace, which makes it only applicable
to quasi-static environments.

In this work, we propose a method for computing the
reachable set of all possible motions of the ego vehicle and
for dividing the reachable set into subsets, where each subset
corresponds to a different sequence of high-level decisions.
We refer to these subsets as driving corridors. The numerical
computation of the reachable set is over-approximative, i.e.
no feasible trajectory is missed. One advantage of using
the reachable set instead of sampled trajectories is that
we do not rely on a particular sampling strategy, which
may not perform equally well in different scenarios. The
driving corridor of a high-level plan might be very small,
meaning that small variations in the traffic prediction could
render a chosen motion unsafe. If, at a certain point in
time, the driving corridor vanishes, no solution for the
considered high-level plan exists. In contrast to sampling-
based works, we can prove the nonexistence of solutions by
relying on our over-approximative computation of feasible
motions. The presented work is an extension of our previous
work [13][14], which only computes drivable areas without
grouping them into driving corridors.

Our paper is organized as follows: Section II introduces
the basic definitions and states the problem. Section III
describes our model assumptions and presents the proposed
algorithm to compute the reachable set and its division
into driving corridors. Section IV demonstrates the proposed
approach on two examples. Finally, Section V presents our
conclusions.

II. DEFINITIONS AND PROBLEM STATEMENT

Definition 1 (Trajectory planning problem): Let us as-
sume we have:

1) A dynamical system ẋ(t) = f(x(t),u(t)) of the
vehicle with state x(t) ∈ X and input u(t) ∈ U(x(t)),

2) a set of (time-dependent) obstacles O(t) ⊆ R2,
3) the covered region of the ego vehicle A(x(t)) ⊆ R2,

t1

t1

t2

t2 tf

t1 t2 tf

Fig. 1. Reachable set considering collision free trajectories until the given
time step (top); anticipated reachable set considering only collision free
trajectories for the whole planning horizon [t0, tf] (bottom).

4) an initial state x0 at time t0,
5) and a goal region XG at time tf .

Given an input signal u(t) and initial state x0, the trajectory
of the system f(x(t),u(t)) is:

x(t) = x0 +

∫ t

t0

f(x(t′),u(t′))dt′ (1)

which we denote by τ(t;u,x0) := x(t).
A solution τ of the trajectory planning problem connects

the initial state τ(t0;u,x0) = x0 to a state in the goal region
τ(tf ;u,x0) ∈ XG and does not collide with any obstacle
A(τ(t′;u,x0)) ∩ O(t′) = ∅, ∀t′ ∈ [t0, tf].

The states attained by the set of all trajectories at some
time t are related to the reachable set of the dynamical
system.

Definition 2 (Anticipated reachable set): The reachable
set is defined as the set of all states which can be reached
by the system from a given initial set X0 at a given time
t. We extend the common definition to the anticipated
reachable set through two restrictions. First, we only
consider states that can be reached at time t without
colliding with the obstacle set O(t). Second, we require
that the state can be continued by a collision-free trajectory
until the end of the planning horizon tf . To simplify
the notation, we introduce the set of forbidden states
F(t) := {x(t)|A(x(t)) ∩ O(t) 6= ∅}. Thus,

reach(X0, t, tf) := {τ(t;u,x0) |∃u(t′) ∈ U , ∃x0 ∈ X0,

τ(t′;u,x0)) /∈ F(t′) for t′ ∈ [t0, tf]
}
,

(2)
where U is the set of all possible input signals.

Fig. 1 shows the motivation behind this definition. For a
given scenario, the ego vehicle must merge either into the
left or right lane in order to avoid a collision. If the vehicle
merges into the left lane, it can reach some region in the
left lane for several time steps. However, it will eventually
collide with some obstacle within the planning horizon tf .
Planning trajectories in these regions must be avoided. The
anticipated reachable set excludes these regions.

Often, not the full state x(t), but only the position of the
vehicle (x(t), y(t))T is of interest.

Definition 3 (Projection): Given the state x(t), the pro-
jection

projxy(x(t)) := (x(t), y(t))T (3)

is defined as the mapping from the state to the position of
the vehicle.

We use the same notation to project a set of states X :

projxy(X) := {projxy(x)|x ∈ X}. (4)
A frequent decision for a driver is to choose between

passing an obstacle on the left or right. In order to group
feasible trajectories into different high-level decisions, a
common method is to apply topological concepts of path
homotopy and homology to motion planning [11]. Two paths
with the same starting point and the same endpoint are said
to be homotopic, if and only if there exists a continuous
mapping, which deforms one path to the other. In particular
this means that the path must not “jump” over any obstacle.

Fig. 2 shows an example of the ego vehicle and two
moving vehicles in the spatial-time domain: Vehicle A drives
in the same lane as the ego vehicle, vehicle B drives in
the opposite lane and passes both other vehicles. Three
possible trajectories τ1,2,3 of the ego vehicle are shown.
This example is a modified version of the one presented
in [5] with the difference that we assume that there is free
space between vehicle A and B when both pass each other.
In this example, τ2 and τ3 first pass vehicle B and then
overtake vehicle A. However, since both do not share the
same endpoint, they are not homotopic. In contrast, τ1 and
τ3 are homotopic since they share both the same starting
point and endpoint and can continuously be deformed to
each other (under the assumption that vehicle A and B do not
touch and the ego vehicle can drive between both). However,
this grouping seems counterintuitive. It seems more natural
to group trajectories τ2 and τ3 as the maneuver “first pass
vehicle B, then overtake vehicle A”. In this work, we propose
a method for grouping trajectories which is inspired by a
method for identifying homotopy between paths using two-
dimensional sub-manifolds in the three dimensional position-
time domain of the vehicle [15]. However, in contrast to
[15], our goal is not to group paths into homotopy classes in
its strict mathematical definition due to the aforementioned
problems, but to find a grouping which fits the semantic
meaning in terms of automated driving (e.g. passing another
vehicle on the left).

The idea is to construct for each trajectory a “word” which
describes the trajectory and assigns it to a unique driving
corridor. All trajectories with the same word belong to the
same driving corridor.

Definition 4 (Word construction): Given a set of two-
dimensional oriented surfaces Ui in the three-dimensional
spatial-time domain with an associated “letter” ri and a
trajectory τ . We assign a word to τ by concatenating the
letters in the order of all intersections of τ with Ui. If Ui is
crossed in the direction of its orientation we use the letter ri

τ1
τ2

τ3

x

y t

x

y t

vehicle A

vehicle B

t = t0

t = tf

t = t0

t = tf

UA
UB

ego vehicle

Fig. 2. Three different trajectories to overtake vehicle A and pass vehicle
B (top); surfaces UA and UB with their orientation are added (bottom).

and if it is crossed opposing its orientation, we use the inverse
letter r−1i . If a letter ri and its inverse r−1i follow directly
in a word, they cancel (e.g.: rjrir−1i = rj and rjr−1i ri = rj)
[15].

For example in the scenario in Fig. 2, τ3 first intersects
UB along its orientation and then crosses UA against its
orientation. The assigned word is therefore rBr−1A . The same
word is assigned to τ2. In contrast, τ1 intersects UA first and
then UB , which produces the word r−1A rB . τ2 and τ3 are
assigned the same word and therefore belong to the same
driving corridor.

The selection of the surfaces Ui depends on the high-
level actions which should be considered in the scenario. An
obvious choice is to create surfaces perpendicular to each
relevant obstacle for passing it either on the left or right.
In case of moving obstacles the letter cancellation rule in
Def. 4 allows one to handle back-overtaking properly. For
example, if the ego vehicle drives parallel to another vehicle
with similar speed and it moves on or near to the associated
surface of the other vehicles, it may intersect this surface
back and forth and each time add a letter to the assigned
word. The letter cancellation rule removes these letters.

We follow the approach in [5], [3] to relax the assumption
that the endpoints of two trajectories must necessarily match,
but instead must lie only within the same goal region. This
assumption is more applicable to automated driving since
usually there is a goal region given rather than a single goal
state.

Definition 5 (Driving corridor): Given:
1) A dynamical system ẋ(t) = f(x(t),u(t)) of the

vehicle with state x(t) ∈ X and input u(t) ∈ U(x(t)),
2) a set of (time-dependent) obstacles O(t) ⊆ R2,
3) the covered region of the ego vehicle A(x(t)) ⊆ R2,
4) a set of initial states X0 at time t0,
5) a set of surfaces Uj with corresponding letters rj ,

we define the driving corridor M for a given word and a
given goal region XG as:

M(t;word,XG) := {τ(t;u,x0) |∃u ∈ U , ∃x0 ∈ X0,

τ(tf ;u,x0) ∈ XG,

τ(t′;u,x0)) /∈ F(t′) for t′ ∈ [t0, tf],

τ is assigned the word
}
.

The aim of this paper is to compute all driving corridors
for given words and/or given goal regions, respectively
discover all possible words and/or reachable goal regions
of non-empty driving corridors.

III. SYSTEM MODEL AND DRIVABLE REGION
COMPUTATION

For general vehicle models f(x(t),u(t)) and obstacles
O(t) the reachable set cannot be computed efficiently.
Therefore, we resort to a simplified vehicle model and a
conservative approximation of the reachable set as presented
in [13].

A. Reachable set approximation

We model the vehicle dynamics with two double inte-
grators in longitudinal and lateral direction. The state x =(
x ẋ y ẏ

)T
is given by position and velocity in the

two-dimensional plane and the input u =
(
ux uy

)T
by

the acceleration in both directions. We assume bounded
acceleration and speed.

f(x,u) =

ẋ
ẍ
ẏ
ÿ

 =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

x
ẋ
y
ẏ

+

0 0
1 0
0 0
0 1

(uxuy
)

(5)
|ux| ≤ amax,x

|uy| ≤ amax,y

vmin,x ≤ ẋ ≤ vmax,x

vmin,y ≤ ẏ ≤ vmax,y

The reachable set for the given model is computed at discrete
points in time in iterative steps. The representation of the set
and the algorithm is summarized subsequently.

The reachable set at time step ti is strictly over-
approximated by the union of sets Bi

reach(X0, ti, tf) ⊆
⋃
q

B(q)i , (6)

where each Bi is the Cartesian product of two convex
polytopes B(q)i = P(q)

i,x × P
(q)
i,y . The polytopes represent a

set of position/velocity pairs, which can be reached in the x-
and y-direction. Polytopes are chosen because they provide
an efficient computation of linear dynamical systems (5).

The algorithm to compute the over-approximated reach-
able set is shown in Alg. 1. First, the set of states of the
previous step is propagated in time according to the system
model (5) (Alg. 1, ll. 3-5). Second, the forbidden states F(ti)

Algorithm 1
Input: Initial set: X0 = ∪qB(q)

0 ; forbidden region: F(t)
Output: Graph G with nodes storing the sets B(q)

i for i = 1, . . . , n
1: for i = 1 to number of time steps do
2: for all B(q)

i−1 in time step i− 1 do
3: P̂(q)

i,x ← PROPAGATE(P(q)
i−1,x)

4: P̂(q)
i,y ← PROPAGATE(P(q)

i−1,y)
5: B̂(q)

i ← P̂(q)
i,x × P̂

(q)
i,y

6: end for
7: ∪rB(r)

i ← OVERAPPROXIMATE(∪qB̂(q)
i \ F(ti))

8: for all r in ∪rB(r)
i do

9: G.ADD NODE(n(B(r)
i))

10: for all q in ∪qB̂(q)
i do

11: if OVERLAP(B̂(q)
i , B(r))

i) then
12: G.ADD EDGE(n(B(q)

i−1),n(B(r))
i))

13: end if
14: end for
15: end for
16: end for

B(q)
i

B(l)
i+1

B(s)
i+2

B(m)
i

B(r)
i+1

time step ti time step ti+1 time step ti+2

x

y

B(q)
i

B(m)
i

B(l)
i+1

B(r)
i+1

B(s)
i+2

O

x

y

x

y

Fig. 3. Two time steps of Alg. 1. Shown are the projections of B into the
position domain and a constant obstacle O. B(q)i reaches in the time step
ti+1 several sets. These again reach several sets in time step ti+2. The
relationships between the sets are represented in the directed acyclic graph
G.

are removed from this set (Alg. 1, l. 7). In order to get the
same set representation (6) in the next time step, the resulting
set is over-approximated [13]. The over-approximation step
(Alg. 1, l. 7) is necessary since F(t) can be of arbitrary
shape and thus ∪qB̂(q)i \ F(ti) can generally not be cast in
the representation as defined in (6).

Fig. 3 illustrates the algorithm. The projection of the sets
Bi, Bi+1, Bi+2 into the position domain and a constant
obstacle O are both shown for three successive time steps.
A set Bi in step i may reach several sets Bi+1 in the next
time step. This relations is stored in a graph G. A node
n(B) is created in G for each B (Alg. 1, l. 9). If, like in
the example in Fig. 3, B(q)i reaches B(l)i+1, a directed edge
(n(B(q)i), n(B(l)i+1)) between the pair of corresponding nodes

B(q)
i

B(l)
i+1
rA

B(s)
i+2
rA

B(m)
i

B(r)
i+1

time step ti time step ti+1 time step ti+2

x

y

B(q)
i

B(m)
i

B(l)
i+1

B(r)
i+1

B(s)
i+2

B(s)
i+2

O

UA

x

y

x

y

Fig. 4. Example from Fig. 3 with a surface UA and the extended graph
Gw . B(q)i reaches B(l)i+1 by crossing UA, therefore the letter rA is added

in the node. B(s)i+2 is assigned to two different nodes, one with the empty
word and the other with the word rA.

is added to the graph (Alg. 1, l. 12). Only nodes of one
successive time step are connected.

Thus, by starting from a node n(B) with region B and
going backward in the graph, all regions which can reach
this set in the future can be identified. Accordingly, by going
forward in the graph, one can identify all regions which can
be reached from the past set B.

B. Reachable set approximation with words

In Def. 4 the concept of words is introduced to characterize
and group trajectories given a set of surfaces Uj . In order to
apply the same concept to reachable sets, a natural extension
is to define the reachable set as the set of (word, state) pairs,
which can be reached at a particular time. The difficulty is
that in the reachable set computation, a whole set of states
moves over time (see Fig. 5). Therefore, in principle all the
contained states must be tracked for intersection with all Uj .
This is in contrast to a trajectory, where just a single state
moves over time. Therefore, we detect the intersection of the
reachable set with Uj approximatively as shown in Fig. 5: We
connect the midpoints of two sets B(a)i , B(b)i+1 in the spatial-
time domain with a straight line and only check this line for
intersection with all Uj to assign the corresponding letters
rj .

We incorporate this word information by an extension
of the previously introduced graph G to a graph Gw with
word information in each node (see Fig. 4). In G, each B
is assigned to exactly one node n(B). In Gw, each pair of
(word,B) is assigned to exactly one node nw(word,B). The
same set B may be assigned to several nodes with different
words. For example in Fig. 4, B(s)i+2 can be reached from

Ur

B(b)
i+1

B(a)
i

actual traversed region

line approximation
of reachset

x
y

t

Fig. 5. Actual traversed region in continuous time and its intersection with
a surface Ur ; implemented in the intersections function in Alg. 2.

B(l)i+1 and B(r)i+1. However, both nodes have a different word
and therefore correspond to different driving corridors.

The construction of the extended graph Gw from the graph
G is shown in Alg. 2. A new initial graph Gw is created by
copying all root nodes from G (Alg. 2, l. 10). Starting from a
newly created node nw(word,B) in Gw (Alg. 2, ll. 11-15) the
algorithm searches in G for all sets Bchild, which are stored
as children of B (Alg. 2, l. 2). These sets are added as child
nodes to nw(word,B) (Alg. 2, ll. 4-7). Additionally, a word is
appended which considers the crossings of the motion from
B to Bchild with any Ui (Alg. 2, l. 3). The intersections
function is implemented using the approximation in Fig. 5.
If several surfaces are crossed, the order of intersection is
considered.

Fig. 3 and Fig. 4 show G and the constructed Gw of the
same example scenario. B(l)i+1 is the child of B(q)i in both
graphs. However, in Gw the node also contains the word rA
because of the crossing of UA from B(q)i to B(l)i+1. In the next
time step B(s)i+2 is contained in two nodes of Gw, since it can
be reached with two different words.

Algorithm 2
Input: Input graph: G; surfaces and letters: Ui, ri
Output: Extended graph with word information: Gw

1: procedure ADD CHILDREN(nw(word,B))
2: for all n(Bchild) in CHILDREN(n(B)) do
3: new word ← word + INTERSECTIONS(B, Bchild)
4: if nw(new word,Bchild) not in Gw then
5: Gw.ADD NODE(nw(new word,Bchild))
6: end if
7: Gw.ADD EDGE(nw(word,B), nw(new word,Bchild))
8: end for
9: end procedure

10: Gw.ADD NODES(nw(empty word,B(q)
0))

11: for i = 1 to number of time steps do
12: for all nw(word,B) in time step i do
13: Gw.ADD CHILDREN(nw(word,B))
14: end for
15: end for

IV. RESULTS

We demonstrate our method with two examples. In the
first experiment, different driving corridors in an overtaking
maneuver are identified by introducing two word-inducing
surfaces. In the second experiment, different driving corri-
dors are identified by specifying different goal regions.

A. Combinatorial aspects of motion planning

In the first experiment we apply our algorithm to the
example discussed in [5]. The scenario is similar to the one
shown in Fig. 2, but this time we assume that the obstacle
regions covered by vehicle A and vehicle B touch each other.
The ego vehicle drives with an initial speed of 20 m/s. In this
example vehicle A is predicted to drive with a constant speed
of 14 m/s and vehicle B with a constant speed of 17 m/s.
However, we emphasize that any set-based prediction of the
traffic participants can be used [16]. In particular, uncertainty
in the prediction can be considered by enlarging the predicted
sets appropriately.

In this scenario, the high-level planner must decide to
either follow vehicle A or to overtake it and determine if
and how the vehicle B can be passed. The two properties
“overtaking vehicle A” and “passing vehicle B” of a tra-
jectory are specified by two surfaces UA and UB with two
associated letters rA and rB . UA is a surface connecting the
region between vehicle A and the road boundary over time.
UB is a surface connecting the region between vehicle B and
the boundary of the other side of the road over time. Fig. 6a
shows the scenario in the spatial-time domain. In this space
the prediction of vehicle A and vehicle B are “tubes” with a
constant slope. The surfaces UA and UB are represented by
two triangle meshes.

The anticipated reachable set is computed using the param-
eters given in Table I. Fig. 6a shows the resulting reachable
set. Three different words rBr−1A , r−1A rB and rB are identi-
fied. These words correspond to the maneuvers “first pass B,
then overtake A”, “first overtake A, then pass B” and “only
pass B”. For each distinguished maneuver, all nodes in Gw
from the final time step tf with the corresponding word are
traced back to the initial time step and the associated driving
corridor is shown in Fig. 6.

Although the plots in Fig. 6 are three-dimensional, we
emphasize, that the actual reachable set is five-dimensional
and also contains explicit velocity information. A rough
estimate of the reachable velocities can also be obtained by
the slope of driving corridors in t-direction. For example, in
Fig. 6c at the beginning the slope is comparatively flat which
corresponds to higher speeds. The vehicle must accelerate to
become fast enough to overtake A before it passes B. In
contrast, in Fig. 6d the slope of the driving corridor is steep,
since the ego vehicle must lower its speed to follow vehicle
A.

B. Identification of gaps for lane change maneuvers

In this section we distinguish driving corridors through
different goal regions. This example is motivated by tra-
jectory planning for lane change maneuvers [6]. A lane
change maneuver is a combination of a lateral motion and a
longitudinal motion along the road. The high-level planner
must decide whether a lane change is possible and select
a sufficiently large gap between traffic on the goal lane,
which is reachable by a collision free trajectory. In [6], an
approach is presented to formulate the lane change trajectory
as an optimization problem, which relies on a given driving

t
y

x

reach(x0, t, tf)

vehicle Ahost vehicle x0

vehicle B

UB

UA

(a) Anticipated reachable set without any word constraints.

reach(x0, t, tf)
word constraint:
rBr

−1
A :

t
y

x

(b) Anticipated reachable set with word constraint rBr−1
A .

reach(x0, t, tf)
word constraint:
r−1
A rB :

t
y

x

(c) Anticipated reachable set with word constraint r−1
A rB .

reach(x0, t, tf)
word constraint:
rB :

t
y

x

(d) Anticipated reachable set with word constraint rB .

Fig. 6. Overtaking scenario.

TABLE I
PARAMETERS FOR DRIVABLE AREA COMPUTATION IN OVERTAKING

SCENARIO

Parameter Value
time step ∆t 0.10s
number of time steps 125
absolute maximum longitudinal acceleration amax,x 4.0 m

s2
minimum longitudinal speed vmin,x 12.5 m

s
maximum longitudinal speed vmax,x 25.0 m

s
absolute maximum lateral acceleration amax,y 1.0 m

s2
minimum lateral speed vmin,y −2.0 m

s
maximum lateral speed vmax,y 2.0 m

s

corridor. In this example, we present a reachable set analysis
for the coupled lateral and longitudinal motion to compute
such a driving corridor.

We assume that a traffic prediction is provided. Again, for
the sake of the example we use a constant speed prediction
with all vehicles staying in their road. However, as mentioned
before, any kind of set-based prediction can be used [16].
The gaps between traffic participants in the adjacent lanes at
the predicted position at the end of the planning horizon are
chosen as possible goal regions. We test our approach on a

TABLE II
PARAMETERS FOR DRIVABLE AREA COMPUTATION IN LANE CHANGE

SCENARIO

Parameter Value
time step ∆t 0.10s
number of time steps 30
absolute maximum longitudinal acceleration amax,x 5.0 m

s2
minimum longitudinal speed vmin,x 0.0 m

s
maximum longitudinal speed vmax,x 45.0 m

s
absolute maximum lateral acceleration amax,y 2.0 m

s2
minimum lateral speed vmin,y −2.0 m

s
maximum lateral speed vmax,y 2.0 m

s

scenario taken from the NGSIM US 101 Highway Dataset1.
Fig. 7 (a) shows the initial scenario with the traffic prediction
and possible goal regions. Only the prediction of vehicles
in the start lane and the goal lane are shown. Double lane
changes are not considered.

The anticipated reachable sets with different goal con-
straints are computed using the parameters given in Table
II. The computation shows that only gap 1 and gap 2, but
not gap 3, are reachable.

1http://www.fhwa.dot.gov/publications/research/operations/07030/

t
y

x

gap 1
gap 2

gap 3

host vehicle

traffic prediction

(a) Initial scenario with traffic prediction and possible gaps between the traffic
on the goal lane. The prediction of irrelevant vehicles is not shown.

t
y

x

reach(x0, t, tf)
with constraint goal region gap 1

(b) Anticipated reachable set for gap 1.

t
y

x

reach(x0, t, tf)
with constraint goal region gap 2

(c) Anticipated reachable set for gap 2.

Fig. 7. Lane change scenario with different goal regions.

V. CONCLUSION

In this work, we present a method for identifying driving
corridors in dynamic road scenarios. Contrary to existing
methods, we do not sample trajectories but instead use a set
representation of all reachable states. This has two benefits:
First, it is independent of any particular sampling strategy.
Second, it does not miss any feasible trajectories and makes
it possible to prove that certain high-level plans are infea-
sible. Also, unlike combinatorial planning methods which
decompose the configuration space to find high-level plans
and rely on a specific obstacle representation, our method
only requires a simple collision detection with obstacles.

In the future, we plan to integrate the driving corridor
computation with a variational-based trajectory planner.

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support by
the German Research Foundation (DFG) AL 1185/3-1.

REFERENCES

[1] B. Paden, M. p, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey
of motion planning and control techniques for self-driving urban
vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1,
pp. 33–55, Mar. 2016.

[2] M. Buehler, K. Iagnemma, and S. Singh, The DARPA Urban Chal-
lenge: Autonomous Vehicles in City Traffic. Springer, 2009.

[3] T. Gu, J. M. Dolan, and J. W. Lee, “Automated tactical maneuver
discovery, reasoning and trajectory planning for autonomous driving,”
in IEEE/RSJ International Conference on Intelligent Robots and
Systems, Oct. 2016, pp. 5474–5480.

[4] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for
bertha — a local, continuous method,” in IEEE Intelligent Vehicles
Symposium, 2014, pp. 450–457.

[5] P. Bender, Ö. Ş. Taş, J. Ziegler, and C. Stiller, “The combinatorial
aspect of motion planning: Maneuver variants in structured environ-
ments,” in IEEE Intelligent Vehicles Symposium, 2015, pp. 1386–1392.

[6] J. Nilsson, M. Brännström, E. Coelingh, and J. Fredriksson, “Lane
change maneuvers for automated vehicles,” IEEE Transactions on
Intelligent Transportation Systems, vol. PP, no. 99, pp. 1–10, 2016.

[7] S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma, “An
optimal-control-based framework for trajectory planning, threat assess-
ment, and semi-autonomous control of passenger vehicles in hazard
avoidance scenarios,” International Journal of Vehicle Autonomous
Systems, vol. 8, no. 2, pp. 190–216, 2010.

[8] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller,
T. Dang, U. Franke, N. Appenrodt, C. G. Keller, E. Kaus, R. G. Her-
rtwich, C. Rabe, D. Pfeiffer, F. Lindner, F. Stein, F. Erbs, M. Enzweiler,
C. Knoppel, J. Hipp, M. Haueis, M. Trepte, C. Brenk, A. Tamke,
M. Ghanaat, M. Braun, A. Joos, H. Fritz, H. Mock, M. Hein, and
E. Zeeb, “Making bertha drive —an autonomous journey on a historic
route,” IEEE Intelligent Transportation Systems Magazine, vol. 6,
no. 2, pp. 8–20, 2014.

[9] M. Aeberhard, S. Rauch, M. Bahram, G. Tanzmeister, J. Thomas,
Y. Pilat, F. Homm, W. Huber, and N. Kaempchen, “Experience, results
and lessons learned from automated driving on Germany’s highways,”
IEEE Intelligent Transportation Systems Magazine, vol. 7, no. 1, pp.
42–57, 2015.

[10] R. Kohlhaas, D. Hammann, T. Schamm, and J. M. Zöllner, “Planning
of high-level maneuver sequences on semantic state spaces,” in IEEE
International Conference on Intelligent Transportation Systems, Sep.
2015, pp. 2090–2096.

[11] S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological con-
straints in search-based robot path planning,” Autonomous Robots,
vol. 33, no. 3, p. 273, 2012.

[12] J. Park, S. Karumanchi, and K. Iagnemma, “Homotopy-based divide-
and-conquer strategy for optimal trajectory planning via mixed-integer
programming,” IEEE Transactions on Robotics, vol. 31, no. 5, pp.
1101–1115, 2015.

[13] S. Söntges and M. Althoff, “Computing the drivable area of au-
tonomous road vehicles in dynamic road scenes,” IEEE Transactions
on Intelligent Transportation Systems, vol. PP, [under review].

[14] ——, “Determining the nonexistence of evasive trajectories for colli-
sion avoidance systems,” in IEEE International Conference on Intel-
ligent Transportation Systems, 2015, pp. 956–961.

[15] S. Bhattacharya and R. Ghrist, “Path homotopy invariants and their
application to optimal trajectory planning,” IMA Conference on Math-
ematics of Robotics (IMAMR), 2015.

[16] M. Althoff and S. Magdici, “Set-based prediction of traffic participants
on arbitrary road networks,” IEEE Transactions on Intelligent Vehicles,
vol. 1, no. 2, pp. 187–202, 2016.

