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Abstract—Dealing with the unknown future behavior of other
traffic participants is one of the main challenges when generating
safe trajectories for autonomous vehicles. When the ego vehicle
(i.e., the vehicle to be controlled) follows a given trajectory,
an emergency maneuver should be kept available for all times
in order to avoid collisions. However, generating an emergency
maneuver for each time step is computationally expensive and
often not required. In this paper, we propose an algorithm for
determining the maximum time horizon under which the ego
vehicle can safely follow a given trajectory. First, an upper and
a lower bound of this time horizon are computed. Then, binary
search is used to find the maximum time horizon for which
safety is still guaranteed. Our algorithm reduces the frequency
of generating emergency maneuvers while still guaranteeing
collision-free trajectories. The approach is tested on real traffic
data, and it is shown that our algorithm indeed reduces the
frequency of generating emergency maneuvers compared to
previous work.

I. INTRODUCTION

According to the National Highway Traffic Safety
Administration1, more than 90% of crashes are caused by
human error. Fully autonomous vehicles have a huge potential
to reduce crashes by taking over driving duties. However, in
order to avoid collisions, safety must be guaranteed when
generating trajectories to be followed by autonomous vehicles.

Trajectory planning with obstacle avoidance is already a
mature field, whose approaches can be classified as follows:
1) planning in discrete space and 2) planning in continuous
space.

1) Planning in discrete space: Sampling-based motion
planning algorithms such as Rapidly-Exploring Random Trees
(RRT) [1]–[3] or Probabilistic Road Maps (PRM) [4]–[8] are
particularly efficient for path planning in high-dimensional,
non-convex state spaces. To decrease the computational cost
required by sampling, predefined and parametrized trajecto-
ries, referred to as motion primitives [9], [10] (e.g., turn left,
right turn, go straight, etc.) can be used. The construction
of formally verified maneuver automata using reachability
analysis is investigated in [11]. To find a feasible trajectory,
the authors of [12] use a heuristic graph search within the
maneuver automaton. In [13], a high level path planner based
on motion primitives is used. Then, the planned trajectory
is tracked using nonlinear model predictive control (MPC).
However, this approach limits the motion of the ego vehicle
to a subset of all possible maneuvers.
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2) Planning in continuous space: To generate trajectories
directly in continuous space, elastic bands have been intro-
duced [14]. Elastic bands are paths which can be deformed in
order to react to changes in the environment. This approach
can be used for emergency maneuver generation [15], tra-
jectory planning [16], or adaptive cruise control [17]. Since
a single elastic band might fail to describe a desired path,
several elastic bands are generated in [18]. Then, a single path
is selected based on a given cost function. However, due to
changes in the environment, which determine deformation of
the elastic bands, the corresponding trajectory might become
unfeasible, and the ego vehicle might not be able to follow it
anymore.

For computing optimal trajectories which consider con-
straints, different approaches such as optimal control or MPC
can be used [19]–[21]. In [19], MPC is utilized for lane
departure prevention. An algorithm which generates collision-
free trajectories in a static environment is proposed in [20].
In [21], collision avoidance is achieved through steering and
braking, under the assumption that the obstacles move with
constant velocity.

Since most of the real traffic scenarios are dynamic, re-
planning must be considered in order to avoid collisions.
Although most previous work considers this mechanism, it
has not analyzed the moment at which replanning should be
performed in order to guarantee safety. Instead, replanning
is done on the fly when a dangerous situation might already
be inevitable. The authors of [22] propose an algorithm that
computes an adaptive time horizon which dictates when re-
planning should be performed. The so-called “time to potential
failure” determines how long the current trajectory is safe
under some given assumptions. However, if no further safe
trajectory is found, a collision might be imminent. To cope
with the dynamic environment, the authors of [23] propose an
adaptive planning horizon computation based on the changing
rate of the environment configuration. However, this approach
cannot guarantee that another feasible maneuver exists after
the computed time horizon.

The above methods cannot ensure safety for every scenario
due to possible unexpected maneuvers of other traffic par-
ticipants. Therefore, in our previous work [24], a fail-safe
motion planner is proposed, which is recalled in Sec. IV.
The proposed fail-safe motion planner in [24] can ensure
safety regardless of the maneuvers performed by other traffic
participants. Nonetheless, generating an emergency maneuver
for each time step is computationally expensive and typically
not required. In this paper, we propose an extension to our
fail-safe motion planner: an algorithm for determining the



maximum time horizon t∗ to safely follow a given trajectory.

A fail-safe maneuver starting at t∗ is guaranteed to exist.

The remainder of this paper is organized as follows: In
Sec. II the system dynamics is presented, together with the
considered constraints. Preliminaries and the problem state-
ment are introduced in Sec. III. In Sec. IV, the proposed
algorithm is described and the computation of t∗ is explained
in detail. Numerical simulations are presented in Sec. V
together with discussions. Finally, the conclusions are given
in Sec. VI.

II. SYSTEM MODELING

In this section, the system dynamics of the ego vehicle taken
from [21] is introduced:

ṡx = v cosθ, ṡy = v sinθ,

θ̇ =
v δ

l

[

1 +
(

v
vch

)2
] ,

δ̇ = u1, v̇ = u2,

(1)

where sx, sy are the coordinates of the ego vehicle’s position,
θ is the orientation, δ is the steering angle, and v is the
velocity. The system’s inputs u1 and u2 are the steering
rate and the acceleration, respectively. In addition, two more
parameters are used: the wheel base l and the characteristic
velocity vch. The state of the ego vehicle at time t is a vector
x = [sx, sy, θ, δ, v]T , and the controlled variable at time t is
u = [u1, u2]T .

In order to consider the physical limitations of a vehicle,
the following constraints are imposed:

0 ≤ v ≤ vmax, (2)

δmin ≤ δ ≤ δmax, (3)

δ̇min ≤ u1 ≤ δ̇max, (4)

amin ≤ u2 ≤ amax, (5)

where the boundary values are assumed to be given. In the
following, we denote by X ⊂ R5 the set of states which
satisfies the inequalities (2)-(3); U ⊂ R2 represents the set
of inputs that satisfy the inequalities (4)-(5).

III. PRELIMINARIES AND PROBLEM STATEMENT

Let us first provide some preliminaries and the notation used
throughout this paper. In the following, the area defined by the
left and right boundary of a road is referred to as lane. Let
Γ(x(t)) : R5 → P (R2) be the occupancy of a vehicle at time
t, defined as the rectangle which encloses the vehicle body,
where P (·) denotes the power set. The occupancy Γ(x(t)) is
computed based on the position, orientation, length, and width
of the ego vehicle. To ensure that the vehicle is not driving
outside the lane boundaries, an additional constraint is added
to the previous set of constraints (2)-(5):

∀t Γ(x(t)) ⊂ lane. (6)

Occ(τi)

(sx, sy)

Γ(ti) Γ(ti +∆t)

Fig. 2: Occupancy and overapproximative occupancy of a vehicle.

Let p be the number of the considered surrounding vehicles.
Here, we only consider the surrounding vehicles which are
in front of the ego vehicle, in the same lane or in adjacent
lanes. The vehicles which are behind the ego vehicle are not
considered, since each vehicle should avoid collisions with the
vehicles driving ahead.

To cope with uncertainties introduced by the unknown
behavior of other traffic participants and by the measurements
of the environment (e.g. static obstacles, surrounding vehicles),
an algorithm for computing the overapproximation of the
future occupancies of other traffic participants is proposed in
[25] and implemented by the tool SPOT [26]. We denote by
Occk(τi), k ∈ {1, 2, . . . , p} the overapproximative predicted
occupancy of a surrounding vehicle k. This is computed for
a given time interval τi = [ti, ti + ∆t], which encloses all
possible occupancies complying with traffic rules, so that
Γ(τi) ⊂ Occ(τi), where Γ(τi) :=

⋃

t∈τi

Γ(t), as illustrated in

Fig. 2.

Let us assume that an optimal trajectory
[xopt(t0), xopt(t0 +∆t), · · · , xopt(Th)] is given, where ∆t is the
time step and Th is the time horizon, Th = m ·∆t, m ∈ N.
Similarly, we write for the emergency maneuver initiated
at time t, Xemg(t) = [xemg(t), xemg(t+∆t), · · · , xemg(Temg)],
where Temg = n ·∆t, n ∈ N, represents the time horizon for
generating the emergency maneuver.

Recall that our goal is to determine the maximum time
horizon t∗ for which the ego vehicle can follow a given optimal
trajectory while guaranteeing safety. To guarantee safety, the
following two constraints are considered:

1) The occupancy associated with states within the optimal
trajectory Γ(xopt(τi)), ∀i ∈ {0, . . . ,m}, ti ≤ t∗ should
not intersect with the corresponding overapproximative
occupancy set of other traffic participants Occk(τi).

2) There exists an emergency maneuver initiated at
t∗ whose corresponding occupancy Γ(xemg(τj)),
∀j ∈ {i, . . . , n} does not intersect with the
corresponding overapproximative occupancy set of
other traffic participants Occk(τj), t∗ ≤ tj ≤ Temg,
k ∈ {1, · · · , p}, as illustrated in Fig. 1d.

Using the above notations, the addressed problem can be
formulated as follows:
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Fig. 1: The main steps of the proposed approach.

t∗ = max
0≤i≤m

ti,

subject to ∀k ∈ {1, · · · , p} ∀r ∈ {0, · · · , i− 1},

∀j ∈ {i, · · · , n}, ∃Xemg(ti) :

Γ(xopt(τr)) ∩Occk(τr) = ∅ ∧

Γ(xemg(τj)) ∩Occk(τj) = ∅.

(7)

IV. COMPUTING THE MAXIMUM TIME HORIZON t∗

To solve (7), we propose an algorithm which can be
summarized in three main steps, as illustrated in Fig. 3. After
new measurements are collected, the most likely trajectories of
surrounding vehicles are predicted by utilizing one of various
existing approaches (e.g. constant yaw rate and acceleration
[27], maneuver recognition module [28]). In this work, the
maneuver recognition module (MRM) [28] is used to generate
the most likely trajectory of other vehicles.

Then, a long-term trajectory xopt(ti), ∀i ∈ {1, . . . ,m} based
on the most likely trajectory of other traffic participants is
generated (see Fig. 1a). To generate a long-term plan for
the ego vehicle, an RRT-based method [29] is applied. Other
trajectory generating algorithms can be used as well.

Next, an upper bound tup of t∗ is determined, which
represents the maximal time for which the ego vehicle can
follow the long-term trajectory without intersecting with the
corresponding occupancy set of other vehicles. To further
prune the search interval of t∗, a lower bound tlow is computed,
which represents the latest time at which full breaking can be
initiated so that standstill is reached before or at tup. Both tup

and tlow are illustrated in Fig. 1c. Finally, the maximum time
horizon t∗ is calculated using binary search [30] within the
interval [tlow, tup]. In the following, a detailed description of
every step is provided.

➀ Compute the upper bound tup

The upper bound tup is the maximum time for which the
planned trajectory of the ego vehicle does not intersect with the
corresponding occupancy prediction of surrounding vehicles,
which is formalized as follows:

tup = max
0≤i≤m

ti

subject to ∀k ∈ {1, · · · , p}, ∀r ∈ {0, · · · , i− 1} :

Γ(xopt(τr)) ∩Occk(τr) = ∅.

(8)
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Fig. 3: Algorithm for computing the maximum time horizon t∗.

More specifically, this problem is solved by checking col-
lisions for each time step ∆t starting at t0. If there exists
no intersection, we further check for tup := tup + ∆t until
tup = Th. If tup = Th and no collision is found, each value
within the time interval [t0, Th] is a possible candidate for the
maximum time t∗. However, to further prune this time interval,
a lower bound is computed.

➁ Compute the lower bound tlow

The lower bound tlow is determined by computing the latest
time when the ego vehicle can initiate an emergency maneuver
along the optimal trajectory to safely stop before tup. This
represents a lower bound, since it is safe, but not necessarily
optimal. Therefore, every state xopt(t), t0 ≤ t ≤ tlow is safe,
since there exists at least one safe emergency maneuver
starting at tlow. Hence, those states can be discarded from the
search interval of t∗.

To compute tlow, we first assume that v(tup) = 0. Then,
we compute the optimal velocity profile along the given
path backwards in time. This velocity profile minimizes the
trip time, starting with standstill at the position of xopt(tup),
towards the position of xopt(t0). To generate this optimal
velocity profile which provides the shortest trip time for curved
paths, the method presented in [31] can be used. However, if
the path curvature is negligible, full deceleration amin provides
the fastest emergency maneuver. Finally, the time where the
velocity profile of the optimal trajectory xopt intersects with the
optimal velocity for decelerating to the position of xopt(tup),

where standstill is reached, represents tlow, as illustrated in
Fig. 4.

optimal velocity to stop at the position of xopt(tup)
velocity of xopt(t)

v

ttlow tup0
0

Fig. 4: Computation of tlow.

➂ Binary search of t∗

To generate an emergency maneuver, an optimal control-
based method is used. The considered objective function to
be minimized includes four weighted terms: The first term
minimizes the velocity v(t), in order to reach standstill. Ad-
ditionally, the steering rate u1(t), the acceleration u2(t) and,
the steering angle δ(t) are minimized. Thus, to generate the
emergency maneuver, the following constrained optimization
problem is constructed:

min
u

∑

ti

γ1v(ti)
2 + γ2u1(ti)

2 + γ3u2(ti)
2 + γ4δ(ti)

2,

subject to ∀k ∈ {1, . . . , p} ∀τi ∈ {τ∗, . . . , τemg} :

Γ(x(τi)) ∩Occk(τi) = ∅,

eq. (1) - (6),
(9)

where τ = [t, t+∆t] and γ1, γ2, γ3, γ4 are weighting factors.
To solve (9), we apply Sequential Quadratic Programming

(SQP) [32], since this method provides an efficient solution of
constrained nonlinear optimization problems.

To find t∗ within the interval [tlow, tup], any search algorithm
can be used. Here, binary search [30] is applied due to its
efficiency (O(log n) complexity) compared to the sequential
search (O(n) complexity).

Let us introduce the operator idx(e, v) which provides the
index of the element e within a vector v; additionally, the
following notation is used: timeVect = [tlow, tlow+∆t, · · · , tup].
Alg. 1 presents in detail how the computation of t∗ is
performed. First, an initialization is done by adding a label
visiti ← 0, which is a boolean variable, for each element
timeVecti. An element timeVecti gets the label visiti ← 1 if
it has been already checked whether an emergency maneuver
starting with that element exists or not. Then, binary search is
applied to find t∗; instead of comparing the target value with
the elements within the array, we check at which element an
emergency maneuver starts.

V. NUMERICAL EXPERIMENTS

To demonstrate the efficiency of our presented algorithm,
our approach is tested against real traffic data. This data



driving direction ego vehicle vehicle #1 vehicle #2 vehicle #3

replacements d

(a) Scenario suite #1 – #5.

d

(b) Scenario suite #6.

Fig. 5: Initial setting for the considered scenarios suite.

Algorithm 1: Search of t∗ within [tlow, tup].

Input: tup, tlow, ∆t, timeVect

Output: t∗

1 forall the ti ∈ timeVect do
2 visiti ← 0

3 while true do

4 i← idx(tlow, timeVect), j ← idx(tup, timeVect);
5 tmid ← timeVect(⌊ i+j

2
⌋);

6 if ∃(Xemg(tmid)) then
7 s← idx(tmid +∆t, timeVect);
8 if visits == 1 then

9 t∗ ← tmid

10 break

11 else

12 tlow ← tmid

13 visit⌊ i+j
2

⌋ ← 1

14 else

15 s← idx(tmid −∆t, timeVect);
16 if visits == 1 then
17 t∗ ← tmid −∆t
18 break

19 else
20 tup ← tmid

21 visit⌊ i+j
2

⌋ ← 1

22 return t∗

set was collected within the Next Generation SIMulation
(NGSIM)2 program, on the Hollywood Freeway, in Los An-
geles, CA, on June 15th, 2005. Acceleration, velocity, orienta-
tion, and position of each vehicle after each time step ∆t = 0.1
are included in the data set. Additionally, the length and the
width of each traffic participant are provided.

A. Simulation setup

To validate our method, six scenario suites are analyzed:
the first five consider only one surrounding vehicle, whereas
the last one considers three surrounding vehicles. First, we
select an initial frame from the data set and set it as the initial
simulation time. Then, at each future time step ti, we extract
the corresponding information regarding surrounding vehicles.

2https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm

The initial set-up for the considered traffic scenario suites is
illustrated in Fig. 5. The constraints for the velocity limitation,
steering rate, and acceleration, as well as the length, the width,
and characteristic velocity used for the ego vehicle, are shown
in Tab. I. Additionally, the weighting parameters used in the
optimization problem are set with the following values: γ1 =
80, γ2 = 10, γ3 = 1, γ4 = 0. The initial velocity v of the ego
vehicle and the initial smallest distance d to any surrounding
vehicle are defined by the user. In the simulation, different
initial values of v and d are considered. In scenario suite #1
and #2, v is set as 20m/s and d is 18m and 12m, respectively,
while in scenario suite #3 and #4, v is set as 16m/s and d is
18m and 12m. The initial velocity of the surrounding vehicle
is 12.19m/s in scenario suites #1 – #4. In scenario suite #5, v
is 20m/s and d is 40m.

For scenario suite #6, the initial velocity v of the ego vehicle
is 20m/s. The initial velocity of surrounding vehicles #1, #2,
and #3 is taken from the dataset, and has the following values:
12.19m/s, 14.62m/s, and 10.92m/s, respectively. The distance
between the ego vehicle and the closest surrounding vehicle
is 18m. Figs. 6 and 7 show the results of the simulation for
each considered scenario suite. For illustration purposes, the
position of the surrounding vehicle is shown only for every
0.5 seconds, and not for every ∆t.

B. Simulation results

The values of t∗ computed for each scenario suite are shown
in Fig. 8, as the time when an emergency maneuver must
be generated. Taking scenario suite #3 as an example, the
ego vehicle can safely follow the long-term trajectory for the
following time interval [0, 2] and an emergency maneuver
is kept available at t∗1 = 2s. Meanwhile, new measurements
are collected, and a new safe interval is computed as [2, 3.4].
A safe emergency maneuver is pre-computed after t∗2 = 1.4s.
Based on new information regarding the behavior of the
surrounding vehicles, a new safe time horizon is computed,
together with an evasive maneuver starting at the end of the
computed time interval.

Using our previous work [24], 95 emergency maneuvers
would have been generated, one for each time step. However,
with the method proposed in this paper, only 7 emergency
maneuvers are needed for the same scenario suite. Therefore,
our algorithm is indeed capable of significantly reducing
the required number of emergency maneuvers. Similarly, in
scenario suite #6, we only need to generate 8 emergency
maneuvers, whereas when using our previous approach, an
emergency maneuver is generated for each time step, requiring
56 maneuvers.



(a) Scenario suite #1: v = 20m/s, d = 18m.
(b) Scenario suite #2: v = 20m/s, d = 12m.

(c) Scenario suite #3: v = 16m/s, d = 18m. (d) Scenario suite #4: v = 16m/s, d = 12m.

(e) Scenario suite #5: v = 20m/s, d = 40m.

Fig. 6: Simulation results for scenario suite #1-#5.
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Fig. 7: Simulation result for scenario suite # 6.

TABLE I: Parameters.

Parameter ∆t v δ δ̇ a l w vch
(unit) (s) (m/s) (rad) (rads) (m/s2) (m) (m) (m/s)

Value/Interval 0.1 [0,30] [-π/2,π/2] [-π/8, π/8] [-10,10] 4 2 20

When comparing scenario suites #1 to #2 and #3 to #4,
we can see that our algorithm automatically adapts the fre-
quency of generating emergency maneuvers, based on the
current traffic situation. When the ego vehicle gets closer
to a surrounding vehicle, t∗ becomes smaller. More frequent
emergency maneuvers are generated in order to account for the
future possible behavior of other traffic participants. Scenario
suite #5 shows this more obviously - when the ego vehicle is
approaching the surrounding vehicle in longitudinal direction,
more frequent emergency maneuvers are generated.

The simulation results show that our algorithm can indeed
reduce the frequency of generating emergency maneuvers.
Moreover, our proposed method can automatically adapt the
frequency of generating emergency maneuvers to changing
traffic conditions.

VI. CONCLUSION

In this paper, an algorithm for computing the maximum
time horizon during which a vehicle can safely follow a
given trajectory is proposed. Instead of generating emergency
maneuvers at each time step, we determine the maximum time
horizon during which the ego vehicle can follow a trajectory

without needing to apply an emergency maneuver. To prune
the search interval for finding this maximum time horizon,
first a lower and an upper bound are computed. After the
search interval is pruned, we apply binary search to find the
maximum time horizon for which a given trajectory can be
safely followed. At the end of this time horizon, only one
emergency maneuver is generated.

The proposed method is tested against real traffic data and
can highly reduce the frequency of generating emergency ma-
neuvers, while still guaranteeing safety. The simulation results
show that our approach performs well under different traffic
scenarios, adapting the frequency of generating emergency
maneuvers according to the current traffic situation.
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