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Summary 

 

Technical flood protection is a necessary part of integrated strategies to protect riverine 

settlements from extreme floods. Many technical flood protection measures, such as dikes and 

protection walls, are costly to adjust after their initial construction. This poses a challenge to 

decision makers as there is a large uncertainty in how the required protection will change during 

the measure life-time, which is typically many decades long. The design should not be wasteful, 

providing much more protection than is needed at high construction cost, yet it should also not 

lead to high future flood damages or adjustment (retrofitting) costs. 

Flood protection requirements should account for many future uncertain factors: socio-

economic, e.g. whether the population and with it the damage potential grows or decreases; 

technological, e.g. possible advancements in flood protection; and climatic, e.g. whether 

extreme discharge will become more frequent or not. This thesis is concerned with the effect of 

the uncertainty in extreme discharge on flood protection planning, but an extension to other 

uncertainties is possible within the methodological framework. 

The thesis starts with an overview of relevant uncertainties in the historic record of extreme 

discharges and in climate projections. For planning purposes, we categorize uncertainties as 

either ‘visible’, if they can be quantified from available catchment data, or ‘hidden’, if they 

cannot be quantified from catchment data and must be estimated, e.g. from literature. Including 

such ‘hidden’ uncertainty accounts for the fact that in practice only limited models and data are 

available and additional uncertainty is to be expected. The discussion of uncertainties is 

followed by a Bayesian approach to quantify the visible uncertainties and combine them with 

an estimate of the hidden uncertainties to learn a joint probability distribution of the parameters 

of extreme discharge.  

Next, a fully quantitative Bayesian decision making framework is developed, which uses the 

joint, time-dependent distribution of parameters of extreme discharge as a basis for decision 

making. It recommends the capacity of flood protection that should be implemented at initial 

planning such as to minimize the sum of construction costs, adjustment costs and – in the risk-

based case – damages over the life-time of the protection. It takes into account the flexibility of 

the protection system, i.e. how costly it is to adjust the measures of which the protection system 
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consists later on. We account for the sequential nature of the decision process, in which the 

adequacy of the protection is regularly revised in the future based on the discharges that have 

been observed by that point. 

Finally, the framework is used to study the influence of uncertainty in extreme discharge on 

decision making in two pre-alpine case study catchments in southern Germany. The first case 

study is of conceptual nature, exploring the effect of uncertainty on decision making in a 

simplified, general fashion. The second case study exploits the full capabilities of the 

framework, using an ensemble of climate projections and following first a criterion-based 

approach (protection against the 100-year flood is mandatory, damages are not considered) and 

then a risk-based one. The results demonstrate that it is feasible to make robust decisions under 

large uncertainty, yet there are significant differences between a criterion- and a risk-based 

approach and care must be taken in how to learn and combine the information contained in 

climate projections. 
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Zusammenfassung 

 

Technischer Hochwasserschutz ist ein notwendiger Bestandteil von integrierten 

Hochwasserschutzkonzepten für flussnahe Siedlungen. Viele Maßnahmen des technischen 

Hochwasserschutzes, wie Deiche und Hochwasserschutzwände, können nach der Errichtung 

nur unter hohen Kosten erweitert werden. Dies ist eine Herausforderung für 

Entscheidungsträger, da die Veränderung des Hochwasserschutzniveaus über die Lebensdauer 

der Maßnahmen, welche typischerweise viele Jahrzehnte beträgt, mit großer Unsicherheit 

behaftet ist. Die Bemessung sollte nicht verschwenderisch sein und viel mehr Schutz als nötig, 

einhergehend mit hohen Baukosten, aufweisen; jedoch sollen auch hohe Schäden durch 

Hochwasser und hohe Nachrüstungskosten vermieden werden. 

Die Entwicklung des nötigen Hochwasserschutzniveaus in der Zukunft wird von vielen 

Faktoren bestimmt: sozioökonomischen, z.B. ob die Bevölkerung und damit das 

Schadenspotential schrumpft oder wächst; technologischen, z.B. ob neue Arten des 

Hochwasserschutzes entwickelt werden; und klimatischen, z.B. ob Hochwässer häufiger 

werden. Diese Dissertation behandelt den Effekt der Unsicherheit in der zukünftigen 

Hochwasserentwicklung auf den Hochwasserschutz, allerdings ist eine Ausweitung auf andere 

Unsicherheiten innerhalb des methodologischen Gefüges möglich.  

Die Dissertation beginnt mit einem Überblick über relevante Unsicherheiten in historischen 

Hochwasserzeitreihen und Klimaprojektionen. Zu Planungszwecken werden diese 

Unsicherheiten eingeteilt in „sichtbare”, d.h. das Ausmaß der entsprechenden Unsicherheit 

kann aus den vorliegenden Daten ermittelt werden, und „versteckte”, d.h. das Ausmaß der 

entsprechenden Unsicherheit kann nicht aus den vorliegenden Daten ermittelt werden und muss 

stattdessen geschätzt werden, z.B. aus der wissenschaftlichen Literatur. Die Berücksichtigung 

der unsichtbaren Unsicherheiten trägt der Tatsache Rechnung, dass in der Praxis nur eine 

begrenzte Anzahl von Daten und Modellen vorliegt und mit darüber hinaus gehender 

Unsicherheit gerechnet werden muss.  

Im Anschluss an die Abhandlung zu Unsicherheiten wird ein Bayes’scher Ansatz präsentiert, 

mittels dessen das Ausmaß der sichtbaren Unsicherheiten ermittelt und dieses mit einer 

Schätzung der unsichtbaren Unsicherheiten vereint werden kann, um eine gemeinsame 
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Wahrscheinlichkeitsverteilungsfunktion der Parameter des Hochwasser-Abflusses zu 

bestimmen. Als nächstes wird ein komplett quantitatives Bayes’sches Entscheidungsmodell 

entwickelt, welches die gemeinsame, zeitabhängige Verteilung der Parameter des Hochwasser-

Abflusses als Entscheidungsgrundlage nutzt. Es gibt eine Empfehlung ab, welche 

Schutzkapazität umgesetzt werden soll, um Baukosten, Nachrüstungskosten und – im 

risikobasierten Fall – Schäden über die Lebensdauer der Schutzmaßnahme zu minimieren. Das 

Modell berücksichtigt dabei die Flexibilität der Schutzmaßnahme, d.h. wie teuer 

Nachrüstungsmaßnahmen sind. Der Planungsprozess wird sequentiell modelliert, d.h. in der 

Zukunft wird in regelmäßigen Abständen bewertet, ob das Schutzniveau noch ausreichend ist 

– abhängig von den inzwischen beobachteten Abflüssen. 

Schließlich wird das Modell genutzt, um den Einfluss der Unsicherheiten in der zukünftigen 

Hochwasserentwicklung auf Planungsentscheidungen anhand von zwei Fallstudien in 

Einzugsgebieten im süddeutschen Voralpenland zu untersuchen. Die erste Fallstudie ist 

konzeptuell, der Einfluss von Unsicherheit auf Schutzentscheidungen wird in einfacher und 

genereller Weise erforscht. Die zweite Fallstudie bedient sich unter Nutzung mehrerer 

Klimaprojektionen der vollen Möglichkeiten des Entscheidungsmodells. Es wird zunächst ein 

vorgabenbasierter Planungsansatz (Schutz vor dem 100-jährigen Hochwasser ist verpflichtend, 

Schäden werden nicht berücksichtigt) und dann ein risikobasierter Planungsansatz verfolgt. Die 

Ergebnisse belegen, dass es möglich ist, selbst unter großer Unsicherheit robuste 

Entscheidungen zu treffen. Es gibt jedoch große Unterschiede zwischen den Ergebnissen eines 

vorgabenbasierten und eines risikobasierten Schutzansatzes und das Berücksichtigen und 

Kombinieren der Informationen aus Klimaprojektionen muss mit großer Sorgfalt erfolgen.  
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This chapter introduces the thesis: motivation for why the research is interesting and relevant in 

Section 1.1, the research objectives in Section 1.2 and the outline of the following chapters in Section 

1.3. 

 

1.1 Background and motivation 

The frequency of large fluvial flood events is expected to increase in Europe due to climate change 

(Alfieri et al., 2015). To protect settlements from the discharges reached in such events, technical 

flood protection is a necessary part of integral flood protection strategies (RMD Consult, 2016). 

Technical flood protection measures have long life-times of, on average, 80 years (Bund / Länder-

Arbeitsgemeinschaft Wasser, 2005). The uncertainty over such a long planning horizon is large, both 

concerning the level of extreme discharge that must be expected – be that due to diverging climate 

projections or lack of historic data – and concerning the impact that a flooding may have (which is 

determined not least by socio-economic developments) (Hall and Solomatine, 2008; Hawkins and 

Sutton, 2011; Schumann, 2012). In this thesis, the focus lies on the uncertainty in extreme discharge, 
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but other uncertain components can be included within the methodological framework and are partly 

covered in the case study sensitivity analyses. 

For long projection horizons, uncertainties in extreme discharge projections are so large that it is 

sometimes questioned whether projections for later years have any meaning at all (Maraun, 2013). 

The large uncertainty may be deterring to decision makers, yet, there is no point in deferring decisions 

since it is questionable whether new data and models in the future will reduce uncertainties (Hawkins 

and Sutton, 2009, 2011) – if deferring the decision is an option at all. Furthermore, a large uncertainty 

in decision-relevant variables, such as future discharge, does not necessarily imply a large uncertainty 

in the recommendable decision itself (Refsgaard et al., 2013), as will become apparent also in this 

thesis.  

Planning authorities should be economical in their decision making, since resources are finite and it 

is in the interest of society to distribute them effectively (Aktas et al., 2007; Davis et al., 1972). In the 

context of flood protection under uncertainty, this means finding a balance between avoiding costly 

overprotection while also protecting enough to prevent excessive losses or need for adjustment of 

protection systems in the future. To this end, costs – in construction, adjustment and flood damages 

– must be considered over the entire system life-time. There is a growing consensus that costs and 

damages (and thus the extreme discharge causing them) should be modeled probabilistically 

(Aghakouchak et al., 2013). Bayesian techniques are a natural way to model discharge 

probabilistically (Coles et al., 2003; Tebaldi et al., 2004a). The Bayesian approach facilitates 

combining several sources of information, such as climate projections, discharge record and 

hydrological conditions (Viglione et al., 2013). Furthermore, it supports updating the discharge 

probability distribution in time, when new information becomes available (Graf et al., 2007). In 

addition to considering new information during the system life-time, it also makes sense to consider 

the effect of changing decision makers and to focus on the effect a decision has for future generations. 

This is not considered explicitly in this thesis beyond the aim for minimal life-time cost, yet can be 

accounted for by adjusting the discount rate (viz. Section 3.5) as described in (Nishijima, 2009; 

Nishijima et al., 2005, 2007).  

It should be noted that some authors advocate not using a probabilistic approach when the uncertainty 

is very large. This is because of the potential of surprises under large uncertainty (Hall and 

Solomatine, 2008; Merz et al., 2015; Paté-Cornell, 2011). Instead, they recommend an approach 

focussed on robustness: the ability of the protection system to work well under a wide range of 
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scenarios. We consider our approach to be complementary: we provide a recommendation of the 

flood protection capacity, the implementation should then be conducted in a robust way based on 

expert judgement, e.g. combining different types of protective measures at different locations.  

Recent studies have aimed at quantifying individual uncertainties in (extreme) discharge (Bosshard 

et al., 2013; Hawkins and Sutton, 2011; Sunyer, 2014). Of these, (Sunyer, 2014) has pointed out the 

usefulness of finding a framework to combine uncertainties for flood protection planning. The 

derivation of a probabilistic model of extreme discharge forms the first part of this thesis. We 

quantitatively incorporate climate uncertainty from multiple information sources as well as an 

estimate of the ‘hidden uncertainty’ into learning the probability distribution of parameters of extreme 

discharge. The term ‘hidden uncertainty’ refers to uncertainty components that cannot be quantified 

from the given projections and data. For example, if the same hydrological model has been used for 

all projections, then the hydrological model uncertainty is ‘hidden’, since one effectively has only a 

single sample of hydrological model output. It is vital to consider the hidden uncertainty, since in 

practical applications only a limited amount of information and models is available. 

Once established, the question is then how to deal with the uncertainty in flood risk estimates when 

conducting flood protection planning. Multiple approaches have been proposed (Hallegatte, 2009; 

Kwakkel et al., 2010), including the addition of a planning margin to the initial design. The planning 

margin is the protection capacity implemented in excess of the capacity that would be selected without 

taking into account the uncertainties. Such reserves are used in practice; for example, in Bavaria, a 

planning margin of 15 % is applied to the design of new protection systems to account for climate 

change (Pohl, 2013; Wiedemann and Slowacek, 2013). Planning margins are typically implemented 

based on rule-of-thumb estimates rather than a rigorous quantitative analysis (KLIWA, 2005, 2006; 

De Kok et al., 2008). In particular, they do not consider the flexibility of the system.  

Flexible flood protection systems are systems that can be modified without excessive cost in the 

future, when more information is available or when the demands on the system are altered because 

of anthropogenic or climate change (Vrijling et al., 2007). Figure 1-1 shows an example of a flood 

wall that is flexible: a larger foundation than necessary is built initially, at extra cost, to allow for a 

future extension if needed. An alternative example is the reservation of land for the future 

construction of a retention basin that would further increase the protection of the settlement, as shown 

in Figure 1-2. Note that we do not use the term flexible to refer to emergency fortification of flood 

protection, which is usually more costly (Lendering et al., 2016).  



4 Introduction 

 

 

 

Figure 1-1. An example of a flexible flood protection measure – a flood wall. When it is built with a broader base initially, 

it is cheaper to adjust (i.e. more flexible) later. Adapted from (Vrijling et al., 2007). 

 

 

 

Figure 1-2. An example of a flexible flood protection system – dikes and polders with reserved areas for retention. 

Adapted from (Špačková et al., 2015a). 
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Flexible protection measures and systems can be a good solution when uncertainty is high since they 

allow for shorter planning horizons through sequential planning (Löwe et al., 2017; U.S. Climate 

Change Science Program, 2009). In Figure 1-3, we show a simple flow chart of sequential flood 

protection planning as will be implemented in our optimization framework: A flood protection system 

is implemented initially and later revised, based on the data (discharge observations) that become 

available in the future. Future discharges are uncertain, signified by the cloud, and they cause 

damages depending on the protection system in place. The expected damages are the risks. Under a 

criterion-based flood protection paradigm, risks are not considererd, instead, decisions on system 

capacity are made such as to minimize cost over the system life-time while conforming to a set 

criterion (e.g. to protect against the 100-year flood). Under a risk-based protection paradigm, the sum 

of the two monetary quantities – risks and costs – is to be minimized over the system life-time (viz. 

Equation (3-2)). The planning paradigms are discussed in detail in Section 3.1.2. As new observations 

are made, the prediction of future demand changes. Thus, under either protection paradigm, a decision 

on adjusting the system capacity may become necessary or economically advisable. The cost for both 

the initial implementation of the protection system and for adjustments depends on the system 

flexibility: a more flexible system decreases adjustment costs but this saving must be balanced with 

potentially higher costs of implementing it initially. 

Figure 1-4 presents a schematic graph of the cost development for a flexible versus a less flexible 

protection system when there are capacity adjustments (increases) during the system life-time. While 

the inflexible system is initially cheaper in the example, the life-time costs incurred are higher than 

for the flexible system because the capacity had to be adjusted twice during the system life-time and 

it is more expensive to adjust an inflexible protection system. 
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Figure 1-3. Schematic sequential planning process: after an initial decision on system capacity, new observations lead to 

an altered prediction of future demand and thus potentially adjustment. At the same time, the future discharges cause 

damages (i.e., in there expected form, risks) depending on the capacity in place. The cloud signifies that future discharges 

are uncertain. Costs of decisions depend on system flexibility. Adapted from (Špačková et al., 2015b). 

 

 

 

Figure 1-4. Total life-time cost of a flexible versus an inflexible system (Straub and Špačková, 2016): costs of building 

to the initial capacity and costs of the 1st and 2nd adjustment (increase), depending on existing levels of capacity. In case 

multiple adjustments are needed, a flexible system is cheaper over the life-time despite often being more costly initially.  
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The challenge is in determining the optimal design taking into account the flexibility of the flood 

protection system. It is not economical to apply the same planning margin in flexible systems as in 

inflexible ones since the former can be adjusted in the future without excessive cost. Hence it is 

necessary to find a relationship between the optimal planning margin and system flexibility. 

Additionally, one may wish to quantify the value of flexibility, since it typically comes at an 

additional cost. When the choice is among systems with varying flexibility, questions arise such as: 

Is it worth investing in a flexible system, which is potentially more expensive initially? Or is it more 

cost-effective to select an inflexible system and apply a high planning margin (a conservative design) 

that would be satisfactory under multiple future scenarios? Optimization of flexible flood 

management under uncertainty in a sequential manner has e.g. been considered in (Harvey et al., 

2012; Hino and Hall, 2017; Woodward et al., 2011). In these studies, the uncertainty concerning the 

future is expressed by means of selected discrete scenarios with associated probabilities; the 

optimization is performed among a discrete set of alternative decisions. In contrast, in our approach 

we represent the uncertainty by continuous random variables, explicitly include the future learning 

process by means of Bayesian analysis, and consider a continuous space of decision alternatives. 

We propose a fully quantitative Bayesian decision making framework for optimizing flood protection 

capacity – i.e. finding the initial flood protection capacity that is most economical over the system 

life-time – which considers the flexibility of the flood protection systems. It takes basis in Bayesian 

decision theory (Benjamin and Cornell, 1970; Davis et al., 1972; Raiffa and Schlaifer, 1961). The 

theory allows modeling decisions sequentially, thereby accounting for future information (e.g. 

discharge measurements). Anticipating the effect of future information, and including it in the 

optimization using Bayesian updating, is called preposterior analysis (Benjamin and Cornell, 1970; 

Hobbs, 1997; Raiffa and Schlaifer, 1961). 

The initial capacity is optimized considering possible future adjustments of the capacity at regular 

intervals. The framework allows one to both quantify the value of flexibility (Linquiti and Vonortas, 

2012; Špačková and Straub, 2017) – the savings that can be incurred by a more flexible system – as 

well as the value of information (Straub, 2014; Winkler et al., 1983) – i.e. the savings that can be 

incurred by reducing uncertainty. The probability distribution of parameters of extreme discharge is 

quantified and the framework applied in two pre-alpine case studies.  
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1.2 Research objectives 

At the start of the thesis stood a practical problem: local authorities planning new technical protection 

from fluvial floods were wondering which planning margin to add to their design (protection from 

the 100-year flood). The margin commonly added was a ‘rule of thumb’ estimate not specific to the 

catchment or protection system. They were interested in what a recommendation specific to the 

present circumstances of the catchment would look like and how a changing climate may influence 

the planning margin. Furthermore, they were curious how the recommendation might change if 

planning were to take into account potential damages (‘risk-based planning’) rather than minimizing 

just construction and adjustment costs under the constraint of keeping to the 100-year flood protection 

(‘criterion-based planning’). 

Thus, the overall motivation of the thesis is to propose a comprehensive decision support framework 

that gives a quantitative, evidence-based recommendation of a planning margin for flood protection, 

depending on the catchment in which planning takes place and the protection system that is 

considered. The framework should enable both criterion- and risk- based planning and account for 

possible future changes in climate. 

From this motivation, we draw the following objectives: 1) To formalize, and incorporate into the 

decision framework, a relation between initial construction costs and adjustment costs of the 

protection system (‘flexibility’, which is the system property influencing the recommended planning 

margin). 2) To identify, and incorporate into the decision framework, relevant information – such as 

discharge projections and damage potential in the catchment – based on which a quantitative planning 

margin recommendation could ultimately be given. 3) To design the structure and methodological 

details of the decision support framework. In particular, to (probabilistically) account for future 

discharges and adjustment decisions based on these future discharges. To do so, a method of learning 

from the future discharges must be devised, a sequential decision process must be defined and a fitting 

optimization algorithm to arrive at the optimal initial planning decision must be applied.  

Uncertainty poses the main challenge of objective 2): in practice, there is often limited available 

information. In addition, what little information is available may be biased – such as a projection 

ensemble in which all projections are based on the same emission scenario – or otherwise known to 

be prone to error – such as precipitation measurement records. Historic discharge records are often 

short, which is particularly problematic when trying to extract a trend signal. Thus, further objectives 
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are: 4) to devise a method to combine several sources of extreme discharge information together with 

their respective uncertainties. This involves identifying, categorizing and quantifying relevant 

uncertainties. Thereafter, a way must be found to incorporate them into the framework while 

accounting for biases in and dependencies among several sources of uncertainty. And finally, 5) to 

include a reasoned estimate of uncertainty and bias that cannot be estimated from the available, 

insufficient information (‘hidden uncertainty’). 

While the analysis is designed for climate uncertainties, the existence of, and possible methodological 

extension to, other uncertainties is highly desirable. The same holds for different kinds of 

infrastructure: the generality of the method is to be such that only the input parameters are to be 

changed if the framework were to be used for other long-term, costly-to-adjust infrastructure that is 

impacted by climate change, e.g. sewer pipes. The methodology ought to be abstract enough to enable 

general conclusions on the impact of uncertainty on long-term planning, how to evaluate it, and what 

decisions subsequently to take. 

 

1.3 Thesis outline 

The thesis is organized into six chapters. Chapters 2 and 3 are methodological in nature:  

Chapter 2 is concerned with the uncertainties in extreme discharge: what are they, how can they be 

categorized for flood protection planning, how can they be quantified (including any time 

dependence) and finally how can different types of uncertainty be combined to learn a joint 

probability distribution of parameters of extreme discharge? Special attention is given to uncertainty 

in climate projections: how can one treat bias in projections, dependency among projections and the 

reducing information value of projections the further into the future they are made? Furthermore, we 

show how uncertainty beyond that in the available data (which we call ‘hidden uncertainty’) can be 

included when learning the probability distribution of parameters of extreme discharge.  

In Chapter 3, we develop the decision making framework. Based on the joint, continuous probability 

distribution of parameters of extreme discharge of Chapter 2 and on the presumption that the 

protection system is revised and potentially adjusted at regular intervals, it serves to determine what 

the capacity of the protection system should be at construction. The system is assigned a cost function 
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that takes into account how costly it is to adjust (‘how flexible it is’), which determines the balance 

between a conservative initial design and a ‘wait-and-see’ approach. Future discharges that will be 

observed before adjustment decisions are modeled probabilistically and used to sequentially update 

the probability distribution of parameters of extreme discharge. For example, if high discharges have 

been observed up to the first adjustment, it is also likelier that discharges are high between the first 

and second adjustment since the discharges are indicative of the underlying ‘true’ extreme discharge 

distribution. The optimization technique used is a backwards induction optimization which allows 

taking into account that future adjustment decisions are uncertain, based on the discharge 

observations made by the time of the decision. 

Chapters 4 and 5 present case studies: 

In Chapter 4, a simple case study is presented that focusses on drawing general conclusions about 

flood protection planning under uncertainty. A pre-alpine catchment in southern Germany with a long 

record of historic discharge measurements has been chosen and the optimization is conducted on the 

basis of this record only, disregarding flood projections. Stationarity is assumed and varying levels 

of uncertainty are achieved by using different lengths of the record. The protection strategy is 

criterion-based: the catchment must be protected from the 100-year flood at all times.  

In Chapter 5, we present a case study that makes use of the full capabilities of the described protection 

framework in a non-stationary analysis of an ensemble of discharge projections including a 

quantification of ‘hidden uncertainty’ for a different pre-alpine German catchment. The optimization 

is conducted in a criterion-based manner (to protect against the 100-year design flood) as well as in 

a risk-based manner (accounting for expected damages). The latter is done with regard to four specific 

protection systems considered by the local authorities. 

Concluding remarks, including practical recommendations and suggestions for future research, are 

given in Chapter 6. 

 



 

This chapter discusses uncertainty in extreme discharge and its relevance for flood protection 

planning. We begin with reviewing the literature on flood-related climate uncertainty is Section 2.1. 

Individual uncertainty components are introduces in Section 2.2. In Section 2.3, we propose 

methodology to combine different uncertainties from historic record, projections and literature so that 

they can be used jointly in flood protection planning. We end with conclusions in Section 2.4.  

 

2.1 Background 

In this section, we give a brief overview of the impact of climate change on flood projections and the 

uncertainty therein. We start with a general note on the impact of climate change on discharge in 

Section 2.1.1. In Section 2.1.2, we present literature concerning the uncertainty in projections of 

(extreme) discharge. We conclude with the current knowledge and practice concerning climate 

change and flood protection in Bavaria in Section 2.1.3.  

2 Uncertainty in flood discharge 
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2.1.1 Impact of climate change on discharge 

The discharge at a given gauge is determined by a range of climate factors from temperature to wind 

speed, yet precipitation is the dominating one (Panagouliaas and Dimoub, 1997). The impact of 

climate change on precipitation is non-trivial, in particular compared to temperature, making 

modeling the impact of climate change on flood risk far from straightforward (Montanari and Blöschl 

2010). It is established that global warming leads to a more intense hydrological cycle and more 

precipitation extremes (Blöschl et al., 2013b; Fowler et al., 2007). How these manifest themselves 

will, however, be strongly dependent on the particular catchment (Deutsche Vereinigung für 

Wasserwirtschaft Abwasser und Abfall e.V., 2012; Fatichi et al., 2013).  

In recent years, the impact of climate change on flood risk has been investigated for a considerable 

number of catchments. The scales reach from catchments as large as the entire Rhine catchment of 

218.300 km2 (Middelkoop et al., 2001) to smaller ones such as the Mulde catchment of 7.400 km2 

(Menzel and Buerger, 2002) or that of the river Kennet, UK of 1.200 km2 (Wilby et al., 2006). Many 

studies were performed under the framework of larger projects, such as the German-Canadian project 

QBic3, the European project ACQWA (‘Assessing climate impacts on the quantity and quality of 

water’) or the southern German project KLIWA (‘Klimaveränderung und Wasserwirtschaft’, which 

translates to ‘Climate change and water management’), from which we obtained most of our 

projections (viz. Section 5.1.3).   

A unifying feature of these studies is that they do not put an emphasis on quantifying uncertainties 

(Zwiers et al., 2013). Local flood risk modeling is a multistep process depending on many input 

models and data, such as forcing scenario, Global and Regional Climate Models (GCMs and RCMs, 

respectively), impact model etc. (viz. Section 2.2.2). The generated projections of flood risk exhibit 

considerable deviations based on which models and data are chosen. For example, the spread in 

projected flood risk increase due to forcing scenario and GCM choice alone is 100 % - 300 % for 

northern central Europe (IPCC, 2012). Since the models are only a subset of possible futures, the true 

uncertainty is even larger.  

2.1.2 Uncertainty in flood projections 

While it may not be possible to eliminate uncertainty, it is vital to understand and quantify it (Mearns, 

2010). To do so in climate change modeling, all components of the climate modeling chain (viz. 
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Section 2.2.2) need to be taken into account. There is literature in which the uncertainty in individual 

steps of the model is evaluated. Examples include the quantification of RCM uncertainty by a 

Bayesian approach (Tebaldi et al., 2004a, 2004b) or that of hydrological model uncertainty 

(Velázquez et al., 2013). Uncertainty in downscaling strongly depends on the local conditions, though 

from comparing a large quantity of downscaling studies it is found that “temperature can be 

downscaled with more skill than precipitation, winter climate can be downscaled with more skill than 

summer due to stronger relationships with large-scale circulation, and wetter climates can be 

downscaled with more skill than drier climates… no single best downscaling method is identifiable” 

(Fowler et al., 2007). There is a large number of likely sources of uncertainty in flood prediction, 

including not only climate, hydrological and socio-economic factors but also local conditions such as 

land cover (Menzel and Buerger, 2002). Besides the time and monetary costs of taking into account 

multiple uncertainties that are difficult to quantify, addressing uncertainties is often also challenging 

due to cultural, organizational or political unwillingness to do so. 

Since extremes are, by definition, very rare, they can be less reliably modeled than ‘standard’ events 

(Montanari and Blöschl 2010). One major problem is the lack of calibration data, in particular such 

that is long-term, high-quality and has sufficient time resolution (Easterling et al., 1999; Grundmann, 

2010). A possible solution is to combine different sets of data (Erdin et al., 2012; Heimann et al., 

2013) or to generate data (Katz, 2010). Finally, a flawed assumption that is often taken as a basis for 

modeling is that of the stationary climate – when we are dealing with climate change, one must find 

different ways of expressing long-held concepts such as return period of floods (Katz, 2010).  

2.1.3 Climate change in Bavaria 

Watershed management in Bavaria is based on the outcomes of the southern German collaborative 

project KLIWA, upon which the results given in this section are based. Current KLIWA projections 

predict a general increase in temperature in Bavaria for all seasons and a strong precipitation increase 

for the winters (+7 % to +28 % depending on region), whereas for summers there is no clear change 

in precipitation (− 10 % to +5 %) (KLIWA 2012b; KLIWA 2011).  Extreme precipitation of over 

24 hours duration is distributed even more unevenly depending on region, with increases reaching 

from +7 % to +40 %  (KLIWA, 2011). The frequency of extreme precipitation is estimated to 

increase in summer and more so in the north of Bavaria than in the south (KLIWA, 2012a). There 

have been studies for specific regions, such as the Inn catchment, which the Mangfall river is part of. 
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For the Inn catchment, a forecast study reaching up to 2100 produced a +4 °C temperature rise, 

− 20 % summer precipitation and inconclusive results concerning winter precipitation (− 10 % to 

+15 %) (Willems and Stricker, 2011). Where an uncertainty analysis was included, it was based on 

calibration to past data – which is problematic in a non-stationary climate – or in comparing the results 

from different climate input models – which is most likely an underestimate since the models are 

correlated. 

Traditionally, flood protection systems in Bavaria are designed to withstand floods of return period 

100 years. A planning margin of 15 % was introduced in 2005, to account for climate change. This 

value is based on flood risk models of the Neckar and upper Main valleys using a single forcing 

scenario and GCM at the large scale of 250 × 250 km², prediction time 2021-2050 and calibration 

time 1971-2000 (KLIWA, 2005). While the data did not allow to do otherwise at the time, it is clear 

that using the same planning margin – i.e. the same increase of protection – for every catchment in 

Bavaria is not optimal. For once, there are large local differences in the estimated change in 

precipitation – e.g. ranging from − 1 % to +39.6 % in winter with said model for different regions 

in Bavaria (KLIWA, 2006) – so some regions will be overprotected and some not protected enough. 

Secondly, the models and assumptions that the decision of having a +15 % planning margin relied 

on are partly outdated and the uncertainty associated with it has not been quantified. Furthermore, a 

change in mean discharge level does not allow conclusions for extreme events. And finally, as 

discussed in Section 1.1, the planning margin should depend on the flexibility of the protection 

system. 

 

2.2 Sources of uncertainty 

As shown in Figure 2-1, we distinguish three forms of uncertainty in extreme discharge: (1) Due to 

the probabilistic nature of discharge, there is internal variability, shown as the shaded Probability 

Density Function (PDF). (2) Future discharges are subject to a number of uncertainties in the climate 

modeling chain and different climate projections can vary widely (Hawkins and Sutton 2010), here 

shown using the effect of different trends. (3) The parameters of any probabilistic model describing 

the uncertainty under (1) and (2) are subject to parameter uncertainty (Kiureghian and Ditlevsen 

2009), which comes from the limited data used for fitting the probabilistic model. We visualize the 
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parameter uncertainty as a blur on the true probability distribution. These uncertainties are discussed 

in the following sections: Internal variability in Section 2.2.1, uncertainties in future climate in 

Section 2.2.2 and parameter uncertainty in Section 2.2.3. 

 

 

Figure 2-1. Types of uncertainty in extreme discharge: (1) Extreme discharge is subject to internal variability (shaded 

distribution). (2) The parameters of the extreme discharge distribution are subject to parameter uncertainty (blurred area 

in the square frame). (3) Future discharges are subject to climate uncertainty (shown as trends differing among 

projections). 

 

2.2.1 Internal variability 

The term ‘internal variability’ describes the aleatory (alternatively: irreducible) uncertainty 

component in extreme discharge: even with perfect knowledge, it cannot be predicted with certainty 

what the annual maximum discharge of a given future year will be (Der Kiureghian and Ditlevsen, 

2009). This is because discharge realizations occur spontaneously, as a result of the interaction of 

various climatic components (IPCC, 2013). Based on the available information, it can be assumed 

that the absolute amount of internal variability does not change in time. In projections of future 

discharge however, the relative importance of internal variability decreases with time as climate 

uncertainties increase with increasing projection horizon (viz. Section 2.2.2).  In a small pre-alpine 
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catchment, such as considered in our case studies, the internal variability is large and dominates the 

uncertainty spectrum, potentially masking existing trend signals in heavy precipitation (and thus 

extreme discharge) for the entire projection horizon up to the year 2100 (Maraun 2013). Alternative 

terms for the internal variability are ‘inherent randomness’ or ‘noise’. 

2.2.2 Uncertainties in the climate modeling chain 

Discharge projections are the result of a complex multi-step climate modeling process. In literature, 

this is often termed the climate modeling ‘chain’, which, as new uncertainties are introduced at each 

modeling step, leads to the ‘uncertainty cascade’ (Mitchell and Hulme 1999; Foley 2010). A scheme 

for the modeling steps and resulting uncertainty cascade is reproduced in Figure 2-2 (Sunyer, 2014).  

 

 

Figure 2-2. Uncertainty cascade in climate impact studies: each of the subsequent climate modeling steps – forcing, 

global and regional climate model, downscaling and impact – is subject to uncertainty. Adapted from (Sunyer, 2014). 

 

It is worth pointing out that the uncertainty cascade does not necessarily lead to an increase in 

uncertainty at each step, as the modeling steps depend on each other in a non-linear fashion. Just as 

uncertainties can add up, it is conceivable that they may not be relevant for future steps in the 

modeling chain (Refsgaard et al., 2013). The uncertainty from the interaction of consecutive steps in 

the modeling chain is called ‘interaction uncertainty’ (Bosshard et al. 2013). 
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In the following sections, we give a short overview of the individual modeling steps required to obtain 

projections of (extreme) discharge. We start by a very brief introduction to climate forcing, then move 

on to summarize the uncertainty from the GCMs and RCMs under ‘Model response’. Statistical 

downscaling is covered with a focus on quantile mapping, which is the technique applied in the case 

study. Up to and including statistical downscaling, the climate modeling chain produces not discharge 

projections but projections of various other climate variables that are translated to discharge in a 

specific catchment through a hydrological model. In addition to the hydrological model, the impact 

model also contains components such as damage modeling. As it is not part of the discharge 

uncertainty, damage modeling is not discussed here. However, the sensitivity to the damage model 

forms part of the case study. The uncertainties in the climate modeling chain are in principle 

epistemic, yet it is debatable if they can and will be reduced in the foreseeable future (Hawkins and 

Sutton, 2009, 2011). 

Forcing 

The forcing of the climate through Greenhouse Gas (GHG) emissions is the first element in the 

climate modeling chain. The future socioeconomic, political and technological development 

determines the amount of GHGs emitted. Different development scenarios on which climate modelers 

could base their work were described in the Special Report on Emissions Scenarios (SRES) of the 

Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2000). The SRES scenarios have since 

been replaced by Representative Concentration Pathways, which directly refer to the amount of 

GHGs emitted (Moss et al., 2010). For our case study, only projections based on SRES scenario A1B, 

a widely used scenario with moderate socio-economic and technological changes, were available. 

Thus, we have to take into account the uncertainty of what the projection results might have been 

under other forcing scenarios. However, in Europe, forcing uncertainty only becomes relevant in the 

far future and is of particularly low significance for local extreme precipitation (Hawkins and Sutton, 

2011; Maraun, 2013; Tebaldi et al., 2015).  

Model response 

For climate change impact studies, it is typical to use ensembles of not one but multiple GCM-RCM 

combinations (Huang et al., 2014; Muerth et al., 2012; Rajczak et al., 2013). The differences in GCM-

RCM output when driven by the same emission forcing are termed ‘model response uncertainty’ or 

‘model spread’ (IPCC, 2013). Multi-model ensembles such as the one available for the case study 

reproduce part of this spread. That they do not reproduce it completely is because they consist of a 
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finite number of possibly biased and dependent models that typically have to be chosen based on 

availability rather than on statistical considerations (Knutti et al., 2013; Tebaldi and Knutti, 2007). 

To mitigate this problem, some researchers assign weights to individual models, but there is an 

ongoing debate about this: some researchers are making a general case for the benefits of weighting 

(Ylhäisi et al., 2015) or its drawbacks (Aghakouchak et al., 2013), some are detailing when it may 

make sense on the basis of model performance (Refsgaard et al., 2014; Rodwell and Palmer, 2007) 

or genealogy (Masson and Knutti, 2011), but all approaches are disputed. The relative importance of 

model response increases with projection lead time and is particularly significant for extreme summer 

precipitation (Bosshard et al., 2013).  

Statistical downscaling 

The available projections underwent statistical downscaling using quantile mapping, which is often 

recommended for extreme events (Bosshard et al., 2011; Dobler et al., 2012; Hall et al., 2014; 

Themeßl et al., 2010). Statistical downscaling is used to align GCM-RCM outputs with historic 

records, but its use is still controversial. Reasons for this include the problematic assumption of 

stationary bias, potential masking of true model spread, issues of spatial mismatch and more, as has 

been laid out in several reviews on the topic (Chen et al., 2015; Ehret et al., 2012; Maraun, 2016; 

Teutschbein and Seibert, 2013). When applied, the uncertainty contribution of the downscaling is 

likely to be large (Hundecha et al., 2016; Sunyer et al., 2015b). It would be beneficial to use not one 

but several downscaling techniques, similarly to how one uses an ensemble of GCM-RCMs 

(Arnbjerg-Nielsen et al., 2013; Sunyer et al., 2015a), as well as several calibration datasets (Sunyer 

et al., 2013a). 

Hydrological model 

Hydrological models use RCM outputs such as precipitation, temperature, wind speed and soil 

moisture to model discharge for a specific catchment. Catchment parameters (such as surface 

roughness) are typically found in an elaborate calibration procedure (Labarthe et al., 2014; Li et al., 

2012). The parameters are usually assumed to be stationary, but they might in fact be non-stationary 

(Merz et al., 2011). Furthermore, the calibration might mask model errors by tuning the catchment 

parameters to balance them. Thus, the parameter estimates strongly depend on the calibration period 

(Brigode et al., 2013). Several approaches exist to quantify the uncertainty stemming from the 

hydrological model (Götzinger and Bárdossy, 2008; Velázquez et al., 2013). Overall however, the 



Uncertainty in flood discharge 19 

 

error from the hydrological model is small, in particular for extreme discharge (Velázquez et al., 

2013). It is likely smaller than or comparable to forcing uncertainty (Wilby, 2005). 

2.2.3 Parameter uncertainty 

Statistical modeling of extreme values is most commonly performed using a ‘peaks-over-threshold’ 

or a ‘block maxima’ approach. For the former, extreme values exceeding a certain threshold are fitted 

with a Generalized Pareto Distribution; for the latter, maxima from a set time period (such as the 

annual maxima, i.e. the largest value of each considered year) are fitted with a Generalized Extreme 

Value (GEV) distribution or one of its sub-families – the Gumbel, Fréchet and Weibull distributions. 

For a given catchment, floods typically occur in the same season of the year, so it is sensible to use a 

‘blocks’ approach in our application: a year forms a natural ‘block’ in hydrology and the approach 

guarantees that the utilized data are independent, as the annual maxima of different years correspond 

to different flood events. The two approaches and their mathematical derivation from the Poisson 

limit theorem are described e.g. in (Coles, 2004; Fasen et al., 2013). 

We model the distribution of annual maximum discharge 𝑄 by a PDF 𝑓Q|𝛉(𝑞|𝛉), in which 𝛉 is the set 

of parameters of the distribution function that are learned from the data. Learning 𝛉 from finite data 

will result in a probability distribution over 𝛉, which describes parameter uncertainty (Kennedy and 

O’Hagan, 2001). In a Bayesian framework, the posterior joint PDF of the parameters 𝛉 can be learned 

from 𝑌 years of annual maximum discharges 𝐪 = [𝑞1, … , 𝑞𝑌] as follows: 

𝑓𝛉|𝐐(𝛉|𝐪) ∝ 𝐿(𝛉|𝐪) × 𝑓𝛉(𝛉),  (2-1) 

where 𝑓𝛉(𝛉) is the prior distribution of the parameters and 𝐿(𝛉|𝐪) is the likelihood of the parameters 

given the observations. Due to the adopted ‘blocks’ approach, the discharge maxima can be assumed 

to be independent between individual years. Neglecting measurement error, the likelihood function 

in Equation  (2-1) is formulated as 

𝐿(𝛉|𝐪) =∏𝑓𝑄|𝛉(𝑞𝑡|𝛉)

𝑌

𝑡=1

,  (2-2) 

with 𝑓𝑄|𝛉 being the PDF of 𝑄 for given parameters 𝛉, e.g. following an extreme value distribution 

function such as the Gumbel or GEV distribution. The Bayesian learning naturally includes the 
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internal variability of discharges 𝐪. In most practical applications, the uncertainty on 𝛉 is neglected, 

and a point estimate 𝛉̂ is applied, such as the Maximum Likelihood Estimate (MLE) or the Maximum 

A-Posteriori (MAP), which is identical to the MLE in the case of a uniform prior 

over 𝛉 (Pappenberger and Beven, 2006). To include uncertainty, instead the predictive distribution of 

the annual maximum discharge 𝑄 – the distribution of future 𝑄 based on past observations – should 

be evaluated (Hall et al., 2011). 

We illustrate the parameter uncertainty using the example of annual exceedance probability 1/𝑇, 

corresponding to a flood with return period 𝑇. The respective 𝑇-year discharge is 𝑞(𝑇), defined as  

1 − 𝐹𝑄(𝑇)|𝛉(𝑞
(𝑇)|𝛉) =

1

𝑇
      ↔      𝑞(𝑇) ∶= 𝐹

𝑄(𝑇)|𝛉
−1 (1 −

1
𝑇 |𝛉)      (2-3) 

where 𝐹𝑄(𝑇)|𝛉 is the Cumulative Distribution Function (CDF) and 𝐹
𝑄(𝑇)|𝛉
−1  is the inverse CDF of the 

annual maximum discharge 𝑄 . The design flood event is therefore a function of the discharge 

distribution parameters, it is written as 𝑞(𝑇)(𝛉). The effect of this uncertainty on the distribution of 

𝑞(𝑇) is illustrated in Figure 2-3. Disregarding the uncertainty in parameters 𝛉 when calculating the 

design flood leads to biased results (Nishijima, 2009). 

The Bayesian framework requires the selection of a prior distribution 𝑓𝛉(𝛉) in Equation (2-1). For 

the application to flood protection planning, one may instead wish to select a prior that is only weakly 

informative in 𝑞(𝑇). We propose to use the following distribution for this purpose:  

𝑓𝛉(𝛉) ∝
1

𝑓
𝑄(𝑇)

(𝑞(𝑇))
=

1

𝑓
𝑄(𝑇)

(𝐹
𝑄(𝑇)|𝛉
−1 (1 −

1

𝑇
|𝛉))

, 
      (2-4) 

where 𝑓𝑄(𝑇)(𝑞
(𝑇)) is the PDF of 𝑞(𝑇) based on a prior distribution 𝑓𝛉(𝛉) that is uniform in 𝛉 and 

Equation (2-3) has been applied in the equality. We illustrate Equation (2-4) in Figure 2-4: the blue 

dashed line shows the case where the prior PDF 𝑓𝛉(𝛉) of the parameters 𝛉 of extreme discharge is 

uniform (‘flat’). The orange solid line shows the case where Equation (2-4) has been applied so that 

instead, the prior PDF 𝑓𝑄(𝑇)(𝑞
(𝑇)) of the 𝑇-year discharge 𝑞(T) is uniform. We display 𝑓𝛉(𝛉) in panel 

(a) and 𝑓𝑄(𝑇)(𝑞
(𝑇)) in panel (b): as can be seen, when the prior of one quantity is non-informative, 

the other becomes informative and vice-versa. 



Uncertainty in flood discharge 21 

 

 

Figure 2-3. Exceedance probability (MAP) and associated 90 % credible interval (shaded) as a function of discharge. 

The dashed PDF represents the uncertainty in the 100-year flood estimate. The figure is based on a 31-year data record 

from the gauge Wasserburg am Inn (viz. Section 4.1) under the assumption of a Gumbel distribution. 

 

 

 

Figure 2-4. Illustration of prior transformation (viz. Equation (2-4)). (a) Prior PDF 𝑓𝛉(𝛉) of the parameters 𝛉 of extreme 

discharge when itself non-informative (blue dashed line) vs. when the prior PDF 𝑓𝑄(𝑇)(𝑞
(𝑇)) of the 𝑇-year discharge 𝑞(𝑇) 

is non-informative (orange line). (b) The same for 𝑓𝑄(𝑇)(𝑞
(𝑇)). 
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In the case where the flood model is learned purely based on a record of historic discharge, the length 

of the record determines the level of parameter uncertainty, as apparent from Figure 2-5.  

 

 

Figure 2-5. 100-year design discharge estimate (MAP) and associated 90 % credible interval as a function of the historic 

data record length. Annual maximum discharge data (shown as dots) are from the gauge Wasserburg am Inn, Germany 

(viz. Section 4.1), for the period from 1828 to 2013. The 100-year discharge is estimated under the assumption of a 

stationary Gumbel distribution, neglecting measurement uncertainty. 

 

The credible interval width decreases as the available data series becomes longer. This exemplifies 

the epistemic nature of parameter uncertainty. It reduces in time as more discharges or other 

information (such as new, ‘more certain’ climate models) become available. Chapter 4 is concerned 

with a case study of the effect of parameter uncertainty on flood protection decisions, using increasing 

length of historic record to consecutively decrease the parameter uncertainty. 
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2.3 Combining uncertainties for flood protection planning 

In this section we propose an approach for combining different uncertainty components when using 

projections to learn the parameters 𝛉 of the distribution 𝑓𝑄|𝛉(𝑞|𝛉) of annual maximum discharge 𝑄. 

This distribution is used in Chapter 3 for the optimization that determines the flood protection 

capacity, which minimizes costs over the life-time of the protection system. We begin by categorizing 

uncertainties in such a way that it is conducive for this application in Section 2.3.1. In Section 2.3.2, 

we show how the likelihood 𝐿(𝛉|𝐪) (viz. Equation (2-1)) is derived for any individual projection, 

taking into account uncertainty estimates from literature. In Section 2.3.3 we show how to combine 

the likelihoods of the projection ensemble. Note that trend in annual maximum discharges is an 

implicit part of the analysis, as 𝛉 can be defined to contain trend parameters (viz. e.g. case study 2 as 

described in Section 5.1) 

2.3.1 Uncertainty categorization 

Depending on the application, different categorizations of uncertainty have been proposed in the 

literature. In Section 2.2 for example, we have presented the uncertainties in extreme discharge by 

source. Another common way to categorize uncertainties is the distinction between aleatory 

(irreducible) and epistemic (reducible) uncertainties (Der Kiureghian and Ditlevsen, 2009; Refsgaard 

et al., 2013). This categorization is useful in that it underlines in which areas future research could 

lead to uncertainty reduction. Other authors focus their categorization e.g. on the different effects of 

uncertainties (Merz et al., 2015). In the context of estimating flood extremes under climate change 

with limited information, we distinguish between: 

 ‘Visible uncertainty’, which is known and can be quantified. For an ensemble of discharge 

projections, this would e.g. be the internal variability, the model response uncertainty and the 

parameter uncertainty. 

 ‘Hidden uncertainty’, which is the remaining uncertainty and can, at best, be estimated. For 

example, in the projection ensemble of the case study, the forcing uncertainty is hidden since 

all projections are based on the same emission scenario. In real planning situations, hidden 

uncertainty is typically significant because of limited and imperfect projections and data, it 

can therefore not be neglected. 
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In the following sections, methodology will be presented to learn the distribution of parameters of 

annual maximum discharge using these uncertainties.  

2.3.2 Accounting for uncertainty and bias in projections 

When using discharge projections, it is important to account for uncertainty and bias within them. As 

discussed in Section 2.2.2, climate uncertainties increase with the projection horizon and thus the 

information value of a projection made late on the horizon is smaller than that of an earlier one. For 

example, a projection for the year 2100 is associated with higher uncertainty than one that is made 

for the coming year and should have less weight when learning the parameters 𝛉 of the distribution 

of annual maximum discharge from climate projections. In the following, we develop a methodology 

that accounts for this. 

We introduce the standard deviation 𝜎𝑗,𝑡
(𝑢)
,  in which the superscript (𝑢)  describes which type of 

uncertainty is considered (internal or hidden), the subscript 𝑗 denotes the projection and the subscript 

𝑡 the year on the projection horizon. The internal variability in a projection, [𝜎𝑗
(internal)]2 , can be 

quantified following (Hawkins and Sutton, 2009). Note that the subscript 𝑡 is excluded here since 

internal variability is assumed to be independent of time. Relative variance shares of the individual 

uncertainties, including ‘hidden’ ones, can be estimated from the literature (Bosshard et al., 2013; 

Hawkins and Sutton, 2011) and expert judgement, as demonstrated in Chapter 5. The share of an 

individual uncertainty component in the total variance is here labelled 𝜂𝑡
(𝑢)

, with the indexing as for 

𝜎 . The uncertainty shares are assumed to be general for a given location, independent of the 

projection. Thus, the absolute value of the hidden uncertainty can be found from the absolute internal 

variability and the uncertainty variance shares as 

𝜎𝑗,𝑡
(hidden)

 = 𝜎𝑗
(internal)

× √
𝜂𝑡
(hidden)

𝜂𝑡
(internal). 

 

  (2-5) 

For learning the joint PDF of the parameters 𝛉 of the annual maximum discharge distribution, we 

treat the 𝑗 = 1, . . . , 𝑀  discharge projections 𝐩𝑗 = [𝑝𝑗,𝑡=1, … , 𝑝𝑗,𝑡=𝑌]  as samples of the true future 

discharge 𝜏𝑡 with a bias ∆𝑗,𝑡: 𝜏𝑡 = 𝑝𝑗,𝑡 − ∆𝑗,𝑡. We express the likelihood 𝐿𝑗,𝑡(𝛉|𝑝𝑗,𝑡, ∆𝑗,𝑡) describing 

the annual maximum discharge of projection 𝑖 in year 𝑡 as 
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𝐿𝑗,𝑡(𝛉|𝑝𝑗,𝑡, ∆𝑗,𝑡)=𝑓𝑄|𝛉(𝑝𝑗,𝑡 − ∆𝑗,𝑡|𝛉),  (2-6) 

where 𝑓Q|𝛉  is the PDF of the extreme value distribution describing 𝑄(𝑡).  The likelihood 

𝐿𝑗,𝑡(𝛉|𝑝𝑗,𝑡, ∆𝑗,𝑡) determines the learning of the PDF of parameters 𝛉 from projections, in analogy to 

Equation (2-1).  

The bias ∆𝑗,𝑡  is modeled as a normal random variable with zero mean and standard deviation 

𝜎𝑗,𝑡
(hidden)

: 

∆𝑗,𝑡= 𝑧 × 𝜎𝑗,𝑡
(hidden)

= 𝑧 × 𝜎𝑗
(internal)

×√
𝜂𝑡
(hidden)

𝜂𝑡
(internal), 

 

  (2-7) 

with 𝑧 being a standard normal random variable. By modeling all ∆𝑗,𝑡 as a function of the same 𝑧, it 

is assumed that the ∆𝑗,𝑡 are fully dependent within one projection 𝑗. This treatment is conservative, 

since it minimizes the amount of learning from projected discharges. Due to the large impact of the 

projection on the bias, it is a better depiction of reality than the assumption of independent ∆𝑗,𝑡 within 

one projection 𝑗. From this follows the likelihood for a complete projection time series 𝐩𝑗 as 

𝐿𝑗(𝛉|𝐩𝑗) = ∫ [∏𝑓𝑄|𝛉(𝑝𝑗,𝑡 − 𝑧 × 𝜎𝑗,𝑡
(hidden)|𝛉)

𝑌

𝑡=1

]
∞

−∞

× 𝜈(𝑧)d𝑧,  (2-8) 

where 𝜈 is the standard normal distribution. Internal variability is included in Equation (2-8) naturally 

via 𝑝𝑗,𝑡, as is parameter uncertainty, which is a function of the length of projections. While we are 

focussing on climate uncertainty here, in principle, any kind of additional uncertainty can be included 

via the hidden uncertainty parameter 𝜎𝑗,𝑡
(hidden)

 in Equation (2-8). Model response uncertainty is 

included in the combination of the likelihoods 𝐿𝑗(𝛉|𝐩𝑗) from different projections 𝑗, as described in 

the following section.  

2.3.3 Accounting for dependency among projections 

Individual projections are not independent. Hence, one cannot combine 𝐿𝑗(𝛉|𝐩𝑗)  into a joint 

likelihood 𝐿(𝛉|𝐩) via a simple product over projections 𝐩𝑗. Dependence among multiple projections 
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is due to common model biases, be it because they e.g. share code from the same institution or because 

our understanding of climate processes is not perfect (Knutti et al., 2013; Tebaldi and Knutti, 2007). 

Consequently, confidence in the prediction variance should not increase linearly with the number of 

projections in an ensemble. Instead, the ensemble should be seen as consisting of an effective number 

𝐾 of quasi-independent projections (adding independent pieces of knowledge) that is smaller than the 

ensemble size 𝑀 (Pennell and Reichler, 2011; Sunyer et al., 2013b). We thus partition the ensemble 

into 𝐺 sets of 𝐾 projections, where 𝐺 is the integer quotient of 
𝑀

𝐾
. For each of these sets, the likelihood 

function can then be formulated as the product of the likelihoods 𝐿𝑗
(𝑔)
(𝛉|𝐩𝑗) of the set members, since 

they are assumed to contain independent information: 

𝐿(𝑔)(𝛉|𝐩) = ∏ 𝐿𝑗
(𝑔)
(𝛉|𝐩𝑗)

𝐾
𝑗=1 .    (2-9) 

Climatological rationale is applied to determine the division of the ensemble into sets: in line with 

the concept of effective projections, the projections in each set should be as distinct as possible, 

adding a maximum of additional information. The set likelihood 𝐿(𝑔)(𝛉|𝐩) from Equation (2-9) is 

used to compute the joint set posterior of parameters, 𝑓𝛉|𝐐
(𝑔)(𝛉|𝐩), in analogy to Equation (2-1). The 

set posteriors are then averaged to result in an overall posterior 𝑓𝛉|𝐐(𝛉|𝐩) of learning from projections 

under climate uncertainty. The averaging over posteriors expresses that we place equal trust in 

distributions learned from the different sets. 

 

2.4 Conclusions 

Estimates of future extreme discharge are fraught with numerous large uncertainties which need to 

be considered in flood protection planning. In particular, the following points must be accounted for 

when learning the probability distribution of parameters of extreme discharge (leading to future 

estimates): 

1) an estimate of the uncertainty that cannot be quantified from the available data (the ‘hidden 

uncertainty’), since projections and data at hand often cover only a limited range of the 

uncertainty spectrum (the ‘visible uncertainty’), 
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2) the time development of the uncertainty, so as to give less weight to projections far on the 

projection horizon, 

3) dependency among projections, since projection ensembles often include several projections 

sharing code or assumptions. 

We presented methodology to quantitatively include these aspects when learning the distribution of 

parameters of annual maximum discharge. ‘Visible’ and ‘hidden’ uncertainty form part of a time-

dependent Bayesian likelihood function. Dependence among projections is accounted for by using 

the concept of effective projection number.  

 



 

 

 



 

In this chapter, we propose a fully quantitative Bayesian framework to find the optimal initial flood 

protection capacity under uncertainty in a sequential decision process – that is, one with potential 

adjustments based on new information in later years, where the initial decision must be optimized 

taking into account the potential adjustments (Kochendorfer, 2015; Raiffa and Schlaifer, 1961). A 

continuous, joint, multi-dimensional probability distribution of the parameters of the extreme value 

distribution of discharge is learned as described in Chapter 2 and probabilistically updated with 

discharge samples between adjustments. The protection decision is optimized taking into account the 

possible future discharges and corresponding adjustment decisions.  

We start by introducing background knowledge concerning decision making under uncertainty and 

protection planning paradigms in Section 3.1. We then outline our approach using a very simple 

didactic example of sequential decision making under uncertainty in Section 3.2. In Section 3.3, we 

define a notion of the flexibility and cost of protection systems. Learning and updating the probability 

distribution of parameters of annual maximum discharge is described in Section 3.4. Two different 

approaches to optimization for finding the cost-optimal decision are outlined in Section 3.5. 

Conclusions pertaining to the contents of this chapter are given in Section 3.6. 

 

3 Sequential Bayesian decision 

framework 
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3.1 Background 

In this section, we describe approaches to decision making under uncertainty, in particular in flood 

protection planning. Section 3.1.1 gives a brief overview of literature on the topic. Section 3.1.2 

introduces and distinguishes two approaches commonly used by planning bodies: risk-based planning 

and criterion-based planning. 

3.1.1 Decision making under uncertainty 

There is a wide range of practical approaches to planning under uncertainty. Three approaches are 

common when planning infrastructure systems in particular: 1) to design for a worst-case scenario, 

2) to design such that functionality is given for a number of reasonable scenarios and 3) to design 

flexible systems, which can be adjusted to function under a broad range of conceivable scenarios 

(Kwakkel et al., 2010; Mearns, 2010; Walker et al., 2013).  The latter approach is particularly valuable 

under large uncertainty, since it appears preposterous to assume that the future can be predicted well 

enough for static planning. However, some infrastructures, such as technical flood protection, are not 

very flexible by nature, i.e. it is costly to change their protection capacity once they have been erected. 

For such systems, planning margins and a reduced time horizon can be a sensible choice (Hallegatte, 

2009; Kalra et al., 2014). As will be shown, our framework allows to calculate the trade-off of system 

flexibility and planning margin by using a sequential optimization, i.e. dividing the planning horizon 

into several shorter time horizons. 

When choosing between different planning options, decision makers use a multitude of tools for 

evaluation. These include qualitative or semi-quantitative decision support tools such as the 

precautionary principle or minimax strategy (Gregersen and Arnbjerg-Nielsen, 2012) as well as fully 

quantitative ones. Commonly used quantitative evaluation tools include multi-objective analysis 

(Woodward et al., 2014b), Cost-Benefit Analysis (CBA) (Berlin et al., 2014; Griffin, 1998; Hine and 

Hall, 2010), and the more general real options analysis, which considers adaptation options (Hino and 

Hall, 2017; Woodward et al., 2014a). Our framework is based on CBA, with a continuous range of 

adaptation options (infrastructure adjustments) – rather than just individual choices or scenarios –

possible.   
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Bayesian decision theory (Benjamin and Cornell, 1970; Davis et al., 1972; Raiffa and Schlaifer, 1961) 

provides a natural way to 1) model decisions using the full spectrum of uncertainty rather than 

individual scenarios and 2) model a sequential process in which new information that becomes 

available only in the future can be accounted for. The theory has been used to optimize adaptation to 

climate change (Garrè and Friis-Hansen, 2013; Hobbs, 1997; Simpson et al., 2016), yet never in the 

form of a comprehensive study on flood management. Bayesian modeling of sequential decision 

processes can be performed using Influence Diagrams or similar decision graphical frameworks 

(Luque and Straub, 2013; Nishijima, 2015), where the parameters influencing the decision quantity 

are modeled as random variables and their probability distribution is updated with new observations. 

If the quantity of interest can be used directly, Markov Decision Processes are typically employed to 

solve such decision problems, if not, Partially Observable Markov Decision Processes (POMDPs), 

which are described e.g. in (Kochendorfer, 2015). Recently, the methodology has been employed for 

sequential infrastructure planning under climate change (Špačková and Straub, 2017). A POMDP 

approach could be applied to solve the decision framework in this thesis. However, the continuous 

domains of random variables and optimization parameters would need to be discretized, leading to a 

computationally costly POMDP solution. The proposed tailored solution strategy is computationally 

efficient, because it exploits the specifics of the investigated problem.  

Finally, it should be noted that decision evaluation is highly dependent on the groups considered 

(Kalra et al., 2014). For example, decisions that take into account the interests of future generations 

will differ from such that do not (Nishijima, 2009). Furthermore, the optimization changes when it is 

considered that typically, multiple (changing) decision makers are involved in decisions on 

infrastructure planning over the infrastructure life-time (Nishijima et al., 2005).  

In flood protection planning, two basic approaches adapted by authorities are 1) that the protection is 

designed according to a prescribed protection criterion – e.g. it must withstand the 100-year flood – 

and 2) that the sum of protection cost and risks in the protected settlement must be minimized. The 

two approaches are considered in this thesis and introduced in more detail in the following section. 

3.1.2 Risk-based and criterion-based planning 

Ideally, the planning of flood protection infrastructure is performed through a risk-based approach. 

Thereby, potential damages are considered in the decision-making process. Risk-based flood 
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protection planning has a long history (Clark, 1980; James and Hall, 1986; Lund, 2002) and 

approaches to account for uncertainty in the risk estimate have also been developed for some time 

(Kundzewicz et al., 2010; USACE, 1996). Recent fields of interest in risk-based flood protection 

planning are e.g. how to include the flexibility of protection systems into the decision making (i.e. 

how costly it is to adjust systems later on) (Klijn et al., 2015; Kuklicke and Demeritt, 2016; 

Woodward et al., 2014a) and how to account for non-stationarity in discharges and risk estimates, 

e.g. due to climate change (Rehan and Hall, 2016; Rosner et al., 2014; Sayers et al., 2013). The 

framework presented in this thesis is novel in that it is based on a probabilistic quantitative estimate 

of climate (and potentially other) uncertainty, naturally incorporating non-stationarity and the 

flexibility of the protection system via a Bayesian setup. 

Considering that the annual maximum discharge 𝑞 is the main driver for flood damages, the flood 

risk for some period 𝑖 of length ∆𝑡 years, 𝑟𝑖, is defined as (e.g. Merz et al., 2010a) 

𝑟𝑖 = ∫ 𝑓𝑄(𝑞)×𝑑𝑖(𝑞)d𝑞

∞

0

 
 

 (3-1) 

where 𝑓𝑄(𝑞) is the PDF of the annual maximum discharge and 𝑑𝑖(𝑞) = ∑ 𝑑𝑡(𝑞)
∆𝑡
𝑡=1  is the damage in 

period 𝑖. The damages are discounted to the time of initial planning on an annual basis, i.e. for each 

year 𝑡 individually. Based on risk-based CBA, it is most economical to choose the flood protection 

strategy 𝑠 that minimizes the sum of risks and costs over the life-time of the protection system, which 

consists of 𝑁 time periods (Špačková and Straub, 2015): 

𝑠opt = min
𝑠
(𝑐tot(𝑠) + 𝑟tot(𝑠)),   (3-2) 

where 𝑐tot(𝑠) and 𝑟tot(𝑠) are the expected life-time costs and risks associated with strategy 𝑠 as 

defined in Equations (3-11) and (3-12), discounted to the time of planning. Figure 3-1 exemplifies 

the relation given in Equation (3-2): risks decrease with increasing protection capacity whereas costs 

increase. The optimal capacity (corresponding to some optimal protection strategy) is therefore in the 

medium cost and risk range.  

Figure 3-2 provides a risk-cost diagram with exemplary strategies that are optimal, strategies that 

would be chosen if cost is a constraining factor, ones that are somewhat suboptimal but might be 

preferred by a risk-averse decision maker, and ones that should be avoided all together.  



Sequential Bayesian decision framework 33 

 

 

 

Figure 3-1. Life-time risk and cost versus system capacity. The risk decreases and the cost increases with protection 

capacity. The optimal capacity of the protection system is the one that minimizes the sum of life-time risk and cost. 

Adapted from (Špačková et al., 2015a). 
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Figure 3-2. Different protection strategies in a risk-cost diagram: in risk-based planning, minimizing the sum of risks and 

costs leads to economically optimal protection strategies. When there is a prescribed protection criterion (and thus a fixed 

risk for any particular catchment), resulting strategies are often not economically optimal. Adapted from (Straub, 2015). 

When planning flood protection systems against design flood events with a prescribed return period 

(‘criterion-based’), damages that will occur in the case of more extreme, less frequent events than 

that of the design flood are not considered. Thus, the residual risk is ignored. Such an approach is 

common practice in many countries. For example, the current practice in Germany and several other 

European countries is to protect against the 100-year flood (Central European Flood Risk Assessment 

and Management in CENTROPE, 2013; Deutsche Vereinigung für Wasserwirtschaft Abwasser und 

Abfall eV., 2011); delta regions in the Netherlands have to be protected against up to a 10,000-year 

flood (Bischiniotis et al., 2016; Kabat et al., 2005). This simplifies planning as it is not necessary to 

consider damages. In effect, a fixed level of risk is set in a criterion-based planning approach. We 

visualize this in Figure 3-2 by the horizontal lines. Note that this level of risk differs for different 

catchments protected by the same criterion, since catchments exhibit differing damage potentials. 

Nevertheless, it is clear that while a well-chosen criterion may lead to optimal strategies, a suboptimal 

one may lead to inefficient strategies which are too risky or, on the other hand, too risk-averse. To 

balance the optimality of risk-based planning with the lower effort of criterion-based planning, 

authorities can apply a ‘zoning’ approach, with different regions being assigned a different protection 

criterion. However, (Kind, 2014) performed CBA in Dutch catchments and found that despite the 

applied large-scale zoning, the protection criterions mostly were not economically efficient: criterions 

were found to be insufficiently protecting communities along the large rivers from fluvial floods but 

were excessive along the coast.  

On a final note, expert judgement remains valuable when following either planning strategy. When 

using a protection criterion as opposed to a risk-based approach in particular, it is recommendable to 

implement a protection system that consists of several different, possibly spatially distributed, 

measures. That leads to more robust protection in which floods in excess of the design flood do not 

quickly lead to very high damages (Blöschl et al., 2013b; Custer and Nishijima, 2013). In the risk-

based case, robustness is inherent in the evaluation of protection strategies since the damages that 

would be caused even by very rare, catastrophic events are included probabilistically.  
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3.2 Didactic example 

How should one deal with uncertainty when planning flood protection systems? To examine this 

question, we present a didactic example of criterion-based planning in the following, in which the 

outcome space of the model parameters consists only of two discrete values 𝛉high  and 𝛉low . 

Following Equation (2-3), these would lead to corresponding required protection capacities 

𝑞(𝑇)(𝛉high) = 𝑣high or 𝑞(𝑇)(𝛉low) = 𝑣low in a criterion-based planning. The initial design 𝑣0 will be 

revised at a future point in time 𝑡1, when additional information is available to obtain an improved 

estimate of the parameter values, and hence to reduce the uncertainty in the design discharge 𝑞(𝑇).  

At time 𝑡0, protection 𝑣low is sufficient. If the decision maker chooses to protect to capacity 𝑣0 =

𝑣low  initially, at a cost of 𝑐0(𝑣0 = 𝑣
low) = 100 × 106 € , the observations made until 𝑡1  may 

necessitate a adjustment to a future capacity 𝑣1 = 𝑣high at a cost of 𝑐1(𝑣0 = 𝑣
low, 𝑣1 = 𝑣high) =

50 × 106 €. If, conservatively, capacity 𝑣0 = 𝑣high  is chosen initially, potential adjustment is 

avoided, but the initial cost is higher, at 𝑐0(𝑣0 = 𝑣high) = 120 × 106 €. Discounting is neglected in 

this simple example. 

At the time of the initial decision, the probability of different future observation outcomes can be 

quantified through a Bayesian analysis, as will be shown in Section 3.4. For the decision on flood 

capacity, the observations can be grouped according to whether they will make an adjustment 

necessary or not. In this example, we arbitrarily chose a 0.3 probability that the capacity 𝑣1 =

𝑣high becomes necessary at 𝑡1, and consequently a 0.7 probability that 𝑣low remains sufficient at any 

time.  

The decision tree for this problem is displayed in Figure 3-3. On the right-hand side is the total life-

time cost, depending on the initial choice made and whether an adjustment is needed. The cost values 

at the bifurcations are the expected costs associated with the initial decision alternatives. In case the 

decision 𝑣0 = 𝑣
low  is taken initially, E[𝐶(𝑣0 = 𝑣

low)] = 100 × 106 € + 0.3 × 50 × 106 € =

115 × 106 €. If 𝑣0 = 𝑣
high, i.e. when planning conservatively, the expected cost is 120 × 106 €, 

independent of later observations. Hence, the choice of the lower protection 𝑣0 = 𝑣
low initially, i.e. 

a ‘wait and see’ approach, leads to lower expected costs and is hence preferable.  The cost of 

adjustment depends on the flexibility of the protection system (viz. Section 3.3). For an inflexible 
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system, adjustment may be considerably more expensive than the 50 × 106 € assumed here and a 

high initial protection may then be the preferable choice. 

 

 

Figure 3-3. Decision tree for the didactic example. Squares represent the decisions and circles the uncertain required 

protection capacity (criterion-based planning). 

 

Sequential decision making in real-world flood protection planning relies on the same principles as 

in this simple didactic example. The aim is to determine optimal flood protection to be implemented 

at present, considering potential future adjustments in light of new observations or changes of the 

system.  Our approach extends the didactic example in several aspects: (1) 𝛉 are the parameters of 

the probability distribution describing the annual maximum discharge, they have a continuous 

multidimensional outcome space. (2) Multiple future decision steps are considered, at which the 

protection capacity can be revised. Each future decision includes an optimization of the protection 

capacity. (3) The flexibility of the protection systems is included as an explicit parameter of the 

decision problem. (4) The potential future observations (annual maximum discharges) are modeled 

stochastically. Furthermore, we present a risk-based approach in addition to the criterion-based one. 
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3.3 Cost and flexibility of flood protection systems 

The notion of flexibility 𝜑 of protection systems that is used in this thesis was first introduced in 

(Špačková et al., 2015b) and later detailed in (Špačková and Straub, 2017). Following these works 

and denoting the initial building cost of a given flood protection system with capacity 𝑣 as 𝑐0(𝑣), and 

the (undiscounted) cost of adjusting the capacity from 𝑣𝑖−1 to 𝑣𝑖 as 𝑐𝑖(𝑣𝑖−1, 𝑣𝑖): 

𝜑 =
𝑐0(𝑣𝑖) − 𝑐𝑖(𝑣𝑖−1, 𝑣𝑖)

𝑐0(𝑣𝑖−1)
.  (3-3) 

As (Špačková and Straub, 2017) explain, flexibility “𝝋 = 0 corresponds to an inflexible system and 

𝝋 = 1 to a fully flexible system. For fully flexible systems with 𝝋 = 1, the cost of increasing the 

capacity [from 𝒗𝒊−𝟏  to 𝒗𝒊]  equals the difference between building to these capacities initially, 

[𝒄𝒊(𝝋, 𝒗𝒊−𝟏, 𝒗𝒊) = 𝒄𝟎(𝒗𝒊) − 𝒄𝟎(𝒗𝒊−𝟏)]. For such systems, the number of steps to reach the final 

capacity is irrelevant; the total costs are the same if one builds to the final capacity at once or if one 

adjusts the capacity at every time step. For inflexible systems with 𝝋 = 0, the cost of increasing the 

capacity to [𝒗𝒊] is equal to cost of building to this capacity initially, irrespective of the existing 

capacity [𝒗𝒊−𝟏], therefore [𝒄𝒊(𝝋, 𝒗𝒊−𝟏, 𝒗𝒊) = 𝒄𝟎(𝒗𝒊)]. When the capacity of an inflexible system is 

changed, the existing system cannot be used, the system has to be built completely anew. Flexibility 

can also take negative values, which occur if the original system must be fully replaced and removal 

costs are invoked in addition to the cost of the new system. The flexibility of an irreversible system is 

−∞, because its adjustment costs are infinite.” 

An illustration of the costs for flexible versus inflexible systems is given in Figure 3-4. Panel (a) 

shows the initial costs when the system is first implemented. Panel (b) shows the costs resulting from 

a subsequent capacity increase.  
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Figure 3-4. Illustration of the utilized notion of system flexibility, 𝜑. In panel (a), a protection system is constructed to 

capacity 𝑣0 initially, at cost 𝑐0(𝑣0). For simplicity, a linear cost function is shown. When adjusting to a higher capacity 

𝑣𝑖, as depicted in panel (b), the cost depends on the flexibility 𝜑: For fully flexible systems (𝜑 = 1) there is no overhead 

inccured, i.e. the adjustment costs are equal to the difference between the initial costs of the unadjusted and the adjusted 

system. When the protection is inflexible, adjustment costs equal the costs incurred when implementing capacity 𝑣𝑖 

directly. Adapted from (Špačková et al., 2015b). 

 

For optimization purposes, it is useful to express the adjustment cost as a function of flexibility. Based 

on Equation  (3-3), the cost of adjusting the capacity from 𝑣𝑖−1 to 𝑣𝑖  equals  

𝑐𝑖(𝜑, 𝑣𝑖−1, 𝑣𝑖) = 𝑐0(𝑣𝑖) − 𝜑 × 𝑐0(𝑣𝑖−1).  (3-4) 

Because it is re-evaluated sequentially in the decision framework whether the protection is still 

sufficient or needs to be extended, flexibility has an important impact on the cost optimization 

procedure. This is expressed by the concept of the ‘value of flexibility’. Figure 3-5 gives a simple 

schematic representation of the fact that life-time costs fall with increasing flexibility. The value of 

flexibility expresses the difference between the costs that would have been incurred in adjustments at 

zero flexibility and those that were incurred for the given flexibility. 
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Figure 3-5. Expected life-time costs versus system flexibility. The expected costs incurred by adjustment during the 

system life-time decrease with increasing flexibility. The difference to the cost at zero flexibility is called ‘value of 

flexibility’. Adapted from (Straub and Špačková, 2016). 

 

The definition of flexibility used here is a simplification: Flexibility is not a fixed value independent 

of the capacity, as implied by Equation  (3-3). Consider an initially low sheet pile wall: extending it 

slightly is straightforward (with flexibility close to 1) but if it is extended beyond a certain height, the 

base may need to be fortified, leading to large costs and low flexibility. In fact, for an actual protection 

planning project, one would not determine flexibility and then determine the optimal design based on 

this flexibility value, rather one would work directly with the cost functions for new systems 𝑐0 and 

adjustments 𝑐𝑖. The motivation for working with the concept of flexibility here is that it allows to 

make general conclusions, which can inform decision making without a detailed analysis. 

 

3.4 Bayesian analysis of extreme discharges 

In this section, we present a Bayesian analysis of the annual maximum discharge 𝑄. The timeline of 

the planning process is shown in Figure 3-6.  
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Figure 3-6. Timeline of decisions on capacity 𝑣 and observations of discharges 𝐪 in an optimization process of 𝑁 steps. 

The ‘past data’ 𝐪0 refers to data that is available at the present (time 𝑡 = 0) and used for initial learning – e.g. a historic 

discharge record 𝐡 or ensemble of projections 𝐩. 

 

Decisions on the capacity of flood protection 𝑣0, 𝑣1, … , 𝑣𝑁−1  are made at times  

𝑡 = 0, ∆𝑡, … , (𝑁 − 1) × ∆𝑡.  Each step  𝑖 = 1,… ,𝑁  consists of ∆𝑡 years, during which ∆𝑡 

observations of annual maximum discharges will be made. These form the observation vector  

𝐪𝑖 = [𝑞(𝑖−1)×∆𝑡+1, 𝑞(𝑖−1)×∆𝑡+2, … , 𝑞𝑖×∆𝑡]. At time 𝑡 = 0 years, a decision on the initial capacity 𝑣0 is 

made, which is based on an historic discharge record 𝐡 or an ensemble of projections 𝐩.  

The observations 𝐪𝑁 during the last step of the planning horizon 𝑁 have no influence on planning, as 

the life-time of the protection ends at time 𝑡 = 𝑁 × ∆𝑡 and no further decision is considered. This is 

a simplification of the problem, as infrastructure is rarely discarded at the end of the planned service 

life. It can be more precise to model the flood protection with an infinite life-time, considering partial 

or full replacements at future time steps. However, in practice there is little difference between the 

results of these two model approaches, because costs that are incurred far ahead in the future have 

only a small impact on the total present value of life-time cost and risk, due to discounting (Rackwitz, 

2004). They therefore do not affect the initial decisions, which are the focus of this analysis. 

We begin with a description of the probabilistic future updating of the joint PDF of the parameters of 

annual maximum discharge, 𝛉, in Section 3.4.1. We then mathematically define the baseline capacity 

and the associated planning margin in Section 3.4.2. A computational implementation of the 

methodology presented in Sections 3.4.1 and 3.4.2 is given in Section 3.4.3. 
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3.4.1 Updating the parameter distribution 

The posterior joint PDF 𝑓𝛉|𝐐(𝛉|𝐪) of the parameters 𝛉 of annual maximum discharge 𝑄 are learned 

from discharge data 𝐪. This is done at the start of planning by standard Bayesian analysis following 

Equation (2-1). If the planning is based on a historic record 𝐡 alone, then 𝐡 is used directly as the 

discharge 𝐪 in the likelihood. If planning is based on an ensemble of discharge projections 𝐩, then 

constructing the likelihood function is done following Equations (2-8) and (2-9). To make the 

formulation general, we refer to the annual maximum discharge data that 𝑓𝛉|𝐐(𝛉|𝐪) was initially 

learned from as 𝐪0, which stands for historic record 𝐡 or projections 𝐩. 

Next, we show the probabilistic inclusion of future discharge realizations into the planning. After the 

initial design and implementation of flood protection, one continues to observe discharge maxima. 

As sketched in Figure 3-6, each planning step 𝑖 corresponds to a time interval with length ∆t with 

new observations 𝐪𝑖 = [𝑞(𝑖−1)×∆𝑡+1, … , 𝑞𝑖×∆𝑡]. These data are included in the Bayesian analysis by 

sequentially updating the estimate of 𝛉. The posterior joint PDF of 𝛉 at time 𝑡 = 𝑖 × 𝛥𝑡 is: 

𝑓𝛉|𝐐(𝛉|𝐪0, 𝐪1, … , 𝐪𝑖) ∝ 𝐿(𝛉|𝐪𝑖) × 𝑓𝛉|𝐐(𝛉|𝐪0, 𝒒1, … , 𝒒𝑖−1),    (3-5) 

where 𝑓𝛉|𝐐(𝛉|𝐪0, 𝐪1, … , 𝐪𝑖−1) is the joint PDF of 𝛉 obtained in the previous step of the sequential 

updating at time 𝑡 = (𝑖 − 1) × 𝛥𝑡  and  𝐿(𝛉|𝐪𝑖)  is the likelihood function describing the 

observations 𝐪𝑖. The conditional probability of observing discharges 𝐪𝑖+1 in time step 𝑖 + 1 for given 

history of previous discharges 𝐪0, 𝐪1, … , 𝐪𝑖 is the predictive distribution 

𝑓𝑄(𝐪𝑖+1|𝐪0, 𝐪1, … , 𝐪𝑖) = ∫ 𝑓𝐐|𝛉(𝐪𝑖+1|𝛉) × 𝑓𝛉|𝐐(𝛉|𝐪0, 𝐪1, … , 𝐪𝑖)

𝛉

d𝛉,  (3-6) 

where we use the convention ∫ d𝛉
𝛉

= ∫ …∫ d𝜃1θ𝑛
…d𝜃𝑛θ1

.  

3.4.2 Baseline capacity and planning margin 

Before mathematically defining the planning margin, we must first introduce the baseline capacity 

that this margin is added to. In order to enable a common description of criterion-based and risk-

based optimization in later sections, we use the required minimal protection of criterion-based 
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planning – the protection 𝑣
(𝑇)

 corresponding to the 𝑇-year design flood discharge − as the baseline. 

Capacity choices that fall below this baseline at any time or planning step are not allowed in criterion-

based planning. For risk-based planning, it does not matter which baseline is chosen since one is only 

interested in the absolute recommended initial protection. Here, the baseline at the time of initial 

planning is used as the reference, additional to which the planning margin is calculated. 

The required protection capacity at time 𝑡 = 𝑖 × 𝛥𝑡 in a criterion-based planning is found using the 

MAP estimate 𝛉̂𝑖, defined as 

𝛉̂𝑖 = argmax
𝛉

𝑓𝛉|𝐐(𝛉|𝐪0, 𝐪1, … , 𝐪𝑖).  (3-7) 

The minimal required protection capacity at time step 𝑖 is 𝑣
(𝑇)
(𝛉̂𝑖), corresponding to the 𝑇-year 

design flood event evaluated at parameters 𝛉̂𝑖. Using a MAP formulation, the baseline capacity is 

found via Equation (2-3) as 

𝑣
(𝑇)
(𝛉̂𝑖) = 𝑞

(𝑇)
(𝛉̂𝑖) = 𝐹𝑄|𝛉

−1 (1 −
1
𝑇 |𝜽̂𝑖) , 

 (3-8) 

where the inverse CDF 𝐹𝑄|𝛉
−1  is evaluated with parameters 𝛉̂𝑖. 

It follows from Equations  (3-7) and  (3-8) that the baseline capacity 𝑣
(𝑇)
(𝛉̂𝑖) is a function of the 

data 𝐪0, 𝐪1, … , 𝐪𝑖: 

𝑣
(𝑇)(𝐪0, 𝐪1, … , 𝐪𝑖) = 𝐹𝑄|𝛉

−1 (1 −
1
𝑇 | argmax𝛉

(𝑓𝛉|𝑄(𝛉|𝐪0, 𝐪1, … , 𝐪𝑖))).  (3-9) 

The planning margin is then found using the ratio between the implemented capacity and the baseline 

capacity:  

𝛾 = (
𝑣

𝑣(𝑇)
− 1) × 100 %.    (3-10) 

For example, 𝛾 = 10 % means that it is recommended to include a 10 % reserve above the baseline 

protection capacity. In some publications, the ratio 
𝑣

𝑣(𝑇)
 is used directly, termed ‘safety factor’ or 

‘climate factor’. In our application, where the reserve will usually be in the single or low double 
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digits, the margin representation is more suitable than the factor representation and is thus used 

throughout the thesis.  

3.4.3 Computational implementation  

The computational implementation of the methodology presented in Sections 3.4.1 and 3.4.2 is 

outlined here. We generate 𝑆1 × 𝑆2…× 𝑆𝑁−1 random samples of future discharge data and the 

corresponding baseline protection capacities. For computational reasons, it is recommendable to 

select 𝑆1 ≥ 𝑆2 ≥ ⋯ ≥ 𝑆𝑁−1. Accuracy at later steps 𝑖 will still be high, since 𝑆1 × 𝑆2…× 𝑆𝑖 ≫ 𝑆1. 

For given data 𝐪0 and having identified a suitable extreme value distribution 𝑓𝑄|𝛉: 

1. Compute the baseline protection capacity 𝑣
(𝑇)(𝐪0) for step 𝑖 = 1 following Equation  (3-9). 

2. Generate  𝑠 = 1…𝑆1  samples of the parameters  𝛉𝑠  from the posterior  𝑓𝛉|𝐐(𝛉|𝐪0)  (viz. 

Equation (2-1)). 

3. For each sample 𝛉𝑠, randomly generate annual maximum discharges 𝐪1,𝑠 from 𝑓𝐐|𝛉(𝐪|𝛉𝑠). 

4. Loop for time steps 𝑖 = 2,… ,𝑁 − 1: 

a. Compute the baseline protection capacity 𝑣
(𝑇)
(𝐪0, 𝐪1,𝑠, … , 𝐪𝑖−1,𝑠) for step 𝑖 following 

Equation  (3-9).  

b. Generate 𝑠 = 1…𝑆𝑖  samples of the parameters 𝛉𝑠  from 𝑓𝛉|𝐖(𝛉|𝐪0, 𝐪1,𝑠, … , 𝐪𝑖−1,𝑠) 

(viz. Equation    (3-5)). 

c. For each sample 𝛉𝑠 , randomly generate annual maximum discharges 𝐪𝑖,𝑠 from 

𝑓𝐐|𝛉(𝐪|𝛉𝑠). 

Endloop 

5. Compute the baseline protection capacity 𝑣
(𝑇)
(𝐪0, 𝐪1,𝑠, … , 𝐪𝑁−1,𝑠)  for step 𝑁  following 

Equation  (3-9).  
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3.5 Optimizing the protection capacity 

The goal is to find a cost-optimal strategy ensuring adequate protection capacity over the life-time of 

the system, taking into account the flexibility of the system. In a criterion-based design, protection 

must be increased whenever the existing capacity is smaller than the required protection capacity 

(𝑇-year design discharge), i.e. 𝑣𝑖 ≥ 𝑣
(𝑇)(𝐪0, 𝐪1, … , 𝐪𝑖) for all 𝑖 = 1,… ,𝑁 − 1. While the minimum 

capacity is 𝑣
(𝑇)

, protection can be increased beyond the required capacity if this is expected to be cost 

effective over the remaining life-time of the protection. In a risk-based design, there is no minimal 

protection requirement but instead the optimization criterion is to minimize the sum of risks and costs, 

where risk is defined as the probability-weighted damage aggregate. This concept has been introduced 

and defined in Section 3.1.2, viz. Equations (3-1) and (3-2), as well as Figures 3-1 and 3-2. 

The total life-time construction cost of the flood protection system, in function of the 𝑁 decisions on 

protection capacity 𝑣0 , … , 𝑣𝑁−1, is: 

𝑐tot(𝜑, 𝑣0 , … , 𝑣𝑁−1) = 𝑐0(𝜑, 𝑣0) +∑
𝑐𝑖(𝜑, 𝑣𝑖−1, 𝑣𝑖)

(1 + 𝜆)𝑖×∆𝑡

𝑁−1

𝑖=1

,     (3-11) 

where 𝑐0(𝜑, 𝑣0) are the initial costs of building to capacity 𝑣0  and 𝑐𝑖(𝜑, 𝑣𝑖−1, 𝑣𝑖 ) are the adjustment 

costs following Equation  (3-3). The annual rate of discounting is 𝜆 and the time period between 

decisions in years is ∆𝑡 . Discounting reflects the societal preference for deferred spending on 

infrastructure projects (Simon, 2010), yet can also be changed to reflect other factors such as the 

sustainability of a decision, or the effect of changing decision makers (Nishijima, 2009; Nishijima et 

al., 2005, 2007).  

Similarly, the total life-time risk of a particular strategy in function of the 𝑁 decisions on protection 

capacity 𝑣0 , … , 𝑣𝑁−1 (which constitute the strategy 𝑠 of Equation (3-2)) is: 

𝑟tot(𝑣0 , … , 𝑣𝑁−1) =∑
𝑟𝑖(𝑣𝑖−1)

(1 + 𝜆)𝑖×∆𝑡

𝑁

𝑖=1

.         (3-12) 

We present qualitative considerations concerning the relationship between planning margin and 

(value of) flexibility in a criterion-based and risk-based optimization problem in Section 3.5.1. 

Thereafter, two different quantitative approaches to solving the optimization problem are pursued: 
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(1) A ‘top down’ heuristic approach (Kochendorfer, 2015) using a constant planning margin, in which 

the capacity at each decision instance is determined by a simple pre-defined policy. This approach 

has the advantage of being easily implementable and computationally inexpensive, but it leads only 

to sub-optimal solutions. It is described in Section 3.5.2. By nature, the proposed heuristic approach 

only pertains to criterion-based planning. (2) A full solution, which sequentially optimizes the 

capacity at each decision time. Such a ‘bottom up’ sequential backwards induction optimization 

(Raiffa and Schlaifer, 1961) is computationally more demanding but leads to optimal solutions 

(Geiges et al., 2015). It is described in Section 3.5.3. For readability, we show only the cost and not 

the risk in the equations, yet the latter is straightforward to include. Section 3.5.4 gives the 

computational implementation of the backwards induction optimization (the computational 

implementation of the heuristic optimization is trivial). 

3.5.1 Relationship between planning margin and flexibility  

We show the intuitive relationship between the planning margin (introduced in Equation (3-10)) and 

the flexibility for a criterion-based planning in Figure 3-7. When the flexibility is higher, adjustment 

can be done at a lower cost later on in the system life-time and thus a smaller reserve is economical 

than would be the case for low flexibility. At full flexibility, where no overhead is incurred in 

adjustment, it is cost-optimal to include no reserve at all. At higher uncertainty, it becomes more 

economically sensible to pre-empt possible adjustments by including a large planning margin, more 

and more so the lower the flexibility. Correspondingly, the value of flexibility is especially high under 

high uncertainty. This result is confirmed and quantified in case study 1 (Chapter 4).  

In a risk-based setting, the benefit of a planning margin is not only that it pre-empts adjustments but 

also that it decreases residual risk – under any future scenario. Thus, including a planning margin 

serves as a no-regret strategy and may be recommended even at full flexibility. In general, due to the 

added benefit of reduced residual risk, planning margin recommendations for initial planning tend to 

be higher in risk-based planning than in criterion-based planning. Furthermore, in criterion-based 

planning, adjustments are mandatory whenever the estimate of the design flood exceeds the present 

protection, they are thus more frequent than in risk-based planning, where the capacity is only 

adjusted if this is economically sensible. As flexibility leads to lower adjustment costs, the value of 

flexibility is higher in criterion-based planning than in risk-based planning. 
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Figure 3-7. Optimal planning margin versus system flexibility. The planning margin is higher under high uncertainty 

than under low uncertainty in order to pre-empt future adjustments. However, the difference decreases with increasing 

flexibility; under criterion-based planning it reduces to zero at full flexibility. Thus, the value of flexibility increases with 

uncertainty. Adapted from (Špačková et al., 2015a). 

 
 

 

Figure 3-8. Value of flexibility versus learning effect. The learning effect is proportional to the uncertainty at initial 

planning: the higher the uncertainty, the more learning from new models and data in the future. Flexibility is more valuable 

when new information in the future can have a large impact on planning. This effect is stronger in criterion-based than in 

risk-based planning because in the former requires frequent adjustments due to changing estimates of the design criterion. 

Adapted from (Špačková et al., 2015a). 
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As demonstrated in Figure 3-8, the extent to which the value of flexibility differs under the two 

planning paradigms increases with increasing uncertainty: when the future is very uncertain, much 

may be learned from future data and models and construction should be flexible in particular for the 

criterion-based approach. In contrast, when the future is known, no more learning is to be expected 

and there is no need for flexibility under either planning paradigm. To highlight the role of future 

information, the uncertainty has been expressed as the ‘learning effect’ in the figure. 

3.5.2 Heuristic optimization 

The heuristic approach is based on a constant planning margin 𝛾 over the entire life-time of the 

protection. It is criterion-based by nature. Initially, the system is designed for capacity 

𝑣0 = (1 +
𝛾

100
) × 𝑣

(𝑇)(𝐪0).         (3-13) 

If the required protection capacity after step 𝑖, 𝑣
(𝑇)(𝐪0, 𝐪1, … , 𝐪𝑖), exceeds the existing protection 

capacity of the system 𝑣𝑖−1, the protection is increased to  

𝑣𝑖 = (1 +
𝛾

100
) × 𝑣

(𝑇)(𝐪0, 𝐪1, … , 𝐪𝑖),   (3-14) 

i.e. the planning margin is built into the system at every modification. The protection for the final 

step is an exception: If 𝑣
(𝑇)(𝐪0, 𝐪1, … , 𝐪𝑁−1) > 𝑣𝑁−2, then the protection is increased to 𝑣𝑁−1 =

𝑣
(𝑇)(𝐪0, 𝐪1, … , 𝐪𝑁−1) only, since there is no benefit in incorporating a reserve at the end of the life-

time of the protection.  

With this heuristic, the decisions at all time steps are fully determined for given planning margin 𝛾 

and discharge data 𝐪0, 𝐪1, … , 𝐪𝑖. To summarize, 

𝑣𝑖(𝛾, 𝐪0, 𝐪1, … , 𝐪𝑖)

=

{
 
 

 
 (1 +

𝛾

100
) × 𝑣

(𝑇)(𝐪0), 𝑖 = 0

(1 +
𝛾

100
) × 𝑣

(𝑇)(𝐪0, 𝐪1, … , 𝐪𝑖), 𝑣
(𝑇)(𝐪0, 𝐪1, … , 𝐪𝑖) > 𝑣𝑖−1and 𝑖 ∈ [1, … , 𝑁 − 2]

𝑣
(𝑇)(𝐪0, 𝐪1, … , 𝐪𝑖), 𝑣

(𝑇)(𝐪0, 𝐪1, … , 𝐪𝑖) > 𝑣𝑖−1and 𝑖 = 𝑁 − 1

𝑣𝑖−1 , otherwise

 
    (3-15) 
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The only decision to be made is the planning margin since the capacities to be built are determined 

according to Equation     (3-15). The randomness enters through the discharges 𝐪1, … , 𝐪𝑁−1. Once 

the planning margin 𝛾 is fixed, the decision tree therefore reduces to an event tree. The corresponding 

expected total life-time cost is determined as 

E[𝑐tot|𝜑, 𝛾] = 𝑐0 (𝜑, (1 +
𝛾

100
) × 𝑣

(𝑇)(𝐪0)) + ∑ ∫…∫[𝑓𝐐(𝐪1, … , 𝐪𝑖|𝐪0) ×
𝑁−1
𝑖=1

𝑐𝑖(𝜑, 𝑣𝑖−1(𝛾, 𝐪0, 𝐪1, … , 𝐪𝑖−1), 𝑣𝑖(𝛾, 𝐪0, 𝐪1, … , 𝐪𝑖))]d𝐪1…d𝐪𝑖, 

       (3-16) 

Where 𝑐0(. ) and 𝑐𝑖(. ) are initial and adjustment costs (viz. Section 3.3), 𝑓𝐐(𝐪1, … , 𝐪𝑖|𝐪0) is the PDF 

of future observations 𝐪1, … , 𝐪𝑖 given the past annual maximum discharge data  𝐪0  and 

𝑣𝑖(𝛾, 𝐪0, 𝐪1, … , 𝐪𝑖) is the selected capacity following Equation (3-15). Evaluation of Equation (3-16) 

by Monte Carlo sampling is straightforward.  

The optimal planning margin 𝛾opt for a given flexibility 𝜑 is the one minimizing the expected life-

time cost: 

𝛾opt(𝜑) = argmin
𝛾

E[𝑐tot|𝜑, 𝛾].   (3-17) 

3.5.3 Backwards induction optimization 

Backwards induction optimizes planning margins individually for each decision step. It explores the 

full solution space and leads to more cost-effective solutions than the heuristic approach. It does, 

however, come at a significantly higher computational cost. The optimization is carried out by first 

determining the system that should be installed at the last adjustment, depending on the existing 

protection and discharge observed by then. Using the principle of backwards induction optimization 

(Raiffa and Schlaifer, 1961), the obtained result is then used to find the system that should be installed 

at the second to last adjustment and so forth until arriving at a recommendation for the system that 

should be installed initially. The decision process is visualized in Figure 3-9, with three exemplary 

discharges / capacities highlighted amongst a continuous spectrum. 
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Figure 3-9. Decision tree for the backwards induction optimization. Squares represent protection decisions and circles 

represent observations of annual maximum discharge. 

 

The optimal planning margin to be applied for capacity 𝑣𝑖  after the 𝑖th step is the one minimizing the 

expected life-time cost, conditional on all previous decisions and data: 

𝛾𝑖
opt(𝜑, 𝑣0, . . , 𝑣𝑖−1, 𝐪0, 𝐪1, … , 𝐪𝑖) = argmin

𝛾𝑖

E[𝑐tot|𝜑, 𝛾𝑖, 𝑣0, . . , 𝑣𝑖−1, 𝐪0, 𝐪1, … , 𝐪𝑖].  (3-18) 

When optimizing the last decision, the one on capacity 𝑣𝑁−1, the 𝑣0, . . , 𝑣𝑁−2 and 𝐪0, 𝐪1, … , 𝐪𝑁−1 are 

known and the life-time cost is known deterministically: 

E[𝑐tot|𝜑, 𝑣0, . . , 𝑣𝑁−2, 𝑣𝑁−1, 𝐪0, 𝐪1, … , 𝐪𝑁−1] = 𝑐tot(𝜑, 𝑣0 , … , 𝑣𝑁−1),  (3-19) 

with 𝑐tot(𝜑, 𝑣0 , … , 𝑣𝑁−1) as defined in Equation (3-11). 

The expected life-time cost for the decision on capacity 𝑣𝑖  at time 𝑖∆𝑡 is calculated recursively from 

the expected life-time cost at time (𝑖 + 1)∆𝑡: 

E[𝑐tot|𝜑, 𝛾𝑖, 𝑣0, . . , 𝑣𝑖−1, 𝐪0, 𝐪1, … , 𝐪𝑖]

= ∫𝑓𝐐(𝐪𝑖+1|𝐪0, 𝐪1, … , 𝐪𝑖)

× E[𝑐tot|𝜑, 𝛾𝑖+1
opt
, 𝑣0(𝛾0, 𝐪0), . . , 𝑣𝑖(𝛾𝑖, 𝐪0, 𝐪1, … , 𝐪𝑖), 𝐪0, 𝐪1, … , 𝐪𝑖+1] d𝐪𝑖+1, 

 (3-20) 
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where 𝑓𝐐(𝐪𝑖+1|𝐪0, 𝐪1, … , 𝐪𝑖) is the conditional probability of making observations 𝐪𝑖+1 given data 

and observations  𝐪0, 𝐪1, … , 𝐪𝑖 were made previously (viz. Equation (3-6)) and 

E[𝑐tot|𝜑, 𝛾𝑖+1
opt
, 𝑣0, . . , 𝑣𝑖(𝛾𝑖, 𝐪0, 𝐪1, … , 𝐪𝑖), 𝐪0, 𝐪1, … , 𝐪𝑖+1] is the expected life-time cost known from 

the previous step of the recursive relation evaluated at 𝛾𝑖+1
opt

, i.e. assuming that the planning margin 

will be selected in the future. In analogy to Equation (3-14), 𝑣𝑖(𝛾𝑖, 𝐪0, 𝐪1, … , 𝐪𝑖) = (1 +
𝛾𝑖

100
) ×

𝑣
(𝑇)(𝐪0, 𝐪1, … , 𝐪𝑖).  

Finally, the optimal initial planning margin (‘reserve’) is 

𝛾0
opt(𝜑, 𝐪0) = argmin

𝛾0

E[𝑐tot|𝜑, 𝛾0, 𝐪0].  (3-21) 

The expected total life-time cost is calculated as 

E[𝑐tot|𝜑, 𝛾0, 𝐪0] = ∫𝑓𝐐(𝐪1|𝐪0) × E[𝑐
tot|𝜑, 𝛾1

opt
, 𝑣0(𝛾0, 𝐪0), 𝐪0, 𝐪1]d𝐪1,  (3-22) 

where 𝑓𝐐(𝐪1|𝐪0)  is the conditional probability of making observation 𝐪1 given the 

data 𝐪0 and E[𝑐tot|𝜑, 𝛾1
opt
, 𝑣0(𝛾0, 𝐪0), 𝐪0, 𝐪1] is the expected life-time cost known from the previous 

step of the recursive relation evaluated at 𝛾1
opt

 using Monte Carlo sampling. In analogy to Equation         

(3-13), 𝑣0(𝛾0, 𝐪0) = (1 +
𝛾0

100
) × 𝑣

(𝑇)(𝐪0). 

In risk-based planning, damages from 𝐪1, … , 𝐪𝑖+1 are added to the corresponding steps, following a 

damage function that relates discharge to absolute damage. Note that while the observed discharge is 

independent of the decisions made, the damage is not: e.g. if a high planning margin has been chosen 

previously, the damage resulting from flooding decreases. Hence, a separate damage function is 

associated with each value of 𝑣.  
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3.5.4 Computational implementation of backwards induction optimization 

We show here the computational implementation of finding the optimal planning margin and 

associated expected total life-time cost through backwards induction. The samples produced as shown 

in Section 3.4.3 are used as inputs.  

In criterion-based planning, we consider the requirements 𝑣
(𝑇)
 rather than the discharges 𝐪 as the 

random variable at each time step. This simplifies computation as it allows condensing the discharges 

of an entire planning step into one value that can be discretized as convenient. Furthermore, for 

criterion-based planning, decisions that would fall below the baseline protection are assigned a 

negative infinite cost and are thus effectively forbidden. Costs and damages are discounted to the 

time of initial planning, 𝑡0.  

1. Discretize capacity 𝑣 into 𝑉 values. For criterion-based planning, consider all 𝑉𝑁  possible 

combinations (scenarios) of baseline protection capacities 𝑣
(𝑇)

 at the 𝑁 planning times and 

determine the Probability Mass Function of these scenarios using the samples from Sect 3.4.3 

2. Loop for each value of flexibility 𝜑 

a. Optimize the final planning margin 𝛾𝑁−1
opt (𝜑, 𝑣0, … , 𝑣𝑁−2, 𝐪0, 𝐪1, … , 𝐪𝑁−1) at the last 

decision time 𝑡𝑁−1 conditionally on previous capacities 𝑣0, … , 𝑣𝑁−2 and observations 

𝐪0, 𝐪1, … , 𝐪𝑁−1 following Equations  (3-18) and  (3-19). 

b. Loop starting with 𝑖 = 𝑁 − 2 and continuing backwards to 𝑖 = 1:  

Optimize planning margin 𝛾𝑁−1
opt (𝜑, 𝑣0, … , 𝑣𝑖−1, 𝐪0, 𝐪1, … , 𝐪𝑖) at decision time 

𝑡𝑖  conditional on previous capacities 𝑣0, … , 𝑣𝑖−1  and annual maximum 

discharges 𝐪0, 𝐪1, … , 𝐪𝑖 following Equations  (3-18) and  (3-20). 

Endloop 

c. Find the optimal initial planning margin 𝛾0
opt(𝜑, 𝐪0)  and expected life-time cost 

E[𝑐tot|𝜑, 𝛾0, 𝐪0] following Equations  (3-21) and  (3-22). 

Endloop 
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3.6 Conclusions 

We presented a Bayesian decision framework for optimizing the capacity of flood protection systems 

in the face of uncertainty. Based on the initial uncertainty, the framework returns a quantitative 

recommendation for the initial capacity. It thereby anticipates discharge data and other information 

that will become available in the future. It accounts for the flexibility of protection systems, i.e. the 

ability to adjust the flood protection capacity in the future. To enable this, a dimensionless flexibility 

parameter was defined. Uncertainty was modeled via the distribution of parameters of extreme 

discharge, which may include the uncertainty from an ensemble of discharge projections, historic 

record and the hidden uncertainty introduced in Chapter 2. Furthermore, future discharges were 

modeled probabilistically. We presented two methods of optimization: a simple, heuristic approach 

and a backwards induction optimization. The latter accounts for the fact that future decisions are 

uncertain. It was shown how to implement the proposed method in risk-based planning (where the 

sum of life-time risks and costs is to be minimal) as well as in criterion-based planning (where a 

certain design discharge has to be protected from at all times, at minimal life-time costs). 

 



 

We conduct our first case study on the example of the town Wasserburg am Inn, Bavaria, southern 

Germany. The town is located at the banks of the river Inn, a major tributary of the Danube. It is 

prone to flooding, most recently in the June 2013 flood in the upper Danube basin (Blöschl et al., 

2013). At the gauge Wasserburg am Inn, discharge data have been recorded for 186 years; these are 

reported in Appendix A.  

In this case study, we use only the historic discharge record (no projections) and assume it to be 

stationary. Considering only the uncertainty in flood predictions due to limited discharge record 

(‘parameter uncertainty’, viz. Section 2.2.3) leads to a clear quantitative demonstration of the 

dependencies between the degree of uncertainty, the planning margin, and the flexibility, which were 

schematically depicted in Figure 3-7. The evaluation is done for a simple criterion-based planning. 

Extension to climate projections and related uncertainty as well as non-stationarity and risk-based 

planning is shown in the second case study, in Chapter 5. This purposefully simple case study serves 

to demonstrate methodology and basic principles and be easily reproducible. 

We give details of the implementation of our methodology for the case study at the Wasserburg am 

Inn gauge in Section 4.1. In Section 4.2, we present quantitative results for how the planning margin 

depends on the degree of uncertainty for different flexibilities. Section 4.3 covers the sensitivity of 

4 Case study 1: Influence of statistical 

uncertainty on planning margin 
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these results to the system cost function and discounting. Up to that point, all results were obtained 

using the backwards induction optimization technique (viz. Section 3.5.3). A comparison to results 

from the heuristic optimization (viz. Section 3.5.2) is provided in Section 4.4.  We end with a 

discussion in Section 4.5 and conclusions in Section 4.6. 

 

4.1 Case study implementation 

To highlight the effect of parameter uncertainty, we compare results obtained using different lengths 

of the discharge record: 31, 62, 93, 124, 155 and the complete 186 years. In the first case, only the 

most recent 31 years of the annual maxima are used to mimic an application to a catchment where 

few data are available and parameter uncertainty is large. In the last case, the full data set is used to 

represent a catchment where a long historic record is available and the parameter uncertainty is thus 

significantly lower. The sample mean and standard deviation of the annual maxima for different 

lengths of the discharge record are summarized under the column ‘Annual maximum discharge’ in 

Table 4-1. For simplicity, we neglect the uncertainty arising from measurement errors, which are 

likely to be large for older measurements.  

Furthermore, the observed linear trend of  0.68 m3/s per year is disregarded, i.e. the data are assumed 

to be stationary. These choices were made to facilitate interpretation of the results and to enhance the 

reproducibility of the study; including the measurement uncertainty and a trend does not 

fundamentally change the implementation nor the results, as discussed later. 

We test the model plausibility (MacKay, 1992) when fitting the annual discharge maxima with a 

Gumbel, Fréchet, Weibull and GEV distribution. The Gumbel distribution is found to be the most 

plausible one over the entire historic record and is thus applied in the following. It is described by 

location parameter 𝜇 and scale parameter 𝛽: 𝛉 = (𝜇, 𝛽). The joint PDF of 𝜇 and 𝛽 is found following 

Equations (2-1) and (2-2). A diffuse uniform distribution over 𝛉 is used as the prior. The magnitude 

of the 100-year discharge is computed using Equation (3-8). Table 4-1 summarizes MAP estimates 

and standard deviations for the parameters of the Gumbel distribution as well as the estimate of the 

100-year discharge under the columns ‘Fitted probabilistic model’. The sample standard deviation of 

the annual maximum discharge represents the c of discharge maxima; the standard deviations of 𝜇 

and 𝛽 reflect the parameter uncertainty caused by the limited length of the available discharge record 
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and are therefore reduced with increasing data size. The historic discharges, the estimate of the 100-

year flood and the corresponding 90 % credible interval, which decreases with increasing record 

length, are shown in Figure 2-5. 

 

Table 4-1. Case study data properties. Annual maximum discharge at the Wasserburg am Inn gauge, Bavaria, Germany: 

sample statistics (heading: Data) and parameters of fitted Gumbel model (heading: Fitted probabilistic model) for different 

lengths of the historic discharge record. 

Data Fitted probabilistic model 

Discharge 

series length 

[years] 

Annual maximum 

discharge [m3/s] 

Gumbel scale 

parameter β [m3/s] 

Gumbel location 

parameter μ [m3/s] 

100-year design 

discharge [m3/s] 

 Mean Std.-dev. MAP Std.-dev. MAP Std.-dev. MAP Std.-dev. 

31 1471 502 352 147 1255 138 2876 808 

62 1449 445 343 96 1250 114 2820 555 

93 1424 399 302 70 1248 96 2641 419 

124 1416 375 282 58 1252 79 2550 344 

155 1398 355 268 50 1244 68 2477 296 

186 1398 379 284 49 1233 66 2539 291 

 

We consider the designed flood protection systems to have a life-time of 80 years, which is the 

average life-time for technical flood protection in Germany (Bund / Länder-Arbeitsgemeinschaft 

Wasser, 2005). An initial capacity of the protection system, which is expressed in the form of the 

design discharge, must be selected. The decision on the protection capacity will be revised every 20 

years, taking into account the discharge record that will be available at these points in time, which 

reduce the uncertainty of the annual maximum discharge parameters.  
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We use an abstract system flexibility parameter 𝜑 as defined in Section 3.3. The cost associated with 

increasing flood protection capacity at time 𝑡 = 𝑖 × ∆𝑡 is modeled as 

𝑐𝑖(𝜑, 𝑣𝑖−1, 𝑣𝑖) = {
√𝑣𝑖 − 𝜑 ×√𝑣𝑖−1,     𝑣𝑖−1 < 𝑣𝑖
0,                                   𝑣𝑖−1 = 𝑣𝑖

 (4-1) 

where 𝜑 is the flexibility, 𝑣𝑖−1 is the original capacity and 𝑣𝑖 is the adjusted capacity. The costs of 

the initial design 𝑣1 are also calculated through Equation (4-1), with 𝑣0 = 0.  

Figure 4-1 exemplarily shows the cost function 𝑐𝑖(𝜑, 𝑣𝑖−1, 𝑣𝑖) for multiple values of flexibilities 

when increasing protection from 𝑣𝑖−1 = 1000 m3/s to a higher capacity.  

 

 

Figure 4-1. Adjustment cost functions for increasing from 1000 m3/s to some higher capacity for three different values 

of flexibility. 

 

A discount rate (viz. Equation (3-11)) of 2 % is used, corresponding to the lower bound for technical 

flood protection proposed in the literature (Bund / Länder-Arbeitsgemeinschaft Wasser, 2005). Costs 

are discounted to time t = 0.  
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We used 𝑆1 = 700, 𝑆2 = 100 and 𝑆3 = 40 as the number of samples in the Monte Carlo sampling 

(viz. Section 3.4.3). From repeatedly performing the analysis, we find a percentage error in the order 

of 1.5 % in both the optimal planning margin and the expected life-time cost. 

 

4.2 Dependence of planning margin on parameter uncertainty 

We investigate the influence of parameter uncertainty – here caused by finite data record length – on 

the optimal planning margin and protection capacity. The following results were obtained by 

backwards induction optimization, which optimizes planning margins individually for each decision 

time and flood record. A comparison to the heuristic optimization, where a constant planning margin 

is added at adjustment, is given in Section 4.4. 

Figure 4-2 shows the optimal planning margin and associated expected life-time cost obtained with 

backwards induction for a record length of 31 years. For systems with low flexibility, it is 

recommendable to adopt a conservative approach; the recommended planning margin takes values of 

up to 22 % over the current estimate of the 100-year discharge. For systems with increased flexibility, 

the optimal planning margin is lower, because the systems can more easily be adjusted later when 

new data indicates that the 100-year discharge is higher than originally estimated. For 𝜑 = 1, the 

recommended planning margin is 0 because adjustment, if necessary, can be done without overhead 

cost. There is, however, the caveat that this adjustment would only be done at the next revision and 

thus, some decision makers may prefer to add a reserve even in the case of full flexibility. In addition, 

a freeboard is always included to mitigate small fluctuations, e.g. in wave height. 

The expected discounted life-time cost decreases with flexibility, from 60.0 × 106 €  for no 

flexibility to 53.6 × 106 € for full flexibility. The difference in the life-time costs for systems with 

different flexibility is the value of flexibility. If a fully flexible system with 𝜑 = 1 is implemented, 

the expected net present value of life-time savings would be 6.4 × 106 € over the non-flexible system 

with 𝜑 = 0. 
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Figure 4-2. Results of backwards induction for the flood protection, for an initial design flood estimate based on 31 years 

of the historic discharge record: Optimal planning margin and expected discounted life-time cost depending on flexibility. 

 

Note that the expected lifetime cost includes both initial building costs and anticipated retrofitting 

costs. For each value of flexibility, the minimal lifetime cost based on a balance of these two 

components is given and this minimal cost decreases smoothly with increasing flexibility. However, 

the optimal safety factor that leads to minimal lifetime cost is not continuously decreasing with 

flexibility because only a discrete set of possible protection levels is considered. 

Figure 4-3 shows the optimal planning margin recommendation depending on flexibility for varying 

lengths of the flood record. As expected, the optimal initial protection (initial 100-year estimate and 

added planning margin) increases with increasing parameter uncertainty, i.e. with decreasing length 

of the flood record.  

Figure 4-4 shows the expected discounted life-time cost associated with the planning margin 

recommendations. Cost continuously decreases as the parameter uncertainty decreases. This is 

consistent with the results of Figure 4-3. Lower uncertainty leads to lower planning margins, and 

hence to lower design costs.  
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Figure 4-3. Optimal planning margin as a function of the flexibility of the protection system, for varying length of the 

discharge record (associated with varying parameter uncertainty). The results reproduce the expected relationships of 

Figure 3-7. 

 

 

 

Figure 4-4. Expected life-time cost for varying lengths of the historic data record. Higher uncertainty comes with larger 

planning margins or increased risk of adjustment, and thus higher costs. In flexible protection systems, this effect is less 

pronounced.  
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For highly flexible systems, the dependence of the expected life-time cost on the parameter 

uncertainty is lower, because flexible systems require low or no reserve even under high uncertainty. 

Flexibility is thus especially beneficial under high uncertainty: the value of flexibility calculated using 

an initial estimate based on 31 years of data is 6.4 × 106 €, as opposed to the value of flexibility 

associated with the case of 186 years of data, which is 1.3 × 106 €.  

 

4.3 Sensitivity to cost function and discounting 

We investigate the sensitivity of the results to the cost function and the discount rate. Results 

presented above are for the square root cost function of Equation (4-1) and a discount rate of 2 %. In 

Figure 4-5, the effect of the cost function on the optimal planning margin is shown. In addition to the 

previously used square root function √𝑣𝑖 − 𝜑 × √𝑣𝑖−1, a linear and a logarithmic cost function are 

applied. For the considered domain 𝑣𝑖−1 < 𝑣𝑖 , the linear function is 

𝑐𝑖(𝜑, 𝑣𝑖−1, 𝑣𝑖) = 𝑣𝑖 − 𝜑 × 𝑣𝑖−1, (4-2) 

and the logarithmic function is  

𝑐𝑖(𝜑, 𝑣𝑖−1, 𝑣𝑖) = log(𝑣𝑖) − 𝜑 × log(𝑣𝑖−1). (4-3) 

The different cost functions result in the same qualitative dependence on flexibility, but the 

quantitative recommendation is influenced by the choice of the cost function. The differences are here 

due to the smaller marginal costs of the logarithmic cost function, which favour larger capacities. The 

linear cost function has higher marginal costs than the square root function, hence it leads to a slightly 

lower planning margin. 
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Figure 4-5. Dependence of optimal planning margin on cost function for the 31-year historic discharge record. The choice 

of the cost function influences the magnitude of the planning margin but not the qualitative dependence on flexibility. 

 

Finally, we investigate the effect of varying the discount rate. Results are shown in Figure 4-6 for the 

31-year long discharge record and the square root cost function of Equation (4-1). Both the optimal 

planning margin (a) and the expected life-time cost (b) exhibit a dependence on the discount rate, as 

expected, but qualitatively results remain unchanged. A higher discount rate leads to a reduced 

planning margin recommendation and a smaller total expected costs (net present values). Delaying 

decisions is more attractive financially when the discount rate is higher. 

 

4.4 Comparison of results from heuristic and backwards 

induction optimization 

Figure 4-7 compares results of the flood protection planning margin optimization from backwards 

induction optimization (viz. Section 3.5.3) and from heuristic optimization (viz. Section 3.5.2) for a 

31-year record, i.e. high parameter uncertainty. This choice most clearly shows the differences 

between the two techniques.  
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Figure 4-6. Optimal planning margin (a) and expected life-time cost (b) for the 31-year historic discharge record with 

varying rate of discounting. 
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Figure 4-7 (a) shows the recommended planning margin. The backwards induction optimization 

recommends a higher planning margin than the heuristic one. This is sensible because the planning 

margin for the backwards induction optimization is allowed to vary over time. The optimal planning 

margin is likely to decrease at later time steps when the uncertainty in the estimate of the 100-year 

discharge is smaller and the remaining life-time is shorter. In the case of the heuristic optimization, a 

constant planning margin is added throughout the life-time and it is thus lower than the planning 

margin found with the backwards induction. For these reasons, the solution of the heuristic 

optimization is suboptimal. The discrepancy in the planning margin recommendation between the 

two approaches reduces as the flexibility of the protection system increases. For full flexibility 

(𝜑 = 1), both approaches correctly recommend no planning margin.  

Figure 4-7 (b) shows a comparison of the expected life-time costs incurred when following the 

recommendation of the two approaches. As expected, the costs of the optimal solution found with the 

heuristic approach exceed those found with backwards induction, which confirms that the heuristic 

optimization leads to a suboptimal solution. The discrepancy reduces with increased flexibility of the 

protection system and for full flexibility, the two approaches make the same recommendation and the 

associated costs are equal.  

 

4.5 Discussion 

We implemented the decision framework proposed in Chapter 3 using a past discharge record as the 

only source of information; parameter uncertainty is thereby associated with the limited length of this 

record. This choice was made to focus on the presentation of the methodological approach, to 

facilitate the interpretation of results and to enable a clearer presentation. In practical implementations 

of the methodology, one might often need to extend the probabilistic model in two aspects: Firstly, 

to include non-stationarity and associated uncertainty, arising from climate and anthropogenic 

changes; secondly, to consider additional information, for example hydrological models in 

combination with regional climate data (McMillan et al., 2016).  
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Figure 4-7. Comparison of heuristic and backwards induction optimization for the 31-year historic discharge record.  

(a) Optimal planning margins and (b) expected life-time cost. 
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Including additional parameter uncertainty in the modeling is straightforward, if this uncertainty can 

be quantified in parametric form. The size of the stochastic parameter vector 𝛉 will increase, e.g. 

when including uncertain trend parameters in the case of climate change, yet this does not pose a 

fundamental difficulty. Furthermore, the conclusions that can be drawn from the numerical results 

presented here are not expected to change fundamentally. The outcomes of the analysis are dependent 

on the magnitude of the parameter uncertainty, but not on their origin.  

The optimization is based on a backwards induction, which explicitly accounts for all possible 

development paths over the life-time of the system. The decision on the optimal capacity is thereby 

freely revised at regular intervals. In addition, we presented a heuristic approach to the optimization, 

in which a constant planning margin is applied over the life-time of the protection. Since it reduces 

the solution space, it can only lead to a sub-optimal solution, but it is significantly easier to understand 

and implement, and can, therefore, be applied to verify results and communicate the approach. One 

has the possibility to further improve the heuristic optimization by choosing alternative, possibly 

closer to optimal, heuristics. For example, the results obtained with the complete optimization 

indicate that the planning margin should be reduced with increasing service life, which is to be 

expected because of the finite life-time of the flood protection system. This could be included in the 

heuristics by introducing a ‘reduction factor’ that lowers the planning margin with time. One variation 

of this that could contribute significantly to more optimal outcomes would be to allow the planning 

margin at initial construction to be larger than the latter ones (Straub and Špačková, 2016). 

As a side-effect, the case study using the proposed framework also provided an estimate of the value 

of reducing parameter uncertainty in the flood models. This is observed in Figure 4-4: For an 

inflexible system (𝜑 = 0) that is to be planned based on 31 years of discharge data, having an 

additional 122 years of data would reduce the total expected life-time cost by 15 % (from 60 × 106 € 

to 51.2 × 106 €). These findings underline the benefits of longer records (Rogger et al., 2011; 

Kjeldsen et al., 2014). Our numbers are indicative of the value of information, which can be found 

by comparing the total expected life-time costs computed for different degrees of parameter 

uncertainty. Overall, the value of information is higher for non-flexible systems, for which parameter 

uncertainty is more critical, and reduces to zero for fully flexible systems. Similarly, one can 

determine the value of flexibility, by calculating the difference in total expected life-time cost 

between a flexible and an inflexible system. As predicted in Section 3.5.1, the value of flexibility is 

higher when parameter uncertainty is high.  
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The results in this chapter are valid for a criterion-based approach to flood protection planning, which 

requires compliance with pre-defined protection levels (here the 100-year event). The cost of 

exceedance or failure of the flood protection system is not considered as part of the optimization. 

While this corresponds to current practice in many countries, its application leads to suboptimal flood 

protection (Hutter and Schanze, 2010; Merz et al., 2010; Nillesen and Kok, 2015; Tsimopoulou et al., 

2015; Vrijling et al., 2011). Ideally, decisions should be risk-based, i.e. found by an optimization of 

costs versus risks. The second case study, in Chapter 5, covers also a risk-based planning problem.  

 

4.6 Conclusions 

We applied the framework proposed in Chapter 3 to a case study with varying length of the historic 

discharge record to investigate the effect of parameter uncertainty on protection recommendations. 

The following conclusions on the planning of flood protection systems can be drawn from the 

numerical investigations: (1) The higher the uncertainty, the higher the recommended planning 

margin (reserve) and expected life-time cost. (2) The more flexible the system, the lower the 

recommended planning margin and the life-time cost. (3) The economic value of discharge data is 

considerable since it reduces uncertainty and thus leads to lower requirements on the planning margin. 

(4) Using flexible systems can be financially beneficial, in particular for planning in a criterion-based 

regulatory framework under high uncertainty.  

 



In this chapter, we present a comprehensive case study of a real-life planning problem. The pre-alpine 

case study site, which is the municipality of Rosenheim at the Mangfall river, lies in a flood-prone 

catchment. The local water management office, with whom we have collaborated closely, is currently 

seeking to improve protection. Gauging the adequate level of protection is complicated since the 

available historic discharge record is short and the available ensemble of climate projections does not 

exhaustively cover the spectrum of climate uncertainties. The resulting problem of planning under 

uncertainty is typical in practice. To approach the problem, we use the complete methodology 

presented in Chapters 2 and 3. In particular, in contrast to the case study of Chapter 4, we are here 

considering non-stationarity in discharges as well as how to use climate projections and the associated 

uncertainty for the decision making.  

Background information about the catchment and the implementation is given in Section 5.1. An 

estimate of the uncertainty in extreme discharge for the case study site is developed in Section 5.2. In 

Sections 5.3 and 5.4, we use that estimate and projections combined using the methodology of 

Chapter 2 to arrive at a criterion-based and risk-based, respectively, planning recommendation 

following the framework of Chapter 3. Section 5.5 contains a discussion and Section 5.6 conclusions 

for this chapter. 

5 Case study 2: Planning under climate 

change uncertainty 
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5.1 Case study implementation 

For the case study in the Mangfall catchment, we consider the flood protection systems to have a    

life-time of 90 years. The decision on the protection capacity will be revised every 30 years, taking 

into account the discharge observations that will be available at these points in time. At revisions, the 

flood protection may be adjusted (increases only) if this seems sensible. When learning climate 

parameters – especially trends – from a time step, 30 years is an often used compromise between the 

desire to minimize statistical uncertainty and that to capture recent climate developments (IPCC, 

2013; Kerkhoff et al., 2015; Laprise, 2014; Pöhler et al., 2012). We discount costs and damages at a 

rate of 2 % with respect to the start of the system life-time. 

The joint PDF of parameters of annual maximum discharge learned from the climate projections is 

used as the basis for future updating with discharge realizations. To obtain this PDF, the climate 

projections are learned on a prior that is weakly informative in the 100-year design discharge of the 

first time step (years 1-30) as by Equation (2-4). Computationally, the prior is constructed by uniform 

sampling of parameters over a large domain, computing the respective 100-year flood estimate for 

the first time step for each sampled parameter vector, and performing rejection sampling to obtain 

576,000 samples following Equation (2-4). For sampling the future discharges, we used 300 samples 

of annual maximum discharge in the period 1-30 years and 70 samples of annual maximum discharge 

in the period 31-60 years (viz. Section 3.4.3). This choice of these numbers of samples led to a relative 

error of less than 4 % in the criterion-based recommendations as reproduced in Tables 5-4 and 5-5 

and no deviations at all in the protection system recommended when conducting risk-based planning, 

as given in Table 5-6. 

Following model plausibility testing on the historic record and projections (MacKay, 1992), a GEV 

distribution is chosen to model the annual maximum discharges. It is described by shape parameter 𝜅, 

scale parameter β > 0 and location parameter μ. We assume a linear trend in the scale and location 

parameters, which is a common practice in literature (Coles, 2004; Delgado et al., 2010; Hanel and 

Buishand, 2011; Maraun, 2013). The scale is expressed as 𝛽 = 𝛽0 + 𝛽1 × 𝑡 and the location as μ =

μ0 + μ1 × 𝑡. Thus, 𝛉 = (𝜅, β0, μ0, β1, μ1).  

For reasons discussed in Section 5.5, only projections are used in this case study; the 39-year long 

historic record is disregarded. However, in the recommendations for criterion-based planning of 
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Section 5.3, the record can be used to compute the baseline to which the planning margin is added. 

The recommendations for risk-based planning of Section 5.4 are absolute rather than relative 

(decision between four specific protection systems rather than a planning margin) and hence using 

the historic record as a baseline is not possible there.  

We briefly introduce the Mangfall catchment in Section 5.1.1. In Section 5.1.2, we describe existing 

and considered flood protection measures in Rosenheim. The historic and projection data available 

for the case study is given in Section 5.1.3. 

5.1.1 Description of study site 

The case study site is the river Mangfall at gauge Rosenheim (gauge identifier 18209000), 1.9 km 

before it flows into the river Inn (Hochwassernachrichtendienst Bayern, 2017). At around 1,100 km2, 

the Manfgall catchment is of medium size, yet its topography is very heterogeneous due to its pre-

alpine location. The catchment is shown in Figure 5-1. As can be seen, there is an elevation gradient 

in the catchment of almost 1,500 m. Correspondingly, the runoff response resembles that of a 

mountain torrent near the source at lake Tegernsee and becomes more moderate closer to the outlet 

into the river Inn, where the case study site Rosenheim is located (Kunstmann and Stadler 2005; RMD 

Consult 2016).  

Rosenheim is a city of ~60,000 inhabitants in Bavaria, southern Germany. The discharge recorded 

at the Mangfall gauge is, on average, just 17.5 m3/s (Hochwassernachrichtendienst Bayern, 2017).   

However, Rosenheim has suffered severe flood losses from Mangfall flooding in the past 

(Wasserwirtschaftsamt Rosenheim, 2014). The largest flood in known history occurred in 1899, with 

a peak in daily mean discharge of 600 m3/s. The second largest flood was recorded in 2013, with 

480 m3/s. This discharge is equal to the 100-year flood estimate (Wasserwirtschaftsamt Rosenheim, 

2017). A photograph from the 2013 flood is shown in Figure 5-2. The flood took place in June, which 

is typical for Rosenheim, where high-intensity summer precipitation dominates the flood regime 

(Deutscher Wetterdienst 2017). The flood losses incurred in the June 2013 flood are not well 

documented, they are believed to lie in the range of 150 to 200 × 106 € for Rosenheim and the 

upstream city Kolbermoor together, with Kolbermoor suffering the higher proportion of losses 

(Wasserwirtschaftsamt Rosenheim, 2014, 2017). 
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Figure 5-1. Digital elevation model of the Mangfall catchment in Bavaria, southern Germany. The Mangfall rises from 

lake Tegernsee and debouches into the river Inn close to the case study site Rosenheim. A proposed flood polder location 

is highlighted in red (Geobasisdaten © Bayerische Vermessungsverwaltung). Adapted from Kaiser in (Dittes et al., 

2017b). 

 

 

 

Figure 5-2. The June 2013 flood of the Mangfall river in Rosenheim (Wasserwirtschaftsamt Rosenheim, 2014). 
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5.1.2 Plans for extending flood protection 

At the time of the June 2013 flood, Rosenheim was only protected from a discharge of approximately 

360 m3/s. Planning and building works are underway to increase the protection level to 480 m3/s 

plus a ‘climate reserve’ of 15 %. The 480 m3/s protection – which corresponds to the 100-year 

design flood estimate in Rosenheim – is to be realized by increasing dikes and flood walls inside the 

city of Rosenheim, whereas the reserve is to be achieved by an upstream flood polder 23 km to the 

east of Rosenheim, as delineated in Figure 5-1 (Wasserwirtschaftsamt Rosenheim, 2017). 

Photographs of recent construction efforts in Rosenheim can be seen in Figure 5-3. 

 

 

Figure 5-3. Recent construction efforts to increase flood protection in Rosenheim. Top row: Dike fortification using sheet 

pile walls. Bottom row: flood walls placed on dikes. Photographs from (Wasserwirtschaftsamt Rosenheim, 2017). 

 

For this case study, we apply the decision support methodology of Chapters 2 and 3 first in a criterion-

based fashion using a general system cost function and a continuous range of possible capacity 

recommendations in Section 5.3.  We then conduct a risk-based optimization in Section 5.4 using 
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four concrete potential choices of protections system, as found in consultation with planning 

authorities. The four protection systems considered for risk-based planning are: 

S1: dike and wall system ‘100-year flood’, 

S2: dike and wall system ‘100-year flood’ + upstream flood polder, 

S3: elevation of dike and wall system ‘100-year flood’ by 1 m, 

S4: elevation of dike and wall system ‘100-year flood’ by 1 m + upstream flood polder. 

Plans for the first system (S1) are shown in Figure 5-4, superimposed on a map of Rosenheim.  

 

 

Figure 5-4. The protection system ‘S1’, which is to protect the municipality of Rosenheim from the 100-year flood at a 

design discharge of 480 m3/s (Geobasisdaten © Bayerische Vermessungsverwaltung). Adapted from Kaiser in (Dittes 

et al., 2017b). 
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The Mangfall river is completely embanked by dikes inside the city limits. When possible, some 

retention area is allowed for by setting back the dikes from the river.  Two creeks flow into the 

Mangfall river in Rosenheim: the Auerbach and the Kaltenbach. The former is embanked by dikes 

and walls on both sides. The latter has a dike to its right side whereas the left side is left free as it is 

bordered not by cultivated area but a forest. For the most part, the dikes have a slope of 1:2.5, 

trapezoidal cross section and crest width of 3 m. Walls are rectangular, with a width of 40 cm.  

The remaining protection systems, S2-S4, are extensions of S1 and are described briefly in the 

following. S2 compounds S1 by an upstream flood polder. The polder is to be constructed as a 

retention basin that can be flooded with up to 6.62 × 106 m3  of water when necessary (RMD 

Consult, 2016). S3 is like S1 but with all dikes and walls increased by a further 1 m in height. Such a 

heightening would not be trivial to achieve in practice, since in many cases there is no space to further 

widen the base of the dikes. However, it may be possible using a combination of steeper dike slope 

and protection walls grounded in the dike. Existing flood walls are not statically fit to simply be 

increased but instead would have to be rebuilt. S4 is a combination of S3 and the upstream flood 

polder. 

With an initial planning decision followed by two possible adjustments (in years 30 and 60), the four 

flood protection systems S1-S4 can result in the 16 strategies reproduced in Table 5-1 (adjustment to 

reduce protection is not considered).  

 

Table 5-1. Potential protection strategies implemented over the system life-time. The first revision takes place at 30 years, 

the second one at 60 years. Protection system S1 corresponds to the current protection whereas system S4 corresponds to 

the current protection plus 1 m heightening of dikes and walls plus a flood polder (retention basin). Lowering the 

protection is not considered. 

 

Initial decision S1 S1 S1 S1 S1 S1 S1 S1 S1 S2 S2 S2 S3 S3 S3 S4 

Revision I S1 S1 S1 S1 S2 S2 S3 S3 S4 S2 S2 S4 S3 S3 S4 S4 

Revision II S1 S2 S3 S4 S2 S4 S3 S4 S4 S2 S4 S4 S3 S4 S4 S4 
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When a system is constructed at a later time (e.g. S3 is not implemented initially but first S1 and then 

the protection is increased to S3), the cost differs, and not just due to discounting. A new planning 

process has to be set up, topsoil has to be removed, and in the worst case, the entire system has to be 

re-built (e.g. in the case of the flood protection walls whose statics would not permit an extra meter 

in height). Constructing the polder, however, is an independent project and therefore independent of 

dike or wall heightening and timing. As the absolute cost of S1 is a baseline cost that does not need 

to be known for determining which system is most economical, the following three construction and 

adjustment costs are required for decision making: 

1) Cost of constructing the polder (this is the cost difference of adjustment S1 to S2 or S3 to S4), 

2) Cost difference of S3 to S1 when S3 is chosen initially, 

3) Cost difference of S3 to S1 when S1 is chosen initially and adjusted to S3 later. 

In the given case study, these costs are estimated as follows:  

1) The total construction cost of the polder is 55 × 106 € (RMD Consult, 2016). Since it protects 

the city of Kolbermoor and some smaller cities as well as Rosenheim, and, as stated in Section 

5.1.1, Kolbermoor suffered higher losses than Rosenheim in the June 2013 flood, we estimate 

that the share of losses in Rosenheim that is prevented by the polder makes up 30 % of the 

total losses prevented in otherwise affected municipalities. Consequently, we assign 

Rosenheim 30 % of the polder construction costs, i.e. 17 × 106 €. 

2) We estimate the cost difference of S3 to S1 when S3 is chosen initially to be 8 × 106 €. This 

is based on the presumption that there is a quasi-linear relationship between dike height and 

construction cost (Perosa, 2015) and the statement of the protection agency that 25 × 106 € 

are spent to increase capacity from 360 to 480 m3/s (corresponding to roughly 3 m dike 

heightening).  

3) Finally, we estimate the cost difference of S3 to S1 when S1 is chosen initially and adjusted 

to S3 later to be 17 × 106 €. This is based on the information from planning authorities that 

planning new protection walls (e.g. to fit on the top of dikes) would cost 1,500 € per meter 

length and planning is carried out for both sides of the river along a 5.7 km river stretch.  

To return to the concept of flexibility (viz. Section 3.3), the decision to build the polder is a fully 

flexible one (it can be taken at any time at the same cost). The decision to heighten dikes and walls 

by 1 m would correspond to a flexibility parameter of 0.7 when using Equation (3-3). However, in 
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this case study we need not use a flexibility parameter since the flexibility is intrinsic in the different 

costs of the protection systems depending on the time of implementation. 

Since these costs are rough estimates, we have run the optimization also with deviating values. These 

were chosen to incentivize a lower level of protection, since, as will be shown, the reference costs 

result in the most conservative protection recommendation (S4). Table 5-2 provides an overview of 

the different building cost scenarios considered for optimization.  

 

Table 5-2. Cost estimates used for optimization. In order to study sensitivity, polder costs, the costs of increasing 

dikes / walls initially and the costs of increasing dikes / walls later were varied. 

Name \ Measure costs [106 €] Polder Add 1m height initially Add 1m height later 

Reference / Best estimate 17 8 17 

Higher polder costs 30 8 17 

Very high polder costs 55 8 17 

Higher costs 1 m initially 17 12 17 

Very high costs 1 m initially 17 15 17 

Lower costs 1 m later 17 8 8 

Very low costs 1 m later 17 8 5 

 

The flood modeling including the setup of the hydrodynamic model and the ensuing damage 

assessment are described by Kaiser in (Dittes et al., 2017b). The damage functions resulting from that 

analysis are shown in Figure 5-5. The damage varies depending on the protection system in place at 

the time of the extreme discharge. The optimization to find the recommendable protection system is 

conducted for the following different damage models: the Rhine Atlas Model (RAM) using the 

‘ATKIS’ and ‘CLC’ land cover data as well as a Simple Damage Model (SDAM) from the local 

protection agency. The optimization results for the different damage models are shown and discussed 

in the sensitivity analysis of the risk-based protection recommendation in Section 5.4. The numerical 
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values underlying Figure 5-5 are reproduced in Appendix B. Figure 5-6 shows the flooding of the 

city of Rosenheim in case of a flood event with peak discharge 700 m3/s for the four different 

protection systems S1-S4. 

 

 
 
Figure 5-5. Damage functions depending on the protection system in place (S1-S4) and the damage model. Damage 

models used were the RAM with two different types of land cover data as well as a SDAM by the local water management 

office. Adapted from Kaiser in (Dittes et al., 2017b). The underlying numerical values are given in Appendix B. 
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Figure 5-6. Flooding of the municipal area of Rosenheim in case of a flood event with a peak discharge of 700 m3/s, 

depending on the protection system (S1-S4) in place (Geobasisdaten © Bayerische Vermessungsverwaltung). Adapted 

from Kaiser in (Dittes et al., 2017b). 

 

5.1.3 Available data 

A record of mean daily discharge has been kept at the Rosenheim gauge of the river Mangfall since 

1970. The annual maxima from these discharges are reproduced in Appendix C. An ensemble of 

discharge projections is also available, up to the year 2089 (with start years varying between 1952 
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and 1962). To obtain a 90-year life-time of the protection system, we define the planning horizon of 

the case study to start in 2009. Table 5-3 lists the projections of the ensemble: the naming we use, the 

GCM, where appropriate the run of the GCM, the RCM, the institution responsible for the GCM-

RCM climate projection, the downscaling approach and downscaling institution and finally the 

hydrological model. The projections are available as daily means. In this case study, we use only the 

annual maxima of the daily means, as reproduced in Appendix D. 

 

Table 5-3. RCMs used in this study, driving GCMs, source of the RCMs, downscaling and hydrological model.  

Name GCM RCM Source Downscaling 
Hydrological 

model 

CLM1 ECHAM5 R1 CLM Consortial  Consortium 
Quantile mapping (German 

Federal Institute of 

Hydrology), SCALMET 

(Willems and Stricker, 2011) 

WaSiM v8.06.02, 

Inn, daily, 1 km² 

CLM2 ECHAM5 R2 CLM Consortial  Consortium 

CCLM HadCM3Q0 CCLM  ETH 

REMO1 ECHAM5 R1 REMO MPI 

Quantile mapping (Bavarian 

Environment Agency), 

SCALMET 

(Schmid et al., 2014) 

REMO2 ECHAM5 R2 REMO MPI 

REMO3 ECHAM5 R3 REMO MPI 

RACMO ECHAM5 R3 RACMO2 KNMI 

HadRM HadCM3Q3 HadRM3Q3 Hadley Centre 

HadGM HadCM3Q3 RCA3 SMHI 

BCM BCM RCA3 SMHI 

 

As can be seen from the table, REMO 1-3 and CLM 1-2 have identical modeling chains, they differ 

only in the model run. For these and RACMO – i.e. for six out of the ten projections – the underlying 

climate model is ECHAM5. Furthermore, all projections are based on the same SRES forcing 

scenario (A1B), coupled to the same hydrological model (WaSiM v8.06.02 at a resolution of 1 km²) 

and same downscaling technique (quantile mapping). Thus, the ensemble is limited in that it does not 
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cover a wide range of modeling uncertainties, and it is imperfect in that the projections of the 

ensemble are not independent.  

In Figure 5-7, we show the probability of a flood event exceeding S1 (480 m3/s), according to each 

individual projection. The exceedance probability is shown at four points in time: initial planning 

(year 0, i.e. 2008), as well as at life-time years 30, 60 and 90 (corresponding to 2038, 2068 and 2098, 

respectively). Results shown at the individual points in time are calculated by using projections from 

1970 up to the year in question. The figure highlights the spread of the ensemble as well as the fact 

that, at up to 4% annually, the chance of exceeding S1 is projected to be quite high, so there likely is 

a need for further protection. 

 

 

Figure 5-7. Probability of exceeding in S1 (480 m3/s) for the individual projections at initial planning (year 0) and at 

later time points (years 30, 60 and 90). 

 

Following Section 2.3.3, we aim to partition the ten projections into sets of effective projections, 

where the projections in each set are maximally different from each other (to provide the maximum 

amount of information). To do so, we consider the extent to which different projections have a similar 

modeling chain and distribute similarly modeled projections into different sets. This results in the 

following partitioning of the available projections (viz. Table 5-3): 
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 Two sets of five effective projections:  

o Set 1: CLM1, CCLM, REMO2, HadGM, RACMO;  

o Set 2: CLM2, REMO1, REMO3, HadRM, BCM. 

 Three sets of three effective projections (dropping REMO3):  

o Set 1: CLM1, REMO2, HadRM;  

o Set 2: CLM2, REMO1, HadGM; 

o Set 3: CCLM, RACMO, BCM. 

We do not weigh projections since there is an ongoing debate about this (viz. Section 2.2.2). If desired, 

it would be straightforward to introduce weights into the analysis. 

 

5.2 Estimate of uncertainty shares in extreme discharge  

The different uncertainties contributing to the total uncertainty in extreme discharge have been 

introduced in Section 2.2. Some focus was already put on the extent of these uncertainties in a pre-

alpine location such as the one of this case study. To summarize, the following qualitative statements 

can be made about the contribution of relevant sources of uncertainty in the considered mid-size pre-

alpine catchment with floods driven by summer precipitation: 

- internal variability is dominant throughout most of the coming century, 

- model response is the second largest source of uncertainty, growing with lead time, 

- the impact of downscaling is also considerable, again particularly later on the projection 

horizon, 

- the role of forcing uncertainty and hydrological model uncertainty is minor; the former 

becomes relevant only very late on the projection horizon, 

- uncertainty from the interaction of the individual components may be of some significance. 

A methodology to quantify the size of the internal variability, model response and forcing uncertainty 

in mean precipitation and corresponding results for different regions and seasons have been presented 

in (Hawkins and Sutton, 2009, 2011). We base our estimate of these components on equivalent results 

for summer precipitation in Europe obtained from (Ed Hawkins, email communication, 17.02.2017). 

We consider precipitation results to be transferable to discharge in the given catchment since extreme 
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summer precipitation has in the past been the dominant cause of high discharge at the Mangfall. A 

comparison of uncertainty shares for mean versus extreme discharge is available in (Bosshard et al., 

2013) and is used to adapt the results. Quantitative estimates of the shares of model response, 

downscaling, hydrological model and interactions for a different pre-alpine catchment are also 

provided in (Bosshard et al., 2013). We combine the quantitative results with the catchment-specific 

qualitative knowledge to produce the estimate. The uncertainty spectrum is shifted towards the later 

projection horizon to account for the longer dominance of internal variability in a pre-alpine 

catchment with small scale, extreme summer precipitation as the flood triggering process. This results 

in a near-term contribution of the internal variability of at least 80 % of total uncertainty. The shift 

also reduces the uncertainty share attributed to model response and emission forcing, which, 

following (Ed Hawkins, email communication, 17.02.2017), explained over 90 % of total uncertainty 

by the end of the century. The shares are adjusted such as to better represent the particular modeling 

and topography: the share of model response is anticipated to peak at around 40 %. For downscaling, 

shares of up to 25 % are expected. Finally, we set the uncertainty share of the hydrological modelling 

to below 5 % throughout the projection horizon and the projection uncertainty to peak at around 

10 %.  

 

 

Figure 5-8. Share of different uncertainty components (variance) for extreme discharge in Rosenheim. Uncertainties that 

are ‘visible’ in our case study are shaded yellow / orange, ‘hidden’ ones blue / green. Adapted from Schoppa in (Dittes et 

al., 2017a). 
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Forcing, downscaling, hydrological model and interaction components are ‘hidden uncertainties’ in 

the case study. As the sum of hidden uncertainties rather than individual components are used in the 

Bayesian learning, it does not matter if the share of any one of these uncertainties has been slightly 

over- or underestimated.  The sensitivity to varying uncertainty levels will be investigated in Section 

5.3. The estimated variance shares of the ‘hidden’ uncertainty components and internal variability 

with respect to total uncertainty for Rosenheim are given in Appendix E. Absolute values of hidden 

uncertainty (from all respective components, as estimated) and internal variability (quantified 

directly) for the projection CCLM are presented in Figure 5-9.  

 

 

Figure 5-9. Absolute values of hidden uncertainty and internal variability over the projection horizon for the CCLM 

projection. 

 

5.3 Criterion-based protection recommendation 

In this section, we present protection recommendations in a criterion-based planning when using the 

uncertainty combination of Section 2.3 with the optimization framework of Chapter 3 (backwards 

induction) and the catchment-specific implementation shown so far in this chapter. A continuous 
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range of possible protection capacities, rather than specific protection systems, are considered here. 

The protection has to conform to the protection requirement, the 100-year flood, at all times. Whether 

it still does is re-evaluated every 30 years and the system (or measure) capacity is extended if 

necessary. The protection requirement corresponds to the maximal required protection during the 

time step in question (year 1-30, 31-60 or 61-90). The results in the following are always stated for 

the non-flexible case, which implies that future adjustments to the system are expensive. Introducing 

some flexibility into the protection system would lead to lower planning margin results than those 

obtained here. As in the case study of Chapter 4, we use a square root cost function.  

Figure 5-10 shows the 100-year discharge PDF from the parameter distribution for the first 30 years 

of planning when learned from the 39-year long historic record versus ten, five, three and one 

effective projections of 90-year length. Ten effective projections corresponds multiplying all 

posteriors and one effective projection corresponds to averaging all posteriors (viz. Section 2.3.3). 

For five and three effective projections, we split the projections into sets as given in Section 5.1.3. 

 

 

Figure 5-10. 100-year discharge PDF from initial parameter distribution when learned from the historic record versus 

different numbers of effective projections, for the years 1-30. 
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The planning margin that is recommended when learning from the historic record alone is 111.8 %, 

versus 81.9 % , 16.5 % , 12.5 % and 2.6 %  for one, three, five, and ten effective projections, 

respectively. These results are summarized in Table 5-4. 

Using a similar ensemble of climate projections over Denmark, (Sunyer et al., 2013b) established that 

an ensemble of ten projections corresponds to five effective projections for 20-year heavy summer 

precipitation. Despite some issues with transferability – as discussed below – we thus use five 

effective projections and hence a planning reserve of 12.5 % as the recommended planning margin 

from the extreme summer precipitation floods observed at the Mangfall in Rosenheim.  

 

Table 5-4. Recommended planning margin when using the historic record versus differing numbers of effective 

projections for learning the joint PDF of parameters of extreme discharge. 

Effective number of projections (or historic) historic 1 3 5 10 

Recommended planning margin [%] 111.8 81.9 16.5 12.5 2.6 

 

It is apparent from the results that the number of effective projections has a large impact on the 

recommended planning margin. Hence, planners must make use of the concept of effective 

projections and partition ensembles accordingly, rather than just average over all members of a 

projection ensemble. Our assumption that five effective projections are applicable for the ten-member 

ensemble at Rosenheim can be questioned. The transferability of the corresponding results of (Sunyer 

et al., 2013b) might be hindered by the difference in considered location (a southern German 

catchment versus an averaging over Denmark), ensemble (some members differ) and extreme index 

(100-year event vs 20-year event). From other results presented in (Sunyer et al., 2013b) using an 

alternative measure of projection dependence as well as higher extreme indices, we believe that the 

12.5 % recommendation given here is conservative and a slightly lower recommendation for the 

planning margin (based on a slightly higher number of effective projections) may be applicable. 

However, the transferability remains questionable for the location and ensemble and thus the study 

ideally ought to be repeated for the given catchment and ensemble, in particular with respect to the 

large impact of the number of effective projections on the protection recommendation. 
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It is striking that the recommended planning margin from the historic record alone is very large. This 

is partly because the posterior is sensitive to the assumed extreme value distribution function: we 

used a GEV distribution with two trend parameters (i.e. five parameters overall) to pick up climate 

signals in the projections. We are using the same distribution for the historic record of 39 years for 

comparability. In reality, one should not attempt to learn such a high number of parameters from such 

a short data record, instead, one would assume stationarity or a fixed trend. We repeated the analysis 

for a stationary GEV (no trend parameters), resulting in a planning margin recommendation of 

75.1 %. This is still high, confirming that it is not recommendable to plan based on a short historic 

record alone. Additional information should always be used – either, such as done here, projections 

that have been provided by the climate modeling community and which also incorporate regional 

information or tools from runoff prediction in ungauged basins, climate analogues, etc. (Arnbjerg-

Nielsen et al., 2015b; Blöschl et al., 2013a).  

We studied the effect of changing the trend in the projections of annual maximum discharge, the 

results of which are shown in the top row of Table 5-5. Detrending the projections led to a 

recommended planning margin of 12.2 %. We then used the projections with doubled trend: from the 

observed average of  0.25 m3/s per year (corresponding to an 11 % rise in mean annual maximum 

discharge during the 90-year life-time) to 0.5 m3/s per year. The recommended planning margin 

increased only very slightly, from 12.5 % to 12.7 %. The fact that signals that emerge late on the 

planning horizon are masked by noise and rendered less relevant by discounting explains why 

changing the trend signal leads to only insignificant changes in the recommended planning margin. 

This is compounded by the fact that the trend signal is weak, which is to be expected from the location 

of the case study catchment (Madsen et al., 2014; Maraun, 2013) and is potentially amplified by 

projections underestimating trends in extreme precipitation (Haren et al., 2013). It should be added 

that not all scientists are comfortable with linear trend projections in extreme precipitation and 

discharge and that there is also an argument to be made for cyclical components (Gregersen et al., 

2014) or ‘flood-rich’ versus ‘flood-poor’ periods (Hall et al., 2014; Merz et al., 2014), though this 

may not be applicable to floods of particularly long return periods such as studied here (Merz et al., 

2016). 
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Table 5-5. Sensitivity analysis for the case study protection recommendation: Recommended planning margin [%] when 

using five effective projections with differing amounts of hidden uncertainty and trend. 

Quantity \ Direction of change none reference double 

Trend in annual max. discharge 12.2 

12.5 

12.7 

Hidden uncertainty 8.1 13.8 

 

Finally, to investigate the effect of hidden uncertainty on the protection recommendation, we 

performed the optimization again, using no hidden uncertainty as well as using double the hidden 

uncertainty variance shares estimated in Section 5.2 (reproduced numerically in Appendix E), with 

an effective model number of five. The recommended planning margins lay in the expected order, 

with the ‘no uncertainty’ recommendation the smallest at 8.1 %  and the ‘double uncertainty’ 

recommendation the largest at 13.8 %, as shown in the bottom row of Table 5-5. We conclude that 

hidden uncertainty should be considered in decision making yet when there is already some hidden 

uncertainty, internal variability and model response uncertainty (‘ensemble spread’), further 

increasing the hidden uncertainty has little effect. This is why we do not engage in detailed discussion 

on whether the size of the ‘hidden uncertainty’ has been gauged correctly and whether additional 

uncertainty components should be included, despite this certainly being debatable (Grundmann, 

2010; Refsgaard et al., 2013; Seifert, 2012; Sunyer, 2014; Velázquez et al., 2013). This robustness to 

additional uncertainty indicates that in the present ensemble, the capacity to project the future extreme 

discharge is already extremely limited due to the uncertainty present and thus can barely be reduced 

by adding more. While this may appear disheartening, it can also be a wake-up call to stop waiting 

for (doubtful) uncertainty reductions in climate modeling and start taking (robust) decisions 

(Arnbjerg-Nielsen et al., 2013; Curry and Webster, 2011; Hawkins and Sutton, 2011). 

 

5.4 Risk-based protection recommendation 

The framework of Chapter 3 is used here including the uncertainty from multiple discharge 

projections as well as an estimate of the hidden uncertainty as described in Chapter 2. So far, the 



Case study 2: Planning under climate change uncertainty 87 

 

optimization was carried out using a fixed protection criterion (such as the 100-year flood). Here, we 

change its backwards induction optimization to be risk-based, i.e. to include damages and optimize 

for the best balance of residual risks and costs instead of relying on a protection criterion. Since there 

are just four protection systems considered in this case study (as introduced in Section 5.1.2), this can 

easily be done. For a set-up with a larger number of decision choices or steps, it may be necessary to 

use a POMDP approach instead, as has been described e.g. in (Špačková and Straub, 2017).  

Adjustment is done to other protection choices from the set of four only. The resulting possible 

strategies over the life-time were shown in Section 5.1.2. The flexibility measure introduced in 

Section 3.3 becomes intrinsic in the system costs since a different cost is assigned to choosing a 

strategy initially versus adjusting to it. Depending on which system is currently in place, the damage 

differs. Costs and damages for the protection systems considered in this case study were given in 

Section 5.1.2. 

We show the results of the optimization, i.e. the system that is recommended for implementation, in 

Table 5-6. In order to evaluate robustness, three different damage models (RAM using the ATKIS 

dataset, RAM using the CLC dataset and SDAM) were used, as well as different estimates of the 

required building cost, as detailed in Section 5.1.2. System 3 – that is the further elevation of dikes 

and walls by 1 m in height initially – is recommended in the case of high or very high polder costs 

when the damage model is RAM ATKIS and in the case of very high polder costs also when the 

damage model is SDAM. Otherwise, system 4 – that is system 3 plus the polder – is recommended.  

 

Table 5-6. Protection system recommended when using risk-based optimization.  

Build costs \ Damage model RAM ATKIS RAM CLC SDAM 

Reference S4 S4 S4 

Higher polder costs S3 S4 S4 

Very high polder costs S3 S4 S3 

Higher costs 1m initially S4 S4 S4 

Very high costs 1m initially S4 S4 S4 

Lower costs 1m later S4 S4 S4 

Very low costs 1m later S4 S4 S4 
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We show the expected sum of life-time costs and risks in Table 5-7, expected life-time costs 

individually in Table 5-8 and expected life-time risks individually in Table 5-9, all based on the 

implementation of the recommended protection system. In Table 5-7 and Table 5-8, results are given 

for the different damage models and estimates of required building costs as in Table 5-6. However, 

results are not shown for differing costs of later elevation of the walls, since later elevation will not 

take place given that S4 has been recommended from the start. The life-time risks in Table 5-9 are 

independent of building costs yet dependent on the system that is initially implemented, hence they 

are shown for the different damage models and  recommended protection system (rather than for the 

different damage models and estimates of required building costs). When just S1 is implemented, the 

residual risk is 124 × 106 € according to the damage model that best fitted the damages of the 2013 

flood, SDAM. Tables 5-7 to 5-9 show that despite the much higher associated risks, implementing 

S3 instead of S4 can be attractive due to the low building costs. Note that the results shown include 

the possible need for future adjustment of S3 to S4 (by constructing the polder). When using the 

SDAM damage model, the probability of later adjustment when S3 was recommended initially is 

58 %. With RAM using the ATKIS land cover, this probability is just 3 % due to the very low 

damage estimates – probably a strong underestimation, as by results of Kaiser in (Dittes et al., 2017b). 

 

Table 5-7. Life-time costs + risks (sum) [106 €]. 

Build costs \ Damage model RAM ATKIS RAM CLC SDAM 

Reference 27.8 47.8 42.6 

Higher polder costs 32.0 60.8 55.6 

Very high polder costs 32.7 85.8 70.2 

Higher costs 1m initially 31.8 51.8 46.6 

Very high costs 1m initially 34.8 54.8 49.6 
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Table 5-8. Life-time costs [106 €]. 

Build costs \ Damage model RAM ATKIS RAM CLC SDAM 

Reference 25.0 25.0 25.0 

Higher polder costs 8.8 38.0 38.0 

Very high polder costs 9.5 63.0 40.1 

Higher costs 1m initially 29.0 29.0 29.0 

Very high costs 1m initially 32.0 32.0 32.0 

 

 

Table 5-9. Life-time risks [106 €]. 

Initial system \ Damage model RAM ATKIS RAM CLC SDAM 

S3 23.2 - 30.1 

S4 2.8 22.8 17.6 

 

In Figure 5-11, we demonstrate how the need to adjust S3 to S4 might arise by using output from the 

case where S3 was recommended for initial implementation: damage model SDAM and very high 

polder costs. The decision is re-evaluated after 30 years, at which point it is decided whether the 

protection should remain unchanged or whether the polder should be constructed after all (i.e. S3 

adjusted to S4). In panel (a), we give two examples of annual maximum discharges that may have 

been observed during this first planning period: a set of relatively low discharges (blue dots) or a set 

of relatively high discharges (orange dots). For the former, no damages are incurred whereas for the 

latter, there are three floods. The damages caused by the floods are shown by the lilac bars. Depending 

on the discharges observed in the first planning period, the expected damage (risk) changes, as shown 

in panel (b). Initially, it was 30.1 × 106 € (petrol bar in year zero). After observing the first 30 years 
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of discharges however, it changes to 48 × 106 € / 151 × 106 € (with / without adjustment to S4) in 

case of the high discharges (yellow / petrol bar in year 30) and 20 × 106 € / 70 × 106 € (with / 

without adjustment to S4) in case of the low discharges (the latter is not shown). These numbers 

pertain to the then remaining lifetime (years 31-90) and are discounted to year 30. For the high 

discharges, the difference of adjustment to the expected damage is higher than the building cost of 

the polder and hence it is sensible to adjust. 

 

 

Figure 5-11. Example of changing risk estimate due to future observations. (a) Two different realizations of annual 

maximum discharges in the first period (year 1-30) and respective flood damages (lilac bars) when system S3 is 

implemented initially. (b) Expected future damage (i.e. risk) for the protection system life-time when S3 is implemented 

initially (year 0) and after 30 years for the remaining life-time in case the high period discharge was observed with 

(yellow) / without (petrol) adjusting to S4. 

 

So far, the protection recommendation has been given depending on measure costs and damage 

model. As was found by Kaiser in (Dittes et al., 2017b) via comparison of simulated damages to the 

real damages of the June 2013 flood, RAM using the ATKIS land cover set likely leads to a significant 

underestimation of damages. Thus, the results return the robust recommendation to Rosenheim 

decision makers to choose the most conservative protection option, S4, unless they have to cover a 

strongly disproportionate share of the polder costs. We would recommend S4 even then, based on 

more qualitative arguments: polders have the benefit of providing a hierarchical (upstream as well as 

downstream) protection (Custer and Nishijima, 2013) and are particularly robust with respect to 
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changes in flood frequency, an aspect that is very desirable in protection planning (Baker et al., 2005; 

Merz et al., 2014). Additionally, the heightening of dikes and walls is reaching a static and aesthetic 

limit in Rosenheim and thus if a polder can provide at least some of the necessary protection, it should 

be made use of.  

 

5.5 Comparison of approaches and discussion 

According to the damage functions reproduced in Figure 5-5, the risk-based recommendation for 

protection system S4 corresponds to a planning margin of 28 % with respect to the 100-year flood 

estimate, with very moderate damages for discharges exceeding the protection. It is thus considerably 

more conservative than the 12.5 %  planning margin recommendation of the criterion-based 

optimization. The reason for this lies in the criterion-based optimization neglecting damages, as will 

be discussed further in Section 6.3. Since construction is dense in the endangered area, it is to be 

expected that the protection criterion should be higher than the 100-year flood. This demonstrates 

that ignoring the damages caused by rare events can lead to economically sub-optimal protection 

recommendations. However, it should be kept in mind that damage potential and protection are not 

independent in reality. Instead, an increase in flood protection may encourage settlement patterns that 

increase the damage potential, e.g. houses would not be built in an unprotected flood plain yet they 

are built behind dikes protecting against moderate floods, leading to strongly increased losses in the 

case of large floods (IPCC, 2012; Seifert, 2012). It is a challenge for authorities to, at the same time, 

justify the construction of unpopular technical flood protection to their citizens and restrict building 

permissions to break this vicious cycle. 

In the risk-based case, the sequential nature of the decision process does not become relevant, since 

the most conservative strategy (S4) is recommended to be implemented initially. Thus, a static CBA 

would have yielded the same result here. However, this conclusion can only be drawn a posteriori: if 

a static CBA had been used from the start, one would not know whether sequential planning may 

have led to a more optimal solution. When varying costs, strategy S3 was recommended initially for 

some cases (Table 5-6). These recommendations would likely be different when applying static CBA, 

as the proposed framework considers a high probability of adjustment to S4 at a later stage (58% in 

case of the best damage model). Similarly, neglecting the ‘hidden uncertainty’ is unlikely to lead to 
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a different recommendation in the risk-based recommendation for this case study – as the 

recommendation for S4 is very robust and, as shown in Section 5-3, including the hidden uncertainty 

in Rosenheim increases the recommended planning margin only by a few percent – but again, this is 

knowledge of hindsight and may be very different in a different catchment. The question of 

geographic generalizability is discussed further in Section 6.3. 

It should be stressed that this thesis aims to demonstrate how different sources of uncertainty can be 

combined to make robust decisions while taking into account future developments. To that end, the 

case study has an exemplary purpose rather than representing a definite recommendation for the study 

site. Instead, the tools presented here are intended to be used e.g. by climate scientists and 

hydrologists, which will have the care and expertise to include catchment-specific considerations. In 

Rosenheim, one particular challenge for realistic recommendations lies in the discrepancy between 

historic record and projections: the projections exhibit a 100-year discharge that is 8 % higher in the 

historic time period than the 100-year discharge from the historic record. At first glance, this would 

suggest that one should use the historic record within the presented analysis to mitigate this 

discrepancy, rather than solely basing the optimization on projections. However, the knowledge from 

historic discharge is implicit in the bias correction of the climate projections. Hence, ‘ideal’ input 

projections would not exhibit a systematic discrepancy to historic data and performing some kind of 

post-correction within the framework may be a double-correction. Further considerations that speak 

against a post-correction in the framework are that the short length of the historic record implies a 

large uncertainty, that the correction may compromise the model spread and that potentially valuable 

regional information is contained in the projections (which have been calibrated to the Inn valley). It 

is clear from the Rosenheim data and the literature however, that there is a considerable need for 

projections and bias correction methods with a focus on extreme values. 

 

5.6 Conclusions 

We have conducted a criterion-based and a risk-based evaluation of recommendable flood protection 

for the pre-alpine city of Rosenheim in the Mangfall catchment, Bavaria, southern Germany. To do 

so, we first estimated and combined several components of uncertainty in extreme discharge as 

outlined in Chapter 2. We then applied the fully quantitative Bayesian optimization framework 
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proposed in Chapter 3, using a non-stationary extreme discharge distribution. The results for the 

criterion-based planning show that it is sensible to include hidden uncertainty in planning, yet for a 

given sizable existing uncertainty, the protection recommendation is robust to further uncertainty and 

moderate changes in trend. For risk-based planning, the recommendation is very robustly for the most 

conservative strategy, which includes a further heightening of dikes and walls by 1m over the 100-

year protection and freeboard as well as a large upstream polder. This recommendation substantiates 

claims that criterion-based based planning may lead to very sub-optimal outcomes. It also becomes 

clear that even when there is a large uncertainty in damage, costs, and climate change, there still need 

not be ambiguity about the protection decision. 

  



  



 

This chapter serves to conclude the thesis. We summarize the main contributions of the thesis in 

Section 6.1. Recommendations for decision makers are given in Section 6.2. The chapter is concluded 

with a ‘bird’s-eye view’-discussion in Section 6.3 and possible areas of future research in Section 

6.4.  

 

6.1 Main contributions of the thesis 

This thesis proposes a decision-centric view on climate uncertainties in flood protection planning. It 

begins with a study of uncertainties in extreme discharge in Chapter 2. We introduce tools to enable 

decision makers to work with the often limited data and projections given in real planning problems. 

Notably, we provide a quantitative methodology for including an estimate of uncertainty that is 

‘hidden’ due to lack of data or projections, for combining different projections, for accounting for 

bias in and dependency among projections and finally for accounting for the reduced information 

content of projections late on the projection horizon.  

In Chapter 3, we move on to present a comprehensive novel framework of Bayesian probabilistic 

modeling of a time-dependent distribution of uncertain extreme discharge coupled to a decision 

optimization, resulting in a recommendation for the protection capacity along with an estimate of the 

6 Concluding remarks 
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respective life-time cost. The recommendation is made from a continuous range of possible choices 

rather than discrete scenarios. The framework considers the decision problem to be sequential, 

anticipating that new discharge information will become available in the future and, based on this, 

adjustment of the protection capacity may become advisable. A flexibility parameter expresses the 

differences in adjustment costs for different flood protection systems. This allows to study the trade-

off of 1) investing into a flexible protection system initially and facing lower costs in case adjustment 

becomes necessary versus 2) planning using a less flexible protection system. The framework 

supports the evaluation of both criterion-based planning strategies, where protection is designed for 

a fixed return period, and risk-based ones, where the protection recommendation depends on potential 

damage. 

Two case studies demonstrate the application of the framework and lead to general conclusions. In 

the first one, the focus is on the sequential decision framework. The relationship between the amount 

of uncertainty, the flexibility of the flood protection system and the recommended planning margin 

is studied. With increasing uncertainty, the planning margin rises. However, flexible systems can lead 

to a lower recommended planning margin and correspondingly lower life-time cost. This is especially 

true when there is a large uncertainty. The economic value of research and data collection becomes 

apparent, it is also particularly high in the case of a large uncertainty.  

The second case study lays its focus on the climate uncertainty quantification and incorporation 

aspect. An estimate of ‘hidden’ uncertainty is developed for the pre-alpine case study catchment at 

hand. A criterion-based and a risk-based planning scenario reveal that recommended protection 

capacities are robust to factors such as projection trend, climate uncertainty and protection system 

cost individually, yet the recommendation differs significantly between criterion-based and risk-

based planning and is highly dependent on the presumed number of effective projections. In 

summary, climate uncertainty has a much smaller impact on the recommendable protection than 

planning strategy. This motivates our conclusion that decisions on flood protection should first and 

foremost be made based on a thorough methodology – including aspects such as system flexibility 

and the sequential nature of long-term planning – and on a well-reasoned choice of the planning 

paradigm (viz. Section 6.3). Great care must be taken when incorporating information from climate 

projections. Beyond this, decisions makers need not worry excessively about what the future might 

hold and can instead, using currently available data and the uncertainty therein, confidently start 

planning protection. 
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6.2 Practical recommendations 

We start the recommendations with a sentence on what should not be done: it is very inadvisable to 

postpone planning due to existing uncertainty. Firstly, postponing – if at all possible – does not help 

since the uncertainty is unlikely to reduce significantly uncertainties (Hawkins and Sutton, 2009, 

2011). Secondly, robust planning margin recommendations can be made based on existing projections 

and data, as demonstrated in this thesis. This is vital and hence we re-iterate: as uncertainty in climate 

data and projections does not necessarily translate into uncertainty in the protection decision: it is 

possible and necessary to take robust decisions, even under a large uncertainty! 

To be economically optimal, decision makers should plan in a risk-based fashion, as following a 

criterion-based approach may lead to strongly sub-optimal results, surpassed by risk-based planning 

even with very simple damage estimation. As with every step of the modeling chain, the best approach 

is to use, and compare protection recommendations from, multiple damage models. 

It should be ensured that there is a planning margin in place and some flexibility in the protection 

system. The size of the planning margin and flexibility can be estimated using the methodology 

presented in this thesis. All available sources of information should be combined – in the case of 

projection ensembles using the concept of effective projections – and an estimate of uncertainty that 

is not quantifiable from the existing information should be included. Biases and dependencies among 

information sources should be taken into account and projections late on the projection horizon should 

be considered less reliable than earlier ones. Future information and decisions should be anticipated 

probabilistically. All these points can be accounted for in a Bayesian framework, as demonstrated in 

the thesis.  

Decision makers may furthermore want to consider the economic benefits of conducting research and 

collecting data even without immediate need for the construction or adjustment of protection systems 

– the payoff will come at later decisions.  

Finally, even with a sophisticated quantitative decision support framework at hand, expert judgement 

remains invaluable. For example, the ‘feedback loop’ of technical flood protection must be kept in 

mind: stronger protection can encourage more settlement in the flood plain and thus larger losses in 

case protection is exceeded, leading to a call for further fortification of protection systems (IPCC, 

2012). Such aspects are hard to model in a fully quantitative framework, particularly one focusing on 
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technical protection only. Planners ought to complement technical flood protection with legal, 

insurance and education measures as well as warning systems, natural retention and local individual 

measures such as water-proof coating of buildings. Another example where expert judgement should 

enrich the recommendation from the presented decision support framework is in considering the 

geographical distribution of measures and measure types: for robustness reasons, it is preferable to 

reach any particular recommended protection capacity by distributed protection systems, e.g. medium 

dike height in the city and an offsite retention basin rather than high dikes in the city.  

 

6.3 Discussion 

At the end of Section 6.2, we have touched on some limitations of the proposed framework. Notably, 

it is concerned with technical flood protection only and focusses on economically optimizing 

protection decisions under given current and estimated future climate conditions. In doing so, it 

disregards the ‘human element’: we mentioned that a flood plain protected by a dike may attract 

settlement and thus lead to an increased risk or the need for higher protection in the long term.  

However, it is also conceivable that citizens object to extensive technical flood protection at their 

doorstep, choosing to settle elsewhere or protesting the construction. More generally, settlement 

patterns and other changes in land use – and thus in damage potential – can be driven by a variety of 

factors, including social changes such as an ageing and declining rural population. Add to this the 

potential for changes in policy – e.g. mandating one protection paradigm or the other which, as we 

have seen, leads to vastly different recommendations – or for new technological developments in 

flood protection, and it becomes clear that results from even the most comprehensive quantitative 

framework, taking into account any kind of uncertainty, need to be taken as a rough guideline only 

and have to be complemented by much expert judgement. For this reason, some researchers argue 

that it makes more sense to consider holistic scenarios and test for the sensitivity of protection choices 

rather than working probabilistically (Beh et al., 2015), or to favour the most robust forms of flood 

protection (Merz et al., 2014). We believe that these approaches are not mutually exclusive. One may 

e.g. attempt to parameterize and include the uncertainty in socio-economic development, including 

land use change, into the quantitative framework (viz. Section 6.4), yet expert judgement should still 

be used to complement the results.  
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Two aspects that have proven crucial to the given recommendation are the chosen planning paradigm 

(risk-based or criterion-based) and the number of effective projections used. It is natural that different 

approaches lead to different results. For decision-makers however, it is important to know what 

causes the difference in the recommendation and, consequently, which of the differing 

recommendations ought to be implemented in their given catchment.   

In risk-based planning, the difference to criterion-based planning results from considering the damage 

potential. In an area with low damage potential, protecting from the 30-year flood may be sufficient, 

and any investments in protection that goes beyond this may not be economically sensible. In an area 

with high damage potential, it may be economically sensible to protect also from much rarer floods. 

The latter appears to be the case in the case study area of Rosenheim. Whether it is under- or 

overprotection, a fixed protection criterion will typically lead to sub-optimal results. Therefore, the 

trend in flood protection planning is towards a risk-based approach, as has manifested itself in the 

European flood risk directive 2007/60 (European Parliament and European Council, 2007). 

Nevertheless, criterion-based flood protection may at times make sense as a measure of public 

planning. Much of the damage potential will be from private buildings and it is arguably not the 

responsibility of the state to protect the full asset value. Deciding to provide protection from the 100-

year flood to all can be a fair solution, in that tax money is not disproportionately spend on those 

owning, or deciding to build, high-asset properties in the floodplain.  Giving some responsibility – 

e.g. to add local protection measures or insurance at their own expense – to the citizens concerned 

also curbs the mentioned ‘feedback loop’ of flood protection planning. Another issue with risk-based 

planning is, that it is often not clear how to calculate the damage potential: should it include only 

public buildings and critical infrastructure? All buildings? The costs of downtime of local industry? 

Should the benefits to the economy from reconstruction efforts be deducted? And should the appraisal 

be for replacement costs or depreciated value? Furthermore, because of lack of data, it is often much 

more complicated to estimate damage potential than flood frequency. Simply protecting from a design 

flood of fixed return period avoids these issues and, potentially, the discussions or even lawsuits that 

come with them. Thereby, it also allows for faster planning processes. However, when there are the 

resources to do so, we would always recommend that planning agencies do at least a simple risk-

based evaluation as part of their planning process, to avoid gross sub-optimality. 

We turn now to the strong dependence of the recommendation on the correct number of effective 

projections. As illustrated in Figure 5-10, this stems from the fact that the number of effective 
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projections is a measure of the amount of available information, and thus of the uncertainty and 

ultimately the planning margin. While the impact may not in all cases be so direct and stark, it is not 

surprising that choosing the correct methodology is crucial for the results. However, it can be 

disconcerting for planners to have such a strong influence from a methodological aspect that is, as 

discussed in Section 5.3, not straightforward to determine. Ultimately, planning well is a matter of 

conducting the analysis to the best possible standard and treat the results with expert judgement, a 

favour of robust solutions, and, when working solely with climate projections, a ‘reality check’ using 

the historic record, regional information, climate analogues or tools from runoff prediction in 

ungauged basins (Arnbjerg-Nielsen et al., 2015b; Blöschl et al., 2013a). 

The geographic generalizability of the given recommendations is an important point to discuss. The 

spectrum of climate uncertainties will look different for other geographical locations (Hawkins and 

Sutton, 2009, 2011). In particular, forcing uncertainty – and thus the dependence on global socio-

economic developments – may play a larger role or the absolute amount of climate uncertainty may 

be larger than in the case study. Furthermore, the case study area is characterized by an exceptionally 

slow emergence of discharge trends (Maraun, 2013), thus almost anywhere else the trend will play a 

larger role. Climate uncertainty and trend might thus have a larger influence at other locations than 

in the Rosenheim case study, where varying these quantities only led to minor changes in the 

recommended planning margin (viz. Table 5-5). However, we hypothesize that for life-times of 

decades (rather than centuries), climate uncertainty including trend plays a subordinate role compared 

to inherent variability and statistical uncertainty for the recommended planning margin. This is 

because climate change is gradual, manifests itself late on the projection horizon, and the learning 

effect is weak (viz. Figure 3-8): two or three decades of additional annual maximum discharges 

greatly reduce statistical uncertainty, whereas, as discussed, the spread in climate projections is 

unlikely to decrease significantly (if at all) over that period.   

On a final note, it is an interesting point to consider whether the presented framework is generalizable 

to other natural hazards. First of all, the hazard would have to be condensed into a single quantity – 

such as annual maximum discharge here – and the protection capacity must be expressible as a 

function of this quantity. We expect that this is in principle possible for all natural hazards, though 

sometimes it may be beneficial to use a multi-variable framework (e.g. under a POMDP approach) 

instead. For example, while discharge is the obvious measure for a flood hazard, other hazards, such 

as earthquakes, consist of numerous components (Davidson and Shah, 1997).  Second, the presented 
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methodology is tailored to technical measures with a long life-time, during which adjustments are 

considered at regular intervals and these adjustments are sufficiently costly that it pays off to think 

about the uncertainty in future developments at the initial planning (i.e. high-investment, low-

flexibility technical structures). This rules out hazards where the protection is predominantly based 

around ‘soft measures’ like awareness raising or early warning systems, such as wildfires (Jakes and 

Sturtevant, 2013; Papakosta, 2015). Finally, the framework assumes no interaction between the 

protection and the hazard: building a dyke does not change the discharge. This is not true for other 

hazards, e.g. a dam that works as a reservoir in case of drought does decrease the amount of water 

locally available. Simply incorporating such interactions would be too computationally expensive in 

the given framework, fundamental changes in methodology would have to be made. So which hazards 

could the framework be useful for? For pluvial flooding, it can likely be useful in planning parts of 

the protection system, notably urban drainage capacity (through manholes, pipes, etc.) (Arnbjerg-

Nielsen et al., 2015a, 2016). Coastal flooding, too, would provide a straightforward application.  

 

6.4 Future research 

In this section, we consider some points of research that would add value to the framework, without 

fundamentally changing its structure. As discussed in the previous sections, we believe that it is more 

relevant to focus research efforts on how one should plan, i.e. the methodology of obtaining a 

protection recommendation based on existing data and uncertainties, rather than on refining the inputs 

to the decision support, such as climate projections and uncertainty quantification. 

An aspect of the presented framework that could be extended is that currently, the full probabilistic, 

non-stationary treatment pertains only to the flood magnitude and frequency. The damages required 

for the risk-based evaluation are found via conventional hydrological modeling. However, as stated 

in Section 6.3, there is in fact a large uncertainty associated with the damage estimation. It may be 

interesting and informative to incorporate the damages, too into a fully probabilistic, non-stationary 

framework. This would also allow studying how the recommendation changes when a significant 

trend in damages is assumed, an aspect that has not been considered in the thesis but which, due to 

socio-economic changes, is likely to be the reality for many catchments. Note that in this section, we 
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are referring to catchment-scale socio-economic changes – the impact of global socio-economic 

change is inherent in climate modeling as the forcing uncertainty. 

Quantifying local socio-economic development and the related uncertainty is not a new endeavor 

(Bussi et al., 2016; Dong et al., 2013; De Kort and Booij, 2007). While mostly scenario-based, tools 

to incorporate these in a Bayesian setting exist (Mallampalli et al., 2016). However, as becomes clear 

from the example of the ‘protection increase ↔ settlement increase’ feedback interaction, socio-

economic development must be included in the framework as part of the interplay between citizens 

and flood protection. A recent branch of hydrology, the so-called socio-hydrology, is concerned with 

such ‘human-water interactions’ (Di Baldassarre et al., 2013; Blair and Buytaert, 2016; Westerberg 

et al., 2017) and is a good starting point for efforts to join the two. 

Another area of future research could be how to include future information other than future 

discharges in the decision framework. For example, how would one probabilistically describe the 

information that may be available through future generations of climate models 30 or 60 years from 

now? This is an intricate question, which certainly requires a substantial amount of subjective 

judgement. There are no ‘projections of future projections’ in the literature, and it is likely that model 

spread will not reduce (Hawkins and Sutton, 2009, 2011). Neglecting additional future information 

sources – e.g. by focusing on annual maximum discharge only, as done in this thesis – leads to an 

overestimation of the planning margin and total expected cost.  

Finally, the best methodological framework is of little use when it cannot be easily understood and 

applied by planning agencies, or when its recommendations are rejected by politicians or the public. 

We believe that the greatest progress can – and has to – be made here. Science communication and 

particularly science-to-policy are active interdisciplinary fields where this is approached by 

engineers, economists, social scientists and other disciplines. In the context of flood management, 

relevant studies are e.g. (Gober and Wheater, 2015; Pidgeon and Fischhoff, 2011; Wachinger et al., 

2013). A straightforward first step to increase the probability of use of the presented framework would 

be to equip it with a graphical user interface and to algorithmically refine its computational 

implementation such that runtime is shortened. The latter provides material for further research as 

efficient Bayesian updating is a research area of its own (Betz et al., 2014; Straub and Papaioannou, 

2014). 
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Appendices 

 

The data in Appendix A, C and D have been provided by Bayerisches Landesamt für Umwelt. The 

discharge projections in Appendix D were modeled within the cooperation KLIWA and the Interreg 

IV B Project AdaptAlp (‘Adaptation to Climate Change in the Alpine Space’). They were based either 

on ENSEMBLES data funded by the EU FP6 Integrated Project ENSEMBLES (contract number 

505539), whose support is gratefully acknowledged, or on additional available climate projections. 

These additional projections are REMO1 (‘UBA’) and REMO2 (‘BfG’) (Umweltbundesamt, 2017), 

as well as CLM1 and CLM2 (Hollweg et al., 2008). 

 

A Historic annual maximum discharge at gauge Wasserburg 

am Inn 

Annual maximum discharges for the Inn gauge at Wasserburg am Inn (gauge identifier 18003004) as 

used in the first case study (Chapter 4). 

Year Maximum discharge [m3/s] 

1828 1340 

1829 1390 

1830 1200 

1831 1300 

1832 685 

1833 1620 

1834 1190 

1835 867 

1836 991 

1837 2260 

1838 1520 

1839 1120 

1840 2630 

1841 1230 
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1842 896 

1843 1280 

1844 1150 

1845 1070 

1846 1330 

1847 1490 

1848 1330 

1849 1630 

1850 1470 

1851 2550 

1852 1250 

1853 2450 

1854 1070 

1855 1700 

1856 1550 

1857 856 

1858 925 

1859 1280 

1860 1240 

1861 1070 

1862 1600 

1863 1160 

1864 1170 

1865 1370 

1866 1050 

1867 1560 

1868 1410 

1869 1400 

1870 938 

1871 2090 

1872 1530 

1873 1190 

1874 1450 

1875 1250 

1876 1470 

1877 1650 

1878 1680 

1879 1490 
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1880 1080 

1881 1400 

1882 949 

1883 1230 

1884 1340 

1885 1230 

1886 1030 

1887 1050 

1888 1570 

1889 1210 

1890 1560 

1891 1590 

1892 1540 

1893 1080 

1894 968 

1895 1120 

1896 1690 

1897 1190 

1898 1150 

1899 2590 

1900 1190 

1901 1640 

1902 1130 

1903 1390 

1904 1160 

1905 1500 

1906 1350 

1907 1490 

1908 1240 

1909 1180 

1910 1430 

1911 1370 

1912 1650 

1913 1220 

1914 1620 

1915 1200 

1916 1330 

1917 1260 
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1918 1240 

1919 1550 

1920 1510 

1921 912 

1922 1350 

1923 1210 

1924 1520 

1925 1420 

1926 1490 

1927 1530 

1928 1380 

1929 1380 

1930 1230 

1931 1420 

1932 1360 

1933 1620 

1934 1250 

1935 1400 

1936 1170 

1937 1280 

1938 1210 

1939 1110 

1940 2430 

1941 1460 

1942 1210 

1943 1310 

1944 1310 

1945 1300 

1946 1980 

1947 1170 

1948 1710 

1949 1140 

1950 1010 

1951 1290 

1952 1100 

1953 1380 

1954 2070 

1955 1510 
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1956 1300 

1957 1300 

1958 1330 

1959 1850 

1960 1250 

1961 1330 

1962 1260 

1963 1260 

1963 908 

1965 1820 

1966 1950 

1967 1380 

1968 1020 

1969 756 

1970 2030 

1971 793 

1972 1030 

1973 1160 

1974 1580 

1975 1840 

1976 1030 

1977 1750 

1978 1570 

1979 1860 

1980 1340 

1981 2220 

1982 1290 

1983 1300 

1984 884 

1985 2660 

1986 1060 

1987 1670 

1988 1130 

1989 1230 

1990 1300 

1991 1810 

1991 1070 

1993 1320 
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1994 877 

1995 1710 

1996 1270 

1997 1570 

1998 940 

1999 2300 

2000 1280 

2001 1560 

2002 1710 

2003 793 

2004 1240 

2005 2850 

2006 1180 

2007 1290 

2008 1460 

2009 1260 

2010 1770 

2011 1190 

2012 1550 

2013 2360 
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B Modeled damages for Rosenheim 

Damages modeled depending on protection system in place (S1-S4) and damage model (RAM using 

ATKIS, RAM using CLC and SDAM) by Kaiser in (Dittes et al., 2017b). The damage functions 

extrapolated from these were used in the second case study (Chapter 5). 

Protection system Discharge [m³/s] Damage model [106 €] 

  RAM ATKIS RAM CLC SDAM 

S1 518 

584 

614 

652 

698 

743 

3.9 

60 

120 

140 

160 

240 

90 

170 

230 

260 

290 

400 

10 

210 

280 

310 

360 

540 

S2 518 

584 

614 

652 

698 

743 

0 

0 

0 

10 

20 

150 

0 

0 

0 

90 

90 

270 

0 

0 

0 

40 

60 

290 

S3 518 

584 

614 

652 

698 

743 

2.5 

4.1 

10 

20 

40 

100 

90 

100 

110 

130 

160 

240 

10 

10 

40 

110 

160 

270 

S4 518 

584 

614 

652 

698 

743 

0 

0 

0 

2.4 

2.7 

10 

0 

0 

0 

90 

90 

110 

0 

0 

0 

4.2 

10 

60 
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C Historic annual maximum discharge at gauge Rosenheim 

(Mangfall) 

Annual maximum discharges for the Mangfall gauge at Rosenheim (gauge identifier 18900200) as 

used in the second case study (Chapter 5). 

Year Maximum discharge [m3/s] 

1970 211 

1971 69.4 

1972 124 

1973 134 

1974 141 

1975 132 

1976 163 

1977 125 

1978 124 

1979 333 

1980 95.3 

1981 275 

1982 141 

1983 126 

1984 65.4 

1985 241 

1986 82.9 

1987 123 

1988 138 

1989 68.1 

1990 146 

1991 137 

1992 132 

1993 124 

1994 122 

1995 224 

1996 116 

1997 170 

1998 95 

1999 337 
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2000 149 

2001 128 

2002 192 

2003 58.4 

2004 89.3 

2005 254 

2006 95.4 

2007 161 

2008 106 
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D Projections of annual maximum discharge at gauge 

Rosenheim (Mangfall) 

Annual maximum discharges [m3/s] projected at Rosenheim during the planning horizon of 90 years, 

based on WaSiM v8.06.02, Inn, daily, 1 km². These were used in the second case study (Chapter 5). 

Year CLM1 CLM2 CCLM REMO1 REMO2 REMO3 RACMO HadRM HadGM BCM 

2009 148 117 313 165 83.9 237 393 205 216 164 

2010 107 166 258 154 113 241 225 140 264 277 

2011 140 138 236 123 166 148 127 126 164 160 

2012 269 168 246 194 136 258 110 212 268 352 

2013 113 171 196 195 170 145 146 196 200 249 

2014 131 102 252 134 190 105 188 253 194 214 

2015 216 238 251 174 208 111 135 239 284 171 

2016 181 244 128 241 264 331 659 98.5 117 129 

2017 134 274 178 139 306 128 166 291 275 131 

2018 457 294 370 609 233 183 140 245 132 168 

2019 219 116 202 282 133 156 181 138 145 228 

2020 185 206 336 232 178 212 367 139 177 161 

2021 107 163 176 91 221 171 90.8 172 159 309 

2022 140 431 189 322 226 104 155 518 193 180 

2023 418 270 202 225 147 227 332 169 146 144 

2024 216 126 283 95 173 158 124 215 168 218 

2025 131 130 165 184 116 225 132 141 215 246 

2026 149 183 403 135 125 328 156 116 149 195 

2027 152 201 452 174 250 158 170 157 335 189 

2028 251 371 146 197 425 138 182 390 552 371 

2029 181 238 369 153 205 424 230 175 323 169 

2030 552 225 188 238 161 102 140 168 397 217 

2031 175 370 399 175 104 101 125 159 381 90.1 

2032 157 533 181 105 250 131 179 138 424 224 

2033 135 213 67.2 319 183 193 168 133 185 166 

2034 277 110 207 123 234 291 477 100 417 207 

2035 253 118 333 134 147 165 310 281 142 214 

2036 284 156 249 159 172 108 58 191 282 178 

2037 185 155 92 94.8 140 156 125 157 121 165 

2038 270 123 197 241 207 493 137 126 253 343 
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2039 196 237 193 173 180 130 142 134 225 175 

2040 238 163 211 123 232 332 215 199 210 141 

2041 166 116 194 145 140 240 171 229 192 308 

2042 158 139 144 206 180 102 165 239 149 154 

2043 365 139 90.7 377 160 110 78.2 182 76.9 107 

2044 216 321 280 145 126 110 220 162 179 180 

2045 188 186 301 196 165 150 118 188 137 315 

2046 255 591 219 158 170 130 297 425 449 195 

2047 141 191 331 146 291 229 192 160 328 219 

2048 95.5 332 164 96.3 265 69.9 92.9 182 298 237 

2049 194 176 226 199 214 170 133 151 124 235 

2050 388 412 240 154 296 118 190 181 125 189 

2051 103 92.3 140 112 154 209 212 276 237 239 

2052 367 128 153 423 58.8 85.2 271 141 181 163 

2053 196 263 303 157 91.1 173 207 64.6 135 137 

2054 343 112 202 155 122 347 169 167 263 146 

2055 99.4 159 142 172 266 160 114 241 229 101 

2056 156 111 261 337 147 138 166 90.5 131 198 

2057 152 278 123 128 175 194 269 138 214 148 

2058 132 208 249 142 180 201 180 472 220 142 

2059 157 287 178 208 316 271 288 190 163 235 

2060 152 148 124 81.2 171 208 158 117 346 311 

2061 381 299 290 72.1 245 186 79.1 115 305 161 

2062 134 176 170 89.5 220 300 190 223 187 124 

2063 160 150 143 217 135 281 401 119 236 325 

2064 156 186 342 94.2 208 112 145 158 90.6 192 

2065 353 104 213 170 273 142 202 189 170 175 

2066 210 65.4 268 110 238 130 119 171 170 195 

2067 628 145 91.5 195 168 162 401 147 141 265 

2068 202 208 102 106 357 175 339 210 238 150 

2069 285 116 309 146 59.5 154 321 186 254 249 

2070 94.9 208 278 64.2 105 169 123 284 156 174 

2071 278 132 350 188 72 217 154 248 239 171 

2072 204 119 151 95.3 196 121 206 175 222 243 

2073 122 157 216 184 201 175 227 86.1 332 259 

2074 284 218 207 200 126 159 235 177 172 138 

2075 148 78.6 96.1 133 97.9 118 281 184 170 145 

2076 247 277 238 123 140 123 305 243 206 169 
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2077 116 216 131 101 229 231 217 121 192 107 

2078 130 192 325 153 183 203 225 181 275 158 

2079 155 101 161 232 152 193 95.5 127 170 141 

2080 319 91.4 97.7 155 120 94.4 187 175 172 241 

2081 257 194 270 253 158 190 206 183 262 192 

2082 243 225 191 230 123 123 191 121 124 230 

2083 110 106 128 87.6 160 192 171 293 295 213 

2084 180 183 200 217 276 305 261 197 114 249 

2085 92.3 223 194 80.4 134 216 308 288 143 190 

2086 188 299 148 89.1 121 130 301 304 317 431 

2087 208 189 309 111 106 147 342 82.9 250 179 

2088 135 151 277 194 145 93.2 137 85.4 149 257 

2089 213 135 119 186 122 90.7 409 121 141 89.2 

2090 143 290 219 248 130 174 195 159 229 177 

2091 57.6 188 295 80.6 152 132 267 181 253 166 

2092 562 240 179 185 168 346 830 125 150 245 

2093 154 227 355 94.1 187 148 175 178 199 166 

2094 150 113 106 85 128 82 148 111 566 243 

2095 185 187 340 111 153 145 163 158 143 174 

2096 244 119 208 115 91.1 298 211 165 158 79.2 

2097 306 133 74.3 267 121 221 170 610 187 200 

2098 93.2 122 138 71.6 110 214 239 240 218 115 
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E Estimate of variance shares in projections of annual 

maximum discharge for Rosenheim 

Estimated variance share of the ‘hidden’ uncertainty components and the internal variability in annual 

maximum discharge by Schoppa in (Dittes et al., 2017a). These were used in the second case study 

(Chapter 5). The hidden uncertainty here comprises the forcing, downscaling, hydrological model and 

interaction components. 

Projection horizon [years] 

Hidden variance 

share [%] 

Internal variability 

share [%] 

1 0 100 

2 0 100 

3 0 99 

4 1 99 

5 1 99 

6 1 98 

7 1 98 

8 1 97 

9 2 97 

10 2 96 

11 2 96 

12 2 95 

13 3 95 

14 3 94 

15 3 93 

16 4 93 

17 4 92 

18 4 91 

19 5 91 

20 5 90 

21 6 89 

22 6 88 

23 6 87 

24 7 86 

25 7 86 

26 8 85 

27 8 84 

28 9 83 

29 9 82 

30 10 81 

31 10 80 

32 11 79 
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33 11 78 

34 12 77 

35 12 76 

36 13 75 

37 13 74 

38 14 73 

39 14 72 

40 15 70 

41 16 69 

42 16 68 

43 17 67 

44 17 66 

45 18 65 

46 19 64 

47 19 62 

48 20 61 

49 20 60 

50 21 59 

51 22 58 

52 22 57 

53 23 55 

54 24 54 

55 24 53 

56 25 52 

57 26 51 

58 26 50 

59 27 48 

60 28 47 

61 28 46 

62 29 45 

63 30 44 

64 30 42 

65 31 41 

66 32 40 

67 32 39 

68 33 38 

69 34 37 

70 34 36 

71 35 34 

72 35 33 

73 36 32 

74 37 31 

75 37 30 

76 38 29 
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77 39 28 

78 39 27 

79 40 26 

80 41 25 

81 41 24 

82 42 23 

83 43 22 

84 43 21 

85 44 20 

86 44 19 

87 45 18 

88 46 17 

89 46 17 

90 47 16 

 


