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Abstract

Myocontrol is the use of a human machine interface based on muscle signals in order
to control a robotic or prosthetic device. A challenging problem in research is the
simultaneous and proportional (s/p) control of multiple degrees of freedom (DOF).
Besides the common sensing technique of surface electromyography (sEMG), force
myography (FMG) is additionally enforced to improve the control experience. Ma-
chine learning approaches are employed to map the input of different sensor modal-
ities onto continuous control signals of a prostheses. Throughout this work, four
experiments have been conducted with the goal to reduce the training time and to
improve the control experience of such devices.
In the first experiment we showed that for a fusion of both signal modalities the
offline performance is invariant for different sensor placements on the forearm. The
second experiment evaluated the online performance using different machine learning
approaches where either one or both signal modalities were employed. The best
results were achieved with a combination of both signal types and with FMG only.
As part of this work, an existing method called linearly enhanced training (LET) is
adapted to the multi-modal sensory input. This method creates artificial training
data for combinations of defined hand and wrist actions and dismisses their explicit
recording as training data, which usually cannot be achieved by amputees. It follows
that the training time is significantly reduced. In the related experiment, data
has been gathered from 10 healthy subjects in order to find a generalized set of
parameters for LET. Once determined, these parameters can be the basis for LET
for new users.
In the last experiment, the set of generalized parameters has been used for nine
healthy subjects to evaluate the performance of the approach involving LET data.
We showed that with LET the subjects performed equally well compared to the
approach which required the execution of all combined activations during training
time. This qualifies LET as a valid extension to existing control methods as the
training time is drastically reduced and no combined activations need to be executed.
The goal is to use the same set of parameters and algorithm for amputees, which
may not be able to produce combined activations during training time.



2



CONTENTS 3

Contents

1 Introduction 7
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Machine Learning in Myocontrol . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Multi-Modal Machine Learning 19
2.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Signal Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.3 Sensor Attachment and Movement Execution . . . . . . . . . 23

2.2 Sensor Placement Experiment . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Parameter Search . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Comparing Sensor Placement Configurations . . . . . . . . . . 28
2.2.4 Comparing Machine Learning Approaches . . . . . . . . . . . 28
2.2.5 Offline Results . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Online Performance Comparison . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 Workspace and Target Space Definition . . . . . . . . . . . . . 33
2.3.4 Online Results . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Sensor Fusion Study 41
3.1 Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Sensor Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Kalman Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



4 CONTENTS

3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . 47

4 Applying Linearly Enhanced Training (LET) 49
4.1 Motivation and Problem Description . . . . . . . . . . . . . . . . . . 49
4.2 LET Method Description . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Algebraic Interpretation . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Geometrical Interpretation . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Training Data Enhancement . . . . . . . . . . . . . . . . . . . 52
4.2.4 Combining Activations . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Design of the Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Mechanical Design . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Maximum Forces and Torques . . . . . . . . . . . . . . . . . . 56
4.3.3 Sensor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Force Related Data Acquisition . . . . . . . . . . . . . . . . . . . . . 57
4.4.1 Definition of Force Levels . . . . . . . . . . . . . . . . . . . . 57
4.4.2 Preliminary Cluster Analysis . . . . . . . . . . . . . . . . . . . 60
4.4.3 Experiment Description . . . . . . . . . . . . . . . . . . . . . 61
4.4.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.5 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.6 Force Ratios between SA and MA . . . . . . . . . . . . . . . . 69
4.4.7 Cluster Distance between LET and MA . . . . . . . . . . . . . 71

4.5 Multiple Activation Online Performance . . . . . . . . . . . . . . . . 71
4.5.1 Experiment Description . . . . . . . . . . . . . . . . . . . . . 71
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Discussion 79

6 Conclusions 83
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A Software 87
A.1 Device Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.1.1 Robot: UDP Listener . . . . . . . . . . . . . . . . . . . . . . . 87
A.1.2 Visual Tracking System: UDP Listener . . . . . . . . . . . . . 88
A.1.3 ATI Mini45 F/T sensor . . . . . . . . . . . . . . . . . . . . . . 88
A.1.4 Space Control OFTS F/T sensor . . . . . . . . . . . . . . . . 88
A.1.5 NI-DAQ for ATI Mini45 . . . . . . . . . . . . . . . . . . . . . 89

A.2 Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.3 Machine Learning Parameter File . . . . . . . . . . . . . . . . . . . . 89



CONTENTS 5

List of Figures 91

Acronyms and Notations 93

Bibliography 97



6 CONTENTS



7

Chapter 1

Introduction

There are various types of limb amputations at different severity levels. To recover
the lost functionality, a variety of technical systems is available. Several of these
systems are not naturally accepted by an affected person when it comes to an eval-
uation of the benefit [ØLF+12]. A fraction of amputees even prefers to live with
their deficiency instead of using a prostheses, as they regard the offered system
as inconvenient and less useful [PVdDVL+99] [BC08] [BC07b]. Causes can be the
unreliability, the weight or the appearance [BC07a].

This project focuses on the field of upper limb prosthetics, where a number of
technical systems is available. These systems try to substitute lost functionality
of the forearm, the wrist and the hand. Technically simple but effective solutions
are body-powered prostheses, where the shoulder movement is used to actuate a
gripper via a cable [MHH86] [ZO14]. Body-powered systems are still widely used
and accepted [ØLF+12]. A big advantage is the force feedback, as the grip force is
fed back via the cable to the shoulder. A drawback is the availability of only one
continuous Degree of Freedom (DOF), which is usually the gripper state.

However, daily live situations may require more dexterous control opportunities
where the simultaneous and proportional (s/p) control of multiple DOFs is required.
This can be achieved by myocontrol, in which the residual muscle activity in a limb
is sensed to control a prosthetic system according to the user’s intent. The sensing is
based on biosignals, whereas myoelectric signals are most commonly used as signal
source in modern prostheses. This sensing technique is called electromyography
(EMG) and if the signals are only sensed non-invasive on the surface of the skin,
it is termed surface electromyography (sEMG). In addition to that, it is possible
to sense another biosignal at the residual limb, which is force-myography (FMG).
Hereby, the change in shape of a muscle under contraction is measured through
pressure sensors on top of the skin.
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1.1 Problem Statement

To bring prosthetic systems and their human machine interfaces from research insti-
tutes closer to the daily life application with amputees, a number of problems still
need to be solved, e.g. the socket design, the weight, the control capabilities and
other inconvenient properties of such systems. In this work, two major problems of
myocontrolled hand and wrist prostheses are targeted, which are the shortening of
the training phase and an improvement of the control experience.
For a dexterous control system, a certain training phase is required before the use of
the prosthesis. This training phase need to be as short as possible in order to allow
a frequent usage. Otherwise, the amputee could permanently reject the prosthesis
because of an inconvenient daily training procedure. Therefore, techniques need to
be employed which reduces the amount of training time and simplify the training
phase. Amputees have only a limited controllability of their residual muscles, which
makes it hard to simultaneously contract muscles in charge of different DOF. Es-
pecially this restriction needs to be bypassed as good as possible by the technical
system.
The second targeted problem is to make the behavior of a s/p controlled system
as intuitive as possible. Less physical and less mental demand should be required
during usage. The independent activation of different degrees of freedom (DOFs)
should be possible at the desired level. This accounts for single DOFs as well as
for combinations of them. Hereby, a prosthesis should provide a set of DOFs which
are purposeful in daily life. These are actions such as the forearm rotation, namely
wrist pronation and supination, wrist flexion and extension and at least one or more
different types of grasp. Further actions could be the wrist abduction and adduction
or even single finger movements.
This work will extend techniques which already use two different biosignals, namely
surface electromyography (sEMG) and force myography (FMG), which will be ex-
plained in the following section.

1.2 Related Work

The term myocontrol is mostly related to EMG controlled systems, using either
sEMG or implanted electrodes sensing the electric field of the muscle fibers inner-
vated by a motor neuron. This electric field is strongest in a region where the
concentration of nerve fibers innervating a muscle is high. As an example, a good
region for sensing sEMG signals is above the muscle belly, which can be found best
at maximum muscle contraction.
Applicable commercial myoelectric systems became available in the 80’s, using EMG
signals to control prosthetic devices [PS85] [SP88]. The control scheme was the
classification of intended actions, for instance using artificial neural networks (ANN)
in [HPS93]. Evans et. al. already focused on proportional control of selected DOF
in the 80’s [EPPS84].
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As s/p control is a dexterous problem in inferring the human intend, there are still
some reasons why it is not the standard solution for amputees. Causes can be an
unstable, unreliable or non-intuitive control output or the learning phase for these
systems. By contrast, classification based control of a prosthesis is a widespread
technique, accepted by many amputees. The research in this field has not stopped
until today.

In this work, s/p control of multiple DOFs is targeted. In the following, some works
are introduced which directly focus on s/p control of upper limb prosthesis.

In [NHJ+09], four signal features in time-domain were extracted from the sEMG
signals. These were used to build pairs with the measured forces at different wrist
contractions to train a multilayer perceptron (MLP).

The authors of [NTIS15] propose the use of a Gaussian Process latent variable model,
which learns the dynamical model between finger postures and the EMG data. The
model is capable of predicting the continuous movements of a five-finger hand model
with 69 DOFs.

In Tab 1.1, a summary of papers from the latest research interests about sEMG
based myocontrol can be found.

In contrast, force-myography is the sensing of the force which a muscle belly exerts
on a sensor at different contraction levels. The sensor is pressed against the muscle
belly and its force sensing axis is oriented perpendicular to the muscle tension axis.
Despite the fact that force sensors are used to measure the muscle activity, the
measurement is strongly influenced by the characteristics of the skin and the sensors
head geometry and contact area. Hence, some authors talk about sensing a pressure
rather than a force. For clearance, this sensed force is not the muscular force or any
joint force exerted by such muscle.

Table 1.2 summarizes some works, where FMG based myocontrol is addressed, using
different sensor types such as strain gauge sensors (SGS), optical fibre specklegram
sensors or force sensing resistors (FSR).

In [CCM+16], a bracelet was equipped with 8 force sensing resistors (FSRs) which
are evenly spaced on the bracelets inner surface. A wearable Bluetooth device is
used to transmit the signals to a computer. A classification algorithm infers the
different gestures.

An approach of massive use of FMG sensors is shown in [RSE16], where an array of
126 pressure sensors is employed. A significant difference in the classification error
of gestures over different sensor selections could be observed. The classification
accuracy could be improved through a sensor selection pattern, consisting of two
areas around the forearm compared to a configuration, where the whole sensor array
is used.

In a relaxed hand and wrist state, FMG signals are more sensitive to changes in
the arm posture than EMG signals. Rasouli et. al. [RCCK16] simply call this the
limb position effect, when they investigated the influence of the arm pose on their
classification results. They used a 16× 8 force taxels array attached to the forearm
by a blood pressure measurement cuff. This cuff applied a permanent pressure on
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Table 1.1: Overview of current research interests based on sEMG. * Data from the
second version of the NinaPro database [AGK+15].
Ref. Sensors Trained Actions Methods Subjects

[PSL16] 8 sEMG
wrist fle./ ext.,
pro./ sup.

ensemble learning (arm
pos. changes + LR), p
control

10 healthy

[EYkA16]
1 pair of
sEMG

elbow fle./ ext.
2 step approach: 1st
step: LDA, 2nd step:
TDANN, p control

1 healthy

[EP09] 8 sEMG

wrist fle./ ext.,
radial/ ulnar
deviation, pro./
sup.

NMF, s/p control 12 healthy

[GKAM15]
12 sEMG

wrist sup./ pro.,
fle./ ext., radial/
ulnar deviation

GRNN, s/p control 40 healthy*

[KVN15] 12 sEMG
hand kinematics
(not further
specified)

comparing RR with
KRR

40 healthy*

[MTM15] 8 sEMG
hand open/ close,
wrist pro./ sup.

NMF, s/p control 10 healthy

[JRV+14] 16 sEMG
wrist flex./ ext.,
pro./ sup.

NMF, s/p control
7 healthy, 7
amputees

[JVR+14] 16 sEMG
wrist fle./ ext.,
pro./ sup.

comparison of NMF,
LR and ANN, s/p
control

9 healthy

[NC15] 10 sEMG
wrist fle./ext,
pro., power grasp

RR-RFF with LET,
offline evaluation

6 healthy

[NC16] 10 sEMG

thumb
opposition,
thumb fle., index
fle., little finger
fle.

RR-RFF with LET,
s/p control

10 healthy

[NAC16]

Thalmic
Labs’ Myo-
bracelet (8
sEMG)

power grasp,
wrist pro.,
fle./ext

RR-RFF with LET,
s/p control

16 healthy,
1 amputee
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Table 1.2: Overview of current research interests based on FMG.
Ref. Sensors Trained Actions Methods Subjects

[SM16] 16 FSR

wrist pron./ sup.,
flex./ ext.,
radial/ ulnar
deviation

comparing SVR (with
RBF kernel) and ANN,
offline eval.

5 Healthy

[FJM+16]
7 SGS
placed on
wrist

16 grasp gestures

comparing LDA and
SVM for gesture
classification, offline
eval.

3 Healthy

[FWS+15]

1 optical
fiber speck-
legram
sensor

indiv. flexion of
all fingers

ANN with
backpropagation,
offline eval.

3 Healthy

[YMGY16]
3 FSR

wrist flex./ ext.,
finger flex./ ext.
(palmar grasp)

MLP as supervised
classifier, real-time
classification

3 Healthy

[RGL+15]
16x8 tactile
sensors
array

hand open/
closed, pinch
grasp, wrist flex./
ext.

ELM and OSELM
allowing different arm
postures, real-time
classification

2 Healthy

[RSE16]
array of
126 FSR

rest, wrist
flex./ext.,
pron./sup., power
grip, pinch grip,
hand open

informed channel
reduction, real-time
LDA classification in
different arm postures

10 Healthy

[RCCK16]

16x8 force
taxel array
& IMU

wrist flex./ext.,
pron./sup., open
hand,
power/pinch grip,
rest

ANN (2 layer-FFNN
(feed-forward neural
network)) as position
aware ensemble
classifier.

3 Healthy

[KJM16] 8 FSR
grasps: power,
tripod pinch,
index pinch

SVR with RBF-kernel,
s/p control of thumb,
middle and index finger

10 Healthy
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the sensor array which was tried to be kept constant over the different arm positions.
They use an ANN with a position aware ensemble classifier to predict the hand state.
Hereby, they take the arm position obtained by an IMU into account. They reached
a prediction accuracy of 30.9± 4.1% when the classifier was trained at one position
and tested with data from other positions. An accuracy of 89.4±4.2% was achieved
when they used the position aware classifier. In this example, the authors focused
on different positions of an arm with extended elbow and different upper arm angles
relative to the shoulder. This completely neglects the effect of elbow angle changes,
which could have a similar strong effect on the results. Another example is found
in [RSE16], where an array of FSRs is used to classify hand postures under varying
arm positions as they occur in daily life. Again, the prediction performance drops
significantly when the system is required to work under daily live conditions.

These are two causes for the influence of the arm position and pose on the prediction
results. First, looking at the musculoskeletal system of the elbow joint [SSS11],
the forearm circumference at its proximal end is influenced by a number of muscles
related to the elbow flexion. Musculus (M.) biceps brachii and M. brachialis contract
and pull on the tendons Tuberositas Radii and Tuberositas Ulnae respectively in
order to flex the elbow or support the forearm rotation. Sensors located in this region
will be actuated by the lifted skin and the resulting rise in forearm circumference.
At the same time, skin accumulates on the upside of the forearm which further
influences the measurements.

Second, looking at the prosthesis or sensing setup hardware weight, the sensors
and the arm socket change their weight force vector depending on the arm pose.
Therefore, the normal forces onto the sensors changes. An even bigger effect is
involved when the user lifts a payload with his or her prostheses and therefore
changes the load between prosthesis socket and arm.

Very few references can be found in the latest research interests of combined ap-
proaches for sEMG and FMG. Table 1.3 summarizes some approaches, which also
includes the work at German Aerospace Center (DLR) about a first assessment and
a combination of both signal modalities. Sanford et. al. [SPP15] only uses one
sEMG electrode and places a FSR on top of the electrode as a link to the socket.
The FSR is then intended to increase the reliability of the prostheses when a socket
shift occurs. Yetkin [Y+16] examined different setups for sEMG and FMG based
intent classification but gives just an outlook of future sensor fusion possibilities.
One interesting fact about the approach is that if the user comes with one healthy
hand, it is used with a tracking glove to create the ground truth for the missing
hand on which arm the training data is recorded.

At DLR, a prototype of a multi-modal sensing device has been developed with
the ability to sense both sEMG and FMG signals from the muscles of the forearm
[CRVC16]. The sensor data is gathered at 100 Hz and transmitted to a computer
using a Bluetooth connection.
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Table 1.3: Overview of current research interests of fusing EMG and FMG.
Ref. Sensors Trained Actions Methods Subjects

[SPP15]
1 FSR on
top of 1
sEMG

wrist extension
classification with
MLP, simulating socket
shift

1 Healthy

[Y+16]
different
setups

different setups

tracking glove on
contra-lateral hand for
ground truth, NN
classification

1 Healthy,
1 with
congenital
hand defect

[CRVC16]
10 FSR, 10
sEMG

rest, wrist
flex./ext.,
pron./sup., power
grasp

data acquisition and
offline analysis

10 Healthy

[RR16]
10 FSR, 10
sEMG

rest, wrist
flex./ext.,
pron./sup., power
grasp

RR-RFF in different
configurations

12 Healthy

The sEMG and FMG signals recorded with this hardware has already been analyzed
and compared in [CRVC16]. A comparison of the online performance of each sensor
modality using 12 healthy subjects has been done in [RR16].

1.3 Machine Learning in Myocontrol

The main goal of myocontrol is to find a mapping between the biosignals of an
intended action and its respective ground truth. This mapping can be achieved
through classification for discrete state predictions or through regression for con-
tinuous state predictions. Beside the discrete or continuous domain, it needs to be
distinguished between single and simultaneous control of the available DOFs.

1.3.1 Classification

As summarized in the current research interests in section 1.2, classification ap-
proaches are quite popular as the classification error can be driven to almost zero if
the experiment is designed accordingly, e.g. restrict the arm movements, use a small
number of classes or a high number of training repetitions. But also in daily life ap-
plications, classification is the main technique for commercially available myoelectric
upper limb prosthesis.
For classification, different artificial neural networks (ANN) are employed, mainly
multi-layer perceptrons (MLPs) as feed-forward NNs as well as back-propagation
ANNs. Other popular classification algorithms in myocontrol are linear discriminant
analysis (LDA) and support vector machines (SVM).
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1.3.2 Regression

Regression is a method to find a continuous mapping between input signals and
desired output signals. This is required if the DOFs of a prosthesis need to be
controlled proportionally to the intended movements of its user. This mapping
between the user’s biosignals and the ground truth of the human joint state can be
modeled in a linear or non-linear manner. Defining the ground truth is an issue in
case of an amputee with a missing limb. For people with sound limbs, it can be
either the joint angle or the exerted torque on this joint. For amputees, this kind
of ground truth is not available. Nevertheless, an amputee might be still able to
control a small set of his or her muscles at different levels of contraction (to control
different forces).

In the training phase, a certain level of contraction might be difficult to hold. The
amputee may not have any sensorimotor capability to execute a small level of con-
traction, as there is neither visual nor a clear proprioceptive feedback available. It
is simpler to hold the maximum contraction during the data acquisition at each of
the desired activations. The rest position of the targeted joint needs to be recorded
additionally, where no muscular activity should take place. Using this training data
allows the shaping of a regression model which delivers a continuous output also for
the intermediate states, where no training took place.

With a high number of sensors and a number of available prosthesis DOFs, the
method is basically a multiple linear or non-linear regression. In the case of biosig-
nals, non-linear methods enjoy the capability of more dexterous mappings between
sensors signals and the desired output.

As the sEMG and FMG sensors are mostly related to the muscular activity, a
relation between signal and muscular contraction force is most presumable. Despite
this relation, these sensors react also on changes in placement, when the skin slides
above the muscles caused by joint angle changes of other muscles. An example is the
elbow flexion, which affects the spacial arrangement between the skin and muscles
in the forearm.

Most popular regression algorithms in myocontrol are still linear regression (LR),
ridge regression (RR), generalized linear regression (GLR), non-negative matrix fac-
torization (NMF) and support vector regression (SVR) with radial basis function
(RBF) kernels. Further, different kinds of NNs are used, e.g generalized regression
NNs (GRNN) and time delayed NNs (TDNN).

From this huge variety of regression algorithms, one has shown its advantages in
myocontrol in a number of studies [GM11], [GBSG+14],[CR14], which is Ridge Re-
gression with Random Fourier Features (RR-RFF).

Ridge Regression with Random Fourier Features

This algorithm belongs to the class of generalized linear regression. The regression
model is non-linear but linear in its coefficients. Therefore, the model coefficients
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W , also called weights, can be calculated through a least squares approach as it is
known from linear regression.
A multiple linear regression model is given by

Y = XW + t (1.1)

where X ∈ IRNs×d is the design matrix with Ns samples and d input dimensions..
The given target values Y ∈ IRNs×Nout define the ground truth related to each
observation, where Nout is the number of output dimensions, e.g. one for each DOF
in a prostheses. The parameter t is used for the y-intercepts of the regression lines,
which can be transferred to the matrices

X̃ =
[
X 1

]
and W̃ =

[
W
t

]
(1.2)

enabling a constant term as a column of ones. As a result, the model can be rewritten
as

Y = X̃W̃ . (1.3)

Further, it is assumed that the calculations are based on a model without a constant
term and a y-intercept parameter t, as it is no longer required in this algorithm.
Solving the least squares problem of

W ∗ = argmin
W

∥∥XW − Y
∥∥2

2
(1.4)

results in the optimal closed form solution

W ∗ = (XTX)−1XTY . (1.5)

Potential instability in the least squares estimator and problems of over-fitting can
be reduced by adding a small constant value λ to the diagonal entries of the ma-
trix XTX before taking its inverse. This results in the ridge regression estimator
(1.6), where the matrix I is the identity matrix with the same dimensionality as
XTX. This extension to the least squares problem is called regularization, as the
model coefficients are constrained in their size and is further known as Tikhonov
Regularization.

W ∗
ridge = (XTX + λI)−1XTY (1.6)

Now, as a non-linear model is required, extending the linear model to a generalized
linear model is done by exchanging the design matrix X with a non-linear mapping
function, which projects each training sample into a higher dimensional space. This
space is often referred to as feature space in machine learning applications. The
mapping function is defined as

ϕ(X) = cos(XΩT + 1Nsβ
T ). (1.7)
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In this regression algorithm, random Fourier features are used for the feature space
mapping, which are constructed through randomly drawn cosine functions in (1.7).
One property of this algorithm is that no parameter for the y-intercept is required.
Through the linear combination of the basis functions, an arbitrary shift in the
y-axis is achievable.
To obtain random properties, a parameter Ω1 is initially drawn from a normal
distribution in

Ω1 ∼ N (0, 1) ∈ IRD×d, (1.8)

and determines the frequencies of the cosine functions. It is later scaled by a hyper-
parameter σ to optimize the regression model.
The dimensions of this parameter Ω1 are D× d, where D denotes the feature space
dimensionality and d denotes the number of signals in the input space. The feature
space dimensionality can be found by a cross-validation where the feature space
dimensions are increased in every iteration until the decrease in the model error is
small enough.
A second parameter β is drawn from a uniform distribution

β ∼ U(−π, π) ∈ IRD (1.9)

to determine the phase shift of a cosine function between −π and π.
The random parameter Ω1 can be scaled by the hyper-parameter σ to obtain a
scaled parameter given by

Ω = σΩ1. (1.10)

To fit the model, a hyper-parameter search is conducted based on the root mean
squared error (RMSE). The best parameter can be found by cross-validation of each
model in the parameter search.
These random properties of the cosine functions allow a good approximation of
different features of the training samples as the obtained cosine functions differ in
frequency and phase shift.
In fact, there is a second hyper-parameter λ, which is the regularization parameter
of the linear model coefficients. To further improve the model, this parameter could
be also found in a parameter search. Nevertheless, adding a second hyper-parameter
into the parameter search ends up in a computationally expensive grid search.
It has been shown that the hyper-parameter σ has a larger influence on the model
properties than λ, which is best used at a standard value of 1.
Now, the model coefficients W are obtained by

W ∗ = (ϕ(X)T )ϕ(X) + λID)−1(ϕ(X)TY ), (1.11)

where ID is the square identity matrix with the dimensionality of the feature space.
It is required to have a feature space dimensionality higher than the number of
columns in X to enable a projection from a lower into a higher dimensional space.
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To obtain a prediction ŷ of the trained model, employ

ŷ = ϕ(x)W ∗ (1.12)

with a given test sample x, where ϕ(x) is again the mapping function between input
and feature space.
One property of this algorithm is that the feature space dimensionality can be kept
constant with a growing number of samples, which keeps the learning effort limited.
Since a closed form solution for the model coefficients exists, an efficient computation
is possible. The prediction is then just a linear combination of cosine functions,
which can be efficiently calculated by modern computers.
Summarizing, the implementation is comparable to a simple linear regression al-
gorithm with the addition of drawing two parameters from random distributions
and introducing a simple mapping function ϕ(x). The ease of implementation and
small computational requirements are the main advantages in using this algorithm.
Another advantageous feature is the possibility of using incremental learning within
this framework [GM11], which is not exploited throughout this thesis.

1.4 Contributions

This work contributes to the field of myocontrol, where the simultaneous and propor-
tional (s/p) control of multiple DOF is achieved. The fusion of the signal modalities
sEMG and FMG is exploited with a number of up to 10 sensors per modality, which
is novel in prosthetic control algorithms. The primary objective of this thesis is to
test the hypothesis that:

1. the prediction performance is invariant from different sensor placements of
sEMG and FMG sensors on a defined region of the forearm.

2. a combination of both signal modalities leads to a better prediction perfor-
mance compared to the use of only one signal modality.

3. a method to enhance training data can substitute real data from multiple-DOF
hand and wrist actions, based on data from single-DOF actions only.

4. this method achieves the same performance compared to the usage of real
multiple-DOF action data.

The first part of the thesis consists of a literature review of myocontrol approaches
based on either sEMG, FMG or combined modalities.
Chapter 2 focuses on the evaluation of different sensor placements and the assess-
ment of methods using either single or combined signal modalities. The different
regression based machine learning methods are introduced here, which are used
in the conducted experiments. In a first experiment, an offline analysis evaluates
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the sensor placement and the performance of the employed machine learning ap-
proaches In the second online experiment, different approaches involving single and
multi-modal sensor input are compared in a goal reaching task.
In Chapter 3, further properties of the signal modalities are outlined and the control
schemes of healthy subjects and amputees are discussed. Since data is available
from the previous experiment in this work, a probabilistic sensor fusion approach
could be parameterized. A single user study enables a preliminary assessment of
this approach also in comparison to a purely regression based approach from the
previous chapter.
Chapter 4 describes the strategy of artificially enhancing training data for multiple-
DOF hand and wrist actions. The underlying method is applied for the first time
to multi-modal sensor data. This technique drastically reduces the training time
as the training of multiple-DOF hand and wrist actions becomes unnecessary. In
section 4.3, the design of a novel test setup is described. It emulates some properties
of a transradial amputation at healthy subjects and contributes to the following
two applications: First, training data from healthy subjects can be recorded and
analyzed in order to transfer the knowledge to amputees. Second, the test setup can
be used for online performance evaluations where novel analyses become possible
due to the recorded signals. Beside the sEMG and FMG signals, these are upper
arm and forearm pose, elbow angle as well as exerted forces and torques at the wrist
and hand. Section 4.4 and 4.5 describe the experiments for the data acquisition and
online performance evaluation.
It should be noted that testing and assessing novel methods on amputee subjects
underlies limitations. Throughout this thesis, no amputees participated in the exper-
iments. One problem is the limited availability of amputee subjects when conduct-
ing experiments which require a high number of participants in order to generalize
parameters. The data acquisition experiment for the method of training data en-
hancement cannot be carried out with amputees because a reliable ground truth is
necessary where the torques of an intact limb need to be measured.
Chapter 5 presents a summary of the thesis where the results are discussed. Chapter
6 lists the conclusions drawn from this work and outlines future work and related
research recommendations.
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Chapter 2

Multi-Modal Machine Learning

This chapter introduces the system used for the data acquisition and state prediction
and describes the applied machine learning approaches. A comparison of the signal
characteristics between sEMG and FMG has already be done in [CRVC16]. A first
online performance comparison using the different sensor signals has been conducted
in [RR16].
In the following experiments, the effect of different placements of the available sen-
sors on the forearm is examined. It is further explored how the combination of
both sensor types improves the overall prediction performance compared to just one
sensor type. Hereby, the same number of sensors for each approach is employed,
which is different to [RR16]. This was done to enable a fair comparison of different
approaches using the same amount of information.
The following two hypotheses are made and examined by experimental evaluations:

1. Different placements of sEMG and FMG sensors on a selected area of the
subjects forearm does not significantly influence the performance of the pre-
diction.

2. The online prediction performance of a combination of sEMG and FMG sen-
sors is significantly better than using the sensors of one modality only.

Section 2.1 introduces the different machine learning approaches and the hardware.
In section 2.2, an offline experiment is conducted, evaluating different sensor place-
ments an machine learning approaches. The online performance comparison is de-
scribed in section 2.3. A conclusion is made, summarizing both experimental results
in section 2.4.

2.1 Materials and Methods

As outlined in the introduction, it is advantageous to employ a non-linear model
for myocontrol to transform the biosignals into meaningful control signals for a
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prosthetic device. The method of choice throughout this work is Ridge Regression
with Random Fourier Features (RR-RFF) with the capability to provide non-linear
regression models at low computational costs.
Throughout the following experiments, the characteristics of the different sensor
signals, namely sEMG and FMG are outlined. Four types of learning machines
were used, which all use the RR-RFF algorithm with different input spaces and
configurations. The approaches are denoted in italics as followed and can be found
in Fig. 2.1.

RR-RFF

𝑥sEMG

ො𝑦sEMG

RR-RFF

𝑥FMG

ො𝑦FMG

RR-RFF

𝑥sEMG

ො𝑦STA

RR-RFF

ො𝑦ENS

RR-RFF RR-RFF

𝑥𝑠EMG 𝑥FMG𝑥FSR

10 10 5 5
5 5

9 9 9

9 9

9

Figure 2.1: Machine learning approaches throughout the experiments. From left to
right: sEMG, FMG, STA, ENS. Numbers next to signal flow arrows display their
dimensionality.

sEMG : Using the surface electro-myogram of a subject as the input into a RR-RFF
learning machine. A number of 10 sEMG sensors is employed, distributed over the
subject’s forearm on two bracelets.
FMG : Using the force-myogram, which is a physical property of the muscle contrac-
tion level, as input of a RR-RFF learning machine. A number of 10 FMG sensors
is used, placed in the same constellation as the sEMG sensors
STA: Stacking sensor signals of five sEMG and five FMG sensors in the same input
space of a RR-RFF learning machine. A feature of this methods is that hyper-
parameters still can be chosen independently for each sensor, which enables enhanced
model tuning possibilities.
ENS : An ensemble learning configuration, where the output of two low-level learning
machines are used as input of a high-level LM. The two low-level machines are
configured as the approaches sEMG and FMG but each using five of their related
sensor channels as input. These low-level LM provide their stacked output as input
into a high-level learning machine, which is again of type RR-RFF. This enables the
use and optimization of different hyper-parameters for each of the three machine
learning components. The described configuration has been introduced in [RR16].
A feature of this algorithm is, that the training set of both low-level LM is split in
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a leave-one-repetition-out manner into a training and test set. Each of the training
sets is used to train the LM and each of the test sets is used to generate a set of
low-level predictions. This prediction set is then used as the training set of the
high-level LM. The high-level machine learns the variations, or in other words, the
prediction errors of the low-level LM in order to fuse both sensor modalities.
All approaches use the same input space dimensionality of 10 sensors in order to
have a fair method comparison assuming that every approach is provided with the
same amount of information coming from the selected sensors. Figure 2.1 outlines
the signal flow between sensors x and prediction ŷ for each approach and denotes
the number of signal channels next to the signal flow arrows.

2.1.1 System Overview

The data acquisition system consists of 20 sensors, which are fitted on two Velcro
straps, depicted in Fig. 2.2. These straps are used as bracelets to fit the sensors on
the subject’s forearm. One sensor type is an Otto Bock sEMG sensor with internal
filtering electronics, supplying an amplified, rectified and band-pass filtered sEMG
signal. The other sensor type is a force sensing resistor (FSR) with simple voltage
divider electronics to sense the FMG signals. The FSR module is embedded in a
flexible 3-D printed housing. The housing has a ball shaped pressure point using
the flexible housing as a mechanical spring onto the sensor plate of the FSR.
In this setup, both sensor types are mixed on the same bracelet, which is different
to [CRVC16]. The original holders for the sEMG sensors were to flat such that the
contact with the skin was not ensured when a sEMG sensor was placed next to a
FSR sensor. These holders were adapted and again 3-D printed, such that the height
of both sensor types matches. In this case, the pressure on both sensors surfaces
should be approximately equal and the effect of sensor liftoff is minimized.
The analogue sensor signals are acquired by the analogue digital converter (ADC)
of a micro-controller and are then transmitted over a wireless Bluetooth connection
to a Windows computer. See the block diagram in Fig. 2.3 for more details. The
C# application interactiveMyocontrol does all the data pre-processing, including an
offset removal (xoffset) and inversion of the FMG signals. This step in the software
is not mandatory for the machine learning part as the algorithm would adapt to the
signal characteristics but is advantageous for display purposes and signal analysis.
The inversion and offset removal is done as the FMG signal is defined by a voltage
divider circuit, where zero force is related to a high signal and vice versa. The
electrical circuit can be found in [CRVC16].
A first order low-pass Butterworth is applied on each of the signal types. The filtered
signals are fed into the machine learning algorithm for the training data acquisition
as well as for the online prediction. The output of the learning machine is fed into
a limiter as predictions above or below the system limits are not desired, which
accounts for simulation as well as for real hardware purposes. After limiting, the
output is again filtered by a first order Butterworth to enable a smooth prediction,
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wireless 
sensor board 

battery pack 

sEMG sensor 

FMG sensor 

upper arm fixation 

Figure 2.2: Data acquisition hardware.

and then sent to a visual hand model by an UDP connection in this case. Controlling
a prosthetic hand is further possible over a Bluetooth connection. The software has
the capability to control any number of DOF regarding the ML algorithm and the
data processing and is usually configured to nine DOF. These are the five individual
finger flexions, the thumb rotation, the wrist flexion/extension, the wrist prona-
tion/supination and the wrist adduction and abduction. Throughout the following
experiments, only three DOF are used.

µC 
+ 

WBT 

𝑦𝑦� 𝑦𝑦�filt 

𝑥𝑥sEMG 

- 
-1 filter 

filter LM 
hand 

model 

filter 

𝑥𝑥offset 

𝑥𝑥FMG,raw limiter [-1, 1] 

𝑦𝑦�lim 

𝑥𝑥FMG 

𝑥𝑥sEMG,raw 

Figure 2.3: Block diagram of the data acquisition and online control system with
micro-controller (µC), wireless bluetooth (WBT) unit and learning machine (LM).

2.1.2 Signal Filtering

Both signal types are filtered with a 1st order Butterworth low pass with a cut-off
frequency of 1 Hz. This parameters has shown good filtering results for an online
monitoring of the sensor signals, to collect the training data and for usage during
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the prediction. A preliminary offline analysis has shown that the effect of filtering
on the training data is negligible in the model prediction error.

The raw FMG signals are first filtered in the software interactiveMyocontrol, the
sEMG signals are already pre-processed in the hardware of the sensors, manufac-
tured by OttoBock. A band-pass filtering and a rectification is applied here. The
resulting sEMG signal is then again filtered in the software by the previously de-
scribed Butterworth filter.

The prediction filter after the LM uses the same filter characteristics and enables a
smooth control behavior in simulation as well as for real hardware. Further filter
configurations have been tested offline and with a human in the loop. Butterworth
filters of orders higher than 1 showed noticeable overshooting at high signal slopes
for both sensor and prediction signals. A Butterworth filter of 1st order does not
overshoot in its step response because of its pole constellation and is hence beneficial
for both filtering sensor and prediction signals. Another advantage of this filter type
is the monotonic amplitude response in both pass-band and stop-band.

2.1.3 Sensor Attachment and Movement Execution

This section describes the characteristics of the sensor fixation on the subjects fore-
arm and how the different movements need to be executed in the training phase.
The fixation quality has strong effect on the signal properties, as sensors could be too
loose and slip from their initial position or too tight to wear them for the required
time.

All sensors need to be distributed over the bracelet with equidistant positions. The
first and last sensor of the bracelet meet at the closure, where the same sensor
distance as between other sensors is kept. The proximal bracelet is positioned ap-
proximately 8 cm above the elbow. This can be measured when the elbow is in
an perpendicular orientation to the table plane. The sensors were placed that the
sensor housings do not touch the upper arm, when the elbow is flexed to angles
larger than 90 ◦. The orientation of the bracelet is determined by the sensor with
channel zero of the hardware, which is visibly marked. This sensor must lie on the
Ulna in line with the elbow pit, when the forearm is in a relaxed position. The
distal bracelet is directly positioned next to the proximal bracelet on the forearm.
Again, this bracelet is oriented such that the marked sensor lies in line with the one
of the proximal bracelet.

The bracelets are tightened at the closure, such that all sensors stay in touch with
the skin during all possible movements of the hand and wrist. The tightness should
be limited at some point to avoid strong pressure marks on the skin. Further, the
bracelet should not influence the muscle activity negatively. The tightness should
be within the limit, such that the bracelet can be worn without any discomfort for
at least the duration of the experiment. After attaching both bracelets, each sensor
is optically inspected if its bottom side is fully covered with skin. If any sensor is
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tilted sideways after tightening and closing of the bracelet, its position is manually
corrected.
The subject is instructed to execute the rest position as followed: Keep the forearm
with minimal muscular contraction perpendicular to the table plane. The individual
fingers are flexed to a certain degree without muscle contraction. The hand remains
inline with the vertically oriented forearm. The wrist rotation is approximately in
the middle of the angular space between the joint limits to allow a clear pronation
and supination of this degree of freedom (DOF). The rest state is shown in Fig.2.5,
where both bracelets are attached onto the forearm.
An action is the activation of one or more DOF of the human hand and wrist. The
selected DOF are defined by a target vector, containing target values of all available
DOFs in the system. A full activation is executed at about 40% of the maximum
voluntary contraction (MVC) and is related to a target value of 1.
The wrist flexion (fle) and wrist extension (ext) shall be made with relaxed finger
muscles. This can improve the distinctness between the wrist flexion and a flexion
of individual fingers. The same accounts for the wrist extension, distinguished from
an extension of individual fingers. The wrist pronation (pro) and wrist supination
(sup) is a rotation of the Ulna around the Radius in the forearm. For simplification,
these actions are related to as wrist rotations. The power grasp (gra) is the full
flexion of all fingers, pressing against the palm. The thumb supports this grasp
type by pressing on top of these fingers. The muscle force in each finger should be
naturally distributed.
After the subject gets a stimulus, it is instructed to hold the action with a constant
force level against the joint limit at 40% of the MVC until the end of the stimulus.
The stimulus of the required actions throughout this work are shown in Fig. 2.4 with
the left (grey) hand. The right (golden) hand is used to show the model prediction
when the online performance needs to be evaluated. The visualization is realized
using the modeling software Blender.

rest
(res)

wr. flexion
(fle)

wr. extension
(ext)

wr. pronation
(pro)

wr. supination
(sup)

power grasp
(gra)

Figure 2.4: Visualization of stimulus and prediction with abbreviations in paren-
thesis. Left (grey) hand: stimulus. Right (golden) hand: prediction

2.2 Sensor Placement Experiment

To evaluate the effect of different placings of both sensor types on the forearm,
the following experiment has been designed. A number of 20 available sensors is
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placed on two individual Velcro straps to fit the resulting bracelets next to each
other on the forearm. The region of interest is close to the proximal end of the
forearm because of two reasons. First, transradial amputees have still an intact
elbow joint with different forearm lengths. Prostheses are attached to the most
distal possible position of the extremity, enabling the amputee to use the elbow joint
as usual and use the forearm rotation to some extent. Second, the muscle bellies of
the major forearm and hand muscles lie close to the proximal end of the forearm.
Especially finger flexors and extensors as well as some forearm rotation muscles, e.g.
M. brachioradialis, M. supinator, M. pronator teres, can be best interfaced here.
The sEMG and FMG sensors were placed in alternating order on the straps, which
makes it possible to select single sensors in different patterns from both straps.

FMG6 

sEMG6 

FMG7 

 sEMG7 

FMG8 

sEMG8 

FMG9 

sEMG9 

FMG10 

 sEMG10 
FMG1 

sEMG1 

FMG2 

sEMG2 

FMG3 
sEMG3 

FMG4 

sEMG4 

FMG5 

sEMG5 

proximal 
bracelet 
 

distal 
bracelet 

Figure 2.5: Sensor configuration on both bracelets and sensors attached on the
forearm. Left: sensor configuration on both bracelets, where fields in grey are the
selection for configuration c3. Right: sensors attached to the forearm.

2.2.1 Procedure

All subjects receive a written description of the experiment as well as an oral ex-
planation about the procedure. Prior to their participation, the subjects sign a
written consent form after all questions are answered. The experiment is approved
by the work council of the DLR and conducted in accordance with the Declaration
of Helsinki.
The subjects are asked for their preference of using their left or right arm during the
experiment and the appropriate hand model is started. The hand model is shown in
full-screen mode such that the subject can concentrate on the visual stimulus. The
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elbow of the chosen arm is put on a soft pad on the table such that the forearm
can rest in an upright position over the elbow. The chair height is adapted to a
convenient and upright position in front of the monitor.
Both bracelets are adjusted to the circumference of the subject’s forearm such that
an equidistant positioning between all sensors can be ensured. The attachment onto
the forearm is made as described in the previous section 2.1.3.
The data acquisition software is started and configured with an ID of the current
subject, to enable an assignment of all data files and to anonymize the data. After
asking the subject for his or her convenience, the stimulus and the corresponding
data acquisition is started. Five repetitions of six actions have to be performed in
accordance to the visual stimulus, which are given in Fig. 2.4.

2.2.2 Parameter Search

After collecting data from 10 subjects, a one dimensional parameter search has been
conducted to optimize the RR-RFF regression model. The hyper-parameter σ is
varied over a defined set of values. The chosen set has small increments related to
small values with increased step size related to larger values. The second hyper-
parameter λ, which penalizes large coefficients in the regression model, is constantly
set to λ = 1. This parameter has only minor effect on the model properties compared
to the influence of σ. The random feature properties of the algorithm enables already
a good model fit, where the major model characteristics are shaped by the parameter
σ.
First, the random parameters Ω1 and β of the RR-RFF algorithm are drawn from
a normal distribution

Ω1 ∼ N (0,1) ∈ RD×d (2.1)

and an uniform distribution

β ∼ U(−π, π) ∈ RD. (2.2)

The number of chosen sensors is defined by d, which is the 10-dimensional input
space in this experiment. The feature space dimensionality is set to D = 300,
which is a trade-off between model accuracy and computational means. The random
parameters are drawn Ni = 10 times and stored in files before the data analysis.
This enables multiple iterations of the grid search, which reduces the randomness
of only one cross validation based on random parameters. This set of parameters is
used for all subjects to further eliminate the randomness among subjects. A number
of Ni = 10) iterations has been selected.
Second, the random parameter Ω1 is scaled by the hyper-parameter σ, found in the
grid search. Hence, we obtain Ω = σΩ1 as parameter for the regression model, as a
realization of N (0, σ)
The training is based on the captured sensor data, stored in the design matrix
X ∈ RNs×d and the corresponding target values Y ∈ RNs×NDOF , where Ns is the
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number of samples, NDOF the number of DOFs and d the number of sensors. A
sEMG and FMG sensor reading of the k-th sensor and the i-th sample is denoted
by x

(i)
sEMGk and x

(i)
FMGk. The sensor channels are stored column-wise in the full design

matrix

X =

x
(1)
sEMG1 ... x

(1)
sEMG10 x

(1)
FMG1 ... x

(1)
FMG10

...
. . .

...
...

. . .
...

x
(Ns)
sEMG1 ... x

(Ns)
sEMG10 x

(Ns)
FMG1 ... x

(Ns)
FMG10

 (2.3)

and the corresponding design matrices of each sensor type are hence sub-matrices
of X, given by

X =
[
XsEMG XFMG

]
. (2.4)

For the training of the RR-RFF model for each configuration, the appropriate
columns of the design matrix X are selected from Tab. 2.2 and Tab. 2.3 and put in

W = (ϕ(X)T )ϕ(X) + λID)−1(ϕ(X)TY ) (2.5)

to calculate the model coefficients, where ϕ(X) is the mapping function onto the
higher-dimensional feature space, given by

ϕ(X) = cos(XΩT + 1Dβ
T ), (2.6)

where 1D is the column unit vector with D dimensions.
To obtain a prediction ŷ of the trained model, employ

ŷ = ϕ(x)W (2.7)

with a given test sample x, where ϕ(x) is again the mapping function between input
and feature space.
The model is trained with each hyper-parameter from the set of 55 σ-values over
Ni = 10 iterations of the random parameter sets. The nRMSE is obtained by a
five-fold leave-one-repetition-out cross-validation, where Nr = 5 is the number of
repetitions for each action. The mean nRMSE for each nRMSEr,i of repetition r
and iteration i is given by

nRMSE =
1

NiNr

Ni∑
i=1

Nr∑
r=1

nRMSEi,r. (2.8)

The normalization is already achieved as the absolute maximum of each target value
is 1.
An optimal parameter σs for each subject s can be found, which minimizes the
nRMSE of this model. The parameter search took about 10 min. per subject (Intel
Xeon CPU @ 2.80GHz).
This process has been conducted for the approaches sEMG, FMG and ENS. Table 2.1
summarizes these values.
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Table 2.1: Individual sigma parameters for subject 1 to 10 and mean value over
subjects.

Approach 1 2 3 4 5 6 7 8 9 10 σmean

sEMG 1.80 2.50 2.50 0.90 1.50 0.85 2.20 0.55 1.60 1.60 1.600
FMG 1.80 2.20 3.00 3.20 2.70 3.40 1.90 2.30 2.30 2.80 2.560
ENS 0.35 0.05 0.05 0.65 0.60 0.90 0.45 0.45 0.65 1.20 0.535

The hyper-parameters for method STA are already defined by the hyper-parameters
of sEMG and FMG as their σ values can be directly used for the respective sensor
types. This is achieved by defining a vector σSTA in (2.9), which contains the already
found hyper-parameters of the previous parameter search related to five sEMG and
five FMG sensors. Differing from the other approaches, a hyper-parameter vector is
used to scale the random values in Ω1 instead of a scalar.

σSTA =
[
σsEMG, · · · , σsEMG, σFMG, · · · , σFMG

]T ∈ Rd (2.9)

2.2.3 Comparing Sensor Placement Configurations

To compare different sensor placements, three configurations have been defined in
table 2.2, namely c1, c2 and c3. The sensor placement pattern over both bracelets
is designed such that either one of the three placement configurations or one of the
four approaches can be selected. It prevents a constellation, where two sensors of
the same type lie next to each other for all made selections. In every selection,
an alternating arrangement of both sensor types is desired. At the same time, the
distribution of both sensor types around the forearm should be equal.

Table 2.2: Configurations of sensor placement
Config. Description Input

c1 proximal bracelet xc1 = [ xsEMG1, · · · , xsEMG5, xFMG1, · · · , xFMG5 ]
c2 distal bracelet xc2 = [ xsEMG6, · · · , xsEMG10, xFMG6, · · · , xFMG10 ]
c3 mixed selection (grey

fields in Fig. 2.5)
xc3 = [ xsEMG2, xsEMG5, xsEMG6, xsEMG8, xsEMG9,

xFMG1, xFMG3, xFMG4, xFMG7, xFMG10 ]

The sensor channels and their respective columns are selected from the design matrix
for each configuration. The resulting nRMSE is again obtained by a five-fold leave-
one-repetition-out cross-validation over 10 iterations. Figure 2.6 on the left contrasts
the nRMSE of the different configurations.

2.2.4 Comparing Machine Learning Approaches

To compare the offline performance of the employed machine learning approaches,
the input space of each approach is configured as in Tab. 2.3. The models are
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Figure 2.6: Results of the sensor placement experiment (with individual sigmas per
subject). Left: comparison of configurations. Right: comparison of approaches.

evaluated based on the σs values individually per subject as described in section
2.2.2. A five-fold (leave-one-repetition-out) cross-validation has been performed over
10 realizations of the random parameter set to obtain the nRMSE of each approach.
The results with standard deviations among the subjects are visualized in Fig. 2.6.

Table 2.3: Sensor selection for machine learning approaches.
ML Ap-
proach

Description Input

sEMG
selecting 10 sEMG sensors,
five per bracelet

x = [xsEMG1, · · · , xsEMG10]

FMG
selecting 10 FMG sensors,
five per bracelet

x = [xFMG1, · · · , xFMG10]

STA
five sEMG and five FMG
sensors in common input
space

xc3 (see Tab. 2.2)

ENS
five sEMG and five FMG
sensors in ensemble hierarchy

xc3 (see Tab. 2.2)

All tested approaches use a sensor selection which comes from both bracelets. This
is naturally given for sEMG and FMG as their 10 related sensors are distributed
over both bracelets. In the case of STA and ENS, the configuration c3 has been
selected, which expands the selection over both bracelets. This selection criterion
makes the four approaches more comparable. It has already been shown in the
comparison of the sensor placement configurations, that the effect is not significant
in the offline analysis.

2.2.5 Offline Results

For the statistical evaluation of both sensor placement configurations and machine
learning approaches, a repeated measures ANOVA is employed.
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No significant difference between the three sensor placement configurations has been
found (F (2, 18) = 1.337, p = 0.287). Pairwise interactions have been determined
using the Tukey-test with p = 0.397 for c1-c2, p = 0.975 for c1-c3 and p = 0.285
for c2-c3.

A significant difference between the four approaches has been found (F (3, 27) =
7.05105, p = 0.0012). The post-hoc Tukey-test showed that the approach sEMG
is significantly worse than any other tested approach with p between < 0.001 and
0.00784. The remaining three approaches show no significant difference with p be-
tween 0.693 and 0.997.

2.2.6 Discussion

The statistical analysis shows no significant difference between the three sensor
placement configurations. This deviates from [RSE16] where the classification error
could be minimized by trying different sensor patterns out of an array of 126 pressure
sensors. The different number of employed sensor and their placement density on
the skin might cause this effect compared to this work.

Configuration c2, which are sensors from the distal bracelet, shows a higher nRMSE
compared to the other approaches. This might be influenced by sensor alignment
problems of this bracelet. The anatomy of the forearm shows a conical form between
elbow and wrist. Starting at the elbow, the arm is more cylindrical but going further
to the wrist, the arm gets more conical. As the bracelet is fixed at that transition
area, it is problematic to properly place all sensor surfaces on the skin. The whole
bracelet tends to slip towards the distal end of the arm, as the arm circumference
decreases in that direction. In this region, sensor lift-off or shift might occur more
often than in the region of the proximal bracelet.

The offline evaluation gives just a limited insight of the performance of each machine
learning approach. The control loop involving subject and the machine learning
algorithm is not closed and the online performance of the approach is unclear because
the adaptive behavior of the human is neglected here. However, the results of the
approaches involving sEMG all show a lower nRMSE than the approach, using
sEMG only. This can point to positive properties of the FMG signals but also to
meaningful combinations of sEMG and FMG. The combined sensors approaches
ENS and STA show almost the same low nRMSE than FMG.

2.3 Online Performance Comparison

For the online evaluation, conducting a hyper-parameter search after the training
phase of each subject is too time consuming. The subject would need to wait
for the parameter search with the technical equipment fixated at his or her body.
Hereby, using a general σ parameter for all subjects is desirable. First, the parameter
selection process is described, which has a strong influence on the online performance
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of each approach. Then the procedure of the experiment is outlined. In the end,
the results are presented and discussed.

2.3.1 Parameter Selection

The intuitive first approach was to use σmean for future models. This was obtained
by defining a σmean as mean value over all subjects. After testing the resulting
model in an online scenario, it becomes evident that this parameter causes over-
sensitive behavior for intermediate activations and hard to reach full activations.
An explanation is that the variance of the normal distributed Ω values is scaled by
this parameter and larger values in Ω lead to higher frequencies in the drawn cosine
functions. It follows that higher frequencies enable steeper gradients and oscillations
on the regression function.

The parameter search has been further explored to examine this behavior. Figure
2.7 shows a histogram of the σ values, which are obtained when a threshold of +5%
is applied on the minimum nRMSE in the parameter search. Then, the minimum
σ-parameter is selected with the maximum number of occurrences, indicated by the
left red bar in the histogram. This value is termed as σmin and for each approach,
the values σsEMG

min = 0.7, σFMG
min = 0.5 and σENS

min = 0.15 are obtained.
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Figure 2.7: Histogram of sigma values where the nRMSE lies in an error threshold
of +5%. Red bars indicate the interval of maximum occurrences among subjects.

As in the offline experiment, the hyper-parameter vector for STA is again constructed
by the values from sEMG and FMG, resulting in

σSTA
min =

[
σsEMG

min , · · · , σsEMG
min , σFMG

min , · · · , σFMG
min

]
∈ Rd. (2.10)
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One could easily argue that the best parameter is selected where the model error is
minimal. Problems arise if this argumentation is taken into to online case. In this
special application, the regression is built only on three different target values, which
are

{
−1, 0, 1

}
. A single activation (SA) is built on two target values only, which

are either
{

0, 1
}

or
{

0,−1
}

. In the online case, intermediate values are queried
for regions where no training data was available. This differs from the offline case,
where the model could be only tested with the available training data from rest
position or full activation. The whole shape of the regression function is defined
by two things: The selection of the hyper-parameters and the constellation of the
training samples collected for a certain target value.

Paying attention to the hyper-parameters, Fig. 2.8 shows the model prediction of
STA, when the input is linearly interpolated between rest cluster and each of the
activation clusters. The left columns shows the case, where σmin is used to train
the model, the middle column shows the model, using σmean and the right column
compares the output to a multiple linear regression model including a parameter for
the y-intercept. The linear model gives an impression of where the cluster centers
lie and how a linear connection between rest and the specific activation looks like.

The inner-cluster variance of an action and the inter-cluster variance between differ-
ent actions in the input space play a major roll. For instance, collecting data for one
action with a number of repetitions can result in a wide spread of the samples among
the repetitions, if the subject performed with poor repeatability. This will result in
a digressive curve between rest cluster X0 and the desired target value, which causes
a high sensitivity for intermediate activation levels. On the other hand, a low sen-
sitivity to reach full activation levels can be achieved. See Fig. 2.9 for an example
using a one-dimensional input x and simulated training data for the targets y = 0
and y = 1.

The simulated training data is drawn from a normal distribution with variance 0.04
for Xgood and a variance 0.2 for Xbad. The linear input for x results in the model
predictions ygood and ybad. The left plot shows models which allow only a smooth re-
gression function which corresponds to a smaller σ-parameter. The right plot shows
models which allows smaller periods in the cosine base functions, corresponding to
a larger σ-parameter. This models tends to overfit the training data. Both model
types are trained on the same data. The slope of the regression curves is generally
steeper for the training data Xbad. For the models using larger σ-values, the slope is
further increased as already the first data samples between rest and full activation
show a good approximation. Steep regression functions make the control highly sen-
sitive for intermediate activations and are hence disadvantageous for proportional
control.

We showed in a preliminary online experiment that the parameter type σmin for
the specific approach led to an intuitive behavior and a good control experience
[NEC17]. These parameters are selected for the further online evaluation in this
work.
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2.3.2 Procedure

All subjects receive oral and written explanation of the experiment. A number of
12 subjects is engaged. Every participant receives a written consent form, as in the
previous experiment. The duration of the experiment is about 45 min and it is split
in two parts.

The first part, about 10 min, is the training phase where subjects need to follow a
repetitive stimulus of hand and wrist actions. Again, five repetitions of six actions
are recorded (including the rest position res).

The second part, about 35 min, is the online performance phase. The subjects
need to follow a visual stimulus in order to reach targets with a virtual hand on
the screen. Hereby, not only full activations as they occur during the training are
tested. Intermediate activations at levels of 33% and 66% of all SA are also part
of the target set. A total of 120 targets has to be reached, consisting of 40 full
activations and 80 intermediate activations. Each target has to be reached twice.
Reaching a target means to stay inside a bounded window of less than 1% of the full
workspace for a holding time of th = 1.5s. If this requirement is fulfilled, the target
is counted as success. If the subject is not able to accomplish the target within a
timeout of tt = 15s, it is counted as no success.

2.3.3 Workspace and Target Space Definition

The whole workspace is expanded between the limits of each DOF. The limits are
[−1, 1] for opposite actions fle/ext and pro/sup and [0, 1] for the action gra. The
limits −1 and 1 corresponds to a full activation of the related action. This leads
to a workspace volume of Vw = (1 − (−1))2 · (1 − 0) = 4. For further DOF, the
workspace volume would be calculated by a hyper-cuboid.

The target space is the space which needs to be entered in order to achieve a suc-
cessful goal as described before. A target space Vt can be defined by an error
margin ε on each DOF, which expands to both sides. This leads to a target space
of Vt = (2ε)NDOF , where NDOF = 3 is the number of DOF in this experiment. The
threshold is set to ε = 0.15. This value represents a good balance of the success rate
according to the abilities of the subject and to prevent frustration caused by low
success rates.

The ratio between the target space and the whole workspace is given by

rw =
Vt
Vw

=
(2ε)NDOF

Vw
. (2.11)

This leads to a target space to workspace ratio of rw = 0.00675 and shows that the
probability to enter the goal randomly is quite low.
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2.3.4 Online Results

The performance has been evaluated mainly on the success rate (SR)

SR =
NSG

NAG

, (2.12)

which is the ratio between successful goals (NSG) and all goals (NAG).
This is used as the strongest measure of the performance of an approach. Values
between [0, 1] are possible.
Another metric is the task completion time (TCT), which is the average time of
completing a successful goal (SG). Unsuccessful goals are excluded here. The TCT
is a measure of time it took the subject to reach the goal starting at the rest position
until entering the SG. The holding time of th = 1.5s is not included and values
between [0, tt[ are possible, because the timeout is not active at holding a SG. This
metric also helps to evaluate the stability of an approach. An unstable or non-
intuitive approach requires the subject more time to reach the goal or instability
causes the prediction to leave the target space again. The TCTi values for each goal
i are averaged over all successful goals by

TCT =
1

NSG

·
NSG∑
i=1

TCTi, (2.13)

where NSG is the number of successful goals.
As a third metric, the in-goal-time (IGT) is used, given by (2.14). This is the sum of
each period the subject stays inside the target space. Therefore, only unsuccessful
goals with a sum larger than zero are taken into account. The number of these
unsuccessful, reachable goals (URG) is termed as NURG. A total time inside the
target of zero is counted as an unreachable goal and excluded in this metric. As
a stable holding time inside the target space of 1.5 seconds is required, this metric
identifies mostly unstable approaches. For example, the target space of a goal is
entered multiple times but the holding time is never reached. This leads to a high
IGT compared to an approach which enables a stable prediction inside the target
space.

IGT =
1

NURG

·
NURG∑
i=1

Ni,K∑
k=1

ti,k (2.14)

Each IGTi for an URG i is a sum of a number Ni,K of periods ti,k, while the target
space is entered. These values are averaged over all URG. The number of Ni,K

periods can be between [1,∞[ . Each single period ti,k can be within [0, th[ seconds.
For longer periods, the goal would be counted as successful as the holding time is
fulfilled.
Figure 2.10 shows the results using the three metrics on the left. A repeated mea-
sures ANOVA has been conducted for all metrics. A significant difference for the
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SR between the four approaches has been found (F (3, 33) = 23.536, p < 0.0001).
A post-hoc Tuckey test is used to test the pairwise interactions. It shows that all
approaches are significantly different from each other (all p < 0.01) except the com-
parison of STA and FMG with p = 0.996. The highest SR can be found for STA and
FMG which shows that the approach using only FMG signals performed as good as
a mixture of both signal types.

Analyzing the TCT, a significant difference has been found (F (3, 33) = 3.630, p =
0.0228). The post-hoc Tuckey test reveals a significant difference only for the ap-
proaches sEMG and FMG (p = 0.0167). All other interactions were not significant.
This shows that the sEMG signals might have introduced more instability into the
system which would require more time to reach a goal in average.

Evaluating the IGT statistically, the repeated measures ANOVA shows a significant
difference (F (3, 33) = 11.003, p < 0.0001). The post-hoc Tuckey test shows signif-
icant difference between the groups FMG-ENS, sEMG-FMG and STA-FMG with
all p < 0.01. All approaches involving sEMG signals show a significantly higher IGT
than the approach FMG. The approach sEMG shows the highest IGT. This could
be again caused by the signal instability. In that case, the subjects could reach
many of the goals but the holding time was never exceeded. Hereby, the goals were
reentered multiple times until the timeout occurs.

Looking at the right plots of Fig. 2.10, the SR for full (SRfull) and for intermediate
activations (SRint) is plotted independently. Full activations are the same as they
occurred during the training phase. Hence, training data for these activations has
been collected. Intermediate activations are goals, where 33% or 66% of the full
activation level is targeted. These activations are predicted based on the regression
curve between rest and full activation where no training data is available.

There is no significant difference between the approaches for SRfull (F (3, 33) =
0.6166, p = 0.6092). For SRint, there is a significant difference over the approaches
(F (3, 33) = 31.165, p < 0.0001). The post-hoc Tuckey test reveals that all ap-
proaches are significantly different from each other (all p < 0.01) except STA and
FMG (p = 0.998). The independent analysis of full and intermediate activations SR
shows again that STA and FMG are the two most successful approaches without a
significant difference in their performance.

Comparing only STA and FMG, the SR for all, full and intermediate activations is
not significantly different. Also the TCT is not significantly different. Only the IGT
shows a significantly higher mean value for STA compared to FMG. If the IGT is
regarded as a stability measure for the online control, higher IGT indicates a more
unstable approach STA.

As a last analysis, the SR of each approach is examined action-wise as well as DOF-
wise. This means that a SR for each specific action can be determined. Further, it
is possible to determine a SR for each available DOF. As some of the actions lie on
opposite directions on the same DOF, there are more groups for the actions than
for the DOF. This analysis is shown in Fig. 2.11.
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A two-way repeated measures ANOVA for the factors approach and action shows
a significant effect of the factor approach (F (3, 33) = 23.54, p < 0.0001) and a
significant effect of the factor action (F (4, 44) = 3.363, p = 0.0174) but no significant
interaction effect between approach and action (F (12, 132) = 1.352, p = 0.197).

The same statistical analysis for the DOF-wise SR shows a significant effect of the
factor approach (F (3, 33) = 20.49, p < 0.0001) but neither significant effects for the
factor action (F (2, 22) = 2.912, p = 0.0755) nor for the interaction effect between
approach and action (F (6, 66) = 0.855, p = 0.533).

2.3.5 Discussion

A few subjects complained about the tightness of the bracelets, which felt increas-
ingly inconvenient towards the end of the experiment. All of these subjects decided
to finish the experiment after the experimenter asked about their condition. This
shows that the sensor tightening is a crucial process which leads to problems if the
bracelet is tightened by a third person and if the subject has little knowledge about
the required tightness. A initial good feeling about the tightness can later on lead
to discomfort, as the sensors deform the skin for a long time. As a solution, a pro-
cedure for inexperienced users could be applied, where for instance the sum of the
FMG signals need to be at a defined level during bracelet fitting. This signal sum is
then related to the pressure of the sensors on the skin and a measure for the bracelet
strength. During the experiment, only a vague visual inspection of the FMG signals
took place during the bracelet fitting, as it was considered as more important that
the surface of all sensors fully covers the skin and no tilting occurs.

The results emphasize the stability and the good performance of using only FMG
signals for human intend inference. The performance of STA is comparable in the
SR and the TCT. The results of the IGT can be interpreted differently. If a high
IGT is interpreted as measure for instability, STA performed worse than FMG. It is
emphasized that the signal filtering characteristic has strong influence on the online
performance of an approach. Low-pass filters with very low cutoff frequencies enable
a smooth control, which can be unnecessarily slow and frustrating for the user. Low-
pass filters with a higher cutoff frequency might let pass to much noise and a stable
control of the user’s intent is hard to achieve. In this experiment, both signal
type filters are configured the same. For both signal types, a responsive system
was desired. If the low-pass signal filter for sEMG would have been configured
with a lower cutoff frequency, the approaches using this signal type could have
possibly performed better. This would only affect failures due to instability but
would introduce further delay into the prediction system.

The action-wise and DOF-wise analysis could be helpful, if there is a superiority of
a certain approach related to a certain action or DOF. As it is unclear which action
is the intent of the user in the online case and some actions lie on the same DOF,
the online selection of a certain approach is a difficult problem. A simpler solution
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could be a static configuration of which approach is related to which DOF. Opposite
actions on each DOF would then be executed with the same approach.

2.4 Conclusion

The two conducted experiments evaluated the effect of different sensor placements
in an offline experiment and the effect of different machine learning approaches in
both offline and online experiments. It has shown that the performance of a LM
using only FMG sensors is similar to the approach of stacking both sensor types
into the same input space. The effect of the sensor placements on different defined
regions of the forearm is not significant. Although the compared nRMSE were
not significantly different, the proximal bracelet selection led to the largest nRMSE.
This could be caused by the forearm anatomy causing a worse sensor fit and possibly
sensor lift off. The mixed selection of both bracelet showed a comparable nRMSE as
the proximal bracelet selection. For future experiments, a random sensor placement
of both sensor types can be regarded as uncritical.
The offline performance of machine learning approaches differs usually from the
online performance. In this case, high nRMSE values from the offline analysis cor-
responds to low SR in the online analysis. This shows at least that the offline and
online analysis are in relation among the approaches.
The initially defined hyper-parameters σmean from the offline-analysis did not lead
to promising results in the online case. The intuitiveness of an approach and the
control experience are rather subjective feelings of the user. The hyper-parameters
σmin for the online experiment could be selected after an extended analysis of the
offline data and with the help of preliminary online tests, where different parameter
sets were employed.
Future experiments can be grounded on the hyper-parameters found in the offline
experiment which were used in the online experiment. The results of the action-wise
and DOF-wise performance analysis can be possibly used in novel approaches.
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Figure 2.8: Model prediction of STA for an interpolated linear input between rest
and the full activation. Left: predictions of RR-RFF model trained with σmin.
Middle: predictions of RR-RFF model trained with σmean. Right: prediction of LR
model with intercept.
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Figure 2.10: Results of the online experiment with common sigmas. Plots with
horizontal bar captioned n.s denote the only non-significant difference between all
pairs. Left: success rate (SR) over all tasks, mean task-completion-time (TCT)
and mean in-goal-time (IGT). Right: Comparison of approaches for full activations
(SRfull) and intermediate activations (SRint).
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Chapter 3

Sensor Fusion Study

In this chapter, the physical properties behind the produced sensor signals are
shortly described. The signal characteristics of both sEMG and FMG sensors are
outlined and how they are affected by different disturbances. The Kalman filter is in-
troduced as an probabilistic sensor fusion approach and employed in a single-subject
study to evaluate its performance.

3.1 Physical Properties

Humans control the unloaded position of their intact hand and wrist by exerting
very sensitive muscle contractions. In an unloaded scenario, the muscle contractions
need to be strong enough to overcome the friction of the gliding tendons in their
channels as well as the internal tissue frictions of the muscle deformations and joint
friction of the actuated limb. Further, the weight of the actuated limb itself need
to be compensated, which is comparably low for the hand related to the wrist joint.
Higher muscle forces for unloaded scenarios can occur at the elbow joint, depending
on the elbow joint position, as the forearm and the hand act as a leverage. For
position control of the hand and wrist, both proprioception and visual feedback is
used to close the human control loop. At the point, where a joint reaches its limits,
further torque can be applied through muscle contraction, where the joint limit acts
as an compliant hard stop. This hard stop allows only small compression and the
joint torque can be raised until the maximum contraction of the user.

This behavior shows basically to stages, starting from the limbs rest position:

Stage one: The user actuates the limb with minimal force due to free movement in
position control using proprioception and visual feedback. During free movement, a
displacement of the muscle and its contraction belly occurs even for minimal forces.

Stage two: The user has reached the joint limit and increases the muscular force,
mainly in force control using proprioception to regulate the muscle strength. In
this state, an isometric contraction is applied, as the muscle length is kept almost
constant.
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The different stages in control of intact human limbs produce different signal features
at the employed sensors. A problem for the transfer of the control strategy to an
amputee is seen in the different physical properties and the probable different control
scheme than intact subjects. If the residual tendons in the stump are fixated at
the bone, the amputee would only act in isometric contraction. This hypothesis
affects the control strategy in myocontrol with either two control strategies of intact
subjects compared to an assumed single control strategy of amputees.

In loaded scenarios, where the subject bears a weight, grasped with his or her fingers,
the force in the moving DOF of the forearm is related to that weight. For an
amputee, these forces are not related to the object weight lifted with the prosthesis.
In the experiments of this work, only unloaded scenarios are considered. The effects
of different weight in the hand of the subjects are so far not considered.

3.2 Sensor Characteristics

The sEMG sensors placed on top of the skin are subjected to different time-dependent
effects. Humidity strongly influences the signal strength. Sweating is mainly caused
by covering the skin with the sensors. Rising humidity usually increases the signal
levels and reduces the noise, which leads to better training data. If training data
is collected shortly after the sensor attachment, the signal levels tend to be smaller
compared to a later state. The signal levels rise and the signal noise is reduced after
a while by the rising skin conductance. This is problematic as the training signals
differ from the later online signals. One solution can be to moisturize the skin with
water before attaching the sensors or simply wait some time after attaching the
sensors in order to let the sensor characteristics settle.

The FSR sensors, which are embedded in a rubber casing have a spherical head
to sense the muscle deformation through the tissue and skin layers between muscle
and skin surface. After wearing these sensors for a certain time, the skin shows a
reversible plastic deformation relative to the ball shaped sensor head. These can be
seen after removing the sensors from the forearm. A slight indentation of a depth
of around 1 mm remains, which is surrounded by a small elevation of skin. These
indentations vanish after one minute. This leads to the assumption that the tissue
behaves like a semi-flexible material with changing characteristics over time. As
the pressures onto the sensor surface are relatively small, the semi-flexible behavior
might cause a time dependent change in the signal characteristics of the FSR sensors.

Both sensor types are affected by the body temperature and the ambient tempera-
ture. Changes can influence the electronics. As both sensor types are arranged on
two bracelets, bracelet or individual sensor slippage needs to be prevented during
the whole wearing time.
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3.3 Kalman Filtering

As an alternative approach of fusing different sensor signals, the Kalman filter (KF)
is shortly introduced here. The filter comes with the property that the process
noise and the observation noise can be modeled. This allows a definition of different
observation noises for the employed sensor types. With a proper weighting of the
observation noise of a certain sensor modality, a probabilistic fusion approach of a
multi-modal sensor input becomes possible. In relation to the STA approach, where
only different hyper-parameters could be set for different sensor types, the Kalman
filter enables either a static observation model for the fusion of both sensor types as
well as an adaptive observation model with an online varying sensor confidence.
The state-space model of the prosthesis DOF positions yk at timestep k can be
modeled by

yk = f(yk−1,uk) +wk , wk ∼ N (0,Qk) (3.1)

as a function of the previous state yk−1 and a control input uk with additive process
noise wk

The non-linear observation model is given by

zk = h(yk) + vk , vk ∼ N (0,Rk), (3.2)

which is a function of the current state yk with additive observation noise vk. The
observation model describes a sensor reading zk at state k.
The problem with this formulation is that a mapping between the d-dimensional
measurement vector zk ∈ Rd and the current state yk ∈ RNDOF with a number of
NDOF output DOF is required. This mapping is learned through RR-RFF in the
previous experiments, which has been shown to be a good algorithm in the regression
problem of myocontrol. In the notation of the observation model (3.2), this mapping
of the RR-RFF model would need to be inverted. The multiple input and multiple
output (MIMO) system has a number of 20 sensors as input (10 sEMG, 10 FMG)
and a number of NDOF = 3 as output. To find an inverse mapping from output to
input, a under-determined non-linear equation system needs to be solved which has
infinite solutions. No unique solution exists for a model inversion of the RR-RFF
model. Therefore, including the regression model directly into the Kalman filter
state space models is problematic.
A simplified problem can be obtained when the Kalman filter is used to fuse the
output of two independent regression models, one for each sensor type. This yields
to a linear state space observation model, where no inversion of a regression model is
required. Hereby, the confidence can be modeled for each sEMG and FMG related
DOF. The confidence per DOF can be defined through the previously conducted
analysis of the success rates per DOF in section 2.3.4. A system block diagram can
be found in Fig. 3.1.
The new state of the process can be simply modeled by its old state and as there is
no further control input, a simple random walk model is defined by

yk = yk−1 +wk , wk ∼ N (0,Q), (3.3)
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Figure 3.1: Kalman filter system block diagram

where yk ∈ RNDOF is the current state in three DOF.
The linear observation model is given by

zk = Hyk + vk , vk ∼ N (0,R), (3.4)

where zk ∈ R2NDOF is the measurement vector containing both model predictions
ŷsEMG, ŷFMG ∈ RNDOF

zk =

[
ŷsEMG

ŷFMG

]
. (3.5)

The measurement matrix H contains the mapping between system state and both
of the LM prediction outputs and is simply constructed by

H =

[
INDOF

INDOF

]
, (3.6)

where INDOF
is the square identity matrix of size NDOF. The observation noise

covariance matrix R is kept constant based on the online analysis per DOF.
In this approach, the confidences for the observation noise covariance matrix R are
directly related to the DOF-based success rates from the previous experiment. A
normalized success rate S̃R is obtained by

S̃R
(l)

sEMG =
SR

(l)
sEMG

max{SR(l)
sEMG, SR

(l)
FMG}

S̃R
(l)

FMG =
SR

(l)
FMG

max{SR(l)
sEMG, SR

(l)
FMG}

(3.7)

for each DOF l and for both sensor modalities. The SR of the approaches sEMG
and FMG are normalized by the maximum SR over both approaches.
A value for the uncertainty of a specific DOF is obtained by

V
(l)

sEMG =
1

S̃R
(l)

sEMG

V
(l)

FMG =
1

S̃R
(l)

FMG

(3.8)
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for both approaches, where the value S̃R is inverted such that high values are related
to low variances and vice versa.

Table 3.1: Uncertainty of a DOF w.r.t normalized success rate (S̃R).

l DOF Name S̃R
(k)

sEMG S̃R
(k)

FMG V
(k)

sEMG V
(k)

FMG

1 gra 0.578 1 1.727 1
2 fle/ext 0.435 1 2.297 1
3 pro/sup 0.677 1 1.476 1

With the values for the DOF-wise uncertainty, the observation noise covariance
matrix is modeled by

R = diag( V gra
sEMG, V

fle/ext
sEMG , V

pro/sup
sEMG , V gra

FMG, V
fle/ext

FMG , V
pro/sup

FMG ). (3.9)

Only the diagonal elements are used to define the uncertainty of each DOF. Each
DOF occurs twice, one for each prediction output of the two regression algorithms.
The process noise σ2

Q is chosen, such that the relation between trusting the process
and trusting the observations shows good controllability in the online case. For
the simple random walk state space model, influencing the process noise behaves
like tuning a low pass filter’s characteristics of the prediction. The process should
not be modeled unnecessarily slow but slow enough to filter out noisy observations.
The process noise covariance matrix is defined as diagonal matrix Q = σ2

Q · INDOF
,

where INDOF
is the square identity matrix of size NDOF. For the following study, a

value of σ2
Q = 0.01 has been chosen. This value has been found in preliminary exper-

iments as a trade-off between smoothing of the prediction and a reactive behavior
as in approach STA.
The filter output ŷk at each timestep k is calculated by the well known equations
for the update and correction step of a simple Kalman filter.

3.3.1 Study Design

This study is rather a feasibility analysis of a possible sensor fusion algorithm and
does not involve a variety of human subjects.
The hypothesis is that the Kalman filter approach (KF ) reaches a comparable suc-
cess rate (SR) as the approach STA. For the approach KF, further knowledge has
been provided in form of the previously determined DOF-wise SR. This SR are used
as a confidence measure for each DOF and gives a level of confidence to the sEMG
or to the FMG approach.
As the KF is applied in discrete time domain, a direct online evaluation of the
approach is necessary. A number of 120 goals has been created, consisting of full
and intermediate activations. The goal reaching task is designed as in the previous
experiment, using a visual stimulus. To evaluate the online results, the approach is
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compared to the already known stack method, which can be regarded as the simplest
sensor fusion algorithm in this application.

The sequence of active approaches as well es the queried goals are in a random order
and unknown to the subject. Temporal learning effects or temporally changing signal
characteristics are neglected in the comparison as both methods occur in a random
sequence, where the chance to hit the same method again after another is 50%. Each
goal occurs twice for each method, which results in 60 tasks per method.

In this study, a number of 20 sensors, 10 sEMG and 10 FMG is used, which are
distributed over two bracelets in alternating order. The σmin-parameter vector for
the approach STA has been chosen from the previous experiment.

3.3.2 Results

The SR and the TCT of both approaches were compared, shown in Fig. 3.2.
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Figure 3.2: Kalman filter performance results. Left: SR per approach. Right: TCT
per approach.

As the results come from one subject only, they were not statistically evaluated.
The absolute SR is 20% lower for the KF and the TCT is 1.37 s higher, which is an
increase of 34% compared to STA.

The prediction outputs of all involved learning machines are shown in Fig. 3.3 for
the DOF of fle/ext. The goals at this time window were a full fle (target value −1
until 1 s) and the rest position (target value 0 at 3 s) followed by a full ext (target
value 1 from 3 s to 6 s) at the active output of the KF. The outputs of the learning
machines for sEMG and FMG act as the inputs of the KF. The KF trusts the FMG
modality more as it is configured and the filter output is shifted towards the FMG
prediction. It successfully filters out noisy sEMG predictions, noticeable at 3 s . The
output of the KF is also compared to the STA prediction and differs only slightly in
this DOF. The output comparison of different approaches is problematic as only one
approach can be active at a time and the subject closes the control loop using this
specific approach. The resulting output of other approaches is biased as the subject
does not perceive their prediction. Regardless the output of the shown DOF, other
DOF can strongly deviate from the goal requirement. Cross-activations of other
DOF cannot be evaluated in such plots.
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Figure 3.3: Kalman filter prediction output for DOF fle/ext compared to other LM
predictions.

3.3.3 Discussion and Conclusion

With the approach STA using all 20 sensors, a SR of 92% could be reached, compared
to an average SR of 61% reached in the previous experiment. The higher SR can be
caused by the increased number of sensors but also through the influence of a more
experienced subject. The KF using 20 sensors reached a SR of 72% which is also
noticeable higher as all other approaches in the previous experiment, where the two
best approaches were STA (SR = 61%) and FMG (SR = 60%).

In this experiment, an approach acting in discrete time domain has been compared
with a regression based algorithm. In the regression algorithm, two low-pass filters
are used, one for the sensor input and one for the prediction output. As the Kalman
filter considers the parameterized process noise, additional filtering of the output is
unnecessary.

The results for the KF show a worse performance as the approach STA. The KF
fuses the information from two different regression models online with only the
knowledge about the signal noise of a channel but without any noise correlations. In
comparison, the regression algorithm for STA uses training data, where both signal
modalities are in a relation for the specific target values. This additional knowledge
about the signal relation might improve the prediction compared to the unrelated
signals in the KF. Furthermore, the noise occurring at the signal readings, which
is assumed to be Gaussian is further transformed using the non-linear regression
functions of the LM. This may introduce further errors as the assumption is made
that the noise on the predictions of the LM is also Gaussian. This is technically
impossible as a non-linear transformation of a Gaussian random variable will not
result in a Gaussian random variable. Nevertheless, this assumption has been made
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as the full observation model between sensor and model prediction could not be
inverted and has been excluded from the filter.
As there is a possibility to define the correlation of the noise in the observations
between different channels of the KF, further knowledge could be provided to the
system. This information could come from an online noise estimation of the different
input signals and their possibly correlated noise. The values for the confidence
of the different input signals can be potentially improved. Further experiments
could provide better values, where the focus is on the interactions between different
activations.
The KF performed worse as the so far best sensor fusion approach STA. Although
its worse performance, it comes with the possibility to configure process and ob-
servation noise and facilitates an online adaption of these values. Furthermore, a
probabilistic approach like this could handle the change in signal characteristic in
the future, caused by sweating or muscle fatigue. If the confidence of the inputs can
be determined online, less confident signals can be neglected for the prediction. On
the one hand, this is mostly perceivable for the sEMG prediction at activation of
different actions, when strong noise occurs compared to the FMG prediction. On
the other hand, the LM using sEMG shows a perfect rest position as the muscles
are relaxed but the FMG prediction is noticeable off the rest position.
In conclusion, only modeling the confidence for different DOF of each modality may
be problematic as the KF tries to predict a system state in discrete time domain
using a noisy process model and a noisy observation model. The noise on this signals
can be differentiated from unintended activations of DOF which may occur at the
activation of a specific action. This unintended activations could either come from a
ill-formed regression model or from anatomical properties. Therefore, modeling the
noise in discrete time domain does not represent the unintended activations, which
are time invariant and rather dependent on the activation level of a certain DOF.
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Chapter 4

Applying Linearly Enhanced
Training (LET)

4.1 Motivation and Problem Description

In simultaneous and proportional myocontrol it is desirable to combine different
hand and wrist movements. A good prediction model can be achieved if training
data of the required SA as well as training data of their related combinations, which
are termed multiple activations (MA), is available. For example, training a machine
learning method on the data of wrist flexion, power grasp and the combination of
them.

Training on SA only will in general not correctly predict simultaneous activations
of multiple DOFs. For a set of SA, the number of possible MA quickly raises and
becomes infeasible during the training with a subject. Furthermore, the combination
of SA during training can be an impossible task for an amputee. This can be due to
the lack of visual feedback, missing proprioception and less imagination about the
motor control of the required SA.

Therefore, a method of creating artificial training data for the MA has been proposed
in [CN14], namely Linearly Enhanced Training (LET). This method has been first
applied to single finger activations to predict multiple finger activations. Therein,
the data for MA has not been collected but has been artificially created through
LET, based on the data of single finger activations. This technique has been also
applied to hand and wrist movements, based on sEMG data [CBNvdS16].

LET is not a machine learning method, but a way of building an augmented training
data set in order to improve the prediction capability of MA. In a technical view,
LET could provide data for any type of regression algorithm but is used together
with RR-RFF within this work. Some advantages of RR-RFF compared to other
regression algorithms are exposed in [GBSG+14].
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4.2 LET Method Description

4.2.1 Algebraic Interpretation

In the previous experiments, only SA were recorded and used to train the regression
model. LET is a method which adds artificial training data to the input space. This
artificial data consists of the combination of two SA, e.g. wrist flexion combined with
power grasp. The resulting data is a linear combination of both SA clusters, using
one ore more parameters to scale it. The scaling is either based on the coordinate
origin or based on the center of the rest cluster, recorded at the rest position of the
hand and wrist.
Given a SA dataset, which includes the training data of the rest cluster X0 and
two SA clusters Xi and Xj in (4.1). Each training data cluster has a target vector
associated to it, which is the ground truth for the specific action. For example, the
target vector for the rest position is (0, 0), for the action i it is (1, 0) and for the
action j it is (0, 1).

DSA
ij = {(X0, (0, 0)), (Xi, (1, 0)), (Xj, (0, 1))} (4.1)

Given an extended dataset, including the MA cluster Xij, which is the according
combination of these SA

DMA
ij =

{
((X0, (0, 0)), (Xi, (1, 0), (Xj, (0, 1)),

(Xij, (1, 1))

}
. (4.2)

Applying LET on the dataset in (4.2), training data for the MA can be artificially
created by finding a function F (X0,Xi,Xj).

DLET
ij =

{
((X0, (0, 0)), (Xi, (1, 0), (Xj, (0, 1)),

(F (X0,Xi,Xj), (1, 1))

}
(4.3)

Two similar models have been proposed in [NC16] to create such data, which is
the single-α model function F1 (4.4) and the multi-α model function Fm (4.5). The
model function names are given by the number of their parameters which are opti-
mized in the approximation of the MA cluster.

F1(Xi,Xj) = αij (Xi +Xj) (4.4)

Fm(Xi,Xj) = αiij Xi + αjij Xj (4.5)

To determining the single αij for the function in (4.4), a least squares problem is
solved in (4.6) where the squared error terms between the true MA cluster and the
artificial data set are minimized. The sample means are taken of each dataset for
this calculation.

α∗ij = argmin
α

∥∥X̄ij − α(X̄i + X̄j)
∥∥2

2
(4.6)
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The result is the closed form solution of an optimum α∗ij, given by

α∗ij =
X̄ij (X̄i + X̄j)

T

(X̄i + X̄j) (X̄i + X̄j)T
. (4.7)

The same optimization accounts for the multi-α model, where two parameters
instead of one parameter are optimized. The optimum α values are arranged
in the solution vector α∗ij, where the α-parameters for each SA cluster are ar-

ranged in αij =
[
αiij αjij

]
. The SA sample mean clusters are arranged in the

matrix X̄[i,j] =
[
X̄T

i X̄T
j

]
.

α∗
ij = (X̄T

[i,j] X̄[i,j])
−1 X̄T

[i,j] X̄
T
ij , (4.8)

In the experiments of [NC16], the additional parameters of the multi-α model did
not lead to a better performance in the online case. Therefore, the less complex
single-α model has been chosen throughout this work. In the following, the LET
method refers to the single-α model only.
Especially for FMG signals, the rest cluster is not located at the origin. A certain
offset in each sensor channel is present due to the tightening of the bracelet. This
causes a permanent force onto each sensor even at a relaxed muscle state. There-
fore, the rest cluster position is accounted in the single-α parameter determination.
Basically, each involved cluster center is shifted by the rest cluster center X̄0 to
calculate the α parameter relative to the origin, given by

α∗ij =
(X̄ij − X̄0) ((X̄i − X̄0) + (X̄j − X̄0))T

((X̄i − X̄0) + (X̄j − X̄0)) ((X̄i − X̄0) + (X̄j − X̄0))T
. (4.9)

4.2.2 Geometrical Interpretation

Figure 4.1 shows the hyperplane in a two dimensional view, which is expanded in
the input space between the rest cluster X0 and both SA clusters Xi and Xj. The
cluster X+ is the cluster summation defined by

X+ = (Xi − X̄r) + (Xj − X̄r) + X̄r = Xi +Xj − X̄r, (4.10)

where each sample is shifted by the mean of the rest cluster. The sample means
of the rest cluster are arranged in the matrix X̄r = 1NsX̄0, where 1Ns is the Ns-
dimensional unit vector. The cluster X+ is introduced to represent the diagonal
line between rest cluster center and the assumption of where a MA cluster could be
located. The cluster X+ is neither used for training nor for creation of the artificial
data but provides a basis for the data enhancement process.
The calculation of the LET cluster XLET is a projection of the MA cluster Xij onto
the diagonal of the parallelogram. It is calculated through a simple scaling of the
vectors in X+ − X̄r, which can be rewritten as Xi +Xj − 2X̄r.
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There are two possible reasons for approximation errors of the artificial data, which
are intrinsic properties of the single-α model. First, a large deviation of Xij from
the previously introduced hyperplane in perpendicular direction. This deviation
cannot be further minimized as the projection of the artificial data needs to lie
on that hyperplane. The second deviation lies in the same geometric plane of the
hyperplane but in perpendicular direction to the diagonal of the parallelogram. This
distance is denoted with D̄. A further minimization is not possible as the projection
needs to lie on the diagonal of the parallelogram.
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Figure 4.1: Geometrical interpretation of data enhancement based on two SA.

4.2.3 Training Data Enhancement

In this work, LET is adapted towards the different sensor input signals. This means
that the LET procedure is applied independently to each sensor modality. Addi-
tionally, the rest cluster position is taken into account. Especially for FMG signals,
the rest cluster signal values are located differently from the coordinate origin as a
permanent force is applied onto the sensors, even if there is no activation executed
by the user.
The LET clusters are determined individually for both sensor modalities in (4.11)
with individual α-parameters. First, the sum of the SA clusters X+ is shifted to
the coordinate origin, then scaled with the α-parameter and then again shifted by
the rest cluster sample mean matrix X̄r. The resulting LET cluster is then the
composition of the individual LET clusters (4.12).

XsEMG
LET = αsEMG (XsEMG

+ − X̄sEMG
r ) + X̄sEMG

r

XFMG
LET = αFMG (XFMG

+ − X̄FMG
r ) + X̄FMG

r

(4.11)

XLET =
[
XsEMG

LET XFMG
LET

]
(4.12)

4.2.4 Combining Activations

The number of combinations between different actions is given by the binomial
coefficient, where n is the number of actions and k is the number of actions to be
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used for a single combination. In this work we address the combinations of two
single actions only. This limits the approach to a manageable complexity instead
of additionally combining even three ore more actions. The number of possible
combinations is given by (

n
k

)
=

k∏
j=1

n+ 1− j
j

(4.13)

and for the case of combining only pairs of different actions (k = 2), it simplifies to

n(n− 1)

2
. (4.14)

For a set of five SA, a number of 10 MA is obtained. As the wrist flexion and
extension lie in opposite directions on the same DOF, a combination of them is
not useful. The same holds for the wrist pronation and supination. In general,
activations which lie on the same DOF in the target space can be excluded from
the set of possible combinations. This leads to a set of eight sensible combinations,
namely fle-pro, fle-sup, fle-gra, ext-pro, ext-sup, ext-gra, pro-gra, sup-gra.

4.3 Design of the Test Setup

The biosignals sEMG and FMG shall be acquired at defined force levels of the wrist
and hand. This is done to make sure that SA as well as MA are trained at a certain
force level, where the forces of both MA components are comparable to the SA
forces. Therefore, force-torque (F/T) sensors need to be employed to measure the
resulting forces and torques. At the same time, the wrist and hand shall be fixated
in a constant position. This fixation brings the experiment closer to the amputee
case where a real hand and wrist joint is missing and therefore no movement is
possible. In such case, there is no visual feedback about the hand state.
A measurement of the human wrist flexion and extension torques as well as si-
multaneous measurement of the wrist pronation and supination torques is required.
Additionally, the simultaneous measurement of the grasp force exerted by the fingers
except the thumb is necessary. As the flexion and extension as well as pronation and
supination lie on opposed torque directions, each group can be measured with one
sensor axis. For the wrist DOFs, a sensor with two torque axis is required, where
the human hand is attached to, while the finger movement is unrestricted. Hereby,
the wrist adduction and abduction are not in the focus of this experiment, but also
measured for future analysis. Further, one independent sensor with a force axis to
measure the joint flexion force of the four fingers is required.
To select the right sensors, the maximum occurring wrist and hand torques and
forces need to be investigated. After selecting a wrist sensor, which fulfills the
limits, a splint need to be designed where the wrist can be fixated to transfer the
torques and forces to the sensor. Furthermore, this splint is the mechanical footing
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of the grasp sensor, where the four finger tips can be pressed onto the force axis of
the grasp sensor. An independent and simultaneous execution of all measured DOF
shall be possible. Figure 4.2 shows a schematic draft of the test setup.
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Figure 4.2: Test setup schematic. The setup is fixated at the upper arm with
Velcro straps and at the hand using a rigid splint, which is mounted on the wrist
sensor. The wrist actions are related to the sensor measurement axis

4.3.1 Mechanical Design

An adaptable length between elbow joint and the dorsal mounting of the hand
is required. This is necessary to fit the test setup onto individual forearm lengths.
Therefore, a telescope element is embedded in the support structure for the forearm.
Further, a free movement of the elbow joint is desired, which prevents the user from
introducing undesired forces or torques into the mechanical system. A hinge is used
to connect the support structure of the forearm with the support structure of the
upper arm. Both rotation axis of the human elbow joint as well as the test setup
hinge need to match. The fixation on the upper arm consists of three padded Velcro
straps which allow an adaption to different subjects.
When fixating the hand onto the forearm support structure, it is required to al-
low free finger movements to measure the grasp force independently of other wrist
torques. A splint has been formed, using a thermoplastic material. This material
can be formed manually when heating it above 65 ◦C and stays in the desired shape
when cooled down. Some subjects were consulted such that a fit of the splint to dif-
ferent hand sizes and shapes is possible. After some iterative shape improvements,
a good fit of the splint on different subjects has been achieved.
As the test hardware has a weight around 2 Kg, wearing it would require to strongly
actuate the biceps muscle to keep the forearm in a horizontal position. A horizontal
position is also desired throughout the experiment. Other muscles would also be
actuated other than the forearm and hand muscles to bear the weight of the setup.
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This would strongly influence the measurement and induce fatigue in the subject
throughout the experiment. Therefore, the hardware need to be weight compensated
which can be achieved through the gravity compensation capabilities of a robot.

Beside compensating the weight of the hardware, a free suspension is desirable as it
prevents the subject from introducing forces and torques if the setup would be rigidly
attached to the environment. In the free suspension case, any linear or angular
movement above the elbow hinge should be without effect on the measurements of
the wrist and grasp sensors.

Another advantage of using a robot for gravity compensation is the pose measure-
ment obtained from the robot. The position and orientation of the test setup can be
measured at any time and later on analyzed. This could reveal a relation between
the characteristics of the sensor signals and different arm poses. It is assumed that
the sEMG signals at a relaxed forearm change slightly on different upper arm po-
sitions and elbow angles. This effect is limited by the allowed movement range the
experimenter gives to the subject. The effect of different upper arm positions and
elbow angles might be stronger on the FMG signals, as these factors influence the
skin to muscle constellation in the forearm, even if there is no muscular contraction.
This effect need to be observed during the experiment.
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Figure 4.3: Test setup module description
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4.3.2 Maximum Forces and Torques

As a basis for the mechanical design and as selection criterion for the F/T sensors,
the maximum occurring torques on the human wrist and the grasp force are inves-
tigated. Despite the fact that wrist pronation and supination are performed by a
rotation of the Ulna around the Radius in the forearm, the forces related to this
actions are still regarded as wrist forces in this work. The maximum and minimum
values among the subjects of different studies found in literature are summarized
in Tab. 4.1. Especially the grasp force has a large variation over different subjects
and strongly depends on the kind of grasp and the geometry of the grasped object.
In this application, the four fingers are used to press against the object towards
the palm. The thumb force can be used only marginally in this situation. Two
tubular grasps are found in literature with differing grasp object diameter, taking
the maximum value as a benchmark for the sensor selection.

Table 4.1: Maximum and minimum exerted force/torque at maximum voluntary
contraction (MVC) on the human wrist. *max./min. over 10 healthy subjects,
+mean over 20 healthy subjects.

Action Max. Min. Ref.

wrist flexion 11.9 Nm 8.0 Nm [YYK+15]
wrist extension 5.5 Nm 4.6 Nm [YYK+15]
wrist pronation 13.5 Nm 9.0 Nm [OG02]
wrist supination 16.2 Nm 10.9 Nm [OG02]
tubular grasp* 1047.95 N 101.12 N [NCWA12]
tubular grasp+ 251.0 N @ 50 mm tube 73.3 N @ 110 mm tube [RN93]

4.3.3 Sensor Selection

The selected force/torque sensors need to provide at least a measurement range
which cannot be exceeded by the strongest subject but must not be too insensitive.
Table 4.2 summarizes the data of the selected sensors, further termed as grasp sensor
and wrist sensor.

Table 4.2: Sensors properties of the grasp sensor (ATI Mini45) and the wrist sensor
(Space Control OFTS).

Property ATI Mini45 Space Control OFTS

Sensor technique strain gauge optical
Interface analog 0..5 V via NI-DAQ serial (RS232)
Resolution F = 0.125 N F = 0.1 N, T = 0.01 Nm
Sample Rate 50 Hz 50 Hz
Used DOF 1 force (F) 1 force (F), 2 torque (T)
Maximum Values Fz = ±580 N Fx,y,z = ±400 N, Tx,y,z = ±20 Nm
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The grasp sensor is small enough in its diameter and height to fit it into the palm
area of the splint. When the fingers are flexed, this area is restricted even more.
The sensor height is limited, such that a finger flexion of 180 ◦ relative to the palm
surface is possible. To properly actuate the sensor on its force axis, a support block
for the fingers has been designed (Fig. 4.4). This block is mounted on top of the
grasp sensor and has a indentation for the fingers. On the other side of the sensor, a
Velcro strap is attached. The counterpart of the Velcro strap is glued onto the palm
area of the hand splint. This allows an adaption of the sensor position relative to
the splint, which is required for different finger lengths.

Figure 4.4: Finger block for grasp sensor.

The wrist sensor comes with 6 DOF F/T axis. It need to be clarified that measur-
ing the forces and torques of the required actions is just an approximation. This is
mainly caused by the geometrical properties of the setup design. For instance, the
wrist flexion and extension are measured as a torque, where the measured torque
axis is defined by the coordinate origin of the F/T sensor. The anatomical cen-
ter of rotation of these actions is in the wrist joint. This leads to a deviation in
the measured torque. The same accounts for pronation and supination, where the
anatomical center of rotation lies not in the sensor coordinate origin but somewhere
in parallel and in between the forearm bones Radius and Ulna. Therefore, the mea-
sured torques must not be treated as accurate anatomical values but as a reference
for the data acquisition process.

4.4 Force Related Data Acquisition

The purpose of this experiment is a sEMG and FMG data acquisition at a force level
of 40% of the maximum voluntary contraction (MVC) while the wrist of the subject
is fixed in the test setup. Data of SA and MA is recorded while a free movement of
the forearm, the upper arm and the elbow is possible to some extend.

4.4.1 Definition of Force Levels

Each action is related to a channel of one of the two sensors, stated in Tab. 4.3.



58 CHAPTER 4. APPLYING LINEARLY ENHANCED TRAINING (LET)

Table 4.3: Mapping between actions and F/T sensor channels.
Action Sensor DOF Symbol

fle Space Control OFTS Tx F1

ext Space Control OFTS −Tx F2

pro Space Control OFTS Ty F3

sup Space Control OFTS −Ty F4

gra ATI Mini45 −Fz F5

In the following and for the sake of simplification, all forces or torques are termed
as forces. In the beginning, the MVC forces are required to obtain a reference force
for the training.
First, the maximum force of each SA is recorded where the subject is instructed to
apply the MVC of the required action. After the subject signalizes to be in this
state, the force is captured. The required SA are again fle, ext, pro, sup, gra. These
maximum values are termed F̂i for each action i ∈ A = {1, 2, ..., 5} from Tab. 4.3.
The normalized force of activation i is obtained by

F̃i =
Fi

F̂i
. (4.15)

In the next stage, the maximum force of each MA needs to be determined. Three
approaches were tested in a preliminary experiment to capture and visualize the MA
force levels to the subject and the experimenter.
The first approach uses only the maximum forces of the SA to use a common normal-
ization for SA and MA. Hereby, all available force levels were shown to the subject,
as shown in Fig. 4.5 a). This approach has two disadvantages: First, displaying all
six force levels at once leads to increased mental demand and raises the error proba-
bility during the data acquisition. This has also been confirmed by the test persons
using this kind of force display. Second, the physical properties of the combined
muscle activation may lead to a different perceived MVC, compared to the MVC of
both SA.
The second approach displays a single force level for either a SA or a MA, shown
in Fig. 4.5 b) on the left. Hereby, the subject applies the MVC in the MA and the
maximum forces of both involved SA are captured independently, denoted as F̂[i],j

and F̂i,[j]. The subscripts i ∈ A and j ∈ A refer to both involved actions of the
combination and the square brackets indicate what action the force is related to.
Now, the sum of both normalized forces is denoted as

F̃i+j =
1

2
·

(
F[i],j

F̂[i],j

+
Fi,[j]

F̂i,[j]

)
. (4.16)

Further, a second force indicator is used to display the sum of all unwanted forces
caused by unwanted activations (UA), shown in Fig. 4.5 b) on the right. An un-
wanted force is each force from the considered DOF in Tab. 4.3, which is not related
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to a specific SA or MA. The respective force i for SA or i, j for MA are excluded to
obtain a set of unwanted forces. Furthermore, all actions which lie on the opposite
side of the DOF as the required actions also need to be excluded. Otherwise, their
negative force values caused by the opposite activation on the DOF would contribute
to the UA. The opposite action is given with o ∈ A. If the performed action has no
opposite action as for example gra, the opposite action o is an empty value. The level
of the unwanted forces is then defined by the mean over all normalized unwanted
forces during the acquisition of a SA (4.17) or a MA (4.18), where |...| denotes the
cardinality of a set.

F̃UA
i =

1

|A \ {i, o}|
∑

n∈A\{i,o}

F̃n (4.17)

F̃UA
i,j =

1

|A \ {i, j, o}|
∑

n∈A\{i,j,o}

F̃n (4.18)

The advantage of this approach is that the MVC related forces are directly drawn at
the execution of the MA instead of using the maximum forces captured for both of
the related SA. For a subject, it is easy to observe only two force levels at one time
but it lacks the information about the independent forces of the involved DOFs.
The test datasets recorded with this force display showed larger scattering of the
sensor data among the repetitions of a certain action. This leads to the assumption
that the subjects were unsure about their MVC for MA.

For the third approach, the advantages of both previous approaches were fused. The
GUI in Fig. 4.5 c) adapts to each case if a SA or a MA needs to be captured. The
MVC of the SA are captured and only the actual force level is displayed. The MVC
forces of MA are captured during execution of the MA but their SA components
are shown independently at the bars MA1 and MA2. The normalized values after
capturing the MVC for each component i and j of the MA are calculated as

F̃[i],j =
Fi

F̂[i],j

; F̃i,[j] =
Fj

F̂i,[j]
. (4.19)

The bar at the far right in Fig. 4.5 c) shows again the UA. After testing this approach
in a preliminary experiment, a trade off between mental demand and the quality
of the acquired data has been found. Therefore, approach three is further used
throughout the experiment.

After capturing the MVC force of all SA and MA, all force level bars can be nor-
malized to 1. In the following training stage, the subject can perform all of the
activations at a desired level of 40% of the MVC. This level is marked by the dashed
line in Fig. 4.5. The force level of the UA helps the subjects to avoid unwanted acti-
vations as they can try to minimize it before the data acquisition of each activation.
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 fle    ext   pro  sup   gra 
SA/ 
MA UA 

SA/ 
MA1 

 
MA2 UA 

a)                       b)                  c) 

Figure 4.5: GUI drafts for force capturing and display with dashed line to mark 40%
of MVC. Example shows MA fle-gra. a) approach one with individual force levels.
b) approach two with a force level bar for SA or MA and another bar for UA. c)
approach three with one bar for SA or two bars for MA depending on purpose and
one bar for UA.

4.4.2 Preliminary Cluster Analysis

A preliminary test has been conducted to analyze the training data captured with
the novel test setup. Three repetitions of all activations have been recorded while
the test setup was mounted on a tripod. The cluster variances and the separability
between the clusters has been inspected, using principal component analysis (PCA).
Both sEMG and FMG data is stacked into the same input space for the PCA. The
first three plotted principal components explain 90% of the normalized variance
of the 20 sensor channels. See Fig. 4.6 on the left for all labeled samples of each
activation and on the right all cluster centers. A MA cluster on the right can be
found through the connection lines to both SA clusters.
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Figure 4.6: Preliminary Cluster Analysis. Left: PCA of all labeled samples. Right:
PCA of all cluster centers, where each MA is connected with lines to both related
SA
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The performance of the regression model depends on the separability of the different
clusters, which prevent cross-activations of unwanted DOF during the prediction.
For some activations the repetitions show a large spreading. In such cases the subject
could have been unsure with the required training activation and hence shows poor
repeatability. If the cluster variances are high, the subject may have had problems
holding the required activation. The use of the force levels may have been challenging
for the user. This effect is further influenced by the sEMG signal characteristics,
where further motor units are recruited during the isometric contraction at the same
force level [MAB+10]. As a result, the sEMG signal envelope decreases.
On the right side of both plots, all SA and MA clusters related to gra are placed
close to this action, which shows bad cluster separability and could influence the
model negatively. The effect of such cluster constellation needs to be assessed in an
online experiment.
In conclusion, the test setup shall be used for a data acquisition experiment at
desired force levels. The cluster means of MA are approximately located in the
angle space between both related SA cluster means. These are explainable locations
of the MA clusters in the input space as their training data is built of both related
SA.

4.4.3 Experiment Description

Each subject received an oral explanation and a written consent form. As the
experiment requires an interaction between a human and a robot, safety instructions
were made. The system is equipped with two independent emergency switches.
One realized as a push button, held by the experimenter during the experiment.
Another realized as a foot switch with spring mechanism, which need to be pressed
permanently to enable the control of the robot.
The provided robotic system is used as a haptic input device for teleoperation, called
HUG [SHH+16]. It is equipped with a chair for the user and two light weight robot
(LWR) arms. These arms can be attached to the operators hands and enable force
feedback while the user can freely move these arms in space. In this experiment,
the functionality of only one arm is used. The main task of the arm is to bear
the weight of the test setup while the gravitational force of the connected system
is compensated. This allows free movement of the test setup in six DOFs with
minimal muscular forces. If the user leans against the test setup, it drifts away.
This behavior reduces the transfer of external forces and torques into the test setup,
which are undesired during the data acquisition. The system configured for this
experiment is shown in Fig. 4.7.
Further benefits of the HUG system are the information about the six DOF Carte-
sian pose of the test setup and the optical tracking system, located on a frame on
top of the HUG. This tracking system is used to obtain the poses of both segments
of the test setup, and subsequently to compute the angle between the forearm and
upper arm. This angle is directly related to the elbow angle of the subject. Using



62 CHAPTER 4. APPLYING LINEARLY ENHANCED TRAINING (LET)
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stimulus screen 

laptop 

robot F/T 
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Figure 4.7: The HUG system configured for the experiment. Left: system overview.
Right: view over the left shoulder of the subject onto the stimulus screen.

the poses and the elbow angle information, future analysis become possible, e.g.
how this properties influence the training data. An overview of the system modules
can be found in Fig. 4.8, where the software interactiveMyocontrol is used to process
all data during the experiment.
In the beginning of the experiment, the subject sits on the chair between the robot
arms, as in Fig. 4.7. The subject’s arm is held in place by the Velcro attachments
of the upper limb structure. The straps are tightened such that a comfortable fit
is achieved and the axis of the elbow joint is located at the foam pad at the elbow
hinge. The wrist is inserted into the wrist fixation and tightened with three Velcro
straps. The position of the grasp sensor is adjusted to the subject’s finger poses to
enable a proper grasp onto the sensor plane.
The sensor positions are shifted on both bracelets such that they are equidistantly
distributed on the circumference of the subject’s forearm. The fixation and tight-
ening characteristics are taken from the previous experiments. Same accounts for
the sensor configuration, where a number of 10 sEMG and 10 FMG sensors is used,
arranged in an alternating order on both bracelets.
The subject sits in front of a screen, which shows a stimulus of the required activation
and the previously described force level GUI. At the start of the data acquisition,
the subject steps on the emergency foot switch to bring the robot into gravity
compensation mode. First, the maximum force stage is entered, where the maximum
forces of all activations are recorded. Second, the training stage is entered in which
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Figure 4.8: Experiment system block diagram (robot image source [BGK+11]).

the subject trains all activations with five repetitions at 40 % of the MVC. The
subject gives a command to the experimenter to capture data whenever she/he feels
close to the required force level. The experimenter captures data only if the force
levels are in an acceptable range of the required ones. If the force differs strongly
from the required level, the experimenter gives further improvement tips. Whenever
a required action is unclear to the subject, the experimenter performs the action
beside the subject. At the same time, the experimenter can initiate the capturing
by using a wireless bluetooth button. A break from the procedure is possible after
every repetition set by releasing the foot switch. The duration of the experiment
is approximately 1 h. The data acquisition takes 35 min. The rest of the time is
required for safety instructions and configuration of the setup for the subject.

Figure 4.9: Test setup with the left arm of a subject attached to the robot. The
subject’s forearm is equipped with two sensor bracelets.



64 CHAPTER 4. APPLYING LINEARLY ENHANCED TRAINING (LET)

4.4.4 Data Analysis

Consistent and Problematic Training Sets

The following plots show one example for a consistent training data set and some
example datasets where different problem classes occur. This analysis discusses these
problem classes, comparing the data from different subjects and activations. The
datasets were picked such that the occurrence of the problem can be seen clearly.
Some of these problems could be caused by the subject due to a wrong understanding
of the experiment, through inattention or indisposition with the robot. This data
analysis shell help to understand which effects influence the training data and hence
the cluster constellation.
For each plot, a subject and the training data of a MA with its related SA has been
selected. Additionally, the related LET data has been inserted into the training
set, using the α-parameter of the specific subject and activation. The LET cluster
location and its deviation to the MA cluster shows how well LET approximates the
training data. The following plots show, how the problems of the real training data
affect the LET cluster.
A principal component analysis (PCA) has been applied to each training set in the
20-dimensional input space of 10 sEMG and 10 FMG sensors. The first two principal
components were used for plotting. The normalized explained variance is plotted as
axis labels. The clusters are labeled with the related activation. On an additional
plot, the cluster centers calculated by the sample mean of each activation and of
the LET cluster is shown. It is emphasized that the explained variance of the two
dimensional plots gives just a vague impression of the cluster constellation. A poor
cluster separability in a 2-D plot can be still a good training set as the data is spread
along 20 dimensions in reality.

Consistent Training Set

Figure 4.10 shows a consistent data set in terms of cluster locations and repeatability.
The repetitions for each activation lie in dense order and different activations are
properly separated. The repetitions of the rest cluster X0 are quite dense. Both
SA clusters Xi and Xj are properly separated. The MA cluster Xij lies between
both SA clusters. The LET cluster XLET shows a good approximation of Xij. The
distance of all clusters to the rest cluster X0 is similar. This is not mandatory for
good training data but shows that the execution of each SA caused similar signal

amplitudes. The angle between the vectors
−−−→
X0Xi and

−−−→
X0Xj is distinct.

Scattered Repetitions

In Fig. 4.11, the repetitions of both SA clusters (Xi and Xj) as well as the MA cluster
Xij shows a strong scattering over the fife repetitions. This results also in a strong
scattering of XLET . Even the rest cluster X0 shows this behavior. The subject might
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Figure 4.10: Example of a consistent training set (ext-gra).

have changed the forearm pose and the elbow angle during the experiment. Looking
at the location of the cluster centers, the training data might be still purposeful.
In such case, the distribution of the repetitions might even contribute to a better
generalization of the regression model for similar input signals around the cluster
centers.
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Figure 4.11: Training set with poor repeatability (ext-sup).

Cluster Separability

Figure 4.12 shows an example for a poor cluster separability. The dataset is from
the activation of sup-gra. The cluster for sup (Xi) lies almost on top of X0. On
the other hand, the cluster for gra is strongly separated from X0. In this case, the
signals for sup were so weak that a clear distinction from the rest position is not
possible. The regression model will be overly sensitive for signals close to the rest
position. This will often result in an unwanted activation of sup. This effect might
be again caused by the anatomical properties of the muscles relevant for sup. The
sensed signals of muscles lying deeper beneath the skin are generally weaker.
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Figure 4.12: Training set with poor cluster separability (sup-gra).

Cluster Alignment

Figure 4.13 depicts a dataset, where the SA clusters Xi and Xj are approximately in
line with X0. The dataset shows ext-sup, which are the actions i and j respectively.
This cluster constellation could lead to interference between i and j. The assumption
is that the intermediate signals between rest position X0 and Xi are approximately
produced on a line between those clusters. When proportionally increasing the level
of activation for action i, signals will be produced which come close to Xj. This
again leads to an unwanted activation of action j in the regression model. This
problem affects also XLET, which lies approximately in the same line as described
before. Only Xij shows a noticeable distance to this line.
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Figure 4.13: Training set with poor cluster alignment (ext-sup).

Blurred Clusters

In Fig. 4.14, the cluster Xj is remarkably blurred towards X0. This has a direct
effect on XLET as it is a linear combination of Xi and Xj. This blurring might be
caused by a too early or a delayed muscle contraction of the subject during the
data recording. The activation needs to be executed during the whole time the
stimulus on the screen is shown. The plot indicates that the subject released the
activation before the data recording was finished and returned to the rest position.
The activation shown here is ext-gra. The cluster centers show a good constellation
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and separability. As the amount of blurred data is small compared to the whole
cluster, the resulting error might be marginal in the regression model.
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Figure 4.14: Training set with a blurred cluster (ext-gra).

Approximation of LET Set

Figure 4.15 shows an example of a bad approximation of the LET set towards Xij.
The effect is caused by the location of Xij, which is much closer to Xj than to the
middle of both SA clusters. Shown is data of fle-gra. This does not imply that
the subject trained the MA fle-gra wrongly. It just shows that through the natural
properties of the LET method, a closer approximation is not possible as the LET
cluster is always a linear combination of both SA clusters. For MA clusters, which lie
far from this linear combination vector family, it is the best possible approximation
using LET. This plot gives an impression that in some cases, LET can correct errors
of wrongly trained MA clusters. In other cases, the approximation restrictions
of LET cause an additional error compared to the MA cluster. This is mostly
dependent on the subject, his/her experience with such data acquisitions and the
quality of training data he/she produces.
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Figure 4.15: Training set with a bad approximation of the LET cluster (fle-gra).

In conclusion, it must be emphazized that not the whole information included in the
training data can be explained by its variance. As the PCA is based on the variances
of the data, it can also give a wrong impression about a dataset. Furthermore, the
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variances of each action cluster extend mostly on a line between rest cluster and their
full activation. This is caused by the subjects, when they try to hold a constant
force level but vary around this point. As other metrics have failed so far to describe
the quality of a dataset or of its single clusters, a PCA is still the method of choice
to assess a dataset in the input space. How the quality of a dataset influences the
prediction is so far only measurable in an online experiment. Further metrics for
the dataset assessment in the input space as well as for the model prediction are
currently investigated in this research group.

4.4.5 Parameter Selection

Data has been collected from 10 subjects over five repetitions. Some subjects gave
the impression that they are unsure about the given stimulus in the first round of
the five repetitions. It can be assumed that the rate of misinterpreted to properly
interpreted stimuli is higher in the first repetition round than in the following rounds.
The confidence of the subject should rise after the first repetition round when the
procedure is already known. Therefore, the first round has been excluded from the
parameter selection process.

The following data comes from the repetitions two to five. The first repetition is used
to ”train” the subjects on the system and at the same time improve the sensor fit on
the forearm. Again, sweating and sensor displacement influences the sensor signals.
Letting the sensor settle for a while is recommended before any data acquisition.

The boxplots in Fig. 4.16 show the calculated α-parameters for three different modes.
A common α-parameter for all input dimensions and two independent α-parameters
for the input dimensions of sEMG and FMG.

Table 4.4 reports all determined parameters, using the median over the subjects for
each MA. The interquartile range (IQR) is reported in parenthesis. The median
has been chosen as it is less sensitive to outliers. As the mental demand during the
experiment is assessed as high, outliers may easily occur.

Table 4.4: Medians of alpha parameters among 10 subjects with interquartile range
(IQR) in parenthesis

MA common sEMG FMG

fle-gra 0.628 (0.097) 0.568 (0.185) 0.745 (0.164)
ext-gra 0.623 (0.221) 0.572 (0.231) 0.783 (0.093)
pro-gra 0.636 (0.130) 0.581 (0.142) 0.780 (0.340)
sup-gra 0.638 (0.321) 0.661 (0.295) 0.700 (0.466)
fle-pro 0.557 (0.157) 0.518 (0.112) 0.614 (0.404)
fle-sup 0.568 (0.280) 0.453 (0.288) 0.698 (0.436)
ext-pro 0.679 (0.736) 0.696 (0.807) 0.477 (0.202)
ext-sup 0.501 (0.449) 0.496 (0.481) 0.548 (0.101)
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Figure 4.16: Boxplot of alpha parameters for each MA over 10 subjects

On average, the alpha parameters for sEMG are 6.05% smaller and the alpha pa-
rameters for FMG are 11.20% higher relative to the common alpha parameters. The
alpha parameters for FMG are in average 19.98% higher than the alpha parameters
for sEMG. As there is a remarkable difference in the parameter values for sEMG and
FMG, it can be beneficial to create the LET data independently for each modality.

4.4.6 Force Ratios between SA and MA

It was unclear how the subjects perceive the MVC forces F̂i and F̂i of both SA in
comparison with both MVC force components F̂[i],j and F̂i,[j] of the related MA. The
symbols are the same as in the definition of force levels in subsection 4.4.1. This
ratio influences the α-parameters and is calculated for both components of the MA
in

r[i],j =
F̂[i],j

F̂i
; ri,[j] =

F̂i,[j]

F̂j
(4.20)

The measured absolute MVC forces for both SA and MA are given in Fig. 4.17,
averaged over the 10 subjects. Figure 4.18 shows all mean ratios obtained by the 10
subjects. If the ratios tend to be smaller than 1, a higher MVC has been applied at
execution of the SA. In the majority of these ratios, the subjects execute a higher
MVC force at the SA compared to both MVC forces at the MA.

If a linear relation between force and signal strength is assumed, the mean ratio of
both force components would be approximately proportional to the α-parameters.
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Figure 4.17: Left: MVC forces (F) and torques (T) for SA. Right: MVC
forces/torques for MA; blue and green bars represent first and second action in
label.
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Figure 4.18: Force ratios between MVC forces of MA and SA.

This has been analyzed by the correlation between the MVC force ratios and the
alpha parameters. The mean over both MVC force ratios r̄

(s)
i,j = 1

2
· (r(s)

[i],j + r
(s)
i,[j]) of

each MA and each subject s has been taken to correlate it with the respective α-
parameters. Figure 4.19 shows this correlation for the sEMG related (left) and FMG
related (right) alpha values. The correlation has been determined using MathWorks
MATLAB ’s corrcoeff function, which returns a p-value to indicate the significance
of each correlation, additionally to the correlation coefficient. A significance level
of 5% has been chosen and the coefficient of determination is denoted as R2. The
correlations for sEMG were significant for the MA ext-gra (R2 = 0.6442, p = 0.0052),
fle-sup (R2 = 0.5856, p = 0.0010), ext-pro (R2 = 0.5907, p = 0.0094) and ext-sup
(R2 = 0.8404, p = 0.0002). The correlations for FMG were significant for the MA
fle-gra (R2 = 0.4632, p = 0.0436), ext-gra (R2 = 0.7369, p = 0.0031) and fle-pro
(R2 = 0.4825, p = 0.0378). In the case of FMG, one outlier (subject 9) has been
excluded, which came with two negative alpha values. This might be caused by
misinterpreting the stimulus. As in the previous parameter selection, the median
has been chosen to get general alpha parameters, the effect of this outlier might be
marginal.
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Figure 4.19: Correlation between MVC force ratios and alpha values. Left: sEMG
related alphas. Right: FMG related alphas

A correlation analysis over all MA has been also conducted. A vector containing all
force ratios from all subjects has been correlated with the respective α-parameters.
For both types of α-parameters, the correlation is highly significant (sEMG: R2 =
0.341, p < 0.0001; FMG: R2 = 0.193, p < 0.001). The linear regression line used for
this correlation analysis is drawn in each plot.

4.4.7 Cluster Distance between LET and MA

The euclidean distance D̄ between the clusters XLET and Xij is marked in Fig. 4.1.
The normalized euclidean distance can be used as a measure for the approximation
error between the LET cluster and the MA cluster. This measure normalizes the
cluster distance D̄ by the distance between the rest cluster and the MA cluster,
given by

D̃(X̄LET, X̄ij, X̄0) =

∥∥X̄LET − X̄ij

∥∥
2∥∥X̄0 − X̄ij

∥∥
2

(4.21)

For common α-parameters, the mean D̃ over all MA and all subjects is 0.3352. When
using the type-related α-parameters for sEMG and FMG, the mean D̃ over all MA
and all subjects is 0.2889. This leads to an error reduction of 0.3352−0.2889

0.3352
= 13.83%

on average, which emphasizes the usage of type-related α-parameters for sEMG and
FMG in the following experiment.

4.5 Multiple Activation Online Performance

4.5.1 Experiment Description

In this experiment, three approaches are compared in an online goal reaching task,
summarized in Tab. 4.5. In approach single, only training data from SA are used. In
approach mult, training data from both SA and MA are used, which should enable
a more precise model for combinations of actions. Approach LET uses only SA
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data and uses the method LET to add artificial data for combined activations to the
training set. Each learning machine is then trained with a different basis of training
data, hence showing different performance. The data acquisition system and the
hardware are the same as in the previous experiment.

Cross-activations are a major problem in myocontrol. Unwanted activations are
triggered by the execution of intended activations. For instance the activation of
sup, when executing gra without any wrist rotation. This cross-activation problem
was strongest for the action sup, which interferes with all other actions. From a data
point of view, the sup cluster is often located close to the rest, which easily triggers
this action when a subject initialize an activation starting from the rest position.
The anatomical point of view could be a deep location of the muscles relevant for
sup, such that they are hard to detect and hence produce small signal amplitudes
on sEMG and FMG sensors. This causes a sensitive behavior of this action in the
prediction. As this problem is currently investigated in this research group, it is
not targeted in this thesis. To isolate the problem of comparing the performance
of LET with other approaches from the problem of cross-activations, the following
restrictions on the experiment were made.

The SA sup and all of its related MA sup-gra, fle-sup and ext-sup were excluded
from the experiment. Preliminary online experiments have shown that especially
this action causes strong cross-activations and over-sensible behavior of the wrist
rotation. To prevent cross-activations during the online performance, the DOF of
unwanted activations are locked. For example, when the action gra is queried, the
DOF of fle/ext and pro/sup is locked in the prediction. The subject can only actuate
gra between rest and the full activation. The same accounts for all other SA and MA.

Table 4.5: Approaches for MA online evaluation experiment

Approach Description of training data Training set

single 4 × SA data (without sup) DSA
A\{sup}

mult 4 × SA and 5 × MA data (without sup) DMA
A\{sup,sup-gra,fle-sup,ext-sup}

LET 4 × SA and 5 × LET data (without sup) DLET
A\{sup}

It is expected that with single, the least number of successful goals can be reached
and with mult, the largest number of goals is achievable whereas LET lies somewhere
in between. In an optimal case, LET reaches the same or a higher number of
successful goals than mult, where LET would perfectly substitute mult as training
procedure.

The parameters for each subject, found in the previous experiment are generalized
using the median among all subjects, as reported in Tab. 4.4. The median is less
outlier sensitive than the mean and regarded as a good choice for the generalization.

The goal reaching task is designed similarly to the previous experiment. A number of
four SA and five MA without sup and its combinations leads to nine possible actions.
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The set of goals is generated for each of the three approaches and at the activation
levels of 33%, 66% and 100%, which leads to a number of 81 goals. Each goal is
queried twice, resulting in a total number of 162 goals. These goals are permuted as
shown in Fig. 4.20. The requirement of the permutation is to equalize the occurrence
of the nine actions at three activation levels (a, b, c) and three approaches (A, B,
C) over two repetitions (1, 2) in the experiment. The letters a, b, c and A, B, C
which represent the activation levels and the approaches are permuted over nine
subjects. The order of the nine actions in each activation level is constructed by a
9× 9-Latin-square, as it is often used in experimental design [Win62]. An equalized
occurrence of the actions and their activation levels throughout the experiment is not
guaranteed for a pseudo-random shuffling. This could negatively affect the results
as a certain approach could be favored.
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Figure 4.20: Set of targets for the online goal reaching task. Permutations of the
approaches, the activation levels and the actions were designed for 9 subjects.

The total number of goals is limited by the time and the physical and mental demand
for each subject. The timeout to reach a goal is set to tt = 10 s and the error
threshold in all DOFs is set to 0.2. The holding time is again th = 1.5 s. It is
emphasized that these parameters have major influence on the success rate (SR)
and the task completion time (TCT) of each subject. They need to be chosen, such
that the frustration caused by unreachable goals does not lead to resignation of a
subject. For instance, a SR below 50% could cause a drop in motivation where the
subject discontinues to reach targets. If the timeout is selected to high, frustration
occurs if the subject needs to wait a long period if the goal is unreachable at all.
If the parameters are set such that the tasks become too easy, it might be hard to
differentiate the performance between the approaches.

4.5.2 Results

The main results are the different SR for each approach and especially the outcome
for different sets of goals. The results are separated in three groups in Fig. 4.21. On
the left, we can see SRall for all goals including SA and MA, in the middle, SRSA for
SA goals and on the right, SRMA for MA activation goals. Horizontal lines without
an asterisk on top denote groups in the bar plot, which do not significantly differ
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from each other. Horizontal lines with an asterisk on top denote a significant effect
between approaches or to an aforementioned group. The significance level is set to
be α = 0.05.

The SRall shows a significant difference between the approaches. The repeated
measures ANOVA results in F (2, 16) = 36.861 and p < 0.0001. The post-hoc
Tuckey-test reveals a significant difference between single and both other approaches
(both p < 0.0001). A significantly better SRall is evident for mult and LET.

The SRSA for the set of SA goals shows that single is significantly worse than LET
(ANOVA results: F (2, 16) = 5.925, p = 0.0119). The Tuckey-test shows a value of
p = 0.00183 between single and LET. This result is further discussed in section 4.5.3.
These results show that the approaches mult and LET has no negative influence on
the training set for performing SA. It is emphasized that the unwanted DOF were
locked through the goal reaching of SA.

SRMA is the SR for the set of MA goals. The ANOVA shows a significant difference
between the approaches with F (2, 16) = 34.220 and p < 0.0001. The Tuckey-test
reports a significant worse SR for single compared to both other approaches (both
p < 0.0001). As targeted in this experiment, mult and LET perform significantly
better than single for MA goals. This shows that LET is capable of creating artificial
training data for MA, such that there is no significant difference to the approach
mult, which uses real training data of MA.
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Figure 4.21: Success rates in the multiple activation online performance experi-
ment for all activations (SRall), single activations (SRSA) and multiple activations
(SRMA). Comparison of the approaches single: trained on SA; mult : trained on SA
and MA; LET : trained on SA and LET data.

Another measure to compare the approaches is the task completion time (TCT), as it
was already introduced in the sensor placement experiment in section 2.2. The mean
time of reaching all successful goals is shown in Fig. 4.22. For all goals (TCTall),
the factor approach is significant for the mean TCT with F (2, 16) = 36.8619 and
p < 0.0001. The Tuckey-test shows that the mean TCT for single is significantly
smaller than for both other approaches (single-mult p = 0.0002, single-LET p =
0.0008). For both other analysis of TCTSA and TCTMA, the factor approach has no
significant effect. This difference might be caused as the the analysis is unbalanced
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among the approaches, as they achieved different SR. Therefore, the TCT should
be always interpreted together with the SR of the approach.
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Figure 4.22: Mean task completion time in the online LET experiment for all
activations (TCTall), single activations (TCTSA) and multiple activations (TCTMA).

4.5.3 Discussion

Comparing the SR for SA (SRSA), the approach single is significantly worse than
LET. As the single LM is trained only on SA, it could be expected that it has a
comparable outcome to other approaches, when it is required to reach SA goals.
There are two potential explanations why single performed worse than LET.

First, there is a difference in the probability to trigger the right activation since the
unwanted DOF were locked for each specific goal during the goal reaching task. For
the four SA (fle, ext, pro, gra), there is a probability of PSA = 1

4
= 25% to trigger

the right activation for the approach single. Adding the fife combined actions (fle-
pro, fle-gra, ext-pro, ext-gra, pro-gra) to the set of SA, a number of 9 actions is
obtained. For the approaches mult and LET, a probability of either PMA,fle,ext = 3

9

(for the SA fle and ext) or a probability of PMA,pro,gra = 4
9

(for the SA pro and gra)
is reached. This results in an average probability to trigger the right activation of
PMA = 1

4
· (2 · PMA,fle,ext + 2 · PMA,pro,sup = 7

18
= 38.9%. If a SA is queried as a goal,

the movement in all other DOF is impossible. For the approaches mult and LET,
this can be achieved through execution of either the required SA or any MA, where
the required SA is part of. For instance, the goal is to reach gra. The subject can
perform either gra, fle-gra, ext-gra, pro-gra at the required activation level in order
to reach gra. As the probability is lower for the approach single, this could explain
a lower SR because the goals can be regarded as more difficult.

As a second explanation, the additional training data of mult and LET could have
a positive influence on the overall regression model. It is possible that a MA cluster
related to a SA cluster in the input space solidifies the model prediction for this SA.
The adjacent space around the SA cluster is better defined towards the related MA
clusters instead of leaving a larger undefined input space in the approach single. The
undefined areas in the input space between the training clusters get smaller. This
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could prevent the regression model from adverse behavior during the prediction for
sensor values which lie in these undefined areas.

So far, there is no clear finding why only LET has a significantly higher SR than
single but mult has not. The training data acquisition has a strong effect on the SR
of the experiment. The experimenter observed that some subjects are not aware of
the right execution of the MA to be trained. As a reminder, there occurs training
only on the rest position and full activations. When a subject is instructed to execute
a certain MA, it is indicated by the visual stimulus on a screen in front of the subject.
The experimenter executes the MA again with the left hand after it was shown by
the visual stimulus and explains how to actuate both DOF of the required MA. If
the subject signalizes the right configuration of her hand, the experimenter captures
the training data. Some subjects executed one of the DOF of a MA in the opposite
direction because they misinterpreted the visual stimulus. This was observed by the
experimenter when looking at the hand of the subject and through the force levels
for each DOF. These levels were used just for feedback to the experimenter and
configured as in the previous experiment of the force related data acquisition 4.4.
If the experimenter was aware of a misinterpretation by the subject, the required
MA was shown again by the hand of the experimenter. If the subject insisted
on executing the right MA, the experimenter captured the data. This possibly
introduces another factor into the experiment, as some subjects are more experienced
than others due to their multiple participation in previous sEMG or FMG data
acquisition experiments. This factor is so far not analyzed but experienced subjects
noted their participation in the pre-experiment questionnaire.

The time saving in the training is one of the two important achievement of LET. In
this experimental design, four SA and five MA were trained. For the method LET,
which makes MA training unnecessary, the training time can be reduced to 4

9
of the

original time, which is an acceleration of 56%.

LET relies only on training data of SA, which is the second important achievement.
Since amputees have only a marginal imagination of the simultaneous actuation of
more than one DOF in their residual limb, this is a mandatory property.

The same three approaches were also tested outside of the mechanical test setup.
The user performed the experiment with the elbow on the table, subsequently called
table test. An upright forearm position has been used as in the sensor placement
experiment in 2.2. This was done to compare the prediction performance with the
original setup. The outcome of this test was similar to the experiment and the
prediction was usable. An experimental comparison involving a variety of subjects
has not been conducted due to time reasons. The overall performance on the table
test might be better as the user can freely move the hand which gives useful visual
feedback and maybe a better control experience. Nevertheless, the mechanical test
setup might be closer to an amputee scenario with blocked hand and less visual
feedback.



4.6. CONCLUSION 77

4.6 Conclusion

The experimental results have shown that a LM, provided with LET data can com-
pete in the SR as well as in the TCT with a LM, trained on the real MA data. The
use of LET comes with three advantages.
First, the training time involving MA can be accelerated by 56% in this case.
Second, a problematic training data acquisition for simultaneous activations can be
bypassed. Since the approach LET removes the necessity to train MA, it can be
quite useful for amputees. They often have only a marginal imagination of how to
actuate more than one DOF at a time in their residual limb.
Third, LET approximates MA clusters correctly between SA clusters in the input
space and prevents from misinterpreting a MA stimulus. On the other hand, misin-
terpretations are possible for each MA trained with approach mult. The experiment
has shown that LET performed slightly better in SRSA, which is assumed to be an
effect of proper MA cluster placement between the SA clusters in the input space.
Finally, training a LM only with SA results in a significantly worse performance
especially in the case of MA goals. This shows that it is possible to improve the
prediction for MA goals in simultaneous and proportional (s/p) control with a simple
data enhancement method, called LET.
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Chapter 5

Discussion

In this work, a comparison between the signal modalities of sEMG and FMG has
been performed using the same conditions for each approach. This builds up on the
assessment in [CRVC16]. The number of sensors was kept equal for each approach
and different sensor placements were compared. The different placements has been
evaluated in an offline experiment over 10 subjects where both sEMG and FMG
sensor channels have been stacked in the same input space of a LM (STA). No sig-
nificant effect has been found. This is a good basis for the comparison of approaches,
where different sensors need to be selected.

In this offline experiment, the performance between each single modality LM of
sEMG and FMG has been compared to two multi-modal machine learning ap-
proaches. The best performance could be achieved with STA and FMG signals.
The LM using sEMG performed significantly worse, which is presumably caused by
the noise and instability of this signal type.

The comparison of different approaches has been further evaluated in an online
experiment with 12 subjects, which extends the work in [NEC17]. Same as in the
offline experiment, the best prediction results has been achieved with STA and FMG
signals whereas the remaining two approaches performed significantly worse. This
emphasizes that a combination of the multi-modal sensor signals has the potential
to perform better than one single signal type.

As a goal of this work, the multi-modal machine learning has been further exploited.
The Kalman filter has been considered to test a probabilistic fusion approach, where
different sensor channels or output DOF can have a defined confidence. The filter
has been parameterized with confidences based on the previous experiment, derived
from the SR on each DOF. The parameterization based on the SR of the previous
experiment is only one possible source of information. The filter could be also
adapted by e.g. online noise estimation or derived anatomical properties related
to the produces sensor signals. Through the restriction that an inverted mapping
between sensor input and prediction is not available to design an observation model,
a simplified solution to directly fuse the output of two sensor type related LM was
further exploited. In a single user study, the SR of the KF compared to STA was
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lower by 20%. It is assumed that modeling the uncertainty in discrete time domain
does not properly relate to the influence from the muscular activity or joint position
which are rather time invariant. Despite the worse SR, a probabilistic approach
enables a confidence weighting of different signals responsible for the prediction. If
changing signal characteristics are detectable online, they could be handled with an
adaptive filter design. In contrast, an adaptive behavior of the RR-RFF algorithm
is so far not possible except for the incremental update feature of this algorithm.

For the LET related experiments, a test setup has been designed which fixates
the wrist joint but allows independent finger movement at the same time. This is
different from [YYK+15], where a bar need to be grasped during measurement of
wrist forces. The fixated wrist setup creates similarities to a transradial amputated
forearm. The movement of muscles in the tissue is minimized since the tendons
of the wrist joint allow only restricted movement. As an empirical data acquisition
from amputees is hard to achieve since there is only a limited number of test persons,
this setup enables the data acquisition of healthy subjects.

The software has been extended to read from both F/T sensor and to receive pose
information as well as the end-effector wrench of the employed robot. Further inputs
are the pose of both support elements of the test setup as well as the elbow angle
of the subject. In the conducted experiments, the elbow angle was unrestricted in a
certain range. If the subject was aware of the elbow angle changes, he or she could
use this additional DOF to influence the signals on the forearm. Since the elbow
angle affects the generation of the training signals and the model prediction, this
effect need to be further assessed.

Training data from 10 healthy subjects at 40% of their MVC of each action has
been captured to obtain initial data for LET. The LET strategy has been optimized
by removing the offset of the rest cluster from the coordinate origin of the sensor
input space. Further, LET has been applied to each sensor modality independently.
This reduced the approximation error of the LET cluster by 13.83% compared to
applying LET on the whole dataset.

The LET parameters have been generalized using the median over all subjects, as
the rate of misinterpreted stimuli was assumed to be high due to less experienced
subjects. Thereafter, the same parameter set for all future subjects can be used.
The subsequent online experiment with nine subjects evaluated LET using these
generalized parameters. The LM using LET data performed with similar perfor-
mance as the LM provided with both SA and MA data. In this experiment, LET
could successfully substitute MA training data using a multi-modal sensory input.
However, more experienced subjects could cause a lower rate of misinterpretations
during training and hence MA data could still outperform LET.

The human factor has a strong influence on the performance of the whole system
besides the ML algorithm. This starts with the training data acquisition and later
on affects the online control. A big difference in the conducted experiments could
be observed between inexperienced subjects, which may participate the first time in
such experiments and experienced subjects, which may even work in this research
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topic and commonly use the hardware. All of the experiments included a variety of
at least nine subjects. The gained experimental results are hence averaged over the
experience level of their subjects. It can be assumed that a frequent prosthesis user
has a good chance to improve his or her initial control capabilities on such systems.
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Chapter 6

Conclusions

6.1 Conclusion

The results of the initial offline experiment enabled a fair comparison of different
approaches using the multi-modal sensory input. We have shown that the placement
of the two sensor types has no effect on the prediction accuracy which is an important
finding for future experiments. Complicated sensor placement strategies can be
avoided when placing sEMG and FMG sensors on the forearm.
Using these results enabled a fair online comparison of two different fusion ap-
proaches and both signal inputs independently. With the results that a combination
of signals in the STA approach had the same outcome as using FMG sensors only,
a proper fusion of both signals can even lead to a better performance.
In the fusion approach using Kalman filtering, we have shown that a probabilistic
approach can be used to fuse the output of two signal type related learning machines.
The approach performed with a lower SR than the best regression based fusion
approach STA but enables the online adaption of the signal fusion and could hence
handle changing signals characteristics.
The designed test setup enables the recording of training data at a fixed wrist posi-
tion with force/torque measurement of the selected DOF. This facilitates the data
acquisition from healthy subjects with a strong relation to the signal characteristics
of amputees. The strategy of LET could be successfully applied to the multi-modal
training set of different subjects using this novel test setup. The online evaluation
has shown that the LET parameters could be effectively generalized for several sub-
jects. The performance of LET even reached the outcome of a model, which was
provided with the available training data of SA and MA. We showed that LET can
fully substitute MA training based on SA training only. With the hand and wrist
actions from this experiment, more than half of the training time can be saved.
Since the number of possible MA related to SA raises exponentially, the time saving
is even greater for an increased number of actions.
A further advantage of LET is that misinterpreted stimuli for MA, which negatively
affect the dataset, are completely avoided. Although misinterpretations usually do
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not occur at SA training, LET outperformed all other models in the experiment.
It is concluded that the proper LET cluster placement positively affects also the
regression model for the execution of SA.

Amputees using this strategy can train a simultaneous and proportional control
system without the requirement to execute MA during training time. The found
LET parameters can be transferred to amputees to evaluate this powerful strategy
in further online experiments using a multi-modal input.

6.2 Future Work

Since LET is not related to a specific machine learning method, its usage can be
further exploited with other machine learning methods and fusion approaches for
the multi-modal input.

The collected data in different setups include elbow angle information and hand pose
information in accordance with sEMG and FMG sensor signals at a variety of wrist
and hand actions. All this information can be used for future analysis of the elbow
angle or forearm pose and their effect on the training data and model prediction.

The current software interactiveMyocontrol should be extended by a visual data
selection tree, which enables the deletion or repeated recording of certain actions.
This helps to exclude data which is evidently wrong, when the stimulus has been
misinterpreted or the subject was not focused. Furthermore, mathematical metrics
could evaluate the current recording at runtime and signalize, if it fits to previous
repetitions or if it has poor quality.

As one focus of LET is to accelerate the training time, the data acquisition process
could be further accelerated for daily life situations. Instead of the visual stimulus
screen, which is required for inexperienced subjects, a minimized visual stimulus
in form of a functional display, an audio stimulus or even a haptic stimulus could
be used. With and intuitive operation of the prosthetic device, the user could also
self-determine when he or she wants to record a certain action.

The selected hand and wrist actions were chosen based on the previous work at
DLR, in accordance to current research interests and possibilities. The two wrist
DOF are beneficial in activities of daily life for object approaching and manipulation
after using the power grasp. If a more dexterous grasp type is required, the amputee
probably executes it anyway with his or her intact hand. Notwithstanding, a more
dexterous and responsive control of prostheses need to be achieved to ease this
activities. Therefore, an improved hardware capable of these functions needs to be
developed.

Problems of unwanted activations of DOF other than the desired one already oc-
curred in the preceding work using only sEMG sensors. This effect is not only caused
by the ML model and for instance also occurs with linear regression. The action
sup has been also not targeted in [NC15] as this action interferes strongest with
the other considered actions. So far, the combination of sEMG and FMG in the
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evaluated fusion approaches of this work could not prevent this problem. Exploring
the problems of unwanted activations in simultaneous and proportional control is
aim of future research.
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Appendix A

Software

A.1 Device Drivers

The following modules has been implemented as device drivers in the existing soft-
ware framework of interactiveMyocontrol. They interface different sensors, are in
charge of data preprocessing or connect to UDP sockets in order to collect data
from external systems. All acquired data is dumped to disk to allow further analy-
sis after an experiment.

A.1.1 Robot: UDP Listener

The UDP telegrams come from the left KUKA LWR controller of the HUG platform.
They include the Cartesian pose and the force/torque values of the sensors located
at the tool center point (TCP).

The UDP telegram listener is implemented in ddUDPlistener. The format of a
telegram is a number of double values, where each value is defined through blocks
of 8 byte. The following table describes the received values.

Pos. Description

0
[4×3] matrix: affine transformation: TCP → world frame; consisting
of:

... [3×3] rotation matrix

11 [1×3] translation (x,y,z)

12 6 DOF force/torque sensor on TCP; consisting of:
... 3 × force (Fx, Fy, Fz)

17 3 × torque (Tx, Ty, Tz)
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A.1.2 Visual Tracking System: UDP Listener

The UDP telegrams come from the visual tracking system of the HUG platform.
The poses of both segments of the LET test setup and the transformation between
these poses are transmitted. Further, the axis-angle representation of the elbow
hinge between these segments is obtained. This angle corresponds to the subject’s
elbow angle.
The UDP telegram listener is implemented in class ddUDPlistener. The format of
a telegram is a number of double values, where each value is defined through blocks
of 8 byte. The following table describes the received values.

Pos. Description

0 [4×3] matrix: affine transformation: segment 1 → world frame; consisting of:
... [3×3] rotation matrix

11 [1×3] translation (x,y,z)

12 [4×3] matrix: affine transformation: segment 2 → world frame; consisting of:
... [3×3] rotation matrix

23 [1×3] translation (x,y,z)

24 [4×3] matrix: affine transformation: segment 1 → segment 2; consisting of:
... [3×3] rotation matrix

35 [1×3] translation (x,y,z)

36 angle between segment 1 and segment 2

37 axis vector related to above angle

...
[1×3] unit vector indicating the direction of rotation axis relative to
world frame

39

A.1.3 ATI Mini45 F/T sensor

The ATI Mini45 force/torque sensor is interfaced through analogue signals, read by
a Native Instruments data acquisition card (NI-DAQ). The data is then sent to the
computer via an Ethernet connection. The NI-DAQ device driver is implemented in
class addNIDAQ. The raw sensor signals need to be pre-processed to obtain physical
force and torque values, using a calibration matrix delivered with the sensor. The
pre-processing is implemented in class addFTsensor, provided with this calibration
matrix. F denotes a force whereas T denotes a torque around this axis.

A.1.4 Space Control OFTS F/T sensor

This optical 6 DOF force torque sensor is interfaced via RS232, with a simple polling
mode implemented in class spddOFTS. F denotes a force whereas T denotes a torque
around this axis.
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Channel Description

0 Fx
1 Fy
2 Fz
3 Tx
4 Ty
5 Tz

Channel Description

0 Tx
1 Ty
2 Tz
3 Fx
4 Fy
5 Fz

A.1.5 NI-DAQ for ATI Mini45

The device driver for the Native Instruments data acquisition card is implemented
in addNIDAQ. The card is configured by the channel string dev1/ai1:6, which sets
the device name to dev1 and enables 6 analog inputs related to the 6 DOF of the
interfaced F/T sensor. All channel signals come without calibration. The software
channels are defined as followed:

Channel Description

0 raw Fx
1 raw Fy
2 raw Fz
3 raw Tx
4 raw Ty
5 raw Tz

A.2 Configuration File

The configuration file with the ending *.config used for the LET evaluation has
been extended by the following key-value pairs:

A.3 Machine Learning Parameter File

The files with the ending *.ml parametrizes learning machines with their hyper-
parameters. In the case of Ride Regression with Random Fourier Features (RR-
RFF), the data structure for the parameter σ has been adapted. Previously, only a



90 APPENDIX A. SOFTWARE

Key Description

"LETsingleAlphas" assigns an alpha parameter to a combination name, e.g.
"LET wr flexion power,0.595770;LET wr

extension power,0.612140"

"signalReaderList" a list of signal readers to be activated, e.g.
"wbt nidaq ftsensor ofts"

"calibrationMatrix"
the calibration matrix for the ATI Mini45 sensor which
transforms raw sensor readings into forces/torques

"nidaqChannelString"

configuration of the Native Instrument data acquisition
card (NI-DAQ), e.g "dev1/ai1:6", providing a device
name (dev1) and the number of analog inputs (ai1:6)

"learningMode i"

configures the learning machine with number i in the
following modes: "single": train only on single
activations; "all": train on single and multiple activations;
"let": train only on single activations and LET data

single hyper-parameter could be defined for the whole input space. Now, a vector
of σ values can be defined to relate a value to each sensor, which is then parsed in
the class Learning. This is used to configure σ values for different sensor types, e.g.
sEMG and FMG. Given an example for 5 sEMG and 5 FMG sensors with different
σ parameters:
<sigma>0.7 0.7 0.7 0.7 0.7 0.5 0.5 0.5 0.5 0.5</sigma>



LIST OF FIGURES 91

List of Figures

2.1 Machine learning approaches throughout the experiments . . . . . . . 20
2.2 Data acquisition hardware . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Block Diagram of the System . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Visualization of stimulus and prediction . . . . . . . . . . . . . . . . 24
2.5 Sensor configuration and their attachment . . . . . . . . . . . . . . . 25
2.6 Sensor Placement Experiment Results . . . . . . . . . . . . . . . . . . 29
2.7 Histogram of sigma values . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 Model prediction for a linear input . . . . . . . . . . . . . . . . . . . 38
2.9 Comparison of good and bad training data . . . . . . . . . . . . . . . 39
2.10 Sensor Placement Online Experiment Results . . . . . . . . . . . . . 39
2.11 Sensor Placement Online Experiment Results . . . . . . . . . . . . . 40

3.1 Kalman filter system block diagram . . . . . . . . . . . . . . . . . . . 44
3.2 Kalman filter online performance results . . . . . . . . . . . . . . . . 46
3.3 Kalman filter prediction output for the DOF fle/ext . . . . . . . . . 47

4.1 Geometrical interpretation of data enhancement . . . . . . . . . . . . 52
4.2 Test setup schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Test setup module description . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Finger block for grasp sensor . . . . . . . . . . . . . . . . . . . . . . 57
4.5 GUI drafts for force capturing and display . . . . . . . . . . . . . . . 60
4.6 PCA of preliminary data . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.7 The HUG system configured for the experiment . . . . . . . . . . . . 62
4.8 Experiment system block diagram . . . . . . . . . . . . . . . . . . . . 63
4.9 Test setup with the left arm of a subject attached to the robot . . . . 63
4.10 Example of a consistent training set . . . . . . . . . . . . . . . . . . 65
4.11 Training set with poor repeatability (ext-sup) . . . . . . . . . . . . . 65
4.12 Training set with poor cluster separability (sup-gra) . . . . . . . . . 66
4.13 Training set with poor cluster alignment (ext-sup) . . . . . . . . . . 66
4.14 Training set with a blurred cluster (ext-gra) . . . . . . . . . . . . . . 67
4.15 Training set with a bad approximation of the LET cluster (fle-gra) . 67
4.16 Boxplot of alpha parameters . . . . . . . . . . . . . . . . . . . . . . . 69
4.17 MVC forces (F) and torques (T) for SA and MA . . . . . . . . . . . 70



92 LIST OF FIGURES

4.18 Force ratios between MVC forces of SA and MA . . . . . . . . . . . 70
4.19 Correlation between MVC force ratios and alpha values . . . . . . . 71
4.20 Set of targets for the online goal reaching task . . . . . . . . . . . . . 73
4.21 Success rates in the multiple activation online performance experiment 74
4.22 Task completion time in the online LET experiment . . . . . . . . . 75



ACRONYMS AND NOTATIONS 93

Acronyms and Notations

ANN Artificial Neural Network

DLR Deutsches Zentrum für Luft- und Raumfahrt

DOF Degree of Freedom

DOFs Degrees of Freedom

ELM Etreme Learning Machine

EMG Electro-Myography

ext wrist extension

F/T force-torque

fle wrist flexion

FMG Force-Myography

FSR Force Sensing Resistor

GLR Generalized Linear Regression

gra power grasp

GRNN Generalized Regression Neural Network

HRI Human-Robot Interaction

IGT In-Goal Time

KF Kalman Filter

KRR Kernel Ridge Regression

LDA Linear Discriminant Analysis

LET Linearly Enhanced Training
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LR Linear Regression

M. Musculus

MA Multiple Activation

MVC Maximum Voluntary Contraction

NMF Non-negative Matrix Factorization

NN Neural Network

OSELM Online Sequential Extreme Learning Machine

p proportional

pro wrist pronation

RBF Radial Basis Function

res rest position

RR Ridge Regression

RR-RFF Ridge Regression with Random Fourier Features

s/p simultaneous and proportional

s simultaneous

SA Single Activation

sEMG surface Electro-Myography

SG Successful Goals

SGS Strain Gauge Sensor

SR Success Rate

sup wrist supination

SVM Support Vector Machine

SVR Support Vector Regression

SVR Support Vector Regression

TCT Task Completion Time

TDANN Time Delayed Artificial Neural Network
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UG Unsuccessful Goals

URG Unsuccessful Reachable Goals
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