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Abstract

The increasing autonomy and interactivity of mobile robotic technologies require the
representation of environment information on multiple levels. While quantitative geo-
metric information is indispensable for navigation and motion planning, understanding
and planning complex tasks and interacting with humans require knowledge represented
at a higher level, which is able to express the semantics of the environment, and to reason
about its spatial structure in a qualitative way that is easily relatable to humans. Se-
mantic Maps combine these different features into a common environment representation.
Robotic systems with different degrees of autonomy are expected to be commercially de-
ployed in urban environments in the near future. These environments are typically larger
and less structured than the more commonly studied indoor environments, and so they
pose specific needs to the semantic representation. This thesis studies aspects of semantic
mapping which are particular to urban settings. The presented methods are motivated by
work done in a robotics project addressing interactive scenarios in urban environments,
and by an extensive review of hybrid robotic mapping technologies, qualitative spatial
representation and reasoning techniques, and their cognitive origins.

The first part of this thesis concerns the extraction of qualitative spatial relations
between objects from point cloud data. The proposed approach relies on Markov Logic
Networks, a probabilistic logic modelling technique, to model higher-order consistency
relationships between spatial relations. The proposed approach includes the description
a new inference technique for Markov Logic Networks, which relies on a purely algebraic
pseudo-Boolean representation of the logical formulation, which enables the use of highly
efficient inference techniques.

Next, the combination of point cloud data and semantic data from the online mapping
repository OpenStreetMap for the problem of scene interpretation is considered. Precise
sensor data in the form of point clouds is fused with street network information in order
to estimate street geometries in an urban environment. The street network information is
used to leverage a probabilistic model of the geometries of neighbouring street segments.
Thus, the benefits of combining data from different sources for the creation of semantic
map annotation are shown.

Finally, another aspect of combining sensor-level data with semantic data from another
source is explored by using building outlines from a coarse semantic map to localize a
robot in an unknown urban scene. The technique builds on the generic chamfer matching
template matching technique, which is extended to include visibility analysis in the cost
function to model the characteristics of the laser range finder providing the input data.
Since the method is independent of the provenience of the input data, the formulation can
be expected to generalize to other forms of input data, such as 3D point cloud data from
monocular or stereo cameras. The method is shown to produce state-of-the-art results
on two large, diverse datasets from different environments, and illustrates the power of
semantic data from diverse sources in the localization task.



Zusammenfassung

Die zunehmende Autonomie und Interaktivitat von mobilen Robotern erfordert die
Darstellung von Umgebungsinformationen auf mehreren Ebenen. Wahrend quantitative
geometrische Informationen fiir die Bewegungsplanung unentbehrlich sind, verlangen die
Planung komplexer Aufgaben und die Interaktion mit Menschen Wissen auf einer héheren
Ebene, die die Semantik der Umwelt ausdriicken kann und die qualitatives Schlieflen iiber
rdumliche Strukturen erlaubt. Semantische Karten kombinieren diese verschiedenen Merk-
male zu einer gemeinsamen Umgebungsdarstellung. Robotiksysteme mit unterschiedlichen
Autonomiegraden sollen in naher Zukunft kommerziell in stddtischen Umgebungen ein-
gesetzt werden. Diese Umgebungen sind typischerweise grofler und weniger strukturiert
als die haufiger untersuchten Innenrdume, und stellen deswegen besondere Bediirfnisse an
die semantische Darstellung. Diese Arbeit untersucht Aspekte von semantischen Karten,
die fiir stddtische Einsatzgebiete besonders wichtig sind. Die vorgestellten Methoden wer-
den motiviert durch Ergebnisse aus einem Robotik-Projekt, das interaktive Szenarien in
stidtischen Umgebungen behandelt, und durch eine umfassende Ubersicht iiber in der Ro-
botik eingesetzte hybride Kartierungstechniken, qualitative rdumliche Repréasentationen
und Schliemethoden, sowie deren kognitive Urspriinge.

Der erste Teil dieser Arbeit betrifft die Extraktion von qualitativen rdaumlichen Be-
ziechungen zwischen Objekten aus Punktwolken. Der vorgeschlagene Ansatz stiitzt sich
auf Markov Logic Networks, eine probabilistische Logikmodellierungstechnik, um Kon-
sistenzbedingungen hoéherer Ordnung zwischen raumlichen Beziehungen zu modellieren.
Der vorgeschlagene Ansatz beinhaltet die Beschreibung einer neuen Inferenztechnik fiir
Markov Logic Networks, die auf einer rein algebraischen pseudo-booleschen Darstellung
der logischen Formulierung beruht, die den Einsatz hocheffizienter Inferenztechniken er-
moglicht.

Als néachstes wird die Kombination von Punktwolken und semantischen Daten aus
dem Online-Kartendienst OpenStreetMap fiir das Problem der Szeneninterpretation be-
trachtet. Sensordaten in Form von Punktwolken werden mit Straflennetzinformationen
verbunden, um Straflengeometrien in einer stadtischen Umgebung abzuschétzen. Die Stra-
Bennetzinformation wird in einem probabilistischen Modell der Geometrien benachbarter
Straflensegmente verwendet. So werden die Vorteile der Kombination von Daten aus ver-
schiedenen Quellen fiir die Erstellung einer semantischen Kartenannotierung dargestellt.

Schliefflich wird ein weiterer Aspekt der Kombination von Sensorebenen-Daten mit se-
mantischen Daten aus einer anderen Quelle erforscht, indem Gebaudegrundrisse aus einer
groben semantischen Karte verwendet werden, um einen Roboter in einer unbekannten
urbanen Szene zu lokalisieren. Die Technik baut auf der generischen Methode chamfer
matching auf, die um eine Sichtbarkeitsanalyse in der Kostenfunktion erweitert wird, die
die Eigenschaften eines optischen Sensors modelliert. Es wird gezeigt, dass die Methode
auf zwei groflen Datensétzen aus verschiedenen Umgebungen Ergebnisse auf dem Stand
der Technik liefert und so die Vorteile der Kombination von semantischen Daten aus
verschiedenen Quellen fiir die Lokalisierungsaufgabe veranschaulicht.



Introduction

1.1 Semantic Mapping for Autonomous Robots in
Urban Environments

It is highly likely that urban environments will be among the first places where consumers
and end users come into contact with highly advanced interactive robots. In the assess-
ment of the situation of the robotics industry and research in Europe put forward in the
Robotics 2020—Multiannual Roadmap for Robotics in Europe [B4], almost all application
areas for consumer service robotics have components where significant interaction between
users and robots happen in an urban setting. For instance, in the rapidly growing domain
of healthcare robotics, robotic personal assistants for assistant living will be developed
which help humans with limited mobility, autonomy or sensoric abilities with navigating,
moving and acting in cities. The application area of autonomous vehicles covers a wide
array of services, which, if put to full use, will require autonomous vehicles to have a high
level of interactivity and understanding of their environment. Furthermore, logistics sce-
narios for goods, such as the last-mile delivery of packages, are an application area where
robots will operate in the near future in close proximity with humans in everyday city
life. Marketing and tourism pose further challenging applications for highly interactive
robots acting in inner city environments.

These applications require untrained users to interact with robots without intermedi-
aries. To be usable by and useful to the general public, these robots need simple, intuitive
interfaces that enable them to do complex tasks. Both task-related interaction and task
execution require knowledge on a semantic level.

Various recent examples from media and research publications illustrate these devel-
opments. Different robotics companies have begun to tackle last-mile delivery of goods
as an commercial, industrial application. To give one example that received much media
attention, the Estonian company Starshz'pﬁl has developed a robotic platform (Figure )
for this task which is now being tested under real-usecase constraints in inner cities in
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(a) Starship last-mile delivery robot trial
in Switzerland (photo credit: Swiss

(c) The Interactive Urban Robot (IURO) (d) Obelix [@] (photo credit: Badische
Zeitung)

Figure 1.1: Examples for robot prototypes operating in urban environments

Europe and the United States. Autonomous Driving is another application which is om-
nipresent in the media, and where companies such as BMW (Figure ) see realistic
business cases for deploying cars with full or partial autonomy in everyday driving sit-
uations, including those in urban environments. Such environments have also received
special attention in the robotics research community. Projects like Obelix (Figure )
and IURO (Figure ), the latter of which has been closely connected with the mo-
tivation for the work presented in this thesis as detailed in Section [L.2, have deployed
autonomous robots in the pedestrian space of inner cities to gain insight both about the
technical challenges of this environment and the social implications of robots interacting
with other users of urban space.

Semantic Mapping, the overarching topic of this thesis, is an integral part of the systems
in all these applications. Its goal is to extend the purely geometric environment data,
which is indispensable for robotic navigation, by additional semantic information, which
is for example derived from object classification, from interaction or from common-sense
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knowledge. Including this type of data in the environment representation of a robot allows
it to interpret, reason and communicate with humans about tasks in a high-level way.

Robotic systems can benefit from semantic data in various ways. More advanced rea-
soning capabilities may reduce the dependence on sensor data or external information
sources (like GPS functionality), for example when information can be improved or val-
idated by employing common-sense knowledge. Semantic-level data also allows easier
interoperability between systems, and rich information sources which provide man-made
and made-for-humans information sources, such as online databases of location-based or
common-sense information, can be tapped. Exploiting the richness and diversity of differ-
ent information sources is important, since the combination of data from various sources
will lead to new capabilities. For instance, large advances in computer vision research
notwithstanding, the semantic classification of objects and scenes from sensor data, tak-
ing into account the context, is still a very demanding and error-prone task. Nevertheless,
similar or at least helpful information may already be present in a human-annotated form
for human use, or the information may be arrived at through interaction. A wide range
of Human-Robot Interaction (HRI) applications are enabled by equipping robots with se-
mantic data, since grounded, situated interaction is only possible given location-specific
information in a format that is suitable for humans. Multimodal interfaces, including nat-
ural language as a very powerful communications channel, operating on different types of
semantics can be used for task specification or clarification.

The importance of Semantic Mapping technology for future commercial use of robotics
technology is also illustrated by it being specifically mentioned as a major milestone to
the commercialization of service robots in a recent roadmap for Robotics in the United
States [26]. Semantic knowledge is also listed as a requirement for the commercialization
of a large set of the applications surveyed in the Robotics 2020—Multiannual Roadmap
for Robotics in Europe [34].

1.2 Motivations from the IURO Project

A large part of the research compiled in this thesis is motivated by experiences gained in
the course of the IURO project between 2011 and 2014. While the aim of this thesis is to
describe approaches to extend semantic mapping capabilities for a large class of robots
operating in urban environments, the scope and goal of the IURO endeavour provide a
good context for the general problem of semantic mapping. For this reason, an outline of
the project will be given in the following.

The main goal of the project was to create a complete robotic system that is capable
of navigating in the pedestrian space of an urban environment, and in doing so only relies
on information sources immediately available in its environment. In addition to whatever
can be perceived with the robot’s sensors, pedestrians with local knowledge in the vicinity
were identified as another valuable information source, mainly for route and navigation
information. However, other information sources, like precomputed and stored maps or
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GPS navigation, would have required the use of external data sources and connections,
and were not used in the ITURO system. From this setting, the main research areas for
the project were identified, which are briefly summarized in the following.

Local and Global Navigation The pedestrian areas of inner-city streets are the main
workspace of the ITURO robot. Local navigation in this environment requires the ability to
avoid static and moving objects, as the space is both shared with pedestrians and cyclists,
and unstructured, since obstacles of very different kinds can be encountered along the way.
Paramount to the safety of the system is its capability to reliably detect the boundaries of
the sidewalk area, and move only within that space. On a global level, navigation solely
based on route instructions gathered from humans requires that the given descriptions
can be verified against each other, mapped to sequences of landmarks and navigation
actions, and these can be grounded in the environment and executed.

Situation Interpretation and Environment Modelling The environment repre-
sentation of the robot relies on processing data from its sensors. One aspect of this is
the assessment whether an areas is safely traversable and free from obstacles. Further-
more, landmarks such as crossings and traffic lights, which are used for navigation and
for grounding route instructions, need to be detected in the environment. The way this
data is represented to the robot needs to unify the very different aspects of processed sen-
sor data and communication with humans to allow navigating based on route instructions
given by humans and comparing and verifying descriptions against each other, and against
the environment. Developing building blocks for environment representations satisfying
these requirements is one of the main aims of this thesis.

Spoken Language Dialogue System and Action Planning The IURO robot’s
main source of route information is the interaction with pedestrians. For this commu-
nication to be effective, the robot is equipped with a multimodal interface. First and
foremost, it is able to both produce and understand spoken language in a dialogue system
designed for the efficient and effective elicitation and verification of route instructions.
Furthermore, a touchscreen in the body of the robot provides a touch interface for route
instruction and for displaying route visualizations for verification. A pointing device be-
hind the head of the robot and its arms can be used to illustrate directions and to clarify
the frame of reference the robot is using. The tendency of the robot to advance on the
route to its goal, or to obtain or verify new route information, is controlled by a action
selection module, which chooses between a set of behavior options based on the value of
new information for the estimated success of task completion.

Social Aspects of Proactive Human-Robot Interaction An important novelty
in the interaction scenario of the IURO project is that the robot is the initiator of the
interaction, since the robot is in need of route information and thus has to ask bystanders
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or passers-by for help. This type of interaction with interaction partners who are not
necessarily experienced with robots or similar technologies requires that social aspects are
incorporated into the interaction design. Considerations from social robotics were taken
into account for the design of the robot hardware, the design of the spoken language
dialogue strategy, and also the navigation behaviors of the robot, with the main goal
being to create a friendly impression of the robot that elicits the willingness to help and
avoids intimidation in its interaction partners.

The TURO project provided a challenging application for semantic mapping research.
The interpretation of route instructions given in natural language requires an internal rep-
resentation of the environment that bridges the gap between metric information, which is
necessary for navigation, and a semantic, symbol-level representation, which is necessary
for natural language interaction. Semantic information must be understood from route
descriptions as well as verbalized in order to verify the robot’s belief about the route to
take. Thus, all sources and sinks of information must be mapped to a common environ-
ment representation. Although not within the scope of the IURO project, the topic of
increasing the diversity of information sources lends it self to being extended to other, pos-
sibly online, information source for humans, such as OpenStreetMap or ontology projects
that seek to capture common-sense knowledge.

This thesis explores aspects of the large problem of semantic mapping for autonomous,
interactive robots in urban environments in detail. The question of how to represent
sensor-level data on a human-adapted level is addressed in Chapter B, where qualitative
labels for spatial relations between objects, which can be used in interaction, are integrated
into a metric environment representation. The topic of using other data sources, which are
originally meant for human use, to aid signal-level processing, is the topic of Chapter @
This chapter concerns itself with the use of coarse geometric data from the open-source,
human-annotated OpenStreetMap to aid the extraction of road geometries from sensor-
level point cloud data, which can then be used for higher-level navigation. The third part
of this thesis deals with the idea of data sparsity, which is the motivation for Chapter H
There, it is explored how little information is necessary for a robot to localize on a map
that hasn’t been visited before, using only building outlines as very salient and robust
semantic features for place recognition.

1.3 Thesis Overview, Contributions and Published
Work

This thesis covers three major aspects of semantic mapping for autonomous, interactive
robots in urban environments:

(i) Integration of qualitative spatial relations with metric 3D point cloud object data
using probabilistic logic
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(ii) Combination of metric point cloud data with coarse data from crowdsourced maps
to improve scene interpretation in the form of estimation of road geometry

(iii) Localization of a robot in unknown urban environments based only on building
outlines extracted from a crowdsourced map

These topics are motivated from the experience gained with autonomous robot in urban
environments during the course of the IURO project as described above. The outline of
the thesis, its individual contributions, and the publications that have been the result of
the work in the respective areas are described in the following.

Chapter @ presents an extensive review over the research in spatial representation for
robotics and semantic mapping, with a particular focus on representations for interac-
tive robotic applications. It presents the origins of robotic environment representations
in theories about the cognitive abilities and strategies humans use to model space and
navigate in it. Furthermore, an overview over qualitative spatial representations and rea-
soning techniques is given. Finally, different approaches to creating maps for the use by
robots are laid out, differentiating by the way geometric information is abstracted, and
with specific focus on the integration of semantic data in the map. This review presents a
new take on the large amount of existing research on these topics with the specific focus
of interactive robots. It was published as part of a review paper [209] that grew out
of discussions and collaboration at a workshop at IROS 2015 with the topic of “Spatial
Reasoning and Interaction for Real-World Robotics”. The work presented in Chapter
is built on the part of the review that was written by the author of this thesis.

Chapter a is concerned with the robust extraction of qualitative spatial relations from
metric point cloud data. The described method uses Markov Logic Networks (MLNs),
a probabilistic logic model that has previously been used in different robotics contexts.
The chapter first describes probabilistic logic models, and then proceeds to describe a
fast inference method for this type of models. This method builds on the conversion from
the original logical formulation of the problem to a purely algebraic one with only pair-
wise interactions in a process called quadratization, for which different, highly efficient
inference methods based on maximum-flow graph-theoretic computations are available.
The method is shown to achieve state-of-the-art results on typical problems from the
probabilistic logic literature. The chapter then proceeds to apply the MLN methodol-
ogy to the problem of spatial relation estimation in a qualitative spatial representation
that is geared towards interpreting and verbalising scenes in urban environments. The
performance of the method is evaluated on a dataset of challenging urban scenes. The
quadratization-based inference method for MLNs was developed in collaboration with
Roderick de Nijs and published in [205]. The work on spatial relation estimation is part
of the work published in [214].

Chapter @ illustrates the extension of metric data with semantic information from a
different information source, and the benefits the combination of different data sources
can offer. In the presented work, a semantic map is extended with information about
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the street network and street geometry of an urban environment. This information is
inferred both from sensor-level point cloud data, and from coarse semantic data about
the street network from the crowdsourced, open-source OpenStreetMap database. The
street network information is used to leverage a probabilistic model of the geometries
of neighbouring street segments. Also in this chapter, an in-depth evaluation on a large
point cloud data set is provided, along with an evaluation of the computational properties
of the presented algorithms. The method was published in [211].

In Chapter P, a different aspect of using sparse semantic data from OpenStreetMap
is explored by using building outlines extracted from the map as single data source to
localize the robot in an unknown urban scene. The method builds on the generic chamfer
matching template matching technique, which is extended to include visibility analysis
in the cost function to model the characteristics of the laser range finder providing the
input data. Since the method is independent of the provenience of the input data, the
formulation can be expected to generalize to other forms of input data, such as 3D point
cloud data from monocular or stereo cameras. The method is evaluated on two large,
diverse point cloud datasets of different urban environments, and shown to produce state-
of-the-art results in comparison with a baseline method from literature and with the
generic chamfer matching approach. The presented approach has been published in [210].

The thesis concludes with a summary of the presented work and the encountered
challenges, as well as an outlook on future research directions in semantic mapping for
urban environments, in Chapter B



Concepts in Spatial Reasoning and Robotic
Mapping

This chapter presents a review of research in the major fields relevant for
this discussion of semantic mapping and spatial reasoning. It first gives
an overview over the cognitive theories that have been developed about spa-
tial representations that humans use and that have influenced models used in
robotics. Furthermore, an introduction to qualitative spatial representations
and the corresponding qualitative reasoning methods is given. Finally, differ-
ent approaches to creating maps for the use of robots on different levels of
abstraction, taking into account quantitative and qualitative geometric as well
as semantic information are highlighted.

The work presented in this chapter was published as part of a review paper [209)].

2.1 Overview

Truly universal helper robots capable of coping with unknown, unstructured environ-
ments must be capable of spatial reasoning, i.e., establishing geometric relations between
objects and locations, expressing those in terms understandable by humans. It is therefore
desirable that spatial and semantic environment representations are tightly interlinked.
Precise 2D and 3D robotic mapping and the generation of accurate, consistent metric
representations of space are highly useful for navigation and exploration, but they do not
capture symbol-level information about the environment. The latter is, however, essential
for reasoning, and enables interaction via natural language, which is arguably the most
common and natural communication channel used and understood by humans.

This chapter aims to give an overview about the research on both quantitative and
qualitative representations of space for the use of robotic systems. Naturally, this re-
search has been inspired by the way humans and animals represent space and navigate in
known and unknown environments. Section gives a brief overview over the findings
from cognitive science that have inspired and been incorporated in approaches for spatial
representation for robots. Humans often reason about space in qualitative terms, and
this kind of reasoning and the appropriate representation systems have been formalized
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in the field of Qualitative Spatial Reasoning (QSR). An overview over the representa-
tion systems and reasoning techniques developed in this scientific discipline is given in
Section R.3.

Robotic knowledge about spatial relationships is encoded in maps. They are essen-
tial for basic tasks in navigation and localization, but they also constitute the domain
for task planning and situation understanding. For the latter tasks, purely geometric
information is not sufficient, and additional semantic information needs to be represented
to enable robots with these capabilities. Interaction with humans, for example for task
specification such as in a route description scenario, requires that the environment rep-
resentation is available in terms that are easily relatable for human interaction partners.
Section @ presents different mapping methods from the literature that address some of
these requirements.

Section @ concludes the chapter with a short discussion of the current state of semantic
mapping research in a robotics context and the challenges that are being faced.

2.2 Cognitive Models

In order to create functional and efficient abstractions of space for intelligent robots, re-
search has often looked to insights on the way humans and animals organize their spatial
knowledge. Spatial representations for technical systems that are close to a human un-
derstanding of space are often easier to design and interpret, and facilitate information
exchange with humans. In the following section, basic terms and distinctions from the
study of human and animal spatial cognition are highlighted that have shown to also be
helpful spatial models for technical systems. These ideas from cognitive studies have in-
fluenced research especially in hierarchical hybrid and semantic maps, which are discussed
in Section and Section .

Two basic paradigms that have been used to describe human spatial cognition are those
of route and survey knowledge [33, 168]. Route knowledge represents space on a person-to-
object basis, with the perspective of the visual system, while survey knowledge represents
object-to-object relations at a global, world-centered view [61]. Survey knowledge is often
also referred to by the term cognitive map [181]. On the lowest level, there is also location
knowledge, which identifies a single location by a salient configuration of objects, which
should be robust against change to reduce the uncertainty of the mental environment
model [32, 92].

Corresponding to these levels of spatial knowledge, frames of reference are defined. The
egocentric frame takes the person-centered view, and the allocentric frame designates the
world-centered view. Additional useful designations of frames are the relative, intrinsic,
and extrinsic frames, which stand for a person-centered, object-centered, or global view,
respectively [185].

Both route and survey knowledge are acquired when moving through an environment.
Once learned, route and survey levels of spatial representation are tied to navigational
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tasks that they are most useful for. Route knowledge is used when navigating along a
known path between identifiable places, where the navigational decisions have to be made
at decision points to identify the correct continuation of the paths. On the other hand,
survey knowledge is needed for pre-meditated navigational planning, where an unknown
route to a target in a known or partially known environment has to be determined before
actually executing the plan [[195]. Insights on the different forms of spatial representations
in cognitive models have influenced the research on hybrid maps for technical systems, in
which environments are represented at multiple hierarchically organized levels.

While the ability to perform these tasks shows that both levels of knowledge are ac-
cessible, humans generally do not acquire full survey knowledge by exploration. Instead,
they store topological relationships along with coarse, imprecise spatial relations between
places that enable some Euclidean reasoning, for example about shortcuts through un-
explored areas [33]. Experiments have shown that humans do not perform very well on
recreating exact Euclidean measurements for known large-scale environments, with re-
called distances distorted and affected by properties such as the number of landmarks
on a route, and angles between alternative paths generally regressing towards right an-
gles [184].

The non-Euclidean nature of the cognitive spatial model is further illustrated by the
observations that recalled spatial relations may depend on an (imagined) vantage point,
and that symmetric relations tend to be recalled asymmetrically depending on the proper-
ties of the involved objects. Cognitive load expended on retrieving spatial relations is also
a factor that allows some insight into the mental spatial representation, which can be seen
in some spatial relations being faster to recall than others, and in the fact that recalled
spatial arrangements are more accurate when more information is asked for than when
only partial information is inquired [184]. Tversky [184] calls the ensuing representation
spatial mental models, eschewing the term ‘cognitive map’, since its properties are rather
different from a standard Euclidean map. The notion of the representation being not
fully Euclidean, but topological with added imprecise general spatial relations is corrobo-
rated by experiments in Virtual Reality, where participants have no problems navigating
in worlds that are physically impossible [87]. For technical systems, formalisms that do
not rely on quantitative Euclidean geometry have been explored with qualitative spatial
representations as discussed in Section @ and topological maps, which are introduced
in Section .

A further important characteristic in the discussion of mental spatial models is their
hierarchical nature. Nonhierarchical models rely on all spatial elements being stored at
the same level, while hierarchical theories postulate that different areas or aspects of space
are organized in different branches of a hierarchy. Hierarchical models can be strongly or
partially hierarchical, where the latter permits additional attributes between elements of
different branches. Experiments have shown that human spatial memory is likely to be
organized partially hierarchically [75, 121].

Another distinction that has proven useful in discussing human spatial cognition is the
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dichotomy of propositional and imagistic representations in human cognition [76]. Imag-
istic representations are common as spatial representation such as maps, sketches, and
figures. On the other hand, propositional representations are closer to the way spatial
arrangements are expressed with language, and can be computed from imagistic repre-
sentations.

2.3 Qualitative Spatial Representation and
Reasoning

Traditionally, formal mathematical reasoning about space primarily used the tools of
topology and Euclidean or Cartesian geometry. While this type of reasoning about metric
quantities is essential to many aspects of robotics, the disciplines of robotics and Artificial
Intelligence have also developed an interest in a qualitative, symbolic system of reasoning
about space. Arguably, a quantitative representation of space is closer to the cognitive
and, in particular, the linguistic ways of representing space. Thus, it can bridge the
gap between physical space where robots operate, and common-sense space, which is
commonly addressed by language. Deliberate quantization can also bring robustness
against noise and parameter errors. Dealing with metric values can also bring a degree
of unwanted precision in the presence of uncertainty or in interaction scenarios. Finally,
qualitative reasoning can be beneficial in terms of memory and computational complexity.

2.3.1 Qualitative Representations of Space

The aspects of space that need to be represented by a specific representation depend
on the application, and many different formalisms for different requirements have been
developed in the Qualitative Spatial Reasoning community.

A spatial representation consists of a set of basic spatial entities, and the relations that
can be defined between them. Basic entities can be points, lines, line segments, rectangles,
cubes, or arbitrary regions of any dimension. The dimensionality of the basic entities and
the space that is being modeled depends on the modeling depth and the application as
well: As a practical example, a road is one-dimensional for trip planning, two-dimensional
when planning overtaking behavior, and three-dimensional when trying to estimate the
curb position.

For brevity, the focus here is on representations used or usable for robotics. The basics
of reasoning systems will be mentioned; more in-depth treatments can be found in the
review articles by Vieu, Cohn and Renz, and Chen et al. [31], B9, 188].

Mereotopology An important set of qualitative spatial representations is based on the
topology, i.e., relations of connectedness and enclosure, and mereology, i.e., the relations
of parthood, of basic entities. These are known as mereotopological representations. In
the following, some important instances of these formalisms will be briefly introduced.
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Figure 2.1: Mereotopological calculi

As a very basic reasoning system, the point calculus for scalar values defines the re-
lations <, =, >. The interval calculus [2] extends the reasoning in a single dimension
to intervals, originally for reasoning about intervals in time. The 13 resulting binary
relations are illustrated in Figure @

This type of reasoning is extended to two dimensions to form the Rectangle Algebra
[13, 66]. For this type of representation, shapes are projected to the axes of an extrin-
sically defined coordinate system, and the relations between the resulting intervals are
constructed separately for each axis. It can be noted that this representation not only
conveys topological information, but also has an orientation component. The spatial rep-
resentation defined by the interval calculus has been analyzed for cognitive adequacy by
Knauff [88], who has shown that this representation aligns well with cognitive models.

Another important representation, which builds entirely on the notion of connectedness
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between regions, is the Region Connection Calculus (RCC) [145]. The canonical set of
eight relations between two regions that can be defined using connectedness, which is
known as RCC-8, is shown in Figure . Based on this set of base relations, different
reasoning systems are possible depending on the intricacies of handling open and closed
sets. FKasier calculi are possible when border regions are not considered explicitly for
reasoning [39]. A reduced set of base relations that does not take the boundary of regions
into account comprises the five relations EQ, PO, PP (subsumes TPP and NTPP), PPI
(subsumes TPPI and NTPPI), and DR (subsumes DC and EC). The cognitive plausibility
of RCC-8 has been evaluated by Renz and Nebel [151] with the result that test subjects
cluster pairs of regions according to the topological information it represents; thus showing
its cognitive adequacy.

RCC can also serve as a good example for the concept of conceptual neighborhoods [54].
These define a system of neighborhood for relations in a reasoning system, as opposed to
a system of neighborhood of objects. The conceptual neighborhood of a relation contains
all those relations that can be reached directly through transformations of one of the
involved objects. For example, in RCC-8, the cognitive neighborhood of the EC relation
consist of DC and PO, but none of the other five relations. The conceptual neighborhood
depends on the transformations that are allowed, but can usually be used to limit the
complexity of reasoning in a system, in particular if the reasoning entails the movement
of objects.

Orientation calculi Mereotopological relations are important for qualitative modelling
of space; however, the information they can represent is limited. In the following, some
simple representations that focus on orientation and direction between two objects, a
primary object and a reference object, are introduced. For reasoning about orientation, a
frame of reference is necessary. This can be either extrinsic, such as the cardinal directions
given by a compass, or intrinsic to the problem. Frank [b3] presents two spatial calculi
based on cardinal directions: a cone-based one, where the angular direction towards the
reference object is rounded to the nearest cardinal direction, and a projection-based one,
which overlays the two pairs of half-planes associated with the two pairs of opposing
cardinal directions. Both divide the plane by two lines intersecting in the reference point.
They are illustrated in Figure and Figure , respectively. A generalization of this
representation to an arbitrary number of lines is the Star calculus [150].

The single cross calculus and the double cross calculus [b5, [192] are example for relative
orientation representation, where orientation is given as a ternary relation between a point
on the plane, the referent, and the oriented line segment defined by the origin a and the
relatum b. These representations are illustrated in Figures m and .

The Cardinal direction calculus (CDC) [62] is a representation for relations between two
extended regions in the plane. For the primary region, the minimum bounding rectangle
is determined. The continuations of its edges separate the plane into nine sections, and
the relation to the reference region is given by the set of sections the reference region
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Figure 2.2: Orientation calculi. and are binary calculi; }224 and f22d| are
ternary. For the latter two, the origin is denoted by a, the referent by

b, and the relatum can be any point in the plane.

intersects with. This is usually written as a 3 x 3 Boolean matrix, where each element
indicates the non-emptiness of the corresponding intersection.

Other relations: size, distance and shape More predicates can be introduced to
describe other aspects of objects or tuples of objects like relative or absolute distance,
size, or shape. Distance and size properties are often based on quantization into a
small number of categories like far or close or relative to other objects, as in a predicate
Closer((oy, 02), (03, 04)), which compares the distances of two pairs of objects. Reasoning
about the shape of objects is a more recent development in qualitative spatial reasoning.
The high complexity of most approaches and formalisms has led to only very simple for-
malisms being adapted into robotics applications, mostly based on representing objects
by their centroid as a single point, their convex hull or a minimum bounding rectangle.
More recent work has focused on combining reasoning mechanisms from different cal-
culi to jointly reason about different aspects of a spatial arrangement, e.g. topology and
orientation using RCC-8 and RA or CDC simultaneously [38]. Another approach at
combining reasoning about orientation and distance is the ternary point configuration
(TPCC) calculus [125], which separates the plane into eight radial segments based on
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orientation with respect to the origin-relatum line segment, and additionally qualifies dis-
tance of the relatum to the referent as greater or smaller than the distance between origin
and referent.

2.3.2 Qualitative Spatial Reasoning

Qualitative Spatial Reasoning is tightly connected with methods and results from math-
ematical logic. Reasoning systems can be formulated as aziomatic systems, which are
generally first-order [188]. Due to the high complexity of reasoning in axiomatic systems,
most spatial reasoning systems are defined as relational algebras or calculi [108]. These
define a finite set of qualitative relations as described for various representation systems
above. Usually, this set of base relations is required to be jointly exhaustive and pairwise
disjoint (JEPD). If there are multiple possible base relations between a pair or tuple of ob-
jects, their relation is described by the disjunction of the individual base relations, which
is generally denoted by the union of these relations. The full set of possible relations is
the power set of the base relations, but it can also be restricted further, e.g., to ensure
tractability. In addition to the relations, two important operations need to be defined
to enable reasoning with a spatial algebra. For a binary calculus, the converse operation
defines the relation S that holds for the pair (z,y) if relation R holds for the pair (y, x).
The composition operator defines the relation for the pair (z, z) if the relations for pairs
(x,y) and (y, z) are known. For many calculi, compositions of pairs of base relations are
given in composition tables, which allow to determine the composition of arbitrary rela-
tions as the union of the compositions of the contained base relations by a simple table
lookup. For ternary calculi, corresponding ternary operators have to be defined.

Different spatial reasoning problems can be posed. An important reasoning problem is
the question whether there is an arrangement of objects that fulfills a set of given relations,
which is known as consistency checking or satisfiability. From a computational standpoint,
the consistency checking problem is a convenient choice, since many other decision or
counting problems can be converted to this problem with polynomial complexity, and
it has been studied for a long time for general-purpose logical formulations. Among
these related tasks is the problem of finding one or all variable assignments that conform
with a given constraint network, removing redundant constraints, or deciding whether a
constraint network can be realized in a particular dimension, for example on a plane. For
a propositional algebra, the consistency checking problem can be posed as a constraint
satisfaction problem, and the corresponding methods from literature can be applied. The
more restricted structure of spatial problems, as compared to general problems in logical
formulations, allows to make simplifications to the reasoning process, which make the
reasoning more efficient than general logical inference.

In many cases, the operators defined for the relations can be used in constraint prop-
agation algorithms such as path-consistency and algebraic-closure [39] to decide the con-
sistency of a constraint network. For decidable calculi, the complexity of inference is
an important characteristic. For most calculi, deciding consistency is NP-complete, for
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example for the interval and rectangle algebras, as well as for RCC-8 and RCC-5 [39].
Reasoning problems in relation systems that are able to distinguish left from right is NP-
hard [115, 198], since in these cases, local consistency algorithms such as algebraic closure
cannot decide consistency of a global scenario.

Research has been directed towards improving the practical applicability of the algo-
rithms based on local consistency by trying to identify (maximal) tractable subsets of
existing calculi, which make the backtracking search in algebraic-closure based constraint
processing more efficient. This can, for example, be done by searching for subsets that
can be expressed using Horn clauses.

While generic constraint programming and logical inference tools can be used for spatial
reasoning with the formalisms mentioned above [196], a number of specialized software
toolboxes specifically for QSR have been developed. Among them are SPARq (Spatial
Reasoning done Qualitatively) [199], GQR (Generic Qualitative Reasoner) [59], PelletSpa-
tial [175], CHOROS [35] and the Qualitative Algebra Toolkit (QAT) [40].

Wolter and Wallgriin [199] list some applications other than satisfiability checking via
constraint processing that have practical relevance. Among these is qualification, the
translation of a quantitative description of a scenario to a qualitative one considering
rounding errors and noise, and the process of producing a (cognitively valid) rendition
of a qualitative scenarion, e.g., for visualization. The qualification problem has also
been addressed in the context of machine learning. For example, the work presented in
Chapter , which describes a system based on Markov Logic Networks that estimates
relations between objects in an annotated map of an urban environment, can be seen as
an instance of a qualification problem. The approach put forward by Sjoo et al. [173] relies
on a Graphical Model to determine the relations ‘On’ and ‘In’ between everyday objects.
Support relations between objects in household scenes are the result of the estimation
process performed by Silberman et al. [169].

2.4 Mapping in Robotics

For an overwhelming majority of robotic tasks, robots need to develop and keep a rep-
resentation of their surroundings based on sensor readings and possibly prior knowledge.
Independent of the actual properties of this representation, this field of research is known
as mapping. This section will give a brief overview of the different types of maps used in
robotics, with a focus on representations that are wholly or partially qualitative in nature,
and those that have a semantic component.

2.4.1 Metric maps

Learning and maintaining a metric map is central to many robotic tasks that rely on
navigation. Based on early work by Smith and Cheeseman [174] and Leonard and Durrant-
Whyte [103], the probabilistic formulation of the problem of building a globally consistent
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Figure 2.3: Metric map with overlaid topological structure. The metric map is generated
with a SLAM algorithm on laser data. For the topological map, the structure
of the environment is extracted from the metric map as the Voronoi graph,
and edges are placed at junctions of the Voronoi graph as well as at constant
intervals between junctions.

map has become known as the Simultaneous Localization and Mapping (SLAM) problem.
Data from a very diverse range of sensors such as cameras, sonars, laser sensors, odometry,
and GPS needs to be integrated over the course of potentially long exploration runs
of a robot. A basic distinction between SLAM approaches is whether they are filter-
based or graph-based. Filter-based SLAM emphasizes the temporal aspect of consecutive
sensor measurements, while the graph-based variant emphasizes the spatial aspect by
adding spatial constraints between robot poses where landmarks are jointly visible [65].
The underlying representation for the metric map can vary independently of the SLAM
formalism, from landmark-based formalisms that store the positions of salient features in
the environment to low-level representations like occupancy grids [64], surface maps [183],
or raw sensor measurements like point clouds. A central challenge in SLAM is the data
association problem of aligning real-world features across multiple sensor measurements.
A good solution is important when the robot revisits a location where it has been before
(closing the loop), where a wrong association of features leads to an inconsistent map.

An example of a metric map generated using a SLAM algorithm from laser sensor data
is shown in Figure R.3.

2.4.2 'Topological maps

Topological maps represent environments using a graph, the nodes of which represent
places in free space, and edges denote traversability or connection in free space between
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pairs of nodes. There are different approaches to defining the notion of places. One
common approach is to define nodes in the topological map for each distinct part of the
environment, separated by gateways such as doors or entryways. Other approaches define
nodes every time the robot has traveled a fixed, specified distance, or use the structure
of the Generalized Voronoi Graph [9]. An example of a_topological map overlaid over a
metric map of the same environment is given in Figure P.3.

Like the problem of loop closure in metric mapping, topological mapping also faces
the problem of identifying a place that is being revisited by the robot. This is known
as the correspondence problem, which is made difficult in environments where possible
matching candidate places look exactly or approximately the same in the available sensor
data, which is known as perceptual aliasing.

An axiomatic theory and full ontological definition of topological maps was presented
by Remolina [149]. Map learning is accomplished in a purely logical fashion by using
nested abnormality theories, which use causal, topological and metrical properties of the
environment to determine the topological map as the minimal map that explains the
robot’s percepts.

For topological maps, the space of maps is combinatorial, but still much smaller than
the space of all possible metric maps. Thus, multi-hypothesis or probabilistic methods
that keep a distribution over all possible hypotheses are possible. The probabilistic topo-
logical map [147] keeps a distribution over all possible topologies using a Rao-Blackwellized
particle filter. Wallgriin [191] presents a topological mapping algorithm that exclusively
relies on qualitative spatial reasoning to keep track of multiple hypotheses about the
structure of the environment. Two different qualitative reasoning calculi are compared
on the task of building a consistent map from sparse qualitative connection information,
using various constraints on the spatial structure of the resulting network to reduce the
size of the search space. An extensive review of SLAM in topological maps is presented
by Boal et al. [20]

A topological map is also a convenient and efficient representation of environments for
route-based navigation. The route graph [194] is a topological map designed for this pur-
pose. Its nodes are places connected by courses, which together make up route segments
and entire routes. Elements of the route graph can be labelled with additional information
to convey categories such as the medium of transport to be used on a particular route
segment.

2.4.3 Hybrid maps

Each type of map has its own strengths, and the term hybrid maps describes approaches
that combine different representations to form a stronger overall environment represen-
tation. Buschka and Safiotti [25] define a hybrid map as a tuple of maps, where usually
one is metric and one is topological. The benefit of the hybrid maps comes from links
between the two, which maps objects from one map to objects of the other. Other com-
binations are possible, however. Some advantages of this combination of different maps
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are improved loop closure, lower complexity, improved localization, easier planning and
high-level reasoning, and the possibility to define a system state on different levels. A par-
ticular benefit for hybrid maps can be the possibility to relax the requirement for global
consistency of metric representations, and keep a consistent topological representation
instead, which can have computational advantages.

An early instance of hybrid maps that has received much attention is the Spatial
Semantic Hierarchy (SSH) [93, 94], which is inspired by cognitive studies about human
spatial representations. It models space on four levels, where each level depends on
information from the levels below: The lowest level is the control level, which defines
a dynamical system where distinctive state, known poses in the environment, can be
reached by hill-climbing, and trajectories between these states or their attractor regions
can be followed. Sensor percepts, so-called views, allow the unique identification of these
states. On the causal level, a finite state automaton is defined, in which state transitions
correspond to movements between places. The states and edges of this automaton map
to places and paths on the topological level. Finally, the metric level stores a geometric
representation, such as occupancy grids, for each place, which can be combined to form a
global metric map. Not all levels must be present or available at all times, depending on
whether the region has been explored, availability of computation resources, sensor data
etc. The hierarchical structure of the SSH is illustrated in Figure R.4.

This formalism was extended with ideas from the SLAM community to form the hybrid
SSH [95], where local maps are used instead of views to identify places locally. This allows
more tolerance for noise and dynamics in the environment in small-scale space (within
the sensor horizon), but does not require loop closure in large-scale space, where the
topological representation can be used. Beeson et al. [16, 17] integrate semantic aspects
in the hybrid SSH by reasoning about gateways and integrating the approach with a
natural language interface.

2.4.4 Semantic Maps

While metric and topological maps only describe the spatial arrangement of an environ-
ment, additional information is necessary for many robotics tasks. Semantic maps broaden
the scope of the elements represented in a map to instances of objects, their categories
and possible attributes, and to common-sense knowledge about entities represented in the
map [99]. This is particularly beneficial in applications where a higher-level understanding
of scenarios is necessary, and when applications require human-robot interaction.
Semantic mapping requires that information about the objects in an environment is
available for reasoning. Like the spatial information represented in metric maps, this
information is often inferred from typical sensor data, coming from 2D and 3D sensors
including sonars, LIDAR scanners, monocular, stereo and omnidirectional camera setups
and RGB-D sensors. For building semantic maps, high-level techniques like character
recognition [28], interaction with humans or databases of common-sense knowledge are
used as additional modalities. While the use of non-technical information sources, such as
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Figure 2.4: Illustration of the Spatial Semantic Hierarchy. The environment is repre-
sented by two distinctive states s on the control level, which each have a
region of attraction and are connected by a trajectory t. On the causal level,
the distinctive states can be identified from sensor percepts with the views
v, and transitioning from one state to the other is possible by taking action
a. On the topological level, the environment has two places p, which are
connected by a path w. On the metric level, a local metric representation
for each place can be stored.

human-machine interaction through natural language, are an active research topic [208,
182, 193], this section focuses on the use of purely technical sensor streams for semantic
map building. Advanced perception algorithms for object detection, segmentation and
classification have been adapted from the robotic perception and computer vision litera-
ture and developed specifically for semantic mapping. This area of research is out of scope
for this overview, which instead focuses on the mapping and representational aspects of
semantic mapping. An overview of perception approaches to semantic mapping is given
by Kostavelis and Gasteratos [90].

There is a broad range of different types of semantic information in maps, depending
on factors like the intended application, the sensor repertoire of the robot, and the type
of environment that is being mapped. A broad categorization can be made between maps
that add semantic attributes to objects in the map, maps that categorize regions, and
those that add semantic categories to sensor percepts on the trajectory of an exploration
of the environment.

20



2.4. Mapping in Robotics

Object-based Semantic Maps

The first category of semantic mapping approaches relies on techniques for scene inter-
pretation to label objects in the robot’s sensor stream and localize them using a metric
environment representation. In this vein, Limketkai et al. [L109] label line segments in a
metric map as wall, door or other using a relational Markov Network that uses unary
and pairwise as well as higher-order spatial relations between objects as input. Niichter
and Hertzberg [134] use a constraint network expressing common properties of spatial
arrangements of planes in buildings to classify points from a point cloud into different
categories (ceiling, wall, floor, etc.). Additionally, other objects like humans and printers
are detected and classified, forming a semantically annotated 3D point cloud. A more
perception-oriented approach is presented by Meger et al. [122], where objects detected
and classified based on camera images are mapped into their locations in a global occu-
pancy grid. A place categorization method based on object co-occurrence statistics and
clustering of objects to places based on spatial distance and a Bayesian criterion for the
number of clusters is presented by Viswanathan et al. [189]. In order to capture addi-
tional information in the map, and to improve object recognition results, it can be useful
to not only enter object information, but also relations between objects explicitly into the
map [105].

Region-based Semantic Maps

Many semantic mapping approaches discretize space to a topological map on some level
of their hierarchy of maps into areas of conceptual meaning, which are often called places.
One distinguishing factor between semantic mapping approaches is the way places (or
generally nodes in a corresponding topological formulation) are separated.

Some mapping systems recognize that distinct places are usually separated by gate-
way structure like doors, and devise ways of identifying these structures. The work by
Vasudevan et al. [186] builds on a method to recognize objects and doors. A probabilistic
relative object graph tracks object positions relative to the place they are found in, and
allows to compute probabilistic spatial relations between them. These graphs are used for
place recognition, and classification of places is based on the types of objects present in
the scene. An extension of the approach [187] uses spatial information even in the reason-
ing about place categories, where the category of objects, the number of occurrences and
simple spatial relationships between them are taken into account when classifying rooms
into different categories. Places can have hierarchical structure, so places that afford par-
ticular functions, such as a ‘printer area’ or a ‘couch area’ can be contained in a more
general place of type ‘office’. A more detailed subcategorization of gateways is part of the
approach by Rituerto et al. [155], which distinguishes the categories door, stairs, elevator
and jamb. Ranganathan and Dellaert [148] use objects to model and recognize places,
where object classifiers are learnt in a supervised manner for recognition. For localization,
the camera pose is reconstructed based on the positions of the objects recognized in the
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environment.

Other work on segmenting metric maps of indoor environments into semantically
meaningful clusters is based on a semi-supervised scheme employing a Markov process
model [110], spectral clustering on a graph that encodes visibility between randomly sam-
pled free space points in its edges [24], clustering based on mutual information [111] and
fitting models of basic room shapes in a Markov Chain [113].

Pronobis et al. [143] present an approach for semantic mapping where low-level classi-
fiers are used to determine properties of areas such as room shape, size, or the existence of
certain objects, which are then used to determine room types in a probabilistic reasoning
step through inference in a chain graph. Later work [141] includes this technique in a com-
plete semantic mapping system for indoor environments. It accepts multimodal sensor
input, including input from humans via natural language, which is treated as a separate
sensor modality with an appropriate sensor model. For mapping an environment, first
a global metric and topological map are built. Places are created at constant distance
intervals on the trajectory of the robot, which are further clustered into rooms separated
by door places.

Semantic Maps from Segmenting the Robot Trajectory and from User
Interaction

Environments can also be segmented into semantically distinct regions in an online process
by recognizing significant changes in the surroundings of the robot while it is exploring
the environment. Mozos et al. [126] use a boosting classifier in combination with a hidden
Markov model to segment the trajectory of the robot into contiguous segments, where
the surrounding environment corresponds to a place. The same classifier together with
probabilistic smoothing techniques is used to cluster an occupancy grid into areas of
semantic meaning.

Siinderhauf et al. [176] create a semantic occupancy grid by classifying camera data
with a convolutional neural network and propagating the classification results along laser
beams similar to the probability update in a standard occupancy grid. A number of
other approaches rely on classifying and segmenting environments based on the stream
of images from the robot’s sensors. A topic modeling approach is used by Murphy and
Sibley [127], while Ranganathan & Dellaert [146] use an information-theoretic approach.
A string encoding of appearance features is used for segmentation of places by Tapus and
Siegwart [L77].

A segmentation of an environment can also be determined through user interaction.
Thrun et al. [180] determine distinctive places by having users push a button to communi-
cate that the robot has arrived at a distinctive place. Nieto-Granda et al. [130] define the
assignment of places to the environment as a mixture-of-Gaussians distribution, where
the centers of the individual components are taught by human interaction partners during
a tour of the surroundings.
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Ontologies and High-Level Reasoning

High-level reasoning about the map and its elements requires the robot’s understanding
of task-relevant concepts as they are used in human reasoning and in language in their
own right, and their connection to the corresponding sensor impressions, which is one
aspect of the symbol grounding problem [[71]. A common trait to many approaches that
combine metric or topological mapping with reasoning on higher-level concepts is the
introduction of an ontology, where world knowledge is stored in a taxonomy and sensor
experience from the map is encoded to domain knowledge, which are then linked based
on overlapping semantic attributes. Zender et al. [202] present one instance of such an
approach, where ontological reasoning complements a multi-level spatial map to form a
conceptual representation of an indoor environment. The ontology is handcrafted to rep-
resent different room types and the typical objects present in them. Grounding instances
of places and detected objects in the environment allows to refine knowledge about the
environment, and to generate a linguistic representation of a scene, for example for clar-
ification dialogues. Hawes et al. [72] builds on this mapping approach to build a system
that can identify, reason about and autonomously fill gaps in its knowledge about the
environment, both its structure and conceptual knowledge as well as semantic knowledge
such as room categories.

The multi-hierarchic semantic map for indoor environments presented by
Galindo et al. [b7] maintains hierarchical representations both for spatial and for se-
mantic knowledge, where the latter takes the form of an ontology. The bottom level of
the spatial hierarchy is made up of an occupancy grid, which is segmented into rooms
using image processing techniques to form a topological map. Based on properties of
the rooms and objects found in them, regions can be classified and anchored to the cor-
responding concepts in the ontology, and further reasoning can be performed based on
the world knowledge stored there. Tenorth et al. [179], Pangercic et al. [135] and Ri-
azuelo et al. [152] introduce semantic mapping approaches which link objects detected in
the environment to a large database of common-sense, probabilistic knowledge including
high-level attributes like affordances or object articulations, which allows to execute high-
level plans like ‘clear the table’. A different type of world knowledge is tapped by works
that use the large-scale structure of buildings to determine the function of rooms by their
typical topology or by conditioning classifiers on the type of building [10, 116, [117].

Outdoor Semantic Mapping

While the research in semantic mapping has primarily been directed towards the appli-
cation in indoor environments, outdoor environments have been addressed as well, using
a similar array of techniques. Lang et al. [99] apply a multilevel spatial representation
along with ontological reasoning to urban outdoor environments. Multiple other methods
to add semantic labels to metric maps of urban road environments have been presented,
e.g., [42, 73, 139, 140, 165, [166]. Singh and Kosecka [170] put the focus on their work
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on using semantic features extracted from images to cluster street segments into similar
categories for segmentation, and using these features for the detection of intersections in
cluttered inner cities [170]. Semantic categories can also be used to determine the dynamic
properties of parts of the map, which helps to keep track of changes when revisiting places
where certain objects of dynamic classes have moved, while static objects can be assumed
to remain in the same place over time [45]. Semantic categories can also be useful for
autonomous airborne vehicles [164], for example for avoiding obstacles such as as trees or
buildings, and for marking certain object classes as possible targets or points of interest.
An exemplary use for semantic maps in an outdoor context is given by Drouilly, Rives,
and Morisset [43], who extend the idea of route planning based on a task description
containing objects as landmarks to an urban domain.

While the mentioned approaches present techniques for describing outdoor environ-
ments with semantic attributes in general, a large share of the scientific effort is directed
specifically towards the application of autonomous driving. A topological description
of large-scale outdoor environments, augmented with semantic information relevant to
the task of for off-road driving, is defined by Bernuy and Ruiz de Solar [1§]. Wolf and
Sukhatme [197] create a terrain map of a robot’s driving surface that is annotated with
semantic labels, and includes traversability information [197]. In addition to common
appearance features for static environments, observed dynamics are included as activity
measurements to distinguish different environments in that work. A similar approach [98]
uses CRF-based terrain classification both for traversability analysis and for localization.
Grimmett et al. [63] developed an hybrid map for the application of automated car park-
ing that combines metric information for navigation with semantic information about
parking space locations, pedestrian crossings and safe driving speeds [63]. Special focus is
put on the map being adaptible, which means that it is able to keep information consistent
when the map is updated partially on the arrival of new information. Further informa-
tion about urban environments can be gathered by observing the behavior of pedestrians.
Qin et al. [144] present work in which places with pedestrian activity, such as pedestrian
crossings or subway exits, are classified based on observed pedestrian trajectories. Seman-
tic categories assigned to objects can also be used for localization in urban scenarios [4].
Chapter f describes in detail a system that localizes a robot in building maps based on
building shapes alone, and gives an in-depth discussion of the scientific work related to
that problem.

2.5 Conclusion

This chapter has attempted to give an overview over the different aspects of the scientific
field of semantic representations of space in robotics. As it can be seen from the large va-
riety of topics involved in this discussion, it is a highly multidisciplinary field, which takes
inputs from engineering, mathematical modeling and reasoning, cognitive science and
psychology, cartography and multiple other fields. Its applications extend over the realm
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of robotics to intelligent services for logistics and transportation, pedestrian and vehicle
navigation, and location-based services, which all benefit from map-based environment
information.

As the overview has shown, there is no single, unique semantic mapping solution which
fits all applications in this spectrum, and it is hard to imagine that there will be any
in the future. Instead, many application-specific solutions have been developed, which
fit the need of the problem in terms of the contained information, the structure and
source of the input data, the internal representation and the way that information is
presented to other systems. In particular, tailored solutions are necessary to retrieve
the needed semantic information from the environment. Improvements in this respect
are to be expected from the development of powerful, standardized methods for scene
understanding, object recognition and classification with the recent scientific advances
in machine learning research, in particular in deep learning. This lack of generalizable,
easily applicable solutions for semantic mapping, and particular the lack of a standard,
widely usable ‘off the shelf” software, causes a relatively high development effort for robotic
systems that are to use semantic knowledge about the environment. This is in contrast
to the development in metric mapping approaches, where the advances in the SLAM
community have produced software packages that are readily available and can be used
with little customization for a wide array of applications. Nevertheless, semantic mapping
has enabled robots to achieve tasks that would not have been possible otherwise, especially
in the area of establishing a common grounded environment representation for robots and
human interaction partners. It has been shown multiple times that higher-level, semantic
knowledge can be beneficial for the performance of traditionally lower-level algorithms
like metric mapping or classification.
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Estimating Spatial Relations with Probabilistic
Logic for Human-Robot Interaction in Urban
Environments

Since spatial and semantic reasoning are tightly linked to the sensor perception
information, it is desirable that all types of information are integrated in a joint
environment model. This chapter presents the interplay of a novel environment
representation called Semantic Rtree (SRTree) and Markov Logic Networks for
reasoning about qualitative spatial relations between objects. The SRTree is a
semantic occupancy grid based on the hierarchical Rtree data structure that
models the occupancy of each grid cell and assigns a class label to it. The
main advantages of the proposed approach are 1) a hierarchical representation
of large scale outdoor urban environments, which 2) captures both quantitative
(metric) and qualitative (semantic) aspects of the environment and allows
reasoning in a single data structure, and 3) the capability of dealing with higher-
order spatial relations. The proposed methods are experimentally evaluated on
a large scale 3D point cloud dataset of downtown Munich enhanced by RGB
image data.

In addition, this chapter also presents a novel inference method for the most
probable explanation (MPE) task in Markov Logic Networks (MLNs), which
is based on a conversion of the original logic formulation to a purely algebraic
pseudo-Boolean formulation. Subsequently applying a quadratization method
allows the application of efficient inference methods such as Quadratic Pseudo-
Boolean Optimization (QPBO). Experiments on standard problems from the
Statistical Relational Reasoning literature show that the approach performs
very well with respect to other state-of-the-art inference engines.

The work on spatial relation estimation is part of the work published in [214],
and the quadratization-based inference method for MLNs was published
in [205).
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Figure 3.1: The IURO robot in unstructured urban environment.

3.1 Motivation, Problem Statement, Related Work

As described in Section @, the Interactive Urban Robot (IURO) project was formed to
address some of the challenges towards the goal of robots as universal helpers being able to
autonomously act in unstructured, dynamically changing environments. The goal of this
project was to create a robot that is both able to navigate in an unknown urban environ-
ment and interact with human passers-by in order to retrieve information. The robot can
be given a designated goal location in a city and successfully finds its way to this location
without the use of prior map knowledge or Global Positioning System (GPS), obtaining
and interpreting directions by asking pedestrians for the way. Building an autonomous
interactive robot requires the design of a cognitive architecture that ties together func-
tional modules for navigation, environment perception and interaction. The interaction
has to be natural and intuitive for the humans, as they are picked autonomously by the
robot, have not had prior contact with robotics technology, and are not instructed prior
to the interaction.

In this scenario, a fundamental ability of the robot is to integrate environment informa-
tion from multiple sources—particularly from sensors like cameras and laser range finders
as well as verbal and gesture information from interactions with humans—into a concise
environment representation. To this end, the robot must be capable of spatial reasoning,
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i.e. establishing geometric relations between objects, in terms understandable by humans.
It is therefore desirable that metric and semantic environment representations are tightly
interlinked.

The field of 3D robotic mapping has received a lot of attention in the scientific com-
munity. The most commonly used approach is an occupancy grid, which divides space
into grid cells and estimates the probability of occupancy of each cell [46, [77, 160, 161].
These representations can be useful for navigation and exploration; however, they do not
capture symbol-level information about the environment. To develop autonomous inter-
active robots, robots must be capable of understanding the semantics and relationships
between the objects in the environment. Recently, the focus of the robotics community
has shifted towards semantic representations [[123, 131, 142] and object relation modelling
in semantic maps [3, 101, 109, [135, 137, 179] as outlined in Chapter . The majority of
the works mentioned rely on point clouds or operate on the level of objects to represent
the semantics of the environment, which is not suited for navigation. Occupancy grids are
suitable for navigation; however, they do not capture the environment semantics. Hence,
there is a requirement to generate a hybrid representation that combines the advantages
of occupancy grids and semantic environment representations. This chapter presents
the SRTree, which is capable of generating a probabilistic occupancy representation for
the task of navigation and exploration and additionally captures symbolic information
about the environment. This representation can be useful in scenarios in which a robot
is required to navigate in an environment while also allowing object-level reasoning.

As an instance of such reasoning tasks, the typical Human-Robot Interaction (HRI)
scenarios encountered in the IURO project deal with higher-order spatial relationships.
For instance, natural language route instructions frequently contain identifiers like ‘turn
at the next crossing’, ‘the building left of the statue’ or ‘the crossing behind the traffic
light”. Correctly interpreting these instructions requires the retrieval of the correct referent
objects from the robot’s internal environment representation. Hence it is important for
the robot to be aware of the environment semantics and the relationships between objects
present in the environment.

The main contributions of this chapter are:

e The description of a novel inference method for Markov Logic Networks (MLNs)
based on a pseudo-Boolean algebraic formulation

e A semantic occupancy grid (SRTree) that models the occupancy probabilities and
assigns a class label to each grid cell

o The capability of dealing with higher-order spatial relationships using Markov Logic
Networks

o A large scale colored point cloud dataset of downtown Munich annotated with 10
different class labels, which is made publicly available to the research community
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The main advantage of the proposed approach is that it is capable of dealing with
higher-order spatial relations and generates a hierarchical representation of large scale
outdoor urban environments. The SRTree provides the foundation for this higher-order
spatial reasoning through its hierarchic structure which ensures fast access to the occu-
pancy grid, the environment semantics and allows storing of spatial relations within the
same structure.

This chapter is organized as follows: Section @ gives an introduction into probabilistic
logic with MLNs and then proceeds to describe a novel inference mechanism that can be
applied to them. The MLN formalism is then used to reason about qualitative spatial
relations in the SRTree environment representation, as it is explained in Section
The dataset that is used for the experimentation is described in Section , while the
experiments themselves are put forward in Section B.4. Section concludes the chapter
with a discussion of the results and possible extensions of the method.

3.2 Efficient Inference in Markov Logic Networks
using a Pseudo-Boolean Formulation

3.2.1 Motivation for Probabilistic Logic

As mentioned specifically for the field of spatial reasoning in Section , machine intel-
ligence problems have often benefited from reasoning on a symbolic level. On the other
hand, experience with systems operating in the real world shows that the stringency and
hardness of the rules employed in deterministic symbolic reasoning is often unable to deal
with the imprecision and uncertainty that is always contained in the data these systems
operate with. For this reason, extensions of classic symbolic techniques using logical rea-
soning systems with probabilistic methods have proven successful in robotics and machine
intelligence applications. In order to solve a particular task or equip a technical system
with domain expertise, knowledge bases (KBs) are built which allow domain experts to
describe important concepts and relationships. Observed data from a real-world system
is then used to associate these rules with weights that reflect their validity in the noisy
technical process. Omne particularly successful formalism combining logical and proba-
bilistic reasoning are Markov Logic Networks (MLNs) [153]. They combine the powerful
language of first-order logic with the flexibility of Probabilistic Graphical Models. The
following section gives an overview over the basics of MLNs, and then proceeds to describe
an algebraic formulation of these models that is based on the theory of pseudo-Boolean
functions, which is shown to have computational benefits on a wide range of problems.
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3.2.2 First-Order Logic and General Formulation of Markov
Logic Networks

First-Order Logic

First-Order Logic is a language that describes relations between objects in the world.
A full description of its aspects is out of scope for this thesis, and detailed treatments
can be found for example in [41]. Objects in the world are part of a domain, which
can be interpreted as a semantic type or categorization of the object. First-Order Logic
refers to objects through terms, which can either be constants referring to a particular
object, logical variables, which can stand for one element from a group of objects, or
logical functions, which map tuples of terms to other objects. First-Order Logic formulas
are formed from predicates, which describe relationships between terms, the connectives
-, V, A\, =, <, =, and the existential and universal quantifiers 3 and V. A sentence is a
formula where all variables are bound, i.e. all variables are governed by a quantifier. A
variable that is not bound by a quantifier is a free variable. Predicates that are applied
on a specific tuple of terms, the arguments of the predicate, are called atoms or literals,
while their negations are called negative literals. Atoms that only have constants as their
arguments are called ground atoms.

In first-order logic inference, truth values T and 1 are assigned to atoms based on
partial knowledge about the objects in the world and the relationships present between
them. First-Order Logic is not decidable, so it is not always possible to reach a definite
conclusion about whether a satisfying assignment to the variables in a sentence exists or
not.

Markov Networks

Markov Networks are an efficient way of specifying factored probability distributions. A
distribution over a set of variables @ that can be expressed as a product of factors

P() = 5 [ detxe),

where @ are subsets of the complete set of variables, which are referred to as cliques, and
the partition function Z is a normalization constant, belongs to the family of distributions
that are expressible as Markov Networks. Markov Networks can be efficiently represented
as an undirected graph which has a node for each variable, and nodes for variables co-
occurring in a clique are connected with an edge. The nonnegative clique functions ¢¢
describe the influence of their arguments in the probability distribution and they are
commonly chosen to be from the exponential family. Computations with and analysis of
Markov Networks are often performed in the log domain, where the expression

— ) log ¢c(xc) (3.1)

ceC
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is referred to as the energy function. Its minimizing arguments define the maximum-a-
posteriori (MAP) variable assignment of the distribution. Apart from this, the formu-
lation allows a host of different statistical computations. Aside from the MAP query,
the marginal distributions for the random variables & are a common query in Markov
Networks.

Markov Logic Networks

Markov Logic Networks use first-order logic functions as templates for the clique functions
of a Markov Network. A MLN M, as defined by Richardson and Domingos [153], is a set
of pairs (F};,w;), where F; are formulas in first-order logic and w; are associated weights.
Together with knowledge about the domains of the variables contained in the KB and
the objects contained in these, a ground Markov Logic Network can be defined, which is
equivalent to a Markov Network with a special structure.

For the formal definition of MLNs that follows it is helpful to extend this concept to
allow further restrictions on the set of objects a logical variable in a formula can be mapped
to. These can be formalized as constraints C. For the discussion that follows, two types
of constraints are useful: substitution constraints, which specify that logical variables t
should only be mapped to the tuples of constants contained in a set P, and equality
constraints, which specify that different logical variables should be mapped to the same
constants (i.e. (X =Y)), or only to different constants (i.e. (X # Y')). The combination
of a formula F(t) in logical variables ¢, its associated weight w and constraints for its
logical variables C' is called a parfactor [138] g = (C, F,w).

The process through which the ground MLN is obtained is called grounding. It entails
substituting each variable in each of the formulas in the database by all the objects in its
domain, such that the formula only contains ground atoms for that particular substitution.
This formula is then added as a clique function, which in the MLN context are called
factors, to the network. The binary random variables of the network are thus the ground
atoms resulting from the combination of formulas and domains in the knowledge base.
To formalize this process, it is useful to introduce the substitution operator 6. It maps
terms from a set 7 to terms from a different set 7’ according to a mapping 7 — T’. The
substitution of terms in formula f with the substitution 6 is written as ff. A substitution
where the set of terms that is being mapped to consists solely of constants is called a
ground substitution. With these definitions, the set of all possible groundings of a set of
logical variables ¢ under the constraints C' can be defined as gr(t : C'). Now, the Markov
Network resulting from grounding the logical variables in the knowledge base consisting
of the parfactors G = {g;} can be written as

P(m):%exp S Y Fltye|. (3.2)

ge€G 0egr(ty:Cy)

Similar to the concept of conditioning in general statistical inference, it is possible to
introduce knowledge about the state of some random variables into the model. In MLNs,
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this is done by specifying evidence. It consists of sets of tuples of objects for which the
truth value assigned to a specific predicate, which has them as its arguments, is known.
The sets of objects for which the truth value of predicate P is T or L are denoted by Pt
and P, respectively. Thus, if it is known that P is T when it is applied on the constants
0, then P(0) € Pr. If evidence is available for all possible groundings of the predicate
P, the predicate is fully observed. Otherwise, there are some groundings of the predicate
for which no truth value is known a priori, which are contained in the set of unobserved
groundings Py .

There are different methods for obtaining the weights associated with the formulas. In
engineered systems, they can be specified by a domain expert. If data that exhibits the
relationships the MLN is supposed to model is available, then weights can be learnt to
reflect the degree to which the given rules describe the data. The original formulation
of MLNs [153] described a weight learning technique based on optimizing the pseudo-
likelihood of labeled data under the model using gradient descent. Several other weight
learning methods [78; [79, 114, 162] have been developed since.

Example 3.2.1. To illustrate the concepts introduced up to this point, a very small toy
example for a MLN is created. A common example for MLN models describe the social as-
pects of smoking. It contains the formula F' = Friends(X,Y ) ASmokes(X) — Smokes(Y'),
which means that friends have similar smoking habits. It contains the predicates Smokes
and Friends, and the logical variables contained in the formula are X and Y, which are
bound to a domain containing persons. The sensible restriction that this formula should
not apply when X and Y both refer to the same person can be expressed by the constraint
C = (X #Y). If the domain for grounding the MLN contains the persons {A, B}, the
groundings for the parfactor (F,w,C) are {(X,Y) — (A, B),(X,Y) — (B, A)}.

Inference in Markov Logic Networks

Multiple inference queries can be posed to the probability distribution (@) defined by
the MLN. Most common inference goals are the marginal distributions of all or a subset
of the random variables, and the variable assignment that maximizes the probability,
conditioned on some evidence. This assignment is known as the maximum-a-posteriori
(MAP) or most probable explanation (MPE) solution, and the discussion in this chapter
is concerned with this instance of the inference problem. Due to the high treewidth of
the ground models, this inference problem is in general intractable. The following gives
an overview over recent methods for MAP inference in MLNs.

MaxWalkSat [83] is a stochastic search algorithm for weighted maximum satisfiability
problems, of which the MAP query to an MLN is an instance. It can be implemented
in a lazy way, which means that it is not necessary to keep the whole grounded network
in memory during inference, as it is implemented in the ALCHEMY package [153]. The
TUFFY system [[132] extends this approach by using a relational database for the necessary
grounding operations and by parallelizing inference in different weakly connected parts
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of the network, thus achieving higher scalability. A partitioning of the network in parts
found using minimum cuts can also be used to parallelize the inference process, e.g.,in an
importance sampling framework [15].

Contrary to these search- and sampling-based approaches, a different line of research
has formulated the inference problem in MLNs as an integer linear program (ILP). In this
framework, a relaxation of the integrality constraint results in a linear program, which
provides a solution that can be converted to an approximate solution of the original
problem by rounding. The optimal cost of the relaxed problem provides an optimistic
estimate of the exact value of the problem. A critical factor for the complexity of the
resulting inference problem is the number of constraints that are included in the problem.
Riedel [[154] presents a cutting plane algorithm for MLNs, which adds constraints to the
problem in an iterative fashion if the current solution does not satisfy them, and disregards
constraints that are satisfied. The ROCKIT system [133] improves scalability of the LP-
based inference by identifying structurally similar constraints on the first-order level and
parallelizes the problem into several smaller ILPs.

Yet a different group of approaches tries to leverage the first-order definition of the
problem to avoid propositionalizing the full network. This class of algorithms performs
so-called lifted inference [86]. Algorithms for performing lifted inference on MAP problems
have seen significant improvements in recent years [[7], 124, 129, 163]. Since, however, these
algorithms are limited to perform on a limited set of classes of tractable problems with
specific constraints on the types of rules and evidence, they are not discussed in depth in
this work.

3.2.3 Pseudo-Boolean Formulation of Markov Logic Networks

Pseudo-Boolean functions

Pseudo-Boolean functions are functions that map Boolean variables & € B to real values.

Let * = [r1,29,...,2,] be a vector of Boolean variables. From this, the set of corre-
sponding literals L = {xgl),xgl), . ,x%l),xgo),xgo), e ,337(10)} can be defined, where the

superscript (1) stands for a positive literal and the superscript (0) for a negative one. A
general pseudo-Boolean function with M terms can be written as a weighted polynomial
in literals

M
P(x) = E a;m;(x;)
i=0
where a; are real-valued coefficients and m;(x;) are monomials of Boolean variables

mi(@:) = [[ =}
J

As before, the superscripts v; ; indicate whether literal z; ; appears positive or negative in
monomial m;. The order or degree of a pseudo-Boolean function is the maximum number
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of literals in any single one of its monomials

With the negation substitutions for literals z(® = 1 — 2z and 2z = 1 — 2@, it is
possible to transform the polynomial representation of a pseudo-Boolean function ¢ into a
different one with the same value table. Notable among them is the representation which
contains only positive literals. It is called the multinomial representation.

Using these transformations, it is also easily possible to transform the pseudo-Boolean
function into a representation where all coefficients a; are positive by applying the negation
substitution on a single variable in all terms a;m;(x;) where a; < 0. Thus, for each term
with a negative coefficient, two weighted monomials with positive coefficients are created,
one of the order of the original term and one with an order decreased by 1. Such a
representation, which is not unique, is called a posiform, and has some special properties.
Most importantly, the constant term ag in a posiform representation represents a lower
bound for the value of the associated function.

A subclass of pseudo-Boolean functions, the class of so-called submodular functions,
has received special interest in the context of optimization of pseudo-Boolean functions.
Submodularity is usually defined for set functions, which map sets of elements S C V to
real values. A set function f that is equivalent to a pseudo-Boolean function g can be
derived by defining S as the set of indices of variables taking the value 1 in a Boolean
variable assignment @. Then, the values of the set function can be determined as f(S) :=
g(x). The definition of submodularity is then

fX)+f(Y)>F(XUY)+ f(XNnY).

Submodular functions take a special role in the optimization of pseudo-Boolean functions
since they can be minimized in polynomial time [22]. However, the recognition problem,
i.e. the problem of deciding whether a given pseudo-Boolean function is submodular or
not, is intractable for functions of degree of 4 or higher. For quadratic pseudo-Boolean
functions, however, the recognition problem is trivial: A quadratic pseudo-Boolean func-
tion is submodular if all its quadratic terms have non-positive coefficients.

Conversion between Formulas in First-Order Logic and Pseudo-Boolean
functions

In order to create a pseudo-Boolean representation of the energy function (@) of an MLN,
it is necessary to convert the parfactors to pseudo-Boolean potential functions. This is
possible for general functions by creating a value table and creating a monomial for each
entry in the table, and then applying algebraic simplifications [22]. However, since the
formulas of the MLN are first-order logic sentences, they can be converted to conjunctive
normal form (CNF), which can directly be translated to pseudo-Boolean by applying

\/u:1—/\ﬂ

uelU uelU

!The term order has a different meaning in the contexts of pseudo-Boolean functions and first-order
logic. Here, it is generally assumed that the context is clear enough to avoid confusion between the two.
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to each clause U containing literals u. All conjunctions can then be replaced by mul-
tiplications to obtain a polynomial in the literals of the original logical function. All
monomials coming from MLN formula F; are then multiplied with the coefficient log(w;).

The result of applying this procedure to all parfactors of a MLN results in a new
probability distribution

P(x):%exp Z Z dg(ay)d | ,

9€G 0egr(Ly:Cy)

where ¢, is the pseudo-Boolean representation of the first-order logic formula F, weighted
with w,. The distribution is equivalent to (@), but the representation is presented here
is purely arithmetic and can be manipulated as such. It is referred to as Pseudo-Boolean
Markov Logic Network (PBMLN).

Example 3.2.2. This example describes the PBMLN created from the problem defined
in the toy Example . The pseudo-Boolean representation of F'is ¢ = 1—s,+ f; 4525y,
where s, and s, are binary variables for Smokes(X) and Smokes(Y'), respectively, and f,
is the binary variable for Friends(X,Y). The ground PBMLN is given by

1
P(sa,5B, faB, fB.A) = - Wexp (1 —sp+ fapsasp+1—54+ fpaspsa)

with the ground binary variables defined accordingly.

The formulation of MLN problems in pseudo-Boolean form allows an analysis of the
tractability of MLN problems. Tractability in this context describes the property of
computation time being polynomial in the number of variables, as opposed to general MLN
inference problems, where the computational complexity is exponential in the number of
variables. The known classes of tractable pseudo-Boolean functions can be carried over
to the MLN domain to identify tractable instances of MLN inference problems [205].

Quadratic Pseudo-Boolean Optimization

Tractability analysis is not the only technique that can be transferred from the study
of pseudo-Boolean functions to PBMLNSs. It is also worthwhile to study the application
of optimization methods from the pseudo-Boolean literature to PBMLNs problems. An
interesting approach that has provided good results on image processing problems because
of its computational efficiency is Quadratic Pseudo-Boolean Optimization (QPBO) [22,
89]. It computes an exact solution for second-order pseudo-Boolean functions which
belong to the submodular class of functions. Functions which are not submodular or of an
order higher than two can not be solved exactly in general. However, for non-submodular
functions it is possible to find a submodular relaxation of this function. The minimal
function value for this relaxation obtained with QPBO is a lower bound to the real minimal
value. Furthermore, QPBO guarantees to find the optimal submodular relaxation of a
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function so that the lower bound it provides is the maximal one among all submodular
relaxations. This bound is known as the roof dual bound. It can be efficiently computed
using a maz-flow computation on a network constructed from a posiform representation
of the pseudo-Boolean function.

In the case of non-submodular functions, QPBO is unable to compute the minimizing
assignment to all variables, since the full minimizer is unknown. However, some variables
in the solution can be determined to be weakly or strongly persistent, which means that
their value is known to hold in some or all minimizing variable assignments. Further
analysis of the QPBO solution using the probing [21] and improving [89] procedures can
lead to identifying a larger set of optimal variable assignments, and obtain a suboptimal
variable assignment for the full set of variables, which can be useful as an approximate
solution.

Order Reduction of Pseudo-Boolean functions

For higher-order pseudo-Boolean functions (of order higher than two), it is possible to
compute an order reduction, which is a new quadratic function in the original set of
variables with additional slack variables. This function p is guaranteed to take the same
values as the original function ¢ in its original variables & when its value is minimized
over the slack variables w

6(x) = min p(a, w)
Example 3.2.3. The function ¢(z1, 2, x3) = —x17973 has an order reduction
min p(z1, T9, T3, w) = Min —rjw — Tow — T3w + 2w

with the single slack variable w. The correctness of this transformation can be shown
by computing the minimal value of p for all assignment to (x1, 22, x3) and verifying that
it takes the value —1 for (1,1,1) and is equal to 0 for all other assignments. Now, the
minimal value of ¢ can be computed through minimizing the quadratic function p in the
augmented set of variables.

An order reduction satisfying this property exists for all functions [157]. Different
methods for computing them have been proposed in the literature.

Ishikawa [81] presents a general technique ISH for quadratizing pseudo-Boolean func-
tions, which works on each higher order term separately. It distinguishes between terms
with positive and negative coefficients, where terms with negative coefficients can be
quadratized with a single slack variable and terms with positive coefficients of order n
result in a minimization over quadratic terms with approximately 7 slack variables. An
interesting approach that may be used to reduce the number of non-submodular terms in
the quadratic function by leveraging the interaction between different terms is presented
by Gallagher, Batra, and Parikh [58]. Their asymmetric quadratization ASM for third
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order terms with coefficient a > 0 is defined by
axi1rers = mina(w — r3w — r3w + T1W + T2x3).
w

It can be seen that the right-hand side of the equation is not symmetric in the original
variables, but the left-hand side is. Thus, three different quadratizations can be defined
depending on the choice of the order of the variables. Fach variant contains a positive
quadratic term which does not contain the slack variable w. If the variables of this term
are present in other terms of the function, the corresponding terms can be combined,
and in some cases the non-submodular term can be avoided. This prompts the question
of which quadratization variant to choose for which higher order term in the original
function. Gallagher, Batra, and Parikh [b8] approach this question by posing a separate
optimization problem for this choice to obtain a quadratic representation of the problem
that is amenable to efficient minimization using QPBO.

Another order reduction method FIX that takes advantage of interactions between
reductions of different higher order terms was introduced by Fix et al. [51]. It identifies
higher order terms that have a common subset of variables, and transforms them to a
sum of negative higher order terms and possibly positive quadratic terms.

Finally, generalized roof duality theory, which defines a different way of obtaining a
higher order submodular relaxation of a pseudo-Boolean function, can also be used to
obtain a quadratization GRD of a pseudo-Boolean function [205].

Quadratize-Solve-Simplify-Repeat (QSSR)

As it has been noted above, the QPBO algorithm generally does not provide a full solution
for a pseudo-Boolean minimization problem. However, with the notion of persistent as-
signments, a partial assignment of values to some of the variables in the problem is often
found. This can be used to iteratively decrease the size of the higher order minimiza-
tion problem by first obtaining a quadratization of the problem, obtaining a persistent
solution and setting those variables for which an assignment was found to their optimal
value in the original problem. Optionally, the probing algorithm can be executed on the
quadratized problem as well in order to obtain a larger set of persistent values. Then, the
process can be repeated on the new, smaller higher order problem. This procedure can be
iterated until no new persistencies are found. We denote this succession of quadratizing
— solving — simplifying — repeating as QSSR algorithm. A similar of iteratively solving a
relaxed problem and fixing the variables in the original problem is also applied by [82] in
the context of computing the generalized roof duality bound.

Preprocessing of PBMLNS Based on Logical Structure

Further preprocessing steps are possible in the PBMLN formulation to make the subse-
quent inference steps more efficient. For one, information about evidence to be introduced

37



3. ESTIMATING SPATIAL RELATIONS USING PROBABILISTIC LOGIC

can be used to reduce the size of the problem, and to inform the order reduction steps.
Consider the example parfactor

g=0,P(X)PY)S(X,Y)+ P(Z)S(X,Y).

For the arguments of ground atoms of the predicate S, some values are known, i.e. St # ().
These groundings can be subsumed in a new parfactor

Jd=((X,Y)eSr,P(X)P(Y)+ P(Z).

As the example shows, the predicates with groundings from evidence do not show up
in the simplified parfactor. If the simplified parfactor function evaluates to 0 given the
known value of the evidence atom, the parfactor can be omitted from the simplified
model completely, thus reducing the number of parfactors that need to be grounded [167].
Additionally, the function becomes simpler when the variables X and Y are mapped to the
same constant under a substitution #, i.e. X6 = Y#. In this case, the original parfactor
becomes

¢ = (X =Y), P(X)S(X, X) + P(Z)S(X, X).

Finally, for substitutions where X0 = Z60, the parfactor can be simplified to
9" =((X =2),(P(Y) + )P(X)S(X,Y)))).

These simplifications are important not only because they decrease the total number of
grounding substitutions that have to be considered, but also because they may reduce the
order of the pseudo-Boolean function defining the parfactor. In this case, as for the first
part of the example given above, it may be possible to apply a simpler order reduction,
or, if the simplified function is quadratic, no order reduction is necessary at all for the
respective ground formulas. Thus, the number of slack variables necessary in the full
quadratized optimization problem is reduced.

Another aspect of grounding a PBMLN which helps to reduce the number of slack
variables is the fact that groundings of different parfactors may result in the same ground
atoms [[138]. It can be beneficial to split up the parfactors such that the terms of
ground atoms resulting from each grounding each parfactor are strictly disjoint. For
example, consider a PBMLN containing two parfactors ¢ = (0, w;P(X)Q(X)) and
g2 = (0, w P(X)Q(Y)). Grounding g, with a substitution # where X6 = Y6 results
in a multinomial that is also contained in the groundings of ¢;. In order to deter-
mine the unique terms contained in the ground network already before grounding, which
is more efficient than combining the terms on the ground level, the parfactors can be
split up. For this example, this results in an equivalent model with the two parfactors

g1 = (0, (w1 +we) P(X)Q(X)) and g2 = (X #Y), we P(X)Q(Y")) with unique groundings.
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3.2.4 Results on Standard Examples

The effect of different quadratization methods on inference performance was evaluated
for different standard problems known from literature. This section first presents a com-
parison of the performance of the MaxWalkSat inference algorithm, depending on the
preprocessing of the problem, and then proceeds to compare inference using QPBO on
PBMLNs with various other inference engines.

Inference on PBMLN using the MaxWalkSAT algorithm

Social Network Model The social network model described in Richardson and Domin-
gos [153] is a common testbed for MLN algorithms. The model captures some of the pat-
terns related to friendship relationships, smoking habits and the probability of developing
cancer. The version of the model that we use is characterized in Table B.1l. Evidence
is generated in a similar way as described by Singla and Domingos [171], where a fixed
percentage of humans have 10 known friends and known smoking habits. The task is then
to infer the existence of other friendships relationships as well as the smoking habits and
the cancer occurrences in the total population.

Table 3.1: The employed social network model with weights as specified in Singla and
Domingos [171]. The last formula is included in the original model [[153]

Nr. Formula w

1 —Friends(z,y) 4.6
2 —~Smokes(x) 14
3  —Cancer(x) 2.3
4 Smokes(x) = Cancer(z) 1.5
5  Smokes(z) A Friends(z,y) = Smokes(y) 1.1
6 Friends(z,y) = Friends(y, ) 4

In this case study, we focus on the social network model and explore the influence of
different representations of the logical formula on the performance of the MaxWalkSat
algorithm.

While the PBMLN formulation specifies the factors of the grounded MLN as monomi-
als, the original formulation of the MaxWalkSat algorithm requires MLN formulas to be
represented in clausal form. Thus, we use a different formulation of the algorithm, which
operates on the network of ground monomials directly. For the modified MaxWalkSat
algorithm, the states of variables in unsatisfied monomials, as opposed to unsatisfied
clauses, are candidates for being flipped. The change in state to be taken is decided by
the maximum reduction in cost that can be effected by flipping a candidate variable. As
in the canonical form of the algorithm, these greedy steps alternate with random flips
of variables. The cost function optimized in this procedure is (), because the ground
PBMLN is logically equivalent to the ground MLN.
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Figure 3.2: Minimum costs resulting from running MaxWalkSat on two different rep-
resentations of the social network model for at most 20000 iterations and
QPBO lower bounds computed for different reparameterized versions of the
social network model.

In order to get an understanding of the effect of different pseudo-Boolean representa-
tions on the performance of MaxWalkSat, two different instances of the social network
model are solved. In one, the logical formulas are converted to pseudo-Boolean form
following the steps described in Section and then used directly (default). For the
other model (multinomial), the pseudo-Boolean formulas are subsequently converted to
multinomial representation, i.e.no negated variable are contained in the final represen-
tation. For each instance of the problem, MaxWalkSat is run for 20000 iterations, and
the best result of 50 randomly initialized Markov chains is used. Experiments were run
on machines with 4 CPUs running at 3.3 GHz and 16 GB RAM. Multiple MaxWalkSat
Markov chains were run in parallel. We use the QPBO implementation of Kolmogorov
and Rother [SQ]E to compute lower bounds to the optimal costs. The resulting optimal
costs over the runtime of the algorithm are given in Figure @, along with the QPBO
lower bounds for each of the representations.

In addition to applying the inference algorithms to different pseudo-Boolean repre-
sentations of the problem, we also compare the performance of MaxWalkSat on factor
graphs created with the PBMLN approach with factor graphs that follow the approach
put forward for MLNs specified purely on the first-order level. For the latter, the ground
factor graphs consist of a factor for each conjunction of ground clauses of the CNF of
the formulas in the KB. In the original MLN implementation [153], this construction is
further relaxed by taking the sum of the truth values of multiple clauses in each formula
instead of their conjunction in case the CNF of the formula consists of multiple clauses.
We compare the development of the cost over iterations of the MaxWalkSat algorithm for
both formulations (denoted by Monomials and_Clauses, respectively) for instances of the
social network model of varying size in Figure B.3.

From these results, it can be seen that the representation of the problem influences the
performance of the MaxWalkSat inference algorithm. In Figure B.2, it is apparent that the
local search converges for all problems, but the convergence speed can be influenced by
the choice of pseudo-Boolean representation of the problem. Rewarding the compactness

Zavailable at http://pub.ist.ac.at/~vnk/software.html
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Figure 3.3: Trajectory of costs resulting from running the MaxWalkSat algorithm in
clausal form and in the compact representation of the monomial form on
different network sizes of the social network model

of the problem is a good choice of representation for MaxWalkSat, since a compact factor
graph has fewer terms in the computation of the cost of the current state. This creates
a performance benefit, as it can be seen by comparing the minimum cost attained after
a fixed number of iterations with the multinomial representation against the canonical
formulation, which produces a less sparse ground network. Figure shows that the
PBMLN formulation is also advantageous in comparison with doing inference on a factor
graph built directly from the CNF representation of the formulas in the KB. While both
methods approximately reach the global minimum for smaller instances of the problems,
convergence is faster for the problem formulated in monomials optimized for compactness.
For the larger problem with 250 humans, MaxWalkSat does not get close to the optimum
within the allotted number of iterations in either of the problem formulations.

Inference on PBMLN using QPBO

The presented PBMLN inference approach using different quadratization methods are
evaluated by their impact on the performance of the QPBO algorithm and its extensions.
The performance of the QPBO-based inference is also evaluated on problems for which no
quadratization is required. Finally we compare our overall pipeline to existing inference
engines.

Datasets We evaluate our approach on various standard MLNs and datasets as well as
additional problems. The characteristics of these problems are summarized in Table @
A first set of datasets is similar to the ones employed in the evaluation of state-of-the-art
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engines TUFFY [132] and ROCKIT [133]. The link prediction problem on the UWCSE
dataset (LP) tries to find relations between faculty members and students. The relational
classification (RC) on the Cora dataset determines the category of research papers. The
information extraction (IE) problem models how to obtain dataset records from parsed
sources. The webKB dataset is used to predict to which university department a website
belongs, given its hyperlink relations and contained words (KB). The entity resolution
(ER) problem on the Cora dataset is obtained from the ALCHEMY website. The goal
of this problem is to identify citations referring to the same paper. Because no trained
model is available for this problem, it is trained with ALCHEMY using the first of the five
available splits for evaluation [172]. The Friends and smokers social network (F&S), as
described above, is a common test model for a social network with friendship relations,
smoking habits and cancer occurrences. Evidence is generated as described by Singla and
Domingos [171] for a domain size of 200 persons. Because the F&S problem is relatively
simple, an additional problem in which the weights of all formulas are negated is also
considered (-F&S).

In order to gain a broader insight into the performance of the inference algorithms
on higher order problems, we created two additional third-order problems. The first one
is based on the KB problem and the webKB dataset mentioned above (KB3). While
the original KB inference problem uses words contained in the page contents as well as
the link structure to infer page categories, a third-order problem on the webKB dataset
is created by not only querying for the class of each page, but by also jointly inferring
the links of a page, solely from the word tokens appearing on the page. Learning was
performed with ALCHEMY, and the size of the problem was reduced such that inference
is only performed over atoms that are T in the ground truth and the same number of
randomly sampled atoms.

The second new third order problem is the image denoising (ID) model, which tries
to restore a noisy binary image. There are rules indicating that the observed value of
a pixel should correspond to the denoised value and two rules indicating that groups of
three horizontally or vertically neighbouring pixels should take the same value. It can be
shown that the associated MAP problem for these rules fall within the described cases of
MLNs whose rules can be converted to tractable pseudo-Boolean functions described in
Section , and can thus be solved exactly. The unary rules are given weight 1.0. To
ensure that the terms of the smoothing rules do not cancel out, a rule for the ‘on’ pixels
is given a weight of 0.35 and the rule for the ‘off’ pixels 0.3. A 90 x 90 pixels random
binary image is used as evidence, where each pixel has a 50% chance of being on or off.

Other Engines We compare our approach with the MAP-inference solvers ALCHEMY,
TurrFy and ROCKIT. ALCHEMY is the original solver for MLNs and, in contrast to
the other engines, it does not use a relational database to ground the model, which can
lead to long grounding times. ALCHEMY and TUFFY optimize the ground model using
MaxWalkSAT, a stochastic search technique that can be made to scale well with large
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problems. ROCKIT uses an ILP solver and exploits symmetries in the model to reduce
the number of constraints. Because the number of constraints may be very large, it takes
an iterative approach where only the constraints that are violated for the current solution
are added to the solver.

To make sure that the problem to be solved is the same for all implementations, some
preprocessing is required. First, formulas with existential clauses are ignored and all
formulas are converted to conjunctive normal form. Then, because TUFFY internally
transforms formulas with a negative weight to an approximate formula with a positive
weight, we apply the same transformation. Unfortunately, this transformation can not
be applied for the higher order problems, as it reduces the order of the formula. Lastly,
the ER and KB3 problems use a method to compactly specify which ground atoms to
query, and assumes that all other query atoms are L. These query variables, also known
as canopies [172], can be used to eliminate a large number of uninteresting variables, and
can be created using a cheap distance metric [120]. Because neither TUFFY nor RockIT
support this input format, they are given the extensive list of Levidence atoms instead.

IE KB RC LP ID F&S -F&S KB3 ER

Formulas 1024 106 15 24 4 6 6 66 1331
Domains 4 3 3 8 1 1 1 3 5
Query Predicates 2 1 1 1 1 3 3 2 4
Observed Predicates 16 2 3 21 2 0 0 1 6
Ground atoms 336670 9079 9650 4624 8100 40180 40180 8190 10948
Factors 351001 31283 58485 161806 55800 127982 127982 22627 910670
Higher order factors 0 0 0 0 15840 32220 32220 6736 424580

Table 3.2: Summary of the characteristics of the described datasets and the associated
ground networks when grounded in their higher order form and a multi-linear
representation. Trivially satisfied or dissatisfied factors are ignored.

Results on Quadratic Problems For quadratic problems from literature, we analyze
the performance of QPBO and the additional persistencies computed with the probing
extension described in Section . Table @ shows that the QPBO algorithm gives a
persistent solution for most variables, and even provides an exact solution for the KB
problem. The probe procedure also solves the IE problem exactly, but still leaves some
unsolved variables for the RC and LP problems. In general, the inference times for these
problems are extremely short.

Comparison of Quadratization Methods For the higher order problems, the perfor-
mance of each of the quadratization methods described in Section @ is evaluated. This
includes the pairwise MLN approach [50], which is equivalent to the ISH quadratization
for problems with cubic potentials. The potentials of the parfactors are expressed as a
multi-linear polynomial before quadratizing the model.
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IE KB RC LP

Persistencies 99.87 100  90.30 85.58
Persistencies (probe) 100 90.30 86.22
Qpbo time (s) 0.030 0.002 0.006 0.069
Probe time (s) 0.150 0.021  4.800

Table 3.3: Percentage of persistencies given by the QPBO algorithm and after using the
probing technique for different quadratic problems.

First we evaluate the number of persistencies that can be obtained for the different
problems in Table @ As expected, because of submodularity, the ID problem is com-
pletely solved by all methods. Friends and Smokers creates few non-submodular terms,
and can also be solved exactly by all methods. The remaining problems can not be solved
by all methods, for which in some cases only a small number of variables can be fixed.
In general, it can be observed that the methods that are aware of the other terms in the
potential produce better results than ISH, which applies a fixed transformation. The final
probing step is computationally the most expensive, but may significantly increase the
number of solved variables, and even solve some problems exactly. It should be noted that
this step is important even when an approximate solution for all variables is subsequently
obtained using the improve method. Otherwise, if the number of persistencies is small,
the improve method needs to operate on a model with potentially many more variables,
as it also needs to optimize the slack variables stemming from the remaining higher order
terms.

Approximate Inference We also compared quality of the approximate solutions with
those of other engines and their total running times. The problems were formulated as
minimizations, and the solutions of all engines evaluated on the same ground model. In
Table @ it can be observed that for the quadratic problems, most engines achieve optimal
costs, which are known from the optimality guarantee given by QPBO in Table @ and
from the small MIP gap that was used for ROCKIT. An exception is the LP problem,
where the solver used by ROCKIT has problems obtaining a tight bound, and TUFFY and
QPBO+I1 provide better solutions.

For the higher order problems, the ASM quadratization achieves the best cost and
the lowest computation time for most cases. Using the GRD reduction performs slightly
worse, possibly because for this quadratization the improve step needs to be executed over
more variables. TUFFY does not perform very well in the higher order problems, possibly
because the internal transformation it uses is an approximation of the original formula.

It should be noted that computation times are affected by multiple factors. Whereas
ALCHEMY, TUFFY and our approach make a clear distinction between grounding and
inference, ROCKIT uses a cutting plane algorithm that incrementally grounds factors
that are not satisfied by the current solution, which leads to large speedups when many
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Step ISH FIX ASM GRD
ID 1 100.0 (0.01) 100.0 (0.01) 100.0 (0.01) 100.0 (0.01)
F&S 1  100.0 (0.02) 100.0 (0.82) 100.0 (0.86) 99.6 (1.0)
2 100.0 (0.0)
F&S 1 194 (1.79) 194  (0.9) 99.6 (0.42) 99.6 (1.11)
2 194 (1.61) 194 (0.78) 99.6 (0.02) 99.6 (0.02)
3 i i 99.6 (2.66) 99.6 (2.54)
KB3 1 550 (0.06) 824 (0.03) 823 (0.02) 60.6 (0.08)
2 565 (0.04) 86.8 (0.01) 86.6 (0.01) 62.7 (0.04)
3 65.8(19.42) 100.0 (0.1) 100.0 (0.05) 96.7 (5.59)
ER 1 921 (0.46) 91.9 (1.04) 95.0 (0.47) 954 (1.49)
2 923 (0.03) 923 (0.04) 95.0 (0.02) 96.1 (0.03)
3 928 (7.6) 93.0 (162.36) 95.3 (5.57) 96.6 (7.08)

Table 3.4: Percentage of variables solved. Step 1) Initial QPBO result 2) QPBO result
after QSSR simplification 3) Probe. Inference time in seconds for each step
in parentheses. (1) Did not complete

factors are easily satisfied or if the solution is largely homogeneous. On the other hand,
the ID problem is an example where this approach produces considerably longer running
times. Another influence on computation times is the ability to specify the evidence in the
form of canopies, which allows the relational database to execute the queries for grounding
more efficiently.

In Figure @, the evolution of the cost of the ER problem against the running time of
improve is shown for different quadratizations. For this problem, the methods converge
to a solution with similar costs, but convergence is much faster in the cases where ISH
and GRD quadratizations are used.

3.2.5 Discussion of PBMLNs

This section has presented a novel representation of a general class of probabilistic logic
problems, Markov Logic Networks, in terms of pseudo-Boolean algebra. As a purely
algebraic representation, this representation allows more flexible ways of analysing and
manipulating the problem than the standard logical formulation. It also allows the ap-
plication of powerful inference algorithms for general Markov Random Fields from the
computer vision literature. In particular, the problem can be converted to an Markov
Random Field (MRF) with exclusively pairwise interactions, and the QPBO algorithm
can be applied on the resulting network. This procedure has been shown to produce re-
sults of state-of-the-art quality and computation demands. In addition, the effect of the
quadratization method on the quality of the result has been shown.
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Alchemy Tuffy RocklIt QPBO+1I

IE i -4511.6  (17) -4511.6 (19) -4511.6 (22)

KB  -111113.5(162) -111274.1 (115) -111312.4% (27) -111312.4*  (6)

RC T -4031.7  (17) -4031.8 (11)  -4031.8 (9)

LP -480.8  (119) -686.3  (424) -507.7 (13) -732.6 (9)
ASM+QPBO+I GRD+QPBO+I
ID 17727 (442)  1784.2 (25) -1003.8*% (244) -1003.8* (5) -1003.8% (6)
F&S -3.8 (159)  -4.2% (3) -4.2% (5) -4.2% (6) -4.2% 9)
-F&S  -182338.7 (47) -191856.9(3230) -185267.3 (8) -193715.3  (12) -193715.3 (14)
KB3 21.1 (543)  -1045.3  (308) -1492.8  (256) -1484.4 (57)  -1476.9 (101)
ER -10739.5 (551)  -14128.9 (433) -15271.3 (1902) -15430.7  (101) -15430.5 (113)

Table 3.5: Resulting cost for different engines on various quadratic and higher order
problems. ALCHEMY and TUFFY were run for an increasing number of flips
until no significant advances were made. ROCKIT was run with relative gaps
1 x 107, n = 9,8,... until convergence is achieved within an hour. These
are compared against our method using the ASM and GRD quadratization
for the higher order problems, using improve on the residual problem until
no advances were made for 20 iterations. Total running times in seconds in
parenthesis. (*) Guaranteed optimal cost by persistencies (1) Did not ground
within 1 hour.
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Figure 3.4: Cost in the higher order ER model as a function of the time spent on
the improve method, using different quadratization techniques. Improve
starts after solving one iteration of the original problem and removing the
redundant slacks, as described in Section B.2.3.

3.3 Estimation of Spatial Relations from Labelled
Point Clouds

In this chapter, an approach to efficiently perform semantic reasoning about spatial re-
lations between typical objects in a urban environment is presented. This information
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can be deployed for example in a HRI scenario, where a human identifies an object by
its position with respect to the environment; the robot needs to retrieve the most likely
candidates for the object being referred to from its internal environment representation.
This information can then be retrieved and put to use for example for semantic navigation
or in an HRI scenario. An example for a task where these abilities are required is the
reasoning on route descriptions given by humans [208§].

The overall pipeline of operations performed by the approach proposed in this chapter
is shown in Figure . The input of the processing is a multi-attribute point cloud
which defines the geometry, color, class label and object assignment for each point in the
sensor field of view. The geometry and color information of each point in the point cloud
is obtained from the Z+F 5010C laser scanner (see Figure @) which fuses data of an
RGB camera and a laser range finder. The proposed approach requires a point cloud
with pre-segmented objects and class labels assigned to each point in the point cloud.
The set of class labels is chosen based on categories which are commonly found in urban
environments, such as sidewalks, trees, buildings etc. In addition to the class labels, an
object id is assigned to be able to define relations between objects and to disambiguate
between multiple objects of the same class (e.g., multiple trees or cars etc.). The multi-
attribute point cloud is inserted into the SRTree which evaluates for each grid cell the
occupancy probability, the most probable class label and object id attributes. This hybrid
representation is then used to extract different geometric features which are employed in a
Markov Logic Network framework to generate consistent spatial relations and determine
higher order spatial relations between objects present in the urban environment. The
pipeline becomes a closed chain once the determined spatial relations are inserted into
the SRTree in form of a spatial relation graph between objects and used in typical HRI
scenarios which require reasoning over route or scene descriptions.

3.3.1 Semantic Rtree (SRTree)

The first component of the pipeline is the SRTree, which is used to generate a metric
and semantic representation of the environment. The SRTree is based on the standard
Rtree [68, 128] and is an extension of the RMAP mapping approach [84], which presents a
3D occupancy grid where the cells are organized in an Rtree data structure. The Rtree is
composed of a hierarchy of axis-aligned rectangular cuboids and contains a root node and
a hierarchy of inner and leaf nodes. Root and inner nodes can have a maximum number
M of children. The leaf nodes are grid cells in a fixed-resolution 3D grid, but they are
only represented in the tree for volumes that have a nonnegligible occupancy probability,
such that free space does not need to be modeled explicitly. The inner nodes define a
minimum bounding rectangular cuboid over their child branches.

In addition to the occupancy probabilities, the proposed SRTree assigns a class label
to each grid cell based on the labels of the points inserted in it. Each grid cell maintains
a histogram of the observed counts of points with each of a fixed set of class labels. Due
to the noise resulting from the discretization effects of the occupancy grid or imperfect

47



3. ESTIMATING SPATIAL RELATIONS USING PROBABILISTIC LOGIC

( SRtree J

Object cuboids
and bound-
ing boxes

( Feature extraction )

Geometric
features for each
pair of objects

Spatial rela-
tion classifi-
cation (SVM)

l Evidence

Consistency
constraints
smoothing (MLN)

Figure 3.5: The pipeline of operations performed in the proposed approach. The two
components that are the focus of this chapter appear shaded.

class label assignment, it is necessary for each grid cell to take the uncertainty of the

observed counts into account. To model this uncertainty, a Dirichlet distribution is used

which generates a distribution over multinomial distributions for each object category.
Consider the probability density function of the Dirichlet distribution,

N
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where af; represents the k' concentration parameter of the Dirichlet distribution that
corresponds to the j object category, where k,j < N. The concentration parameters
vk, a{; are learnt offline using the moment matching method [156]. x;1, ..., z; y represent
the class occurrence probabilities (Zivzl z;, = 1) of the i grid cell, which are calcu-
lated based on the normalized histogram of observed class counts. N(«) represents the
normalization factor which can be expressed using the gamma function () as follows

N(ozj) = M
YO h=1 )

The assignment of a specific label I; to a grid cell g; is based on

_ j C J ;
l; = argmaxp](a:ijl, e T N—1 O, ay), V) <N
j

Hence the SRTree is capable of generating a probabilistic occupancy grid and addition-
ally defines a class label for each grid cell. Figure ﬂ shows the SRTree occupancy grid
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(b) Campus scene (class labels)

Figure 3.6: The SRTree with grid cells colored based on RGB values and class labels
(green: building, dark red: sidewalk, blue: street, red: car)

49



3. ESTIMATING SPATIAL RELATIONS USING PROBABILISTIC LOGIC

with the grid cells colored based on the average RGB values of all points that falls within
that cell. Figure shows the occupancy grid cells in different colors based on the class
label assignment using the Dirichlet distribution. The relation graph between objects
is obtained after inference on the Markov Logic Network as described in the following
section.

3.3.2 Reasoning over Spatial Relations

This section describes how the metric environment information from the SRTree is aug-
mented by estimates of qualitative spatial relationships between objects. This process
starts by extracting numeric features from the metric representation of the environment
presented by the SRTree, which are then classified to a known set of relations. These
estimates are subsequently postprocessed for a degree of global consistency with the ap-
plication of rules in probabilistic logic, in the form of a Markov Logic Network as de-
scribed in Section . The MAP assignment of spatial relations between objects is then
inferred. The MLN approach allows for an accessible specification of spatial relations,
in particular ones of higher order (> 2), such as the transitivity of the On relationship:
On(base, middle) A On(middle, upper) — On(base, upper). Similarly, the qualitative loca-
tion of an object to another, with respect to an observer, is a higher-order function of the
relations between the two objects and their relation to the observer [125].

The graph of objects and their relations built this way can then, in turn, be stored
back into the SRTree representation. This section firstly details the model for spatial
relations that was chosen with the application of reasoning over route directions in mind,
and introduces related approaches. Then, the individual steps of the process — feature
computation, baseline classification and smoothing with a Markov Logic Network — are
detailed.

We are concerned with relationships such as left/right /behind/in front of and relations
of support between objects that can be used to locate objects in a scene. Thus, we restrict
the set of qualitative spatial relations that are reasoned over in this work to the relations
On, LeftOf/RightOf and Behind/InFrontOf. This representation system for the latter two
pairs of mutually exclusive relations is illustrated in Figure B.7, and examples for objects
in an urban environment for which these relations apply are given in Figure B.§.

This selection of relations is motivated by the typical terms used in route directions,
the understanding of which is an important problem in collaborative robotic applications.
The set of relations is inspired by more complex models used in qualitative spatial rea-
soning, such as the Region Connection Calculus [37], and in particular the Single Cross
Calculus [p5], which are described in more detail in Section . In the application
context of processing route descriptions, the route graph [194] employs categories similar
to the ones used here. The complexity of reasoning and the requirements to perception
and environment understanding can make the application of these structures challenging
in real-world robotics situations. For this reason, in this work we relax the constraints
of exact logical consistency of the relations between objects. This enables the use of a
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Observer

Figure 3.7: A subset of the qualitative spatial representation

probabilistic model with an approximate inference procedure.

An approach related to the one presented here, which is also based on the specifica-
tion of relations between objects in a logical language, has been proposed for a different
set of relations by Sjo6, Pronobis, and Jensfelt [@] A method to estimate support
relationships between objects in indoor scenes is discussed by Silberman et al. [169].

The approach presented here uses a basic set of features about the geometric relations
of the objects in a scene as a first step. For every object in the scene, a bounding box is
computed. The orientation of the bounding box is chosen such that it matches the mode
of the histogram of the normal vectors computed for each cuboid, such that it is aligned
with the principal directions of rectangular objects. The bounding boxes are shrunk along
each of their axes to prune away a small percentile of points in order to obtain a tight fit.
This step of using bounding boxes for feature computation assumes a scene that roughly
adheres to a Manhattan model of the surroundings, which is a reasonable assumption
for many objects and topologies encountered in an urban environment (e.g., houses and
cars). A visualization of a scene with the point cloud as stored in the SRTree, the normal
vectors and the bounding boxes, is shown in Figure .

The features are computed for each pair of objects in a coordinate system that is
aligned with the simulated viewpoint of a person describing the spatial relations present
in the scene. The feature set includes the distance between object centroids, as well as
the maximum and minimum distances between the bounding boxes. These distances are
also computed for projections of the bounding boxes along the axes of the coordinate
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Figure 3.8: Illustration of the used spatial relations
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system. For example, the minimum vertical distance between the bounding boxes of two
objects is a feature. The percentage of points of an object that overlap with the convex
hull of a second object in a projection of both objects to each of the coordinate axes is
another feature. Further features are computed based on a cylindrical coordinate system.
Namely, the angles between the central axis of the field of view and the lateral boundary
points as well as the centroid of the object are computed. The differences between these
coordinates for a pair of objects constitutes the set of angular features.

The features are then used for classification of the aforementioned set of spatial relations
with a linear Support Vector Machine (SVM) classifier. The local estimates generated by
this are combined in a MLN model, which is specified by a simple set of rules formulated
in first-order logic. This way, consistency between the relations between objects can be
increased. The knowledge base encoded by the MLN encompasses formulas describing
the antisymmetry of the chosen spatial relations,

On(o1,02) => —0n(0q,01)
LeftOf(o1,02) == —LeftOf(02,01)
Behind(o1,05) => —Behind(os,01),

their transitivity

On(01,02) A\ On(0y,03) = Onfo1,03)
LeftOf(or, 02) A LeftOf(0z,03) = LeftOf(o1, 03)
Behind(oy, 02) A Behind(os,03) = Behind(o1, 03),

and the exclusivity of the On relation

On(o1,02) = —LeftOf(02,01), On(o1,02) = —LeftOf(01, 02)
On(o1,00) => —Behind(os, 01), On(o1,09) => —Behind(oy, 03).

The RightOf relation is defined with a hard rule complementary to the LeftOf relation
according to
LeftOf(o1,02) <= RightOf(0s,01),

and thus not labelled or reasoned over separately. Similar reasoning applies to the rela-
tionship between the predicates Behind and InFrontOf.

The information from the baseline classifier is entered into the model with formulas of
the form Pgyp(01,00) <= P(01,02) for each predicate P, where the predicate Psy s
represents the corresponding binary decision of the classifier.

A Markov Logic Network built from this knowledge base defines a probability distri-
bution over the application of the predicates in the knowledge base to all objects in the
domain. An example for a ground atom, which is the result of this procedure, is the
application of the predicate On(o1,02) in free logical variables 0, and o9 to the constants
car #1 and street #3 to form the ground atom On(car #1, street #3), which can take
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a truth value as its assignment. The probability distribution over the ground atoms @ is
defined by the sum of formulas satisfied by the current state of the variables, weighted by
a weight w; associated with each formula f;;i =1,..., N as

Plo) = % > wifie).

In this work, we are interested in an assignment to the variables that maximises this
probability, the MAP estimate. As above in Section , we formulate the MLN MAP
inference problem as a discrete optimization problem in the binary random variables
constituted by the ground atoms. This optimization problem can easily be formulated as
a factor graph and solved approximately with Loopy Belief Propagation. The approximate
MAP solution that is obtained in this way assigns a truth value to each of the ground
predicates, and thus determines which pairs of objects are in a certain spatial relation.
This information is represented in the spatial relations graph, which has a node for each
object present in the scene, and a labelled edge for every pair of objects that has a
true value for any relation in the MAP MLN solution. The edges are labelled with the
predicate of the corresponding relations. Note that a pair of objects can have multiple
relations assigned to it, so an edge of the relation graph can have multiple labels. The
spatial relations graph is part of the SRTree, where pairs of objects are annotated with the
corresponding quantitative spatial information. Thus, the SRTree can be used to process
queries like “List all objects that are to the left of a certain point on the sidewalk!”.

3.4 Experiments

The integrated system, comprised of building the SRTree representation of dense point
clouds along with its segmentation and classification, as well as the inference of spatial
relations based on this data and their incorporation into the SRTree structure, is presented
for the entire urban dataset. The spatial reasoning approach is evaluated based on its
capability to recreate the spatial relations given by manual labeling, as they would occur
in a description of the scene.

3.4.1 3D Outdoor Urban Dataset

The dataset that is used for the experiments consists of 3D point cloud data enhanced
by RGB image data using a Z+F 5010C laser range finder, which is shown in Figure @
The dataset consists of 62 scenes in downtown Munich, covering a total area of roughly
2km?. Images and point clouds for each scene have been manually segmented into objects
and background, and objects are labelled with per-object class information as well spatial
relations between objects. The nine classes used for the per-object annotation are car,
building, street, sidewalk, bicycle, other, tree, pole, sky, and grass. The segmentation of
images and point clouds was performed using an automatic segmentation [49] of the RGB
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Figure 3.9: The Zoller & Frohlich 5010C laser scanner used to generate the dataset.
Image retrieved from http://www.zf-laser.com

images based on a graph-based segmentation procedure which was followed by a manual
correction step.

Additionally, the spatial relations On, LeftOf and Behind have been manually added
for object pairs in a half-space of each image, corresponding to the field of view of a person
describing the scene.

The labelled data is used to learn the weights of the MLN and as a ground truth to
evaluate the reasoning algorithm presented in this chapter. This results in a 3D semantic
dataset defining segmented objects along with their classes and additionally equipped
with a relation graph between objects.

Figure m shows an example scene with spatial relations represented by arrows con-
necting the objects.

3.4.2 Results

The MLN approach for spatial reasoning is evaluated on the dataset annotated with
spatial relations as described above. The SVM and the MLN are trained on the same
set of 48 labelled scenes; testing is performed on the remaining 14 scenes. For the SVM
parameter learning, 5-fold cross validation is used. The formula weights of the spatial
relations MLN are learned discriminatively using the Alchemy packageﬂ. Table gives

3http://alchemy.cs.washington.edu/
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Figure 3.10: Annotated spatial relations and bounding boxes of scene objects. Red
arrows stand for LeftOf relationships, blue ones for Behind, and green
arrows are On relationships.

information metrics for the retrieval of spatial relations for all pairs of objects present in
the test scenes, using the SVM formulation alone as well as the MLN model in addition
to it. The main interest is in the correct identification of true values of relations, since
these can be used for description of the environment. It can be seen that the SVM model
slightly outperforms the MLN model on the Behind and LeftOf relations. The On relation
however, which has the richest description in terms of rules in the MLN knowledge base,
clearly profits from the added modelling effort in Fj score.

3.5 Conclusion and Future Work

This chapter has described an efficient inference mechanism for probabilistic logic rea-
soning problems formulated as MLNs based on quadratization and subsequent pseudo-
Boolean optimization, as well as the inference of spatial relations between objects in urban
scenarios as an application of MLN reasoning in the domain of semantic mapping.

For inference in MLNs, we have shown a method to convert the weighted logical formu-
lation of the problem to an equivalent pseudo-Boolean representation. This then allows
the application of quadratization methods to arrive at an equivalent, larger problem
with purely pairwise interactions, for which an approximate solution can be found using
QPBO. The quadratized formulas can be efficiently computed on the first-order level. Ex-
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Relation Model Value Precision Recall Fj-score

False 0.99 0.99 0.99

On MLN True 0.57 0.57 0.57
SVM False 0.99 0.98 0.98

True 0.45 0.60 0.51

False 0.95 0.93 0.94

Behind MLN True 0.37 0.45 0.41
VM False 0.94 0.95 0.95

True 0.44 0.38 0.41

False 0.92 0.77 0.84

LeftOFf MLN True 0.56 0.82 0.66
VM False 0.91 0.86 0.89

True 0.65 0.75 0.69

Table 3.6: Information retrieval metrics of the baseline SVM classifier and the added
MLN inference for each of the three relations that were used.

periments on standard problems from the statistical relational reasoning literature show
that the approach performs well in terms of both solution quality and computation time
in comparison with competing methods.

There are various aspects of this research that can be expanded for fruitful future work.
QPBO is only one, even though popular, inference method for pairwise Markov Models.
Other inference methods, such as the family of methods based on move-making [102],
may well provide additional benefits. Moreover, the presented algorithm only uses the
logical structure of the problem for shattering and the computation of the quadratization
on the first-order level. The combination of the presented work with lifting techniques
or other higher-level partitioning methods, resulting in smaller networks, would be an-
other interesting research direction. Finally, the work presented here has shown that the
choice of quadratization method for a given problem matters; however, how to choose
the quadratization for a given problem remains an open problem. Also in this matter,
leveraging the knowledge about the logical structure of the problem may be useful, as
well as a combination of the described work with an inference scheme over the chosen
quadratization similar to the work of Gallagher, Batra, and Parikh [58].

Furthermore, in this chapter a novel environment representation titled SRTree is pre-
sented which generates a probabilistic 3D representation and captures the semantics of
the environment. It uses probabilistic logical reasoning using the Markov Logic Network
(MLN) formalism for inference of spatial relationships between objects. While the in-
ference problems posed by this application are relatively small and can be solved using
simple inference methods, its extension to larger scenes that extend to an area greater
than the view of a single observer might require the application of highly efficient inference
methods such as the one described in the first part of this chapter.
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The inferred spatial relations can furthermore be stored in the SRTree representation,
which can be useful in HRI interaction scenarios. The proposed framework is evaluated
on a large-scale 3D dataset collected in downtown Munich and shows promising results.

Future work in the line of work of the semantic environment representation includes
the automatic segmentation of objects, taking advantage of the hierarchical nature of
the SRTree data structure. The spatial relations model in the MLN framework can be
extended to be aware of object classes to incorporate a more natural usage of these
terms—e.g., an object behind a car might well actually be on the side of it with respect
to the current position of the viewer, but the direction of the road and the car will still
enable the use of the quantifier behind. Additionally, the approach can also be extended
to arbitrary viewpoints, and to larger scenes with a larger set of objects, where spatial
relationships can also be inferred for objects that are not in direct view of a user.
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Road Geometry Estimation for Urban
Semantic Maps using Open Data

Complex robotic tasks require the use of knowledge that is impossible or very
difficult to acquire with the sensor repertoire of a mobile, autonomous robot
alone. For this reason, it is important to explore diverse sources of knowledge to
integrate with a robot’s sensor data in order to build semantic maps appropri-
ate to demanding applications. For robots navigating in urban environments,
geospatial open data repositories such as OpenStreetMap provide a source for
such knowledge. In this chapter, the integration of a 3D metric environment
representation with the semantic knowledge from such a database is proposed.
The application described here is an instance of scene interpretation. It uses
street mnetwork information from OpenStreetMap to improve street geometry
information determined from laser data, which can then be used for high-level
reasoning, for high-level navigation, or for interaction. The approach relies
on a preliminary classification of the environment in street or sidewalk, and
other areas, which then serves as the basis for a simple geometrical model of
street layout. Semantic data is used for a coarse layout of the road network
and in a final global smoothing step, where typical interactions between the
geometries of adjacent road segments are taken into account. The approach
presented here is evaluated on a challenging data set of point clouds from the
urban environment in the Munich inner city.

The work presented in this chapter was published in [211].

4.1 Introduction

As tasks devolved to robots become ever more complex and encompass more domains,
also demands towards their understanding of relationships and autonomy are growing.
Different sources of knowledge that can be tapped for a higher-level understanding of
concepts and tasks, which is desirable for a more intuitive and user-friendly interaction
with a robot, have been explored. Human interaction partners themselves have been
used as a knowledge source for example in the IURO project as described in Section ,
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see Figure [1! Other approaches have considered the augmentation of robot knowledge
using ontological models in databases that can be shared for learning and for usage by
different robots [152, 178]. In this chapter, OpenStreetMap (OSM), a community-driven
online mapping framework, is considered as a source for semantic information for robots
moving autonomously in an urban environment. The chapter proposes the extension of a
hybrid map, which includes a 3D occupancy grid as well as information about street and
sidewalk objects in the environment, with semantic and topological information from this
database.

There are multiple reasons why a tighter integration between robot mapping frame-
works with data repositories like OpenStreetMap is beneficial. For once, these repositories
contain manually selected and curated information, which ensures that it is specified on
a level that is understandable to humans and thus usable in interaction, for example for
giving or receiving route instructions. Crowdsourcing the data means that additions and
modifications to the database are possible for the general public. Thus, the data is updated
continuously, and errors can generally be detected and corrected quickly. Furthermore,
even state-of the art scene understanding algorithms primarily rely on assigning labels
on a per-pixel or per-region basis, and can have problems at determining distinctions
between objects where this distinction happens primarily on a semantic level, i.e., two
adjoining rooms with different functions in a space that is not clearly separated, or a
building where different parts serve a different purpose. These will be hard to distinguish
based on sensor data alone, but the information might be readily available as a bounding
box in the OpenStreetMap annotation. On the other hand, the sensor repertoire used in
robot mapping approaches will provide up-to-date metric spatial information in the near
future, which can be uploaded to Open Data repositories for sharing with humans and
other robots. Thus, the benefit of robots using open databases created by and for humans
could be mutual.

This chapter describes applications and possibilities offered by integrating 3D metric
maps with rich semantic and geospatial Open Data repositories. An overview over related
approaches in literature is given in Section §.2. The data contained in OpenStreetMap
that is relevant to this chapter is described in Section @, and as an application scenario, it
is described how street network information from OpenStreetMap can be used to improve
understanding of street geometry based on 3D laser data in Section 1.4. The approach is
evaluated on a challenging data set covering an area in downtown Munich. The results
are presented in Section @, and the results of the chapter are summarized in Section @

4.2 Related Work

Data retrieved from OpenStreetMap and similar information sources, in particular infor-
mation about the topology and layout of the street network, has been used for multiple
applications in robotics. An important requirement for the use of geospatial data is knowl-
edge about the location of the robot on a global map, i.e., a solution of the localization
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Figure 4.1: The robot IURO [, ] in an urban environment

problem. Hentschel and Wagner describe a localization method that uses building outlines
from OpenStreetMap, which are matched to corresponding features in 3D laser scans [[74].
Additionally, the work covers route planning on the OpenStreetMap route network, and
robot behavior control for the robot car’s lights based on semantic attributes from Open-
StreetMap. An alternative to this localization approach is described later in this thesis
in Chapter E Brubaker, Geiger, and Urtasun use the OpenStreetMap route network to
localize based on visual odometry data [@] The localization problem is modeled as a
dynamic system, where the state is the vehicle position related to the current route seg-
ment, and the visual SLAM trace is the input for filtering. An approach for localisation
on the OpenStreetMap route network with visual SLAM and an initial guess from GPS
is presented by Floros, Zander, and Leibe [@] The result of visual odometry is used as
input to a particle filter, where the distribution is pruned based on comparison with the
OpenStreetMap street network. Recently, Ruchti et al. described localization of a robot
on the OpenStreetMap global map based on classification of 3D laser scan point clouds
in street and non-street regions in a SLAM framework []

Geospatial data from open data repositories has also been used for the applications of
place detection and image localization. 3D building geometries from sources similar to
OpenStreetMap and vanishing point detection can be used to rectify and align training
and query images for place recognition tasks [lﬂ] Li et al. [] use 3D point clouds
for global registration of images. The 3D point clouds are generated with Structure of
Motion techniques from crowdsourced, geotagged monocular images.
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The application considered in this chapter, estimation of street geometry using infor-
mation about the location of the street center from Open Data sources is also treated by
Yuan and Cheriyadat [200], where aerial images are used as sensor data in combination
with a street vector network, and by Chen, Sun, and Vodacek [B0], where street geometry
is inferred on the basis of high-resolution multispectral remote sensing satellite imagery.
Geiger, Lauer, and Urtasun present an approach for urban scene understanding based on
a generative model for street geometry and topographic information that is based on 3D
data constructed from stereo vision recorded by a vehicle traveling on the street [60].

The key difference between these works and the approach presented here is in the data
used for estimation. The approach presented here is designed for a static 3D point cloud,
where no pose history or dynamics of other dynamic agents (e.g., cars) are available.
Moreover, the data is recorded as if from a robot travelling on the sidewalk, such that
large parts of the street may be occluded by parked cars or dynamic objects.

4.3 OpenStreetMap Data Model and Relevant Data

The data model of OpenStreetMap is a graph-like structure, where the basic building
blocks are nodes, ways and relations. Nodes represent points on the map and are char-
acterized by their latitude and longitude, as well as an optional elevation. Ways connect
nodes to form open or closed paths and represent spatial entities like the path followed
by railroad tracks, building outlines or the area covered by a football field. Relations
describe higher-level characteristics of sets of nodes and ways, like all buildings belong-
ing to an university campus, or the complete set of streets followed by a bus route. All
instances of these three building blocks are identified by globally unique identifiers. More-
over, arbitrary tags can be applied to each instance of these data types, although there
is an established set of tags and values that is largely adhered to, which can be used to
automatically extract semantic information.

Many features from OpenStreetMap can be easily transferred to a metric map used
for robot applications, provided that the transformation between the different global
coordinate systems is known. Different localization approaches to address this problem
have been proposed as summarized in Section @.2, and this transformation is assumed
to be known for the purposes of the work presented here. In this case, the mapping
of spatial locations allows the transfer of features between the two maps, for example
for route planning based on street addresses in an occupancy grid derived from sensor
data, or for identifying all buildings belonging to a particular ensemble in a 3D map, as
exemplified in Figure @

Since the positions of nodes in OpenStreetMap are based on manual placement, which
in turn is based on processed GPS data and aerial imagery, it is difficult to give an accu-
racy estimate. The errors depend on the accuracy of the recorded GPS data, the number
of data points, where there usually is more data in cities and places of frequent travel,
and the diligence and skill of the annotators. Hentschel and Wagner [74] give a visual
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)

(a) 3D data set overlaid with OpenStreetMap street net-
work

(b) Buildings on the TUM campus, extracted from Open-
StreetMap building outlines

Figure 4.2: Examples for combinations of 3D laser data with additional RGB informa-
tion and information from OpenStreetMap. The visualizations of Open-
StreetMap data in this chapter are created with software based on the
open_street_map ROS packageﬂ.

comparison of a ground truth cadastral map with the building outlines extracted from
OpenStreetMap in the context of robotic navigation. This can be interpreted to show er-
rors in the building edges of a few metres. Fan et al. [] performed a quantitative analysis
of positional accuracy of building outlines for the city of Munich, which, they state, is one
of the most developed cities in OpenStreetMap. Their investigation showed an average
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positional error of 4 m with respect to administrative mapping data. Further analysis by
the authors indicate a accuracy of building outlines also based on other measures, such
as alignment between building outlines and neighbouring street segments, for the area
of Baden-Wiirttemberg in Germany [47]. Other research performed on road positions in
other parts of the world give similar figures, e.g., the work done by Haklay [69] and An-
tunes et al. [6]. This relative inaccuracy is one reason for fitting the geometry parameters
based on sensor data, since this could be used to improve the positional accuracy of the
OpenStreetMap data.

4.4 Street Geometry Estimation using Street
Topology Information

The approach for street geometry information presented here is related to the work
by Ruchti et al. [159], where cells of a 3D laser-based map are classified point-by-point
in order to enable localization of a robot in a street network like OpenStreetMap. In the
work on semantic mapping presented here, additionally, the modelling imposes a strong
geometric consistency constraint—street cells have to be adjacent and located in a strip
around the street center. Depending on the intended robotic application, the term ‘street’
can be understood as either only the area of the street that is driven on, including parking
spaces on the side of the road, or the combination of this drivable area with the sidewalk
directly beside it. The simple model for street geometry used here incorporates both
cases, but is not applicable if there is a larger spatial separation between drivable area
and sidewalk.

For the work presented here, topological information about the street network is ex-
tracted from OpenStreetMap. The goal is to augment this graph with additional metric
information in the form of street geometry, which is largely not existing as annotation
in the OpenStreetMap database. This relies on the street network data being available
and sufficiently accurate. This is the case for the regions considered in the evaluation of
this chapter, and has also been found to suffice for the different purposes of the other
works that use street network data and perform evaluation on data from other parts of
the world. However, street width, even though the infrastructure (an attribute tag defined
for the purpose of annotating it) exists, is not annotated often. In the data set used for
evaluation in this chapter, only one street segment is annotated with a width tag in the
OpenStreetMap database.

4.4.1 Modelling Street Geometry Information

Basis for the estimation is the street network from OpenStreetMap, which provides ap-
proximate street center lines subdivided into segments of varying length, within which

Lauthored by Jack O’Quinn, https://github.com/ros-geographic-info/open_street_map.
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4.4. Street Geometry Estimation using Street Topology Information
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Figure 4.3: Illustration of street position and width model

the street is assumed to be straight. In order to reconcile this information with a met-
ric 3D representation, two parameters need to be estimated for each street segment s:
The vertical offset dg of the actual street center from the vector connecting the Open-
StreetMap waypoints ps, and ps defining the street segment in the street network, and
the width wy of the street around this actual center line. This model for the layout is
displayed in Figure @ Let the joint geometrical parameters for segment s be denoted
by 05 = (ws, ds), and the full set of parameters for all segments by . The directions of
the street segments from OpenStreetMap are assumed to be in keeping with the actual
topology of the environment.

While this simple model of street geometry fits well with the interior of street segments,
it does not cover intersection areas, as can be observed in Figure @ In such areas, the
vertical strip of the intersecting street does not conform well with this model. Since
intersection points are known from the street network information from OpenStreetMap,
this information can be used to mask intersection areas for the purpose of street geometry
estimation. The approach described below considers only areas that are at least 10 m away
from the middle of an intersection, so that the considered environment can be assumed
to have the strip-like geometry expected under this model.
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4.4.2 Inferring Street Geometry from 3D Laser Data and
Street Network Information

The approach for estimating street width from 3D laser data followed here is a two-step
process. Firstly, based on the topology information from OpenStreetMap, areas of interest
which contain the street segments are extracted from the point cloud of the covered area.
In each of these areas, the information from the point cloud is condensed to a 2D grid,
where features are computed for each bin. A binary classifier provides an estimate about
the assignment of each bin to the street or non-street class. Based on these estimates,
the geometrical parameters for each street segment are determined by maximizing their
probability determined through a Graphical Model.

The connectivity of the street network is encoded in a graph G = (P, S). Its edges
s € S are the street segments in the relevant area extracted from OpenStreetMap, and
the nodes p € P are the corresponding waypoints. Each segment connects two waypoints
psp and ps .. This graph reflects the street topology and is used to model dependencies
between the parameters of neighbouring street segments. From this graph, the set of pairs
of neighboring segments N can be derived as {{s1, 52} : 51,52 € S A Ds; b = Psye }-

The positions of the start and end nodes of each segment also determine the area that
is considered for estimating the street width. For this task, a candidate environment of
a predefined width around each segment center line from the street network is retrieved
from the 3D map. For the experiments reported in this chapter, a total width of 40 m was
chosen. This section of the map is then discretized in the ground plane, such that each
segment is divided into a rectangular grid of bins of size L x N, where L is the number
of bins in the direction parallel to the street, and N the number of bins in the considered
area vertical to the direction of the street. The length of the sides of the square bins are
chosen as 0.2m.

An illustration of this representation of the environment is given in Figure @ Fig-
ure shows two projected 2D segments with bins labeled according to their class
membership. It also shows the street segment geometries for the drivable area and the
sidewalk annotated for these segments. Figure shows the full point cloud of one road
segment.

For each resulting bin a set of local features is computed. The feature set contains
standard geometric and appearance-based features. The geometric features are comprised
of the mean, median, standard deviation and absolute range of the z-coordinates of all
points projected to each bin as well as the polar angle of a normal vector computed for
a small neighborhood around each point. Appearance-based features consist of the same
statistics for the intensity values as well as histograms of the recorded color values in each
bin in the RGB and HSV color spaces.

Using these features, a baseline classifier is trained to separate between street and non-
street bins. For this binary classification problem, the labels are chosen as 0 for non-street
bins and 1 for bins classified as belonging to a street. For the experiments described in this
chapter, a Support Vector Machine (SVM) with radial basis function kernel is used for this
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4.4. Street Geometry Estimation using Street Topology Information

(a) Ground truth annotation for the 2D grid representa-
tion — labeled bins (in color) and geometry parameters
(grey bars top and bottom)

-

(b) Section of 3D map with overlaid ground truth anno-
tation

Figure 4.4: Example annotated street segments. For H, yellow areas belong to the driv-
able area, brown areas are on the sidewalk, light blue areas are non-street
and for dark blue areas, no features are available because of occlusions.
The grey blocks in the background show the annotation of the geometry
parameters—Ilight grey for the sidewalk; dark grey for the drivable area of
the street. For |, drivable area and sidewalk points are overlaid over the
point cloud in yellow and brown, respectively.

purpose. The result of the classification for segment s is a matrix of labels Z, € B¥*V,
containing the classification result for each bin z,[i,j],0 < i < L,0 < L < N. The
entirety of estimates for all segments is denoted by Z. Additionally, the confusion matrix
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C of the classifier can be determined from the labeled data used for training the classifier.

The classification results then provide candidate information for the second step, which
introduces the strong global geometric constraint described above on the inferred street
geometry, i.e., that each street segment has straight parallel side lines.

These constraints are formalized in a probabilistic graphical model which encodes both
the dependency of the geometrical parameters of a single segment on the estimate provided
by the classifier, as well as dependencies of the geometrical parameters of neighbouring
segments. The probability of a set of geometrical parameters is modeled by

P®©[2)= [] P(b..0.,) ][] P0:l2.). (4.1)

s1,59€N sesS

The factors in the rightmost product of (@), the segment geometry potentials, describe
the dependency of a segment geometry on the raw classification result. With the help of
the definition of the matrix X,(6,) € BX*Y which describes the labels assigned to each
bin of the segment x (6) [i, j] under a specific geometry 6, this can be further developed
as

P(0,]Z5) o P(05)P(Z:| X(65)) = P(0,) | [ P(zili I, [i, 5] (65)) (4.2)

Z‘)j

HP wg [0, 7] (0s) , s, 7))/ P2 [1, 5] (65))
HC s [1, 7] (05) , 2 [d, 71) / P(s [1, 7] (65)).

The confusion matrix C'is used as an estimate of the classification error probability, and
P(z4i, j] (65)) denotes the class marginals. This distribution penalizes street segment
geometries where many bins receive a label that is different from their initial classification
result.

The prior distribution for the street geometry parameters P(6;) is chosen as a product
of independent normal distributions for the segment offset and the logarithm of the street
width as P(0s) = N (dg|pq, 04)N (log(ws)|ptw, o), the mean and variance of which are
estimated from a training set of segments.

The factors in the first product in (@), the intersegment potentials, serve the purpose
of relating the geometrical parameters of neighbouring street segments. By transforming
the geometry specified in offset from the segment center and the street width to the left
and right boundary of the street according to

as = ds — wg/2
bs = ds + ws/2,

it is possible to define a measure for the mismatch between the parameters of the two
segments as

P(esngsz) = N(asl — gy |070)N(b51 - bsz |O70)'
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The value of o is set to 0.5 for the experimental evaluation.
Given the model ([ll), street offset and width for all segments are determined as the
parameters which maximise the probability density function as

O = argmax P(0©|Z). (4.3)
©

4.4.3 Inference in the Graphical Model

Exact inference of (@) is intractable for street networks of general structure, since the
street network may contain large loops. In order to obtain an approximate solution for the
street geometry optimization problem, a Markov Chain Monte Carlo (MCMC) approach
is used. For this computation, the values of the potential functions must be determined
either analytically or in tabular form for all possible arguments.

While the intersegment potentials are normally distributed and thus have analytical
expressions, the segment geometry potentials (@) depend on the classification results
in a more complex fashion. This table of values can be computed efficiently using a
dynamic programming approach. This is best seen by transforming the probability into
its logarithmic form so it can be expressed as a summation over the individual bins (4, j)
of the segment grid. Since the computation can be done independently for each segment,
the corresponding subscript s is dropped in the following.

log(P (2] X (0))) = log {H C [z [i,j1(0), 2li, 511 / P (s [i, 5] (98))}
= Zlog(C [ [i,51(0), 2[i, j1] / P (s [i, 5] (605)))

Replacing the summands in this expression with the expression é(x [, j] (0) , 2[4, j]), one
can use the fact that the labels assigned to each bin are identical in the regions assigned
as sidewalk and street, respectively, to simplify the expression:

log(P (2] X (0))) = ZE(SB [,71(0) , 2[2, 51)

7=0 =0 Jj=a 1=0 j=b+1 i=0
a—1 L b L
= c(0,0) Y 0(alig] = v) + ) Y elw) Y 8l g] = v)
7=0 veB =0 j=a veB 1=0
N L
+ Y E0,0)) " 6(zi 4] = v)
Jj=b+1 veB 1=0

(4.4)
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with the indicator function §. Then, each of the inner summations does not depend on the
geometry any more, but only on the number of bins that have been classified as sidewalk
or street in each row of Z. Thus, the value table for these factors can be efficiently
computed for all possible segment geometries 6.

4.5 Experimental Evaluation

4.5.1 Munich Urban 3D Data Set

The data set that was used for experiments is in part overlapping with the one described
in our earlier work on spatial relations in semantic maps [214]. It consists of 80 high-
resolution laser range finder scans in 3D, acquired with an Z+F 5010C laser range finder, of
an area in downtown Munich around the university campus. Additionally, laser intensity
and RGB channels are recorded; GPS and odometry data are however not available. In
this data set, object instances are manually segmented and annotated for object classes
such as building, street, sidewalk or car, as well as for qualitative spatial relations, such
as left of or behind, between objects. All OpenStreetMap street segments covered by the
point cloud are annotated with class labels for street, sidewalk or neither of the two on a
per-point level, and ground truth street geometry parameters are determined, as shown
in Figure §1.4. This street network comprises a set of 60 route segments with a total length
of about 2 km.

The data set provides a challenging environment for scene understanding tasks, since
it incorporates a considerable range of different environments, such as residential streets
with parked and artefacts of moving cars, tunnels, and cobbled or gravelled streets closed
for motor vehicles. Additionally, the laser scans are taken from positions on the sidewalk,
such that in many cases the ground plane is not visible because of occlusions or dynamic
objects blocking visibility at the time of registering the laser scan.

4.5.2 Registration of Point Cloud Data with OpenStreetMap

Since the data set is recorded sequentially with no ground truth information about the
absolute robot position at the time of recording a scan, nor about the relative movement
of the sensor between scans, a registration step is necessary to obtain a complete 3D
representation of the area covered by the union of the different laser scans. To this end
of estimating the relative transformations between the sensor positions for each recorded
3D scan, registration was carried out with multiple iterations of the 3D Iterative Closest
Point algorithm [19], with the maximum allowed correspondence distance decreasing with
each iteration, starting from a rough manually defined initial guess. Boundedness of the
registration error was ensured by manually labeling key points for pairs of scenes and
monitoring the registration error, and by visual inspection of the registration result. Also
for the lack of a global ground truth position data of the laser data, manual alignment of
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the 3D data with an export of OpenStreetMap data for the region covered by the laser
data was carried out. This alignment was based on positioning building outlines in Open-
StreetMap in accordance with vertical surfaces in the point cloud, and the correctness of
the alignment was determined by projecting the OpenStreetMap data into the point cloud
data. Note also that the accuracy of this alignment is not critical for the experimental
evaluation as long as the road segments of interest in the point cloud are inside the regions
of interest defined by the road network. This was verified visually.

Since handling the complete point cloud data for the combination of all laser scans is
intractable, the data was filtered and downsampled using the RMAP algorithm [85]. This
procedure produces a denoised occupancy grid at a variable resolution, where the grid
size was chosen as 0.03m for the experiments in this chapter.

4.5.3 Experiments

The method for street geometry estimation described above was evaluated on this aug-
mented Munich 3D Urban Data Set. In order to evaluate the benefits and limitations of
the method as well as to gauge the influences of the different components of the model,
a set of computational experiments with different settings was run.

As goals of the inference, two different applications were investigated: First, the tar-
get was to estimate the geometrical parameters of the drivable area of the street alone,
counting all surrounding area as non-road. Secondly, the target area was defined to in-
clude both sidewalk and the drivable section of the street. The geometric model described
in Section can be used in both cases; the experiments are only distinguished by the
choice of target class in the training of the baseline classifier.

The requirement of labeled training data for the training of the classifier, the calculation
of the confidence matrix for the computation of the segment geometry potentials (@), and
the parameters of the segment geometry prior requires splitting the data set into a training
and a test set for evaluation. In order to be able to evaluate the full model, including
the intersegment dependencies, on the complete available graph of street segments, a
round robin scheme was adopted for the supervised training. For this, the data set was
split into 5 folds, for each of which a classifier was trained on data from the 4 remaining
ones. These were used to compute the potential value tables using (@) Then, inference
was carried out with the full model including the intersegment dependencies on the full
street network. For inference in the full model, 50 chains of Markov Chain Monte Carlo
(MCMC) inference were run for 1,000,000 iterations each.

A summary of the results in terms of per-bin retrieval of the correct labels, measured
against the ground truth per-bin labelling. This metric, expressed as precision, recall and
Fy score, is given in Table {.1. Additionally, a measure for the error of the estimated
street widths against the manually labelled ground truth geometry parameters is given
by the root mean squared error between the estimated segment width w} and the true
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P R F, RMSE,m]

Target Area Method

raw 0.854 0.854 0.854 N. A.

single segment 0.877 0.872 0.873 5.67

driving area & sidewalk full model 0.872 0.869 0.87 2.62
opt. on ground truth 0.946 0.943 0.943 1.58

ground truth geometry 0.943 0.937 0.938 0

raw 0.815 0.808 0.81 N. A.

single segment 0.856 0.851 0.852 5.61

driving area only full model 0.876 0.876 0.876 2.65
opt. on ground truth 0.955 0.953 0.953 1.54

ground truth geometry 0.951 0.947 0.947 0

Table 4.1: Database recall metrics and root mean square error of the estimated street
widths for the baseline classifier and for the solution including geometric
constraints. The upper part of the table contains result for the case where
the sidewalk is included in the street; the lower doesn’t include the sidewalk
in the street area.

annotated width w,, weighted by the length of each segment [

2

RMSEw _ \/Zses lS(w;k - dJS) ‘
ZSGS ls

Different configurations of the method are evaluated. First, the baseline classifier by
itself is evaluated (raw). Since its result do not include geometry information, no width
error is given. Then, the geometries resulting from the probabilistic model are evaluated
with (full model) and without (single segment) including the intersegment potential func-
tions. As an upper bound to the achievable results, the geometric model is fitted to the
per-bin ground truth class labels (opt. on ground truth). The final evaluation is the eval-
uation of bin-wise labels implied by the ground truth geometry (ground truth geometry).
An illustration of the resulting geometries for a part of the data set in comparison with
ground truth data is shown in Figure §.5.

4.5.4 Analysis of the computational properties

For a brief analysis of the computational properties, the processing pipeline can be sepa-
rated into the following individual processing steps:

1. creation of the RMAP 3D occupancy grid

2. feature extraction
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Figure 4.5: A part of the map with the estimated road geometries. Street center lines
and building outlines are drawn as dashed blue and solid green lines, re-
spectively. The estimated road geometries are shown as black outlines and
ground truth geometries are shown in grey.

3. SVM prediction and segment geometry cost function estimation
4. global optimization with geometric model

5. SVM training

The current implementation does all these steps in an offline fashion on the full data
set, in a proof-of-concept, largely non-optimized python implementation. For an online
application of the method with a pre-trained model, only steps 1 — 4 would be relevant.
The complexity of step 1 is linear in the number of points contained in the point cloud,
and thus depends on the rate of discovery of the environment (speed of a vehicle) and the
structure of the environment. The computational complexity of steps 2 and 3 is linear
in the number of bins that are added at each step, thus also proportional to the speed
of the vehicle. The global optimization step is NP-hard if the road network contains
loops; however, the quality of the approximate solution that is practically used can be
traded off against computation time by adapting the parameters of the MCMC inference
algorithm. Furthermore, the influence of new observations will generally be local and not
affect the global solution, such that efficiency gains could possibly be made by adapting
the sampling scheme accordingly.
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Computation time [min]

RMAP total 47.2
features total 104.2
SVM training and prediction (parallel) 12.0
cost computation 4.8
MCMC inference (parallel) 2.8

Table 4.2: Computation times for processing the whole dataset

Computation time [ms]

features per bin 5.39
SVM prediction per bin 2.22

Table 4.3: Overview over computation times per bin

The runtime of the individual steps for the whole dataset of the current implementation
is distributed as given in the Table@

The SVM training and prediction step as well as the MCMC inference use a parallelized
approach on a maximum of 64 cores; all other steps run on a single core on state-of-the-art
hardware.

This distribution shows that much computation time is spent on preprocessing of the
data, which was not a focus for the evaluation done. These steps could probably be
sped up considerably by optimizing the implementation, and would also benefit from
parallelization.

The SVM training is one bottleneck of the approach. Adding new training data for
more diverse environments would affect computation times greatly, since the complexity of
nonlinear SVM training is approximately cubic in the number of samples in the worst case.
However, a tradeoff between complexity and quality could be reached by subsampling the
training data, and trying to distribute the training samples evenly across different types of
environments (which could be distinguished by OpenStreetMap metadata, for example).

Regarding the real-time usability of the approach, a brief assessment can be made using
the per-bin processing times of the current implementation given in Table .

This shows that the processing time for the robot advancing 1 m is approximately 7.6s
(the product of the width of the observed area, 40 m, 25 bins per square meter of area
covered, and the sum of the times given above). Recomputation of the global solution is
not necessary at the same rate, and should be based on the occurrence of specific events,
such as whenever a landmark is reached. In the current experimental setting, where the
recording of a scan takes about 15 minutes and the displacement between scans is about
20m, this is sufficient for “real-time” implementation; however, for a moving robot, it
would not be fast enough. Nevertheless, the author is confident that an actual real-
time operation would be possible with moderate optimization and parallelization of the
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execution.

4.5.5 Discussion of the results

It can be seen in Table El! that introducing the geometric constraints improves retrieval
metrics of labels for individual regions, as well as it also decreases the error in the street
width estimation. An analysis of the failure modes on segments where street geometry
estimates exhibited larger errors showed that environments were the street area is directly
adjacent to an open space with a surface very similar to the street were difficult to handle
for the estimation procedure. Additionally, the data set also contains streets of different
categories (i.e., residential urban streets as well as cobbled streets closed for general
traffic and without sidewalks as well as tunnels), which again are quite different in nature
from a generic scene. In order to further improve the geometry estimation results, more
qualitative information from OpenStreetMap could be used, for example by building and
employing different models for streets of different categories, or street segments that are
annotated as tunnels.

4.6 Conclusion

In this chapter, the benefits of including information from open geospatial repositories in
hybrid maps have been demonstrated. The application of street classification and street
geometry estimation, parameters which are often missing in OpenStreetMap and could
be added automatically from 3D maps, has shown that including a geometric constraint
based on OpenStreetMap data provides an improvement in the geometry error over a
baseline solution based on classification alone. Experiments have been carried out on a
challenging data set, where laser scans have been recorded from the sidewalk, so that the
full width of the street is often occluded, and which contains a widely varying array of
street types, including tunnels. With the increase in mobile robot platforms navigating
in urban scenarios that are equipped with a 3D laser scanners, it is to be expected that
different avenues for use of additional information will be explored.

There are several directions in which the work presented here can be extended. Espe-
cially in the vein of improving urban scene interpretation by using mapping data from
OpenStreetMap would be the use of information about additional properties of streets
such as traversability and the existence of bike paths and sidewalks. Furthermore, it can
be expected that knowledge about the type of street from the annotation as residential,
primary, secondary etc. will be useful if separate models are built and conditioned on the
different types of environment.
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Global Localization of 3D Point Clouds in
Building Outline Maps of Urban Outdoor
Environments

This chapter presents a method to leverage semantic maps for the task of
localization based on sparse semantic data. The presented method is able to
localize a robot with high accuracy in a global coordinate frame based on a
sparse 2D map containing outlines of building and road network information
and no location prior information. Its input is a single 3D laser scan of the
surroundings of the robot. The approach extends the generic Chamfer Matching
(CM) template matching technique from image processing by including visibility
analysis in the cost function. Thus, the observed building planes are matched
to the expected view of the corresponding map section instead of to the entire
map, which makes a more accurate matching possible. Since this formulation
operates on generic edge maps from visual sensors, the matching formulation
can be expected to generalize to other input data, e.g., from monocular or
stereo cameras. The method is evaluated on two large datasets collected in
different real-world urban settings and compared to a baseline method from
literature and to the standard chamfer matching approach. This evaluation
shows considerable performance benefits of the novel localization method, as
well as the feasibility of global localization based on sparse building outline
data.

The presented approach was published in [210).

5.1 Introduction

Accurate localization in urban environments is a crucial dependency of many develop-
ing robotic applications, such as autonomous vehicles, delivery and service robots, or
augmented reality applications. While systems like the Global Navigation Satellite Sys-
tem (GNSS) or localization based on wireless signals are sufficient for many applications,
there is a benefit to a robot being able to localize based purely on its own sensors in
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cases these external services are unavailable or lacking in accuracy. In urban and highly
structured environments, large, usually artificial, planar structures provide robust fea-
tures for localization and registration of 3D sensor data [13G]. Many vertical planes in
urban environments are represented in human-readable maps as building outlines, such
that a mapping between the two allows to localize a robot in the global map coordinate
frame. This chapter describes a method to perform this localization based on data from a
3D laser range finder, for example for a robot travelling in an urban environment, in a 2D
map containing building outlines. Such map information is freely available from common
online map sources like OpenStreetMap [70], Google Street Maps or official municipal
cadastral maps. As discussed in Section E, the information contained in such maps is
reasonably accurate for the use in robotic localization and navigation as well as semantic
mapping, and its accuracy is steadily improving. The proposed localization method uses
only information about building outlines and the street network, which keeps its demands
for storage capacity or bandwidth low. It is based on the geometry of the environment
alone, without the requirement of visual features such as appearance or texture data.
Thus, it is largely independent from seasonal variation or variation based on the time
of day. The matching procedure needs a single 3D laser scan as input. Therefore, no
odometry or time series of measurements is necessary. As a global localization method
using an external map, it is not necessary for the robot to have visited the location before
or to build a feature database for the purpose of localization, since all necessary map
information is freely available online.

The localization problem as posed here is an instance of the template matching prob-
lem: Finding a relation between the query features, consisting of the planar segments in
the robot observation, and the building outlines in the map. Theoretically, this prob-
lem could be solved by knowing the correspondence between a single observed plane and
one building edge in the map; however, this correspondence problem is highly nontrivial,
especially when no appearance information is used.

As for all localization methods, the environment needs to contain a sufficient amount
of salient information to uniquely distinguish it; the lack of this uniqueness is known as
perceptual aliasing. For a localization method that builds on geometry alone, this means
it will not perform well in very highly structured or highly artificial environments, but our
experiments show that there is sufficient information contained for the method to work for
a large part of two different real-life urban environments containing scenes with varying
urban characteristics such as streets with high building density, tunnels, courtyards and
open spaces.

This chapter is structured as follows: In Section @, the proposed method is categorized
with respect to the different localization tasks important in robotics, and an overview over
related work particular to the semantic localization problem is given. Section p.3 describes
in detail the steps performed to estimate the robot pose in the building outline map. The
approach is experimentally evaluated on two datasets and compared to a baseline method
in Section p.4. Section @coneludes the chapter.
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5.2 Related Work

Localization is a field of research that, due to its crucial importance for the success-
ful operation of autonomous robots, has received extensive attention from the scientific
community. For a categorization of the different methods and approaches discussed in
this overview over related work, it is helpful to distinguish a number of related robotics
problems associated with localization.

o Place recognition is the problem of matching sensor data collected in a place to
a database of features collected in a number of distinct places, and retrieving the
correct one. To build this database, the robot has to have visited all eligible places
before.

o Simultaneous Localization and Mapping (SLAM) describes the process of building a
consistent metric map of an environment, which then can be used for localization.
The input usually consists of a sequence of distance measurements from a laser
scanner or similar sensor and odometry information, while other sensor measure-
ments, for example about appearance, can be incorporated as well. An initial pose
estimate, e.g., the result of a global localization method, is needed for starting the
SLAM process.

o Semantic Localization is sometimes used for the process of labeling the surroundings
of the robot based on sensor data (image or otherwise) with semantic categories [44,
158, [187]. Even though this is not a problem of localizing a robot on a map, its
result can be used as part of such a localization method as an additional feature.

o Global localization or the kidnapped robot problem, which is the topic of this work,
describes the task of localizing a robot on a map in a global frame without any prior
information. For general applicability, it is desirable that the map comes from an
external source, such as a topographical or cadastral map, and does not have to
be built based on sensor measurements specifically for the purpose of localization.
Usually, global localization should work from a single sensor measurement or a short
sequence of measurements, such that it can be used as initialization procedure, for
example for SLAM as described above.

Further distinctions between localization methods for robots in urban environments can
be made based on the sensors that are used to provide observations about the environment.
Many robots are equipped with a GPS sensor, which often provides information about
the global location of the robot, which however may be noisy or temporarily unavailable
due to obstructions in the environment. Other methods are based on camera images,
either from monocular cameras or images with attached depth information from stereo
cameras. Laser distance measurements and odometry measurements are often used as
inputs in SLAM localization methods, while visual SLAM relies on monocular or stereo
camera images.
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The following gives an overview over different recent attempts at localization in urban
areas, moving from appearance-based methods to ones that use semantic features of the
environment. Finally, the approaches that localize on maps of building outlines, such as
the one presented in this work, are surveyed.

For global localization approaches, different kinds of maps have been considered as a
reference against which to determine the location of the robot. Many approaches have
focused on using appearance data for localization. Common to these is a databases
of sensory images annotated with location information, against which a query image is
matched to retrieve the camera location. The following paragraph gives an overview over
these approaches.

Aerial images have been used as prior information for localization in approaches such as
the one by Leung, Clark, and Huissoon [[104], which extracts line segments from street-level
images and matches the geometric relationships derived from them to aerial orthoimagery
using a particle filter. Another example for this group of methods is the work by Kiimmerle
et al. [97], which presents a SLAM system that uses aerial images as a global prior.
It matches structures found in aerial images to laser data, and uses the relationships
as constraints in graph-based SLAM. Agarwal, Burgard, and Spinello [1] show how to
improve an approximate location estimate by matching short series of camera views with
Google Street View panoramic images. This method enables global localization in an
area of about 1km radius. Majdik, Albers-Schoenberg, and Scaramuzza [118] present a
similar approach for the localization of flying vehicles in the Google Street View image
database, where the difference in viewpoint between the images taken from the street
level and the images from flying height presents a challenge. Localization in indoor
environments modeled by a database of 2.5D images is shown by Liang et al. [107], where
the localization problem is divided into a place recognition step, where a template image
is retrieved from the database, and a subsequent pose matching between the query and
the template image. Cappelle et al. [27] compare robot observations with images sampled
from a highly accurate dataset of 3D geometry and RGB appearance data to determine
the robot position in cases where for example GPS is not available. A database of street-
level image data augmented with 3D building models is used in the work of Baatz et al.
[11] to localize a device just from monocular images, where the geometry of the query
image is approximated with vanishing point detection.

A second group of approaches does not rely on appearance data, but uses sparser maps
containing different sets of semantic features of urban environments for localization. For
moving robots with the capability of estimating their trajectory, this knowledge can be
used to localize the robot by comparing the travelled path with the paths that are feasible
in the road network. Lee, Wijesoma, and Guzméan [100] integrate approximate digital
maps of the road network as additional constraints with a SLAM framework based on
traditional on-board sensors. The OpenStreetSLAM system [52] uses chamfer matching to
compare the trajectory of the robot, which is determined with visual odometry, to street
map information. Localization is achieved by tracking pose hypotheses in a particle filter
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and selecting those which fit best with the paths traversible on the road network. Gupta
and Yilmaz [67] and Brubaker, Geiger, and Urtasun [23] follow similar approaches, but use
different representations for the travelled trajectories, which allow for different matching
formalisms. Irie, Sugiyama, and Tomono [80] present a localization mechanism on high-
level street maps, which contain street as well as sidewalk outlines, that relies on labeling
streets in images and retrieving a matching map position using a dependence maximisation
approach. The method put forward by Ruchti et al. [159] also depends on the labeling of
areas as street or non-street in laser scans. The semantic labeling results are then used as
sensor measurement in Monte Carlo localization on a map containing the street network
of an urban environment. In a different approach presented by Hentschel and Wagner [74],
buildings extracted from OpenStreetMap are used as the reference map in a Monte Carlo
localization framework. Vysotska and Stachniss [190] use building outlines retrieved from
laser scan data to improve the localization in a SLAM framework. The matching of local
surrounding buildings with a 2D map is performed using the ICP algorithm [[19], which is
used to provide additional constraints for a graph-based SLAM formulation. In contrast
to these approaches, the localization method presented here aims at global localization,
where no sequence of observations and no odometry data are available.

Building outlines in urban environments provide a salient source of geometric informa-
tion, which has also been used for pose estimation with a single frame of sensor data. Many
of these approaches are based on estimating the geometry of the surroundings of the robot
from camera images, and then estimating the camera pose in the map by finding matches
with elements from the map data. For example, Antigny, Servieres, and Renaudin [p] use
distinctive objects with the same appearance and constant, known dimensions (billboards
etc.) which are contained in semantically annotated maps, and localize with respect to
them. This allows users to refine a rough position estimate, which is used to select the
road furniture object, to an accurate pose. Cham et al. [29] perform localization in a
2D map based on a single omnidirectional ground level image, where the geometry of
buildings is estimated using line and vanishing point detection, and geometric hashing is
used to look up the transformation of the camera pose with respect to the map frame.
The work presented by Chu, Gallagher, and Chen [36] builds on this approach, but uses
a similar method to refine the position retrieved from a GPS device, i.e. localize in a
smaller area around a given position. The method also relies on extracting building edges
from a monocular camera image and matching the resulting geometry of a single building
to buildings contained in a 2D map. Arth et al. [§] use monocular images and an initial
GPS fix to localize in a 2.5D map. The ground plane of the map is given by the building
outlines contained in OpenStreetMap, whereas building heights are manually annotated.
Matching is done by extracting lines from the camera images and matching them to the
2.5D map; additional filtering is executed by performing a semantic segmentation of the
image and matching this against OpenStreetMap information.

The work presented here is most closely related to the approach of Cham et al. [29],
but it works on data from a laser scanner instead of on omnidirectional images, and uses
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the fact that building outlines are made up from line segments, for which the chosen
matching method of chamfer matching is suited well. Furthermore, the proposed method
includes visibility analysis for a more accurate matching between expected and actual
observations. It also relaxes the assumption that multiple corners of a building need to
be visible at the same time, which can be difficult in urban scenarios with large buildings,
and particularly with occlusions. While the results presented in that work show that it
is possible to reduce the number of candidate poses with the method presented there, a
reliable global localisation without additional information cannot be based on it alone.
Similar differences exist between the present work and the approach of Chu, Gallagher,
and Chen [36], which furthermore has the different goal of refining the position estimate
received from a GPS device, and not global localization. This is also a relevant difference
between the work presented here and the approach of Arth et al. [8], where again the
localization problem is solved for the case where monocular images of a location are
available along with a location estimate from GPS or a similar sensor. Arth et al. also
perform a step of rescoring pose hypotheses by comparing the input data with the content
of the map that is visible from the candidate location, which is related to the formulation
of the cost function taking into account visibility information put forward in this chapter.
However, their method relies on performing a semantic classification of an input camera
image and comparing it with a backprojection of map data including building height,
which is different from the information available in the scenario envisioned here. In this
work, the input data is given by a 3D laser scans, and the matching is done against
building outline data alone. Evaluation shows that the method performs well in a region
significantly bigger than the typical error of a GPS device, such that the method can be
said to perform global localization on an urban scale, rather than GPS pose refinement
using additional sensor data.

5.3 Description of the Localization Method

5.3.1 Method Overview

The global localization method described in this chapter uses 3D laser scans as sensor
input data. It is matched against a 2D map of an urban environment, which contains
information about building outlines as well as the street network. Data of this type can be
retrieved from various sources. For the evaluation done in this chapter, semantic building
outline data from OpenStreetMap is used.

The sensor data used for localization in the experiments presented here comes from
a 3D laser scanner. Only distance data is used, although appearance data in the form
of laser intensities is often also available. Since the localization problem as discussed
here is a 2D template matching problem, the initially three-dimensional sensor data is
reduced to a 2D representation by extracting vertical planar segments from the data,
and reducing it further to a set of line segments representing these presumed building
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Figure 5.1: Sequence of operations performed for localization on the building outline
map

outlines. Matches between the building edges from the sensor data and the 2D building
outline map are computed using a fast and simple template matching procedure known
from image processing. Since the template matching problem for mapping has special
properties which are not taken into account by standard procedures, the results of this
approach can be improved upon. Information from the building map and street network
are also used to further reduce the number of candidates valid for subsequent processing.
The remaining candidate poses are then further refined by a variation of the chamfer
matching procedure, which takes into account visibility considerations particular to the
laser data matching problem, and penalizes matches where buildings that are absent in
the sensor data appear in the corresponding map section. The result of this computation
is used to rank the candidates and either extract the top candidate as the estimated pose,
or use a ranked set of candidates for further processing, e.g., for the initialization of a
SLAM system. The sequence of processing steps is also illustrated in Figure l5:1|

5.3.2 Point Cloud Processing and Building Outline Segment
Detection

Before the template matching problem of localizing the robot on the building outline
map can be addressed, the input data must be reduced to a set of lines representing the
presumed building outlines in the sensor’s field of view. To this end, the very dense point
clouds are reduced in size as a first step. For this, the rectangular cuboid approximation
framework (RMAP) [85] is used to convert the point cloud into an occupancy grid consist-
ing of cuboid cells at a lower resolution, and reduce the number of noisy observations. In
this data structure, normal vectors can be efficiently computed for each occupied cuboid
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Figure 5.2: Illustration of the line segment extraction based on normal direction. The
elements in the plots are colored according to the orientation of their normal
vector.

cell. Since we are interested in building outlines, and the roll and pitch angles of the robot
travelling on the street can be assumed to be known, vertical surfaces can be extracted
from the occupancy grid by selecting cuboid cells that have a normal vector parallel to
the ground plane.

These vertically oriented cuboid cells are then projected to the ground plane by setting
their z coordinate to zero, and the number of cells per area unit is counted. The result is
a histogram of the vertically oriented cuboid cells in the sensor range of the robot. For
the goal of extracting building outlines from this representation, the normal information
from the point cloud should be preserved, since only points that have a similar normal
direction can belong to a common planar surface. We use this information by binning
the yaw angles of the cuboid cells and creating separate histograms for each angle range.
In each of these histograms, line segments are extracted using the Probabilistic Hough
Transform [119]. Parallel line segments with small distances between them and collinear
lines with small gaps are merged to reduce noise in the resulting set of edges. The building
outline extraction process is illustrated in Figure H.2, which shows both the histograms
of oriented cuboids, and the line segments computed based on them.
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5.3.3 Adapting Directional Chamfer Matching to the
Localization Problem

After the building outlines have been retrieved from the laser data, retrieving the robot
pose in the building map becomes a template matching problem. Chamfer Matching [[14]
is a well-established method for template matching, which is especially suitable to find
correspondences between sets of line segments. This section describes the idea of chamfer
matching and extensions of its original cost function to adapt it to the problem of matching
templates for localization.

Chamfer matching is designed to find a transformation of a template edge map in
the robot coordinate frame U = {u;},i = 1,...,n such that it optimally matches a
section of a query edge map V' = {v;},i = 1,...,m in the map coordinate frame. This
transformation is a 2D Euclidean transformation s € SE(2), where s = (6,t,,t,). It can
be interpreted to define a pose of the robot in the coordinate frame of the map, where
its location is given by (t,,t,), and its heading by 6. The effect of this transformation on
the robot measurements can be calculated by a rotation and a subsequent translation as

~_ [cos(f) —sin(0) ty
Wiass) = (sin(@) cos(f) T ty
The optimal alignment of the query edge map with the template map is the result of
the transformation which minimizes a distance function d between the two maps

§ =argmind (W(U,s),V). (5.1)
seSE(2)

In the following, let the transformed query edge set W (U, s) be denoted by U.

Different distance functions can be used. For standard Chamfer matching, the distance
function is given by the minimal distances to a template edge point for each point in the
query edge map

- 1
dew (0,V) =~ in [i1; — v;] . 5.2
om (U, o 2 min | — v (5.2)
u, €U
For edge maps consisting of linear segments, it is more robust and efficient to consider
the orientation for the edge, and penalize matches between edge points with different

directions. This reasoning leads to the distance function of Directional Chamfer Matching
(DCM) [112]

A 1 . N
dpor (U,V) = =37 min fis — vy] + A|6(3) — 6(0,)]. (5.3)
u; €U

where an edge orientation ¢ is determined for each edge point, and the distance of the ori-
entations is determined as the minimal rotation necessary between them. In applications
where it is acceptable to discretize the space of edge orientations, the optimization (p.1])
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Figure 5.3: Illustration of examples for street corners with identical CM score, even
though there are no sensor percepts of the building on the top left in the
left-hand example. The candidate robot position is marked with a circle.
Building outlines contained in the map are drawn dotted in grey, and their
visible part in black. Lines extracted from a laser scan are drawn dashed in
red. The street center lines are drawn in grey.

can be efficiently computed by computing a distance transform tensor, which contains
the cost contributions for each query edge point. This approximation is formulated in the
Fast Directional Chamfer Matching (FDCM) method [112]. In cases where the template
and query edge maps can be represented as sets of linear segments, the summation of
individual contributions per point can be replaced by computations only involving the
end points of the line segments by computing an integral distance transform.

These cost functions are designed for the task of finding simple query edge maps in
template edge maps derived from cluttered images. It is expected that, for a good match
between template and query edge map transformation, each edge in the query edge map
is close to a matching edge in the template edge map. All edges at larger distances are not
considered for cost computation. For the application of localizing a set of building edges
in a building outline map, where, due to the structured nature of typical building maps,
there can be many areas that are similar to parts of what the robot sensors observe, it
is desirable to also penalize matches where some part of the template that should exist
in the query is not there. This is illustrated in Figure H.3, which shows two possible
transformations of a template edge map, both of which result in the same (D)CM cost
values, but one of them is clearly a worse match than the other, since the building edges
derived from the scan do not contain a building that would be expected to be observed.

While this information about which edges of the template map should be matched to
edges in the query map is not available in a general template matching task, an estimate
of the expected observation for the localization task can be generated by extracting all the
lines visible in the map from a given robot pose. We denote this set of edges visible from
a position (t,,t,) by V.(t;,t,). With this definition, a forward cost function that takes
only the expected observations for a given robot position into account can be defined as

. 1
d <U,V,):— in |6 — ;. 5.4
s A enin [ = v (5.4)

(3
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Furthermore, knowledge about the expected observation also allows to define a reverse
cost function that describes the extent to which the expected observation V, is represented
in the actual observation U

d, <U7 V, s) = % Z min |4; — vj] . (5.5)

eU
ViEVe(tarty)

Finally, the forward cost (@) and reverse cost (@) can be combined to form a cost
function that is symmetric in the expected template edge map and the query map

d, (U,v,s) —%(df ([7,V,8>+dr (U,V,s>>.

A directional extension of these latter three cost functions similar to (@) is possible
analogously.

Computing the optimization g) for these latter cost functions is significantly more
complex than the cost functions (p.2) and (@), as the set of visible edges, which constitute
the template edge map used in the computation of the cost function, depends on the trans-
lation of the considered coordinate frame transformation. This means that a computation
of a distance transform tensor, which is independent of the coordinate transformation and
allows the efficient computation in the FDCM approach, is not possible when the area
covered by the template map is large. Even though visibility analysis can be implemented
efficiently using a Binary Space Partition (BSP) [b6], a brute force optimization of (15:11)
with either cost function dy, d,, or ds can be prohibitively computationally expensive.
For this reason, in this work we adopt a heuristic approach by assuming that minimizers
of these cost functions also result in low values of the simpler cost function dpcyy, if not
the globally optimal ones. Under this assumption, the FDCM method can be used in a
first pass to generate a set of pose candidates C' = {¢;} = {(0;,ts4,t,:)},i =1,...,n¢
that result in values of dpcys within a given factor of its global minimum. Only for these
transformations, the visible lines are computed, and the more complex cost functions are
evaluated.

5.3.4 Filtering Position Candidates using OpenStreetMap
information

The number of poses to consider for valid localization candidates can be restricted further
with additional knowledge available from the building map. For instance, poses that lie
inside buildings can be discarded. Furthermore, if, like in our case, the robot travels
alongside the road, poses that are more than a given distance removed from any edge of
the road network can be discarded as well. For the experiments carried out in this chapter,
we consider only pose candidates that are less than 12 m removed from street elements in
the OpenStreetMap network. Of the many candidate poses generated by the first FDCM
optimization, many are invalid according to either their position inside a building or their
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Figure 5.4: Filtering results for one scan with a large number of pose candidates from
the Munich and Bremen datasets, respectively. Possible robot positions are
marked with dots in red for invalid and blue for valid locations. The actual
area covered by the corresponding scan is marked with a blue frame.

distance from a marked road, and thus do not have to be considered for further evaluation.
This is illustrated in Figure Q, which shows the positions of candidate poses for an input
scene that produces many matches within the area considered for localization. The figure
visualizes which points are considered as valid candidates and which ones are discarded
based on the criteria laid out above.

5.4 Experiments

The global localization method described above was evaluated extensively for localiza-
tion accuracy. Data from two different datasets of urban environments with different
characteristics were used for the evaluation. A baseline approach from literature was im-
plemented for comparison, and the benefit of using the extended cost functions described
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in Section over the standard DCM approach is shown.

5.4.1 Dataset

The global localization method described in Section was evaluated on 3D laser scans
from two datasets. The Munich Urban Dataset [214] contains 80 scans covering an area
around the inner city campus of the Technical University of Munich. It was recorded
with a Zoller & Frohlich 5010C 3D laser range finder and also contains RGB data. Scans
were manually registered by annotating salient points in overlapping scans and finding
the transformation that minimizes the error between the transformed positions of these
scans. The Jacobs University Bremen datasetl covers the campus of that university with
132 scans and was recorded with a Riegl VZ-400 laser scanner. The scans in this dataset
were registered using reflective markers. Both datasets were manually aligned with the
data retrieved from OpenStreetMap in a global coordinate frame.

5.4.2 Experimental Setup

As template data for the localization experiments, map data from OpenStreetMap was
downloaded for a rectangular area of about 2km width around the area covered by each
dataset. This was used to generate the template building outline edge maps. The imple-
mentation of FDCM from [112] was used to obtain the candidate poses with quantization
of line orientations to 12 different direction channels. The grid size for the discretization
of the positions that are searched by FDCM was set to 0.5 m. All poses that yielded a cost
within a factor of 1.6 of the globally optimal FDCM cost were considered as candidate
poses for further processing. The three cost functions newly proposed in Section
as well as the original FDCM cost were used to compute a final ranking of the pose
candidates.

To the best of the author’s knowledge, the only method from literature that has the
same goal of global localization on building outline data alone and can thus serve as a
baseline is the template matching method based on geometric hashing from Cham et al.
[29]. Later methods that are based on this [§, B6] use a similar matching method, but
with added information in form of a GPS estimate, which is not available for the purpose
of global localization. For a comparison with these prior methods, we implemented a
hashing-based method similar to the one used in Cham et al. [29] to be used with scale-
invariant laser data, and measurements from the urban environments represented in the
experimental datasets. It relies on extracting building corners from the building outline
map, which are indexed with a hash function encoding building side length and the angle
between the two sides belonging to the corner.

To localize a scan using the baseline method, first, the same edge extraction process as
described for the proposed method is applied. Then, corners are found in the extracted

by Prashant K.C., Dorit Borrmann, Jan Elseberg, and Andreas Niichter, retrieved from the Robotic
3D Scan Repository http://kos.informatik.uni-osnabrueck.de/3Dscans/
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line segments, and all matching corners from the map are retrieved using the hash index.
The transformation between the corner and the laser scanner position is computed and
applied to all matching corners from the map. The resulting poses are recorded in an
accumulator, such that poses where multiple corners in the map are observed from the
same scanner pose receive a higher score. From this accumulator, the cells with the
highest scores of matching positions are retrieved as final scanner pose estimates. The
parameters for quantizing the accumulator were optimized in a coarse grid search on
the experimental data to a cell size of 5m and a pose quantization that distinguishes
6 different orientations. Localization candidates were determined for each scan in both
datasets using this baseline method.

5.4.3 Experimental Results

For the evaluation of the proposed localization methods, we focus on the error in the
pose of the lowest-cost pose candidates. For this analysis, a pose candidate for which
both the displacement as well as the rotational error with respect to the ground truth
pose are below a threshold is denoted as accurate. For the proposed methods, these
thresholds were chosen as 4m and 0.2 radians as maximum displacement and rotational
error, respectively. For the hashing-based method, the thresholds for determining whether
a candidate is accurate were chosen to reflect the size of the grid used for the accumulator,
which results in a maximal distance of 5m and an allowed rotation of 7/6. Note that
this pair of thresholds is less strict than the one used for the proposed method. These
numbers were chosen to allow for some error in the ground truth registration with respect
to the OpenStreetMap map data, and to be significantly smaller than the typical error of
GPS localization in urban areas [201].

For each dataset, the evaluation is performed in the number of scans N,ccurate for which
the set of k£ candidates with the lowest cost within a circular area of radius w around the
ground truth position contains a candidate with an accurate pose. Thus, for the strictest
evaluation criterion £ = 1, a match means that the candidate pose with the lowest cost
is accurate with respect to the given thresholds; for £ = 5 it means that there is at least
one accurate candidate among the 5 candidates with least costs.

The proposed method with the chosen parametrization produced a set of pose candi-
dates containing an accurate pose candidate for 73 of the 80 scans in the Munich dataset,
and for 119 of the 132 scans in the Bremen dataset. The average number of candidates
per scan for the full map used for the experiments before filtering was 1845, and 472
after filtering based on street and building data for the Munich dataset; for the Bremen
dataset these numbers were 13254 and 5581, respectively. Forward and symmetric costs
were computed for a maximum of 500 pose candidates with the lowest FDCM costs per
scan because of their high computational demands with the current implementation; all
other pose candidates were not evaluated for these costs.

This evaluation of the results of the proposed localization methods is visualized in Fig-
ure @ It compares the number of accurate best-ranked scans, depending on the size of
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the search area, for the standard cost function dpcys, and the newly proposed reverse cost
function d,. The results for the other two newly defined cost functions d; and d, were
slightly worse than with the reverse cost function, but still outperformed the standard
DCM cost dpcay, so the individual results are omitted for brevity. Figure presents a
comparison of the hashing-based baseline method and the DCM method using the reverse
cost function using the same analysis method.

Figure @ gives an overview over the variability of scans contained in the dataset and
an illustration of the nature of the results of the localization procedure. The first two rows
show scans from the Munich data set where the localization provides accurate candidates,
while the scans in the second two rows cover wide open areas that do not provide a
sufficient number of salient features to allow the retrieval of accurate pose candidates, so
the localization fails in these two cases. The fifth, sixth and seventh row show examples
of successful localization from the Bremen dataset. The bottom row shows an example
of a discrepancy between the observed reality and the map, since a temporary building
site fence has been set up at a distance from the corresponding structure in the map.
Nevertheless, candidate poses are also generated in the vicinity of the correct localization
result.

The pipeline of operations is run on a largely non-optimized python implementation
wrapping a modified version of the FDCM implementation of [112] for matching and cost
computations. A cursory analysis of the computational properties of the processing was
carried out in single-threaded computation on a Intel Quadcore i5 CPU at 3.3 GHz with
16 GB RAM. In this analysis, it can be expected that each operation can be sped up con-
siderably with careful optimization. With the current implementation, the computation
of the histogram of oriented occupied cells and the line extraction take on average 54 ms
and 220 ms, respectively. Building the distance transform tensor for the first FDCM step,
which needs to be done once per dataset, takes 35s and 155s for the maps covering the
Munich and Bremen datasets, respectively. This computation time depends largely on
the size of the map and the number of elements it contains, as well as the grid size chosen
for the candidate extraction. Matching the observed lines to the full building outline map
takes 60s on average. For the candidate selection process, filtering all candidates takes
34ms per scan. Further computation times are given per candidate that is evaluated;
hence, computation times for the candidate selection process can be adapted by limiting
the number of candidates that are being evaluated with further cost computation. Com-
putation times for retrieving the visible lines for a candidate pose is 210 ms on average,
and computing the reverse costs takes 620 ms per scan to compute the distance transform
tensor, and less than 1 ms to compute the cost per candidate. Computing the forward
cost takes on average 460 ms per candidate. The reason for this is that the distance trans-
form tensor needs to be computed for each evaluation since the template for the matching
changes with each candidate. In addition to the room for computational optimization, it
can also be noted that the candidate evaluation can very easily be computed in parallel.
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(a) Localization results for the Bremen Dataset
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(b) Localization results for the Munich Dataset

Figure 5.5: Numbers of accurately localized scenes using two different DCM cost func-
tions for both datasets. Results obtained using the reverse cost function d,
are drawn using solid lines, and those from the standard directional chamfer
matching cost function dpcys are drawn dotted. The plot indicates the num-
ber of scans Nyccurate Where one among the k£ best-rated candidates within
a radius of a given size w around the ground truth position is accurate.

5.4.4 Discussion of Results

As it can be seen by inspecting the results, the proposed method generates an accurate
highest-ranking pose candidate even for large search areas in a majority of cases. Taking
into account a larger number of high-ranked candidates improves upon this result, which
can be useful in applications such as generating an initial distribution of pose estimates
for the use in a Monte Carlo localization system. The cost functions taking into account
the expected observations of the robot consistently improve the result with respect to
the DCM template matching method, although at the cost of increased computational
cost. In particular, as it can be seen in Figure b.5, the reverse cost function produces
more stable localization results as the search area increases in comparison to the standard
DCM cost function. As displayed in Figure @, the proposed method also outperforms the
simpler approach based on geometric hashing, which is nevertheless able to localize laser
scans accurately within smaller areas. This is useful if a position estimate for example
from GPS is available, but does not provide satisfactory results for larger areas.
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Figure 5.6: Numbers of correctly localized scenes using the hashing method for both
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datasets, compared to results from the proposed reverse cost function d,.
Results obtained using the reverse cost function d, are drawn using solid
lines, and those obtained using the baseline method are drawn dotted. The
plot indicates the number of scans N.yect Where one among k best-rated
candidates within a radius of a given size w around the ground truth position
is within 5m of the correct position, and the pose of the corresponding
accumulator bin is correct.
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Figure 5.7: Example results of the line extraction and localization. Images from left
to right: Color/intensity image; projection of building points to the ground
plane; extracted building segments and OpenStreetMap building map at
ground truth pose (indicated by the red dot); section of the localization
result: area covered by the observations of the ground truth pose framed in
dark blue, candidates for alternate poses in light blue. The top four rows of
images show scans from the Munich dataset; the lower four from the Bremen
dataset. For a detailed description of the example cases, please refer to the
explanation in Section . 93




5. GLOBAL LOCALIZATION IN BUILDING OUTLINE MAPS

As illustrated in Figure @, two causes for failure of the method are the lack of reliable
features in areas that contain few buildings, and mismatches between the map and the
environment caused by errors in the map or temporary changes in the environment. Re-
sults also show that the proposed method works successfully even in instances where no
building corners are visible, for example in cases where only sides of a large buildings, the
corners of which are outside the sensor range, are visible, or in situations where building
corners are occluded. This is not possible with methods relying on geometric hashing or
similar techniques, which rely on accurate building corner locations.

5.5 Conclusion

This chapter has shown an approach to estimate the pose of a robot in a global coordi-
nate frame based on only a laser scan and a map containing building outlines and street
network data. The evaluation has shown that this approach performs well on a large part
of the data used for experimentation, which includes urban scenes with varying charac-
teristics. It has been demonstrated that explicitly comparing the expected observation
with the actual sensor data by including visibility analysis in the cost function benefits
the localization accuracy.

The presented approach could be improved in a number of ways. Freely accessible
databases offer much more semantically annotated data than what is used in this ap-
proach. For example, detecting the area covered by roads and paths could be used as an
additional feature. Building heights, which are annotated in some maps, could be used
to make the candidate selection process more concise and to generate a more accurate
representation of the expected observation.

The presented system can also serve as the basis for other robotic applications, and be
used in connection with other sensors. For example, the generated pose candidates with
their associated costs can be used to provide the initial pose distribution for a SLAM
pipeline. While the matching method has been described and tested on scale-invariant
laser data, it can also be applied to building outlines extracted from camera images using
computer vision methods, when scale is added as an additional degree of freedom to the
first DCM search step.

94



Conclusion and Future Research Directions

This chapter provides a summary and discussion of the presented approaches
and methods of each chapter from this thesis. In addition, possible directions
for future research in semantic mapping for autonomous robots in urban areas
are outlined.

6.1 Summary and Conclusions

Urban environments have been identified as the domain for several promising robotic
applications in industry and research. Since these applications require robots to be co-
located and to interact with humans who are inexperienced with using robotic technolo-
gies, high-level interaction is an important ability they need to be equipped with. In
addition to sensor-level environment data, which is a basic requirement for robotic navi-
gation, these interaction scenarios and the high-level reasoning required from the robots
affirm the need for symbol-level, semantic environment knowledge that lends itself to
being related to humans and to task-related reasoning. The field of semantic mapping
formalises representation and reasoning techniques to gain, store and reason about such
knowledge.

This thesis has explored ways of generating, using and augmenting semantic knowledge
for autonomous, interactive robots in urban environments. The following paragraphs
summarize the presented work and present conclusions from the findings.

Augmenting Semantic Maps with Qualitative Spatial Relations using Proba-
bilistic Logic Chapter B of this thesis concerned the augmentation of a metric occu-
pancy grid including object information with knowledge about spatial relations between
objects. The presented approach builds on the SRTree environment structure, which
stores pointcloud and object information in a hierarchical occupancy grid. For the envi-
sioned application of giving and interpreting route directions, a qualitative spatial repre-
sentations with the three relations On/Under, LeftOf / RightOf and Behind/InFrontOf is
selected. Spatial relations between objects are determined first using a supervised learning
approach. Then, higher-level knowledge about the relations between the spatial relations
is entered into the model in a logical formulation, which can then be reasoned over using
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the Markov Logic Network (MLN) approach to Probabilistic Logic. The evaluation shows
that the approach is generally able to retrieve spatial relations as they were given by users
describing an urban scene, even though applying the consistency reasoning doesn’t always
improve the result, suggesting the conclusion that users don’t always give fully consistent
sets of spatial relations.

The chapter also includes the discussion of a novel inference method for the most
probable variable assignment in an MLN. It is based on the conversion of the initial
logical formulation of the problem to a purely algebraic pseudo-Boolean formulation.
In this framework, the inference problem can be converted to an equivalent one with
only pairwise interactions between variables in a quadratization step. For this problem,
efficient inference algorithms such as Quadratic Pseudo-Boolean Optimization (QPBO)
are applicable. Evaluation of the solutions shows that the solution quality and efficiency
are comparable or superior to state-of-the-art alternatives. It is also shown that the choice
of the method which is chosen to perform the quadratization step influences the solution
quality. Further research is necessary to investigate how to choose the appropriate method
for a given problem.

Combining Point Clouds with Semantic Data from Open-Source Maps for
Scene Interpretation In Chapter @, it is investigated how metric point clouds can
be integrated with semantically annotated information from a crowdsourced map, Open-
StreetMap, for the task of scene interpretation. Concretely, the task of estimating street
geometry from a set of pointclouds recorded with the point of view of a robot travelling on
the sidewalk is addressed. For this task, street network information from OpenStreetMap
is used to identify areas of interest and to be able to reason about geometries of connected
street segments with the knowledge of the full street network. The evaluation of the al-
gorithm on 3D pointclouds from the Munich 3D urban dataset shows that including the
geometric constraints based on semantic data from OpenStreetMap improves the geome-
try estimation with respect to the baseline, thus illustrating the benefit of using semantic
data to aid the processing of sensor data. The geometric information arrived at using this
method can be input back into the semantic attributes of the OpenStreetMap database.

Global Localization on a Sparse Semantic Map of Building Outlines Chapter B
continues in the vein of exploring how semantically annotated data from OpenStreetMap
can be leveraged for increased autonomy of robots in urban environments. The work
presented in this chapter looks at the task of localization in environments where only
semantic map data and no prior sensor data is available. In particular, global localization
on a city level is described in a map containing only building outlines and road network
information. The sensor-level input data that is used to localize the robot is a single
3D point cloud. The matching between sensor and map data is done by extending the
chamfer matching technique for template matching and extending it with functionality
to take occlusions occurring in the input data into account. Evaluation of the method on
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two data sets with different characteristics shows that it performs very well in comparison
with competing approaches. Thus, this research describes another instance where the
inclusion of semantic data from external data sources into the reasoning process benefits
the performance of sensor data processing. In this case, it is remarkable that the global
localization problem on a city scale can be solved based on this very sparse set of data
made up of only building and road geometries.

6.2 Future Research Directions

The topics presented in this thesis have shown multiple possible avenues for further work.
The following paragraphs highlight particular directions which appear promising for future
research.

Using Semantic Data to Improve Sensor Data Processing This thesis has ex-
plored the combination of pointcloud data and semantic annotations from other sources
for the task of scene interpretation and global localization. However, there are other
robotic tasks that will likely benefit as well from taking into account semantic knowledge.
In particular, one could use semantic information to improve point cloud registration, es-
pecially over longer periods of time, for example when revisiting a location after a certain
amount of time. As it was demonstrated in Chapter f for the task of global localization,
semantic knowledge about parts of the environment can provide information about the
dynamic nature of an object, and thus about its reliability for purposes of scan matching
or registration.

Long-Term Semantic Mapping Most existing semantic approaches model an envi-
ronment for a specific instant or over a very short period of time. When this mapping infor-
mation is reused, the environment is implicitly assumed to be static. However, especially
urban environments are inherently dynamic, and many applications such as navigation,
perception and object recognition, simulation of urban scenarios or location-based services
would benefit from knowledge about the dynamics present in the environment. Multiple
methods would lend themselves to storing and reasoning about information about envi-
ronment dynamics in a semantic map, among them Dynamic Bayesian Networks (DBNs),
spectral methods [91], (probabilistic) temporal logics, or flow analysis, e.g., for large num-
bers of vehicles or humans.

Increasing Information Diversity in Semantic Maps by Using Diverse Informa-
tion Sources This thesis has argued that diverse information sources, such as sensor
data, online databases, and interaction increase the autonomy and capability of mobile
robots. In particular, this has been shown to be the case for the combination of sensor
data and semantic data from OpenStreetMap in Chapter @ and Chapter H, and for the
combination of natural language interaction and sensor data e.g. in the IURO project.
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Increasing the diversity of information sources further would allow novel approaches to
getting feedback or verification for the semantic data. For example, a semantically salient
localization result could be verified in interaction, or information arrived at through sen-
sor data processing can be entered into an online database for human review. This would
also allow a supervised or semi-supervised creation of semantic maps, or teaching a robot
what is relevant and what is not. On the other hand, the increase in available informa-
tion comes also at an increased effort for planning how to use information most efficiently,
which are topics which have been addressed in a different context in the fields of Partially
Observable Markov Decision Processes (POMDPs) and active perception [12].

General Topics in the Realm of Semantic Mapping As it has been mentioned in
Section @, the term semantic mapping may mean different things to different people.
This thesis takes a broad approach to defining it, which is derived from the heritage of
combining qualitative and quantitative geometric information to semantic information
to form a rich hybrid environment representation, as it was laid out in Chapter E In
contrast, the definition used in some parts of the literature which understands semantic
mapping as limited to single scene understanding and object recognition is much more
narrow. As in other fields of robotics research, commonly defined challenges, datasets and
evaluation criteria could help to build a clearer understanding of the topic in the robotics
community, as well as focus the efforts in this area of research.
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