
Digital Topology: Regular Sets and Root Images of the Cross-Median Filter

ANDREAS ALPERS
Zentrum Mathematik, Technische Universit�at M�unchen, Arcisstrasse 21, D-80290 M�unchen, Germany

alpers@mathematik.tu-muenchen.de

Abstract. In the study of topological properties of digital images, which is the central topic of digital topology,

one is often interested in special operations on object boundaries and their properties. Examples are contour filling

or border following. In classical topology there exists the strong concept of regularity: regular sets in R2 show no

`̀ exotic behaviour'' and are extensively used in the theory of boundary value problems. In this paper we transfer

the concept of regularity to digital topology within the framework of semi-topology. It is shown that regular open

sets in (a special) semi-topology can be characterized graphically. A relationship between digital topology and

image processing is established by showing that regular open digital sets, interpreted as digital pictures, are left

unchanged when the cross-median filter is applied.
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1. Introduction

Over the last two decades, digital topology has proved

to be a very strong concept in image analysis and

image processing. It was Rosenfeld [13] who first

presented the fundamentals of digital topology, which

provides a sound mathematical basis for image

processing operations such as image thinning, border

following, contour filling and object counting (see [7]

for a survey). Whenever spatial relations are modeled

on a computer, a digital topology is needed.

Basically, digital topology aims to transfer con-

cepts from classical topology (such as connectivity of

objects, properties of their boundary and their

neighbourhood, as well as continuity) to digital spaces

(such as Z2), which are used to model computer

images.

Among the different approaches to digital topology

(see, e.g., [5, 8] or [13]), we use the concept of `̀ semi-

topology'' introduced by Latecki [9]. In contrast to

other concepts of digital topologies, the main

advantage of this concept is that we can directly

transfer many concepts from classical topology to

digital topology, which is rather surprising since it is

well known (see [10]) that in digital topology it is not

possible to construct a classical topological theory. In

this paper we use the 8-semi-topology, because it has

the property that the 8-connected sets of Rosenfeld,

which play a prominent role in connectivity issues in

computer images, are exactly the 8-(semi-topological)

connected sets in this semi-topology.

Within the framework of semi-topology we are

able to introduce the concept of regularity in digital

topology. Regularity is a strong concept in classical

topology, and it is used in connection with boundary

value problems and strict expansions of topological

spaces.

We establish a connection between regular sets in

the 8-semi-topology and root images of the two-

dimensional cross-median filter in digital pictures.

Root images in digital pictures are sets which are left

invariant when a filter is applied.

For one-dimensional signals, the root images of

median filters are well understood [4]. However, in

the two-dimensional case, little is known. Astola,

Heinonen and Neuvo [2] showed how to construct

root images for two-dimensional median filters which

operate on a rectangular window. However, D�ohler [3]
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constructed special convex root images of more

general two-dimensional median filters. We shall

show in this paper that there exist also non-convex

root images of the cross-median filter.

Median filters are frequently used in image

processing, especially for de-noising computer

images. Knowledge of these root images is of practical

as well as of theoretical importance in digital image

analysis: If we de-noise a computer image and if the

objects of interest change their shape considerably,

then it is not advisable to apply this special median

filter. On the other hand, if the objects of interest in a

computer image are the root images of the applied

median filter then we have the guarantee that these

objects remain unchanged in the de-noised image.

This paper is organized as follows: In Section 2 we

introduce the semi-topology. In Section 3 we

graphically characterize regular open sets in the

8-semi-topology, while the proof of the theorem

(Theorem 1) is given in the appendix. Furthermore,

we show a relationship between regular sets and root

images of two-dimensional median filters in Section

4. We conclude with a short outlook in Section 5.

2. Semi-Topology

Definition 1. A semi-topology on a set X is a system

O of subsets of X, which meets the following

conditions:

1. ;;X 2 O,

2. The union of every subsystem of O is a member

of O.

Clearly, this a more general definition than the

definition of a topology, because the axiom about the

intersection of two open sets is omitted. This concept

was first introduced by Latecki [9]. He showed that it

provides a suitable framework for topological issues in

image processing. Here we refrain from reviewing the

results of Latecki in detail which can be found in [9]

and [10]. Instead, we deal with two special semi-

topologies, the 8- and 4-semi-topology. What makes

these semi-topologies important to image processing is

that the 8- and 4-connected sets in the corresponding

semi-topology are exactly the 8- and 4-connected sets

in the common graph-theoretical interpretation. Before

we define these two semi-topologies, we first mention

what we understand by a digital picture. A two-

dimensional digital picture is as usual [10] a tuple

(Z2;B), where B � Z2. The elements of Z2 are called

points of the digital picture, and the elements of B are

called the black points of the picture, and the points in

Z2 n B are called the white points of the picture. The

relationship between digital pictures and sets B � Z2

in a semi-topology is obvious: B can be regarded as

the set of black (or white) points of a digital picture

and vice versa. Now, we define the 8- and 4-semi-

topologies by their "point bases" U8( p) and U4( p),

respectively, for p � (p1; p2) 2 Z2:

U8( p1; p2) : � f(q1; q2) 2 2 jmax (jq1 ÿ p1j;
jq2 ÿ p2j) � 1gand

U4( p1; p2) : � f( p1; p2 ÿ 1); ( p1 ÿ 1; p2); ( p1; p2);

( p1 � 1; p2); ( p1; p2 � 1)g:
Then, B8 :� SfU8( p)jp 2 Z2g is a base of ( Z2;O8)

and B4 :� SfU4( p)jp 2 Z2g is a base of ( Z2;O4).

Here `̀ B8 is a base of ( Z2;O8)'' means that every

member of O8 is the union of the sets belonging to B8,

like in the classical definition. The same applies to B4.

We notice that every point p has a smallest

neighbourhood in the 8- and 4-semi-topology, namely

U8( p) or U4( p), respectivly. We also notice that

( Z2;O8) and (Z2;O4) are not classical topologies at

all, because there are two open sets, e.g. U8( p1; p2)

and U8( p1 � 1; p2), which have a non-open intersec-

tion. Among the topological properties and operators

we consider the interior operator

int B :� fx 2 Z2j9y 2 Z2 with x 2 U (y) � Bg
and the closure operator

cl B :�fx 2 Z2j8y 2 Z2 with x 2 U ( y)

follows U ( y) \ B 6� �g:

3. Regular Open Sets in the 8-Semi-Topology

In this section we introduce the concept of regularity

in semi-topological spaces. We investigate here

regular open sets in the 8-semi-topology and obtain

a characterization which enables us to decide whether

an open set is also regular open by comparing this set

with special patterns. This gives us a graphical

criterion for regularity (regular openness) in the

Z
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8-semi-topology at hand. Regularity in classical

topology is a strong concept. Stone [14] defined an

open set G of a topological space to be regular open if
G

o � G. He investigated spaces with a basis of
regular open sets. This concept was useful in
investigating strict expansions of topological
spaces (see [12]). In the theory of boundary value
problems, or more generally in the theory of
Sobolev spaces, one usually assumes that the
domain X of the differential operator is an open
(simply connected) subset in Rd . However, the

boundary values are prescribed on the boundary of X.

The closure X of an open set is regular open in the

sense that the closure of its interior is the set itself. So

one also can require that the differential operator and

its boundary values are defined on a regular open set

X. For a more in-depth investigation there are more

stringent conditions necessary. One example is the

cone property which is needed in connection with

interpolation, extension theorems [1] and embeddings.

The following definition is an analogue to the

topological definition.

Definition 2. Let (X ;O) be a semi-topological

space. B � X is called a regular open set in (X ;O)

if B � int cl B.

Of course, a regular open set is an open set.

Figure 1 shows two regular open sets in the 8-semi-

topology. The set of black points is the set B, whereas

the dots and the white point (�) represent points of

Z2 n B. Both examples show non-convex sets B.

The fact that the left example of Fig. 1 shows a

regular open set can be seen as follows: The closure

clB consists of the black points and the white point (�)
in the center of the 7� 6 grid (Every 3� 3 block (8-

semi-open set) containing this point hits a point of B,

and thus is a member of clB). This center point is

again removed when clB is opened, because there is

no black 3� 3 block (8-semi-open set) containing it.

The five point patterns A1, A2, A21, A22 and A23 are

shown in Fig. 2. These patterns consist of four

different types of points: black points (�), white points

(�), dots (�) and a �. Suppose a pattern A, as in the

aforementioned figures, and a digital picture

C � ( Z2;B) is given. For better understanding we

only give an informal description of what we mean by

the statement: "The pattern A occurs at point p". We

lay the pattern A on top of C in such a way that p and

the point � lie on top of each other. Then A occurs at

p if we can apply reflections or rotations by a multiple

of 90 degrees to A such that all black points of A are

black points in C, and the white points of A are white

points of C. The point � of A counts as a white point,

Figure 2. Patterns for characterizing regular open sets in the 8-

semi-topology.

Figure 1. The examples of regular open sets (black points) in the 8-semi-topology.
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and the dots in A indicate points in Z2 which can be

coloured either white or black in C.

Now we may characterize regular open sets in the

8-semi-topology by means of patterns. The proof of

the following theorem is given in the appendix.

Theorem 1. Let ( Z2;B) be a digital picture and B

be an open set in the 8-semi-topology.

B is a regular open set, 8p 62 B it holds:

(i) Pattern A1 does not occur at p;
(ii) If pattern A2 occurs at p then pattern

A21;A22 or A23 occurs, too.

With this characterization at hand we can easily verify

whether a given digital picture ( Z2;B), which is an

open set in the 8-semi-topology, is also a regular open

set. This charaterization also leads to an algorithm for

checking the regularity: We just have to check for

every p 62 B whether the given patterns A1, A2, A21,

A22 or A23 occur. If there is a point for which the

pattern A1 occurs (Property (i) of the above theorem is

violated), then we can conclude that B is not a regular

open set. If this is not the case and Property (ii) holds,

then B is a regular open set.

Similar charaterizations can be found for regular sets

in other semi-topologies, such as the 4-semi-topology,

but we will not present this case here.

4. Root Images of the Cross-Median Filter

As a corollary of our charaterization theorem we show

that digital pictures ( Z2;B), where B is a regular open

set in the 8-semi-topology, are root images of the

cross-median filter.

Median filters are quite popular tools in image

processing. For example, they are often used to de-

noise (or de-speckle) images (see [11]). Essentially, a

median filter averages the pixel values of a computer

image in a certain `̀ window''. Let us now define this

filter mathematically. The cross-median filter Med4 on

digital pictures is a mapping which maps ( Z2;B) to

( Z2;B0) with

B0 � fp 2 Z2 : jU4(p) \ Bj � 3g:
The cross-median filter owes its name from the set

U4(p) which is cross-shaped.

A root image of Med4 is a digital picture ( Z2;B)

with Med4(( Z2;B)) � ( Z2;B). This means, that a

root image of Med4 is a digital picture which is left

unchanged by the cross-median filter. The term root

image is a term that was originally introduced in the

theory of signal processing. A digital picture can be

regarded as a two-dimensional binary signal, and a

filter is an operator which maps one signal to another.

A root image of a filter is a signal which is left

unchanged by applying this filter to the signal.

Root images play a prominent role in signal theory,

because they help us to understand the properties of

filters and to mathematically justify their use in

different applications. This is demonstrated by the

following example: Let us suppose that we want to

detect an object of a given shape in a noisy digital

picture. In order to de-noise this picture we apply a

median filter. However, if this filter does not only

remove the noise, but also the object of interest in

the image (or if it changes the shape of the

object considerably), then it is not advisable to apply

this filter.

Clearly, the best choice of a median filter would be

the median filter where our objects of interest are root

images of the filter. The following corollary shows

that if our objects are regular open sets in the 8-semi-

topology then they are root images of the cross-

median filter.

Corollary 1. If B � Z2 is a regular open set in the

8-semi-topology, then ( Z2;B) is a root image of the

cross-median filter, i.e.

Med4(( Z2;B)) � ( Z2;B).

Proof: Let us suppose that B is a regular open set
in the 8-semi-topology and Med4(( Z2;B)) �
( Z2;B0) with B 6� B0. We must consider two cases:
(a) Suppose, there is a point p 2 B n B0. This means

that p 2 B has at least three 4-neighbours which

are no elements of B. A contradiction to the

openness of B.

(b) If p 2 B0 n B, then p clearly has at least three

4-neighbours which are elements of B. Because of

the openness of B, the pattern A2 would occur at p,

whereas patterns A21, A22 and A23 would not occur

at p. Thus Property (ii) of Theorem 1 does not

hold, which contradicts that B is a regular open set.
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Special root images of two-dimensional median filters

were investigated in [2] and [3]. The previous

corollary characterizes a rather large class of root

images of the cross-median filter, which also includes

some non-convex root images (see Fig. 1).

It is also possible to prove this corollary without

referring to Theorem 1. Essentially one has to apply

similar reasoning to that used in the proof of Theorem 1,

which leads to a more technical proof of the corollary.

Note that there are also root images of the cross-

median filter which are not regular open sets in the 8-

semi-topology. Take, for example,

B �f( p1; p2); ( p1 � 1; p2);

( p1; p2 � 1); ( p1 � 1; p2 � 1)g
which is not an open set, but in fact is a root image of

the median filter.

5. Conclusions

In this paper we have shown how the topological

concept of regularity can be transferred to the

framework of semi-topology, and thus to digital

topology. We have investigated regular open sets in

the 8-semi-topology and obtained a graphical char-

acterization of these sets (Theorem 1). Furthermore,

we have shown that these sets, interpreted as a digital

pictures, have the property that they remain un-

changed when the cross-median filter is applied

(Corollary 1). This is a new result on root images of

a special two-dimensional median filter, which also

shows, e.g., that there are non-convex root images for

the cross-median filter.

By defining the point bases U ( p) of points p 2 Z2

it is possible to introduce various semi-topologies. It

seems likely, that regular sets in these semi-topologies

could be characterized in the same graphical way as in

the 8-semi-topology. This result can be obtained, e.g.,

in the 4-semi-topology. These characterizations give a

graphical image of the abstract concept of regularity

in digital topology and thus permit the mathematically

modeling of objects with prescribed `̀ regular''

boundaries.

The fact that objects with `̀ regular'' boundaries

can be of particular interest was illustrated by the

result on root images of the cross-median filter in

Corollary 1. This approach in digital topology

provides a new way of investigating root images of

two-dimensional median filters. Furthermore, it is a

very promising approach for applications in digital

image processing, since median filters are used for

de-noising digital images. Knowing their root images,

help us to specify acceptable and unacceptable

changes caused by such filtering.
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7. Appendix

Now we give the proof of Theorem 1 (Section 3).

Theorem 1. Let ( Z2;B) be a digital picture and B

be an open set in the 8-semi-topology.

B is a regular open set, 8p 62 B it holds:

(i) Pattern A1 does not occur at p;
(ii) If pattern A2 occurs at p then pattern

A21;A22 or A23 occurs, too.

Proof: Since B is an open set and B � cl B,
B � int clB. Thus, B is a regular open set if and
only if

Z2 n B � Z2 n int cl B: (1)

")": We want to show that if B is a regular open set

then Properties (i) and (ii) hold. We show this

indirectly: If a point p � ( p1; p2) 62 B does not

meet Property (i) or Property (ii) then

p 2 int clB in contradiction to (1).

(a) Let pattern A1 occur at p. Without loss of

generality we can assume that pattern A1 occurs

at p and consequently ( p1 � 1; p2) 2 B. Since B is

open there is a 3� 3 block of black points

containing ( p1 � 1; p2) but not p. There are three

different blocks of this type. And the reader may

Digital Topology: Regular Sets and Root Images of the Cross-Median Filter 11



verify that in each case clB contains a black 3� 3

block containing p. Thus p 2 int clB.

(b) Let the pattern A2 occur at p. We also assume that

neither the patterns A21; A22 nor A23 occur.

Furthermore we can assume ( p1 � 1; p2);
( p1 ÿ 1; p2) 62 B, for otherwise we could conclude

in a similar way to (a) that p 2 int clB. It also

holds that ( p1 � 1; p2); ( p1 ÿ 1; p2) 2 clB, for

otherwise one of the patterns A21; A22 or A23

would occur. This implies, without loss of

generality, ( p1 � 1; p2 � 1), ( p1 � 2; p2 � 1) 2 B

(for otherwise p 2 int clB). It follows that

( p1 � 2; p2) 62 B is not contained in clB, and the

same holds for (p1 � 2; p2 ÿ 1); ( p1 � 2; p2 ÿ 2);
( p1 � 3; p2); ( p1 � 3; p2 ÿ 1) and ( p1 � 3; p2 ÿ2)

( for o therwise p 2 int clB) . Because of

( p1 � 1; p2) 2 clB i t fol lows that ( p1 � 1;
p2 ÿ 2) 2 B and therefore ( p1 ÿ 1; p2 ÿ 2) 2 B.

But this means that ( p1 ÿ 1� i; p2 ÿ 2� j) 2 clB

for 0 � i; j � 2. And thus leading to the contra-

diction p 2 int clB: See Fig. 3.

"(": We assume that Property (i) and Property

(ii) hold for every p 62 B. To show that B is a

regular open set we have to show for

p 2 clB n B that p 62 int clB.

Let p 2 clB n B. The point p could not have three

or four black 4-neighbours because this would

contradict Property (ii). Thus we have to distinguish

five different cases. Figure 4 shows the two cases (a)

and (b) which have to be investigated if p has two

black 4-neighbours. It also shows a slightly more

generalized version of two black neighbours in one

line, which includes as a subcase the case of two black

4-neighbours in one line (because B is an open

set).The two cases (c) and (d) of Fig. 4 have to be

investigated if p has exactly one black 4-neighbour

and when the Case (b) does not occur. Finally, the

Case (e) of Fig. 4 has to be investigated which is the

case that p has no black 4-neighbours.

(a) First we observe that ( p1; p2 ÿ 1); ( p1; p2 ÿ 2);
( p1 ÿ 1; p2) and ( p1 ÿ 2; p2) are white points,

because otherwise pattern A2 but not A21; A22 and

A23 would occur at p. The point ( p1 ÿ 2; p2 ÿ 2)

is white, because pattern A1 does not occur.

Because B is open it follows that (p1 ÿ 1; p2 ÿ 2);
( p1 ÿ 1; p2 ÿ 1) a n d ( p1 ÿ 2; p1 ÿ 1) a r e

white points. But then p 62 clB which contradicts

p 2 clB. Thus Case (a) could not occur under

the assumption of Property (i) and Property

(ii). See Fig. 5 for an illustration of our

reasoning.

(b) Without loss of generality we can assume that

( p1 ÿ 1; p2) 62 int clB. First we consider: ( p1 ÿ 1;
p2 � 1); ( p1 � 1; p2 � 1) 2 B. Then ( p1 � 1;
p2 ÿ 2); ( p1 � 2; p2 ÿ 2) 2 B. But now occurs

pattern A2 at ( p1 � 1; p2) but neither pattern

A21;A22 nor A23. Thus, ( p1 � 2; p2) 62 B [ int

clB) p 62 int clB. The second case to consider

is: ( p1 ÿ 2; p2 � 1); ( p1 ÿ 1; p2 ÿ 1) 2 B. Then

( p1 � 1; p2 ÿ 2); ( p1 � 2; p2 ÿ 2) 2 B. Further-

more ( p1 � 1; p2 � 1) 62 B, because we just con-

sidered the other case. Now, ( p1 � 3; p2 ÿ 1) 62 B,

Figure 3. This figure illustrates our reasoning in Case (b).
Figure 4. The considered cases in the `̀('' part of the proof of

Theorem 1.
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because otherwise we would obtain ( p1; p2 ÿ 1);
( p1 � 1; p2 ÿ 1); ( p1 � 2; p2 ÿ 1) 2 B, and in the

s a m e w a y ( p1 � 1� i; p2 � j) 62 B, f o r

0 � i; j � 2, which means p 62 int clB. Thus,

( p1 � 1; p2 � 1) 62 B. I f ( p1 � 1; p2 ÿ 1) 62 B,

then ( p1 � 1� i; p2 ÿ 1� j) 62 B, for 0 � i; j �
2, i.e. p 62 int clB. If ( p1 � 1; p2 ÿ 1) 2 B, then

( p1 � 1; p2 � 2); (p1 � 3; p2 � 2) 62 B) ( p1�
1� i; p2 � j) 62 B, for 0 � i; j � 2, i.e. p 62 int

clB. The third case to consider is: ( p1 � 1;
p2 � 1); ( p1 � 2; p2 � 1) 2 B a n d ( p1 ÿ 1;
p2 � 1) 62 B. Consequently, (p1 � 1; p2 ÿ 2) 62 B

(for otherwise ( p1 � 2; p2) 62 clB p 62 int clB),

which leads to ( p1 ÿ 2; p2 ÿ 2); ( p1 ÿ 1; p2 ÿ 2)

2 B and, as in the previous case, (p1 � 1� i;
p2 ÿ 2� j) 62 B, for 0 � i; j � 2, i.e. p 62 int

clB.

(c) Without loss of generality we have ( p1 � 1;
p2 ÿ 2) 2 B because p 2 clB. Because pattern A1

does not occur at ( p1 ÿ 1; p2) it follows that

( p1 ÿ 2; p2) 62 B. Also ( p1 ÿ 2; p2 ÿ 2) 62 B, be-

cause otherwise ( p1 ÿ 2; p2 ÿ 3) 2 B; and this

contradicts that one of the patterns A21, A22 or A23

occurs at ( p1; p2 ÿ 2). From the openness of B

f o l l o w s ( p1 ÿ 2� i; p2 ÿ 2� j) 62 B, f o r

0 � i; j � 2, i.e. p 62 int clB. See Fig. 6 for an

illustration of our reasoning.

(d) In this case ( p1 � 1; p2 ÿ 1); ( p1 � 1; p2 ÿ 2) 62 B

(for otherwise the patterns A21, A22 and A23 could

not occur at ( p1 � 1; p2)). Because of p 2 clB we

can assume (p1 ÿ 1; p2 ÿ 2), (p1 ÿ 1; p2 ÿ 3) 2 B

and ( p1 � 2; p2) 62 B (because of pattern A1);

and therefore ( p1 � 2; p2 ÿ 2), (p1 � 2; p2 ÿ 3)

2 B. But this contradicts that for ( p1; p2 ÿ 2) one

of the patterns A21, A22 or A23 has to occur

(Property (ii). See Fig. 7 for an illustration of our

reasoning.

(e) Without loss of generali ty we assume

( p1 � 1; p2 ÿ 1), ( p1 � 2; p2 ÿ 1) 2 B, so that

( p1 � 1; p2 � 1) 62 B (otherwise pattern A21, A22

and A23 do not occur at ( p1 � 1; p2)). If

( p1; p2 � 2) 2 B, t h e n ( p1 ÿ 1; p2 � 2) 2 B

(otherwise pattern A21, A22 and A23 could not

occur at ( p1 � 1; p2)) and ( p1 ÿ 1; p2 � 1);
( p1 ÿ 2; p2 � 1) 62 B (otherwise pattern A1 for

( p1; p2 � 1) would occur), but then ( p1 ÿ 2;
p2 ÿ 2) 62 B which leads to a contradiction

t o P r o p e r t y ( i i ) a t ( p1; p2 ÿ 1). T h u s ,

( p1; p2 � 2) 62 B a n d a l s o ( p1 � 1; p2 � 2)

62 B (otherwise pattern A21, A22 and A23

could not occur at ( p1 � 1; p2)). Because of

p 2 clB we conclude that ( p1 ÿ 1; p2 � 2) 2 B:
Thus,�p1 � 2; p2); ( p1 � 2; p2 � 2) 62 B) ( p1�
i; p2 � j) 62 B; fo r 0 � i; j � 2; i:e: p 62 int clB.

See Fig. 8 for an il lustrat ion of our

reasoning.

Figure 5. Illustration of our reasoning in Case (a).

Figure 6. Illustration of our reasoning in Case (c).

Figure 7. Illustration of our reasoning in Case (d).

Figure 8. Illustration of our reasoning in Case (e).
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