
1

Dynamic Alternation of Huffman Codebooks for
Sensor Data Compression

Daniel Yunge, Sangyoung Park, Philipp Kindt, Samarjit Chakraborty

Abstract—Signal compression is crucial for reducing the
amount of communication, and hence power consumption of wire-
less sensors. Lossless compression techniques, such as Huffman
coding, are often used in healthcare applications since they do
not compromise the integrity of vital signals. Techniques that
adapt to changing signal patterns have been proposed. However,
most of them involve significant computation overhead or are
too simple to maintain high compression rates under changing
signal patterns. In this paper, we propose a technique that makes
use of multiple codebooks, which are generated offline based on
the signal context. We observe that the symbols that compose
a big variety of signals follow Laplacian distributions in which
the spread changes over time. This can be effectively utilized
to generate a set of codebooks. Then, appropriate codebooks
are selected online depending on the currently measured spread,
which ensures high compression efficiency and the adaptability to
changing signal patterns. Our experiments on real-world datasets
show that our approach is computationally very efficient, and
exhibits competitive compression rates. Our proposed technique
outperforms a state-of-the-art compression algorithm, FAS-LEC,
in terms of average data reduction by 3.7%, while consuming a
similar amount of energy. Compared to the adaptive Huffman
method, which achieves near-optimal compression rates, our
results indicate energy savings of 12% due to the reduced
computational complexity, while the compression rate is reduced
by less than 2.1%.

I. INTRODUCTION

The rapid development of the Internet of Things (IoT)
opens a new era in healthcare services, in which the use
of inexpensive wearable medical sensors allows patients to
be monitored remotely in their home environments, thereby
reducing operational costs and hospital stays. The vast amount
of data generated and transmitted from the wearable devices
has motivated the use of compression algorithms in sensing
devices, which reduce the communication costs and the energy
consumption of the sensors and intermediate devices which
transport the data into the cloud.

Due to the nature of vital healthcare applications that require
high accuracies, lossless compression techniques such as Huff-
man coding are often used in these domains. Huffman coding
reduces the size of a message (or signal) by redefining the
bit length of the symbols that compose the message according
to their frequencies of occurrence in the message. However,
this method requires the frequencies of occurrence of the
symbols before the message is processed. For that reason, a
first pass over the message is required for gathering occurrence
information of the symbols into a codebook, whereas in a
second pass, the message is compressed. Unfortunately, the
high computational cost of creating a codebook online, the
need of sending the codebook to the decoding counterpart
and the limitations on the number of samples which can

The authors are with the Chair of Real-Time Computer Systems at Technical
University of Munich, Arcisstrasse 21, 80290, Munich, Germany. E-mail:
{yunge,park,kindt,chakraborty}@rcs.ei.tum.de

be buffered, make the two-pass approach ineffective on live
signals. On the other hand, an adaptive variant exists which
constructs a Huffman codebook while it processes the sensor
signals, without the need for performing encoding in two
passes. As a consequence, neither signal buffering is required
nor the transmission of a whole codebook from the encoder to
the decoder, as the latter can construct the codebook inferred
from the received symbols. However, the computational cost
associated with the modification of the adaptive codebook
grows quickly with each new compressed symbol, as this has
the form of a binary tree, also known as Huffman tree.

In order to address this issue, a modified adaptive Huffman
algorithm has been proposed, in which the leaves of the
Huffman tree represent sets of symbols instead of individual
symbols, reducing the size of the tree effectively [13]. How-
ever, as symbols are continuously being regrouped according
to their changing frequencies of occurrence, the associated
computation overhead and net energy savings remain uncer-
tain. Another technique “trims” the Huffman tree by limiting
the number of symbols allocated in the codebook [8]. Only
a number of most frequent symbols are kept in the tree and
coded using the adaptive method. Less frequent symbols, in
contrast, are transmitted un-encoded. However, the evaluation
in [8] showed the method to be ineffective on sensor signals
having abrupt statistical changes, such as acceleration signals
with phases of sudden motion and steadiness.

Another line of research has been conducted recently,
which focuses on pre-allocating Huffman codebooks based
on initial knowledge of the signal context. Pre-allocating a
set of codebooks has benefits i) over static Huffman coding,
since it allows quick adaptations on statistical changes in
the sensor signals by switching among codebooks, ii) over
adaptive Huffman coding, because it relieves the burden of
maintaining a large Huffman tree, and thus less computation
is required during run-time. An example is [9], where multiple
pre-allocated code mappings are generated from the offline
analysis of similar sensor data. However, this approach relies
on analyzing the signals to be compressed offline and is
therefore limited to them.

Another case of compression using context information is
LEC, which makes use of a single table for creating codewords
efficiently [6]. Codewords are built by appending a prefix of
variable bit-length to the symbol to be encoded. The prefixes
are looked up in the table and are associated with a range
of values in which the symbol is found. Later on, more
adaptability was aggregated to FAS-LEC [15], which proved to
be more effective than LEC. FAS-LEC rotates the prefix table
in order to make the shortest prefix match the most frequent
symbol range observed in the stream in the past. In addition, it
splits the table into two parts, which can rotate independently.
Although FAS-LEC proved to be computationally light-weight
and provides compression efficiencies up to 95% on meteoro-
logical datasets [15], its effectiveness on signals from other



2

Fig. 1: Encoding part of the proposed scheme.
source has not been verified. Accordingly, we included this
method in the evaluation section.

In this paper, we propose a Huffman coding technique for
compressing sensor signals using multiple pre-allocated code-
books, which are alternated according to the changing variance
of the symbols observed. Our work takes a cue from [9],
however, we introduce major changes, which significantly
enhance the practicality of the idea. First, we identify the
reason for the previous approach being less effective, which is
the lack of a differentiation process of adjacent samples. As
a consequence, this method is prone to offsets in the sensor
signals. If a codebook generated for a particular offset is used
for compressing a signal having an at least slightly different
offset, the compression performance is harmed. Accordingly,
we compress the difference between consecutive samples in
our proposed method, similar as in [5]. Then, the resulting
stream of differentiated samples is coded using pre-allocated
codebooks generated from Laplacian distributions with differ-
ent spreads. In contrast, the procedure to generated codebooks
in [9] has no parametrization and relies on previously recorded
signals. Finally, in our proposed method, codebooks are al-
ternated during run-time according to an alternation policy
designed to increase compression performance and minimize
energy consumption. As mentioned, an optimal codebook is
selected directly from the observed variance of the symbols,
in contrast to [9], in which all pre-allocated codebooks are
evaluated online for the selection.

In the following section, we provide an overview of our
proposed technique, elaborate how the codebooks are gener-
ated, stored, and alternated at low computational cost. Then,
we compare our method with state-of-the-art compression
algorithms for wireless sensors using real-world medical and
meteorological datasets. Our results show that our method
achieves the highest compression rates for medical datasets
(acceleration, EEG and ECG), achieving on average 4.3% and
0.6% communication reductions compared to FAS-LEC and
the Adaptive Huffman algorithm, respectively. These increased
compression rates are achieved with a similar energy consump-
tion to FAS-LEC and by a 19% reduced energy consumption
compared to adaptive Huffman compression.

II. MULTIPLE STATIC HUFFMAN CODEBOOKS

A. Overview
The overall scheme is summarized in Fig. 1. The difference

of adjacent raw signal samples from the ADC is calculated
using the differentiation module and stored into a buffer. Then,
the buffered signal is analyzed by the codebook selector block
to decide on whether to alternate the codebook or not. If an
alternation takes place, one of the multiple codebooks allocated

Time [Sample]
3500

4000

4500

Sy
m

bo
l Acceleration Signal

Time [Sample]
3500

4000

4500

Sy
m

bo
l Acceleration Signal

3800 4000 4200
Symbol

0
2
4
6
8

10

Fr
eq

ue
nc

y Symbol Distribution

3800 4000 4200
Symbol

0
2
4
6
8

10

Fr
eq

ue
nc

y Symbol Distribution

Spread Spread

Fig. 2: Symbol distribution of two acceleration signals after
differentiation process compared to a Laplacian function.
in the codebook storage block is selected and expanded,
since they are stored using a compact format for memory
saving purposes. The expansion process incurs computation
and communication costs, therefore the codebook selector
block evaluates whether the estimated cost and data reductions
justify a codebook alternation. Once the codebook is expanded,
buffered samples are encoded quickly into codewords by a
simple table lookup. Finally, the variable bit-length codewords
are concatenated and passed on to the communication module
for wireless transmission.

B. Storage of Codebooks
In what follows, we describe more details on the codebook

format and coding process. Basically, the expanded codebook
is a double-column lookup table, whose rows represent the
symbol to be encoded. An encoded symbol is known as a
codeword, and is composed of two values which are allocated
in each column of the lookup table: content and bit length.
Accordingly, a codeword is created from the value found in
the content cell of the corresponding row in the codebook,
and padded with zero-bits to achieve the bit length specified
in its length cell. For example, let the content cell and length
cell of row 20 be the values 255 and 15, respectively. As a
result, symbol 20 is represented by the bit sequence “000 0000
1111 1111”, which was generated from the bit sequence “1111
1111” (255) and left-padded with 7 zeros to achieve the bit
length of 15.

This codebook scheme is not part of the Huffman algorithm,
which uses a binary tree structure, but is an adaptation de-
scribed in [11] based on the canonical Huffman algorithm [12],
a variant of the classical method. It also changes the way
in which codewords are constructed, as described in what
follows. The canonical method first generates an initial set of
codewords using the classical Huffman algorithm, from which
only the codewords’ bit length information is used and the
content information is removed. Then, it uses an algorithm that
establishes new content for the codewords, which are always a
bounded value between 0 and the maximal value found in the
original symbol set, e.g. 8191 for a 13 bits signal. As a result,
codewords can be stored in a table using the double-column
scheme explained above, which is considerably more efficient
than the binary tree structure [11].

We have extended this scheme by pre-allocating multiple
codebooks in memory and making the compression system
alternate among them during run-time. This imposes the need
for a compact format of the pre-allocated codebooks. More
precisely, because consecutive values in the content and length



3

columns have a high probability of being repetitive, codebooks
were reduced (offline during design-time) by applying run-
length encoding to these values. In the case of the codebook set
used for the evaluation in Section III, for example, an expanded
codebook consisting of 8192 rows and two columns of two
and one bytes, respectively, can be reduced from 25 kB to
only 222 bytes in its compact format.

C. Generation of Codebooks
Finding a set of codebooks which compresses a data stream

optimally is an NP-hard problem [7], which is hard to solve
even offline. However, we will show that for a large set of
different real-world sensor signals, it is feasible to find a
reduced codebook set which has compression rates near to the
optimum (±1%). This is possible because most sensor-signals
exhibit significant information redundancy between temporal
adjacent samples, which can be reduced by a differentiation
process, i.e., calculating the difference between consecutive
samples prior to compressing them. The result is that, after
the differentiation process, the highest frequency of occurrence
is that of symbol zero, and the resulting symbol distribution
corresponds well with some distributions of the exponential
family, like Gaussian and Laplacian. As with other continuous
signals (e.g., as for speech [4] and acceleration [5]), we found
that the Laplacian distribution achieves better compression
rates on the evaluated datasets. The concept of symbol dis-
tributions is depicted in Fig. 2, assuming acceleration signals
as an example.

During design-time, using the Laplacian function with dif-
ferent spreads – represented by the diversity parameter B =
1√
2σ

– a set of codebooks is generated and allocated in the
memory of the compressing device. During run-time, the code-
book selector block in Fig. 1 matches the buffered samples to a
given allocated codebook by means of a maximum likelihood
estimation of the diversity parameter, B̂, which is the mean
absolute deviation (MAD) of the buffered samples [4]. If the
codebook associated to the particular estimator does not exist,
the codebook with closest diversity parameter is selected as
the candidate.
D. Codebook Alternation

In principle, a codebook is alternated whenever the observed
diversity parameter B̂ changes. However, skipping a codebook
alternation is worthwhile if B̂ is found to be too close to
that of the previous set of buffered samples, as the code-
book expansion process incurs significant computation efforts.
Skipping alternations, along with increasing the buffer size,
are important measures to reduce the average execution time
of our proposed method without compromising significantly
its compression performance. Moreover, in addition to the
processing overhead, a codebook alternation also incurs some
communication overhead for notifying the decoding counter-
part about the new codebook to be used. Accordingly, minimal
codebook proximity for an alternation and the buffer size
values must be found to minimize energy consumption.

III. EXPERIMENTAL RESULTS

In this section, we compare our compression method with
others by evaluating their compression performance and as-
sociated energy consumptions of the radio and MCU. The

TABLE I: Characteristics of the evaluated datasets.
Res Sr Epy Ropt MultiStatic MultiStatic
bits Sa/s bits/sym CBn Altcb

Accel 13 33 -8.2 0.37 16 2050
Temp 11 1/300 -3.4 0.69 10 283

Humid 8 1/300 -2.0 0.76 5 134
Wind 8 1/300 -2.2 0.73 7 202
Solar 11 1/300 -4.4 0.60 21 3609
EEG 13 512 -5.0 0.61 13 168
ECG 13 1000 -6.3 0.52 14 890

evaluated methods are the adaptive Huffman coding, FAS-
LEC and ours. In addition, the uncompressed transmission was
also evaluated. The evaluation was carried out using different
datasets containing continuous signals. Acceleration signals
associated with physical activity were used from [10], a dataset
for activity recognition research, generated from multiple
body-worn sensors. In addition, weather data (i.e., temperature,
humidity, wind speed and solar radiation) from [14] was
considered. Finally, EEG signals obtained from [1] and ECG
signals from [2], [3] were evaluated. Detailed information on
the signal characteristics, such as resolution, sampling rate,
calculated entropy and optimal compression rate can be found
in Table I. In addition, the effective number of codebooks used
by our method and the number of codebook alternations are
shown in the table under CBn and Altcb, respectively. The
length of each dataset was 500.000 samples.

An STM32F401 Nucleo board running an ARM Cortex-M4
MCU at its default frequency of 16 MHz was used to evaluate
the algorithms. To evaluate the compression performance and
energy consumption of the methods, uncompressed samples
were transferred from a PC to the MCU at a rate of 1 kSa/s
using a USB-to-Serial link. After the samples were compressed
by the MCU, the compressed stream was passed to a Bluetooth
Low Energy (BLE) communication module in chunks of 20
bytes. A wireless link was established from the BLE module
of the sensor to a BLE USB-dongle connected to a PC. At the
end, the compressed stream was stored in a file for evaluation
purposes, and decompressed and compared with the original
file for a later evaluation. The current consumptions of the
MCU and communication module were acquired using an NI-
PXIe-6124 DAQ at 100 kSa/s.

Our proposed method used a set of 21 compact static
codebooks for all datasets, which were generated from a
Laplacian function with diversity parameters between 0.5 and
180. For the sake of fairness, the lengths of the codebooks were
related to the analyzed signals, i.e., 256-symbol codebooks
were used for 8-bit signals, 2048 for 11-bit and so on. A
buffer size of 100 samples was defined, and a distance of 2
codebooks in the set between the current and the candidate
codebook was required to trigger an alternation event. In terms
of memory requirements, the complete MCU firmware used
18 kB of ROM, 4.7 kB of which were used by the compact
codebook set. On the other hand, 3 kB of RAM were used
by the firmware, in addition to that dedicated to the expanded
codebook (25 kB, 6 kB, or 0.5 kB when compressing 13-bit,
11-bit or 8-bit signals, respectively).

The results of the evaluation in terms of compression
efficiency are shown in Fig. 3. The compression efficiency
is defined as η = sizeopt/sizeeval, where sizeopt is the
data volume after optimal compression according to Shannon’s
entropy formula [6], and sizeeval is the data volume generated
by the evaluated compression method. It can be observed that



4

Accel Temp Humid Wind Solar EEG ECG
0.2
0.4
0.6
0.8

1

C
om

pr
es

si
on

E
ff

ic
ie

nc
y

Compression performance

MultiStatic FASLEC AdaptHuff Uncompressed

Fig. 3: Compression efficiency of the evaluated algorithms on
7 different signal types, using a buffer size of 100 samples.

10 20 50 100 200 500 1k 2k 5k 10k

Buffer size [samples]

0.6

0.7

0.8

0.9

1

C
om

pr
es

si
on

E
ff

ic
ie

nc
y

Compression performance vs buffer size
Accel
Temp
Humid
Wind
Solar
EEG
ECG

Fig. 4: Compression efficiency of the evaluated algorithms
using different buffer sizes.
our method – MultiStatic – performs very close to the optimum
(above 97% of compression efficiency) on signals which have
high entropy, and above 85% for the other signals. The average
compression efficiencies on all signals are 93%, 84% and 99%
for our proposed method, FAS-LEC and the adaptive Huffman
method, respectively. The compression deficiency of FAS-LEC
on low entropy datasets (≈2 bits/sym) is caused by the fact that
the prefix table proposed by [15] generates codewords which
have a minimum length of 3 bits.

In addition, an analysis of the effects of different buffer sizes
on the compression efficiency was conducted. The results are
presented in Fig. 4. It can be observed that the compression
efficiency achieves its maximum around buffer sizes between
50 and 100 samples. This can be explained as follows. For
short buffers, short-term variations of the signal lead to a non-
zero mean of the difference symbols and in addition, more
codebook alternations occur. On the other hand, large buffer
sizes result in more signal patterns being compressed with a
single, non-optimal codebook.

The energy consumptions of the MCU, communication
module and their sum are shown in Fig. 5 for every dataset
and method considered. Along with the energy due to the com-
pression process, the measured energy includes the associated

2
4
6
8

E
ne

rg
y[

J] MCU Energy

MultiStatic FASLEC AdaptHuff Uncompr

2

4

6

E
ne

rg
y[

J] Communication Energy (BLE)

Accel Temp Humid Wind Solar EEG ECG

3
6
9

12

E
ne

rg
y[

J] Total Energy

Fig. 5: Energy consumption evaluation of the communication
module, MCU and total.

overhead processes of the MCU and communication module,
as well as the energy consumed during sleep periods. Consid-
ering only the MCU energy, our proposed method consumes
12% less energy than adaptive Huffman compression, but
5.2% and 9.3% more energy than FAS-LEC and uncompressed
transmission, respectively. Considering the communication en-
ergy, on the other hand, the proposed method achieves energy
savings of 6.7% with respect to FAS-LEC, 2.8% with respect
to adaptive Huffman and 28% with respect to uncompressed
transmission. Finally, it can be observed that the proposed
method and FAS-LEC achieved the same total energy con-
sumption (7.5[J]) for the given setup, below that of adaptive
Huffman (8.4[J]) and uncompressed transmission (8.2[J]).

IV. CONCLUSIONS

In this paper, we proposed a Huffman codebook alternation
technique to compress sensor signals, which makes use of
pre-allocated codebooks generated at design time. We have
presented a practical implementation of the proposed technique
and performed a comparison with other compression schemes
on medical and meteorological datasets, based on real-world
measurements. The proposed technique is adaptable to signal
pattern changes and computationally efficient, such that it
achieves a similar compression rate to adaptive Huffman cod-
ing with considerably less amount of computation, comparable
to FAS-LEC.

REFERENCES

[1] R. G. Andrzejak et al. Nonrandomness, nonlinear dependence, and
nonstationarity of electroencephalographic recordings from epilepsy
patients. Phys. Rev. E, 2012.

[2] R. Bousseljot et al. Nutzung der ekg-signaldatenbank cardiodat der ptb
über das internet. Biomed. Technik/Biomedical Engineering, 1995.

[3] A. L. Goldberger et al. Physiobank, physiotoolkit, and physionet.
Circulation, 2000.

[4] S. Kotz, T. Kozubowski, and K. Podgorski. The Laplace distribution
and generalizations: a revisit with applications to communications,
economics, engineering, and finance. Springer Science & Business
Media, 2012.

[5] Y. Liang and W. Peng. Minimizing energy consumptions in wireless
sensor networks via two-modal transmission. SIGCOMM Comput.
Commun. Rev., 2010.

[6] F. Marcelloni and M. Vecchio. An efficient lossless compression
algorithm for tiny nodes of monitoring wireless sensor networks. The
Computer Journal, 2009.

[7] M. Mitzenmacher. On the hardness of finding optimal multiple preset
dictionaries. IEEE Trans. on Inf. Theory, 2004.

[8] A. Reinhardt et al. Trimming the tree: Tailoring adaptive huffman
coding to wireless sensor networks. European Conf. on Wireless Sensor
Networks (EWSN), 2010.

[9] A. Reinhardt et al. Pre-allocating code mappings for energy-efficient
data encoding in wireless sensor networks. In IEEE Int. Conf. on Perv.
Comp. and Comm. Workshops (PERCOM Workshops), 2013.

[10] D. Roggen et al. Collecting complex activity datasets in highly rich
networked sensor environments. In Int. Conf. on Networked Sensing
Systems (INSS), 2010.

[11] M. Schindler. Practical huffman coding, 1998.
[12] E. S. Schwartz and B. Kallick. Generating a canonical prefix encoding.

Commun. ACM, 7(3), 1964.
[13] C. Tharini and P. V. Ranjan. Design of modified adaptive huffman data

compression algorithm for wireless sensor network. Journal of Comp.
Science, 2009.

[14] UMassTraceRepository. http://traces.cs.umass.edu/.
[15] M. Vecchio et al. Adaptive lossless entropy compressors for tiny iot

devices. IEEE Trans. on Wireless Commun., 2014.


