A model-based testing framework with reduced set of test cases for
programmable controllers

Canlong Ma and Julien Provost

Abstract—1In testing of programmable controllers, manual
selection of test cases is still the most common method in
practice. This is however tailor-made, time consuming and
error-prone. Traditional model-based methods can hardly han-
dle industrial scale systems which usually possess a significant
number of states, and signals of sensors and actuators. In this
paper, we propose a model-based testing framework that utilizes
simplified plant features to reduce the number of test cases, and
at the same time also guarantees a full coverage of nominal
behavior of system under test. The proposed framework has
been illustrated on a case study.

I. INTRODUCTION

Nowadays, evolving technologies in the field of industrial
automation result in challenges of higher system complexity,
more information exchange, more intelligence, more cus-
tomization, and shorter life cycles [1], [2]. Thus, testing
techniques with high reliability and efficiency have become
an urgent demand.

In an industrial automation system, sensors and actuators
are usually considered as plants while controllers are imple-
mented according to specifications, i.e. formal descriptions
of user requirements.

To test such controllers, manual selection of test cases is an
old but still the most commonly used method. These manual
methods are usually expert-based and have been proven use-
ful in practice decades-long [3], [4], etc. Nevertheless, their
disadvantages are obvious: individually customized, time
consuming, and error-prone. The shortcomings have become
big obstacles and hardly bearable for current developments.

Automatic testing techniques, especially model-based
methods, have been investigated since long. In the scope
of discrete event systems, a fest sequence is an executable
sequence of fest cases passing through different states and
transitions. The core matter of a test sequence is its length,
which is determined by two factors: 1. the number of test
cases; 2. the ordering and repetition of test cases. The second
factor comes into being because in practice, a state can
have several outgoing transitions, and some states have more
transitions to be tested than others. Therefore, in a test
sequence, some transition arcs need to be traversed several
times.

Complete conformance testing (CCT) is a model-based
technique that is highly advantageous for safety critical
systems, since it considers all possible combinations of
input signals from all states and therefore covers the whole

Canlong Ma and Julien Provost are with Assistant Professor-
ship for Safe Embedded Systems, Technical University of Mu-
nich, Garching bei Miinchen, Germany ma@ses.mw.tum.de;
provost@ses.mw.tum.de

behavior of a system under test. The limitation is that the
number of test cases and subsequently the length of a test
sequence grows exponentially with the number of inputs,
which severely restricts its application to large-scale systems.

Efforts have been made for improvement by modifying
the generation methods of test cases and test sequences. For
instance, a design-to-test (DTT) approach for programmable
controllers has been proposed in [5]. This permits to au-
tomatically reduce the testing overhead of a controller by
inserting some control and observation points in the initial
specification models. As a result, the length of a complete
test sequence can be shortened while the number of test cases
is kept unchanged. Yet, the test objective remains CCT, and
thus, is more suitable for critical systems.

Other recent works aim to reach a high test coverage with
a relatively small set of test cases. For example, [6] generates
test cases based on the element identifier and function block-
tree traversal; [7] uses coverage metrics to implement a
symbolic execution engine. However, no plant behavior of
system under test was considered in creating the coverage
criteria. Thus, faulty behavior might be missed in these high
but not full coverage testings.

In this paper, a testing framework is proposed that guar-
antees a full coverage of nominal behavior of a system and
also offers the possibility to consider faulty behavior. The
core idea is to involve not only specification models but
also plant features in the test case generation. These plant
features are extracted from simplified plant models and thus
require a limited design effort. As a result, the number of
generated test cases and the length of a test sequence could
be significantly reduced, and therefore, large-scale systems
can be tested more efficiently.

Compared to [5], the shortening of a test sequence with the
proposed framework is obtained from a reduced set of test
cases. Compared to [6] and [7], the obtained set of test cases
is not reduced stochastically but is selected in a way that
guarantees a full coverage of nominal behavior of a system.

The fundaments of the framework were presented in [8].
Compared to [8], the main contributions of this paper are:

o Formal realization of a test case generation framework
o Refinement of the algorithms
« Extension to testing of faulty behavior

The paper is structured as follows: Section II introduces
the formalism of finite state machines used in specification
and plant models. Sections III and IV present an overview of
the testing process on programmable controllers, and detailed
techniques and algorithms used in the generation of test

cases, respectively. An industrial case study is illustrated in
section V. Finally, the last section concludes this work.

II. BACKGROUND
A. Communicating Moore machine with Boolean signals

Finite state machine (FSM) is a formal model widely
used in model-based design and model-based testing. In this
paper, specifications of a system are modeled as a set of
Moore machines which can communicate with each other
via internal variables, adapted from [9]. Practical control
specifications using other formalisms such as IEC61131 [10]
and GRAFCET [11] can be transformed into Moore machine,
in order to apply the proposed method.

For the sake of brevity, Boolean signals are used as
inputs and outputs in the illustration of the proposed method.
However, it is possible to handle general digital signals with
a few adaptations.

A communicating Moore machine with Boolean signals is
defined by a 7-tuple (.5, sinit, [, C, O, d, \), where:

e Sg is a finite set of states'

e Sinitg is the initial state, s;nitq € Sg

o Ig is a finite set of Boolean input signals

e Cg is a finite set of internal Boolean communicating

variables

e Og is a finite set of Boolean output signals

o 0g:Sg x 2/sUCs 5 §q is the transition function that

maps the current state and Boolean expression’ to the
next state

o A\g : Sg — 295YCs s the output function that maps

the states to their corresponding output signals

A Boolean expression used in a transition is denoted as a
transition guard. A transition is fired when its source state
is active and its guard is evaluated as ‘1’ (i.e. True).

Moore machines are also represented in graphical form in
this paper. A simple example is given in Fig. 1. A state s
is drawn as a rectangle with rounded corners. A transition §
is represented by an arc with its guard, e.g. —a A b for the
transition from s to so. A state can either have an externally
observable action?, e.g. O3 in sy, or no observable action,
e.g. 0 in s1. Additionally, a state can also be given an internal
communicating variable, e.g. XS6 in sg, which can be used
in Boolean transition guards. For example, when the state
sg 1s activated, XS6 is then assigned the value ‘1’. If sg is
active at the same time, then the transition from s; to s3 can
be fired.

B. Composition of individual specification models

For complex applications, it is convenient to build several
simple individual models and compose them synchronously,
instead of constructing a large monolithic model directly.

A significant research effort has been done for the compo-
sition of FSM models. In this paper, the tool Teloco [11] has

The subscript *S” stands for ‘Specification’.

2Boolean operators used in this paper: A: AND; V: OR; Y: XOR; —:
Negation.

3For readability reasons, only active outputs are presented, i.e. in s, O2
implicitly means O2 A =O3 A =04 A =Os.

-aAb XS6

-0)=o) (o]
c aV —b

—| Oy |———| O5 |——>| XS6

Fig. 1. A simple example of a Moore machine with Boolean signals

been used. It is worth mentioning that the obtained composed
model contains only stable locations, i.e. locations where
only a change in the input values can trigger a change of
locations. This feature is called stability search.

The formalism of Moore machine is also used for a com-
posed machine with following modifications and comments:

o L is the set of locations in a composed model. A
location represents a combination of states from the
individual models.

o (s © L x2Is — L is the evolution function with
stability search that maps the current location and a
Boolean expression to the next location. A transition
between locations is named an evolution.

e Ly (resp. Lp) is the set of immediately upstream (resp.
downstream) locations of evolutions, Ly, Lp C L

e Eigr) = {6(15,1)} is the set of evolution guards, i.e.
Boolean expressions on inputs and locations.

C. Description of nominal signal relations using FSM

In [8], three forms were introduced to model signal
relations in plant models: natural language, temporal logic
and finite state machine. Two core types of nominal signal
relations using FSM are reminded below: premise and mu-
tual exclusion. In practice, complex signal relations can be
modeled using the two core types, especially when involving
several signals. In this paper, the term nominal behavior
refers to the behavior of a system without sensors and
actuators faults. In practice, sensors and actuators can be
faulty; the faulty behavior of a system is obtained after
integration of their fault models to the nominal behavior;
this will be introduced in Sec. IV.

1) Premise: As presented in Fig. 2, iy and ¢9 are two
Boolean signals. io can only be True, when iy is True. 11 is
called a ‘premise’ of is.

i1 (_/7 —iy, T

Fig. 2. Signal sketch and FSM model of premise relation*

According to this model, any test case where 75 is True
while 77 is False can be excluded from the nominal behavior,

4Signals values can be freely assigned if they do not appear in the initial
state, i.e. the output of p; can either be (i1, 42) or (i1, —i2).

and is therefore removed from the set of nominal test cases.
Thus, a single premise relation of two signals can reduce the
total number of test cases by 25%.

2) Mutual exclusion: As presented in Fig. 3, at the same
time only one of ¢; and iy can be True. The signals i; and
1o are called ‘mutually exclusive’.

i — I
b9 T 1.

—i; l is
(D s GOV b (1)
i iy

Fig. 3. Signal sketch and FSM model of mutual exclusion relation’

Similarly, the case that ¢; and ¢5 are both True at the same
time is not considered as a part of the nominal behavior.
A single mutual exclusion relation of two signals can also
reduce the total number of test cases by 25%.

III. TESTING OBJECTIVE AND PROCESS

The objective of conformance testing is to check whether
the behavior of an implemented programmable controller
conforms to the behavior of its specification model [12].

As presented in Fig. 4, a testing process consists of four
steps:

o Step 1: Generate fest cases and build a fest sequence

o Step 2: Feed the input sequence to the programmable

controller

o Step 3: Execute the implemented program on the con-

troller

o Step 4: Compare the output sequences

[Specification models] [Plant features }

AN —

Programmable
controller

Output sequence

(observed)
\ /

Fig. 4. Framework of involving plant features in testing of programmable
controllers

Input sequence

Output sequence
(expected)

Test sequences

The focus of this paper lies in the first step: generation
of test cases and construction of a test sequence, and more
specifically in the test case generation.

5The value of a signal remains unchanged until it is deliberately modified,
i.e. the explicit output of py is (i1, —i2).

A classic process of this step has been presented in [11]:
firstly, all individual specification models are composed to
obtain a flattened Moore machine model; then, an equivalent
Mealy machine model is built from the composed Moore ma-
chine model by explicitly representing all Boolean conditions
of an evolution by a set of minterms over the Boolean input
set; the last stage is to construct a test sequence, as introduced
in Sec. 1. Here, this is realized by solving the Transition Tour
problem of the set of minterms from all states and all input
values.
The method proposed in this paper follows this process
except that, instead of considering the whole set of minterms
from all locations, only the sets of minterms that correspond
to the nominal behavior are selected to generate test se-
quences. The algorithms are presented in Sec. I'V.
Formally, the following definitions are used in the sequel
of this paper:
o Each e;;) € E(rr) can be expressed by a set of
minterms M,.. The Boolean condition is True for all
and only m, € M.

e i(m.) represents the values of inputs of a minterm, i.e.
True as 1 and False as 0.

e 0(ly, m.) represents the values of outputs of the up-
stream location of the evolution for the minterm m.°,
i.e. True as 1 and False as 0.

For example, for e(; ;) = a A =b with I = {a,b,c}, the
corresponding M, is {aA—=bAc, aA—=bA—c}, and the i(m.)
is accordingly {(1,0,1),(1,0,0)}.

A crucial advantage of this framework is that it does not
require a very detailed or full plant model, but only fragments
of knowledge from plant models. Of course, if several plant
models can be built, the number of nominal minterms (i.e.
the number of test cases), and subsequently the length of a
test sequence can be significantly reduced.

Additionally, users can also insert a set of faults in order
to extend the set of minterms of interest to faulty behaviors.

IV. TEST CASE GENERATION WITH UTILIZATION OF
PLANT MODELS

In this paper, plant features are sorted into two levels.

A. First level: Signal relations among sensors

The Moore machine syntax introduced in Sec. II-A is also
used to model plant features.”

On the first level, signal relations are built among sensor
signals, which are used as inputs in specification models.
Thus, the inputs and outputs of a plant model are both inputs
from specification models. Formally, following definitions
apply on the plant models of level 1:

L] IPLI - IS

L] OPLI - IS

The algorithm to generate minterms of interest is presented
in Alg. 1. Pr; and M, are the inputs and represent the set of

6Similar functions i(s) and o(s) applied on a state are used in the
algorithms in Sec. IV.

TThe subscript ‘Pr1’ is used to denote plant model level 1 (resp. ‘Pra’
for level 2).

plant models and the set of minterms of an evolution guard
e(1,1)» respectively. M is the output and represents the set
of minterms of interest of an evolution.

In short, only minterms which are consistent with plant
features among sensors will be added to the nominal set,
which will be used to generate the set of test cases later on.

Algorithm 1: Generation of nominal minterms of an
evolution with consideration of signal relations level 1
Input: Prq, M,

Output: M.
1 Initialization: M. = 0;
2 begin
3 foreach m. € M, do
4 Flagremove := False;
5 foreach p € P;; do
6 Iy, := zeros(length(Ip,,));
7 foreach s € S, do
8 Io :=i(me) Vi(s) ;
/% check consistency of minterm input
values to those allowed by plant */
9 Iy =1+ Ip;
10 if Iy, # zeros(length(Ip,,))
/+ a minterm voilates at least one plant =/
11 then
12 Flagremove := True ;
13 L break;
14 if Flagremove = False
/* a minterm is consistent with all plants */
15 then
16 L Mer := Mer U{m,} ;
/+ add a minterm to the set of interest */

B. Second level: Signal relations among sensors and actua-
tors

On this level, plant models are built using actuator signals
to restrict sensor signals. Thus, the inputs and outputs of a
plant model are outputs and inputs from specification models,
respectively. Similarly, following definitions apply on the
plant models of level 2:

e Ip,,=0g

L] OPLZ - IS

In Alg. 2, inputs and outputs are defined in the same way
as Alg. 1. Similarly, only minterms which are consistent with
plant features among sensor and actuators are added to the
nominal set of minterms to be tested.

C. Test case generation with fault injection

Fault injection is a class of testing techniques which
involves faulty behavior supplementary to nominal behavior
testing. The faults to be tested are usually selected based
on expert knowledge and practical experience. For exam-
ple, some components might be more error-prone in some
environment, and some sensors might have physical inter-
ference with other sensors or actuators. More fault injection

Algorithm 2: Generation of nominal minterms of an
evolution with consideration of signal relations level 2

Input: P, M,
Output: M.
1 Initialization: M. =0 ;
2 begin
3 foreach m. € M, do
4 Flagremove := False;
5 foreach p € Pr5 do
6 Iy, := zeros(length(Ip,,));
7 foreach s ¢ S, do
8 Io :=i(me) Vi(s) ;
9 Oc¢ = o(ly, me) Y o(s) ;

/* check consistency of output values
related to a minterm, to those
allowed by plant */

10 Iy, := Ig+(]c!00);
/% check consistency between inputs and
| outputs %/
u if In, # zeros(length(Ip,,))
12 then
13 Flagremove := True ;
14 break;
15 if Flagremove = False
16 then
17 L Mer := My U {me} ;

knowledge and techniques in the field of testing can be found
in [13].

In this paper, fault injection can be realized conveniently
by modifying plant models. By definition, fault models are in
conflict with the plant feature models described in Sec. IV-A
and Sec. IV-B. Thus, test cases representing faulty behavior
of signals are added to the set of test cases when the
corresponding nominal signal relations are removed. When
sensors and actuators faulty behaviors have to be considered
during testing, this implies testing more test cases outside of
the nominal behavior.

V. CASE STUDY : A WELDING AND MATERIAL HANDLING
CELL

A large-scale industrial case study (Fig. 5) adapted from
[14] and [15] is used in this paper to illustrate this approach.

Fixture g 5\ Gripper

[
Robot-1 /E/ ? @%\7 } Weld gun

P
[: = ‘ Turntable
-
Conveyor Robot-2
Fig. 5. Case study: a welding and material handling cell

A. Description of the system

As presented in Fig. 5, a manufacturing cell contains
five machines: Robot-1, Robot-2, Fixture, Turntable and
Conveyor. This system is modeled with 18 input and 17
output signals. As an example, the signals related to Robot-2
are listed in Tab. 1. Note: for Ji-R2-done and Weld-Ji-R2, it
applies i € {1,2,3}.

TABLE I
TABLE OF INPUTS & OUTPUTS RELATED TO Robot-2

C. Plant features level 1

The first level plant models of Robot-2 are presented in
Fig. 7 as an example.

Input Ji-R2-done Away-R2 Present-R2
Weldgun-R2 Gripper-R2 Plate-in-F
Output Weld-Ji-R2 Move-away-R2 Move-back-R2
Pick-place-R2 G2W-R2 W2G-R2

At the beginning of a work cycle, Conveyor delivers a car
body into the cell. Robot-1 welds the parts that are previously
loaded, which is named Job-1. Meanwhile, Robot-2 picks
plates from Turntable and places them in Fixture. Turntable
turns when two plates have been taken. After that, Robot-2
changes its tool to weld the plates held by Fixture to the
car body together with Robot-1. This is named Job-2. Then,
Fixture moves away from its workstation, to enable Robot-
1 and Robot-2 weld the parts which were blocked. This is
Job-3. When the weld jobs are done, the robots move away,
so that Conveyor can take the car body out of the cell. In
the end of a cycle, all the machines move back, and Robot-2
changes back its tool to gripper.

Six Moore machines have been modeled for the specifica-
tions. For the sake of brevity, a model for Robot-2 is selected
as an illustrative example in this paper (Fig. 6).

Robot-2

@L Pick-place-R2 | —2lreinE_ (- cow.r2

TGrip]zer—R2

W2G-R2

Present-R2
Move-back-R2 Weld-J3-R2

TXC-]() JSfRZ—donel JZ—RZ—donel
Away-R2

Fig. 6. A Moore machine model for Robot-2

Weldgun-R2

XC-6
Weld-J2-R2

XC-8

B. Complete test case generation

Applying Teloco [11], the composed model of the six
individual models contains 96 locations and 3,160 evolutions.
Since the system has 18 inputs, a complete set of test cases
would contain 96 x 2'8 = 25,165,824 elements. Therefore,
the length of a complete test sequence would be even larger.

The next subsections will present the test case generation
processes with plant models level 1, with plant models level
2, and with fault injection, respectively. A summary of the
results is presented in Tab. II.

Robot-2
Away-R2,
—Present-R2 l Away-R2 —Plate-in-F,
—_— —_— ’
P R2 —Present-R2, —J2-R2-done,
resent- —Away-R2 —J3-R2-done,
—_— —
Present-R2 —Away-R2 ~Weldgun-R2,
—Gripper-R2
J2-R2-done
—_—
—J2-R2-done,
—J3-R2-done J2-R2-done
—_—
—J2-R2-done
—Gripper-R2 l Weldgun-R2
—_— —_—
X —Gripper-R2,
Gripper-R2 —Weldgun-R? Weldgun-R2
—_— —
Gripper-R2 —Weldgun-R2
Fig. 7. Plant models for the nominal behavior of the Robot-2

In pl, ie. the first plant model, Present-R2 and Away-
R2 are mutually exclusive, since a robot cannot be ‘at’ and
‘away from’ its workstation simultaneously. Besides, some
other signals should not be True when Robot-2 is away from
its workstation (state pI-3). In p2, J2-R2-done is a premise
of J3-R2-done, because the plate is not fixed to the car body
until Job-2 is finished. If Fixture releases, the plate will
fall and Job-3 cannot be operated at all. In p3, Gripper-R2
and Weldgun-R2 are mutually exclusive, because both tools
cannot be mounted to Robot-2 simultaneously.

It is worth noting that, signals relations also exist among
sensors on different machines, which are not presented in
Fig. 7, but are easily conceivable. For example, J2-R2-done
is also a premise of J3-RI-done, because Job-3 of Robot-1
can only be started when Robot-2 also finished Job-2.

Applying all these signal relations among sensors, the
number of test cases is reduced to 552,960.

D. Plant features level 2

To further shrink the number of test cases, signal relations
among sensor and actuators are also extracted. The models
for Robot-2 are presented in Fig. 8.

In psI, when Robot-2 does the action Move-away-R2,
the sensor signal Present-R2 should not be True. The same
relation exists between Move-back-R2 and Away-R2. In ps2,
in a nominal situation, the signal Ji-R2-done cannot be True
before the corresponding action Weld-Ji-R2 has been taken.
Once all welding jobs have been done and the robots have
moved away, Ji-R2-done is reset to False. In ps3, there could
be no plate detected before Robot-2 picks and places one to
Fixture. After Fixture has moved away, the signal Plate-in-F
is reset to False. In ps4, it is not difficult to find that only after
the tool change action W2G-R?2 is taken, Gripper-R2 can be
detected as the current tool of Robot-2. The only exception
is that Robot-2 holds Gripper-R2 at the very beginning as
specified in the initial state. The same relation exists between
G2W-R2 and Weldgun-R2.

Combining the signal relations among sensors and actua-
tors, the number of test cases is further reduced to 377,562.

Robot-2

Move-away-R2 Move-away-R2

— —
Present-R2 ~Away-R2 Away-R2
—Present-R2
—_— —

Move-back-R2 Move-back-R2

—Ji-R2-done M) —Ji-R2-done M) Ji-R2-done

Move-away-R2
Pick-place-R2 Pick-place-R2
—Plate-in-F _— Plate-in-F _— Plate-in-F
Move-away-F
G2W-R2 G2W-R2
—_— - —_—
. —Gripper-R2,
Gripper-R2 —Weldgun-R2 Weldgun-R2
—_— —
W2G-R2 W2G-R2
Fig. 8. Interaction between plant and specification models of Robot-2

E. Test cases with faults

Faults can occur in various sensors and actuators. As an
example, let us suppose a sensor which recognizes whether
a weld gun or gripper is mounted to Robot-2 becomes faulty
after operation for a long time. Moreover, the sensor signals
Weldgun-R2 and Gripper-R2 are of great importance to the
system, since an incorrect recognition of a weld guns and a
gripper can lead to heavy damage to both a car body and the
robot.

In order to involve the above-discussed considerations in
the test cases, faults are injected by removing the third model
in Fig. 7 and the fourth model in Fig. 8.

After updating the plant models, a set of 528,912 test cases
is obtained.

FE. Comparison of results

The results of different test case generation processes
are presented in Tab. II. In summary, with the proposed
framework a significantly smaller set of test cases is obtained
compared to the traditional CCT.

TABLE I
COMPARISON OF DIFFERENT TEST CASE GENERATION RESULTS

Generation Number of Compared to Compared to
technique test cases previous result CCT
cCcT 25,165,824 - -
after using level 1 552,960 —97.8% —97.8%
after using level 2 377,562 —-31.7% —98.5%
after fault injection 528,912 +40.1% —97.9%

VI. CONCLUSIONS

This paper presented a model-based testing framework to
reduce the number of test cases by utilizing signal features
extracted from simplified plant models. Plant features are
modeled as finite state machines on two levels: signal rela-
tions among sensors, and signal relations among sensors and
actuators.

Compared to traditional complete testing where test cases
are generated directly from specification models only, the
proposed framework obtains a significantly reduced set of
test cases while still fulfilling a full coverage of the whole
nominal behavior of a system under test. In addition, the
proposed framework provides users an option to insert a
selected set of faults into the target behavior to be tested.

It is worth mentioning that the framework does not re-
quire a detailed or full plant model. Any fragment of plant
knowledge can contribute to the test cases reduction.

REFERENCES

[1] R. Schmidt, M. Méhring, R.-C. Hirting, and C. Reichstein, “Industry
4.0 - Potentials for creating smart products: empirical research re-
sults,” in International Conference on Business Information Systems.
Springer International Publishing, 2015, pp. 16-27.

[2] P. Leitdo, A. W. Colombo, and S. Karnouskos, “Industrial automation
based on cyber-physical systems technologies: Prototype implemen-
tations and challenges,” Computers in Industry, vol. 81, pp. 11-25,
2016.

[3] J. Mcgregor, “Testing a software product line,” Carnegie Mellon
University, Tech. Rep., 2001.

[4] E.Jee, D. Shin, S. Cha, J.-s. Lee, and D.-h. Bae, “Automated test case
generation for FBD programs implementing reactor protection system
software,” Software Testing, Verification and Reliability, vol. 24, no. 8,
pp. 608-628, 2014.

[5] C.Ma and]J. Provost, “Design-to-test approach for black-box testing of
programmable controllers,” in IEEE Int. Conf. on Automation Science
and Engineering (CASE), 2015, pp. 1018-1024.

[6] P. Mani and M. Prasanna, “Automatic Test Case Generation for
Programmable Logic Controller using Function Block Diagram,” in
International Conference on Information Communication and Embed-
ded Systems (ICICES), 2016, pp. 1-4.

[7]1 D. Bohlender, H. Simon, N. Friedrich, S. Kowalewski, and S. Hauck-
Stattelmann, “Concolic test generation for PLC programs using cov-
erage metrics,” in Discrete Event Systems (WODES), 2016 13th
International Workshop on. IEEE., 2016, pp. 432-437.

[8] C. Ma and J. Provost, “Using plant model features in generation of
test cases for programmable controllers,” in 20th World Congress The
International Federation of Automatic Control, 2017, p. to be publised.

[9] D. Lee, K. K. Sabnani, D. M. Kiristol, and S. Paul, “Conformance
testing of protocols specified as communicating finite state machines
- A guided random walk based approach,” IEEE Transactions on
Communications, vol. 44, no. 5, pp. 631-640, 1996.

[10] S. Lampériere-Couffin, O. Rossi, J. Roussel, and J. Lesage, “Formal
validation of PLC programs: a survey,” in European Control Confer-
ence (ECC), 1999, pp. 2170-2175.

[11] J. Provost, J. M. Roussel, and J. M. Faure, “Translating Grafcet
specifications into Mealy machines for conformance test purposes,”
Control Engineering Practice, vol. 19, no. 9, pp. 947-957, 2011.

[12] J.Provost, J.-M. Roussel, and J.-M. Faure, “Test sequence construction
from SFC specification,” in 2nd IFAC Workshop on Dependable
Control of Discrete Systems (DCDS’09), Bari, Italy, 2009, pp. 299—
304.

[13] S. Rosch and B. Vogel-Heuser, “A Light-Weight Fault Injection
Approach to Test Automated Production System PLC Software in
Industrial Practice,” Control Engineering Practice, vol. 58, pp. 12—
23, 2017.

[14] K. Andersson, B. Lennartson, and M. Fabian, “Restarting manufac-
turing systems; Restart states and restartability,” IEEE Transactions
on Automation Science and Engineering, vol. 7, no. 3, pp. 486499,
2010.

[15] C. Ma and J. Provost, “DTT-MAT: A software toolbox of design-to-
test approach for testing programmable controllers,” in 2016 IEEE
International Conference on Automation Science and Engineering
(CASE), Fort Worth, Texas, USA, 2016, pp. 878-884.

