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Abstract

Ridesharing is an important component of sustainable urban transportation as it increases vehicle utilization while reducing road
utilization. By sharing rides, drivers offer free seats in their vehicles to passengers who want to travel in similar directions.
Traditional ridesharing approaches are suitable for long-distance travel, especially inter-city travel, yet they are not flexible enough
for short routes within cities. The aim of our research is to develop a service that enables dynamic ridesharing as part of sustainable
urban mobility. Dynamic ridesharing refers to a service that automatically matches ride requests and ride offers on short notice
without prior agreement between driver and passenger. We present the implementation and evaluation of a dynamic ridesharing
service. The implementation part requires an automated matching algorithm that checks whether a driver can take a passenger with
him without violating the maximum detour constraint he has set. As this matching algorithm needs to automatically match a
relatively large number of ride offers and ride requests in real-time, we focused on building a high-performance algorithm. After
implementing the algorithm, we evaluated its performance on a data set with random ride offers in and around the Munich city that
is matched with different ride requests. For 10,000 rides in the system, it took less than 0.4 seconds on average to identify the best
match.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of mobil. TUM 2016.

Keywords: Dynamic ridesharing; real-time ridesharing; smart mobility service; matching algorithm

* Corresponding author. Tel.: +49-89-289-19510; fax: +49-89-289-19533.
E-mail address: maximilian.schreieck@jin.tum.de

2352-1465 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the organizing committee of mobil. TUM 2016.

doi:10.1016/j.trpro.2016.12.087



Maximilian Schreieck et al. / Transportation Research Procedia 19 (2016) 272 — 285 273

1. Introduction

Urban road networks in many countries are severely facing traffic congestion problems. Consequently, energy
consumption increases and air pollution aggravates causing major problems for society, economy and environment
(May, 2013). One of the major factors is the growth in the amount of vehicles being greater than the increase in the
amount of pavement to accommodate this travel. But it is made worse by the continuing growth of private automobiles.
This situation presents challenges that need to be addressed in the interest of long-term urban sustainability and public
concern. Ridesharing is one of the emerging solutions to increase the efficiency of the transportation networks by
reducing the empty seats traveling in private vehicles.

Traditional ridesharing approaches are suitable for long-distance travel, especially inter-city travel, yet they are
not flexible enough for short routes within cities. Contrarily, dynamic ridesharing provides a means by which two or
more travelers can be joined in real time with taxi like responsiveness (Arena et al., 2013; Ying, Yu, Changjun, &
Jiujun, 2008). However, the way that current ridesharing systems match drivers to requesting riders suffer from
matching model because they are quite simple and very limited (Bin, Alarabi, Mokbel, & Basalamah, 2015).

The goal of this paper is to provide a ride matching algorithm which is more efficient and provides the most
dynamic way to match the ride requests and ride offers in real time without pre-defining a meeting point in addition
to their departure and destination locations. The proposed solution can act as a dynamic ride matching component that
can be used as an add-on to any ridesharing system to make it more efficient and dynamic. For example, the solution
could enhance the ridesharing application TUMitfahrer, an application that has been developed by a group of students
from Technical University of Munich (TUM) for university students to share rides to and between different campuses
of the university (Krcmar, 2016).

2. Theoretical background

In the seventies of the last century, fuel crises in the USA caused by the high prices of the fuel all over the world
triggered to think about a new way to save money by sharing rides with colleagues and neighbors. Economic analysts
continued to forecast that oil prices will be higher in the near future and the budget of consumers will be in a critical
situation. In addition, traffic congestion and environmental pollution were a big problem in big cities and have been
continuously increasing (Balaz & Londarev, 2006; Yunfei, Xu, & Chunming, 2012).

Since that time, multiple approaches of carpooling have been introduced, formal and informal approaches got
together in a way to let ridesharing work. On the one hand, there is ridesharing organized by service providers who
conduct the rides themselves and pick up one or several passengers. Some service provider state either a fixed pick-
up or drop-off location, such as a train station, while other providers allow their users to choose both locations.
Generally, the routing problem for service providers is to build a ridesharing route for a group of vehicles that
minimizes the cost of servicing all the passengers.

On the other hand, there is ridesharing which is conducted by individual drivers who take passengers with them to
split the fuel bill or benefit from carpool lanes. Consequently, all of the passengers must approve the costs and
schedules provided by the driver, including the pick-up and drop-off locations of travelers. Therefore, prior
arrangements are necessary to make a rideshare work.

A more flexible enhancement of ridesharing is dynamic ridesharing. Dynamic ridesharing is considered as ad-hoc
ridesharing, real-time ridesharing, dynamic carpooling, and instant ridesharing. Comparing the traditional ride-
matching process to the dynamic ridesharing ride-matching process, it is clear that the traditional process focuses on
passengers traveling from fixed departure and destination locations on fixed schedules. The dynamic ridesharing
process is more flexible hence the system is capable of matching random rides at any time and responding quickly to
any request even if the request is created on the same day of the ride offer (Dailey, Loseff, & Meyers, 1999).

In recent days most of the ridesharing services either classic or dynamic are working on smartphones with
integrated GPS which makes it possible to assume that the users are always trackable and have permanent connectivity
and reachability (Furuhata et al., 2013; Stach, 2011). This increases the capability to generate much more valuable
data than simple rideshare trip validation. If data were to be collected during the day, detailed travel patterns including
the prevalence of trip chaining could be determined. From an urban planning and transport-modeling viewpoint, this
information could be used to supplement periodic travel diaries and increase the input data used in urban modeling
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activities. Traffic patterns and congestion information can be generated with the help of the very large number of these
devices that collect data. Recent startups offer dynamic ridesharing services that allow drivers to offer their car seats
to connect to passengers who search for a ride such as Carticipate, EnergeticX, Avego, and Flinc. They provide
applications that run on mobile phones that necessarily need internet access. In order to ease the fear when sharing a
ride with strangers, users can be linked with social networks like Facebook (e.g., GoLoco and Zimride) or check the
driver’s reputation provided by reputation systems (e.g., PickupPal).

In the last decade, most studies focused on basic route planning in road networks, developing a large amount of
faster speed-up techniques. Earlier, only some classical algorithms existed which were not effective on large graphs.
Usually, the new faster algorithms perform a pre-processing step for a graph before discussing the source and
destination nodes. This step helps to speed-up the shortest path queries. In the following, we will explain the most
important shortest-path algorithms shortly (Schultes, 2008) followed by a brief summary of matching approaches for
dynamic ridesharing.

2.1. Shortest path algorithms

Dijkstra’s Algorithm is the classical algorithm to find the shortest-path. It calculates the shortest paths from a
single source node to all other reachable nodes in the tree (?). The algorithm visits the nodes in order of their shortest-
path distances. Dijkstra’s algorithm mainly solves the single-source shortest-path problem and when the number of
the nodes is very large, it occupies a lot of CPU memory (Zhang & Liu, 2009). An improvement of Dijkstra’s algorithm
is bidirectional search. It runs two simultaneous searches: one forward from the initial node and one backward from
the target node, stopping when the two meet in the middle. However, it can only be applied if the target node is known.
Practically, bidirectional search nearly halves the number of settled nodes.

A* Search is a technique greatly used in artificial intelligence. It guides the search of Dijkstra’s algorithm towards
the target node by using lower bounds on the distance to the target. The efficiency of this approach highly depends on
the lower values. A* search uses both path costs and heuristic values. The simplest lower value is based on the
geographic coordinates of the nodes, but this results in poor performance on road networks. In case of travel time edge
weights, even a slow-down of the query is possible (A. V. Goldberg & Harrelson, 2005).

In reach-based routing the reach of a vertex encodes the lengths of the shortest paths on which it lies. In order
to have a high value of reach, a vertex must lie on a shortest path which extends a long distance in both directions
from the vertex. Highway hierarchies generate a hierarchy of levels by switching between node and edge contraction.
Node contraction eliminates low-degree nodes and introduces shortcut edges to reserve shortest-path distances. The
edge reduction then eliminates non-highway edges that only form shortest paths of small length. The bidirectional
query in this hierarchy consequently proceeds only in higher levels. Whereas contraction hierarchies assign a distinct
“importance level” to each node. Then, the nodes are contracted in order of importance by removing them from the
graph and adding shortcuts to preserve the shortest-path distances between the more important nodes (Gutman, 2004).

ALT depends on A*. Using the triangle contrast, strong bounds on shortest-path distances can be gained by pre-
computing distances to a set of landmark nodes that are well spread over the far ends of the network. Using reasonable
space and much less pre-processing time than for edge labels, these lower bounds return remarkable speedup for route
planning. Whereas Edge Labels pre-calculate information for an edge which identifies a set of nodes. Faster pre-
computation is possible by dividing the graph into many regions with a small number of boundary nodes (A. V.
Goldberg & Harrelson, 2005).

A more effective algorithm usually results by using a mixture of the previously mentioned techniques than one
single technique. Using a hierarchical technique then applying a goal-directed technique is a common way that is
applied only on a core of the most important nodes identified by the hierarchical technique. This considerably reduces
the pre-processing time and space of the goal-directed technique, and speeds up the query.

REAL is a combination of REach and ALt. It stores landmark distances only with the nodes that have high reach
values, which in result can significantly reduce memory consumption (Andrew V. Goldberg, Kaplan, & Werneck,
2006).

SHARC combines SHortcuts and multi-level ARC flags. Shortcuts allow to unset arc flags of edges that are
represented by the shortcut, decreasing the search space. The query algorithm can be unidirectional, which is useful
in scenarios where bidirectional search is forbidden. However, a bidirectional query algorithm is faster in the basic
scenario (Bauer & Delling, 2009).
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Core-ALT iteratively holds nodes that do not require too many shortcuts. Then, on the remaining Core, a
bidirectional ALT algorithm is applied. As source and target node of a query are not necessarily in the core, proxy
nodes in the core are used. The best proxy nodes are the core entry and exit node of a shortest path for source to target.
However, as the query wants to compute a shortest path and does not know it in advance, the core nodes that are
closest to source and target are used (Bauer et al., 2008).

CHASE combines Contraction Hierarchies and Arc flagS. Initially, a complete contraction hierarchy is created.
After that, on a core of the most important nodes, including shortcuts, arc flags are computed. The query requires only
to use the edges with arc flags set for one of the regions where the other search direction has an entry node into the
core. As aresult, a very fast algorithm is gained, only algorithms based on transit nodes are faster (Geisberger, Sanders,
Schultes, & Delling, 2008).

2.2. Matching algorithms in ridesharing

In dynamic ridesharing, the shortest-path problem is enhanced by the problem of matching rides to requests in a
dynamic setting. Several studies have been published that tackle the matching problem in dynamic ridesharing.

Agatz, Erera, Savelsbergh, and Wang (2011) develop optimization-based approaches for dynamic ridesharing with
a rolling horizon strategy assessed in a simulation study. They show that matching algorithms are important to make
dynamic ridesharing useable. Their results suggest that dynamic ridesharing has potential in large US cities.
Geisberger, Luxen, Neubauer, Sanders, and Volker (2010) provide an algorithm that finds suitable matches with the
smallest detour. Ghoseiri, Haghani, and Hamedi (2011) offer a rich model that not only considers the match of the
routes but also age, gender, smoking, pet restriction and maximum occupancy preferences. However, the problem was
only solvable for small problem instances. Jung, Jayakrishnan, and Park (2013) provide solution techniques for
optimization problems in dynamic ridesharing. Beside simulation, they use a simulated annealing heuristic to identify
promising solutions. C.-C. Tao and Chen (2007) and C. C. Tao and Chen (2008) provide algorithms for the related
problem of dynamic rideshare matching for taxipooling services. They suggest greedy heuristics and apply them in a
field trial in Taiwan.

We enhance this literature by developing a simple yet powerful algorithm that can form the basis of a dynamic
ridesharing service. Instead of using a complex optimization approach, we apply a smart data structure to increase the
calculation speed of matches.

3. The dynamic ridesharing approach

In this section, we will explain how our dynamic ridesharing approach performs the matching of ride offers and
requests. We show how route data can be stored and retrieved efficiently by the inverted index data structure. Based
on this, we will explain how the algorithm for dynamic ridesharing matching works.

3.1. Inverted Index Data Structure

When a driver wants to offer a ride he has to create a ride offer X = (X, Xp, X7, Xr) in the system, where X, is the
driver departure location, X}, is the driver destination location , X is the driver departure time and X is the number
of free seats in the driver’s car (free places). After getting these information, the departure and destination addresses
are geocoded using Google API, then the shortest path is created using GraphHopper with Dijsktra’s algorithm.

Consequently, whenever a ride offer is created, the system generates a set of nodes that composes the shortest route
between the source and destination points of the ride. In order to get the shortest route nodes N (the set of nodes
composing a route), only X and X, are required. We applied the inverted index data structure on the mechanism of
saving ride’s nodes. An inverted index is a structure used by different search engines and databases to attach search
terms to files or documents, increasing the speed of later searches. There are two versions of an inverted index, a
record-level index that tells which documents contain the term and a fully inverted index which tells additionally about
the location of the term in the file. But here, we will use the record-level index since we only need to save a node (the
term) which points to the routes (documents) that contain this node. For example, let a set of ride offers X;, X,, X3,
X, contain the following nodes:

275
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{Xl} - [Na» Nb’ NC’ Ne9 Nf: Ng]

{XZ} - [Na» Nf’ Ng’ Nh’ Ni’ Ivj:v Nk]
{X3} - [Nbs Nhs Nk3 Nl’ Nm]

{X4} - [Nl’ Nma Na’ No> Np: Nq’ Nra Ns]

Each node inside each ride offer has a sequence number (node order). It helps to know the predecessor node and
the successor node of any chosen node along the route of the ride offer X. For example, nodes of ride offer X, are
presented in Figure 1. Then we store them in a record-level inverted index as shown in Figure 2.

X
Ng 1
Ny 2
N, 3
Ne 4
Ny 5
Ny 6

Fig. 1. Ride offer representation (Source: own analysis)
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Fig.2. Record-level inverted index of rides offers' nodes (Source: own analysis)

In order to evaluate the benefits of the inverted index data structure, an assessment of the query cost is necessary.
There are many possible ways to estimate cost, e.g., based on disk accesses, CPU time, or communication overhead.
Disk access is the predominant cost (in terms of time) and it is relatively easy to estimate. Therefore, the number of
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block transfers from/to disk is typically used as measure. Also cost of the algorithm (e.g., for join or selection) depends
on database buffer size; more memory for DB buffer reduces disk accesses. Thus, DB buffer size is a parameter for
estimating cost.

Record level table is ordered based on column ‘Node’, then the cost of selecting a row from record level table is 1
since Node is the primary key and the cost of the selection equals to [log, (Bz)] where By is the number of blocks
that contains tuples of the relation R (Garcia-Molina, Ullman, & Widom, 2009).

3.2. Matching process

In order to make a ride share happen, a ride offer and a demand for a ride have to be matched. Rides of drivers are
already stored in the system using the inverted index data structure. At the same time, a passenger may search for a
ride R = (R, Rp, Ry), where Rg is the passenger departure location (source), Rj, is the passenger destination location
(destination) and Ry is the trip departure time of passenger. After that, the system will start calculating the shortest
path between the start and end locations and returns a set of nodes of the route between the mentioned points.

This process aims to get the most suitable rides for passenger request in real-time with respect to a set of conditions
added by the system or the driver. In the following section we will discuss a single ride request with a single ride offer
scenario and a single ride request with multiple ride offers scenario as samples.

In the single ride request with single ride offer scenario, we discuss the case of having only one ride offer created
by a driver and see how the system will handle a passenger ride request. Assuming that there is one ride offer X, in
the system, the set of nodes composing the shortest route between the source X, and destination locations X, is
denoted by this equation:

SP(Xs,XD) = (Xl,Xz,X3, ...,Xn) (1)

SP(Xs, Xp) represents the set of nodes that makes the shortest route between Xg and X, whereas X; = X;
and X,, = Xp. Similarly, assuming that R represents the ride request from a passenger, the set of nodes that makes the
shortest route between the departure location and the destination location of the passenger is represented by the
following equation:

SP(Rs, RD) = (Rl'RZ' R3, 'RTL) (2)

Where Rg and R, represents the departure and destination location of the passenger respectively, whereas Ry = Ry
and R, = Rp in the above equation. The matching process algorithm starts by collecting the geographical nodes
around departure location Ry and destination location R within radius r. We represent the set of nodes around
departure location by Cg and the set of nodes around the destination location by Cj. In order to get the ride offers X
that are close to ride request R, we check which ride offers are close to the departure and destination locations of the
ride request. This can be done by applying two intersections as the following:

Ss = Cs N SP(Xs, Xp) 3)
where S; is the set of intersected nodes around the departure location.
Sp =Cp NSP(Xs, Xp) 4

where Sp, is the set of intersected nodes around distention location. After getting intersection sets Sg and Sp,, we
check if both sets Sg and S, are not empty and the nodes of the sets belong to the same ride offer X. If the conditions
are satisfied, we look for the closest node in set Sg to passenger departure location Rg (in Figure 4 node X, is the
closest node), then we do the same steps for set S, and we check for the closest node to passenger destination
location R, which is Xj,.
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Ss Sp
X, 0.45 Xp 0.41
X, 0.46 X, 0.42
Xom 0.47 X 0.44
Xn 0.48 X, 0.45
X, 0.49 X, 0.46

Fig 3. Distances of intersected nodes in both sets compared to their centres (Source: own analysis)
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Fig 4. Matching process - single ride offer single ride request scenario (Source: own analysis)

The next step is to check if the route X (ride offer) has the same direction of route R (ride request). In order to
check that, we check the node sequence (Node Order column, Figure 1) of X, which is the closest node to passenger
departure location and X, which is closest node to passenger destination location in route X. We say that X has the

same direction as R if and only if:
Sequence(X,) < Sequence(X}) (5

Since X consists of a number of nodes and each node has sequence corresponding to its path. From Figure 1, we
see that the lower the node order is, the closer it is to the source location and this is how we figure out rule (5) and
therefore Sequence is a number that helps to show the direction of the path. We already showed that X, is the closest
point to the source location of both the passenger route R and the driver route X. Finally, if all conditions above are
fulfilled, the system will send ride offer X to the user so he could join the ride offer.

In the single ride request with multiple ride offers in the system scenario, we show a case of having one ride request
R (from Rg to Rpp) and two ride offers X; (X; is the departure location and X, is the destination location) and X,

(X7 is the departure location and X, is the destination location).
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Fig 5. Single ride request, multiple ride offers (Source: own analysis)

As discussed in the single ride request/single ride offer scenario the system will get the nodes of the ride offers and
the ride request by applying the shortest path function, so we get the following:

SP(Rs,Rp) = (R, Ry, R, ..., Ry)

where Ry = R and R,, = R, for the current ride request, and we get the following nodes for the current two ride
offers in the system:

SP(X15.X1p) = (X1, X1, X,y o Xa,) (6)

SP(X25 X2p) = (X2, X2,, Xay . X3,) 7

where X, = X;, X;, = Xy, for X, ride offer, and X, = X, and X, = X, forride offer X,. Now we apply the
same methodology which is used in the previous scenario, which is collecting geographical nodes around the source
C, and destination Cp locations of ride offer R then intersect these nodes with available ride offers in the system (X;
and X;). The inverted index structure speeds up the intersection process since it is easy to know who owns each
intersected node.

Ss = Cs N SP(X14,X1,) NSP(X,5,X2p)  (8)

Now S, contains all nodes which belong to the ride offers in the system that pass through the circle placed around
the source location of R. Then we apply the same intersection around the destination location of R in order to get Sp

Sp=Cp NSP(X15, X1 ) NSP(Xp,X5p)  (9)

After that, we check the distance between each node in sets Sg, Sp. For example, we suppose that the result of the
intersection operation is six nodes in each set that are denoted as Sg = {X;,, X, Xq,,X5,, X2, X5, } and Sp =
j k a Jj k

{X1,, X1, X1, X2, X2,,, X2, }, and the distances to the center of each circle are as the following:
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Ss Sp
X1, 0.45 Xis 0.41
Xy, 0.47 X1, 0.42
X1, 0.49 X1, 0.44
X, 0.22 Ko 0.15
X, 0.25 Xa, 0.17
X2, 0.33 Xa, 0.18

Fig 6. Distances of intersected nodes in both sets compared to their centres (Source: own analysis)

We can notice that nodes X, ,and X, have the least distances to Rg in ride offers X; and X, respectively. In
addition, nodes X;, and X;, have the least distances to R, in ride offers X; and X, respectively. By now in this
scenario, we see that there are two ride offers which the passenger can join, so how can the passenger choose the best
ride in this case?

We propose a solution to provide to the user the most appropriate ride offer to join. We return the ride which has
the least average distance from the closest intersected nodes to Rs and Rp. In our scenario, we pick nodes X; , and X;,
for ride offer X, since they are the closest nodes to Rg and R, respectively and nodes X, and X, for the other ride
offer X, for the same reason. After that, we take the average distance of the two nodes to the center of the circles of
each ride offer, and so we figure out the following:

X, t X1, _ Xp, + X5,

a

>
2 2

(10)

As a result, we return to the user the two ride offers but with the priority to ride offer X, since it has the least
average and the probability to have less detour than X, is high.

3.3. Matching process conditions

In order to provide appropriate and convenient ride offers, the system is provided with predetermined conditions
that support the matching process. Some conditions are determined by the system itself and users have no involvement,
and other conditions are determined by the users to ensure their convenience and satisfaction. The following section
will list the conditions that are used by the system:

First, the maximum detour distance defined by the driver: it aims to limit the distance from the original driver’s
route to the pick-up and drop-off locations of the passenger. For example, the driver says that he can only offer 2 km
as a detour for one passenger, then the system will only provide this ride offer for the ride requests which have detour
distance less than 2 km.

Second, the number of available seats: this condition is also provided by the driver, it restricts the maximum number
of passengers the driver wants to pick. Some drivers do not want to fill all available seats and they are satisfied with
one or two passengers to join the ride. The number of available seats is decreased by 1 when a passenger joins the
ride.

Third, the circle radius: when scanning the area around departure and destination locations of ride offers, this area
is a circle and the radius is provided by the system depending on the number of the ride offers in the system. In other
words, if the system has many ride offers in Munich, the circle radius can be reduced since it will fetch many rides
and decrease the performance of the system, but if the system has few ride offers then the radius value can be increased
in order to get more results.

Fourth, the departure time margin: this condition is also provided by the system. It searches for ride offers within
a time-range. For example, if the ride request’s departure time is 08:30, the system will search for all ride offers within
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08:15 and 08:45 if the value of departure time margin is 15 minutes. In addition, the system will take into consideration
the travel time from driver’s departure location to passenger’s pick-up location.

4. Evaluation

We have evaluated the performance of our system based on the two main processes, ride creation and ride search
processes. Joining a ride is simple in terms of execution time, we tested joining a ride on the six sample sets and the
result was negligible therefore we will focus on the first criteria.

4.1. Ride offer creation

In order to measure the performance of a ride offer creation, we have to measure the performance of the components
that compose the ride offer creation process. Creating a ride offer has three main components, we will discuss each
one separately:

First, ride offer creation includes getting the ride offer information, i.e. the address’ geocode using the Google APIL.
A sample of 10 random addresses around Munich has been prepared, we noted that the average time of sending a
geocode request and receiving a response is only 0.094711 seconds. Therefore, we will ignore measuring the
performance of the geocoding process since it depends on the network traffic and the processing time does not affect
the whole process.

Second, ride offer creation includes generating the shortest path. In order to test the performance, we needed to
have a bunch of ride offers in the system. It was not possible to bring real data and create real rides, so we chose to
create random ride offers around Munich using a random function depending on java.util.Random. Random ride offers
are created within a box around Munich, we restrict the coordination of departure and destination locations of random
ride offers to be between [48.2791, 48.0340] for latitude and [11.7986, 11.3599] for the longitude. Figure 7 shows the
area that contains the generated random ride offers.

Figure 7. The area of generated random ride offers (Source: own analysis based on OpenStreetMap (OpenStreetMap, 2016))

In Table 1 below, it is clear that constructing the shortest path and getting the geographical coordinates of its points
does not take that much time. For example, to create Ride 3 it only took 0.0754 seconds knowing that the distance of
the ride is about 130 km and it has 1409 points. Therefore, we do not have to focus on measuring this component as
well.

Third, ride offer creation includes adding the shortest path to the database. This part took the longest execution
time when creating a ride offer. We measured the performance on three ride offers creation, the distance of Ride 1 is
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about 4 km, the distance of Ride 2 is about 19 km, and the distance of Ride 3 is about 130 km. It is clear that adding
a ride offer to the database takes longer in terms of time if the distance is longer. Ride 3 for example was not a good
example for dynamic ridesharing systems, since these systems depend on short-distance rides in their definitions.
However, we wanted to check the performance when we have very long ride offers.

Table 1.: Measuring the performance of ride offer creation (Source: own analysis)

Number of  Distance (m) Requesttime Save in DB Total time
Points (sec) time (sec) (sec)
Ride 1 49 4,008.61 0.056657 0.054683 0.11134
Ride 2 291 18728.91 0.018947 1.007314 1.026261
Ride 3 1,409 130,111.26 0.075489 2.652860 2.728349

In order to show ride offers distribution of the random function that we implemented, we created 50 ride offers,
then we checked the geographical points that each ride offer contains and finally we divided them into groups. As we
notice from table 2 below, most ride offers have between 151 and 500 geographical points and the average distance

is about 2.3 km. In addition, the time to create 50 ride offers is 35.824 seconds (0.71648 seconds per ride offer on
average).

Table 2.: Ride Offers Random Distribution (Source: own analysis)

0-50 51-150 151-300 301-400 401-500 500>
Points Points Points Points Points Points
Number of 0 9 23 14 4 0
ride offers

4.2. Search for ride offer

In order to evaluate the search for ride offer performance, we created five sample sets. Each set contains a specific
amount of ride offers, we chose to measure the performance when we have 50, 100, 500, 1,000 and 10,000 ride offers
in the system (Table 3). For the testing purpose, a maximum of 10,000 rides at a time is sufficient. While Munich for
example has more than 400,000 commuters, almost half of them are using public transportation. Considering the
distribution of commutes over time and the typically low adaption rates of ridesharing application, 10,000
simultaneous rides would be a sufficient capacity of the system. In Table 3, nodes count shows the total number of

nodes for all ride offers in the system. The nodes count includes unigue nodes and duplicated nodes that are part of
several routes.

Table 3.: Ride Offers Sample Sets (Source: own analysis)

50 Rides 100 Rides 500 Rides 1000 Rides 10000 Rides

Nodes count 7,210 35,365 116,542 240,117 2,402,286
Unique nodes 2,289 15,431 27,145 36,646 89,543
Duplicated nodes 4921 19,934 89,397 203,471 2,312,743
count

Average distance 25,234.26 23,389.33 21,943.93 22,809.05 23,025.16

per ride offer (m)
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After we created our sample sets, we tested the performance of searching for a ride offer on each set. We have
considered six major steps while searching for a ride offer. For a ride request, the algorithm needs to (1) identify rides
around the departure location of the passenger, (2) identify rides around the destination location of the passenger, (3)
intersect the two sets of rides, (4) check whether the departure time of the rides in the intersected set matches the
departure time condition of the passenger, (5) check whether the new route would violate the maximum detour
condition of the driver and (6) verify whether the direction of the ride is similar to the direction of the ride request.

In a first trial, we realized that identifying rides around departure and destination locations is the most time
consuming step. In order to reduce this calculation time, we will replace the idea of scanning system nodes around
departure and destination locations with checking if the node is within a square, and the center of this square is either
the departure or the destination point (Figure 8). By this solution, we only have to know the maximum and minimum
longitude/latitude around departure/destination point and provide them just once to the query before we run it, so there
will be no need for further calculations.

800 m

Figure 8. Search for Ride Offer- Square Edge (Source: own analysis)

After adapting the first two steps of the algorithm to a solution based on the square area, we simulated 100 random
searches for rides for 50, 100, 500 and 10,000 rides in the system, assuming a 400 m radius as acceptable for the
passenger. The average calculation times are given in Table 4. We can see that identifying possible rides that lay
within the preset radius is still the most time consuming step. However, an overall calculation time of less than 0.4
seconds for a system with 10,000 rides shows that the performance is sufficient for real-time applications.
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Table 4.: Calculation time for search for ride offers with 400 m radius (Source: own analysis)

. . ) 1,000 10,000
Step 50 Rides 100 Rides 500 Rides Rides Rides
qy e 0.00276  0.008364  0.02279  0.04056 0.0989

departure (sec)
Rides around

?2) . 0.002065 0.00158 0.00281 0.007450 0.0114
destination (sec)

3) Intersection (sec) 0.000002 0.000006 0.000016 0.000047 0.00249
Check intersection

(4)  departure time 0.000105  0.000117  0.000120  0.00014 0.1034
(sec)

(5) ~Checkmaxdetour 555001 000004  0.000004  0.000005  0.1791
condition (sec)

) Checkrideoffers 4 165001 0000001 0.000001  0.000001 0.0028
direction (sec)
Total (sec) 0.004934  0.010072  0.02574  0.048203  0.39809

5. Discussion

Our dynamic ridesharing approach has been shown to perform well enough for real-time applications while being
simpler than existing optimization based approaches. The gain in performance is reached by taking advantage of an
inverted index data structure that reduces the query cost for each database query. As with any research, there are a
number of limitations associated with this study. Firstly, testing samples did not carry realistic data since it was not
possible to get real trips that were offered by students in Munich. Therefore, we used a random function to generate
ride offers within Munich area. Secondly, using Google API for geocoding is a good solution but not the best since it
increases ride offer and ride request execution time, especially if the server is handling many requests at the same
time. Furthermore, Google API geocoding service is restricted to a certain number of requests per minute. Still, the
provided solution in this paper has full potential to increase the efficiency and performance of existing ridesharing
services in order to make them more dynamic for matching ride requests with ride offers. Besides that the obstacles
such as rivers, parks or railway lines are not considered while drawing the circles around departure and destination
points, they are only taking into consideration when doing the routing using GraphHopper. Offered as a web service
reachable via an API it could contribute to projects such as TUMitfahrer, a ridesharing application for students of the
Technical University of Munich.

For further research, we propose to take the real time traffic situation into ride-matching process calculations
while searching for ride offers around departure and destination points. In this scenario, instead of collecting
geographical nodes around a point within a fixed radius, now we should collect geographical nodes that are reachable
within a defined amount of time around a point (the center). Another potential future work is to run a geocoding
database on the server, this solution saves the time needed to retrieve geocoding data from Google’s server.
Consequently, there will be no risk of limiting the requests count from Google API. An alternative solution would be
to geocode addresses on the user’s side (mobile app) and send the coordinates directly to the server, at this stage, the
server will not handle geocoding part and this lets it enhance the overall performance. Last but not least, the
suggestions to use public transport options for the passenger before and after sharing the vehicle can also be integrated
in the service.

6. Conclusion

The ever-growing density of smartphones and tablets all over the world, their pervasiveness among the population,
and their availability on the urban territory at no cost for the public administration make them extremely valuable
resources which have opened the doors for smart mobility everywhere. One example is dynamic ridesharing that has
become an important component of smart mobility. To facilitate dynamic ridesharing, a dynamic ridesharing service



Maximilian Schreieck et al. / Transportation Research Procedia 19 (2016) 272 — 285

has to match ride offers and requests in real-time. In this paper we propose a fast algorithm that can be used in any
ridesharing application as matching model for ride requests and ride offers in order to make that service more dynamic
and efficient.
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