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Abstract. For the first time complete lists of two pairs of inner and outer radii classes
of the three types of regular polytopes which exist in all dimensions are presented. A
new approach using isotropic polytopes provides better understanding of the underlying
geometry and helps to unify the results.

1. Introduction

There are three types of regular polytopes which exist in every dimension d: regular
simplices, (hyper-) cubes, and regular cross-polytopes. In this paper we investigate two
pairs of inner and outer j-radii, (rj , Rj ) and (r̄j , R̄j ), of these polytopes (inner and outer
radii classes are almost always considered in pairs, such that for a 0-symmetric body K
and its dual K ◦ the inner (outer) radii of K are the reciprocal values of the outer (inner)
radii of K ◦ [9]).

The inner j-radii rj and r̄j of a body K are defined as the radii of the largest j-balls
contained in j-dimensional slices K ∩ F of K , whereby the value of rj is obtained from
maximizing and the value of r̄j is obtained from minimizing over the possible directions
of F . The outer j-radii Rj and R̄j of a body K are defined as the radii of the smallest j-balls
containing the projection of K onto j-dimensional subspaces F , whereby the value of Rj

is obtained from minimizing and the value of R̄j is obtained from maximizing over the
possible directions of F . One should note that rd = r̄d is the usual inradius and Rd = R̄d

is the usual outer radius. Moreover, it is well known [3] that R1 = r̄1 is half the width and
r1 = R̄1 is half the diameter. The inner radii rj are also known as Bernstein diameters
and the outer radii Rj as Kolmogorov diameters (or sometimes Kolmogorov width).
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The inner radii rj of regular simplices were studied in [1], where Ball uses a well
known result of John [10], which also plays an important role in our computation of the
outer radii Rj of regular simplices.

Until recently we thought that besides the classical results of Steinhagen [15] and Jung
[11] about the outer 1- and the outer d-radii, respectively, the Rj ’s of regular simplices
were computed only in the case that j = d − 1 by Weißbach [16], [17]. The apparently
open cases originally stimulated our work. However, on the one hand it turned out that in
the Russian literature Pukhov [13] had already computed the Rj ’s of regular simplices in
the remaining cases. On the other hand, in [4] it was shown that the proof of Weißbach
for the (d − 1)-case with even d contained a crucial error.

The R̄j ’s and the r̄j ’s of regular simplices were considered in [9] and [2], respectively.
While the R̄j ’s were completely listed, the r̄j ’s could only be computed in several special
cases. However, a lower bound was given and a criterion when this bound is attained.
We show that this criterion is fulfilled in all remaining cases, which means that we can
now complete this list.

As the last piece to complete the radii of regular simplices, the result about the
(d − 1)-case for even d could recently be reestablished in [5].

If we turn to the other two types of regular polytopes, it follows immediately from their
(central) symmetry that rd = R1 and r1 = Rd and therefore that the r̄j ’s and R̄j ’s do not
depend on j . Hence we concentrate our attention on (rj , Rj ) in case of symmetric bodies.

Pukhov gives references for papers in which the Rj ’s of regular cross-polytopes are
computed, from which it is possible to deduce the rj ’s of cubes via polarization [8].
Everett et al. [6] give a recursive formula for the inner radii of general d-dimensional
boxes, which generalizes the cited result about cubes. However, Everett et al. obviously
were not aware of the papers cited by Pukhov, since they thought that even the inner radii
of cubes were not known previously, except from trivial cases and the inner 2-radius of
a 3-cube, computed by Shklarsky et al. [14].

It seems the outer radii of boxes (and/or the inner radii of general cross-polytopes) are
unknown. This gap is closed by showing that these radii are the circumradii of smallest
j-faces of boxes. Table 1 summarizes the results about regular polytopes.

However, instead of just putting together the radii from all the authors cited above,
we provide a unifying approach. It will be shown that all the (rj , Rj ) radii of regular
polytopes, apart from the rj ’s of regular simplices, can be obtained from the Rj ’s of
regular simplices. Moreover, the r̄j ’s of regular simplices can be obtained from the Rj ’s
of regular simplices, in almost all cases.

Pukhov used the result about the Rj ’s of regular cross-polytopes in his computation
of the Rj ’s of regular simplices, which would lead to an improper circular closing of
our chain of proof. This is one reason to provide a completely new proof. Another is
the strong connection to isotropic polytopes (Kawashima called them π -polytopes [12],
but we prefer to call them isotropic as they are in an isotropic position in the sense
of [7]). Specifically, we show that the existence of a ( j, d + 1)-isotropic polytope is
equivalent to the existence of a j-dimensional projection of the regular d-simplex such
that a previously computed general lower bound for the outer radii is attained. Afterwards
we state a way of constructing ( j, d + 1)-isotropic polytopes for arbitrary pairs ( j, d),
except for the cases where d is even and j ∈ {1, d − 1}, showing that the lower bound
is tight in all but the two exceptional cases.
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Table 1. For the first time, a complete table of the radii of the three types of regular polytopes can be given.
The polytopes are scaled such that their circumradius is 1.

Radii Regular simplex Cube
Regular

cross-polytope

Rj

√
j

d
, j �∈ {1, d − 1} or d odd

d + 1

d

√
1

d + 2
, j = 1 and d even

2d − 1

2d
, j = d − 1 and d even

√
j

d

√
j

d

rj

√
d + 1

j ( j + 1)d

√
1

j (d + 1)

√
1

j (d + 1)

R̄j

√
j (d + 1)

( j + 1)d
1 1

r̄ j

√
1

j (d + 1)
, j �∈ {1, d − 1} or d odd

d + 1

d

√
1

d + 2
, j = 1 and d even

2√
d(d + 2)+√d(d − 2)

, j = d − 1 and d even

√
1

d(d + 1)

√
1

d(d + 1)

We will then show that the lower bound criterion of [2] is fulfilled in almost all cases
(all open cases), such that the r̄j ’s of regular simplices can be completed.

Finally, it is shown how to deduce the radii of cubes and regular cross-polytopes from
the results about the Rj ’s of regular simplices. Formulas for the radii of general boxes
and cross-polytopes, as mentioned above, are stated.

2. Preliminaries

Let Ed = (Rd , ‖ · ‖) denote the d-dimensional Euclidean space, let Bd and Sd−1 be the
unit ball and the unit sphere inEd , and let 〈·, ·〉 be the usual scalar product 〈x, y〉 = xT y.
Furthermore, we use {e1, . . . , ed} for the standard basis of Ed . A set K ⊂ Ed is called
a body if it is bounded, closed, convex, and contains an inner point. For every body
K ⊂ Ed let K ◦ = {y ∈ Ed : 〈x, y〉 ≤ 1 for all x ∈ K } denote the polar of K .

By Lj,d and Aj,d we denote the set of all j-dimensional linear subspaces and all
j-dimensional affine subspaces of Ed , respectively. For any E ∈ Lj,d let E⊥ ∈ Ld− j,d

be the orthogonal complement of E . Let lin{s1, . . . , sj } denote the linear span {x ∈
E

d : x =∑ j
k=1 λksk, λ ∈ E j } of s1, . . . , sj ∈ Sd−1. For any set A ⊂ Ed the (orthogonal)

projection of A onto E ∈ Lj,d is denoted by A|E . For any x ∈ Ed1 and y ∈ Ed2
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let x ⊗ y denote the rank 1 matrix with elements xi yj , i = 1, . . . , d1, j = 1, . . . , d2,
and note that for any set of orthonormal vectors {s1, . . . , sj } the projection P of Ed onto
lin{s1, . . . , sj } can be represented by the matrix

∑ j
l=1 sl⊗sl . For any two sets A, B ⊂ Ed

the Minkowski sum A + B is defined as A + B = {a + b ∈ Ed : a ∈ A, b ∈ B} and for
any λ ∈ R we use λA = {λa: a ∈ A}.

For any convex set K let r(K ) and R(K ) denote the inner and outer radius of K ,
respectively. Now, for any j ∈ {1, . . . , d} the inner j-radii of K are defined by

rj (K ) = max
E∈Lj,d

max
q∈Ed

r(K ∩ (E + q)),

r̄j (K ) = min
E∈Lj,d

max
q∈Ed

r(K ∩ (E + q)),

and the outer j-radii by

Rj (K ) = min
E∈Lj,d

R(K | E),

R̄j (K ) = max
E∈Lj,d

R(K | E).

Equivalently, the outer radii can be defined in terms of enclosing cylinders. That means,
defining a j -cylinder as the set F + q + ρ(B ∩ F⊥), for F ∈ Ld− j,d , q ∈ Ed ,
and radius ρ > 0, then, e.g., Rj (K ) is the minimal radius of a K enclosing
j-cylinder.

Surely, for all 1 ≤ j ≤ d the inner and outer j-radii are invariant under translation
and rotation. Furthermore, if the convex body is scaled by a factor ρ, so are its radii. For
this reason, we use the term “ball” to signify any body similar (in the above sense) to
B

d , and we do the same for simplices, cross-polytopes, and boxes.
Let T d denote the regular d-simplex of circumradius R(T d) = 1, which we assume

to be embedded in Ed+1 as T d = √((d + 1)/d) conv{e1, . . . , ed+1}. By Ba1,...,ad we
denote a d-dimensional box of the form

{
x ∈ Ed : −ai ≤ xi ≤ ai , i ∈ {1, . . . , d}} and

the cube
√
(1/d)B1,...,1 is denoted by Cd . Finally, a general cross-polytope Xa1,...,ad =

conv{±a1e1, . . . ,±aded} is just the polar of B1/a1,...,1/ad and especially the regular cross-
polytope Xd = conv{±e1, . . . ,±ed} is the polar of

√
d Cd .

3. Regular Simplices

The following results about the rj ’s and R̄j ’s of regular simplices are taken from [1] and
[9], respectively.

Proposition 3.1. For all 1 ≤ j ≤ d,

(i) rj (T d) = √(d + 1)/ j ( j + 1)d and

(ii) R̄j (T d) = √ j (d + 1)/( j + 1)d.

In both cases the extreme j-spaces are parallel to the j-faces of T d .



Radii of Regular Polytopes 47

Definition 3.2. Any set of orthonormal vectors {s1, . . . , sj } ⊂ Ed+1, 1 ≤ j ≤ d, is
called a

(i) valid subset basis (vsb for short) if
∑d+1

k=1 slk = 0, 1 ≤ l ≤ j , and
(ii) good subset basis (gsb) if it is a vsb and

∑ j
l=1 s2

lk = j/(d + 1), 1 ≤ k ≤ d + 1.

Note that any set of orthonormal vectors {s1, . . . , sj } is a vsb if it spans a j-dimensional
subspace ofEd

0 = {x ∈ Ed+1:
∑d+1

k=1 xk = 0}, the d-dimensional linear subspace ofEd+1

parallel to the hyperplane in which T d is embedded.
The projection of T d onto Ed

0 can be written as I d+1 − (1/(d + 1))1d+1, where I d+1

denotes the identity matrix inE(d+1)×(d+1) and 1d+1 the matrix inE(d+1)×(d+1) consisting
only of ones. Hence

∑d
l=1 sl⊗sl = I d+1−(1/(d + 1))1d+1, for every vsb of d elements.

This implies the important fact that each vsb is a gsb if j = d, which will be used in
Corollary 3.4.

Now we start computing the outer radii of regular simplices by giving a general lower
bound, which turns out to be tight in almost all cases. This lemma also motivates why
we call a vsb good if it fulfills condition (ii) in Definition 3.2.

Lemma 3.3. Rj (T d) ≥ √ j/d for all 1 ≤ j ≤ d, and equality holds if and only if
there exists a gsb {s1, . . . , sj } ⊂ Ed+1.

Proof. Let P denote the projection onto a subspace spanned by a vsb {s1, . . . , sj }. It
follows that

‖Pek‖2 = 〈Pek, ek〉 =
〈

j∑
l=1

slksl , ek

〉
=

j∑
l=1

s2
lk .

Now assume there exists an x ∈ Ed+1 such that ‖x − Pek‖2 < j/(d + 1) for all
k = 1, . . . , d + 1. Summing over the k’s it follows that

j >
d+1∑
k=1

‖x − Pek‖2

=
d+1∑
k=1

(‖x‖2 − 2〈x, Pek〉 + ‖Pek‖2)

= (d + 1)‖x‖2 − 2

〈
x,

d+1∑
k=1

j∑
l=1

slksl

〉
+

d+1∑
k=1

j∑
l=1

s2
lk

and since
∑d+1

k=1 slk = 0 and
∑d+1

k=1 s2
lk = 1 the last expression can be simplified to

(d + 1)‖x‖2 + j ≥ j , which is a contradiction. This proves the first part of the lemma.
In order to show the second part we note that equality in ‖x − Pek‖2 ≤ j/(d + 1) for
all k can only be obtained if x = 0 and

∑ j
l=1 s2

lk = j/(d + 1) for each k.

As every vsb of d vectors is already a gsb, the following corollary can be obtained
from Lemma 3.3 by the basis extension property (used on Ed

0 ).
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Corollary 3.4. For any 1 ≤ j ≤ d − 1 it holds that Rj (T d) = √ j/d if and only
if Rd− j (T d) = √(d − j)/d. Moreover, there always exists a pair of corresponding
optimal projections which take place in orthogonal subspaces.

Since Steinhagen [15] showed that

R1(T
d) =




√
1

d
if d odd,

d + 1

d

√
1

d + 2
if d even,

(1)

Corollary 3.4 implies for the outer (d − 1)-radius that the lower bound of Lemma 3.3 is
attained for odd dimensions, but that it is not attained for even dimensions. The following
formula was claimed in [13] and first shown in [17]. Although the proof in [17] contained
a crucial error, the correctness of the formula reestablished recently [5].

Proposition 3.5.

Rd−1(T
d) = 2d − 1

2d
if d is even.

We will soon see that j ∈ {1, d − 1} for even d are the only cases where the lower
bound is not attained.

The following proposition was first shown in [10] (see also [1]).

Proposition 3.6. B
j is the ellipsoid of minimal volume containing some body K ⊂ E j

if and only if K ⊂ B j and for some m > j there are unit vectors u1, . . . , um on the
boundary of K , and positive numbers c1, . . . , cm summing to j such that

(i)
∑m

i=1 ci ui = 0 and

(ii)
∑m

i=1 ci ui ⊗ ui = I j .

It is obvious that if K is a regular polytope all ci can be chosen as j/m where m is
the number of vertices of K . However, it is not obvious which other polytopes fulfill
this property. Nevertheless, according to [7] these polytopes are in an isotropic position,
corresponding to the discrete measure µ∗ on Sd−1 that gives mass j/m to all vertices ui

(see Section 5 of [7] for more details). This is the source for the following definition.

Definition 3.7. Let u1, . . . , um ∈ S
j−1 (not necessarily different) and K =

conv{u1, . . . , um}. K is called ( j,m)-isotropic if all the ci ’s in Proposition 3.6 can
be taken as j/m.

Lemma 3.8. There exists a gsb {s1, . . . , sj }of Ed+1 if and only if there exists a ( j, d+1)-
isotropic polytope K = conv{u1, . . . , ud+1} ⊂ E j , j ≤ d. Moreover, if T d is project-
ed onto lin{s1, . . . , sj } the projection equals the corresponding K up to rotation and
dilatation.
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Proof. If K = conv{u1, . . . , ud+1} is a ( j, d + 1)-isotropic polytope then

(i) ‖uk‖ = 1,
(ii)

∑d+1
k=1 uk = 0, and

(iii)
∑d+1

k=1 uk ⊗ uk = ((d + 1)/j)I j .

Let sl =
√

j/(d + 1)(u1,l , . . . , ud+1,l)
T , 1 ≤ l ≤ j . This defines a gsb, since the sl

form an orthonormal set because of (iii),
∑d+1

k=1 slk = 0 because of (ii), and
∑ j

l=1 s2
lk =

j/(d + 1), 1 ≤ k ≤ d + 1, because of (i). The other direction can be shown by a similar
reasoning. Now the projections of the vertices of T d onto lin{s1, . . . , sj } are

P

(√
d + 1

d
ek

)
=

j∑
l=1

√
d + 1

d
slksl =

j∑
l=1

√
j

d
uklsl .

Hence the values
√

j/d ukl are just the coordinates of the projected vertices in terms
of the basis s1, . . . , sj .

Lemma 3.8 can be used in two ways:

(i) We know that Rj (T d) = √ j/d whenever we find a ( j, d+ 1)-isotropic polytope
and vice versa. For example, it follows that there cannot exist (1, d+1)-isotropic
polytopes nor (d − 1, d + 1)-isotropic polytopes if d is even.

(ii) We know that Rk(K ) ≥
√

k/j for any ( j, d + 1)-isotropic polytope K and any
k ≤ j and equality holds if and only if the gsb {s1, . . . , sj } corresponding to K
can be split into two gsb’s {s1, . . . , sk} and {sk+1, . . . , sj }.

We first concentrate our attention on (i) but come back to (ii) later. The following lemma
states a rule on how to construct higher-dimensional isotropic polytopes from lower-
dimensional ones. It is called the additive rule.

Lemma 3.9. Let 0 ≤ ji < mi , i = 1, 2, such that m2 j1 > m1 j2. Let j = j1+ j2, m =
m1 + m2, α = √(m2 j1 − m1 j2)/m2 j , and β = √mj2/m2 j , and suppose there exists
a ( j1,m1)-isotropic polytope K1 = conv{u1, . . . , um1}, a ( j1,m2)-isotropic polytope
K2 = conv{v1, . . . , vm2}, and a ( j2,m2)-isotropic polytope K3 = conv{w1, . . . , wm2},
such that

K ′ = conv

{√
1

2

(
v1

w1

)
, . . . ,

√
1

2

(
vm2

wm2

)}

is a ( j,m2)-isotropic polytope. Then

K = conv

{(
u1

0

)
, . . . ,

(
um1

0

)
,

(
αv1

βw1

)
, . . . ,

(
αvm2

βwm2

)}

is a ( j,m)-isotropic polytope.

Proof. Since α2+β2 = 1 all vertices of K are situated on S j−1 and obviously the origin
is the centroid of K . Hence we only have to show that condition (ii) from Proposition 3.6
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holds with ci = j/m, i = 1, . . . ,m:

m1∑
i=1

(
ui

0

)(
ui

0

)T

+
m2∑
i=1

(
αvi

βwi

)(
αvi

βwi

)T

=
(
(m1/ j1)I j1 0

0 0

)
+
(
(m2/ j1)α2 I j1 0

0 (m2/ j2)β2 I j2

)

=
(
((m1 j + m2 j1 − m1 j2)/ j1 j2)I j1 0

0 (m/j)I j2

)

= m

j
I j .

The reader may convince himself that it is neither possible to construct a (1, d + 1)-
isotropic polytope by the additive rule if d is even, nor is it possible to construct a
(d − 1, d + 1)-isotropic polytope by the additive rule at all.

If m2 is even, a good choice for K ′ is often a prism

conv

{√
1

2

(
v1

1

)
, . . . ,

√
1

2

(
vm2/2

1

)
,

√
1

2

(
v1

−1

)
, . . . ,

√
1

2

(
vm2/2

−1

)}

or antiprism

conv

{√
1

2

(
v1

1

)
, . . . ,

√
1

2

(
vm2/2

1

)
,

√
1

2

( −v1

−1

)
, . . . ,

√
1

2

( −vm2/2

−1

)}

built from a ( j − 1,m2/2)-isotropic base K2 = conv{v1, . . . , vm2/2}.

Lemma 3.10. For every odd d and j ∈ {1, . . . , d} as well as for every even d and
j ∈ {2, . . . , d − 2, d} there exists a ( j, d + 1)-isotropic polytope.

Proof. We do an inductive proof over j and d. From (1) and since every regular (d+1)-
gon with vertices on S1 is (2, d + 1)-isotropic it follows that the claim is true for pairs
( j, d) with j ≤ 2. Moreover, the claim is true for j ≥ d − 2 because of Corollary 3.4.

Now assume that the claim is true for every pair ( j ′, d ′) with j ′ < j , d ′ ≤ d or
j ′ ≤ j , d ′ < d . Regarding the initial statements we can assume j ≥ 3 and because
of Corollary 3.4 that j < (d + 1)/2. We start with the case ( j, d + 1) = (3, 9) and
choose j1 = 2, j2 = 1,m1 = 3,m2 = 6. For sure K1 = K2 = T 2 are (2, 3)-isotropic
and also (2, 6)-isotropic by duplicating every vertex. Moreover K3 = T 1 = [−1, 1] is
(1, 6)-isotropic (triplicating the two vertices) and

K ′ = conv

{√
1

2

(
v1

1

)
,

√
1

2

(
v2

1

)
,

√
1

2

(
v3

1

)
,

√
1

2

(
v1

−1

)
,

√
1

2

(
v2

−1

)
,

√
1

2

(
v3

−1

)}
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is (3, 6)-isotropic. Hence K1, K2, and K3 fulfill the conditions of the additive rule and
therefore there exists a (3, 9)-isotropic polytope.

Next we assume that j ≥ 5 is odd and that (as in the case before) m = d+1 = 2 j+3.
Then let j1 = j − 2, j2 = 2, m1 = m − j − 1, and m2 = j + 1. Since j < m/2 it
holds that j1 < m1 and since j1 = j − 2 �= j = m − j − 3 = m1 − 2 there exists a
( j1,m1)-isotropic polytope K1. Completing the conditions of the additive rule we choose
an m2-gon for K3 and the projection of T j onto (lin K3)

⊥ as K2 (thus K ′ = T j ). One
should notice that m2 j1 = j2 + j > 2m = m1 j2 since j ≥ 5.

Finally, let j be even or m �= 2 j + 3. Then let j1 = j , j2 = 0,m1 = j + 1, and
m2 = m− j−1. Since j < m/2 it holds that m2 > j and if j+2 is odd then m2 �= j+2
since m �= 2 j + 3. Hence there exists a ( j,m2)-isotropic polytope K2 by the induction
hypothesis and K1 = T j+1 is a ( j,m1)-isotropic polytope, which obviously fulfills the
conditions of the additive rule.

The following proposition is taken from [2]. It gives a lower bound for r̄j (T d) and
a criterion when this lower bound is attained. For the purpose of the proposition let
a1, . . . , ad+1 ∈ Sd−1 be such that

T d =
√

1

d(d + 1)
{x ∈ Ed : 〈x, ai 〉 ≤ 1, i = 1, . . . , d + 1}.

Proposition 3.11. r̄j (T d) ≥ √1/ j (d + 1) for all 1 ≤ j ≤ d, and equality holds if
and only if there exists an E ∈ Lj,d such that ‖ai |E‖ =

√
j/d for all i = 1, . . . , d + 1.

It follows from the self-duality of the regular simplex (that is, if 0 is the centroid, it
holds that (T d)◦ = √d(d + 1)T d ) that the criterion for equality in Proposition 3.11 is
fulfilled if and only if Rj (T d) = √ j/d.

Theorem 3.12. For every 1 ≤ j ≤ d, such that d is odd or j �∈ {1, d − 1},
(i) Rj (T d) = √ j/d and

(ii) r̄j (T d) = √1/ j (d + 1).

Proof. Statement (i) follows directly from Lemmas 3.3, 3.8, and 3.10. Statement (ii)
follows from (i) and Proposition 3.11.

One should mention that Rj (T d)r̄j ((T d)◦) = 1 for every pair ( j, d) which fulfills
the conditions of Theorem 3.12. Hence it follows from the self-duality of T d that the
result above combined with the results in [2] show that the minimal j-balls of T d in the
sense of r̄j are at the same time the maximal j-balls contained in T d and centered in the
centroid of T d .

For completeness we state the two remaining inner radii of regular simplices [2,
Theorem 3].
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Proposition 3.13. For even d,

r̄1(T
d) = R1(T

d) = d + 1

d

√
1

d + 2
and

r̄d−1(T
d) = 2√

d(d + 2)+√d(d − 2)
.

4. Boxes and Cross-Polytopes

As already mentioned in the Introduction, for all symmetric bodies K it holds that
r̄1(K ) = · · · = r̄d(K ) and R̄1(K ) = · · · = R̄d(K ). Hence, we can draw our attention in
this section to (rj , Rj ).

A proof of the following proposition can be found in [8].

Proposition 4.1. Let 1 ≤ j ≤ d and let K be a 0-symmetric body. Thenrj (K )Rj (K ◦) =
1 and Rj (K )rj (K ◦) = 1.

Now we come back to the second statement after Lemma 3.8, saying that the k-radius
of any ( j,m)-isotropic polytope K is

√
k/j if the gsb {s1, . . . , sj } corresponding to K

can be partioned into a gsb {s1, . . . , sk} and a gsb {sk+1, . . . , sj }—in other words, if K is
the cross-product of a (k,m)-isotropic polytope K1 and a ( j − k,m)-isotropic polytope
K2. Applied to cubes and regular cross-polytopes this leads to the following corollary.

Corollary 4.2. For all 1 ≤ j ≤ d,

(i) Rj (Cd) = Rj (Xd) = √ j/d and
(ii) rj (Cd) = rj (Xd) = √1/ j (d + 1).

Proof. It suffices to show that for every 1 ≤ j ≤ d both Cd and Xd have ( j,m)-
isotropic projections (up to dilatation), since then (i) follows from the argument before
the corollary and (ii) from Proposition 4.1.

For Cd every j-tuple of coordinate rows of its vertices describes a j-cube which is
parallel to a j-face of Cd and surely isotropic.

Now consider Xd . First project T 2d−1 onto a d-flat by using the gsb{√
1

2

(
s1

−s1

)
, . . . ,

√
1

2

(
sd−1

−sd−1

)
,

√
1

2

(
1d−1

−1d−1

)}
,

where {s1, . . . , sd−1} is an arbitrary gsb for T d−1 and 1d−1 = (1, . . . , 1)T ∈ Ed−1. The
projection is

√
d/(2d − 1)Xd . It follows from Lemma 3.10 that for every j �∈ {1, d−2}

there exists a subset of size j of {s1, . . . , sd−1} that is again a gsb; without loss of
generality {s1, . . . , sj }. Also, if j = d − 2 we can assume that {s1, . . . , sj−1} is a gsb.
Hence the set {√

1

2

(
s1

−s1

)
, . . . ,

√
1

2

(
sj

−sj

)}



Radii of Regular Polytopes 53

or, if j ∈ {1, d − 2}, the set{√
1

2

(
s1

−s1

)
, . . . ,

√
1

2

(
sj−1

−sj−1

)
,

√
1

2

(
1d−1

−1d−1

)}

is a gsb in E2d such that the projection of T 2d−1 is a ( j, 2d)-isotropic polytope K . Since
this gsb is a subset of the one for which

√
d/(2d − 1)Xd was the projection of T 2d−1,

we obtain that
√
(2d − 1)/d K is a projection of Xd .

Corollary 4.2 can be generalized to obtain the inner and outer radii of general cross-
polytopes and boxes.

The inner radii of boxes were computed in [6]. The part about outer radii of cross-
polytopes follows from Proposition 4.1.

Proposition 4.3. Let 1 ≤ j ≤ d and 0 < a1 ≤ · · · ≤ ad . Then

(i) rj (Ba1,...,ad ) =
√

a2
1 + · · · + a2

d−k

j − k
,

where k ∈ {0, . . . , j − 1} is the smallest integer satisfying

ad−k ≤
√

a2
1 + · · · + a2

d−k−1

j − k − 1
,

and

(ii) Rj (Xa1,...,ad ) =
√√√√ ( j − k)

∏d
i=k a2

i∑d
i=k

∏
l �=i a2

l

,

where k ∈ {0, . . . , j − 1} is the smallest integer satisfying

ak ≥
√√√√ ( j − k − 1)

∏d
i=k+1 a2

i∑d
i=k+1

∏
l �=i a2

l

.

The corresponding result about the outer radii of boxes is very intuitive. It says that
the minimal projection of a box is the one onto the subspace parallel to one of its smallest
faces.

Theorem 4.4. Let 1 ≤ j ≤ d and 0 < a1 ≤ · · · ≤ ad . Then

(i) Rj (Ba1,...,ad ) =
√

a2
1 + · · · + a2

j

and

(ii) rj (Xa1,...,ad ) =
(∏d

i=d− j+1 ai

)
/

√∑d
i=d− j+1

∏
l �=i a2

l .



54 R. Brandenberg

Proof. It suffices to show (i), since then (ii) follows from Proposition 4.1. Moreover,
as the result is obvious if d = 1, we assume that d ≥ 2. Any vertex v of Ba1,...,ad can
be written in the form v =∑d

k=1±akek and all possible choices of pluses or minuses in
this formula lead to a vertex of Ba1,...,ad . Hence, for every projection P =∑ j

l=1 sl ⊗ sl

with pairwise orthogonal unit vectors sl ∈ Ed , it holds that ‖Pv‖2 = ∑ j
l=1〈v, sl〉2 =∑ j

l=1(
∑d

k=1±akslk)
2. However, since the average value of ‖Pv‖2 over all vertices v is∑d

k=1 a2
k

∑ j
l=1 s2

lk , there exists a vertex of Ba1,...,ad such that ‖Pv‖2 ≥∑d
k=1 a2

k

∑ j
l=1 s2

lk .
Now extend the set {s1, . . . , sj } to an orthonormal basis ofEd . Since

∑d
l=1 sl⊗sl = I d

it follows that
∑d

k=1 s2
lk =

∑d
l=1 s2

lk = 1, for all k = 1, . . . , d and all l = 1, . . . , d,
respectively. Hence tk := ∑ j

l=1 s2
lk ∈ [0, 1] and since

∑d
k=1 tk =

∑ j
l=1

∑d
k=1 s2

lk has
to equal j , the minimum value of

∑d
k=1 tka2

k is obtained for t1 = · · · = tj = 1 and

tj+1 = · · · = td = 0. It follows that Rj (Ba1,...,ad ) ≥
√

a2
1 + · · · + a2

j . Finally, since

the projection of Ba1,...,ad through its j-face Ba1,...,aj achieves this value, we obtain the
desired result.

Compared with the radii of boxes and general cross-polytopes very little can be
stated about general simplices. As Gritzmann and Klee [8] showed that the computation
of Rj (S) is NP-hard for general simplices S and many j , a general formula cannot be
expected. However, in [5] it could be shown that in “typical” configurations all vertices
of the simplex are projected onto the minimal enclosing sphere in an optimal projection,
and in [4] solution methods and a formula for a special case are given for j = 2 and
d = 3.
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