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Abstract

Large-Eddy Simulation was conducted to investigate the flow around a circular cylinder
mounted vertically on the flat bottom wall of an open channel. A boundary layer approach-
ing such a cylinder causes a down-flow in the cylinder front, and thus high momentum fluid
is brought close to the bottom wall. The interaction of this fluid with the wall consti-
tutes a vortex structure with complex dynamics and enhanced wall shear stresses. Wanted
or unwanted effects of this vortex structure in a vast number of engineering applications
aroused the scientific interest in this kind of flow. The aim of this dissertation was to eval-
uate the wall shear stress in front of the cylinder, to describe how this wall shear stress is
caused by the vortex system and the according near-wall flow structures and to work out the
measures it takes to estimate this wall shear stress by a numerical simulation in a reliable
way.

Among other measures, the data was validated by a comparison to the results of an associated
experiment conducted by Ulrich Jenssen. The comparison included not only the inflow
condition and the flow topology, but also the second and third order moments of the statistics
of the flow field as well as the production, the convection and the turbulent transport of
turbulent kinetic energy. Furthermore, a grid study demonstrated that the results were
converged over grid refinement. In the region of interest, the grid resolution - less than two
Kolmogorov length scales in the wall-normal direction and less than eight Kolmogorov length
scales in the horizontal directions - was fine enough to resolve the bottom wall and to ensure
that the influence of the subgrid-stress model was small.

The down-flow in the cylinder front was deflected in the upstream direction when it hit the
bottom wall and was subject to large acceleration. This acceleration gave rise to a negative
production of turbulent kinetic energy which in turn prevented an increase of the turbulence
level there and caused a region of relatively calm turbulence. As a consequence, the wall
shear stress scaled with the square-root of the Reynolds number similar to the one of a
laminar boundary layer. Nevertheless, as the boundary layer along the bottom wall which
caused this wall shear stress was in a non-equilibrium state and three dimensional, all terms
of the near-wall stress balance - including the ones based on the wall-parallel gradients - had
to be considered to close this balance and thus influence a possible modelling of the wall
shear stress. However, to resolve the according near-wall region a relative fine data resolution
was necessary as the significant three-dimensional gradients reached close to the wall. The
viscous sublayer was thinner than five wall units. The fact that the linear part was that
thin, the necessity to capture all gradients and the consequence that assumptions usually
employed for wall modelling do not apply on the flow considered make the wall shear stress
estimation challenging. This can explain why the wall shear stress was underestimated in
previously published studies.
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Zusammenfassung

Mit Large-Eddy Simulationen wurde die Strömung um einen senkrecht in einem Freispiegel-
gerinne stehenden Kreiszylinder untersucht. Eine Grenzschichtströumung, die auf so einen
Zylinder trifft, erzeugt vor dem Zylinder eine Abwärtsströmung, wodurch Fluid mit großem
Impuls in den Bereich nahe der Gerinnesohle gelangt. Durch die Interaktion dieses Flu-
ids mit der Gerinnesohle entsteht ein Wirbelsystem mit komplexer Dynamik und erhöhte
Wandshubspannungen an der Sohle. Das wissenschaftliche Interesse an dieser Art von Strö-
mungen resultiert aus gewollten oder ungewollten Effekten, das dieses Wirbelsystem in einer
Vielzahl von Anwendungsfällen hat. Der Schwerpunkt dieser Dissertation liegt darauf, die
Wandschubspannung vor dem Zylinder zu bestimmen, zu beschreiben, wie diese Wandschub-
spannung durch das Wirbelsystem und die zugehörige wandnahe Strömung erzeugt wird und
abzuschätzen, unter welchen Bedingungen die Wandschubspannung verlässlich anhand einer
numerischen Simulation vorhergesagt werden kann.

Validiert wurden die vorgestellten Daten unter anderem anhand der Messungen aus einem
zugehörigen, von Ulrich Jenssen durchgeführten Experiment. Es wurden nicht nur die Ein-
laufrandbedingung und die Strömungstopologie aus Simulation und Experiment verglichen,
sondern auch die Momente zweiter und dritter Ordnung der Strömungsstatistik sowie die
Produktion, die Konvektion und der turbulente Transport turbulenter kinetischer Energie.
Eine Gitterstudie zeigte zudem, dass die Ergebnisse über die Gitterweite konvergiert sind.
In der untersuchten Region war die Gitterweite klein genug (kleiner als das zweifache Kol-
mogorovsche Längenmaß in vertikaler Richtung und kleiner als das achtfache in den hori-
zontalen Richtungen), um die viskose Unterschicht an der Gerinnesohle aufzulösen und um
sicherzustellen, dass der Einfluss des Turbulenzmodells gering ist.

Die Abwärtsströmung vor dem Zylinder wurde an der Sohle des Gerinnes nach oberstrom
abgelenkt, wodurch die wandnahe Strömung starke beschleunigte. Die dadurch verursachte
negative Produktion turbulenter kinetischer Energie verhinderte einen Anstieg des Turbu-
lenzeniveaus und erzeugt so eine Region mit relativ wenig Turbulenz. Die Amplitude der
Wandschubspannung skalierte deshalb ähnlich der einer laminaren Grenzschicht mit der
Quadratwurzel der Reynoldszahl. Weil die Grenzschicht an der Bodenplatte des Gerinnes
dreidimensional und im Ungleichgewicht war, mussten alle Terme der Spannungsbilanz
berücksichtigt werden, um die Bilanz zu schließen und beeinflussen so eine mögliche Wand-
modellierung - auch die Terme, die Gradienten in wandparallele Richtungen beinhalten.
Eine relativ hohe Auflösung der Datenpunkte ist notwendig, um den wandnahen Bereich
aufzulösen, da die dreidimensionalen Geschwindigkeitsgradienten sehr nahe an die Wand
heran reichen. Die lineare Unterschicht ist deutlich dünner als fünf Wandeinheiten. Dass
alle Gradienten berücksichtigt werden müssen, dass die lineare Unterschicht so dünn ist und
dass deshalb Annahmen nicht zutreffen, die gemeinhin bei der Wandmodellierung getroffen
werden, erschwert es, die Wandschubspannung zu bestimmen und kann erklären, warum die
Wandschubspannung in bisherigen Publikationen unterschätzt wurde.
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Preface

This cumulative dissertation is based on the following journal papers:

• W. Schanderl and M. Manhart. Reliability of wall shear stress estimations of the flow
around a wall-mounted cylinder. Comp. and Fluids, 128, pages 16-29, 2016.

• W. Schanderl, U. Jenssen, C. Strobl and M. Manhart. The structure and budget
of turbulent kinetic energy in front of a wall-mounted cylinder. Journal of Fluid
Mechanics, 827, pages 285-321, 2017.

• W. Schanderl, U. Jenssen and M. Manhart. Near-wall stress balance in front of a
wall-mounted cylinder. Flow, Turbulence and Combustion, DOI 10.1007/s10494-017-
9865-3, 2017

• W. Schanderl, and M. Manhart. Dissipation of turbulent kinetic energy in a cylinder
wall junction flow. Submitted to Flow, Turbulence and Combustion, 2017

• W. Schanderl, U. Jenssen, C. Strobl and M. Manhart. Wall shear stress scaling in
front of a wall-mounted cylinder. Draft, 2017.

The first three publications have been published already. The fourth paper was submitted
in October 2017. The last paper is a draft and will be submitted in late 2017. Beside
these journal publications, the following contributions to conferences originated from this
dissertation. All of them except the ones for the European Turbulence Conferences (ETC)
included a short peer-reviewed paper.

• U. Jenssen, W. Schanderl and M. Manhart. Cylinder wall junction flow: Particle Image
Velocimetry and Large Eddy Simulation. 11th International ERCOFTAC Symposium
on Engineering Turbulence Modelling and Measurements, Palermo, 2016.

• W. Schanderl and M. Manhart. Large-eddy simulation of the flow around a wall-
mounted circular cylinder. 3rd IAHR Europe Congress, Porto, 2014.

• W. Schanderl and M. Manhart. Reliability of wall shear stress estimations in front of
a wall-mounted cylinder. Direct and Large Eddy Simulation 10, Limassol, 2015.

• W. Schanderl and M. Manhart. Non-equilibrium near wall velocity profiles in the flow
around a cylinder mounted on a flat plate. 15th European Turbulence Conference,
Delft, 2015.

• W. Schanderl, O. Chmiel, P. Huttner, S. Zischkale and M. Manhart. Application and
validation of sediment erosion models to time dependent wall shear stresses around a
wall-mounted circular cylinder. 7th River Flow Conference, Lausanne, 2014.

• W. Schanderl, O. Link and M. Manhart. Discussion of the impact of pressure fluctua-
tions on local scouring. In Book of Proceedings of International Symposium on River
Sedimentation, Stuttgart, 2016.

• W. Schanderl, U. Jenssen and M. Manhart. Turbulence structure in front of a wall-
mounted cylinder. 11th International ERCOFTAC Symposium on Engineering Tur-
bulence Modelling and Measurements, Palermo, 2016.
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• W. Schanderl and M. Manhart. Dissipation in front of a wall-mounted bluff body.
Direct and Large Eddy Simulation 11, Pisa, 2017.

• W. Schanderl and M. Manhart. The role of pressure fluctuations in the turbulent
kinetic energy budget. 16th European Turbulence Conference, Stockholm, 2017.

Even though this dissertation is a cumulative one, I have tried to maintain the structure
of a monograph. There is an introduction to lead the reader into the topic, there is a
part explaining and justifying the used methods and at the very end there is a discussion
which evaluates the achieved results. However, the part presenting the scientific results
was skipped and replaced by a one-page summary of each of the five journal papers listed
above. The papers are included in the appendix. Furthermore, the appendix contains a
declaration of consent between the authors for each paper, which documents the contribution
of the individual authors to the corresponding paper. At the very end of the appendix, the
permissions from the publishers to use the already published papers in the scope of this
dissertation are included.
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Nomenclatur

The definitions given below regard to the definitions in the synoptic part of this dissertation.
The definitions in the journal papers this dissertation is based on may vary.

Roman letters

C Convection of turbulent kinetic energy
cf Friction coefficient
cp Pressure coefficient
D Cylinder diameter
E Kinetic energy
g Gravity constant
g Component of the gravity vector in the i-direction
H Flow depth
k Turbulent kinetic energy
p Pressure
P Production of turbulent kinetic energy
R Residual of the budget of turbulent kinetic energy
Re Reynolds number
ReD = ubD

ν
Reynolds number

s′ Fluctuation of the strain rate tensor S
Tconv Turbulent convection of turbulent kinetic energy
Tpres Pressure transport of turbulent kinetic energy
Tvisc Viscous diffusion of turbulent kinetic energy
ub Bulk velocity in the symmetry plane of the inflow
ui Velocity component in the i-direction
u′i Fluctuation of the velocity component ui
uK Kolmogorov velocity scale
W Width of the open channel
x Coordinate in the streamwise direction
xi Coordinate in the i-direction
∆x Grid spacing in the x-direction
∆x+ Grid spacing in the x-direction in wall units
∆xi Grid spacing in the i-direction
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X Nomenclatur

y Coordinate in the spanwise direction
∆y Grid spacing in the y-direction
∆y+ Grid spacing in the y-direction in wall units
z Coordinate in the vertical direction
z+ Coordinate in the vertical direction in wall units
∆z Grid spacing in the z-direction
∆z+ Grid spacing in the z-direction in wall units
∆z+wall Grid spacing in the z-direction in wall units directly at the bottom wall

Greek letters

ε Dissipation
ηK Kolmogorov length scale
ν Kinematic viscosity
νt Modelled viscosity, turbulent viscosity
ρ Density
τSGS Subgrid-stress tensor
τw Wall shear stress
τw,i Component of the wall shear stress vector in the i-direction

Symbols and operators

D
Dt

Material derivative
∂
∂xi

Partial derivative in the i-direction

〈Φ〉 Time average of a quantity Φ
Φ A quantity Φ filtered over a cell volume

Abbreviations

DNS Direct numerical simulation
IBM Immersed boundary method
LES Large-eddy simulation
PIV Particle image velocimetry
RANS Reynolds-averaged simulation
WALE Wall-adapting local eddy-viscosity model



1. Introduction

Due to its wide relevance for engineering applications, the flow around bluff bodies mounted
on a flat plate has attracted scientific interest for several decades. Wanted or unwanted
effects from the distinct vortex system in such a flow arise at the mounting of turbo ma-
chinery blades, at the junction of an aircraft’s body to its wing or at the struts inside a
heat exchanger. The flow around wall-mounted bodies has attracted the attention of our
research group because of its impact on bridge piers placed in rivers and the surrounding
river bed. The flow field around the bridge pier exhibits a distinct vortex system and thus
locally increased velocities and pressure fluctuations, which in turn can trigger erosion and
cause local scouring. However, how the scouring process is caused by the vortex system and
its fluctuations is not fully understood yet. The highly charged nature of this topic becomes
clear when considering that the main reason for the loss of stability of bridges is scouring
around its piers (Imhof, 2004).

When predicting the scouring process around an obstacle, one has to face two challenges.
A sediment transport model has to be applied to model the erosion and deposition of sed-
iment caused by the flow appropriately. However, to estimate the erosion due to the flow,
the flow itself has to be predicted first. If the prediction of the flow and the stresses it
exerts on the sediment is imprecise, the effects of these stresses are imprecise as well and
the sediment transport model thus has to be calibrated. Our project tackles this issue by
investigating the flow field and the according wall shear stresses - which is assumed to be
the main agent of scouring - around a cylinder mounted on a flat plate. The emphasis is
placed on the region in front of the cylinder, since the scouring is typically observed to
start in the lateral front and the equilibrium scour hole is deepest in the symmetry plane
in front of the cylinder (Link et al., 2008). This study explicitly investigates the flow field
and its dynamics solely. The geometry of the bottom plate is a flat plate for all considera-
tions.

In section 1.1, the state of the art regarding the flow field in front of a wall-mounted bluff body
is summarised briefly. This literature review shall elaborate the main open questions regard-
ing such a flow which are discussed by the research community at the moment. In section
1.2 an outlook is given on what this study contributes to the ongoing discussion. Section 1.3
gives an overview over the structure of the subsequent thesis.

1.1. Bluff body flow - the state of the
art

The large interest in the flow around wall-mounted bluff bodies has led to a vast number of
scientific studies addressing this topic. It is impossible to discuss all of them in the scope
of this dissertation. However, a literature review is made easier by two points, namely the
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2 1.1. Bluff body flow - the state of the art

limited number of degrees of freedom and the invariance of the flow to minor changes of the
geometry and the Reynolds number.

Even though the flow around such a wall-mounted bluff body is complex and bears rich
dynamics, such flow cases can be described by a limited number of geometric and dynamic
parameters. The geometry of a cube, plate or circular cylinder mounted on a plate is simple
to describe. The number of degrees of freedom which have to match between the different
setups to enable comparison is thus limited.

Second, the flow structure in general is invariant to minor changes of the geometry, especially
the shape of the body, and the Reynolds number. Even though the variety of geometries
investigated in the past is huge, most of the work is done on single bodies placed on a flat
surface, especially circular cylinders (e.g. (Dargahi, 1989)), streamlined wings (e.g. (De-
venport and Simpson, 1990)) and blocks/cubes (e.g. (Castro and Robins, 1977; Martinuzzi
and Tropea, 1993)) as summarised in detail by Simpson (2001). Comparisons of the flow
in front of a circular cylinder with the one in front of a wing-shaped cylinder show only
marginal differences (Simpson, 2001). Also, Martinuzzi and Tropea (1993) investigated the
flow around a wall-mounted cube, and even though a cube is obviously more bluff than a
circular cylinder, the flow topology they observed was in general the same as the one for
more slender bodies. In addition, various studies (Roulund et al., 2005; Apsilidis et al.,
2015; Kirkil and Constantinescu, 2015) suggest that the flow pattern in general does not
change with the Reynolds number as long as the Reynolds number is moderate1. Schofield
and Logan (1990) summarised: ”The responses of a wide range of turbulent shear layers to
an obstacle attached to a wall can be collapsed if appropriate non-dimensionalising length
scales are used.” Even though the exact position and the amplitude of certain flow features
differ between the studies discussed in the following, the flow topology can be expected to
be similar in these flow cases.

Hence, the following discussion does not distinguish between the exact shapes of the bodies
and different moderate Reynolds numbers. Due to its relevance for the scouring process, the
focus is on studies addressing the flow in front of the body.

1.1.1. Time-averaged flow field

The time-averaged flow in front of a wall-mounted bluff body is characterised by a distinct
vortex system close to the bottom wall with spanwise axis of rotation. This vortex system is
illustrated in figure 1.1, where the streamlines in the symmetry plane in front of the body were
plotted. The data was taken from a simulation conducted in the scope of this dissertation.
As the body was a circular cylinder, the vertical coordinate z and the streamwise coordinate
x were normalised by the cylinder diameter D. The main vortex denoted as V1 obtains
its momentum from a down-flow along the flow facing side of the body. The down-flow
in turn is driven by a vertical pressure gradient, which is caused by the boundary layer
approaching the body. When the down-flow meets the bottom wall, most of it is deflected
in the upstream direction along this wall (black and red streamlines in figure 1.1), while a
minor amount (green) forms a small corner vortex V3 directly at the junction of the body
and the bottom wall. Parts of the fluid moving in the upstream direction (black) roll up

1The ranges can be defined as follows: Re < 5 · 103: low Reynolds number, including laminar flow; 5 · 103 <
Re < 5 · 105: moderate Reynolds number; 5 · 105 < Re: large Reynolds number.



1. Introduction 3

Figure 1.1: Streamlines in the symmetry plane in front of the cylinder.

and form the main vortex V1. Other parts (red) establish an upstream-directed jet along
the bottom wall which passes under V1.

A fluid particle moving along a time-averaged streamline through the wall jet underneath
vortex V1 is subject to a distinct pattern of acceleration and deceleration. The down-
flow entrains large momentum fluid towards the bottom wall. Due to the adverse pressure
gradient in front of the body, the fluid accelerates in the upstream direction along the bottom
wall first. Afterward, the jet decelerates approximately when passing underneath the core
of vortex V1. Here the time-averaged representation of the jet gains height and lifts off the
wall. The jet reaches its maximum height under stagnation point S1, which borders vortex
V1 in the upstream direction. The streamline patterns along the bottom wall (Paik et al.,
2007) and the images of an oil film visualisation (Devenport and Simpson, 1990) indicate
a large amount of fluid to leave the region in front of the body in the spanwise direction
here. The rest of the fluid accelerates again towards the most upstream stagnation point
S2.

The fluid has to bypass the body, thus the flow accelerates in the spanwise direction, and the
vortex system is stretched and bent around the body. Figure 1.2 shows two different instanta-
neous samples of the flow field around the cylinder taken from a simulation conducted in the
scope of this dissertation. Evaluated was the top view on isosurfaces of the q-criterion, which
is the second invariance of the velocity gradient tensor. The colors in figure 1.2 are not linked
to the ones in figure 1.1. Seen from above the resulting vortex has the shape of a horseshoe,
wherefore the vortex system has its name: horseshoe vortex.

The basic time-averaged structure (down-flow - main vortex V1 - corner vortex V3 - wall
jet) is uncontested by the community investigating junction flows (Dargahi, 1989; Deven-
port and Simpson, 1990; Simpson, 2001; Escauriaza and Sotiropoulos, 2011; Apsilidis et al.,
2015). The discussion is on the vortices accompanying the main vortex, especially on the
recirculation zone downstream of S2 and upstream of S1. Dargahi (1989) did hydrogen
bubble visualisations of the flow in front of a wall-mounted cylinder at a Reynolds number
of ReD = 39000 based on the diameter of the cylinder D and the bulk velocity of the in-
coming flow. Dargahi observed the main vortex V1 to be convoyed by an upstream vortex
V2 of approximately the same size, rotating in the same direction. This assumption was
confirmed by Escauriaza and Sotiropoulos (2011), who conducted detached-eddy simulation
of the same setup. They observed a flat but long drawn-out vortex upstream of V1. Such
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Figure 1.2: Top view on two instantaneous samples of the flow field around the cylinder. Presented
are iso-surfaces of the q-criterion. The colors are not linked to the colors in figure 1.1.

a vortex was also observed by Apsilidis et al. (2015), who did particle image velocimetry
at a slightly higher Reynolds number. However, in their experiment it was significantly
smaller than the main vortex. Apsilidis et al. (2015) stated that this small vortex V2 is the
time-averaged representation of a train of various small instantaneous vortices. In contrast,
Devenport and Simpson (1990) observed a zone of weak backflow upstream of the main vor-
tex in their experiment. Devenport and Simpson (1990) applied oil film visualisation as well
as laser doppler anemometry to investigate the flow field around a wing-shaped cylinder at a
Reynolds number of ReD = 119000. In their impressive publication, they reported backflow
in the near wall layer in this region, but they did not report any further vortex upstream
of V1. Krajnović (2011) conducted large-eddy simulation of the flow around a finite height
cylinder at ReD ≈ 20000 and mentioned an additional vortex V2 upstream of the main vortex
V1. However, this point was not further elaborated in his study. The rather weak evidence
given by Krajnović (2011) for vortex V2 does not indicate the fluid to make a full turn or V2
to have a defined vortex core. The presented streamline pattern in fact can also represent a
backflow zone as discussed by Devenport and Simpson (1990).

The wall shear stress distribution at the bottom wall is the footprint of the flow above this
wall. Devenport and Simpson (1990) did not measure the wall shear stress explicitly but
interpreted their oil film visualisation. They reported two distinct regions of negative wall
shear stress: A region of strong wall shear stress underneath vortex V1 and the wall jet and
an additional region of low negative wall shear stress upstream of the first region, where
the jet accelerates a second time. Furthermore, according to Devenport and Simpson (1990)
these two regions are not separated by a region of positive wall shear stress (which would
indicate an additional vortex rotating in the opposite direction of V1, or at least a region of
positive streamwise velocity) but they are connected by a thin strip of negative wall shear
stress of small amplitude.

Dargahi (1989) reported the wall shear stress amplification in the symmetry plane in front of
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the cylinder relative to the wall shear stress in the undisturbed flow without bluff body. In
contrast to Devenport and Simpson (1990), he documented only one broad peak of negative
wall shear stress, which was located underneath vortex V1 and the wall jet. Dargahi (1989)
did not report a second region of enhanced wall shear stress, even though he assumed the
vortex system to consist of more than one vortex close to the wall. Upstream of the docu-
mented peak the wall shear stress became positive and increased towards the undisturbed
value. There was no footprint of an additional vortex V2 or of a backflow zone upstream the
main vortex. Even though the wall shear stress distribution documented by Dargahi (1989)
obviously does not fit to the topology of the corresponding near wall flow, it was repeatedly
applied to validate numerical results. However, one has to ask the question how reliable the
wall shear stress distribution measured by Dargahi (1989) is and hence the results validated
by and matching to this wall shear stress.

1.1.2. Dynamics of the flow field

The flow topology described above is the average of instantaneous samples of a highly dy-
namic flow field. Similar to the time-averaged topology, the main mechanism of these dy-
namics is uncontested by the research community. Devenport and Simpson (1990) found
the main vortex not to fluctuate randomly but to jump between two preferred modes. In
the so-called backflow mode, the main vortex V1 is further upstream of the cylinder while
the wall jet impinges far into the oncoming boundary layer. The so-called zero-flow mode
is characterised by V1 being closer to the cylinder. The wall jet does not penetrate the
oncoming boundary layer but lifts off the bottom wall and ejects vertically directly up-
stream of V1. The corresponding movement of the main vortex is also illustrated by the
two different instantaneous samples of the flow field in figure 1.2. In the red sample, V1
is located closer to the cylinder, while it is further upstream in the blue sample. However,
it should be noted that these two positions do not necessarily indicate the preferred posi-
tions of V1 in the backflow and zero-flow mode, since the two presented samples are chosen
randomly.

The bimodal dynamics of the horseshoe vortex system have enormous impact on technical
applications. According to Simpson (2001) the ”bimodal aperiodic chaotic large-scale horse-
shoe vortex phenomena [...] are responsible for observed high turbulence intensities, surface
pressure fluctuations, heat transfer rates, and scour in front of the obstacle.” However, the
discussion on the exact bimodal process and what triggers this process is still going on.
Devenport and Simpson (1990) suggested that the flapping process is triggered by turbulent
structures in the incoming flow. Rotational fluid packets of low momentum entrained in
the vortex system are ”particularly susceptible to cross-stream pressure gradients and [are]
lost fairly rapidly” from the region in front of the body (Devenport and Simpson, 1990).
These fluid packets cause a relatively small recirculation zone (zero-flow mode), and the
wall jet is not able to penetrate into the oncoming boundary layer (Devenport and Simpson,
1990). In contrast, irrotational fluid packets of large momentum will presumably maintain
their irrotationality, they are less susceptible for spanwise acceleration and thus form a jet
along the bottom wall as well as a larger recirculation zone (backflow mode) (Devenport
and Simpson, 1990). In the experiment of Devenport and Simpson (1990), the boundary
layer was not covering the whole height of the approaching flow. They thus concluded that



6 1.1. Bluff body flow - the state of the art

the rotational low momentum fluid packets stem from the outer region of the boundary
layer and the irrotational large momentum packets from the free stream. However, the
bimodal dynamics of the vortex system were also observed by Escauriaza and Sotiropou-
los (2011). In their detached-eddy simulation a fully-developed boundary layer simulated
by a separated Reynolds-averaged simulation was applied as inflow condition. Such an in-
flow profile does not exhibit a region of free stream since the boundary layer is covering
the whole height of the inflow profile. Furthermore, as the inflow was pre-simulated by a
Reynolds-averaged approach, it only contains a time-averaged and thus constant level of
turbulence. The rotation and the momentum of fluid packets entrained into the horseshoe
vortex system does not fluctuate in such a simulation. Since the bimodal dynamics were still
observed, fluctuations in rotation and momentum of the incoming flow cannot explain these
dynamics.

Since then, various studies that investigated the bimodal dynamics of the horseshoe vortex
based on the observations of Devenport and Simpson (1990) were published. There are vari-
ous tools to capture these phenomena. From inspecting a sequence of snapshots of spanwise
vorticity distributions, Paik et al. (2007) concluded a complex interaction of the main vortex
V1 and the bottom wall to cause the bi-modality. In a well-organised state (backflow mode),
the vicinity of V1 to the wall ”leads to the extraction of a tongue of wall vorticity of opposite
sign” (Paik et al., 2007) than the vorticity of V1. These tongues of counteracting vorticity
wrap around the main vortex and cause it to break down. This less organised structure is
then washed downstream towards the bluff body (zero-flow mode). In addition, by applying
proper orthogonal decomposition Paik et al. (2007) observed this process to be quasiperiodic
and to be dominated by a small number of frequencies.

Among other analysis, Apsilidis et al. (2015) did a frame by frame inspection of their par-
ticle image velocimetry data in the symmetry plane in front of a wall-mounted cylinder.
Furthermore, they discussed probability density functions of the position of the core of V1
as well as of the velocity close to the bottom wall. They suggested to establish a third mode
next to the backflow and the zero-flow mode, the so-called intermediate mode. In the latter,
none of the features associated with the original modes is present. Apsilidis et al. (2015)
also suggested to decouple the position of the main vortex from the state of the wall jet.
According to them, the jet in the backflow mode and the main vortex in its position further
away from the cylinder are not necessarily connected. In the observations of Devenport and
Simpson (1990), these phenomena were linked co-actively.

The advantage of inspecting instantaneous samples of the flow field frame by frame is that the
examined data represent a flow field which actually occurred in the simulation or experiment.
However, due to the chaotic component of turbulent flow each instantaneous flow topology
is different. Thus, one has to step gently when drawing general conclusions from a randomly
chosen set of instantaneous flow topologies, since the observed features may be contained
in the chosen set of samples only, but not in a different set. Information contained by the
disregarded samples is lost.

In contrast, time-averaged data represents artificial fields which never had appeared in the
flow. Information regarding flow fields as they had actually happened is lost in the averag-
ing process. However, every instantaneous samples contributes equally to the time-averaged
data and the uncertainty of choosing some samples and disregarding the others is avoided.
Approaches based on this time-averaged data aim in capturing the flow dynamics by exam-



1. Introduction 7

ining the statistics of the flow field an its higher order moments. Especially these higher
order moments (covariance, skewness, kurtosis) contain information about the correlation of
individual flow features which can help to understand the dynamic processes. Furthermore,
many time-averaged physical processes can be described by these moments of higher order,
e.g. the production, the turbulent transport and the dissipation of turbulent kinetic energy.
The understanding of these processes can help to understand the flow dynamics itself. Thus,
some of these quantities (production and parts of the turbulent transport) are discussed in
almost all aforementioned studies. However, it is challenging to evaluate the full budget
of turbulent kinetic energy2. On the one hand, one needs the full three dimensional data
of the flow to be able to capture every single term of the budget, which is hard achieve in
most experimental setups. On the other hand, various terms are based on spatial gradients.
An accurate estimation of these gradients in turn requires a high spatial resolution, which
is costly in both experimental and numerical resources. Nevertheless, the evaluation of the
full turbulent kinetic energy budget based on the explicit estimation of every single term
might valuably contribute to the ongoing discussion on the dynamics of the horseshoe vortex
system in front of a wall-mounted bluff body. The understanding of the dynamics of the
vortex system is crucial to predict the flow in the near-wall region. The latter in turn is
what determines the wall shear stress.

1.2. Contribution of this study

In this dissertation highly resolved large-eddy simulation (LES) of the flow around a cir-
cular cylinder mounted on the flat bottom wall of an open channel at three moderate
Reynolds numbers is presented. The evaluation of the results shall contribute to the on-
going discussion on the horseshoe vortex system and elaborate the factors that determine
the corresponding wall shear stress. In particular, the following questions are investi-
gated:

(i) To what extend does the inflow profile influence the horseshoe vortex sys-
tem and the wall shear stress distribution? As Kirkil and Constantinescu (2015)
pointed out, the accurate prediction of the flow features in front of a wall-mounted bluff
body by a numerical simulation requires an unsteady, eddy-resolving inflow boundary con-
dition. The present study aims in a detailed comparison of the flow features resulting from a
fully-developed, turbulent open-channel flow as inflow condition to those resulting from less
sophisticated inflow conditions. This way the effect of the inflow condition is isolated and
examined.

(ii) What technical measures (in terms of wall resolution) does it take to measure
the wall shear stress around a wall-mounted cylinder in a reliable way? As pointed
out in section 1.1.1, the time-averaged wall shear stress distribution presented by Dargahi
(1989) is widely used to validate numerical results. However, it is not consistent with the
time-averaged flow topology above the corresponding wall. Can this discrepancy be explained
by an insufficient data resolution at the wall? The present study discusses the wall shear

2In this context also the impressive study of Hussein and Martinuzzi (1996) should be mentioned, who
investigated the budget of turbulent kinetic energy at the upper end of a wall-mounted cube. They took
special care to evaluate as many terms as possible and gained the remaining terms from the closure of
the budget.
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stress distribution and links it to the according flow topology. Furthermore, the influence of
the grid resolution on the results is evaluated.

(iii) How do the outer flow and the vortex system interact with the near-wall
flow and thus the wall shear stress? To gain further insight into the dynamics of the
vortex system, the complete budget of turbulent kinetic energy is evaluated and documented
in detail. This evaluation includes an explicit estimation of the dissipation rate. The inves-
tigation of the budget of turbulent kinetic energy is accompanied by an evaluation of the
stress balance in the near-wall flow. This way it can be highlighted which flow features of
the outer flow play a significant role in the stress balance of the near-wall flow and therefore
directly act on the wall shear stress.

(iv) How does the wall shear stress scale with the Reynolds number? Even though
most practical engineering problems have large Reynolds numbers, both experimental and
numerical studies are limited to low and moderate Reynolds numbers due to the challenge
of resolving the near-wall layer. Is there a distinct scaling behavior of the wall shear stress
which allows to draw conclusions from lower Reynolds number flows to higher Reynolds
number flows? This question is addressed by the evaluation of the wall shear stress at
three different moderate Reynolds numbers and the corresponding wall shear stress scal-
ing.

1.3. Structure of this thesis

The questions defined in section 1.2 are addressed in the following way. Chapter 2 describes
the investigated physical setup. How this setup is transformed into a numerical simulation
is explained afterward: Chapter 3 introduces the mathematical expressions describing the
flow and chapter 4 the numerical discretisation of these mathematical expressions. The
validation and the known limitations of the applied approach are discussed in chapter 5.
Subsequently, the chapters 6 to 10 give a short summary of the results published in the
journal papers this dissertation is based on. The publications themselves can be found in
the appendix. If the defined goals of this dissertation are achieved is assessed in chapter
11.



2. Flow configuration

Figure 2.1: Setup investigated: A cylinder was placed vertically in a straight flume. The origin of
the coordinate system was at the junction of bottom wall and cylinder axis.

The questions defined in section 1.2 were addressed by investigating the flow around a cir-
cular cylinder placed vertically in a straight water channel with free surface. The Froude
number was considered small, and the Reynolds numbers were ReD = 20000, ReD = 39000
and ReD = 78000 based on the cylinder diameter D and the velocity of the incoming flow
averaged over the whole cross section. The setup is sketched in figure 2.1. The water depth
was H = 1.5D. The flume had a width of W = 11.7D in the low and the medium Reynolds
number case and W = 7.8D in the large Reynolds number simulation. This was done to as-
sure comparability to an associated experiment (Jenssen et al., 2016; Schanderl et al., 2017c).
In the experiment, the water depth had to be increased in the large Reynolds number case to
keep the Froude number small. As the ratio of flow depth to cylinder diameter was consid-
ered to have a larger influence on the flow than the width to diameter ratio, the diameter was
increased to keep H = 1.5D. This resulted in a smaller width to diameter ratio. The inflow
was a fully-developed, turbulent open-channel flow including the secondary flow structures
of Prantl’s second kind (Nezu and Nakagawa, 1993).

The configuration had been chosen such that it was consistent with former experiments
of our research group (Pfleger, 2011). It differed slightly from the experiment of Dargahi
(1989) in terms of the flow depth, which was H = 1.33D there. The experiments of Apsilidis
et al. (2015) were conducted in the same range of Reynolds numbers but with a significantly
smaller ratio of boundary layer thickness to cylinder diameter. The body in the experiments
of Devenport and Simpson (1990) was a wing-shaped cylinder. Furthermore the investigated
Reynolds number was larger while the ratio of the boundary layer thickness to cylinder
diameter was smaller in their setup. However, as discussed in section 1.1, the flow topology
and its features were similar in all these studies.

9
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In the previous chapter the physical flow configuration was introduced. However, to be
examined the flow physics needs to be expressed by mathematical equations. This chapter
gives a brief overview of the equations by which Newtonian flow can be described according
to the argumentation of Pope (2011) and Schlichting and Gersten (2006). Afterward, chapter
4 addresses how these equations were discretised numerically.

3.1. Navier-Stokes and Reynolds
equations

When describing fluid motion, two fundamentals have to be considered: the conservation of
mass and the conservation of momentum1. In an incompressible flow, the conservation of
mass is fulfilled if the divergence of the flow field is zero:

∂ui
∂xi

= 0 (3.1)

The Navier-Stokes equations for constant-property Newtonian flow

ρ
Dui
Dt

= − ∂p

∂xi
+ νρ

∂2ui
∂x2j
− ρgi (3.2)

formulate the conservation of momentum. In both equation 3.1 and equation 3.2 ui is the
velocity component in the direction xi, while p is the pressure. As the fluid properties
density ρ and kinematic viscosity ν are considered isotropic and homogeneous, the flow is
incompressible. gi is the component of the gravity vector in the direction xi. This vector is
considered to be constant.

The operator D/Dt denotes the material derivative of a quantity. Applied on a velocity
Dui/Dt, it gives the material acceleration of a fluid particle, which is the sum of the local
acceleration ∂ui/∂t and convective acceleration uj∂ui/∂xj. The resulting change of momen-
tum ρDui/Dt of a fluid particle is balanced by: the pressure gradient −∂p/∂xi; the viscous
(friction) term νρ∂2ui/∂x

2
j ; and the gradient of the gravitational potential ρgi. Since these

terms can be interpreted as gradients of stresses, a stress balance can be obtained by a
spatial integration of equation (3.2) (section 3.2).

Turbulent flow is complex. Even though turbulence follows distinct laws, a single instanta-
neous sample of a turbulent flow field might appear random. To come to general conclusions,

1The conservation of energy can neglected for incompressible flow of Newtonian fluids, since the motion
can be described by the conservation of mass and momentum. Although kinetic energy is converted to
heat by inner friction, the effect of the respective increase of temperature is negligible.

10
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it is common practice to not investigate instantaneous quantities but the statistics of these
quantities. To do so, the velocity ui (as well as the pressure) is split into its time-averaged
mean 〈ui〉 and the instantaneous deviation of this mean u′i:

ui = 〈ui〉+ u′i (3.3)

Equation 3.3 is the so-called Reynolds decomposition (Pope, 2011). Applying this de-
composition to equation 3.2 and restructuring the terms gives the Reynolds equations:

D〈ui〉
Dt

= −1

ρ

∂〈p〉
∂xi

+ ν
∂2〈ui〉
∂x2j

− ∂〈u′iu′j〉
∂xj

− gi (3.4)

Due to nonlinear terms in the material derivative, the application of the Reynolds decom-
position to the Navier-Stokes equation (equation 3.2) creates an additional term containing
the covariances of the velocity field 〈u′iu′j〉 = 〈uiuj〉 − 〈ui〉〈uj〉. Even though the stresses are
actually −ρ〈u′iu′j〉, this covariances are called Reynolds stresses (Pope, 2011). Physically,
the Reynolds stresses represent the momentum transfer due to velocity fluctuations. Pope
(2011) indicates the major role of the Reynolds stresses in a turbulent flow field by under-
lining that the corresponding term is what makes the difference2 between equation 3.2 and
equation 3.4 and causes the fundamental difference of time-averaged and instantaneous flow
field.

3.2. Wall shear stress

As mentioned above, the terms of the Navier-Stokes equations (equation (3.2)) can be inter-
preted as the gradients of stresses. Thus, integrating equation (3.2) gives a stress balance. If
the integration is done in the wall-normal direction (here the z-direction), the corresponding
integration constant is the shear stress between the wall and the fluid, the wall shear stress
τw:

τw,i = −
∫ z

z=0

∂p

∂xi
dz − ρ

∫ z

z=0

uj
∂ui
∂xj

dz + ρν

∫ z

z=0

∂2ui
∂x2j

dz + ρgiz (3.5)

Here τw,i is the component of the wall shear stress in the direction xi and the wall is located at
z = 0. At a rigid wall, the velocity of the fluid is the velocity of the wall, here ui = uj = 0. In
the present considerations gravity is not relevant. Directly at the wall, the pressure gradient
as well as the velocity gradients in the wall parallel directions are significantly smaller than
the velocity gradient in the wall-normal direction. Thus, close to the wall equation (3.5)
reduces to

τw,i = ρν
∂ui
∂z

(3.6)

2If 〈u′iu′j〉 = 0, the equations for ui and 〈ui〉 would be the same.
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The wall shear stress depends on the fluid properties (ρ and ν) and the wall-normal velocity
gradient at the wall. Furthermore, from equation (3.6) follows that the wall-normal velocity
profile is linear in a region, which is close enough to the wall so that the simplifications
made above are valid. This region is called linear sublayer or viscous sublayer and its the
thickness depends on the Reynolds number. The stress balance of the near-wall flow in
the configuration considered in the scope of this dissertation is evaluated in the publication
summarised in chapter 8 (Schanderl et al., 2017a).

3.3. Budget of turbulent kinetic energy

Analogue to the velocity, the kinetic energy can be split into two parts: the kinetic energy
of the mean flow field E

E =
1

2
〈ui〉2 (3.7)

and the turbulent kinetic energy k

k =
1

2
〈u′2i 〉 (3.8)

which is the time-averaged kinetic energy of the velocity fluctuations. One of the key aspects
of this study was the investigation of the latter one as well as its budget: The production
term P

P = −〈u′iu′j〉
∂〈ui〉
∂xj

(3.9)

transforms mean kinetic energy into turbulent kinetic energy (if P > 0) and vice versa (Pope,
2011). Due to its structure, P can be interpreted as an amplification of k where the flow
decelerates and a damping of k where the flow accelerates. On the one hand, the turbulent
kinetic energy is redistributed in space by the convection due to the mean flow field C which
is

C = −〈ui〉
∂k

∂xi
(3.10)

in a statistical steady flow (Pope, 2011). On the other hand, there are turbulent transport
processes (Pope, 2011): turbulent convection Tconv, pressure transport Tpres, and viscous
diffusion Tvisc

Tconv = −1

2

∂

∂xi
〈u′iu′ju′j〉 (3.11)

Tpres = −1

ρ

∂

∂xi
〈u′ip′〉 (3.12)
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Tvisc = 2ν
∂

∂xi
〈u′js′ij〉 (3.13)

where s′ij is the fluctuation of the strain rate tensor

s′ij =
1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
. (3.14)

The dissipation rate ε transforms kinetic energy into heat by friction (Pope, 2011)

ε = 2ν〈s′ijs′ij〉 (3.15)

As changes of temperature are neglected, dissipated energy is in fact lost. In statistical
steady flow, the mentioned contributors to the budget of turbulent kinetic energy must
balance each other:

0 = C + Tconv + Tpres + Tvisc + P − ε . (3.16)

The budget of turbulent kinetic energy is discussed in more detail by Pope (2011) and
Schlichting and Gersten (2006). The application of these budget terms on the flow case
considered in this study is done in the publication summarised in chapter 7 (Schanderl
et al., 2017b).



4. Numerical methods

After introducing the continuous governing equations in the previous chapter, this chapter
provides insight in how this system of equations was discretised to enable its computation,
and which operations were performed on the resulting discretised equations. First the basic
concepts applied in computational fluid dynamics are laid out briefly (section 4.1), before
the numerical methods used in this study are described (section 4.2). Afterward, the compu-
tational grid, on which the discretised system of equations is solved, is documented (section
4.3). To build a certain degree of confidence in the used methods and grids, the following
chapter 5 discusses the measures taken to validate the achieved results and their known
limitations.

4.1. Simulation techniques

A feature of turbulent flow are the dynamics on a large range of both time and length
scales. The largest scales are in the order of magnitude of the scales of the outer boundary
conditions. In the setup considered, the flow around a cylinder in a flume, these largest
scales - e.g. the ones of the coherent structures in the approaching flow, of the horseshoe
vortex in the cylinder front or of the von Karman vortices shedding from the cylinder - can
be described by means of the cylinder diameter D and the bulk velocity of the approaching
flow. Large scale motions decay continuously into motions of smaller scales until they reach
a physical lower limit. At this lower limit, motion can be described by the means of the
Kolmogorov length scale ηK = (ν3/ε)1/4 and the Kolmogorov velocity uK = (νε)1/4 (Pope,
2011), where ε is the dissipation rate (equation 3.15). The Kolmogorov scales depend on the
Reynolds number Re: the larger Re, the smaller the scales (Pope, 2011). Thus, the range of
scales increases with Reynolds number for given boundary conditions. To gain meaningful
results, a numerical simulation has to regard all these scales. Especially in high Reynolds
number flow - like most of the industrial and engineering applications - this is challenging.
There are three principal approaches to handle this challenge. These three approaches are
explained in the context of a finite volume method Pope (2011), in which the quantities of
the flow are averaged over a defined volume. This volume corresponds to the cell volume of
the applied computational grid.

(i) Direct numerical simulation (DNS) resolves the whole domain by a computational grid
fine enough to capture the smallest scales. The resulting data corresponds to data averaged
in space over the volume of the grid cells as well as in time over a period corresponding to
the applied time step. Thus, both time step and volume have to be small enough to ensure
that the resulting data approximates the smallest scales without significant deviation, even
though it is averaged in space and time. If this condition is fulfilled, the resulting data
actually corresponds to an instantaneous flow field. According to Pope (2011) grid spacing
of ∆xi . 2.1ηK is required to resolve the small scales sufficiently. Since this high resolution,

14
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which depends on the Reynolds number, has to be provided over a domain large enough to
capture the large scale motions, which depend on the geometry of the setup, a relative large
number of grid points is necessary to discretise the domain. Linked to that is the necessity
of large computational resources. Today, DNS can only be performed for low and medium
Reynolds number flow in a geometrically restricted domain.

(ii) Reynolds-averaged Navier-Stokes simulation (RANS) solves the Reynolds equation (equa-
tion 3.4) for the time-averaged velocities 〈ui〉 only. The covariances of the velocity field
〈u′iu′j〉 are modelled. The corresponding models exploit that 〈u′iu′j〉 act like stresses: The
Reynolds stresses are treated like viscous stresses caused by an artificial turbulent vis-
cosity 〈νt〉, which results in 〈νt〉∂2〈ui〉/∂x2j . The turbulent viscosity is estimated by the
model. These artificial viscous stresses furnish the function of the small scale structures in
the flow. The result is a time-averaged velocity field without any time-resolved informa-
tion.

Main advantage of the RANS approach are the weak requirements on the grid. Since only
large scale structures have to be resolved, the grid spacing can be designed by means of
the outer scaling of the geometry. The grid depends weakly on the Reynolds number only.
However, this approach has two shortcomings: First, the data resolution is as coarse as
the grid resolution. Time-averaged structures which are not resolved by the grid are not
included in the results and cannot be reproduced. Second, as pointed out in section 3.1, the
Reynolds stresses are what make the significant difference between the time-averaged and
the instantaneous flow field. The Reynolds stresses thus have an enormous influence on the
results of the simulation. This influence is laid completely in the hands of a model. There is a
vast number of models, each having its own strengths and limitations. Even though modern
RANS-models do not require an a priori calibration, they call for an a posteriori validation
by an experiment or a more sophisticated simulation.

(iii) Large-eddy simulation (LES), which was employed in this dissertation, combines both
approaches named above. The idea is to solve equation 4.1 for the filtered flow field ui and
p.

Dui
Dt

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2j
− ∂τSGSij

∂xj
− gi (4.1)

As the conducted LES used an implicit filter, the filter width was defined by grid spacing.
ui and p represent values spatially averaged over the cell volume and time averaged over the
step size of the time integration, thus scales of motion smaller than the grid spacing are not
resolved. The motion on the smallest scales have to modelled by an approach similar to the
one of RANS: An artificial viscosity is employed to increase the inner friction and thus to take
over the part of the smallest scales. The model acts on equation (4.1) via the subgrid-stress
tensor τSGS = uiuj − ui uj analogus to the Reynolds stress tensor in equation (3.4) (Pope,
2011). However, in contrast to RANS the solution includes time-resolved information about
the dynamics of the flow on scales larger than the filter width. The range of resolved scales
depends on the grid spacing: An LES with relative coarse grid has a smooth transition
to RANS on the one hand. On the other hand, the LES solution converges towards the
solution of DNS if the grid is sufficiently fine (Bose et al., 2010). The finer the grid, the
lager is the computational effort. However, since less scales of motion have to be modelled
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on a finer grid, the influence of the turbulence model and its possible limitations is less as
well.

As the discussion of the grids (section 4.3) and the corresponding validation (section 5.1)
indicate, the grids of the present LES were close to grids required for DNS. The influence
of the subgrid-stress model was consequently small (Schanderl and Manhart, 2016) and
thus neglected in most terms of the budget of turbulent kinetic energy (Schanderl et al.,
2017b). Even though the results of the simulation were filtered flow fields, the differences
to instantaneous ones were considered small as well. To ease the denomination of data and
its mathematical representation, this difference is neglected in the remainder of this study
(equation 4.2).

ui = ui ; p = p (4.2)

LES can be - depending on the grid resolution - wall-resolved or wall-modelled1. In a wall-
modelled simulation, the linear sublayer is not resolved by the computational grid. This
has the advantage of relative low computational costs, but the drawback that the wall shear
stress cannot be evaluated by equation (3.6). As the simplifications made to derive equation
(3.6) are not valid at the position of the grid point closest to the wall in this case, the
full stress balance (equation (3.5) has to be considered. Since the velocity profile between
this grid point and the wall is unknown, the integrals in the stress balance (equation (3.5)
have to be modelled. However, it is challenging to model the near-wall flow in a complex,
three-dimensional flow situation as the considered one in front of a wall-mounted cylinder.
The reliability of the results might therefore suffer from representing the near-wall flow by
a model (Rodi et al., 1997; Pope, 2011).

In a wall-resolved simulation as the present ones, the linear sublayer (section 3.2) is resolved
by the computational grid. Since the velocity profile in the linear sublayer is linear, the wall
shear stress can be evaluated explicitly by equation (3.6). However, since the grid resolution
of a wall-resolved simulation has to be relatively high, it is linked to large computational
costs.

4.2. Flow solver

The simulations were conducted using the scientific in-house flow solver MGLET (Manhart
et al., 2001), which is a finite volume code based on a Cartesian grid. The variables are
arranged in a staggered manner on the grid. Spatial gradients are approximated via second
order central differences, time integration by a third order Runge-Kutta procedure. To model
a curved surface like the one of the cylinder on a Cartesian grid, a conservative, second order
immersed boundary method (IBM) is available (Peller et al., 2006; Peller, 2010). In addition,
the code contains an algorithm to refine the grid in the regions of interest by locally embedded
grids (Manhart, 2004). How this algorithm was used will be discussed in detail in section
4.3. MGLET is well established in the scientific community and has already been applied
in various studies, e.g. Werner (1991); Manhart (1998); Breuer et al. (2009); Jiang et al.
(2016).

1DNS is always wall-resolved, while RANS is always wall-modelled.
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The subgrid stresses were modelled using the wall-adapting local eddy-viscosity (WALE-
) Model (Nicoud and Ducros, 1999). The turbulent viscosity νt decreases naturally with
proximity to the wall with the correct limiting behavior in this model. Thus, no damp-
ing function has to be applied, which is a fundamental advantage when modelling curved
surfaces in on Cartesian grid via an IBM (Peller, 2010). In addition, unlike other eddy-
viscosity models, the WALE model is suited for complex flow situations on the one hand
and requires relatively low computational resources on the other hand (Nicoud and Ducros,
1999).

4.3. Domain and grid

The computational domain consisted of two major parts (figure 4.1): a precursor grid to
simulate a fully-developed inflow profile and a base grid which held the cylinder. To match
the flow configuration defined in chapter 2, bottom and side walls were furnished with a
no-slip boundary condition2, which represented the walls of a flume. The top boundary
was equipped with a slip condition3 to model the free surface of an open channel. Since
this slip condition prevented all surface deformations, the Froude number was infinitesi-
mal.

The precursor had periodic boundary conditions in the streamwise direction (x-direction)
to simulate a fully-developed, turbulent open-channel flow including the characteristic sec-
ondary flow structures of Prantl’s second kind (Nezu and Nakagawa, 1993). The precursor
was one-way coupled to the base grid, such that an instantaneous sample of the flow profile in
the precursor was set as the inflow condition at the base grid.

First, the grid at ReD = 39000 was designed. In the region around the cylinder, the grid was
refined locally by nested grids. The position of these grids is indicated in grey in figure 4.1.
Each of these embedded grids refined the grid spacing by a factor of two. Three levels of grid
refinement were applied, which resulted in a refinement factor of eight of the finest grid (level
3) compared to the precursor and the base grid (level 0). A grid study (section 5.1) showed
these three refinement levels to be sufficient to gain results converged over grid spacing.

2A no-slip boundary condition means that the velocity of the fluid is equivalent to the velocity of the wall,
which was zero in the present study.

3A slip boundary condition is equivalent to set the wall normal velocity and wall parallel stresses to zero
at the corresponding location.
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Figure 4.1: Side view of the precursor (left) and the base grid (right). Locally embedded grids are
marked in grey.
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The grid is stretched vertically (z-direction) by a factor smaller than 1.01%. However, since
this stretching was applied to the grids with refinement level 0 (precursor and base grid),
only every eighth cell was augmented on refinement level 3. In a second step, the grids
for ReD = 20000 and ReD = 78000 were designed. These were stretched in such a way
that the expected grid spacing in wall units was the same as the one for ReD = 39000.
This approach was validated by a separate grid study for every Reynolds number. The
resulting grid parameters in the region of interest around the cylinder are listed in table
4.1.

Due to the small stretching factor and a relative large extend of the finest embedded grid, the
fine resolution was maintained in the whole region of interest around the cylinder. According
to Pope (2011) a grid spacing of ∆xi . 2.1ηK is required for DNS without turbulence
model. The provided grid spacing in the region covered by the horseshoe vortex was ∆z ≈
1.6ηK and ∆x = ∆y ≈ 6.4ηK in the vertical (z-) direction and in the horizontal (x-, y-)
directions respectively (Schanderl et al., 2017b; Schanderl and Manhart, 2017). The wall
normal grid resolution was thus sufficient for DNS but the horizontal resolution was too
coarse. This is in line with the fraction of modelled dissipation in the total dissipation, which
was approximately one third, which is small for LES. Schanderl et al. (2017b); Schanderl
and Manhart (2017).

cells per diameter grid spacing total number
ReD horizontal/vertical ∆x+/∆y+/∆z+wall of grid cells

20000 148/571 7.0/7.0/1.8 166 · 106

39000 250/1000 7.4/7.4/1.9 400 · 106

78000 440/1778 7.8/7.8/1.9 1.6 · 109

Table 4.1: Grid parameters for all three Reynolds numbers. The resolutions in both outer and
inner scaling refer to the finest grid in the region of interest around the cylinder. Inner
units are based on the wall shear stress of the approaching flow.



5. Validation and known limitations

At this point in the present dissertation, several steps of simplification, transformation and
modelling have been performed. To investigate the research questions defined in chapter 1, a
flow configuration was chosen (chapter 2) in which the appropriate flow phenomena appear.
A set of equations was introduced (chapter 3) which covers the underlying flow physics. This
set of equations was discretised by numerical schemes and boundary conditions were applied
to solve these equations (chapter 4). However, each step performed generated inaccuracies
in the best case and systematic errors in the worst case. To create confidence in the resulting
data set, it is important to exclude systematic errors if possible and to be aware of the order
of magnitude of the inaccuracies of the solution. Therefore, several measures of validation
were taken. In the following (sections 5.1 to 5.4) the measures employed in this study and
their outcomes are described, was are the possible sources of error/inaccuracy addressed
by these measures. The chapter concludes with a discussion of the known limitations and
shortcomings of the approach presented (section 5.5). In later chapters, the results of the
applied procedure are evaluated and conclusions are drawn.

5.1. Grid study and influence of the turbulence
model

The euqations describing flow physics are continuous. However, in a numerical simulation
these equations are solved not continuously but for discrete postions only, which are defined
by the computational grid. However, if the grid spacing (and thus the finite volumes) is
too large, the discretised equations do not reproduce the behavior of the original continuous
equations and the results are not consistent with flow physics. If the grid resolution is
fine enough, flow physics are reproduced by the discretised equations but it suffers from
inaccuracies depending on grid spacing. In this so-called convergent region, the inaccuracy
is reduced as grid spacing is reduced. If the grid is sufficiently fine, the solution does not
change significantly any further if the grid is further refined. In this case the solution
is converged over grid refinement and inaccuracies due to the numerical discretisation are
considered small.

That the solution of the present LES was converged over grid refinement is exemplified in
figure 5.1, where the friction coefficient cf = 〈τw〉/(0.5ρu2b) in the symmetry plane in front
of the cylinder at ReD = 78000 is documented. Here 〈τw〉 is the time-averaged local wall
shear stress, ρ the fluid density and ub the bulk velocity in the symmetry plane of the
approaching flow. Simulations with one to three levels of grid refinement were conducted,
which means that grid spacing was successively reduced by a factor of two. The simulation
denoted as LES78k #1 held one locally embedded grid, simulation LES78k #2 two local
grids and the grid of simulation LES78k #3 was refined by three nested grids around the
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Figure 5.1: Friction coefficient cf from three simulations with different grid refinement at ReD =
78000. For reasons of visualisation, only every second data point is plotted.

cylinder. Therefore, the grid of LES78k #3 was four times finer than that of LES78k
#1.

The wide peak of negative cf in figure 5.1 at −0.85D < x < −0.53D resembles the footprint
of the main horseshoe vortex V1. The small peak of positive cf between stagnation point
S3 at x = −0.53D and the flow facing edge of the cylinder at x = −0.5D was caused by the
small corner vortex V3. Figure 5.1 reveals that there were noticeable differences between the
results of LES78k #1 and LES78k #2. The wide peak of negative cf showed a single-peak
shape in LES78k #1 while it had a double-peak shape in the simulations with finer grids.
In addition, this grid of LES78k #1 was too coarse to resolve the small peak of positive cf
close to the cylinder.

The differences between LES78k #2 and LES78k #3 were significantly smaller. In wide
regions, both results matched each other without observable deviation. Therefore, the solu-
tion of LES78k #3 was considered converged over grid refinement and the grid dependency
of the solution on the corresponding grid was considered small. Furthermore, since the am-
plitude of the wall shear stress (and thus the magnitude of the estimated velocity gradient
at the wall, equation (3.6)) did not further increase with grid refinement, which indicated
that the grid point closest to the wall was in the linear sublayer. Thus, no wall model had
to be applied, and the wall shear stresses were directly evaluated via the wall gradient of
the velocity field (Pope, 2011). This procedure was confirmed and discussed in detail for
ReD = 39000 by Schanderl and Manhart (2015, 2016); Schanderl et al. (2017a). An anal-
ogous grid study was done for all three Reynolds numbers. A detailed discussion of the
grid study at ReD = 39000 can be found in Schanderl and Manhart (2016); Schanderl et al.
(2017b,a).

The grid study did not only indicate that the solution was converged over grid refinement.
Furthermore, it showed how the influnence of the subgrid-stress model on the results de-
creased with increasing grid resolution and that this influence was small in the simulation
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Figure 5.2: Wall-normal profiles of the time-averaged turbulent viscosity 〈νt〉 for the three simula-
tions with different grid resolution (a) and contributors to the stress balance (equation
(3.5)) taken from the simulation with the finest grid LES78k #3 (b). The streamwise
position was x = −0.76D, which corresponded to the core of V1 at this Reynolds
number ReD = 78000.

with the finest grid.

In figure 5.2a the time-averaged turbulent (modelled) viscosity stemming from the model nor-
malised by the molecular viscosity 〈νt〉/ν on a wall-normal profile is plotted. The Reynolds
number was ReD = 78000. The data was evaluated in the symmetry plane in front of the
cylinder at a streamwise position of x = −0.76D, which corresponded to the position of the
center of the main vortex V1 at this Reynolds number. The data was taken from the three
simulations with different levels of grid refinement1. In figure 5.2a the distinct peak of 〈νt〉 at
z+ ≈ 175 indicates the vertical position of the vortex core of V1. It can be seen in this figure
that in the WALE model (Nicoud and Ducros, 1999) the modelled viscosity decays towards
the wall, even though no damping function was applied.

1However, it should be noted that the wall shear stress applied to evaluate z+ was taken from the simulation
with the finest grid LES78k #3 for all three data sets.
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As the grid was refined and the filter width reduced, a larger range of scales of motion was
resolved by the grid and thus a smaller share had to be modelled. Figure 5.2a illustrates
a quadratic decay of the turbulent viscosity. As the grid spacing was reduced by a factor
of two from LES78k #1 to LES78k #2 and from LES78k #2 to LES78k #3, the turbulent
viscosity was reduced by a factor of approximately four each time. Furthermore, in LES78k
#3 with the finest grid, the time-averaged modelled viscosity 〈νt〉 was significantly smaller
than the molecular viscosity ν.

How the modelled viscosity acted on the flow physics is visualised in figure 5.2b. Here
contributors to the stress balance (equation (3.5)) in the streamwise (x-) direction were
evaluated: an instance of the resolved Reynolds stresses −ρ〈u′w′〉, one of the viscous terms
without the modelled contribution ν〈∂u/∂z〉 and including the modelled contribution 〈(ν +
νt)∂u/∂z〉. All data were taken from LES78k #3, the simulation with the finest grid at
ReD = 78000. −ρ〈u′w′〉 peaked at z+ ≈ 100 slightly under the core of the main vortex
V1. The distributions of ν〈∂u/∂z〉 and 〈(ν + νt)∂u/∂z〉 almost covered each other. Both
had two peaks: one at the bottom wall and one at z+ ≈ 175. Even though it is hardly
visible in figure 5.2b, there were small deviations between the viscous terms including and
excluding the modelled contribution, which is in line with the peak of 〈νt〉 in figure 5.2a.
However, around V1 neither the viscous nor the modelled stresses dominated the flow as the
resolved Reynolds stresses were larger by orders of magnitudes. In the investigated range
of Reynolds numbers the viscous stresses dominated the flow close to the wall only. Here
the deviation between ν〈∂u/∂z〉 and 〈(ν + νt)∂u/∂z〉 was small, which is also indicated by
the small 〈νt〉 in figure 5.2a. From these observations it was concluded that there was no
position in the flow where the modelled stresses dominated the stress balance. Even though
the small contribution of the turbulence model was important to gain reasonable results, its
share was small. Possible inaccuracies due to the simplifications this model is based on were
considered small, too.

An analogous discussion of the influence of the modelled stresses at ReD = 39000 can be
found in Schanderl and Manhart (2016); Schanderl et al. (2017a). The magnitude of the mod-
elled share of turbulent kinetic energy is reviewed in Schanderl et al. (2017b).

5.2. Residual of the budget of turbulent kinetic
energy

In a numerical study, not only convergence in a numerical sense as discussed above but also
consistency in a physical sense has to be guaranteed. That the applied set of governing equa-
tions is consistent in itself was indicated by the evaluation of the total budget of turbulent
kinetic energy (equation (3.16)). This budget involves the production, the transport and the
dissipation of turbulent kinetic energy. As discussed in section 3.3, the named mechanisms
have to balance each other in a stationary flow, which means that the residual R of the budget
(which is the right hand side of equation (3.16)) has to be small. Figure 5.3 indicates that this
residual was sufficiently small in the presented simulations. In figure 5.3 R in the symmetry
plane in front of the cylinder close to the bottom at ReD = 78000 is evaluated. In wide re-
gions the absolute residual was |R| < 0.03D/u3b , which corresponded to approximately 5% of
the production of turbulent kinetic energy (Schanderl et al., 2017b). Here, D was the diam-
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eter of the cylinder and ub the bulk velocity in the symmetry plane of the approaching flow.
Small positive values of the residual which alternate with small negative ones suggest that
there was no systematic over- or underestimation of single contributors to the budget, neither
by the used set of equations nor by the numerical method.

In narrow regions along the bottom wall, the residual reached |R| . 0.1D/u3b , corresponding
to approximately 15% of the production. Considering the overall complexity of the evaluation
of single terms involved in the budget of turbulent kinetic energy, this is still satisfying.
Along the flow facing edge of the cylinder, the amplitude of the residual was slightly larger,
in narrow regions it reached values of |R| < 0.3D/u3b . The reason for this is discussed in
section 5.5.

5.3. Comparison with an experiment

To provide a strong degree of reliability, the same flow configuration was tackled by two
completely independent methods. The numerical results were accompanied by an asso-
ciated experiment by Ulrich Jenssen (Jenssen et al., 2016; Schanderl et al., 2017b), who
conducted highly resolved particle image velocimetry (PIV). Special care was turned to
assure geometric and dynamic similarity. Furthermore, being aware of the strong influ-
ence of the inflow condition on the flow topology around the cylinder Schanderl and Man-
hart (2016), it was ascertained to have similar inflow boundary conditions in both se-
tups.

First, second and third order moments of the statistics of the flow field in the symmetry plane
in front of the cylinder were compared and discussed in detail by Jenssen et al. (2016); Schan-
derl et al. (2017b). The achieved accordance of PIV and LES underlined the reliability of the
presented numerical data and the applied numerical methods. Nevertheless, small deviations
between PIV and LES existed (Jenssen et al., 2016; Schanderl et al., 2017b), which might
be caused by slight differences of the inflow conditions. The influence of the inflow condition
on the flow around the cylinder is discussed in the following.

5.4. Inflow profile

To evaluate in which way deviations of the inflow profile cause deviations of the vortex
system in front of the cylinder and the corresponding wall shear stress distribution, two
additional simulations with different inflow profiles were conducted. In these simulations
the precursor was replaced by less sophisticated inflow profiles: (i) a block profile, constant
in time as well as in spanwise and vertical direction and (ii) a profile corresponding to
the profile from the precursor, but averaged in time and in the spanwise direction. The
mean velocity averaged over the whole cross section was the same in all three setups. These
additional simulations were conducted at ReD = 39000 only. In the remainder of this section,
the simulation with precursor grid is referred to as LES39k #prec, the one with block
profile as LES39k #block and the one with time-averaged logarithmic profile as LES39k
#log.

Figure 5.4 shows the friction coefficient cf in the symmetry plane in front of the cylinder for
the three simulations with different inflow conditions. LES39k #prec exhibited a distribution
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Figure 5.3: Residual of the budget of turbulent kinetic energy R in the symmetry plane in front
of the cylinder at ReD = 78000, taken from LES78k #3.

similar to the one discussed in section 5.1 taken from simulation LES78k #3. There was a
small peak of positive cf close to the cylinder as a result of the corner vortex V3. The broad
peak of negative cf indicateed the presents of the wall jet, and further upstream a region of
weak negative cf denoted the backflow region upstream of the main vortex V1. While LES39k
#log resembled the broad peak in the region of the wall jet with only small deviations in the
amplitude, the peak of LES39k #block was significantly more slender. This hints at a less
pronounced and smaller vortex system in LES39k #block, which is in line an evaluation of
the according flow topology and can be explained by a smaller boundary layer thickness of the
flow approaching the cylinder Schanderl and Manhart (2016).

Furthermore, both LES39k #block and LES39k #log exhibited an additional recirculation
zone upstream of x = −1.2D (LES39k #block) and x = −1.5D (LES39k #log) indicated by
a negative friction coefficient, which was not present in LES39k #prec (figure 5.4). It should
be recalled that the precursor provided a turbulent inflow condition, while the block profile
and the time-averaged logarithmic profile did not contain any fluctuations. Except for close
to the bottom wall, the latter two profiles were laminar therefore when they approached the
cylinder Schanderl and Manhart (2016). The limited transport of momentum in the wall-
normal direction in these laminar flows facilitated flow separation from the wall in presents
of an adverse pressure gradient, which in turn caused the additional recirculation zones in
LES39k #block and LES39k #log. In contrast, the larger momentum transport in the wall-
normal direction in simulation LES39k #prec prevented a separation of the flow from the
bottom wall in the region upstream of x = −1.2D.

The differences between the simulations discussed here and the influence of the incoming flow
profile on the flow topology and the wall shear stress around the cylinder were discussed in
more detail by Schanderl and Manhart (2016).
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Figure 5.4: Friction coefficient cf take from three simulations with different inflow profiles at
ReD = 39000. For reasons of visualisation, only every second data point was plot-
ted.

5.5. Known limitations

The LES was carefully validated by various measures. However, these measures also revealed
some shortcomings of the conducted simulations. These shortcomings as well as general
limitations of the present study are discussed in the following.

In the region of the horseshoe vortex, the modelled contributions to the momentum balance
(Schanderl and Manhart, 2016) as well as the ones to the budget of turbulent kinetic energy
were considered small (Schanderl et al., 2017b). Thus, when evaluating single terms of
the budget, modelled contributions were neglected except for the dissipation rate, where the
modelled dissipation was approximately one third of the total dissipation. That this approach
was justified was discussed in section 5.2. However, there were some spots of increased R
along the cylinder wall (figure 5.3). It should be recalled that the grid resolution held an
aspect ratio of four: In the horizontal directions, the resolution was four times coarser than in
the vertical direction. The grid was designed this way since the main goal of this dissertation
was to gain a reliable estimation of the wall shear stress at the bottom wall in a first place.
Along the bottom wall the linear sublayer was resolved, while this was not the case at the
cylinder surface, which in turn caused small but noticeable contributions of the subgrid
stresses there. Neglecting these subgrid stresses caused the spots of the increased residual
along the cylinder in figure 5.3. The assumption of a small contribution of the subgrid stress
model to the solution had to be questioned in this locally constrained region. Even though
the grid almost sufficed DNS, one has to recall that the conducted simulation was LES in
fact.

Besides this internal issue, one has to mention limitations concerning the transferability of
the presented results to engineering applications and experiments. First, the Froude number
was infinitesimal in the conducted simulations since the slip boundary condition prevented
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all surface deformations. Even though the Froude number might be small in a natural
open-channel flow, it is not infinitesimal. This has to be considered when drawing conclu-
sions from the presented results to natural open-channel flows like rivers or to laboratory
experiments.

Second, the conducted study featured moderate Reynolds numbers only. Even though the
Reynolds number scaling of the flow topology was found to be weak in the range of moderate
Reynolds numbers (Apsilidis et al., 2015; Schanderl et al., 2017c), the transfer to setups with
significantly larger Reynolds numbers has to be done with caution.

Third, in the presented LES the boundary condition at the inflow of the investigated domain
was simulated by a precursor grid. Due to its periodic boundary conditions in the streamwise
direction, the precursor simulated an infinite long distance and assured this way that the
flow profile was a well-defined fully-developed, turbulent open-channel flow (Schanderl and
Manhart, 2016). However, neither in experimental studies nor in engineering applications
there is something like an infinite long inflow distance for a flow to develop. Thus, no natural
river will feature a fully-developed flow profile with distinct and symmetric secondary flow
structure of Prantl’s second kind. How difficult it was to reproduce such an inflow profile in a
laboratory flume, where most factors influencing a natural open-channel flow are eliminated,
was discussed by Schanderl et al. (2017b). In an experiment or an engineering application,
the inflow profile can only be an approximation of a fully-developed flow. However, the
applied inflow condition was chosen since it was considered more natural and to hold less
degrees of freedom than any synthetically generated profile.

The observations regarding the friction coefficient in section 5.4 underline the sensitivity of
the flow topology and the wall shear stress distribution around the cylinder on the inflow
profile. This is true not only for the time-averaged profile of the inflow, but also for its
turbulence intensity. A transfer of conclusions drawn in this study to a setup with different
inflow condition thus has to be done with caution.



6. Reliability of the wall shear stress
estimation

Next, the main findings of the publication “Reliability of wall shear stress estimations of the
flow around a wall-mounted cylinder” are discussed briefly. It was published in the journal
Computers & Fluids in 2016 (Schanderl and Manhart, 2016).

6.1. Main results

In this paper, the flow field and the wall shear stresses around a wall-mounted cylinder
(chapter 2) at ReD = 39000 were discussed (chapter 4). Main issue was the validation of
the simulation in terms of grid resolution, the inflow condition and the contribution of the
turbulence model. A grid study indicated the first order statistics to be converged over grid
refinement. This was not only true for the region covered by the horseshoe vortex, but also
for the wall shear stress. Furthermore, the fine grid ensured the modelled contributors to
the momentum balance (equation 4.1) to be significantly smaller than the viscous and the
resolved turbulent stresses.

The observations made in this paper indicated the flow topology as well as the wall shear
stresses distribution to depend on the inflow condition. A comparison of streamline pat-
terns of the simulation with precursor to those of simulations with less sophisticated inflow
conditions showed significant deviations, especially regarding the extend of the vortex sys-
tem.

Furthermore, the published data showed that the wall shear stress amplification in front
of the cylinder was underestimated by former studies (Dargahi, 1989; Tseng et al., 2000;
Roulund et al., 2005; Escauriaza and Sotiropoulos, 2011). Due to the geometrical limitations
of the applied experimental methods, the data resolution close to the wall was insufficient
in a primary experiment (Dargahi, 1989) and the linear sublayer was thus not resolved. The
presented LES showed that this linear sublayer is relatively thin. Due to the non-equilibrium
character of the flow in the cylinder front, modelling the near wall region is challanging.
Resolving the linear region by a grid at least as fine as the one proposed cannot be omitted
to gain a reliable estimation of the wall shear stress.

6.2. Division of work between the authors

The numerical simulation was conducted and evaluated by Wolfgang Schanderl under guid-
ance of Michael Manhart. Both authors contributed to the ideas and the concept of the pa-
per. Wolfgang Schanderl and Michael Manhart prepared the manuscript.
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7. Budget of turbulent kinetic energy

The main findings of the publication “The structure and budget of turbulent kinetic energy
in front of a wall-mounted cylinder”are summerazied in the following. It was published in the
journal Journal of Fluid Mechanics in 2017 (Schanderl et al., 2017b).

7.1. Main results

Objective of this publication was to investigate the turbulence structure in the setup consid-
ered (chapter 2) at ReD = 39000 by applying both LES and PIV. Special care was turned to
assure similarity between experiment and simulation, especially regarding the inflow profile.
The accordance of the experiment and the simulation validated both data sets alongside the
measures discussed by Schanderl and Manhart (2016) (chapter 6).

Every term of the budget of turbulent kinetic energy (section 3.3) was evaluated and linked
to the time-averaged topology and the dynamics of the flow field. Two main sources of
turbulent kinetic energy were detected: the bimodality of the vortex system and a region
close to the bottom wall, were the upstream-directed jet along the wall decelerated. Closer
to the cylinder, where this jet accelerated, the acceleration damped the turbulent kinetic
energy (cf. the structure of the production term, equation 3.9) and thus lead to a relative
calm region between cylinder and main horseshoe vortex V1.

In the cylinder front the dissipation was about one eighth of the production rate only,
which documented the non-equilibrium nature of the flow. Thus the budget had to be
closed by strong turbulent and pressure transport as well as by the mean flow convec-
tion.

7.2. Division of work between the authors

The LES was conducted and evaluated by Wolfgang Schanderl under guidance of Michael
Manhart. The PIV was done by Ulrich Jenssen under guidance of Michael Manhart. The
single-pixel algorithm was developed, implemented and executed by Claudia Strobl under
guidance of Michael Manhart. Wolfgang Schanderl, Ulrich Jenssen and Michael Man-
hart contributed to the ideas and the concept of the paper. Wolfgang Schanderl and
Michael Manhart prepared the manuscript with support of Ulrich Jenssen and Claudia
Strobl.
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8. Near-wall stress balance

The publication “Near-wall stress balance in front of a wall-mounted cylinder” (Schanderl
et al., 2017a) was part of a special issue of the journal Flow, Turbulence and Combus-
tion in 2017 to which we were invited to contribute. Its main findings are summarised
below.

8.1. Main results

The publication addresses the near-wall flow in front of the wall-mounted cylinder at ReD =
39000 by discussing the single contributors to the balance of stresses in the streamwise direc-
tion. The strong pressure gradient in the cylinder front causes acceleration and deceleration
of the flow. On those conditions, classical approaches to model the near-wall region have
to fail (Pope, 2011). To assess, which contributors to the stress balance have a significant
influence on the near-wall flow and thus have to be considered by an approach modelling
this flow, the stress balance was applied on statistical data taken from the LES. The stress
balance was gained from integrating the Reynolds equation (equation (3.4)) in the vertical
direction.

The evaluation indicated that the relative magnitude of the single contributors strongly
depends on the exact location in the cylinder front. In the relative calm region between
the main vortex and the cylinder, where the wall jet accelerates, the acceleration of the
mean flow caused the most significant stresses in the flow. Further upstream, in the region
of deceleration of the jet, the increase of Reynolds stresses (especially of Reynolds normal
stresses in the streamwise direction) dominated the flow. In addition, even though some
contributors were small compared to others, at a wall distance of thirty to fifty wall units
all contributors1 were significantly larger than the wall shear stress. This was also true for
stresses based on wall-parallel derivatives. It was concluded that a local approach is not
sufficient for wall modelling in such a complex flow situation and thus a spatial approach
has to be applied, which is not only including local flow quantities, but also information
regarding the adjacent flow.

8.2. Division of work between the authors

The LES was conducted and evaluated by Wolfgang Schanderl under guidance of Michael
Manhart. Idea and concept of the paper were formulated by Wolfgang Schanderl and
discussed with Ulrich Jenssen and Michael Manhart. Wolfgang Schanderl prepared the
manuscript with support of Michael Manhart.

1Except viscous stresses due to wall-parallel velocity gradients.
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9. Dissipation of turbulent kinetic energy

In the following, the main findings of the publication “Dissipation of turbulent kinetic energy
in a cylinder wall junction flow” (Schanderl and Manhart, 2017) are briefly summed up. This
paper was submitted in late 2017 to the journal Flow, Turbulence and Combustion as a part
of a special issue to which we were invited to contribute.

9.1. Main results

In the present LES the grid was fine enough to resolve approximately two thirds of the
dissipation of turbulent kinetic energy. This allowed for an evaluation of the dissipation in
which the influence and thus a possible bias of the turbulence model on the dissipation was
small.

The dissipation ε in front of the wall-mounted cylinder normalised by the macro scale pa-
rameters bulk velocity and cylinder diameter u3b/D showed no significant Reynolds number
dependency. At all three Reynolds numbers investigated, the distribution of the dissipa-
tion followed the distinct c-shape of the turbulent kinetic energy. The amplitude was in-
creasing only mildly with Reynolds number. Its maximum was ε ≈ 0.08u3b/D in all three
cases.

At the Reynolds numbers investigated, the small scale structures were not isotropic in the
flow configuration considered, as the investigation of individual terms of the pseudo dissi-
pation tensor Schlichting and Gersten (2006) revealed. The pseudo dissipation facilitates
the evaluation of individual contributors regarding their spatial direction. Some terms of
the pseudo dissipation tensor were significantly larger than the others. These large terms
showed no Reynolds number dependency, while the amplitude of the smaller terms increased
with Reynlods number noticeably. The flow became more isotropic, as the energy cascade
was longer at the higher Reynolds number and the turbulence thus had a larger chance to
develop towards an isotropic state. This caused a mild enhancement of the total dissipation
with Reynolds number.

9.2. Division of work between the authors

The simulations were conducted and evaluated by Wolfgang Schanderl under guidance of
Michael Manhart. Idea and concept of the paper were formulated by Wolfgang Schanderl
with support of Michael Manhart. Wolfgang Schanderl prepared the manuscript with sup-
port with Michael Manhart.

30



10. Scaling of the wall shear stress

The main findings of the draft “Wall shear stress scaling in front of a wall-mounted cylinder”
are summerasied in the following. This is a premature draft. We intend to submit it to
the Journal of Fluid Mechanics in late 2017 (Schanderl et al., 2017c).

It should be noted that some experimental results presented in this paper contradict the ex-
perimental results in the publication Schanderl et al. (2017b) as the experimental data in the
latter was scaled in an incorrect way. However, my dissertation is about the numerical data.
The validity of the numerical data and of the corresponding conclusions is not restricted by
the incorrect scaling of the experimental data in Schanderl et al. (2017b).

10.1. Main results

In this paper, we addressed the Reynolds number scaling of the wall shear stress in front of
the cylinder and proposed the following scaling law of the friction coefficient cf in the region
of the upstream-directed wall jet:

cf ∼
1√
ReD

(10.1)

This scaling law corresponds to the one of a laminar boundary layer and can be explained by
the distinct turbulence structure in front of the cylinder. The evaluation of both numerical
and experimental results revealed that there was relative calm turbulence in the region
between the main horseshoe vortex and the cylinder. Furthermore, the acceleration of the
fluid in the jet along to the bottom wall gave rise to negative production of turbulent kinetic
energy, which further damped or at least prevented an increase of the turbulence in this
region. As the flow topology did not change in general with Reynolds number, the negative
production and in turn the calm turbulence was maintained when the Reynolds number was
increased. This enabled the thin boundary layer along the bottom wall established by wall
jet to behave like a laminar boundary layer.

10.2. Division of work between the authors

The LES was conducted and evaluated by Wolfgang Schanderl under guidance of Michael
Manhart. The PIV was done by Ulrich Jenssen under guidance of Michael Manhart. The
single-pixel algorithm was developed, implemented and executed by Claudia Strobl under
guidance of Michael Manhart. Wolfgang Schanderl, Ulrich Jenssen and Michael Man-
hart contributed to the ideas and the concept of the paper. Wolfgang Schanderl pre-
pared the manuscript with support of Ulrich Jenssen, Claudia Strobl and Michael Man-
hart.
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11. Conclusions

In chapter 1 the main aspects subject to this dissertation were defined. This last chapter
assesses the outcomes regarding these aspects and their relevance related to engineering ap-
plications and scientific questions (section 11.1). The dissertation is concluded by a brief out-
look on challenges addressed right now or in the near future (section 11.2).

11.1. Main findings

The flow around a wall-mounted cylinder in a water channel with free surface at three
moderate Reynolds numbers was investigated by LES. The results were carefully validated,
among other measures by a close comparison to a companion experiment (Jenssen et al.,
2016; Schanderl et al., 2017b). The evaluation of the total budget of turbulent kinetic energy
gave a reasonable small residual (Schanderl et al., 2017b).

To assess the influence of the incoming flow on the flow topology around the cylinder, the
horseshoe vortex system resulting from a fully-developed, turbulent open-channel flow ap-
proaching the cylinder was compared to the ones resulting from less sophisticated inflow
conditions. It was shown that not only the mean inflow but also its turbulent quantities
have a major influence on the flow topology. The precisness of an eddy-resolving simula-
tion technique thus can only be fully exploited in the considered flow case when special
care is take to set an appropriate, eddy-resolving inflow condition (Schanderl and Manhart,
2016).

The vortex system leaves its footprint in the wall shear stress distribution at the bottom wall.
Similar to the vortex system itself, the wall shear stress depends on the inflow condition in
both distribution and amplitude (Schanderl and Manhart, 2016). Furthermore, it was shown
that a relative high grid resolution is necessary to resolve the linear sublayer and to enable the
prediction of the wall shear stress via the wall gadient. At the Reynolds number investigated,
the required wall-normal grid spacing was ∆z 5 0.001D (Schanderl and Manhart, 2016).
Studies relying on coarser grid spacing are likely to underestimate the amplitude and to
misinterpret the shape of the wall shear stress distribution (Schanderl and Manhart, 2016).
This high resolution is necessary due to the non-equilibrium behaviour of the near-wall flow.
It causes the linear sublayer to be significantly thinner than in equilibrium boundary layers
(Schanderl et al., 2017a), where it is approximately five wall units. In addition, the non-
equilibrium behavior prevents an appropriate modelling of the near-wall flow by classical
wall models. As the evaluation of the stress balance has shown, all of its terms (except
viscous stresses due to wall-parallel velocity gradients) have to be considered to close the
stress balance. This includes local terms as well as terms based on the surrounding flow
situation. Neglecting one of these contributors in a model will lead to a misinterpretation of
the wall shear stress (Schanderl et al., 2017a).

Furthermore, the amplitude of the friction coefficient in front of a wall-mounted bluff body at
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11. Conclusions 33

a moderate Reynolds number scales with the squareroot of the Reynolds number. This scal-
ing was attributed to the quasi-laminar behavior of the upstream-directed wall jet under the
vortex system. The acceleration of the flow in the jet damps the turbulence and thus causes
a flow situation similar to the one in a Blasius boundary layer.

The total dissipation of turbulent kinetic energy ε in front of the wall-mounted cylinder scales
rather weak with Reynols number. In the presented LES, the distribution of the dissipation
exhibited a c-shape similar to the one of the turbulent kinetic energy. The amplitude was
increasing only mildly with Reynolds number. The dissipation was not isotropic but became
slightly more isotropic with increasing Reynolds number, as the energy cascade was longer at
the higher Reynolds number and the turbulence thus had a larger chance to develop towards
an isotropic state.

The present evaluation of the dissipation of turbulent kinetic energy can help to further un-
derstand the flow field in front of a wall-mounted bluff body and its dynamics. Furthermore,
it can serve as comparative data for future simulations and the development or validation
of turbulence models. To the authors knowledge, this was the first time that the dissipation
of turbulent kinetic energy and its contributors were evaluated explicitly in this kind of flow
at moderate Reynolds numbers.

11.2. Future work

One of the main engineering applications referred to in this study is the scour process around
bridge piers in sandy river beds. However, this scouring obviously deforms the river bed.
If at all, the setup investigated - a cylinder on a flat plate - is a valid approximation at
the beginning of the scour process. To investigate how the flow topology and its dynamics
change with the developing scour hole, simulations with a cylinder in a scour geometry
are initiated at the moment. The flow at different Reynolds numbers will be investigated
in simulations with at least two different stages of the scouring process. The results will
hopefully be published in near future.

This dissertation presented simulations at three moderate Reynolds numbers only. This
does not allow for conclusions regarding the flow field and the corresponding wall shear
stress at high Reynolds numbers, which characterise most engineering applications. How-
ever, as computational recources are growing constantly, simulation at higher Reynolds
number might be possible at a time which is remote future for a greenly doctoral candi-
date.
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Rippe in einem Plattenkanal bei hoher Reynoldszahl. PhD thesis, Technische Universität
München.



A. Appendix: Publication 1, summarised
in chapter 6

37



Computers and Fluids 128 (2016) 16–29

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

Reliability of wall shear stress estimations of the flow around a

wall-mounted cylinder

Wolfgang Schanderl, Michael Manhart∗

Chair of Hydromechanics, Technische Universität München, Arcisstr. 21, München 80333, Germany

a r t i c l e i n f o

Article history:

Received 10 March 2015

Revised 9 October 2015

Accepted 6 January 2016

Available online 19 January 2016

Keywords:

Large-Eddy Simulation

Wall-mounted cylinder

Boundary layer

Horseshoe vortex

Wall shear stress

a b s t r a c t

The flow field and wall shear stresses around a wall-mounted cylinder for a Reynolds number of ReD =
39000, based on the diameter of the cylinder and the bulk velocity, was investigated applying Large-

Eddy Simulation (LES). We used a Finite-Volume method on a Cartesian grid with staggered arrangement

of the variables. The curved surface of the cylinder has been approximated by a conservative second order

Immersed Boundary method.

We carefully validate our simulation in terms of grid resolution, inflow condition and contribution of

subgrid scale stresses. Around the cylinder, local grid refinement provides spacings of 7.5 wall units in

horizontal and 1.9 wall unit in vertical direction based on the the wall shear stress of the oncoming flow.

Thus, the contributions of the modeled subgrid scale stresses remain small compared to other stresses

and the flow variables converge with grid resolution.

We demonstrate that the flow structure and predicted wall shear stresses strongly depend on the inflow

condition, which has to take into account turbulent fluctuations and the secondary flow, if present. A

maximum amplification factor of the time-averaged wall shear stress of 12.0 with respect to the one in

the oncoming flow field shows up in the lateral front of the cylinder. Instantaneous wall shear stresses

however reach a maximum amplification factor of up to 40 in the wake of the cylinder.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

About sixty percent of all bridge failures in the last decades

are caused by scour problems [1]. The case of a flow around a

bridge pier seems to be simple at first glance, but the prediction

of the scour process, its final shape and its maximum depth is a

challenge which hasn’t been solved yet. This challenge is not even

solved for experiments in laboratories, although laboratory condi-

tions exclude most of the uncertainties a natural river provides [2].

Both the behavior of the sediment and the flow pattern to which

the sediment is exposed is not fully understood until now. A better

and more robust prediction of scour depth evolution is expected by

coupling of Computational Fluid Dynamics with models for sedi-

ment dynamics [3]. However, such an approach relies on the accu-

rate prediction of the flow field and its interaction with sediment

motion. The former is the focus of this paper.

The evolution of a scour hole around a bridge pier in a mo-

bile bed strongly depends on the local flow field induced by the

∗ Corresponding author. Tel.+49 8928922583.

E-mail address: michael.manhart@tum.de, m.manhart@bv.tu-muenchen.de (M.

Manhart).

cylinder which in turn depends on the approach flow conditions.

The undisturbed free surface flow in a river or laboratory flume

develops a boundary layer on the river ground which is disturbed

by secondary flows but can be expected to extend up to the free

surface. Thus, the water depth is equivalent with the boundary

layer thickness. The velocity gradient in the boundary layer flow

approaching a cylinder leads to a vertical pressure gradient on the

front of the cylinder which results in a strong downwards flow in

front of the cylinder. In combination with the horizontally adverse

pressure gradient that is due to the blocking effect of the cylin-

der, a complex vortex system at the bottom plate is formed. This

vortex system is transported around the cylinder by the flow in

streamwise direction, resulting in the so-called horseshoe vortex.

The horseshoe vortex and the acceleration of the flow around the

cylinder lead to an amplification of the wall shear stress around

the cylinder which comes along with a higher potential of erosion

and scouring. The flow characteristics and scour mechanism are

extensively discussed in literature. The basic patterns of the flow

field around wall-mounted bluff bodies were described by Hjorth

[4], Melville and Raudkivi [5], Dargahi [6,7] and others.

Even though the principal shape of the vortex system is un-

contested, there are still discrepancies in the detailed descrip-

tion of the flow field. Devenport and Simpson [8] conducted

http://dx.doi.org/10.1016/j.compfluid.2016.01.002
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experimental investigations of the flow around a wall-mounted

wing-shaped cylinder at a Reynolds number of ReD = 119000 in a

wind tunnel. They described the bimodal dynamics of the horse-

shoe vortex system which manifests itself in wall shear stress PDF’s

that have bimodal peaks. In addition, they qualitatively distin-

guished between one small and two large zones in the wall shear

stress distribution in front of the body, each being the footprint of

a vortex above.

Measurements of the wall shear stress distributions around the

cylinder are extremely difficult due to thin viscous layers and large

fluctuation levels. Several different methods have been employed.

Preston’s method has been used by Melville and Raudkivi [5] and

Dargahi [6,7]. Hot film probes have been used by Hjorth [4], Dar-

gahi [6,7] and Roulund et al. [3]. Graf and Istiarto [9] have found

strong deviations in wall shear stresses estimated by different ap-

proaches using velocity measurements above the wall. To the au-

thors’ knowledge, the most reliable wall shear stress measure-

ments were conducted by Roulund et al. [3], who used a flush

mounted hot film probe to measure wall shear stresses around a

cylinder at a large Reynolds number of ReD = 170000 and a bound-

ary layer to diameter ratio of δ
D = 1.

Dargahi [6] conducted experiments at a Reynolds number of

ReD = 39000 and a water depth to diameter ratio of δ
D = 1.33. Be-

sides flow visualization with hydrogen bubble technique, he mea-

sured wall shear stresses in the symmetry plane in front of the

cylinder using the Preston tube method and velocity probes at a

wall distance of z = 0.0033D. His wall shear stress measurements

indicate the footprint of one large horseshoe vortex in front of the

cylinder, although his sketches based on hydrogen bubble images

show more than one vortex.

Dargahi’s results [6] have been used to validate various numer-

ical results [3,10,11]. Tseng et al. [10] conducted a LES and ob-

tained good agreement of the amplitude of the wall shear stress

amplification. His results also show one region of large wall shear

stresses in front of the cylinder, which is a little longer than in Dar-

gahi’s results [6]. Escauriaza and Sotiropoulos [11] conducted sim-

ulations applying a coupled RANS and LES solver at ReD = 39000.

The overall amplitude of the wall shear stress amplification is in

good agreement to the one by Dargahi [6]. Though Escauriaza

and Sotiropoulos [11] also report three distinct regions in the wall

shear stress pattern in front of the cylinder, there are some differ-

ences to the flow pattern Devenport and Simpson [8] described.

In a series of papers, the dynamics of the horseshoe vortex in

front of a wall-mounted cylinder and a wall-mounted wing has

been investigated using various eddy resolving techniques by, e.g.,

[11–14]. However, comparing various results, it can be concluded

that numerical method, turbulence model, mesh and inflow condi-

tion seem to play a significant role for the position and topology of

the vortex system in front of an obstacle mounted on a flat plate,

compare e.g. [11] and [15], see also [14].

The present study focuses on a highly resolved LES of the flow

around a cylinder mounted on a flat plate. We consider a Reynolds

number of ReD = 39000 based on the bulk velocity ub and the di-

ameter of the cylinder D. This configuration is comparable to the

one used by Pfleger [16] who measured sediment grain motion in

a scour hole around a circular cylinder in a sand bed and to the ex-

periment of Dargahi [7] who measured pressure distributions, ve-

locity profiles, turbulence characteristics and wall shear stresses in

front of the cylinder at a comparable Reynolds number. We intend

to answer the question how accurate and reliable such a simula-

tion can be. We took special care to apply a fully developed tur-

bulent boundary layer flow of thickness δ = 1.5D as inflow profile

using a precursor domain coupled to the grid containing the cylin-

der. To assess the influence of the oncoming flow on the vortex

system, we compare this inflow condition with less sophisticated

boundary conditions, namely a block profile and a time constant

logarithmic shaped profile. In addition, a diligent grid study was

done to show convergence over grid refinement.

Against the background of previously mentioned studies, we

carefully discuss the reliability of our results in particular for wall

shear stress estimation in such a setup. We focus on the region

influenced by the horseshoe vortex system in front of the cylinder.

The paper is organized as follows. In Section 2 we describe the

applied flow solver and the computational domain, followed by a

detailed description of simulating the inflow profile by applying

a precursor simulation in Section 3. Section 4 deals with the in-

fluence of this inflow profile on the flow around the cylinder as

well as with the influence of grid resolution and subgrid stress

model. In Section 5 the results of the presented study are com-

pared to those provided by literature and carefully discussed. Fi-

nally, Section 6 emphasis the time-dependent component of the

flow pattern and its influence on the wall shear stress distribution.

2. Computational configuration

2.1. Numerical method

The flow solver MGLET uses a Finite Volume method based on

a staggered arrangement of variables on a non-equidistant Carte-

sian grid. It provides a second order spatial approximation and

a third order Runge–Kutta time integration. The curved surface

of the cylinder is approximated by a conservative second order

Immersed Boundary method [17,18]. In addition, MGLET provides

an algorithm for grid refinement by zonally embedded grids [19],

each refining the grid resolution by a factor of two. The subgrid

scale stresses are parametrized by the Wall-Adapting Local Eddy-

Viscosity (WALE) model [20], which defines the turbulent viscosity

νt as shown by Eq. 1.

νt = Cw�
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. The WALE model has the advantage that the

subgrid-scale viscosity decreases naturally towards the wall with

the correct limiting behaviour of νt∝y3.

The applied solver has been used and validated by several au-

thors in various configurations, e.g. [21–23].

2.2. Computational domain

The computational domain consists of two major parts: a pre-

cursor grid, which is used to generate the fully developed turbu-

lent open channel flow, and a grid containing the cylinder (diame-

ter D), using the turbulent open channel flow as inflow condition,

see Fig. 1. The latter one has a domain size of Lx = 25D, Ly = 12D

and Lz = 1.5D in streamwise (x-), spanwise (y-) and wall-normal

(z-)direction, respectively. The origin of the coordinate system is

located in the center of the cylinder which is placed in the cen-

ter of the domain. The spanwise and wall-normal dimensions are

based on the experimental setup used in previous studies [16]. To

simulate an open channel flow in a flume, the bottom and side

walls are defined as no-slip. At the top wall, a slip boundary con-

dition models a free surface at a vanishing Froude number. This

implies that no pile up or depression occurs in front or in the back

of the cylinder. At the inflow boundary, the grid is coupled to the

precursor grid, in which a fully turbulent boundary layer is simu-

lated using periodic streamwise boundary conditions. The precur-

sor simulation will be described in the next section.
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Fig. 1. Side and top view of the computational domain. The zonally embedded grids are marked in gray.

Table 1

Overview of the grids used for the simulations reported here. Inner units refer to

the wall shear stress in precursor simulation, averaged over the spanwise region

−1.25 ≤ y/D ≤ 1.25. �z+
wall

is the wall-normal resolution on the bottom wall. The

grids are stretched in wall-normal direction with stretching factors less than 1%.

Grid Levels of Cells per diameter Grid spacing Grid

refinement horizontal/vertical �x+/�y+/�z+
wall

cells

Precursor 0 60/60/15 44 · 106

Base 0 31.25/125 60/60/15 35 · 106

Grid 1 1 62.5/250 30/30/7.5 80 · 106

Grid 2 2 125/500 15/15/3.7 64 · 106

Grid 3 3 250/1000 7.5/7.5/1.9 177 · 106

A base grid which is refined towards the bottom wall covers

the complete computational domain. The region of interest around

the cylinder is refined by up to three locally embedded grids [19]

which provide grid refinement, see Table 1 and Fig. 1. In total,

five different simulations have been performed, see Table 2. The

first three simulations use fully turbulent inflow conditions from

the precursor simulation and differ by the levels of refinement

around the cylinder. Simulation #1 is refined with one locally em-

bedded grid, corresponding to a refinement factor of two with re-

spect to the base grid. Simulation #2 uses two levels of refinement

and the finest simulation #3 holds three local grids and there-

fore a refinement factor of eight, resulting in a grid spacing of

�z = 0.001D in vertical and �x = �y = 0.004D in horizontal di-

Table 2

Performed simulations with different levels of refinement and

boundary conditions.

Simulation Grid Inflow condition Total number of cells

#1 1 Precursor 159 · 106

#2 2 Precursor 223 · 106

#3 3 Precursor 400 · 106

#4 3 Block profile 207 · 106

#5 2 Log. profile 179 · 106

rection in the region of interest at the bottom plate around the

cylinder of diameter D. The base grid has spacings of �z+
wall

= 15

and �x+ = �y+ = 60, based on the wall shear stress in the pre-

cursor simulation averaged over a span of −1.25 < y/D < 1.25. The

wall-tangential velocity vectors are therefore defined at a position

z+ = 7.5 which allows avoiding a wall model to determine the wall

shear stress. The placement of the local grids is indicated in Fig. 1.

The simulations were performed on the high performance com-

puter SUPERMUC of the Bavarian Academy of Sciences. On 800

cores, the simulation #3 needed about 4.8 seconds per time step.

This adds up to about 2 million CPU-hours once the statistically

steady state has been achieved.

We investigated the influence of the inflow condition by using

a constant (in time and space) velocity as inflow for simulation #4

and a time constant profile using the time averaged velocity profile
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Fig. 2. Velocity distribution in the precursor grid. Isolines of the streamwise velocity component (a) and streamlines of secondary currents (b). Upward flow is marked by

red and downward flow by blue streamlines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

from the precursor simulation, denoted as ‘logarithmic profile’ for

simulation #5. Grid 3 in simulation #4 is of smaller spatial extend

than in the other simulations. Nevertheless, further discussion will

show that the differences between refinement level 2 and 3 are

rather small, see Section 4.1. Therefore we omitted redoing simu-

lation #4 with the same extended grid than simulation #3. Simula-

tion #5 was simulated by only two levels of refinement for reasons

of computational cost.

3. Precursor simulation

Considering a possibly strong influence of the approaching flow

on the flow structure around the cylinder [24], we took special

care to design a precursor simulation to generate a fully developed

turbulent open channel flow at a flow depth of δ = 1.5D and a

width of Ly = 12D. A streamwise length of Lx = 30D has been cho-

sen to reduce superposition and therefore self-amplification of long

meandering structures in the logarithmic region of the boundary

layer flow, so-called superstructures [25].

The grid resolution of the precursor simulation can be seen

from Table 1. The first grid point at the wall is just at the limit

of the viscous sublayer thus we do not use wall functions. The

subgrid-scale viscosity is damped towards the wall by use of

the WALE eddy viscosity model [20]. We employ periodic stream-

wise boundary conditions and a volume force to drive the flow.

The volume force is equivalent to a streamwise slope of a flume or

a streamwise pressure gradient.

In open channel flows, secondary flow structures develop [26].

Fig. 2a shows isolines of the streamwise velocity component in

the precursor grid. The data is not only averaged in time, but

also in streamwise direction. The distribution of the streamwise

velocity indicates the presence of secondary flow structures due

to the influence of the side walls. In the region next to the side

walls at about y < −4D and y > 4D, this influence leads to a sub-

merged maximum of the velocity profile. Fig. 2b shows the stream-

lines of the secondary currents in the precursor simulation, col-

ored by the vertical velocity component: Red color is indicating a

flow direction in positive z-direction (upwards), blue color in neg-

ative z-direction (downwards). The direction of rotation is also in-

dicated by arrows above the vortices. One can identify two nearly

triangular-shaped vortices on top of each other in the corners of

the channel. These vortices induce four counter rotating vortices

next to each other which span the whole channel height in the

center of the channel. The central vortices have widths of approxi-

mately the channel height. A further description and discussion of

secondary flow structures in open channel flow can be found in

literature [26,27].

Table 3

Bulk velocity and wall shear stress in the precursor for differ-

ent velocity probes.

Probe τ ref uref ReD = ure f D

ν

Whole cross section 0.9514τ 0 0.934ub 39000

−1.25D < y < 1.25D τ 0 ub 41756

Symmetry plane 1.026τ 0 1.039ub 43384

Due to the secondary currents, the streamwise velocity is de-

pending on the spanwise position even in the central part of the

channel. Therefore, also the wall shear stress varies over the span-

wise position. When looking at reference values for velocity and

wall shear stress, several possibilities arise, which are given in

Table 3. A measurement in the symmetry plane could best be real-

ized in an experiment. These values are greater than the ones in-

tegrated over a spanwise region of −1.25D < y < 1.25D, which we

take as reference values for our subsequent analysis. One could as

well integrate the bulk velocity over the whole cross section and

the wall shear stress over the whole wetted perimeter. The latter

is in equilibrium with the cross sectional integral of the volume

force ∂p/∂x multiplied by the hydraulic radius Rhyd of the open

channel. The different definitions can lead to approximately 7% dif-

ference in wall shear stress and 11% difference in ub. We assume

that the values integrated over −1.25D < y < 1.25D best charac-

terize the oncoming flow and would be less sensitive than others

with respect to changes in aspect ratio of the channel. Therefore all

values characterizing the inflow profile are averaged in spanwise

direction over a region of −1.25D < y < 1.25D. Among other pa-

rameters, this was done for the data shown in Fig. 3 and the wall

shear stress and the bulk velocity1 of the undisturbed oncoming

flow profile τ 0 and ub.

Velocity and Reynolds stress profiles averaged over time and

in spanwise direction in the region −1.25D < y < 1.25D are doc-

umented in Fig. 3. The velocity profile follows closely the logarith-

mic law of the wall in the considered region and shows a distinct

wake region. The wall nearest grid point in the precursor grid -

corresponding to a refinement level of zero - lies at about z+ = 7.5

above the bottom plate. Even though the velocity in this wall near-

est grid point is slightly overestimated, both velocity profile and

Reynolds stresses are in accordance with boundary layer data from

experimental studies [28]. We therefore conclude that our precur-

sor simulation is a good representative for a fully developed open

channel flow at the considered Reynolds number.

1 Note, that for ReD = 39000, we take the cross sectional averaged velocity as

reference.
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Fig. 3. Time-averaged velocity profile (a) and Reynolds normal stresses (b, c and d) in the precursor grid [24]. The experimental data of Bruns et al. [29] has been taken

from Fernholz and Finley [28].

The influence of the inflow condition on the flow around the

cylinder will be investigated in Section 4.1.

4. Influence of numerical configuration on the flow around the

cylinder

In this section we carefully assess the influence of the inflow

condition and the grid resolution on the flow around the cylinder.

We also quantify the contributions of the modeled SGS stresses on

the momentum balance in front of the cylinder. This can be viewed

as a validation of the results. We start with a discussion of the

influence of the inflow condition as it has an impact on the vortex

structure in front of the cylinder.

4.1. Influence of inflow condition

We first examine the development of the wall shear stress in

front of the cylinder and the region of influence of the cylinder in

the simulation using the precursor boundary condition (simulation

#3) and the two simulations using time constant inflow conditions

(simulations #4 and #5). Fig. 4 shows the wall shear stresses up-

stream of the cylinder for different inflow conditions. Note that

these wall shear stresses are averaged over −1.25D < y < 1.25D

and therefore do not match the wall shear stresses in the sym-

metry plane that are discussed later.

Downstream of the inflow plane, the precursor wall shear stress

is sustained in simulation #3 for about 4D until it slowly departs

from this value due to the upstream influence of the cylinder at

x/D = −8. The region of influence by the cylinder can be identi-

fied as eight cylinder diameters. The kink in the wall shear stress

at about x = −4D results from the interface of the first locally em-

bedded grid.

Since both simulations with fixed inflow conditions do not use

a precursor simulation, turbulent fluctuations sustaining the wall

shear stress are missing. Therefore, the wall shear stress drops im-

mediately downstream of the inflow plane (Fig. 4), no matter if a
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Fig. 4. Wall shear stresses averaged over −1.25 < y/D < 1.25 and normalized by ub

upstream of the cylinder for simulation #3 (precursor), #4 (block profile) and #5

(logarithmic profile).

block profile or a logarithmic profile was used. As the wall shear

stresses in both simulations continue to decrease during the ap-

proach of the cylinder, τ 0 is evaluated as average over −11.7D <

x < −4D for the simulations with time constant inflow conditions.

A distinct region of influence can not clearly be identified in the

two simulations using time constant inflow conditions, however it

seems to be smaller than in the simulation with fully turbulent in-

flow condition.

Moreover, the flow profiles of the two time constant bound-

ary conditions remain laminar until they reach the cylinder (not

shown). This leads to a wall shear stress much smaller than the

one of the turbulent flow profile in the precursor setup. Therefore

it is argued, that the so-called amplification factor of the wall shear

stress τw/τ 0, which is often used in literature, requires a careful

discussion of the undisturbed wall shear stress τ 0.

The problem of choosing a suitable reference for the wall shear

stress is illustrated by Fig. 5. It compares the wall shear stresses in

the symmetry plane in front of the cylinder for different inflow
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Fig. 5. Wall shear stress in the symmetry plane in front of the cylinder for different inflow conditions; (a) normalized with τ 0 and (b) normalized with ub .

conditions. The ones normalized by the undisturbed wall shear

stress τ 0 (Fig. 5a) are contrasted to the ones normalized by the

bulk velocity ub (Fig. 5b). Positive values indicate time-averaged

velocity in streamwise direction in the near-wall region, negative

values represent backflow, accordingly.

Three regions can be identified in the wall shear stress, each

being the footprint of a vortex as described later. Simulation #3

(with precursor) reveals a large zone of backflow extending to x =
−1.13D which is divided into a zone of negative wall shear stress

with large magnitude (−0.53 < x/D < −0.82) and a zone with rel-

atively small magnitude in −0.82D < x < −1.13D. The regions are

separated by a local maximum at x/D = −0.82 (which is a local

minimum in absolute wall shear stress). Right in front of the cylin-

der we can identify a small zone of relatively large positive wall

shear stress which reaches nearly twice the value of the oncoming

flow. There must be a small corner vortex in front of the cylinder

which rotates anti-clockwise.

Simulation #5 (with time constant log-law as inflow) shares

features with simulation #3 in that the double peak in the primary

backflow region appears and that the corner vortex is clearly visi-

ble. The zone of relatively small negative wall shear stress for x/D

< 0.82 obtains a different wall shear stress development upstream

containing a small forward flow and a long backflow around x ≈
−2D, which is also visible in the spatially averaged wall shear

stresses shown in Fig. 4. This zone of negative wall shear stress

indicates an additional vortex in this region, which also appears in

simulation #4 (with constant block profile inflow).

However, simulation #4 shows a wall shear stress distribution

of completely different shape for −0.82 < x/D. There is only one

narrow peak at x = −0.6D. Also, the maximum right in front of

the cylinder under the corner vortex is hardly in evidence, so does

the local maximum at x = −0.8D (Fig. 5). Instead, there is a strong

backflow around x = −1.4D which is not present in simulations

with other inflow profiles.

Only considering the amplification factor based on the defini-

tion of τ 0 as given above leads to an overestimation of the wall

shear stresses for the setup with log profile. In fact, the wall shear

stresses are not overestimated around the cylinder, but underesti-

mated in the undisturbed region, see Fig. 4. One will never get rid

of that problem but by using a precursor simulation, which pro-

vides a truly undisturbed and uniform region to measure τ 0.

Fig. 5b, in which τw is normalized by ub, indicates the results

from simulation #5 to follow the shape of the simulation with pre-

cursor quite well for x > −0.82D. Furthermore, both simulations,

#4 with block profile and #5 with time constant log profile meet

the maximum wall shear stress in front of the cylinder with minor

deviations of 5% (simulation #5) and 10% (simulation #4). Note,

that those deviations depend on which definition of the bulk ve-

locity has been chosen to normalize the wall shear stresses, com-

pare Table 3.

Combining these observations might lead to the conclusion that

the shape of the wall shear stress profile in front of the cylinder

depends on the shape of the inflow profile and that the maximum

wall shear stress depends more on the momentum of the oncom-

ing flow, ρu2
b
, than on the wall shear stress upstream, τ 0. In addi-

tion, including turbulent fluctuations to the inflow profile further

increases the maximum wall shear stress based on ub averaged

over −1.25 < y/D < 1.25. One might argue that the difference in

the wall shear stresses between the simulation with fully turbulent

inflow and the simulation with time constant log profile is due to

the different grid resolution used for theses studies. This argument

is discussed and debilitated in Section 4.2.

The wall shear stress is the footprint of the flow pattern

above the wall. This flow pattern is made visible by time-averaged

streamlines in Fig. 6 for all three inflow conditions. Fig. 6a shows

results of simulation #3 with precursor simulation and three lev-

els of grid refinement. Three vortices are forming the horseshoe

vortex system. There is a main clockwise rotating vortex of el-

lipsoidal shape V1, located at −0.83D < x < −0.53D with its cen-

ter at (x, z) = (−0.73D, 0.06D). A stagnation point S1, located at

about (x, z) = (−0.83D, 0.05D) separates this vortex from another

clockwise rotating vortex V2. The point S2 where the oncoming

flow separates from the bottom plate can be found at x = −1.1D.

A small anti-clockwise rotating vortex V3 can be found between

a stagnation point S3 at x = −0.53D and the cylinder edge. V3 is

formed by the strong boundary layer flow going downwards along

the cylinder. The associated stagnation point S4 is located right

above. It is interesting to note that the region, where the stream-

lines are most densely packed and therefore the velocity is largest,

is not directly below the main vortex, but shifted slightly towards

the cylinder. In addition, it is remarkable that there is no stagna-

tion point right on the bottom plate between the vortices V1 and

V2. This implies that theses vortices are sharing the same stream-

lines and merging in close vicinity to the wall. This is also sup-

ported by the wall shear stress (see Fig. 5), which has a local min-

imum in magnitude at x = −0.82D for simulation #3, but does not

disappear there.

In the simulation #5 with steady logarithmic inflow profiles

(Fig. 6b), V1 and V3 have a slightly smaller and V2 a little larger

extent than the ones in the simulation #3. However, between

x = −1.2D and the cylinder the flow patterns of both simulations

looks quite similar. Nevertheless, there is an additional vortex or

backflow region, respectively, indicated as V4 upstream of the ad-

ditional stagnation point S5 at x = −1.5D, see also Fig. 5. The point

of separation S6 upstream of V4 at x = −2.3D is outside of the do-

main plotted. Vortex V4 seems to be unimpressive, but it changes

the whole flow pattern upstream of S2 by introducing a additional

region of backflow.

Fig. 6c shows the time-averaged streamlines for simulation #4.

Using a block profile as inflow boundary condition leads to a
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Fig. 6. Time-averaged streamlines in the symmetry plane in front of the cylinder for the three inflow conditions precursor (a), fixed log. profile (b) and fixed block profile

(c).

boundary layer thickness of approximately δ = 0.2D when the flow

is approaching the cylinder compared to δ = 1.5D in the other sim-

ulations. While in the lower region the vertical velocity gradient is

large, it is almost zero in the region above δ. Thus, the vertical

pressure gradient at the cylinder front is restricted to the lower

part of the domain. Therefore the down-flow appears only in the

lower part and the resulting vortex system (V1 and V2) is com-

pressed to a small region. Also, vortex V3 is not visible anymore in

the streamlines. Compared to the setup with fixed logarithmic pro-

file, V4 is shifted downstream, but it has almost the same vertical

extension. V4 appears in both setups with fixed inflow condition,

so it seems to be independent of the actual shape of the inflow

profile. Since V4 does not appear in simulation #3 with a turbu-

lent inflow profile, we assume the turbulent fluctuations and the

momentum transport connected with them to be responsible for

suppressing the vortex V4.

4.2. Grid resolution

In order to validate our simulations in terms of grid resolution,

we performed three simulations at different refinement levels ac-

cording to Tables 1 and 2. We assess the wall shear stresses in the

symmetry plane in front of the cylinder and along a line at 90°
in spanwise direction (Fig. 7). One can observe the convergence

of the wall shear stress in front of the cylinder over grid refine-

ment (Fig. 7a), differences between grid 2 and 3 are systematically

smaller than differences between grid 1 and 3. Grid 2 and grid 3,

the finest one, match quite well, although grid 2 is not able to re-

solve the maximum amplification under the small anti-clockwise

rotating vortex V3 and the local maximum of the wall shear stress

under the stagnation point S1 (x/D ≈ −0.82) is shifted upstream a

little bit. Nevertheless, in large regions under the main vortex V1

it almost follows the solution of simulation #3 without deviations.

Convergence can not be proven completely for the region lat-

eral of the cylinder (Fig. 7b). Here, the wall shear stress in a plane

lateral of the cylinder, normal to the symmetry plane, is shown.

Right next to the cylinder, one can see a strong velocity overshoot

which is fed by the acceleration of the fluid around the cylinder

and amplified by the horseshoe vortex system. The peak value pre-

dicted by grid 2 is almost 15% smaller than the one predicted by

grid 3 which reaches 7τ 0. This peak is decreasing to an amplifica-

tion factor of about three at y = 0.6D. The amplification is further

decreasing and reaching a value of one at approximately y = 4D,

which is not shown in Fig. 7b. For y > 0.57D the two finer grids

match in a satisfying way. To obtain full convergence in close vicin-

ity of the cylinder, it would be necessary to refine the grid by a

fourth local grid. This is omitted due to the enormous computa-

tional costs linked to that. The coarse grid (grid 1) is performing

well in regions y > 0.7D, but the overshoot next to the cylinder is

underestimated by approximately 30%.

The maximum amplification factor of the time-averaged wall

shear stresses around the cylinder can be seen in Table 4. The

largest wall shear stresses are located in the lateral front of

the cylinder at about 55° to the symmetry plane, see Fig. 8 or

Section 6. While grid 1 underestimates the maximum amplification

by about 25%, grid 2 comes quite close to the value of the finest

grid (grid 3). Being aware of the narrow peak of the wall shear

stress maximum, see Fig. 8, it becomes evident that a coarse grid
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Table 4

Maximum time-averaged wall shear stresses around

the cylinder.

Setup Grid Max. <τw>
<τ0>

Max. <τw>
�
2 u2

b

Simulation #1 1 8.99 0.0396

Simulation #2 2 12.1 0.0535

Simulation #3 3 12.0 0.0529

Simulation #4 3 16.7 0.0396

Simulation #5 2 51.0 0.0570

Fig. 8. Maximum time-averaged amplification of the wall shear stress in the lateral

front of the cylinder. The isoline is marking a amplification factor of ten, the squares

indicate the grid spacings of the corresponding refinement levels.

like the one used in simulation #1 will hardly be able to predict

its amplitude correctly. The isolines in Fig. 8 mark a value of the

amplification factor of ten. In the area between the two isolines

the wall shear stress is larger than 10τ 0. This area is quite narrow,

and resolved by about four grid cells of grid 3, which is the finest

one. The small squares are representing the grid cells of the finest

local grid, used for simulation #3. The largest square represents

the finest grid spacing of grid 1. Therefore, the narrow wall shear

stress peak is resolved by two cells of grid 2 and only one cell of

grid 1. It is obvious that grid 1 is not sufficiently fine in horizontal

directions to represent such spatial wall shear stress distributions.

Table 4 demonstrates the importance of the normalization of

the wall shear stress around the cylinder. While there is large scat-

ter when the wall shear stress is normalized by the one of the on-

coming flow, τ 0, all simulations give similar values when normal-

ized by the oncoming bulk velocity. This underlines the necessity

of careful evaluation and simulation of the oncoming flow field.

Besides that, simulation #4, using a block profile as inflow condi-

tion underestimates the maximum wall shear stress by 25%, even

with the finest grid resolution. As opposed to that, simulation #5,

using a logarithmic profile as inflow conditions, overestimates the

maximum wall shear stress by about 8%.

4.3. Influence of the subgrid scale model

For modeling the subgrid stresses, the WALE model as de-

scribed by Eq. (1) was applied. Due to the enormous computa-

tional costs, it was omitted to run simulations with different sub-

grid scale models to evaluate its influence on the solution. Instead

it shall be shown that the contribution of the modeled stresses to

the momentum balance is small compared to other contributors

and thus the SGS stresses are of minor influence on the solution of

the flow field.

On the highest level of grid refinement, grid 3, the ratio of

time-averaged modeled viscosity to molecular viscosity reaches a

maximum of 〈νt〉/ν = 3. This maximum is located in the shear

layer in the wake of the cylinder which is downstream of the re-

gions of large averaged wall shear stresses.

For assessing the SGS contributions to the wall shear stresses

in front and aside of the cylinder, we consider the contributions of

the instantaneous and time-averaged SGS viscosity in the symme-

try plane in front of the cylinder, see Fig. 9. The values are taken

from simulation #3. Here the time-averaged values reach their

maximum of 〈νt〉/ν = 0.39 at the junction of cylinder and bottom

plate where the anti-clockwise rotating vortex V3 is located, com-

pare Fig. 9a. In the region of the main vortex V1, the time-averaged

modeled viscosity reaches values of up to 0.25ν . Away from these

two vortices, the modeled viscosity remains below 0.1ν .

Instantaneous values of νt
ν in the symmetry plane in front of

the cylinder are plotted in Fig. 9b. In this randomly chosen time

step of simulation #3 the maximum instantaneous ratio of mod-

eled to molecular viscosity is νt
ν = 1.5.

A better estimation of the contribution of the SGS model to the

flow dynamics is given by the modeled SGS stresses, see Fig. 10.

We investigate the modeled SGS stresses in the zone of the horse-

shoe vortex at a position (x, y) = (−0.7D, 0) which is the zone in

which the averaged SGS viscosity is relatively large. We compare

the time-averaged modeled shear stresses 〈νt
∂u
∂z

〉 obtained with

three different grids (simulations with precursor inflow condition)

in Fig. 10a. All three profiles show a distinct maximum when pass-

ing the center of vortex V1. One can observe a quadratic depen-

dence on grid spacing between grid 2 and grid 3. This indicates

convergent behaviour of the flow fields at those grid resolutions.

Grid 1, however, does not yet seem to be in the convergent regime

for the SGS stresses.

Fig. 10b compares the modeled shear stress in grid 3 to other

contributors to the momentum balance, namely the time-averaged

molecular shear stress ν ∂〈u〉
∂z

and the resolved turbulent shear

stresses −ρ〈u′w′〉. Close to the wall the molecular shear stress is
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Fig. 9. Time-averaged 〈νt〉/ν (a) and instantaneous νt/ν (b) ratio of modeled to

molecular viscosity in the symmetry plane in front of the cylinder (simulation #3).

dominating the flow. Away from the wall, the resolved turbulent

shear stress and the pressure gradient - which is not shown in

the plot - are dominant. Theses stresses are exceeding the mod-

eled shear stress by two orders of magnitude. There is no point

at which the modeled SGS shear stress 〈νt
∂u
∂z

〉 dominates the mo-

mentum balance. The influence of the subgrid stress model on the

solution therefore can be considered to be small.

5. Cross-validation with findings from the literature

In the previous sections, we documented our efforts to validate

our simulations with respect to inflow conditions, grid resolution

and contribution of SGS stresses. In this section, we will compare

our results with experimental ones published by Devenport and

Simpson [8,30], Dargahi [6,7] and Roulund et al. [3]. We concen-

trate on flow topology and quantitative prediction of the wall shear

stress in the symmetry plane upstream of the cylinder.

We first concentrate on the flow topology that has been care-

fully documented by Devenport and Simpson [8,30]. Fig. 11 shows

streamlines along the bottom plate obtained from simulation #3.

Fig. 11a gives an overview over the area around the cylinder, while

Fig. 11. Time-averaged streamlines at the bottom plate around the cylinder from

simulation #3.

Fig. 11b zooms to the junction between bottom plate and cylinder.

Downstream of the saddle point at x/D ≈ −1.13, we can identify

four regions. The regions (i) and (ii) between two saddle points

are formed by the regions of large (i) and small (ii) negative wall

shear stress (compare Fig. 7). They can be described as the foot-

prints of the vortices V1 and V2 (compare Fig. 6). The saddle point

at x/D ≈ −1.13 is the point of separation S2 in the symmetry plane

(compare Fig. 6). The saddle point at x/D = −0.53 is the stagna-

tion point S3 in the symmetry plane. Downstream of this the for-

ward flow region (iii) is formed as the footprint of the vortex V3.

The fourth region (iv) does not appear in the symmetry plane, but

starts to develop about 6° away from the symmetry plane. This re-

gion indicates an extra vortex V5 rotating in clockwise direction in

the lateral front at the junction of bottom wall and cylinder. Vortex

V5 has been also reported by Paik et al. [12], but they observed it
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not only in the lateral front but also going through the symmetry

plane.

The magnitude of the corresponding wall shear stresses are

shown in Fig. 7. Region (i) is corresponding to the area of max-

imum wall shear stress amplification at −0.7D < x < −0.55D in

Fig. 7a. Region (ii) can be found upstream of region (i) between

the point of separation S2 and the local wall shear stress maxi-

mum under S1. Region (iii) is formed by the small anti-clockwise

rotating vortex right at the junction of wall and cylinder and cor-

responding to the region of positive values in Fig. 7a.

The flow topology described above was also observed by De-

venport and Simpson [8]. They used surface oil-flow visualization

to investigate the near-wall flow pattern around a wall-mounted

wing-shaped cylinder at ReD = 119000. It is remarkable how state-

ments by Devenport and Simpson [8] can be used literally to de-

scribe observations made in our study. In front of the cylinder un-

der the horseshoe vortex, they found (i) “a strip of high surface

stresses adjacent to the [cylinder]”, (ii) “a crescent-shaped region

of apparently lower shear stresses upstream” of region (i) and (iii)

“a region of secondary separation in the corner between the wall

and the [cylinder]”.

The flow topology presented by Devenport and Simpson [8]

shows two backflow regions, region (i) and region (ii). They also

note: “Close to the plane of symmetry this line [which is dividing

region (i) and (ii)] is not a separation or reattachment since the

oil streaks here pass through it. Measurements made by Devenport

and Simpson [30] show this to be a line of low streamwise shear.”,

which is in good accordance to the flow topology presented in this

study. Fig. 7 does not show a zero wall shear stress at x = −0.78D

but a region of low shear stress.

After having discussed the footprint of the flow field around

the cylinder, we now turn to the flow field and turbulence char-

acteristics in the symmetry plane in front of the cylinder. We

compare our results with results from Devenport and Simpson

[8] provided as an ERCOFTAC data base [31]. They used laser

Doppler anemometry to measure velocity profiles in front of a

wing-flat plate junction in a turbulent boundary layer. They had a

Reynolds number of Re = 1.15 × 105 and a ratio of boundary layer

thickness δ99.5 to maximum width of the wing T of δ99.5/T = 0.5.

This is smaller than our depth-to-diameter ratio of δ/D = 1.5. They

measured vertical profiles for a limited number of streamwise

positions. Keeping the differences in the configurations and the

limited streamwise resolution of the measurements in mind, a

quantitative comparison between their and our cases should be

undertaken with care. However, a similar comparison has been un-

dertaken by Escauriaza and Sotiropoulos [11] between a Detached

Eddy Simulation of our flow case with Devenport and Simpson’s

measurements. They found that both flows share a lot of common

features.

The time-averaged vorticity around the y-axis ω∗
y = ( ∂<u>

∂z
−

∂<w>
∂x

) D
ub

in the symmetry plane in front of the cylinder is com-

pared with the one measured by Devenport and Simpson [8] in

Fig. 12. The vorticity is normalized by the diameter of the cylinder

D and the bulk velocity ub. All three vortices described above can

also be observed in Fig. 12. In the center of the main vortex, the

vorticity reaches a maximum of ω∗
y = 20.6, which is close to the

one measured by Devenport and Simpson. A thin layer of nega-

tive vorticity can be observed in close vicinity to the wall which

is lifted up towards the stagnation point S1 at x ≈ −0.83D. The

maximum vorticity can be found at (x, y) ≈ (−0.7D, 0.05D) while

it is a little closer at the wall and the cylinder in Devenport and

Simpson’s case. This could be explained by the thinner boundary

layer of the latter. Overall, the position, shape and magnitude of

the main vortex V1 and the thin shear layer beneath it, increase

the overall trust in the simulation.

Fig. 12. Normalized vorticity in the symmetry plane in front of the cylinder. (a):

measurements by Devenport and Simpson [8]; (b): simulation #3.

Fig. 13. Normalized in-plane turbulent kinetic energy, (〈u′2〉 + 〈w′2〉)/u2
re f

, in the

symmetry plane in front of the cylinder. (a): measurements by Devenport and

Simpson [8]; (b): simulation #3.

The topology of the time-averaged flow field obtained in our

simulation #3 does in fact fully agree with the one Devenport and

Simpson have reported. In addition, the vortex system presented in

this study bears the same bimodal dynamics as described by De-

venport and Simpson [8]. However, the dynamics of the horseshoe

vortex is not within the scope of this paper.

The distribution of the normalized in-plane turbulent kinetic

energy, (〈u′2〉 + 〈w′2〉)/u2
b

is compared to the one by Devenport

and Simpson in Fig. 13. The turbulent kinetic energy peaks in the

center of the horseshoe vortex. Its particular shape, a “C-shaped
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[7] and Devenport and Simpson [8].

pocket of high TKE” [11], exhibits two peaks, one in the center of

the main vortex and the other at the wall underneath the main

peak. This shape stems from the distribution of the streamwise

fluctuation intensity 〈u′2〉. Escauriaza and Sotiropoulos [11] have

demonstrated how this particular distribution of turbulent kinetic

energy is linked to the dynamics of the main horseshoe vortex.

The measured distribution of the turbulent kinetic energy is not

as smooth which could be partly explained by the coarse stream-

wise resolution of the measurements and by some statistical scat-

ter in the measured data. However both simulation and measure-

ment share shape and level, the main difference being the height

of the main peak which is thinner in Devenport and Simpson’s

case than in ours. This can be explained with the smaller boundary

layer thickness in the experiment.

We now turn to a quantitative comparison of our results with

experimental ones obtained by Dargahi [6,7] who performed mea-

surements of a well comparable configuration at a Reynolds num-

ber of ReD = 39000. The data are complemented by measurement

of Roulund et al. [3] for the same geometry at ReD = 170000 and

the measurements of Devenport and Simpson [8]. The experimen-

tal values were digitized by hand from the figures in the publica-

tions except the latter ones who have been taken from the ERCOF-

TAC data base [31].

Fig. 14a compares the pressure coefficient Cp = 〈p〉−pre f

ρ/2·u2
b

in the

symmetry plane in front of the cylinder from simulation #3 to the

results of Dargahi [7]. pref is adjusted in such a way that Cp of our

LES meets Dargahi’s results in the junction of bottom plate and

cylinder at x = −0.5D. The results of our LES follow the ones mea-

sured by Dargahi closely. The maximum can be found in the stag-

nation Point S3 at (x, z) = (−0.53D, 0). Both, the steep slope up-

stream of S3 and the distinct kink at about (x, z) = (−0.7D, 0) can

be observed in the experimental as well as in the numerical data

set.

Fig. 14b compares the turbulence intensity I =
√〈u′2〉

ure f
in the

symmetry plane in front of the cylinder to Dargahi’s measure-

ments [7]. The corresponding profile from Devenport and Simp-

son [8] has been added for a cross-check. Dargahi’s probes are lo-

cated at a wall distance of z = 0.00667D, which corresponds to a

height below the center of the main horseshoe vortex V1. uref is

the time-averaged velocity in the oncoming flow at the respective

wall distance. All results peak in the region of the vortex V1. It ap-

pears that all three cases have similar peak values. However, the

distribution in Dargahi’s measurements is wider than the peak in

the other results. A final explanation for this deviation cannot be

given here. A reason might be the measuring technique. Dargahi

[7] used a hot film probe, which is an intrusive method. The sen-

sor might have caused a disturbance on this complex three dimen-

sional vortex system. The laser based measurements by Devenport
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and Simpson [8] deliver a peak which is as narrow as the one of

our simulation, see Fig. 14b.

The wall shear stress amplification in front of the cylinder is of

special interest, because this is the quantity driving scour and ero-

sion. We compare our results to measurements of Dargahi [7] and

Roulund et al. [3] in Fig. 15. Even though all of our values were

taken from the finest local grid in simulation #3, we plotted wall

shear stresses computed from velocities at four different wall dis-

tances: at the wall next point at z1 = 0.0005D, at z2 = 0.0015D, at

z3 = 0.0025D and at z4 = 0.0035D.

The experimental results by Dargahi [6,7] and Roulund et al.

[3] share their main features, i.e. the shape of the wall shear

stress distribution in the main recirculation zone under the main

vortex V1. However, there are some differences as well. Roulund

et al.’s amplification factors are considerably lower than 1.0 in

the plotted region upstream of x/D = −1.0 which indicates that in

their experiment the influence of the cylinder on the wall shear

stress is more upstream than what the measurements of Dargahi

suggest. Roulund et al. normalized their wall shear stresses by the

undisturbed one measured in the center line of the channel with-

out a cylinder. Note, that the influence of the cylinder reaches 8D

upstream in our simulation, see Fig. 4. The flow seems to separate

earlier in Roulund et al.’s experiment and the maximum wall shear

stress is considerably larger. All this might be attributed to the

different experimental conditions, such as water depth-to-cylinder

diameter ratio and Reynolds numbers. However, Roulund et al.

did also simulations using a Reynolds averaged Navier–Stokes

solver. Their numerical results suggest that, (i) the influence of

the ratio water depth-to-cylinder is very small for water depths

above one cylinder diameter, (ii) the point of separation moves

towards the cylinder when the Reynolds number is increased

from 104 to 105, and (iii) the wall shear stress amplification factor
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continuously decreases with increasing Reynolds number in the

covered Reynolds number range, i.e. Dargahi uses ReD = 39000,

Roulund et al. ReD = 170000 and our results have been obtained at

ReD = 39000. The differences between Roulund et al. and Dargahi

can not be explained by the Reynolds number effects. Furthermore,

it is obvious that the normalization of the wall shear stress has to

be taken into account when quantitative information are sought,

e.g. if Rolound et al. [3] normalized their wall shear stress by its

value at x/D = −2.5 as Dargahi [7] did, the differences among the

experiments in Fig. 15 would even be more pronounced.

There is a fundamental difference between our simulation re-

sults and Dargahi’s measurements in the region (ii) upstream of

x < −0.82D, see Fig. 11. While we observe backflow in this region,

Dargahi [7] measured forward flow near the wall. This would im-

ply, that in this experiment, vortex V2 was not present. A final

explanation for this discrepancy cannot be given here. Neverthe-

less, his sketches imply that he assumed more than one backflow

region. It is important to note that Dargahi measured wall shear

stresses by a Preston tube and a hot film probe. Both are depen-

dent on flow direction and can not be used in flow situations with

strongly varying flow direction in time.

A possible explanation for discrepancies between Dargahi’s and

our results could be the different wall roughness applied in the

studies. While Devenport and Simpson [8], Roulund et al. [3] and

the present LES have smooth walls, Dargahi [6,7] glued grains

with a diameter of D50 = 2.4 · 10−3D to the wall. He estimated the

roughness height to about 4.5 wall units and therefore assumed

the wall to be smooth. Nevertheless, this assumption is only valid

in the undisturbed oncoming flow profile. In the region around the

cylinder the thickness of the viscous sublayer might change and

the wall therefore become rough. This roughness might have had

an influence on the flow, suppressing vortex V2 by increasing fluc-

tuations and momentum transport.

In the region (i) – see Fig. 15 – below the main vortex V1, the

shape of our results agrees well with both experiments. Our maxi-

mum is, however, larger than both experiments. Our larger ampli-

fication factor with respect to Roulund et al. can be explained by

the aforementioned Reynolds number effect. However, the quanti-

tative difference to Dargahi’s measurements can not be explained

by the Reynolds number effect observed by Roulund et al. in his

RANS simulations. Dargahi calculated the wall shear stresses based

on velocity probes measured at a height of z = 0.0033D. If we com-

pare his results with ours computed from the velocity at a height

of z4 = 0.0035D, we find good quantitative accordance in region

(i), see Fig. 15.

Nevertheless, reducing the wall distance to z1 = 0.0005D the

amplitude of τw/τ 0 increases and develops a double peak. Here,

the maximum amplification factor shows an amplitude which is

larger by a factor of two than the value measured by Dargahi

[7]. One could speculate that Dargahi’s velocity probe at a height

of z = 0.0033D is outside of the viscous sublayer. Estimating wall

shear stresses based on these probes and assuming a linear ve-

locity profile to the wall therefore underestimates the wall shear

stress.

This conclusion is supported by Fig. 16. It shows the velocity

profile in streamwise direction in the symmetry plane in front of

the cylinder for the simulations using fully turbulent inflow condi-

tion with different grid resolutions at x = −0.65D. The wall near-

est point of simulation #3 is located at z1 = 0.0005D, which cor-

responds to z+ = 1.5 based on the local wall shear stress. Fig. 16

implies, that at this position the viscous sublayer has a thickness

of about three wall units only. The wall nearest point of simula-

tion #2 is still in the linear layer. The second grid point of sim-

ulation #3 (finest grid) is already outside of the linear layer. The

measuring height Dargahi [7] has reported is as well outside of

the linear sublayer. Assuming a linear velocity distribution would

lead to wrong wall shear stress estimations. In this case, a wall

shear stress which was 50% too small would have been obtained.

The larger wall shear stresses obtained in the present simulation

compared to the measurements of Dargahi [7] can therefore fully

be explained by the finite size of the Preston tubes used and the

non-equilibrium velocity profiles under the main vortex S1.

6. Wall shear stress distribution

Having carefully validated our wall shear stress predictions, we

now discuss spatial distributions of time-averaged and instanta-

neous wall shear stresses. In Fig. 17 the amplification factor is plot-

ted which is obtained by normalizing the wall shear stress by the

time-averaged wall shear stress in the precursor simulation in a

region without influence of the sidewalls, τ 0. The values of 3, 6, 9

and 11 are indicated by isolines.

Time-averaged wall shear stresses larger than 6τ 0 are found at

angles from 23° to 97° to the symmetry plane in a thin strip with a

width of 0.1D. Values larger than 11 are located between at angles

from 48° to 58° to the symmetry plane. Here a maximum amplifi-

cation factor of 〈τw〉
τ0

> 12.0 is reached, see also Table 4 or Fig. 8.

These findings are in principle accordance to the experimental

results of Hjorth [4]. He measured wall shear stress distributions

for combinations of Reynolds numbers of 7500 < ReD < 22500 and

boundary layer thickness to diameter ratios of 1.33 < δ
D < 4. Hot-

film anemometry was applied at certain points around the cylin-

der, values in between were interpolated. The setup closest to our

setup holds a Reynolds number of ReD = 22500 and a boundary

layer thickness to diameter ratio of δ
D = 1.33. In front and lateral

of the cylinder, the shape of the experimentally evaluated isolines
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Fig. 17. Instantaneous (bottom) and time-averaged (top) amplification of the wall

shear stress around the cylinder. The isolines show amplification factors of 3, 6, 9

and 11 relative to the wall shear stress in the precursor simulation [32].

bear good resemblance to the ones in Fig. 17. The plot by Hjorth

[4] shows a maximum wall shear stress amplification of 〈τw〉
τ0

> 9.

Nevertheless, in the lateral back of the cylinder at about 130° to

the symmetry plane, plots by Hjorth [4] show a spot of high wall

shear stress amplification 〈τw〉
τ0

> 7, too, which does not appear in

our numerical results. This spot does not appear in all setups in

the study of Hjorth [4], so one might be tempted to explain this

difference with the different Reynolds numbers used. Hjorth [4]

also reports a maximum amplification factor of “about 12”, but it

becomes not clear for which combination of ReD and δ
D this maxi-

mum has been observed.

The significance of the instantaneous wall shear stress distri-

bution becomes obvious from Fig. 17 (bottom). In the symmetry

plane close to the cylinder and the bottom plate, time-averaged

velocities have to be small for geometric reasons. Nevertheless, in-

stantaneous wall shear stresses reach values larger than 12τ 0 in

front and 40τ 0 in the wake of the cylinder. This extremely large

values in the wake can be explained by the von Karman-vortex

street which leads to vortex shedding downstream of the cylin-

der. These vortices come along with large velocity fluctuations, es-

pecially in spanwise direction. Additionally, the Karman-vortices

are amplified by the combination of various effects: the down-

flow in front of the cylinder transports fluid of high momentum

from outer regions to regions close to the wall. The high momen-

tum fluid, deflected in spanwise direction in the wake of the cylin-

der, increases the instantaneous wall shear stresses in spanwise

direction.

7. Summary and conclusions

In this study, wall shear stress predictions by a Large-Eddy Sim-

ulation of the flow around a wall-mounted cylinder were care-

fully validated and discussed. We applied a precursor simulation to

generate a fully developed turbulent open channel flow approach-

ing the cylinder and took special care to assess the influences of

the grid resolution, the inflow boundary condition and the subgrid

scale model on the prediction of the wall shear stresses.

We reached convergent solutions with respect to grid resolu-

tions with small deviations of the second fine grid from the finest

one. Simulations using a coarser grid give partly strong deviations

from this solution. We therefore emphasize the necessity of the

grid resolution used – see Table 2 – in close vicinity of the cylin-

der for the applied Reynolds number.

The inflow condition has a strong influence on the results.

A time constant inflow condition leads to a early separation in

front of the cylinder and qualitatively wrong predictions of the

wall shear stresses under the main horseshoe vortex. If the time-

averaged inflow profile was not met, the downwash on the front

of the cylinder will not be recovered correctly which results in a

qualitatively wrong prediction of the main horseshoe vortex and

wall shear stress underneath.

We demonstrated that in the finest grid used, the contribution

of the modeled stresses to the horseshoe vortex system around the

cylinder remains negligible. The time-averaged SGS viscosity de-

creased at second order with respect to grid spacing between the

finest and the second finest grid. Thus, we conclude that our sim-

ulations provide high fidelity in the predicted wall shear stresses.

Compared to experimental results from literature, we see partly

very good accordance and partly quantitative discrepancies. We

predict considerably larger wall shear stresses in the symmetry

line in front of the cylinder than were measured by Dargahi [7] in

a comparable configuration. We suggest that this discrepancy could

be explained by the finite size of the Preston tube and the wall

distance of the velocity probes which were used by Dargahi to de-

termine the wall shear stress. This explanation is supported by nu-

merical results and measurements of Roulund et al. [3]. We explain

the strong effect of the probe size for wall shear stress measure-

ments by velocity profiles which strongly deviate from the law of

the wall and have a linear layer thickness of only three wall units

under the horseshoe vortex.

Especially when wall shear stresses around the cylinder are es-

timated, coarse grids fail due to two effects: (i) the velocity profiles

are in strong non-equilibrium under the horseshoe vortex having a

very thin linear region of less than three wall units; and (ii) the

horizontal extensions of the wall shear stress peaks are very nar-

row, thus fine grids are required parallel to the wall to capture

those peaks. Spatial resolution is therefore as well crucial for ex-

perimental estimation of wall shear stress amplitudes.

We observed instantaneous wall shear stresses at consider-

ably larger amplitudes than the time-averaged ones. While time-

averaged wall shear stress amplifications reached values of 12τ 0 at

an angle of about 45° to the symmetry plane, the largest instanta-

neous wall shear stresses appeared in the wake of the cylinder and

reached values of up to 40τ 0. Note that in the wake of the cylinder

the instantaneous wall shear stresses mainly stem from spanwise

velocities due to the von Karman vortex shedding. Those span-

wise velocities and wall shear stresses are leveled out when time-

averaging was applied. Thus, the large instantaneous wall shear

stresses are not seen in the time-averaged ones.
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We investigate the flow and turbulence structure in front of a cylinder mounted on a
flat plate by a combined study using highly resolved large-eddy simulation and particle
image velocimetry. The Reynolds number based on the bulk velocity and cylinder
diameter is ReD = 39 000. As the cylinder is placed in an open channel, we take
special care to simulate open-channel flow as the inflow condition, including secondary
flows that match the inflow in the experiment. Due to the high numerical resolution,
subgrid contributions to the Reynolds stresses are negligible and the modelled
dissipation plays a minor role in major parts of the flow field. The accordance of the
experimental and numerical results is good. The shear in the approach flow creates a
vertical pressure gradient, inducing a downflow in the cylinder front. This downflow,
when deflected in the upstream direction at the bottom plate, gives rise to a so-called
horseshoe vortex system. The most upstream point of flow reversal at the wall is
found to be a stagnation point which appears as a sink instead of a separation point in
the symmetry plane in front of the cylinder. The wall shear stress is largest between
the main (horseshoe) vortex and the cylinder, and seems to be mainly governed by
the strong downflow in front of the cylinder as turbulent stresses are small in this
region. Due to a strong acceleration along the streamlines, a region of relatively small
turbulent kinetic energy is found between the horseshoe vortex and the cylinder. When
passing under the horseshoe vortex, the upstream-directed jet formed by the deflected
downflow undergoes a deceleration which gives rise to a strong production of turbulent
kinetic energy. We find that pressure transport of turbulent kinetic energy is important
for the initiation of the large production rates by increasing the turbulence level in
the upstream jet near the wall. The distribution of the dissipation of turbulent kinetic
energy is similar to that of the turbulent kinetic energy. Large values of dissipation
occur around the centre of the horseshoe vortex and near the wall in the region where
the jet decelerates. While the small scales are nearly isotropic in the horseshoe vortex
centre, they are anistotropic near the wall. This can be explained by a vertical flapping
of the upstream-directed jet. The distribution and level of dissipation, turbulent and
pressure transport of turbulent kinetic energy are of crucial interest to turbulence
modelling in the Reynolds-averaged context. To the best of our knowledge, this is
the first time that these terms have been documented in this kind of flow.

Key words: separated flows, turbulent boundary layers, turbulent flows
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1. Introduction

Flows around bluff bodies mounted on a flat plate appear in various technical
applications, such as, e.g., turbomachinery blade flows or aircraft wing–body
flows. We are interested in cylinder–wall junction flows because of their enormous
importance in scour development around bridge piers in sandy river beds. The
mechanism of scour development and its dependence on the flow field upstream of
a pier was described many years ago (Melville & Raudkivi 1977). A major role has
been attributed to the horseshoe vortex forming in front of a bridge pier. Such a
horseshoe vortex has been observed in many different configurations of protuberances
embedded in boundary layer flows. Due to the broad relevance of the horseshoe vortex
for technical applications as well as for the fundamental understanding of flow physics,
it is not surprising that in recent years a vast number of investigations addressing
wall–body junction flows have been published – not only from the viewpoint of scour
development but also concerning the flow field alone. We concentrate on findings
addressing the dynamics of flows around long slender bodies such as cylinders, wings
or bars, mounted perpendicularly on a flat plate. Many features occurring in such
flows seem to be independent of the detailed structure of the fore-body (Escauriaza
& Sotiropoulos 2011; Schanderl & Manhart 2016).

If a boundary layer flow approaches a bluff body, the shear in the boundary layer
gives rise to a vertical pressure gradient along the front of the body, driving the
flow downwards to the wall. This downwash is deflected by the bottom wall and
forms a spanwise vortex system (Devenport & Simpson 1990). Parts of the downwash
that become deflected by the bottom wall in front of the bluff body wrap up into a
ellipsoidal main vortex V1. Other parts of the downwash feed an upstream-directed jet
along the bottom wall underneath V1. After passing V1, the jet penetrates under the
oncoming boundary layer and forms an extended recirculation zone. This eventually
can wrap up into a second vortex V2 (Apsilidis et al. 2015), which was not mentioned
by Devenport & Simpson (1990), maybe due to a lack of resolution. Along the flow
facing wall of the bluff body, the downwash establishes a boundary layer. Before
reaching the bottom plate, this boundary layer has to separate from the body wall for
the same reasons as the main flow separates from the bottom wall when approaching
the bluff body. This separation leads to a third vortex V3 directly at the wall–cylinder
junction rotating in the opposite direction to V1.

Due to the fact that the flow needs to bypass the protuberance, strong stretching in
the spanwise direction occurs, increasing the spanwise vorticity of the vortex system
and especially reinforcing the main vortex to an intense vortex, which is stretched
around the body. Because their vortex axes are bent around the obstacle, such vortex
systems are denoted as horseshoe vortices and associated with large wall stresses in
the zone between the vortex and the body (Dargahi 1989; Devenport & Simpson
1990).

However, the discussion on the described flow topology is not complete. Apsilidis
et al. (2015) suggested the possibility that vortex V2 is not a coherent flow structure
but the time-averaged representation of a train of various small vortices. In accordance
with Dargahi (1989), Escauriaza & Sotiropoulos (2011) observed two main vortices
instead of only one. Furthermore, Escauriaza & Sotiropoulos (2011) stated that
the number of vortices decreases with increasing Reynolds number, as long as the
Reynolds number is within the investigated moderate range. On the contrary, Apsilidis
et al. (2015) observed the time-averaged flow topology to be mainly invariant with
the body Reynolds number (Apsilidis et al. 2015) for moderate Reynolds numbers.
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In addition to the topology of the time-averaged flow, in instantaneous flow fields, a
variety of complicated phenomena have been observed. Devenport & Simpson (1990)
described the wall jet underneath the horseshoe vortex as flipping between two modes:
in the back-flow mode, the wall jet – having large upstream momentum – penetrates
far into the oncoming boundary layer; in the zero-flow mode, the wall jet separates
from the bottom wall relatively early and the fluid is ejected vertically away from the
wall. In the zero-flow mode, V1 takes up a position further downstream than in the
back-flow mode. Devenport & Simpson (1990) proposed that instantaneous structures
in the incoming flow trigger the flipping between the two modes. Large-momentum
fluid from the outer flow entering the vortex system might cause the back-flow
mode, while fluid containing less momentum results in the zero-flow mode. However,
they were not able to prove this hypothesis. Paik, Escauriaza & Sotiropoulos (2007)
associated the back-flow mode with a well-organized vortex system, which undergoes
instabilities due to its vicinity to the bottom wall. They descriptively discussed how
hairpin vortices wrap around the main vortex, causing it to collapse and to be pushed
towards the bluff body. They associated the resulting less organized vortex structure
with the zero-flow mode.

Apsilidis et al. (2015) proposed that a third mode is present for a significant
fraction of the time, the so-called intermediate mode, which bears none of the
features associated with the back-flow and zero-flow modes. In this mode, the wall
jet neither penetrates far into the oncoming flow nor is ejected vertically, but is
diffused when running into the approaching boundary layer. The intermediate mode
becomes more dominant with increasing Reynolds number (Apsilidis et al. 2015).
They furthermore stated that the position of the main vortex does not depend on the
flow mode, as instantaneous flow topologies can be observed, in which V1 is located
close to the cylinder even though the wall jet is in the back-flow mode. In addition,
Apsilidis et al. (2015) observed that for a considerable fraction of the time, the flow
topology cannot be associated with any of the modes due to a lack of visible coherent
structures. With increasing Reynolds number, this fraction of time is decreasing.

The rich dynamics of the flow results in a typical distribution of turbulent
kinetic energy. Devenport & Simpson (1990) observed large Reynolds stresses in
the streamwise direction underneath the main vortex V1 close to the bottom plate
and large Reynolds normal stresses in the vertical direction in the region covered
by V1. Addition of both components of the Reynolds normal stresses leads to a
vertical c-shaped pattern of turbulent kinetic energy k (Paik et al. 2007). This distinct
c-shape was confirmed and discussed in detail by Apsilidis et al. (2015), who studied
the distribution of k as well as of its in-plane contributors for a range of moderate
Reynolds numbers. They found that the turbulent kinetic energy in the second patch of
high turbulent kinetic energy, which forms the lower branch of the c-shape, increases
with Reynolds number, while there is no clear trend for the amplitude of the turbulent
kinetic energy in the upper branch around the vortex core.

While the basic distribution of turbulent kinetic energy as observed by Devenport
& Simpson (1990) in front of a wall-mounted bluff body has been confirmed by
several research groups (Escauriaza & Sotiropoulos 2011; Kirkil & Constantinescu
2015; Ryu et al. 2016; Schanderl & Manhart 2016), the discussion on the detailed
mechanism causing such a shape is still ongoing. Devenport & Simpson (1990)
proposed that the flipping of the main vortex V1 in the streamwise direction leads to
large Reynolds normal stresses in the vertical as well as the streamwise direction in
the region covered by V1. They furthermore suggested that the fluctuation behaviour
of the wall jet causes the large Reynolds normal stresses in the lower branch of the
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c-shape: the amplitude of the streamwise velocity component is large in the back-flow
mode here, while it is close to zero in the zero-flow mode. In contrast, Escauriaza
& Sotiropoulos (2011), who observed two main vortices in the time-averaged flow
topology, hypothesized a complex interaction of these two separated vortices and
attributed the large amplitudes of the turbulent kinetic energy in the upper branch
of the c-shape to the quasi-periodic merging, collapsing and regeneration of these
vortices.

Our contribution to this ongoing discussion is the evaluation of the turbulence
structure in front of a wall-mounted cylinder. The corresponding set-up is described
in § 2. To gain a holistic set of data, we conducted both particle image velocimetry
(§ 3) and large-eddy simulation (LES) (§ 4). Based on the time-averaged flow topology
(§ 5) and its bimodality, we discuss the distribution of the turbulent kinetic energy as
well as every single term of the budget of the turbulent kinetic energy, including
production, convection, turbulent transport processes and dissipation (§ 6). We
particularly intend to elucidate how these budget terms are linked to features of
the time-averaged flow field, especially to acceleration and deceleration regions, and
how they interact with each other.

2. Flow configuration

We investigate the flow around a cylinder placed vertically on the bottom wall in
a water channel with a free surface at a low Froude number. The configuration is
sketched in figure 1. The diameter of the cylinder is denoted as D, the water depth is
h=1.5D and the width of the channel is w=11.7D. The approaching stream is a fully
developed open-channel flow at a small Froude number (in fact, the Froude number
is infinitesimal in the numerical simulation while it is Fr = 0.32 in the experiment;
see §§ 4 and 3 respectively). We devoted special care to the generation of a fully
developed inflow, including the secondary flow structures in the channel (Nezu &
Nakagawa 1993). Based on the bulk velocity averaged over the whole cross-section
of the channel, uCS, the Reynolds number is ReD = uCSD/ν = 39 000 in the LES and
ReD = uCSD/ν = 37 165 ± 7 % in the experiment. The uncertainty in the experiment
is due to uncertainties in the flow rate, flow depth and temperature of the working
fluid. Due to the secondary flow developing in the channel, the global bulk velocity
uCS differs from the bulk velocity in the symmetry plane ub, such that ub = 1.075uCS

in the LES and ub= 1.031uCS in the experiment; the corresponding Reynolds numbers
are accordingly Reb = ubD/ν = 41 900 in the LES and Reb = ubD/ν = 38 300 in the
experiment. We use the bulk velocity of the symmetry plane for normalization in
the remainder of this paper, as this allows a better comparison with results from the
literature for the quantities in the symmetry plane.

The parameters of the configuration have been chosen to be comparable to the
experiments of Dargahi (1989) and preliminary studies of our research group (Pfleger
2011). The results of Dargahi (1989) have frequently been used for validating
numerical results (Roulund et al. 2005; Escauriaza & Sotiropoulos 2011). The
configuration of the experiment of Apsilidis et al. (2015) differs from ours in the ratio
of the cylinder diameter to the boundary layer thickness and in the ratio of the water
depth to the channel width. However, it was performed at a similar Reynolds number.
Furthermore, Devenport & Simpson (1990) investigated a wing–body junction flow at
a larger Reynolds number and a smaller boundary layer thickness-to-diameter ratio
than ours. Nevertheless, many flow features are shared among the cited comparable
studies.
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FIGURE 1. The configuration of the flow around a wall-mounted cylinder at ReD= 39 000.
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FIGURE 2. Experimental set-up, taken from Pfleger (2011).

3. Experimental configuration
We conducted particle image velocimetry (PIV) experiments in the hydromechanics

laboratory of the Technische Universität München. First, the experimental set-up is
described. Subsequently, the measuring technique and the post-processing parameters
are briefly introduced.

3.1. Experimental domain
The water channel is sketched in figure 2. A cylinder with a diameter of D= 0.1 m
is placed in the symmetry plane of a 11.7D wide flume. The latter is fed by a high-
level water tank. The flow rate is measured by a magneto-inductive flow meter. A flow
straightener damps the flow disturbances introduced by the inlet and a floating body
reduces surface waves at the beginning of the channel. The undisturbed section of
the flume in which the approaching turbulent open-channel flow develops naturally is
approximately 200D long. A sluice placed at the outlet of the flume controls the flow
depth to 1.5D before the water recirculates to the inlet periodically. The temperature
of the working fluid water was found to be essentially constant at 18.4 ◦C, which gives
a kinematic viscosity of 1.05× 10−6 m2 s−1.

Since the cylinder disturbs the flow, small-scale surface waves appear and change
the angle of refraction locally. Therefore, we used a slat of acrylic glass to damp those
impacts to enable the laser light to enter the water body perpendicularly at its surface.
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The slat was designed to be just as large as necessary to keep the influence on the flow
structure as small as possible. It had a length of L= 1.5D in the streamwise direction,
a width of W = 0.5D in the spanwise direction and was submerged by 0.01D–0.05D.
Approximately 4 % of the flume width was covered by the slat. In order to study its
influence, the approaching flow with and without the slat was measured. In addition,
numerical simulations of the flow around the cylinder with and without such a slat at
lower Reynolds numbers were executed. The comparison of both numerical simulation
and measurement of the approaching flow indicated that the deviations in the regions
of interest near the bottom wall were small.

3.2. Measuring technique
We used two-dimensional two-component PIV to measure instantaneous velocity
vectors in an observation window located in the symmetry plane upstream of the
cylinder. A 2 mm = 0.02D thick light sheet was generated by a 532 nm Nd : YAG
laser and entered the flow from the top through the slat. The images were recorded
with a CCD camera at a resolution of 2048 × 2048 px. We applied two different
magnifications for the inflow and the flow in front of the cylinder respectively. For
the inflow, we covered the whole flow depth, which resulted in a resolution of
87 µm px−1. For the measurements in front of the cylinder, we zoomed in using an
f -number and a focal length of 2.8 and 105 mm respectively. Thereby, we achieved
a magnification factor of 0.155, i.e. 47.6 µm px−1 or 2101 px/D.

The seeding particles were hollow glass spheres with a diameter of dP = 10 µm
and a density of ρP= 1100 kg m−3. The corresponding relaxation time was thus τP=

d2
PρP/(18νρ)= 6.11× 10−6 s (Raffel et al. 2007). With this relaxation time, we could

evaluate different Stokes numbers. The Stokes number based on the outer scaling was
Stb = τPub/D = 2.38 × 10−5. Applying the Kolmogorov time scale τK =

√
ν/εmacro

(Pope 2011), the corresponding Stokes number was StK = τP/τK = 4.7145× 10−3. The
macroscale estimation of the dissipation, εmacro = u3

b/D (Pope 2011), is a conservative
estimation, as the discussion of the dissipation in § 6.4 will show. Since the estimated
Stokes numbers are considerably smaller than one, the particles can be considered
to attain velocity equilibrium with the fluid (Raffel et al. 2007). The seeding was
given continuously to the flow at the flow straightener at the beginning of the flume
(figure 2).

We recorded a total of 27 000 image pairs with a sampling rate of 7.25 Hz and
a time delay of 700 µs. This sampling rate would be too low to trace the evolution
of individual flow structures in time or to compute spectra. For our purpose, it was
sufficient as we considered time-averaged quantities only. Due to computer capacity,
we subdivided the experiment into 18 batches of 1500 image pairs. This allowed us
to clean the glass bottom of the flume repeatedly between each run to keep surface
reflections at a constant low level. Thus, we recorded the flow statistics within a
dimensionless time Tub/D≈ 800 in each batch and Tub/D≈ 15 000 in total.

To analyse the flow field, we applied a two-dimensional standard PIV vector
evaluation with 16 × 16 px interrogation windows at a 50 % overlap. The vectors
marked as invalid were replaced by their corresponding 32× 32 interrogation window
counterparts. Thus, the spatial resolution was 0.0038D, which corresponds to 263
data points per cylinder diameter.

In order to validate our PIV results, we checked various evaluation algorithms. An
interrogation window size of 32 × 32 px was too coarse to resolve fine structures
in the flow statistics. A standard evaluation with an interrogation window size of
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FIGURE 3. The number of valid samples obtained in the PIV experiment.

16× 16 px yielded a large number of invalid vectors. We explain these invalid vectors
by out-of-plane losses due to large spanwise velocity fluctuations perpendicular to
the light sheet. Unfortunately, the out-of-plane losses produced some artefacts in
the flow fields. The artefacts disappeared when a deformable window algorithm was
used. However, this algorithm marked an even larger number of samples as invalid.
Therefore, we decided to use a standard 16 × 16 interrogation window evaluation
and to replace the vectors marked as invalid by their counterparts from a 32 × 32
interrogation window evaluation at the same spatial positions. The results obtained
with this technique were very similar to the ones obtained by the 16× 16 evaluation
with window deformation, although some details were lost. We feel this to be a
good compromise between resolution and reliability. In figure 3, the number of valid
samples in the region of interest in front of the cylinder is plotted. In wide regions,
more than 24 000 samples were achieved. The reduced number of samples near the
corner between the cylinder and the wall (figure 3) corresponds to the region of the
corner vortex in which there are both large spanwise fluctuations and large spatial
velocity gradients.

In addition to the standard interrogation window algorithm, we applied a single-
pixel evaluation (Westerweel, Geelhoed & Lindken 2004; Kähler, Scholz & Ortmanns
2006; Strobl, Jenssen & Manhart 2016) to evaluate the time-averaged flow field. This
gave a resolution of 2083 data points per diameter. Although these fields were quite
noisy, they were useful for assessing the time-averaged wall shear stress and for
revealing further details of the flow field.

To document the undisturbed approach flow, the cylinder was removed. The
corresponding measurements were conducted at the same streamwise position in the
symmetry plane of the channel as the ones with the cylinder. To capture the whole
flow depth, they were conducted with a larger field of view. The evaluation was
made with interrogation windows of 32× 32 px, which corresponds to 72 data points
per cylinder diameter. As this resolution was insufficient for an estimation of the
wall gradient, the method of Clauser (1954) was applied to estimate the undisturbed
wall shear stress of the approach flow. This is justifiable since the approach flow is
considered to be a fully developed open-channel flow. It should be noted that the
wall shear stress in front of the cylinder was evaluated by computing the velocity
gradient.

4. Computational configuration
We complemented our PIV measurements by a highly resolved LES of the same

flow configuration, identical to the one described in the study of Schanderl & Manhart
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(2016), in which the reliability of the presented simulation has been discussed in detail.
In this section, we describe the numerical method and set-up before we discuss the
influence of the modelled subgrid-scale stresses on the results.

4.1. Numerical method
For the highly resolved LES, we applied our in-house code MGLET, which is a
finite volume code and parametrizes the subgrid-scale stresses by the wall-adapting
local eddy-viscosity (WALE) model (Nicoud & Ducros 1999). Since the subgrid-scale
viscosity in this model decreases naturally towards the wall with νt ∝ y3, no damping
function had to be used. Central differences and a third-order Runge–Kutta procedure
provide spatial approximation and time integration respectively. Since the grid is
Cartesian, a conservative second-order immersed boundary method (Peller et al.
2006; Peller 2010) is applied to constitute the curved surface of the cylinder. The
variables are arranged in a staggered way. Zonally embedded grids (Manhart 2004),
each reducing the grid spacing by a factor of two, refine the grid in the region of
interest around the cylinder.

To model the flow configuration in figure 1, the cylinder and the bottom and
sidewalls of the channel are represented as no-slip conditions. The free surface is
modelled by a slip condition. Since this slip condition at the top boundary prevents all
kinds of surface deformation, the Froude number can be assumed to be infinitesimally
small.

We assume that we have a wall-resolved LES, which means that we assess the local
instantaneous wall shear stress by the linear gradient between the first off-wall grid
cell centre and the wall. This assumption is justified if the wall-nearest cell centres
are within the viscous sublayer, which is fulfilled in most of the flow domain, except
in the precursor simulation; see below.

After the flow has reached a statistically steady state, a dimensionless time of
Tub/D ≈ 700 was simulated to gather statistics. This took approximately 2 million
cpu hours on the high-performance computer SUPERMUC of the Bavarian Academy
of Sciences.

4.2. Grid resolution
The computational domain consists of two major parts (figure 4): a precursor grid
with periodic boundary conditions in the streamwise direction (x-direction) simulating
the fully developed open-channel flow and the base grid in which the cylinder is
placed. The base grid is one-way coupled to the precursor grid, such that instantaneous
velocity cross-sections are taken from the precursor and set as the inflow condition at
the base grid. The cylinder is placed at (x, y)= (0, 0), which corresponds to the centre
of the base grid.

The region of interest around the cylinder is refined by locally embedded grids.
In total, three levels of grid refinement had to be applied. The precursor and base
grid correspond to the refinement level zero and the finest grid to refinement level
three. The position of each local grid is indicated by grey colour in figure 4. Since
each refinement level reduces the grid spacing by a factor of two, the grid spacing
of the finest level is eight times smaller than that in the precursor and the base grid.
The finest grid uses 250 grid cells per cylinder diameter in the horizontal directions
and 1000 grid cells per diameter in the vertical direction (z-direction), normal to the
bottom wall. This corresponds to 1x+=1y+= 7.4 and 1z+= 1.9 in wall units based
on the undisturbed wall shear stress τ0 of the flow in the precursor simulation.
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FIGURE 4. Side view of the computational domain. The zonally embedded grids are
marked in grey (Schanderl & Manhart 2016).

The wall-nearest grid point, which is in the cell centre of the wall-nearest grid cell,
is at z+= 7.5 in the precursor simulation. In the finest grid around the cylinder, this is
at z+ = 0.95 if it is based on the wall shear stress of the oncoming flow. If the local
wall shear stress is taken, the maximum inner wall distance of the first grid point in
the symmetry plane lies at z+ ≈ 1.6.

As the discussion of the dissipation rate in § 6.4 indicates, the finest grid spacing
corresponds to approximately 1.5 Kolmogorov length scales in the vertical and
approximately 6 Kolmogorov length scales in the horizontal direction. A grid study
(Schanderl & Manhart 2016) shows that the three refinement levels applied are
sufficient to reach a converged solution of the flow. The convergence of the first-order
moments of the flow field is exemplarily discussed in § 5.3, where the wall shear
stress distributions of three single simulations with one, two and three levels of
grid refinement are presented. All numerical data relating to the region around the
cylinder presented in this paper are taken from the simulation with three levels of
grid refinement. However, as no locally embedded grids are applied in the inflow
section, data characterizing this incoming flow are taken from the grid corresponding
to refinement level zero.

The grid is equidistant in the horizontal directions and stretched by a factor of less
than 1.01 in the vertical direction. It should be noted that as this stretching factor is
applied to the base grid, only every eighth cell of the finest local grid is stretched. In
total, the simulation uses 400× 106 grid cells.

Application of time steps of 1Tub/D= 5.34× 10−4 results in a Courant–Friedrichs–
Lewy number of 0.55 < CFLmax < 0.82 on the finest locally embedded grid in the
region around the cylinder.

4.3. Influence of the subgrid-scale model
The grid spacing is fine enough to ensure that the influence of the subgrid-scale
model is small (Schanderl & Manhart 2016). Compared with the molecular viscosity
ν, the time-averaged modelled viscosity does not exceed a value of 〈νt〉 = 0.39ν in
the symmetry plane in front of the cylinder. Schanderl & Manhart (2016) furthermore
demonstrated that the time-averaged molecular shear stress ν∂〈u〉/∂z and the resolved
turbulent shear stress −ρ〈u′w′〉 exceed the modelled shear stress 〈νt∂u/∂z〉 by two
orders of magnitude in the region of the horseshoe vortex system. Here, u′, v′ and w′
are the fluctuations of the corresponding velocities in the streamwise, spanwise and
vertical directions u, v and w respectively.

Since the presented study focuses on the turbulent kinetic energy balance, we took
care that the resolved turbulent kinetic energy k,

k= 1
2(〈u

′2
〉 + 〈v′2〉 + 〈w′2〉), (4.1)
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FIGURE 5. Ratio of modelled to resolved turbulent kinetic energy kSGS/k in the symmetry
plane in front of the cylinder.

was large compared with the modelled turbulent kinetic energy kSGS, which is
estimated by (Lilly 1967; Werner 1991)

kSGS =

( νt

0.094∆

)2
. (4.2)

Here, ∆ is the filter width, which is equivalent to the grid spacing.
In figure 5, the ratio of the modelled to the resolved turbulent kinetic energy kSGS/k

is evaluated in the symmetry plane in front of the cylinder in an area covered by
the horseshoe vortex system. In the region around the horseshoe vortex centre, the
modelled turbulent kinetic energy peaks at kSGS ≈ 0.035k.

At the junction of the bottom wall and the cylinder, values of kSGS/k≈ 0.15 can be
observed. Here, the subgrid stress model visibly contributes to the energy balance. The
peak at this position implies that the grid is too coarse to fully resolve the turbulent
kinetic energy of the small corner vortex (see § 5). This is visible in the residual
of the turbulent kinetic energy budget discussed in § 6.6. However, for an LES, this
magnitude of kSGS/k can be considered as small. Furthermore, the peak is locally
restricted, while in large regions, kSGS/k is significantly smaller.

Considering the small contribution of the subgrid stresses, we assume that the
observations concerning the turbulent kinetic energy budget discussed in § 6 are
representative for this flow, despite the fact that the presented data apart from the
dissipation do not include subgrid contributions. As pointed out in § 6.4, the modelled
dissipation is approximately 1/10 to 1/3 in the region covered by the horseshoe vortex.
For the evaluation of the dissipation, therefore, the sum of both the modelled and the
resolved contribution will be considered, as defined in (6.7).

5. Flow topology
Since the inflow condition was shown to have a strong influence on the flow around

the cylinder (Schanderl & Manhart 2016), we took care to have similar incoming
flow profiles in the experiment and the simulation. The following section documents
the incoming flow profiles as well as the flow pattern and the wall shear stress
distribution for both the experiment and the simulation. Since we could measure
only two-dimensional velocity distributions, we concentrate on comparing in-plane
quantities and processes in the symmetry plane in front of the cylinder. Any results
out of that plane were achieved by LES alone. The discussion of the flow topology
is the basis for a deeper investigation of the turbulence structure presented in § 6.
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PIV LES

uCS/ub 0.97 0.93
cf 0 4.3× 10−3 3.9× 10−3

TABLE 1. The ratio of the velocity averaged over the whole cross-section uCS to the bulk
velocity in the symmetry plane ub, and friction coefficients in the undisturbed symmetry
plane flow profile for the experiment and simulation.

5.1. Inflow condition
We first document the mean streamwise velocity and the Reynolds stresses of the
undisturbed flow in the symmetry plane (figure 6). Figure 6(a) indicates that the time-
averaged velocity profiles of the undisturbed incoming flow follow the logarithmic
law of the wall in the experiment as well as in the simulation. The data are made
dimensionless by the friction velocity uτ =

√
τ0/ρ (Pope 2011). Here, τ0 is the wall

shear stress in the symmetry plane of the undisturbed flow. It was computed by the
velocity gradient at the wall in the LES and iteratively by the method of Clauser
(1954) in the experiment.

The wake region of the LES is more pronounced than the one in the experiment.
There are two possible reasons for this. The first possible explanation for the
difference between LES and experiment could be the limited length of the inflow
section in the water channel (≈140 water depths), which might be too short for a fully
developed secondary flow structure. According to Demuren & Rodi (1984), more than
approximately 60 hydraulic diameters are needed for fully developed secondary flow,
while in our experiment the inflow length corresponds to only 42 hydraulic diameters.
In the spanwise distribution of the streamwise velocity 〈u〉, these secondary flow
structures cause a pronounced maximum in the symmetry plane (Schanderl & Manhart
2016). This leads to different ratios between the bulk velocity in the symmetry
plane ub and the bulk velocity averaged over the whole cross-section uCS, which
has consequences for the normalization of statistical quantities. Table 1 documents
the ratios uCS/ub and cf 0 = τ0/(0.5ρu2

b) from the experiment and simulation. This
difference will have an impact on the interpretation of dimensionless variables, as it
makes a difference whether centreline or global quantities are used for normalization.

A second explanation for the different mean velocity profiles in experiment and
simulation could be the wave damper we use in the experiment to damp surface waves.
This is placed directly downstream of the flow straightener at the inflow into the water
channel. This dampener slows down the flow at the surface and could lead to smaller
surface velocities downstream, thus suppressing a pronounced wake profile. The first
flow quantity on which the incoming flow profile will act is the downflow in front of
the cylinder as it is induced by the velocity gradient in the incoming profile. We see
that there are differences in the downflow in front of the cylinder (figure 8) which
might also have an influence on the vortex system.

A comparison of the Reynolds normal stresses 〈u′2〉 and 〈w′2〉 (figures 6b
and 6c respectively) and the Reynolds shear stresses 〈u′w′〉 (figure 6d) indicates
accordance of the experimental and numerical inflow turbulence structures. The
presented data also match the experimental data of Bruns, Dengel & Fernholz (1992)
taken from Fernholz & Finley (1996) with similar Reynolds numbers based on the
momentum thickness. Thus, we assume that the flow field of the approach flow is
representative of a fully developed turbulent open-channel flow at the investigated
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FIGURE 6. Time-averaged velocity profiles 〈u〉/uτ (a), streamwise Reynolds stress
〈u′2〉/u2

τ (b), wall-normal Reynolds stress 〈w′2〉/u2
τ (c) and Reynolds shear stress

〈u′w′〉/u2
τ (d) in the precursor grid for PIV and LES. For reasons of visibility, only every

third data point is plotted for z+> 150. The experimental data of Bruns et al. (1992) have
been digitized from Fernholz & Finley (1996).

Reynolds number. The overprediction of the vertical fluctuations 〈w′2〉 by the PIV in
the near-wall region is a result of the coarse measurement resolution that was used
when investigating the undisturbed flow.

In figure 6, we also include profiles measured under the slat that was placed at
the water surface in front of the cylinder to provide optical access through the water
surface. These measurements were made without the cylinder. The profiles have
been averaged in time and space over a length of 1.25D in the middle of the slat.
We observe that the influence of the slat is generally strong near the water surface
but remains negligible below z+ < 1000, which is approximately z < D/3. Near the
surface, the profiles measured with the slat seem to be smoother and less affected
by artefacts than the ones measured without the slat. This can be explained by the
smaller disturbance of the light sheet in the case with the slat.

Throughout this paper, all values denoted as undisturbed or being from the incoming
flow (for example ub, τ0 or those presented in figure 6) are taken from the symmetry
plane of the flume.

5.2. Horseshoe vortex system
Figure 7 presents the measured and simulated time-averaged streamlines in the
symmetry plane in front of the cylinder. For both data sets, the seeding points defining
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FIGURE 7. Streamlines of the time-averaged flow field in the symmetry plane in front of
the cylinder for (a) PIV and (b) LES.

the streamlines are uniformly distributed on a line between (x, z) = (−1.2D, 0) and
(x, z)= (−0.5D, 0.2D). From these seeding points, streamlines are integrated forwards
as well as backwards in time. The approach flow profile leads to a vertical pressure
gradient in front of the cylinder, which drives the downflow along the cylinder front.
The main part of the downflow is turned upstream on reaching the bottom plate
and flows upstream under the core of the main vortex V1. One part of this fluid
is entrained into the main vortex; the other part forms a jet along the bottom wall
directed against the main flow direction. The division between entrained fluid and
fluid forming the jet is the stagnation point S1. The upstream-directed wall jet under
S1 enters the upstream recirculation zone which ends at the critical point S2. We
do not observe a second vortex V2 upstream of V1, in contrast to Apsilidis et al.
(2015). The critical point S2 is not a separation as the fluid is not moving away from
the wall at this point. The vertical velocity component in the vicinity of this point is
negative. Instead, it renders itself as a sink in the 2D symmetry plane, which would
be a stagnation point in 3D. This finding is different from the commonly used term
‘separation’ for this critical point and from the topology sketches of Baker (1979) for
laminar flows. A discussion on the flow topology can be found in Simpson (2001).
We cannot explain the different topology compared with that documented by Apsilidis
et al. (2015), but suggest that the state of the turbulent boundary layer approaching
the obstacle might be a key factor determining whether the point of first flow reversal
in front of an obstacle will be a point of separation or a stagnation point.

The downwash at the cylinder front establishes a thin boundary layer at the
flow-facing wall of the cylinder, which results in a pressure gradient between
stagnation point S3 and the cylinder–wall junction. Thus, a small part of the fluid
pushed downwards in front of the cylinder is deflected towards the cylinder on
reaching the bottom plate, forming the corner vortex V3. The stagnation point S3
separates the fluid pointing in the upstream direction from that flowing towards
the cylinder. The corner vortex V3 is trapped between stagnation point S3 and the
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PIV LES
x/D z/D x/D z/D

S1 −0.87D 0.04D −0.84D 0.04D
S2 −1.04D — −1.10D —
S3 −0.54D — −0.51D —
S4 −0.51D 0.045D −0.50D 0.04D
V1 −0.76D 0.065D −0.73D 0.060D
V3 −0.517D 0.025D −0.515D 0.02D

TABLE 2. The positions of the critical points. If no zSi is given, the corresponding
stagnation point is located at the bottom plate.

cylinder–wall junction. The PIV flow field (figure 7a) illustrates the similarity between
V1, S1 and V3, S4 respectively. One could speculate that at higher Reynolds numbers,
or with a better spatial resolution, a cascade of more and more smaller vortices appear
in the corner between the cylinder and the wall, which would be cut due to viscous
effects. In fact, such an additional corner vortex is visible in the streamline plots of
Ryu et al. (2016), who simulated the wing–plate junction flow case of Devenport &
Simpson (1990), which has a higher Reynolds number than the one of our case. Our
single-pixel results for the time-averaged wall shear stress (§ 5.3, figure 11) show
another small zone of negative wall shear stress just in front of the cylinder, which
suggests a small clockwise-rotating vortex in front of the cylinder. This would be in
line with the streamline plot of Ryu et al. (2016).

Between the stagnation points S3 and S2, the flow is pointing upstream along the
wall, forming a wall jet, as discussed above. The upstream-directed flow is subject
to a distinct pattern of acceleration along the streamlines. The rate of change of the
distance between two adjacent streamlines is a measure for the velocity acceleration.
As streamlines move together in figure 7, the flow accelerates, and vice versa. In
particular, upstream of the stagnation point S3 in the range −0.73D < x < −0.53D,
we can observe strong acceleration of the near-wall flow. After passing under the
vortex V1, the spacing of the streamlines widens slightly, indicating deceleration.
Finally, the fluid reaccelerates towards S2 or to being transported out of the plane in
the spanwise direction. The consequences of this acceleration pattern on the budget
of turbulent kinetic energy will be discussed in § 6.

The exact locations of the critical points mentioned above are listed in table 2.
Comparison of the locations evaluated by PIV and LES shows satisfying accordance.
However, the comparison of the streamlines in figure 7 points out a slight difference.
In the LES, more fluid is entrained by the main vortex V1, resulting in the vortex
being optically larger (figure 7b). The streamline approaching S1 from upstream
originates from z/D = 0.05 in both cases. The streamline approaching S1 from
downstream emanates from z/D≈ 0.11 in the experiment and from z/D≈ 0.16 in the
LES. This is the streamline separating the fluid under the main vortex V1 into fluid
going upstream along the wall and fluid being entrained into the vortex.

Figure 8 compares the streamwise profiles of the time-averaged vertical velocity
component 〈w〉 from LES and PIV on a horizontal line at zV1 = 0.06D, which is
through the centre of the main vortex V1. Negative values imply downflow, and
vice versa. The experimental data in single-pixel resolution (dots) were smoothed by
applying a moving spatial filter over 16 px (solid line).
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PIV, single-pixel
PIV, single-pixel, moving average

LES

FIGURE 8. Profiles of the wall-normal velocity component 〈w〉 in the symmetry plane in
front of the cylinder at a wall distance of zV1 = 0.06D.

Vortex V1 can be identified in figure 8, as the upward-directed flow upstream and
the downflow downstream from xV1 indicate a clockwise rotation. The zero crossings
between x/D = −0.8 and x/D = −0.7 indicate the location of the vortex centre.
The downflow between the vortex centre and the cylinder shows two local minima
separated by a local maximum which is at approximately x≈−0.6D.

There is a qualitative match between the measured and simulated profiles. However,
the vortex centre is more upstream in the experiment, which leads to a larger extent
of the downflow region. In addition, the magnitude of the downflow is larger in
the experiment. We observe that the single-pixel evaluation gives results qualitatively
closer to the LES than the standard PIV. The standard PIV does not show the
second local minimum at approximately x/D=−0.65 and gives visibly larger vertical
velocities in the zone upstream of the vortex core than single-pixel PIV. There might
be some small-scale events contributing to the time-averaged flow field which cannot
be resolved by the relatively large interrogation windows of the standard PIV.

Figure 9(a) shows a top view of the simulated streamlines along the bottom plate,
i.e. taking the stream- and spanwise velocities at z = 0.001D. The streamlines are
integrated back in time from points distributed equidistantly on a spanwise line at
x = 0.8D. This results in a relatively loose package of streamlines in the cylinder
front. The regions dominated by the different vortices are visible here. The thin blank
ring around the cylinder marks the corner vortex V3 in which fluid moves from the
stagnation line towards the cylinder. The stagnation line collects streamlines which
are integrated back in time from the points defined by the probe and go through
the stagnation point S3 in the symmetry plane. Upstream of S3, the fluid moves in
the upstream direction in a nearly straight manner, i.e. the streamlines close to the
symmetry plane between S3 and x/D≈−0.75 are nearly parallel. This indicates that
almost all of the fluid close to the symmetry plane remains there and the transport in
the spanwise direction is small underneath V1. The transport in the spanwise direction
starts in the deceleration region of the wall jet at x≈−0.8D, where the streamlines
bear strong curvature, implying that major parts of the fluid leave the symmetry plane.

The streamlines along the bottom plate are linked to the pressure distribution on the
bottom plate, shown as pressure coefficient cp = 〈p〉/(0.5ρu2

b) in figure 9(b). Large
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FIGURE 9. Streamlines of the time-averaged flow field (a) and the pressure distribution
cp = 〈p〉/(0.5ρu2

b) (b) along the bottom plate around the cylinder taken from the LES.

pressure is indicated by dark colour and small pressure is indicated by light colour.
The largest pressure is observed in front of the cylinder where the downflow hits the
bottom plate between the main vortex and the cylinder. The near-wall streamlines in
this area are pointing upstream in the direction of the steepest pressure gradient. At
x ≈ −0.8D, the pressure gradient is of similar magnitude in both the upstream and
spanwise directions, causing the fluid to be transported outwards from the symmetry
plane. At the same location, the streamlines in figure 9(a) bear the largest curvature
and deviate from the symmetry plane. The stagnation line from point S3 would be
visible in radial pressure profiles as local maxima.

Further insight into the three-dimensional behaviour of the vortex system can be
gained from the instantaneous distributions of the second invariant of the velocity
gradient tensor (figure 10). This so-called Q-criterion is widely used to visualize
vortex structures. The isosurfaces Qu2

b/D
2
= 1000 are rendered in a volume between

z = 0 and z = 0.2D. The value was chosen to enable the identification of vortical
structures. In each panel, we overlay two arbitrary time instants to demonstrate the
spatial variability of the horseshoe vortex. The isosurface of Q at one instant is
rendered in black and the other one in grey. In figure 10(a), the wakes behind the
cylinder are approximately symmetric. In figure 10(b), the two instants are chosen
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(a)

(b)

FIGURE 10. Top views of the instantaneous three-dimensional vortex structure visualized
by Qu2

b/D
2
= 1000 taken from the LES. In each panel, two realizations at arbitrary times

have been plotted on top of each other.

to be during vortex shedding, i.e. the wakes are asymmetric and the vortices are
shedding from opposite sides of the cylinder at the two instants.

At all four instants, the main vortex V1 is visible in front (on the left) of the
cylinder. It bends around the cylinder like a horseshoe. The four instants demonstrate
that the horseshoe vortex can undergo parallel displacements in the streamwise
direction, as visible in figure 10(a), and a tilting around a vertical axis, as visible
in figure 10(b). The displacement between the two instants in figure 10(a) is
relatively large. The streamwise positions of the cores in the symmetry plane are
x/D ≈ −0.83 and x/D ≈ −0.7 respectively. In figure 10(b), both vortices are at
the same streamwise position in the symmetry plane at x/D ≈ −0.73, which is the
position of the time-averaged vortex V1. Small secondary vortices are visible at
all instants, wrapping around the horseshoe vortex. It seems that they are lifted up
upstream of the horseshoe vortex, which is in the region in which the upstream jet
under the vortex decelerates. A deceleration of the streamwise velocity component and
simultaneous stretching in the vertical direction would give rise to vertical vorticity,
which is manifested here in the secondary vortices which mainly occur upstream of
the horseshoe vortex. Downstream of the horseshoe vortex, between the vortex and
the cylinder, the instantaneous vortical structures render a calm region at all times in
the sense that no intense vortices are visible.

The instants rendered in figure 10 do not represent a time sequence. However, one
observation can be made on the coherence of the horseshoe vortex. If the vortex is at
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–0.015

–0.010

–0.005

0

0.005

0.010

PIV, single-pixel

LES, level 3
LES, level 2
LES, level 1

FIGURE 11. The distribution of the friction coefficient cf = 〈τw〉/(0.5ρu2
b) over x/D in

the symmetry plane in front of the cylinder.

the position closest to the cylinder, the vortex is a coherent tube over a long distance
along its core. If the vortex is at the position farthest away from the cylinder, the
vortex cannot really be identified as a coherent single vortex. It is more or less a
disordered arrangement of small-scaled vortices arranged along a curve in space that
resembles a horseshoe vortex. This stage might be what results from a destabilization
of the vortex by secondary vortices wrapped around the main vortex.

The vortex structures rendered in figure 10 are quite different from the instantaneous
vortical structures documented by Escauriaza & Sotiropoulos (2011) for detached eddy
simulations, but consistent with the structures described by Apsilidis et al. (2012) for
LES.

5.3. Wall shear stress distribution
The flow described above exerts a specific pattern of wall shear stress on the bottom
plate. Figure 11 shows the friction coefficient cf =〈τ 〉/(0.5ρu2

b) in the symmetry plane
upstream of the cylinder. The friction factor is negative in the large back-flow zone
between the two stagnation points S2 and S3 (figure 7) and positive in the forward
flow between the stagnation point S3 (x/D≈−0.53) and the cylinder wall.

The footprints of the two vortices discussed above, V1 and V3, are visible in the
distributions of cf . The anticlockwise-rotating vortex V3 causes the strong positive
wall shear stress peak at −0.53D < x < −0.5D. The stagnation point S3 is located
where the wall shear stress is zero at x≈−0.53D. Upstream of S3, the acceleration
zone of the described wall jet leads to the broad region of negative wall shear stress
at −0.8D < x < −0.53D. It should be noted that the maximum magnitudes of the
wall shear stress are not found under the vortex core of the horseshoe vortex V1 but
in the zone in which the flow is accelerated between stagnation point S3 and the
location under the vortex core V1. Under the stagnation point S1, there is a local
maximum of the wall shear stress, which means that the magnitude of the wall shear
stress has a local minimum as the flow is pointing upstream. We do not observe a
local recirculation embedded in this upstream flow as other authors have reported (e.g.
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Escauriaza & Sotiropoulos 2011). The upstream jet forming under the main horseshoe
vortex V1 reaches up to the stagnation point S2 at x≈−1.1D. This observation can be
made for both experiment and simulation, and is consistent with findings by Devenport
& Simpson (1990).

As illustrated in figure 9, major parts of the fluid are leaving the symmetry plane
and accelerating in the spanwise direction in the zone −1.1D < x < −0.8D, which
is approximately between the stagnation point S2 and the main vortex core. This
could explain why the wall shear stress between V1 and S2 is much smaller than
that underneath vortex V1. The local maximum of the amplitude at x≈−0.9D could
be explained by the fluid pointing towards the wall upstream of S1.

The numerical results are documented for three simulations with different grid
resolutions. The simulation denoted as level 1 holds one locally embedded grid only,
and the wall distance of the wall-parallel velocity is 0.002D. Since simulation level 2
has two locally embedded grids, the grid spacing around the cylinder is reduced by a
factor of two compared with simulation level 1, which leads to a wall distance of the
first velocity of 0.001D. In simulation level 3, the grid spacing is further reduced by
a factor of two and the wall distance is 5× 10−4D. Here, the grid is eight times finer
than in the precursor and the base grid. The differences between the wall shear stress
taken from the simulation with the coarse grid (level 1) and from the one with the
medium grid (level 2) are significant. The coarse grid underestimates the amplitude
of cf under the wall jet. Furthermore, it is not able to capture the double peak in the
region of large wall shear stress. Obviously, it is also too coarse to resolve vortex V3,
as cf shows no positive peak right in front of the cylinder. In contrast, the differences
between the simulations with the medium grid (level 2) and the fine grid (level 3) are
rather small. Both exhibit approximately the same amplitude and capture the double
peak distribution under the wall jet between −0.7D< x<−0.55D. We thus consider
the flow to be satisfyingly converged over grid refinement. The grid dependence of
the presented LES is discussed in more detail by Schanderl & Manhart (2016). All
numerical data relating to the region around the cylinder presented in this paper are
taken from the simulation with the fine grid (level 3). It should be noted that the data
characterizing the inflow (§ 5.1) stem from level zero, since no local grid refinement
is applied in the precursor grid.

The experimental data are documented for both a standard interrogation window and
a single-pixel evaluation. The standard method results have a wall distance of at least
0.0019D, which is half of the interrogation window size. The results obtained are in
line with the LES results at a comparable grid spacing, level 1. The dual-peak nature
of the strong wall shear stress is not reproduced by these results. The wall distance
of the first valid single-pixel vectors is limited by half of the diameter of a particle
image (Kähler, Scharnowski & Cierpka 2012), which is 3.4 px. With a pixel size of
48 µm, this gives a wall distance of approximately 8× 10−4D, which is between the
wall distances of the finest and second finest LES. Since the single-pixel method is
more sensitive to statistics and measurement issues, the corresponding wall shear stress
distribution shows significant scatter. However, neglecting these oscillations, the single-
pixel data support both the amplitude and the shape of the LES results.

While the overall behaviour of the wall shear stress agrees well between LES
(level 3) and standard 16 × 16 px PIV, a detailed look reveals subtle differences.
The LES predicts two local wall shear stress minima in the main recirculation zone
and a plateau between them. The standard PIV, however, shows only the minimum
at x/D ≈ −0.7 and no plateau. The measured distribution of the wall shear stress
between x/D = −0.7 and x/D = −0.53 resembles the one documented by Roulund
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et al. (2005) for a similar configuration at ReD = 170 000. However, application of
the single-pixel method to the experimental data reveals a similar plateau to that in
the LES (level 3).

Under V3 (x/D > −0.53), the amplitude of cf is largest in the single-pixel data,
while the wall shear stress from the standard PIV is smallest. The amplitude increases
with the data resolution here. This suggests that both LES and standard PIV are too
coarse to resolve vortex V3 sufficiently. Furthermore, the single-pixel PIV shows
negative values directly at the cylinder. This aspect is in favour of the possibility of
an additional vortex rotating in the clockwise direction, as discussed in § 5.2.

6. Turbulence structure

The horseshoe vortex system is subject to strong fluctuations, as documented
by several authors, e.g. Devenport & Simpson (1990), Escauriaza & Sotiropoulos
(2011) and Apsilidis et al. (2015). Furthermore, it has been demonstrated that
the near-wall momentum balance under the horseshoe vortex and especially in
the large-magnitude shear stress region under the downflow is dominated by the
convective terms. Reynolds stresses play a minor role here (Schanderl & Manhart
2015). To gain further insight into the dynamics of the vortex system, we investigate
the turbulence structure in this section. We restrict ourselves to an analysis in a
statistical sense, including the turbulent kinetic energy, Reynolds stresses, and their
production, dissipation and diffusion.

6.1. Turbulent kinetic energy
All previously published works report an enhanced level of turbulent kinetic energy
(4.1) near the core of the main horseshoe vortex V1. At moderate Reynolds numbers,
such as the one considered here, the main observation is that the distribution of the
turbulent kinetic energy follows a characteristic c-shape. There is a main peak around
the vortex core V1 and a leg-like structure between the main peak and the bottom
wall.

This structure can also be seen in our results (figure 12). The in-plane turbulent
kinetic energy kip = (〈u′2〉 + 〈w′2〉)/2 (figure 12b) is a fairly good representation
of the full turbulent kinetic energy (figure 12c). However, the peak value in the
horseshoe vortex core of the full turbulent kinetic energy is approximately 20 %
larger than the one of the in-plane turbulent kinetic energy. In contrast to the LES
results (figure 12b,c), the position of the corner vortex V3 is visible in the PIV
results (figure 12a). Overall, the measured peak values of the turbulent kinetic energy
are approximately 20 %–30 % larger than the simulated ones and similar to the ones
reported for ReD = 47 000 by Apsilidis et al. (2015).

For a detailed view, we investigate the individual Reynolds stresses. We restrict
ourselves to presenting the LES results only, as there are minor differences between
the measured and simulated distributions. The Reynolds normal stresses in the
streamwise direction 〈u′2〉 contribute mainly to the leg of the turbulent kinetic energy
distribution (figure 13a). This leg is located in the near-wall jet underneath the main
vortex core. Following the streamlines from the downflow between the vortex V1
and the cylinder (compare figure 7), the streamwise turbulence intensity grows
considerably when the local acceleration, as indicated by converging streamlines,
diminishes (at x≈−0.75D). The measured level of 〈u′2〉 is in general slightly larger
than the numerical one.
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FIGURE 12. The turbulent kinetic energy in the symmetry plane in front of the cylinder:
the in-plane turbulent kinetic energy kip/u2

b measured by PIV (a) and simulated by
LES (b); the full turbulent kinetic energy k/u2

b simulated by LES (c).

The vertical Reynolds normal stress 〈w′2〉 (figure 13b) peaks approximately around
the centre of V1, which is consistent with horizontal variations of the main vortex
core. Both LES and PIV have similar amplitudes. In addition to the peak around the
horseshoe vortex, we can observe enhanced vertical Reynolds stresses in a band along
the front of the cylinder in both LES and PIV.

Finally, the Reynolds shear stress 〈u′w′〉 is presented in figure 13(c). There is a large
patch with negative shear stress in the left half of vortex V1 slightly downstream of
the stagnation point S1, and a patch of positive shear stress downstream of the main
vortex.

Figure 14 illustrates three-dimensional isosurfaces of k/u2
b= 0.035 (red) and k/u2

b=

0.07 (blue) in the cylinder front. The isosurface of k/u2
b = 0.035 encloses the region

covered by the main vortex V1, while values of k/u2
b > 0.07 are limited to its core.

When V1 is bent around the cylinder and the fluid accelerates, the cross-sectional area
enclosed by the isosurfaces shrinks. Furthermore, it is noticeable that in the region
between V1 and the cylinder, the turbulent kinetic energy is relatively small. This is
the zone where the downflow in front of the cylinder takes place. In the following
sections, we further discuss this issue by taking a deeper look at the balance equation
of the turbulent kinetic energy.
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FIGURE 13. Reynolds stresses in the symmetry plane in front of the cylinder obtained
from LES: 〈u′2〉/u2

b (a), 〈w′2〉/u2
b (b) and 〈u′w′〉/u2

b (c).

FIGURE 14. Isosurfaces of the turbulent kinetic energy in the cylinder front taken from
the LES; k/u2

b = 0.035 is marked in red and k/u2
b = 0.07 is marked in blue. The former

is only shown up to the symmetry plane.

6.2. Turbulent kinetic energy balance
In the remainder of this paper, we will investigate the complete budget of the
turbulent kinetic energy k (4.1) in front of the wall-mounted cylinder. According
to, e.g., Pope (2011), the budget contains convection by the time-averaged flow C,
turbulent convection Tconv, pressure transport Tpres, viscous diffusion Tvisc, production
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P and dissipation ε,

0=C+ Tconv + Tpres + Tvisc + P− ε. (6.1)

In a statistically steady flow, the convective term C reads as

C=−〈ui〉
∂k
∂xi
. (6.2)

Besides the mean convection C, three mechanisms are responsible for redistributing
k in space: turbulent convection Tconv, pressure transport Tpres and viscous diffusion
Tvisc,

Tconv =−
1
2
∂

∂xi
〈u′iu

′

ju
′

j〉, (6.3)

Tpres =−
1
ρ

∂

∂xi
〈u′ip

′
〉, (6.4)

Tvisc = 2ν
∂

∂xi
〈u′js

′

ij〉. (6.5)

The three individual redistribution terms (Tconv + Tpres+ Tvisc) can be taken together as
the turbulent transport (Pope 2011). The production term is denoted as P,

P=−〈u′iu
′

j〉
∂〈ui〉

∂xj
. (6.6)

It should be recalled that the values defined above do not include subgrid contributions,
and we do not attempt to estimate them because the modelled turbulent kinetic energy
kSGS is small compared with the resolved one k (figure 5). On the contrary, the
dissipation ε as defined in (6.7) is the sum of the modelled and resolved dissipation,

ε = εSGS + εres. (6.7)

Here, εSGS represents the modelled dissipation,

εSGS = 2〈νtsijsij〉, (6.8)

while εres is the resolved one,

εres = 2ν〈sijsij〉. (6.9)

In both (6.8) and (6.9), sij is the fluctuation of the strain rate tensor. Central
differences were applied to calculate the spatial derivatives needed to evaluate the
terms defined above. The evaluation of the terms from the LES was carried out within
the LES code. These routines were carefully validated during the implementation with
the help of turbulent channel flow data. The post-processing of the PIV results was
implemented in a Matlab code and validated against the LES evaluation and against
an independently developed post-processing tool. Thus, we are confident that the
computed budget terms are free from bias or programming errors.

In the following, we discuss how the single terms of the budget are linked to the
distinct flow topology in the cylinder front and its rich dynamics. This will provide
deeper insight into the physics of the horseshoe vortex system.
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FIGURE 15. The production of turbulent kinetic energy in the symmetry plane in front
of the cylinder: in-plane production from PIV (a) and total production from LES (b). The
isoline marks PD/u3

b = 0.

6.3. Production of turbulent kinetic energy
The individual production terms of the turbulent kinetic energy (6.6) have been studied
by several authors. Devenport & Simpson (1990) identified significant production by
normal and shear stress terms around the mean location of the horseshoe vortex and
normal stress production due to the deceleration of the jet under the horseshoe vortex.
The acceleration of the jet upstream of the stagnation point S3 gives a negative
production by the streamwise normal stress term.

The distribution of the production of turbulent kinetic energy is compared between
LES and PIV in figure 15. In this figure, the sum of the in-plane production terms
is plotted from PIV (figure 15a) and the sum of all terms is plotted from LES
(figure 15b). The difference between full and in-plane turbulent kinetic energy
production is small and stems from the only off-plane production term in the
symmetry plane, P22=−〈v

′2
〉∂〈v〉/∂y. It is consistently negative due to the stretching

of the flow in the spanwise direction at a magnitude of approximately 20 % of the
other terms. Apart from the difference from the off-plane terms, the measured values
are larger, peaking at 0.5u3

b/D between V1 and S1, while the simulated peak values
– including the off-plane term – remain at approximately 0.3u3

b/D in this region.
There is large production of turbulent kinetic energy around the horseshoe

vortex V1, especially in the region between the centre of V1 and the stagnation
point S1. In both LES and PIV, a local near-wall peak of production can be found
under the horseshoe vortex, and a region of negative production close to the wall
between V1 and the cylinder.

The distributions of the normal stress production terms from LES are presented in
figure 16. The acceleration and deceleration in the upstream-directed jet under the
main vortex act on the streamwise stress term P11 =−〈u′2〉∂〈u〉/∂x. It is found to be
negative at −0.70D< x<−0.53D, where the fluid accelerates; figure 16(a). As soon as
the jet decelerates at x≈−0.7D, P11 attains significant positive values. Even though
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FIGURE 16. Normal and shear stress production of turbulent kinetic energy in the
symmetry plane in front of the cylinder from LES: P11D/u3

b (a), P33D/u3
b (b), (P11+P22+

P33)D/u3
b (c) and P13D/u3

b (d). The isoline marks PD/u3
b = 0.

the peak of P11 is right above the bottom plate, the patch of positive P11 seems to
lift from the wall, reaching to stagnation point S1. When the fluid moves further
upstream towards stagnation point S2, the jet accelerates again and P11 turns negative,
as indicated by the isoline around −0.9D< x<−0.85D.

In figure 16(b), we can observe large positive production rates P33=−〈w′2〉∂〈w〉/∂z
slightly downstream of the horseshoe vortex, around x/D≈−0.7, along the front face
of the cylinder and above the stagnation point S3. In the region of the stagnation
point S1, the production P33 becomes negative. Along the bottom plate, P33 is small.
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In figure 16(c), the net production by the normal stress terms P11 + P22 + P33
is shown. This sum indicates the anisotropic contributions of the Reynolds stresses
(compare Pope 2011, p. 126). The redistribution of turbulent kinetic energy between
individual components due to curved streamlines is removed. We can observe that
large parts of the negative and positive production in 〈u′2〉 and 〈w′2〉 around the main
vortex V1 can be associated with a redistribution between those stresses when a
fluid particle is rotated when following the curved streamlines. From this distribution,
it becomes evident that normal stress terms dominate the production of turbulent
kinetic energy at the wall (due to streamwise fluctuations). Furthermore, they have a
visible contribution in the downstream part of the main vortex V1 due to wall-normal
fluctuations.

The shear stress production P13 = −〈u′w′〉∂〈u〉/∂z is large in the region between
the stagnation point S1 and the core of vortex V1 (figure 16d). In this region,
the streamlines in figure 7 bear large curvature and there is a large shear rate
in the streamwise velocity component. The location of its maximum corresponds
approximately to the peak position of −〈u′w′〉 (figure 13). This patch of positive
shear production is a main contributor to the total production of turbulent kinetic
energy, which becomes evident when comparing with figure 15.

Negative shear production can be found in three regions. The first region lies
close to the wall between the streamwise positions of S1 and V1. This peak can
be explained by the wall-normal gradient of 〈u〉 in the wall jet. Above the velocity
maximum in the jet, the gradient is negative ∂〈u〉/∂z < 0. Below the maximum, it
is positive. As 〈u′w′〉 is negative in the whole region, the production changes sign
and becomes negative in the lower part of the jet. The fact that the Reynolds shear
stress does not change sign when the velocity gradient changes sign indicates that
large-scale fluctuations penetrate this jet and reach the wall.

The second location in which negative shear production can be found is in the upper
right part of the main vortex V1 (x/D≈−0.7), in which free-stream fluid is entrained
into the vortex. The streamlines are pointing downwards and in the direction of the
cylinder. Like in the other regions of the horseshoe vortex, the streamwise velocity
has a positive vertical gradient ∂〈u〉/∂z > 0. We find positive 〈u′w′〉 in this region
(figure 13). Together, this gives a negative shear production of turbulent kinetic energy
at a significant level. The third location with negative P13 is a large area in front of the
cylinder for x/D & −0.6. The magnitude is small but noticeable. Around vortex V3,
however, we can see significant positive values of shear production. We do not show
P31 as its amplitude is approximately one order of magnitude smaller than that of the
other terms.

To gain insight into the three-dimensional distribution of production in front of the
cylinder, isosurfaces of P are evaluated in figure 17. The isovalues have been chosen
to be representative for specific regions of production, as explained in the following.
The red isosurface marks values of PD/u3

b = 0.1 and surrounds the regions in which
medium production takes place. Its cross-section has the distinct c-shape typical for
the distribution of k. The isosurface PD/u3

b= 0.25 visualizes the two regions of largest
production, which are not connected – one is approximately in the position of the
vortex core of V1 and the other one is where the leg of the c-shape meets the bottom
plate. It should be noted that the green isosurface in the vortex core ends at an angle
of approximately 45◦ to the symmetry plane, while the green region at the bottom
plate wraps around the cylinder to an angle of approximately 90◦.

In front of the cylinder at the bottom plate, there is a large region of turbulent
kinetic energy destruction, i.e. negative production; see the blue isosurface PD/u3

b =
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FIGURE 17. Isosurfaces of the total production of turbulent kinetic energy P around the
cylinder: PD/u3

b=−0.02 (blue), PD/u3
b= 0.1 (red) and PD/u3

b= 0.25 (green) are evaluated
from the LES. The isosurface for PD/u3

b = 0.1 is only shown up to the symmetry plane.

−0.02 in figure 17. This is the region in which the upstream-directed jet along the
bottom plate accelerates, leading to negative normal stress production. This negative
normal stress production can be found all around the cylinder until approximately 90◦.
It can explain the low level of turbulent kinetic energy between the cylinder and V1
which extends half way round the cylinder (compare figures 12 and 14).

It should be mentioned that the disturbances of the isosurfaces in the lateral front
of the cylinder are artefacts stemming from the numerical scheme. It should be noted
that second-order central approximations favour wiggles in strong curvature regions
when the cell Reynolds number exceeds a value of 2.0. This is the case here, and we
do not intend to damp these wiggles as they indicate an insufficient grid resolution
(Gresho & Lee 1981) and have only marginal effects on the flow dynamics in the
symmetry plane which is the focus of the present investigation.

6.4. Dissipation
In this section, we discuss the dissipation ε of turbulent kinetic energy (6.7). The
distribution and level of dissipation are of relevance to turbulence modelling in the
Reynolds-averaged context. In a flow with local equilibrium, the dissipation would
be equal to the production of turbulent kinetic energy. Since local equilibrium cannot
be expected in the considered flow, we cannot expect the spatial distribution of the
dissipation of turbulent kinetic energy to match the distribution of its production.

The dissipation rates in the symmetry plane in the cylinder front as obtained from
PIV and LES are presented in figure 18. Large values of ε can be observed around
the core of vortex V1. A second peak is placed right beneath in the leg of the c-shape
of the turbulent kinetic energy distribution, where the jet decelerates. A third peak is
located in the region of the corner vortex V3. The LES data in figure 18(b) show
significant levels of dissipation along the bottom plate, where the jet is causing large
shear stresses. This stripe of large ε is not visible in the PIV data since the standard
PIV algorithm, which has been applied to compute the dissipation terms, does not
resolve the wall in a sufficient way.

The spatial distribution of the dissipation does in fact largely resemble the
distribution of the turbulent kinetic energy in figure 12. The peaks of both the
turbulent kinetic energy and its dissipation are shifted in space with respect to the
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FIGURE 18. The total dissipation of turbulent kinetic energy εD/u3
b taken from PIV (a)

and LES (b), and the modelled dissipation εSGSD/u3
b taken from LES (c) in the symmetry

plane in front of the cylinder. The different amplitudes of the colour bars should be noted.

ones of the production (figure 15). In the measured distribution, the peak of ε is
downstream of the vortex core V1. The streamlines reaching this location stem from
the approach flow, which indicates that the dissipative scales reaching the location of
the dissipation peak cannot be transported to this location by the time-averaged flow
field. We speculate that the bimodal oscillations of the horseshoe vortex give rise
to turbulent transport of small-scale structures from the locations of large turbulent
kinetic energy production to the locations where they are dissipated. This process
would lead to large magnitudes of the turbulent transport terms Tconv and Tpres. We
discuss this hypothesis in the following sections.

The dissipation rate from PIV shown in figure 18(a) is computed from in-plane
velocity gradients only, while the one from LES is computed from the full tensor
including subgrid contributions (6.7). Nevertheless, the measured dissipation rate is
larger by a factor of approximately 1.7. This factor is in compliance with the larger
levels of turbulent kinetic energy and its production in the experiment. However,
it needs to be taken with caution as in the experimental values only the in-plane
gradients of the in-plane velocity components have been taken into account. The full
dissipation would have larger values. It is known that an estimation of the dissipation
rate from PIV data suffers from two sources of error. If the interrogation windows are
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considerably larger than the Kolmogorov scale, the dissipation will be underestimated.
If the interrogation window is in the range of or smaller than the Kolmogorov scale,
it can be overestimated by measurement noise (Tanaka & Eaton 2007). It should be
noted that we did not apply any correction to our PIV results to account for the
noise or insufficient resolution as we did not know the value and distribution of the
Kolmogorov scale in advance.

It is natural to assume that the LES is not able to resolve the small dissipative
structures of the flow. However, we have to stress that the dissipation taken from the
LES includes the modelled dissipation εSGS. The latter is documented in figure 18(c).
In the region of V1, εSGS is approximately one third of the total dissipation. This
is a perceptible contribution. However, the amplitude of εSGS is too small to assign
the difference in amplitudes of PIV and LES to possible shortcomings of the subgrid
stress model. We keep the discussion on the level of the dissipation rate for later when
the whole budget is discussed.

To further study the characteristics of the turbulence structure, the pseudo
dissipation εp = ν〈(∂u′i/∂xj)

2
〉 (Schlichting & Gersten 2006) was investigated. A

comparison of the pseudo dissipation εp with the dissipation ε, both taken from
the LES, shows only marginal differences. Therefore, a detailed discussion of
the complete εp is omitted here. Nevertheless, the structure of εp allows us to
decompose the pseudo dissipation into dissipation by the streamwise fluctuations
εp,u = ν〈(∂u′/∂xj)

2
〉, the spanwise fluctuations εp,v = ν〈(∂v

′/∂xj)
2
〉 and the vertical

fluctuations εp,w = ν〈(∂w′/∂xj)
2
〉. The resulting distributions are shown in figure 19.

In the region of the main vortex V1, the single components of εp look almost the
same. This is true for the distributions as well as the amplitudes and suggests that the
small-scale turbulence is isotropic here. Along the bottom wall, εp,u is the dominant
contributor to the pseudo dissipation. This is especially true for the deceleration zone
of the wall jet, where εp,u reaches its maximum of up to εp,uD/u3

b = 0.035. Further
splitting of εp,u reveals 〈(∂u′/∂z)2〉 to be the main contributor here, while the other two
contributions 〈(∂u′/∂x)2〉 and 〈(∂u′/∂y)2〉 are almost zero. This indicates that a vertical
flapping of the wall jet is the main source of turbulent dissipation (and fluctuations)
in this region.

Along the flow-facing edge of the cylinder, εp,w dominates the pseudo dissipation.
There is a thin layer of large εp,w along the cylinder front, stretching into the
region covered by V3. Nevertheless, for z< 0.07D, εp,u and εp,v also give significant
contributions.

The maximum levels of dissipation reached in the horseshoe vortex are considerably
lower than what a macroscale estimation εmacro= u3

b/D (Pope 2011) gives. Estimation
of the Kolmogorov length scale ηK = (ν3/ε)1/4 (Pope 2011) in the core of the
horseshoe vortex based on εmacro gives ηK,macro ≈ D/2800. Insertion of the PIV
measurement εPIV gives ηK,PIV ≈ D/1600, and the dissipation taken from the LES
results in a Kolmogorov length scale of ηK,LES ≈ D/1500. Using the estimation of
Pope (2011) for the required grid resolution in a direct numerical simulation (DNS),
1xi . 2ηK , we can conclude that our wall-normal grid resolution would be sufficient
for a DNS. On the other hand, our horizontal resolutions are marginally too coarse,
which is consistent with a noticeable fraction of modelled dissipation.

6.5. Turbulent transport of turbulent kinetic energy
In non-equilibrium flow situations such as the considered one, the turbulent kinetic
energy needs to be redistributed in space by the convection by the mean velocity
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FIGURE 19. Components of the pseudo dissipation in the symmetry plane in front of the
cylinder: εp,uD/u3

b in the streamwise (a), εp,vD/u3
b in the spanwise (b) and εp,wD/u3

b in the
vertical direction (c), taken from the LES.

field C (6.2) and the turbulent transport terms, namely the turbulent convection
Tconv, the pressure transport Tpres and the viscous diffusion Tvisc (6.3)–(6.5). This
subsection concentrates on the turbulent transport mechanisms. The convection by
the mean mainly documents whether the turbulent kinetic energy was increasing
(negative convection) or decreasing (positive convection) along a streamline. We
omit a discussion of its spatial distribution, just pointing out that the main increase
of turbulent kinetic energy along a streamline occurs in the deceleration region of
the jet under the horseshoe vortex where the streamwise fluctuations are produced.
The viscous diffusion term has a significantly smaller amplitude than the other
redistribution terms. We therefore omit its discussion as well.

Figure 20 illustrates the turbulent transport terms from LES. There is no noticeable
difference between the full and in-plane turbulent convection in the LES results,
which indicates out-of-plane turbulent convection to be insignificant in the symmetry
plane in front of the cylinder. The distribution of the turbulent convection Tconv
(figure 20a) is similar to the production term illustrated in figure 15. In regions in
which large production of turbulent kinetic energy takes place, we see large negative
turbulent convection. There are regions, e.g. close to the wall at x/D = −0.75, in
which the production rate is nearly balanced by turbulent convection. In these areas,
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FIGURE 20. Turbulent convection TconvD/u3
b (a) and pressure transport TpresD/u3

b
(b) taken from the LES.

the turbulence is characterized by violent eruptions, which might quickly sweep
the turbulent fluctuations to another place. This interpretation is in line with what
Apsilidis et al. (2015) describe when discussing instantaneous flow fields.

The distribution of 〈p′2〉 (not shown) implies that the core of the main vortex V1
bounces between x=−0.78D and x=−0.66D due to its bimodality, leading to large
pressure fluctuations at these positions. These fluctuations result in the two peaks of
large negative Tpres in figure 20(b), which are located approximately at the upstream
and downstream ends of the mentioned range. In addition, there is a peak of positive
pressure transport right underneath V1 at (x, z) ≈ (−0.7D, 0.04D). This spot has a
branch reaching to the bottom plate.

In some regions, the pressure transport has the opposite sign to the turbulent
convection and a similar magnitude, Tpres ≈ −Tconv. This implies that for a large
part of the time, p′ ≈ −0.5ρu′iu

′

i (compare (6.3) and (6.4)). This can be observed at
approximately −0.7 < x/D < −0.65, slightly below and above V1. In these regions,
the two terms Tconv and Tpres seem to cancel each other. We can explain such
behaviour by horizontal oscillations of the horseshoe vortex V1. If this vortex is
shifted downstream, e.g. from its mean position at x/D = −0.73 to approximately
x/D = −0.68, the vortex core is in a position in which the time-averaged flow has
a large negative wall-normal component. The instantaneous vertical velocity in the
vortex core is zero, which gives rise to a positive wall-normal fluctuation w′ > 0. As
u′ju
′

j is positive as well, the triple correlation 〈u′iu
′

ju
′

j〉 will obtain a strong positive
contribution. As the convective term is the negative gradient of the triple correlation,
this situation will give rise to a large negative contribution to Tconv under the vortex
core and a large positive contribution above the vortex core. It can be assumed that
p′ < 0 in the vortex core, giving rise to a Tpres that has the opposite sign to Tconv.
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FIGURE 21. The budget of the turbulent kinetic energy in the cylinder front from LES
at a wall distance of z/D= 0.012 (a) and z/D= 0.065 (b). For reasons of visibility, only
every second data point is plotted. The vertical lines indicate the position of V1. All values
are normalized by D/u3

b.

6.6. Balance of turbulent kinetic energy
To further assess the interplay of the previously discussed mechanisms, we discuss the
complete balance of turbulent kinetic energy (6.1) along two horizontal lines through
the vortex system.

Figure 21(a) shows profiles of each term of (6.1) along a horizontal line with a
wall distance of z/D= 0.012, which is inside the near-wall jet. The distribution along
the horizontal line can be divided into four parts. Starting from the cylinder, we first
identify the vortex V3, giving rise to large production magnitudes balanced locally in
parts by dissipation. Turbulent convection and convection by the mean velocity field
also play a role in this region as well as pressure transport.

The zone between V3 and the deceleration of the jet (−0.55 < x/D < −0.68)
is characterized by nearly zero or even negative production rates. However, we
see that the convection by the mean is negative, which means that the turbulent
kinetic energy increases along the streamlines. The budget is closed here only if the
pressure transport term is included in the balance. This is the only positive term that
transports turbulent kinetic energy into the calm zone in front of the cylinder where
the downflow turns upstream and accelerates. This pressure transport is balanced
by negative production around x/D = 0.58 and by mean convection and dissipation
further upstream.

When the jet decelerates under the horseshoe vortex, a large amount of production
takes place, which has been shown to occur predominantly in the streamwise
component. The large negative amplitude of the mean convection term at x/D≈ 0.72
indicates that the turbulent kinetic energy rises strongly along the streamlines. This
is because the dissipation remains much smaller than the production and the other
transport terms remain small or are even positive, such as the pressure transport.
Around the peak value of the production term, the mean convection crosses zero,
which indicates that this is also the peak of the turbulent kinetic energy. Upstream
of this point, the turbulent convection is negative and has larger magnitudes than the
production, which leads to a decrease of turbulent kinetic energy along a streamline,
as indicated by positive mean convection.

Horizontal profiles of all budget terms at a larger wall distance, z/D = 0.065, are
shown in figure 21(b). This is the wall distance of the vortex core V1. As in the
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FIGURE 22. The budget residual RD/u3
b in the cylinder front taken from the LES.

near-wall profiles, there are four regions in which the behaviour of the budget terms
differs. On moving upstream from the cylinder, there is the near-cylinder downflow
in which locally turbulent kinetic energy is produced. Unfortunately, this layer is not
well resolved by the LES and the values do not seem realistic, which is underlined
by a large residual of the budget in the wall-nearest point.

Moving upstream from the cylinder in the region x/D>−0.65, we see small values
of all budget terms. This is the downflow region. However, at x/D<−0.65, there is
a sudden rise in the levels of turbulent convection and pressure transport. This is the
zone in which the turbulent convection approximately balances the pressure transport.
We conjecture that this behaviour could be explained by a periodical horizontal
displacement of the horseshoe vortex V1 to locations around x/D=−0.68.

The production of turbulent kinetic energy has a broad peak slightly upstream
of V1. The production is mainly balanced by dissipation and turbulent convection in
this zone (x/D≈−0.8). Turbulent convection seems to bring turbulent kinetic energy
upstream and downstream from the production peak. Upstream of the production peak,
the turbulent convection is positive and adds to the production, while both together
seem to be balanced by the mean convection and small but noticeable dissipation.

The budget evaluated by the LES including all terms of (6.1) sums up to zero in
a satisfying way (figure 22). In the large grey regions in figure 22, the amplitude of
the budget residual R is |R| = |C + Tconv + Tpres + Tvisc + P− ε|< 0.01u3

b/D. Regions
coloured by slightly lighter or slightly darker grey indicate |R|D/u3

b < 0.03, which
remains below 10 % of the production term. Small spots close to the cylinder front
and along the bottom plate show values of |R|D/u3

b < 0.3. We suspect that the reason
for these large errors along the cylinder front is the grid resolution in the horizontal
direction, which is four times larger than the vertical one. Thus, the boundary layer
along the cylinder cannot be considered to be wall-resolved, resulting in inaccuracies
in this limited region. Furthermore, subgrid contributors are not included in the
evaluation of the discussed terms except for the dissipation. As figure 5 implies,
the contribution of the subgrid stresses is considerable in narrow regions around
vortex V3. This further explains the large residual here.

Large errors along the bottom plate in the first line appear where the amplitude
of the turbulent convection Tconv is large. The triple correlations necessary to evaluate
Tconv are sensitive to statistical errors and need a large number of samples to converge.
Thus, statistics that are not fully converged might be a reason for this large error
amplitude here as well. The fact that the residual has positive and negative values
is an indication that the level of dissipation predicted by the LES is realistic. As the
out-of-plane terms and the pressure transport are missing in the PIV data, we did not
make any attempt to compute the total balance for the PIV data.
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7. Conclusions

The flow field and turbulence structure in front of a wall-mounted circular cylinder
were investigated by a combined numerical and experimental study. Special care was
devoted to the accordance of the inflow, which consisted of a fully developed turbulent
open-channel flow. In the experiment, we applied PIV to measure two-dimensional
flow fields in the symmetry plane in front of the cylinder. In the LES, the grid
resolution around the cylinder was such that the subgrid stresses played a minor
role. We observed a good accordance between the experimental and numerical flow
statistics, which gives a high level of fidelity in the generated database. This allowed
us to compute all terms of the budget of the turbulent kinetic energy and to link
our observations to topological features of the time-averaged and instantaneous flow
fields around the horseshoe vortex system. The overall error amplitude of the budget
of the turbulent kinetic energy was small for the LES results, which demonstrates the
reliability of the conclusions based on the presented data.

We observed two vortices in the time-averaged flow field in the symmetry plane
in front of the cylinder, namely the main horseshoe vortex and a corner vortex. Our
single-pixel evaluation even suggested a very small vortex between the corner vortex
and the cylinder/wall junction. The flow pattern at the bottom plate was compatible
with the one reported by Devenport & Simpson (1990). The vortex topology in the
symmetry plane as reported by Apsilidis et al. (2015) is slightly different from ours.
The first point of flow reversal upstream of the cylinder is a separation point in their
measurements while it is a stagnation point in our results, which appears as a sink in
the symmetry plane. This observation was made in both experiment and simulation,
and represents a discrepancy with the commonly used term ‘separation point’ for
this point of flow reversal. At the current state of investigation, the reason of this
discrepancy is unknown. From our point of view, the most probable explanation is
the different state of the incoming boundary layer, which might have an influence on
the way in which the flow reverses in front of the cylinder.

The main horseshoe vortex can undergo large variations in position, which can be
linked to bimodal velocity distributions in certain areas around the horseshoe vortex,
as observed by Devenport & Simpson (1990). The spatial oscillations of the horseshoe
vortex are mainly in the horizontal direction, as already observed by Apsilidis et al.
(2015). This can also be inferred from the fact that the oscillations of the horseshoe
vortex mainly induce fluctuations in the vertical velocity component around the vortex
core.

The vortex system in the time-averaged flow bears a distinct pattern of flow
acceleration and deceleration. Under the main horseshoe vortex, an upstream-directed
jet forms due to the deflection of fluid at the bottom plate. The acceleration/
deceleration pattern of fluid inside this jet acts on the production of turbulent kinetic
energy. The negative production term in the accelerated zone explains the occurrence
of a calm region between the horseshoe vortex and the cylinder. This is the region
in which the largest wall shear stresses can be observed.

In the deceleration zone of the upstream-directed jet below the horseshoe vortex,
the normal stress production of the streamwise component is the main contribution to
turbulent kinetic energy production. This production causes the leg of the c-shaped
distribution of the turbulent kinetic energy. Besides the bimodal oscillations of the
vortex core, the production in the deceleration zone under the horseshoe vortex
constitutes the second main production mechanism for turbulent kinetic energy in the
horseshoe vortex region.
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The spatial distribution of the dissipation of turbulent kinetic energy is similar to
that of the turbulent kinetic energy, with two regions of large values, one around
the core of the horseshoe vortex and one at the wall below the horseshoe vortex. In
the region around the vortex core, the dissipation is nearly isotropic, which indicates
an isotropic state of the small scales in this region. The intense dissipation near the
wall is anisotropic and is dominated by fluctuations of the vertical gradient of the
streamwise velocity component. This indicates a flapping of the wall shear layer
at locations between the horseshoe vortex V1 and the stagnation point S1. The
dissipation reaches values below 10 % of its macroscale estimation and approximately
15 %–20 % of the production of turbulent kinetic energy. This disequilibrium is settled
by turbulent transport, pressure transport and convection by the mean flow field.

Turbulent transport and pressure transport play a prominent role in the balance
of turbulent kinetic energy, which can hardly been modelled without taking these
processes into account. The pressure transport is the main source of turbulent kinetic
energy in the calm near-wall region between the horseshoe vortex and the cylinder.
It initiates the increase of turbulent kinetic energy in the decelerated region of the
upstream-directed wall jet under the horseshoe vortex and can be regarded as an
important agent determining the level of turbulent kinetic energy and its production
there. Downstream of the horseshoe vortex, the pressure transport balances the
turbulent transport of turbulent kinetic energy. This implies that the instantaneous
pressure fluctuations could be expressed as the negative of the instantaneous kinetic
energy of the fluctuations. We explain this by downstream excursions of the horseshoe
vortex.

The wall shear stress in front of the cylinder is one of the most important flow
quantities for applications. Prediction of the development of scour holes around bridge
piers requires knowledge of the wall shear stress (e.g. Roulund et al. 2005). We found
in both experiment and simulation that the wall shear stress reaches three times the
value of the undisturbed flow in the symmetry plane in front of the cylinder, which
is larger than previously published results (Melville & Raudkivi 1977; Dargahi 1989).
Estimation of these large stresses from either measurements or simulations requires a
very fine resolution in the wall-normal direction. There have been attempts to model
the wall shear stress from velocity or turbulent shear stress measurements at larger
wall distances (e.g. Graf & Istiarto 2002; Dey & Raikar 2007; Unger & Hager 2007;
Kumar & Kothyari 2011; Pfleger 2011), relying on classical boundary layer relations
such as the law of the wall. However, it has been shown that different approaches lead
to large scatter in estimated wall shear stresses (Graf & Istiarto 2002). Our results
demonstrate that there is little hope of modelling the wall shear stress in front of the
cylinder by classical wall functions or turbulent shear stresses, as the dynamics of the
wall layer at the maximum wall shear stress is not governed by classical boundary
layer dynamics, and Reynolds shear stresses do not have a relation to the wall stress.
From the low level of turbulent kinetic energy in the region of the maximum wall
shear stress, we conjecture that it is more related to the downflow in front of the
cylinder.

Acknowledgements

The authors gratefully acknowledge the financial support of the DFG under grant no.
MA2062/11. Computing time was granted by the Leibniz Computing Centre (LRZ) of
the Bavarian Academy of Sciences. We would also like to mention helpful discussions
with Professor C. Kähler in the framework of PIV.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

48
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
 o

f M
un

ic
h 

U
ni

ve
rs

ity
 L

ib
ra

ry
, o

n 
23

 O
ct

 2
01

7 
at

 1
2:

23
:5

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.



320 W. Schanderl, U. Jenssen, C. Strobl and M. Manhart

REFERENCES

APSILIDIS, N., DIPLAS, P., DANCEY, C. L. & BOURATSIS, P. 2015 Time-resolved flow dynamics
and Reynolds number effects at a wall–cylinder junction. J. Fluid Mech. 776, 475–511.

APSILIDIS, N., KHOSRONEJAD, A., SOTIROPOULOS, F., DANCEY, C. L. & DIPLAS, P. 2012 Physical
and numerical modeling of the turbulent flow field upstream of a bridge pier. In International
Conference on Scour and Erosion 6, Paris, Ecole des Arts et Metiers - Paris Tech.

BAKER, C. J. 1979 The laminar horseshoe vortex. J. Fluid Mech. 95, 347–367.
BRUNS, J., DENGEL, P. & FERNHOLZ, H. H. 1992 Mean flow and turbulence measurements in an

incompressible two-dimensional turbulent boundary layer. Part I: data. Tech. Rep., Herman-
Föttinger-Institut für Thermo- und Fluiddynamik, TU Berlin.

CLAUSER, F. H. 1954 Turbulent boundary layer in adverse pressure gradients. J. Aero. Sci. 21,
91–108.

DARGAHI, B. 1989 The turbulent flow field around a circular cylinder. Exp. Fluids 8 (1–2), 1–12.
DEMUREN, A. O. & RODI, W. 1984 Calculation of turbulence-driven secondary motion in non-circular

ducts. J. Fluid Mech. 140, 189–222.
DEVENPORT, W. J. & SIMPSON, R. L. 1990 Time-dependent and time-averaged turbulence structure

near the nose of a wing–body junction. J. Fluid Mech. 210, 23–55.
DEY, S. & RAIKAR, R. V. 2007 Characteristics of horseshoe vortex in developing scour holes at

piers. J. Hydraul Engng 133 (4), 399–413.
ESCAURIAZA, C. & SOTIROPOULOS, F. 2011 Reynolds number effects on the coherent dynamics of

the turbulent horseshoe vortex system. Flow Turbul. Combust. 86 (2), 231–262.
FERNHOLZ, H. H. & FINLEY, P. J. 1996 The incompressible zero-pressure-gradient turbulent boundary

layer: an assessment of the data. Prog. Aerosp. Sci. 32 (4), 245–311.
GRAF, W. H. & ISTIARTO, I. 2002 Flow pattern in the scour hole around a cylinder. J. Hydraul

Res. 40 (1), 13–20.
GRESHO, P. M. & LEE, R. 1981 Don’t suppress the wiggles – they’re telling you something. Comput.

Fluids 9, 223–253.
KÄHLER, C. J., SCHARNOWSKI, S. & CIERPKA, C. 2012 On the uncertainty of digital PIV and

PTV near walls. Exp. Fluids 52 (6), 1641–1656.
KÄHLER, C. J., SCHOLZ, U. & ORTMANNS, J. 2006 Wall-shear-stress and near-wall turbulence

measurements up to single pixel resolution by means of long-distance micro-PIV. Exp. Fluids
41 (2), 327–341.

KIRKIL, G. & CONSTANTINESCU, G. 2015 Effects of cylinder Reynolds number on the turbulent
horseshoe vortex system and near wake of a surface-mounted circular cylinder. Phys. Fluids
27, 075102.

KUMAR, A. & KOTHYARI, U. C. 2011 Three-dimensional flow characteristics within the scour hole
around circular uniform and compound piers. J. Hydraul Engng 138 (5), 420–429.

LILLY, D. K. 1967 The representation of small-scale turbulence in numerical simulation experiments.
In Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, IBM
Form No. 320–1951, pp. 195–210. IBM Data Processing Division.

MANHART, M. 2004 A zonal grid algorithm for DNS of turbulent boundary layers. Comput. Fluids
33 (3), 435–461.

MELVILLE, B. W. & RAUDKIVI, A. J. 1977 Flow characteristics in local scour at bridge piers.
J. Hydraul. Res. 15 (4), 373–380.

NEZU, I. & NAKAGAWA, H. 1993 Turbulence in Open-Channel Flows. A.A. Balkema.
NICOUD, F. & DUCROS, F. 1999 Subgrid-scale stress modelling based on the square of the velocity

gradient tensor. Flow Turbul. Combust. 62 (3), 183–200.
PAIK, J., ESCAURIAZA, C. & SOTIROPOULOS, F. 2007 On the bimodal dynamics of the turbulent

horseshoe vortex system in a wing–body junction. Phys. Fluids 19, 045107.
PELLER, N. 2010 Numerische Simulation turbulenter Strömungen mit Immersed Boundaries. PhD

thesis, Technische Universität München.
PELLER, N., DUC, A. L., TREMBLAY, F. & MANHART, M. 2006 High-order stable interpolations

for immersed boundary methods. Intl J. Numer. Meth. Fluids 52, 1175–1193.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

48
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
 o

f M
un

ic
h 

U
ni

ve
rs

ity
 L

ib
ra

ry
, o

n 
23

 O
ct

 2
01

7 
at

 1
2:

23
:5

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.



Structure and budget of TKE in front of a wall-mounted cylinder 321

PFLEGER, F. 2011 Experimentelle Untersuchung der Auskolkung um einen zylindrischen
Brückenpfeiler. PhD thesis, Technische Universität München.

POPE, S. B. 2011 Turbulent Flows. Cambridge University Press.
RAFFEL, M., WILLERT, C., WERELEY, S. & KOMPENHANS, J. 2007 Particle Image Velocimetry –

A Practical Guide, 2nd edn. Springer.
ROULUND, A., SUMER, B. M., FREDSOE, J. & MICHELSEN, J. 2005 Numerical and experimental

investigation of flow and scour around a circular pile. J. Fluid Mech. 534, 351–401.
RYU, S., EMORY, M., IACCARINO, G., CAMPOS, A. & DURAISAMY, K. 2016 Large-eddy simulation

of a wing–body junction flow. AIAA J. 54 (3), 793–804.
SCHANDERL, W. & MANHART, M. 2015 Non-equilibrium near wall velocity profiles in the flow

around a cylinder mounted on a flat plate. In 15th European Turbulence Conference, TU
Delft.

SCHANDERL, W. & MANHART, M. 2016 Reliability of wall shear stress estimations of the flow
around a wall-mounted cylinder. Comput. Fluids 128, 16–29.

SCHLICHTING, H. & GERSTEN, K. 2006 Boundary Layer Theory. Springer.
SIMPSON, R. L. 2001 Junction flows. Annu. Rev. Fluid Mech. 33, 415–443.
STROBL, C., JENSSEN, U. & MANHART, M. 2016 Reconstructing velocity statistics from single pixel

ensemble correlation PIV. Exp. Fluids (submitted).
TANAKA, T. & EATON, J. K. 2007 A correction method for measuring turbulence kinetic energy

dissipation rate by PIV. Exp. Fluids 42 (6), 893–902.
UNGER, J. & HAGER, W. H. 2007 Down-flow and horseshoe vortex characteristics of sediment

embedded bridge piers. Exp. Fluids 42, 1–19.
WERNER, H. 1991 Grobstruktursimulation der turbulenten Strömung über eine querliegende Rippe in

einem Plattenkanal bei hoher Reynoldszahl. PhD thesis, Technische Universität München.
WESTERWEEL, J., GEELHOED, P. F. & LINDKEN, R. 2004 Single-pixel resolution ensemble correlation

for micro-PIV applications. Exp. Fluids 37 (3), 375–384.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

48
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
 o

f M
un

ic
h 

U
ni

ve
rs

ity
 L

ib
ra

ry
, o

n 
23

 O
ct

 2
01

7 
at

 1
2:

23
:5

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.



C. Appendix: Publication 3, summarised
in chapter 8

90



Flow Turbulence Combust
https://doi.org/10.1007/s10494-017-9865-3

Near-Wall Stress Balance in Front of a Wall-Mounted
Cylinder

Wolfgang Schanderl1 ·Ulrich Jenssen1 ·
Michael Manhart1

Received: 20 March 2017 / Accepted: 7 October 2017
© Springer Science+Business Media B.V. 2017

Abstract The stress balance in the near-wall flow in front of a cylinder mounted on a flat
plate at moderate Reynolds number is investigated by applying highly resolved Large-Eddy
Simulation (LES). The flow around wall-mounted bluff bodies is subject of research due to
its wide relevance for engineering applications. However, the structure of the vortex system
in front of such a bluff body is complex, bears strong velocity and pressure gradients in each
spatial direction and has rich dynamics. Furthermore, the vortex system is located close to
the investigated flat bottom wall (Dargahi, Exp. Fluids 8(1-2):1–12, 1989; Devenport and
Simpson, J. Fluid Mech. 210:23–55, 1990). Thus, classical models for the treatment of the
near-wall flow based on the logarithmic law of the wall or a power law cannot be expected to
suffice in such kind of flow (Pope 2011). This paper assesses which contributors to the stress
balance have significant influence on the balances residual and thus have to be considered
by an approach to model the investigated near-wall flow. To do so, the momentum equation
in streamwise direction is integrated in wall-normal direction and applied to the results
gained from the LES. The evaluation of the stress balance along four selected wall-normal
profiles indicates that the significance of each single term depends on where the profile
is located. Outside the viscous layer, no term except the viscous stresses can be neglected
in general. The amplitude of the pressure gradient as well as horizontal gradients of mean
and fluctuating velocity are multiples of the estimated wall shear stress. Wall models not
including a spatial approach are therefore most likely to fail in such kind of flow.
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1 Introduction

Even in simple geometries turbulent flows can result in complex flow structures. The flow
around a wall-mounted bluff body is one of these cases. The geometry is easy to describe,
however, the flow topology in front of the body is complex and bears rich dynamics. The
main feature of this flow is the occurrence of a horseshoe vortex in front of the body. Deven-
port and Simpson [1] were the first to show that the horseshoe vortex system undergoes
strong oscillations in space that lead to bi-modal velocity distributions in the region of the
vortex system and close to the wall. A number of subsequent publications were able to
document this flow behaviour in various configurations, e.g. [2–5]. When it comes to bluff
bodies of finite height, the formation of tip vortices around the free end of the body fur-
ther enhances the complexity of the flow [6]. Palau-Salvador et al. [7] as well as Krajnović
[8] descriptively explain the complex interplay between the horseshoe vortex, the tip vor-
tices at the free end and the flow in the wake of the body. The large interest in this kind of
flow is driven by unwanted effects of the vortex formation in various technical applications,
such as wing-body junction or turbomachinery blades. Our interest is focused on the inter-
dependence of the flow structure close to the bottom wall and the local wall shear stress
enhancement around bridge structures which can cause the development of local scour [9].

The prediction of the scour development by numerical means requires the understanding
of some highly complex physical phenomena and processes, such as the flow field and its
interaction with the sediment. At the very beginning of the modelling chain, the flow field
stands together with induced wall shear stresses. If the forces on the bed (or wall) cannot
be predicted reliably, all following modelling steps are affected by more or less severe bias
and need calibration. The main problem in determining the wall shear stress numerically
around a real configuration is the complexity of the flow field which inhibits the use of
Reynolds averaged approaches but inevitably demands eddy resolving simulation methods
and a high data resolution in the near-wall region. The highly charged nature of this issue
becomes clear when reviewing the literature on the flow around wall-mounted cylinders
published in the last decades. Dargahi [10] conducted an experiment of the flow around a
circular cylinder mounted in a flume at moderate Reynolds number. He estimated the wall
shear stress distribution in the symmetry plane in front of the cylinder, which was repro-
duced and used for validation by subsequent numerical studies, e.g. [3, 11–13]. However,
Schanderl and Manhart [14] demonstrated recently that Dargahi [10] in fact underestimated
the amplitude of the wall shear stress by a factor of approximately two. This was confirmed
by an experimental study [15]. Due to limited experimental resolution, Dargahi [10] was not
able to measure the velocity close enough to the wall. Roulund et al. [16] conducted both
experiment and simulation of a similar setup at a larger but still moderate Reynolds num-
ber. They measured the wall shear stress with a hot wire probe. It is not surprising that their
Reynolds averaged simulation significantly underestimates the amplitude of the wall shear
stress below the horseshoe vortex.

There are various approaches to reduce the required near-wall data resolution by mod-
elling the flow in close vicinity of the wall. Classical wall models avoid resolving the viscous
layer and bridge the distance between wall and first grid point by assuming the wall normal
velocity to be zero and the wall parallel velocity to follow the logarithmic law of the wall
[17], a power law [18] or a modification of these laws. However, these models have to fail in
complex flow where the assumptions made cannot hold [19, 20]. As descriptively discussed
by Knopp et al. [21], there is not even an agreement on what happens to the law of the wall
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as soon as there is a mild adverse pressure gradient. Does the law of the wall hold? Does it
suffice to modify it’s constants? Does it break down? Knopp et al. [21] name a limited data
base documented in literature as one of the main reasons for this missing agreement.

Balaras et al. [22] suggested a more sophisticated approach for Large-Eddy Simulation.
Between the wall and the first grid point, they solve a simplified set of equations which
describe the wall-parallel velocity by two dimensional boundary layer equations. The wall-
normal velocity component is then estimated from mass conservation. Balaras et al. [22]
report satisfying results for relative simple flow cases.1 However, representing the near-
wall flow with the boundary layer equations requires the boundary layer assumptions (small
gradients in wall-parallel direction) to be satisfied in this near-wall flow [23]. This is at
least questionable in the complex flow situation in front of a wall-mounted bluff body.
Thus, approaches as the ones based on the boundary layer equations struggle to predict the
near-wall region of complex flow, especially in presence of an adverse pressure gradient
[24].

It shall be mentioned that not only numerical but also experimental attempts were made
to estimate the wall shear stress around a cylinder in a scour geometry without resolving
the viscous layer. To counteract the low data resolution some studies [25, 26] applied mea-
sured Reynolds shear stresses to estimate the wall shear stress. Melville and Raudkivi [27]
calibrated their wall shear stress estimation around the cylinder with the slope of the loga-
rithmic velocity profile of the approach flow. However, due to a lack of reliably comparative
data, an error estimation of such wall shear stress estimations is hardly possible.

The frequent underestimation of the wall shear stress by the numerical studies rises two
issues. First, the computational resources demanded to achieve the necessary wall resolution
still can hardly be afforded for a sizable number of specific flow cases. Second, the models
applied in the near wall region are not able to capture the flow in a satisfying way.

Our aim is to contribute to wall-modelling of complex, three dimensional flow by inves-
tigating the near-wall flow in front of a circular cylinder mounted on a flat plate by a
wall-resolved Large-Eddy Simulation (LES) at moderate Reynolds number. The stress bal-
ance in the streamwise direction is derived by integrating the momentum balance in the
wall-normal (vertical) direction. We assess the relative magnitude of each term as obtained
by our LES.

The questions we address in this paper are: Which stresses have a significant contribu-
tion to the stress balance in the near-wall flow in front of a wall-mounted cylinder? Which
stresses thus have to be considered in a general approach for describing this near-wall flow
as well as for wall shear stress modelling? And which requirements do arise from this for a
numerical simulation?

The paper is structured as follows: The computational configuration and the investigated
setup is presented in Section 2, including an estimation of the influence of the subgrid stress
model (Section 2.3). Second, the flow topology in front of the cylinder and the convergence
of the results over grid refinement is discussed in Section 3. In Section 4 the stress balance
is discussed. Each contributor to this balance is evaluated at four selected positions in the
cylinder front (Section 4.1). Finally, the relevance of these contributors for the stress bal-
ances residual and for a possible reconstruction of the wall shear stress is discussed in detail
(Section 4.2).

1Balaras et al. [22] investigated a plane channel flow, flow through a square duct and a rotating channel.
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2 Computational Configuration

The computational configuration is presented briefly in the following. The flow solver (Section 2.1)
and the applied grid (Section 2.2) are described first. Since this study focuses on the stress
balance, the influence and a possible biasing of the applied subgrid stress model on the stress
balance are discussed afterward in Section 2.3. The associated grid study is exemplified in
Section 3, where the flow topology is described.

The reliability of the presented LES is discussed in detail by Schanderl and Manhart
[14]. A further validation of the LES is provided by the comparison to an associated exper-
iment of the same setup by Jenssen et al. [28]. It shall be mentioned that the simulated flow
topology as well as its second and third order moments are in satisfying agreement with the
measurements from that experiment [15, 28].

2.1 Numerical method

The in-house code MGLET [29] was applied to conduct the LES. It is a Finite Volume code
based on a Cartesian grid and staggered arrangement of the variables. A central difference
scheme is applied for spatial approximation and a third order Runge-Kutta method for the
time integration. The curved surface of the body is represented by a conservative Immersed
Boundary Method [30, 31]. Zonal grids allow for a local grid refinement in the critical flow
regions [32]. Both the code and the Immersed Boundary Method are of second order spatial
accuracy [30, 32].

The subgrid stresses (SGS) are modelled by the Wall-Adapting Local Eddy-Viscosity
(WALE) model [33] in which the turbulent viscosity νt is defined as

νt = Cw�
2

(
Sd

ij S
d
ij

)3/2

(
Sij Sij

)5/2 +
(
Sd

ij S
d
ij

)5/4 (1)

where, Cw = 0.1 and

Sd
ij = 1

2

(
g2

ij + g2
ji

)
− 1

3
δij g

2
kk . (2)

with gij = ∂ui/∂xj . In the WALE model, the turbulent viscosity decreases naturally
towards the wall with the correct limiting behaviour of νt ∝ y3. Thus, no damping function
has to be applied. In the presented configuration, both the turbulent viscosity as well as the
modelled stresses decrease quadratically with grid refinement [14]. The code MGLET has
been used and validated in various configurations for both LES and DNS, e.g. [32, 34–36].

After the simulation had reached a statistically steady-state, statistics were gathered over
a time of T ≈ 700D/ub where D is the cylinder diameter and ub the depth averaged bulk
velocity in the symmetry plane of the incoming flow. For the simulation with the finest grid
(LES #3, see Section 2.2) this took ≈ 2 ∗ 106 cpu hours. For the LES with the finest grid
the size of the time steps was �T ≈ 5.34 ∗ 10−4D/ub. This time stepping results in a
Courant-Friedrichs-Lewy number of 0.55 < CFLmax < 0.82.

2.2 Domain and grid

The computational domain is sketched in Fig. 1. To keep similarity to the associated exper-
iment [15, 28], which is conducted in a flume, bottom and side walls of the 11.7D wide
domain are defined as no-slip condition. D is the cylinder diameter. The free surface is
modelled by a slip condition, which suppresses all surface deformation. This corresponds
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Fig. 1 Sketch of the computational domain used for the LES

to the limiting case of zero Froude number. The computational grid consists of two major
parts: a precursor grid and a base grid containing the cylinder. The first uses periodic
boundary conditions in the streamwise direction to simulate a fully developed turbulent
open-channel flow with a flow depth of H = 1.5D. The Reynolds number is ReD = 39000
and Reθ = 5570 based on the incoming bulk velocity ub and the cylinder diameter D and
the momentum thickness θ of the incoming flow, respectively. The precursor is one-way
coupled to the base grid in such a way that instantaneous flow profiles are set as inflow con-
dition in the base grid. It was applied in respect of the strong influence of the incoming flow
on the vortex system around the cylinder [14]. A comparison to open-channel flows docu-
mented in literature [37] and the associated experiment [15, 28] indicates the approach flow
to be a good representative of an open-channel flow at the corresponding Reynolds number.

In the region of interest around the cylinder the grid is refined by locally embedded grids
[32]. The locations of the embedded grids are indicated in Fig. 1 by grey color. Each local
grid refines the grid spacing by a factor of two. To investigate the grid dependency of the
flow, three simulations have been conducted. All simulations hold precursor and base grid
but differ in the number of locally embedded grids: LES #1 holds one local grid (grid 1),
LES #2 two (grid 1+2) and LES #3 three grids (grid 1+2+3). In overlapping regions,
the grid spacing of the finer grid is respected. The grid resolution of each grid is listed in
Table 1. LES #3 indicates the solution to be converged with respect to the grid resolution.
The grid study is exemplified in Section 3.2. In addition to the local refinement, the grid is
compressed towards the bottom wall by a compression factor smaller than 1.01. However,
since this refinement factor is applied on the precursor and the base grid solely, only every
eighth cell is stretched in grid 3.

The resolution of the finest grid is �x+ = �y+ ≈ 7.8 in horizontal and �z+ ≈ 1.9 in
vertical direction. The wall nearest data point of the wall-parallel velocity is thus evaluated
at a wall distance of z+ ≈ 0.95. Note that these wall units are based on the wall shear stress
in the undisturbed region of the precursor, not on the local one. The grid is fine enough

Table 1 Grid resolution of precursor, base grid and locally embedded grids applied in the presented LES.
Inner units refer to the wall shear stress of the undisturbed flow in the symmetry plane in the precursor

Grid Refinement Cells per diameter Grid spacing Grid

factor horizontal/vertical �x+/�y+/�z+
wall points

precursor 1 60/60/15 44 · 106
base 1 31.25/125 60/60/15 35 · 106
grid 1 2 62.5/250 30/30/7.5 80 · 106
grid 2 4 125/500 15/15/3.7 64 · 106
grid 3 8 250/1000 7.5/7.5/1.9 177 · 106
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Fig. 2 Contributors to the stress
balance on a wall-normal profile
at x = −0.73D through the
horseshoe vortex. The core of the
latter is located at z+ ≈ 140. The
data is taken from LES #3. Inner
units refer to the local wall shear
stress
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to resolve the viscous sublayer, see Section 3.2. The resulting number of grid points per
diameter and the total number of grid points are given in Table 1. As the discussion of
the dissipation rate of turbulent kinetic energy by Schanderl et al. [15] indicates, the grid
spacing corresponds to �z ≈ 1.6ηK and �x = �y ≈ 6.4ηK . Here ηK is the Kolmogorov
length scale [20].

2.3 Influence of the subgrid stress model

Since this study focuses on the stress balance, the contribution of the subgrid stresses to
the stress balance is discussed briefly. In Fig. 2 three contributors to the balance normal-
ized by the time-averaged local wall shear stress 〈τw〉 are evaluated on a wall-normal profile
in the symmetry plane in front of the cylinder. The streamwise position of the profile is
x = −0.73D, which corresponds to the location of the main horseshoe vortex (Section 3).
Evaluated are the viscous stresses neglecting and including modelled stresses ν〈∂u/∂z〉 and
〈(ν + νt )∂u/∂z〉 respectively, as well as a representative of the resolved turbulent stresses
−ρ〈u′w′〉. Here 〈〉 is the operator for time-averaging. u′

i is the fluctuation of the correspond-
ing velocity ui = 〈ui〉 + u′

i . νt is the turbulent viscosity modelled by the WALE model. u
is the velocity component in the streamwise (x-) direction, z is the wall-normal coordinate.
In the wall-normal direction, the profile covers a distance of ≈ 0.2D in outer scaling. The
core of the vortex is located at z = 0.06D and z+ ≈ 140 respectively. The wall units are
based on the local wall shear stress. The evaluated triple indicates the modelled stresses to
be of minor relevance for the momentum balance: Close to the wall at z+ < 10, where the
viscous stress is largest, the contribution of the modelled stress is small. Further away from
the wall at z+ ≈ 140, there is a slight deviation between the viscous stresses including and
excluding subgrid stresses, which is hardly visible in Fig. 2. However, except directly at the
wall the viscous stresses in general are of minor relevance for the stress balance, as the large
amplitude of the resolved stresses indicate. A discussion of the complete stress balance in
the streamwise direction follows in Section 4.

In the presented LES, the modelled turbulent kinetic energy kSGS is small compared to
the resolved one k. In wide regions covered by the vortex system, the modelled fraction is
kSGS/k ≈ 0.035, while there are small spots of kSGS/k ≈ 0.15 directly at the wall/cylinder
junction [15]. The modelled dissipation rate of turbulent kinetic energy is approximately



Flow Turbulence Combust

one third of the total one [15]. Since the overall influence of the subgrid stress model can
be considered small, the simulation is assumed to be independent of possible shortcomings
of the SGS model.

3 Flow Topology and Turbulence

To get an overview over the flow topology, the vortex system is discussed in Section 3.1.
Special attention is paid to the region close to the wall in Section 3.2.

3.1 Horseshoe vortex system

Figure 3 shows the time-averaged streamlines in the symmetry plane in front of the cylin-
der. The flow facing edge of the cylinder is located at x = −0.5D. The incoming flow leads
to a vertical pressure gradient in the cylinder front. This pressure gradient causes a down-
flow, which feeds the so-called horseshoe vortex system at the cylinder-wall junction. The
down-flow itself forms a boundary layer along the cylinder wall, separating from the cylin-
der at stagnation point S4. When reaching the bottom plate, the down-flow splits up. The
streamline which separates the fluid going upstream from the fluid going downstream ends
at stagnation point S3. A small fraction of the fluid is deflected towards the cylinder and
forms the small corner vortex S3 at the junction of the bottom wall and the cylinder. Most
of the down-flow is deflected in upstream direction, feeding the main vortex V1 and a jet
along the wall underneath V1. In the time-averaged flow field, the fluid which enters the jet
is subject to a distinct pattern of acceleration: first it accelerates from the region of stagna-
tion point S3 in upstream direction between x = −0.53D and x ≈ −0.7D. It decelerates
subsequently between x = −0.7D and x ≈ −0.83D. The jet fans out here. The accelera-
tion and deceleration sequence is an important factor to explain the production of turbulent
kinetic energy around the horseshoe vortex [1, 15]. Above this fanning out region, stag-
nation point S1 separates the main vortex V1 from an recirculation zone further upstream.
This recirculation zone is constrained by stagnation point S2.

Devenport and Simpson [1] described how the upstream directed wall jet under the horse-
shoe vortex switches between two preferential modes. In the backflowmode, the jet has high
momentum and penetrates far into the approaching boundary layer. In the zero-flow mode,
the wall jet lifts relatively early from the bottom wall and is ejected vertically. The presented
LES reproduces this bimodal behavior, which can be shown by the statistics of both veloc-
ity and pressure fields [14, 15]. It is nearby to interpret the fanning out of the streamlines

Fig. 3 Streamlines of the horseshoe vortex system in the symmetry plane in front of the cylinder. The vertical
lines indicate the streamwise position of the four selected profiles discussed below
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Fig. 4 Turbulent kinetic energy normalized by the bulk velocity k/u2b in the symmetry plane in front of the
cylinder

where the wall jet decelerates as the time-averaged representation of the bi-modal dynamics
of the horseshoe vortex and the wall jet [1].

Snapshots of instantaneous flow fields reveal hairpin vortices, which originate from the
wall under the main vortex and wrap around the latter [15, 38]. Paik et al. [5] argued
that these hairpin vortices are a result of centrifugal instabilities of the wall jet under V1.
They further state that these hairpin vortices destroy the main vortex V1 and thus cause the
bimodal behavior of the vortex system.

The bimodal large scale oscillations of the vortex system cause a characteristic distri-
bution of turbulent kinetic energy k = 0.5(〈u′u′〉 + 〈v′v′〉 + 〈w′w′〉), see Fig. 4. Large
amplitudes of k resulting from an increased level of vertical Reynolds normal stresses
〈w′w′〉 can be found in the region of V1. From this peak a region of enhanced turbulent
kinetic energy reaches like a leg down towards the bottom wall. This leg is caused by large
streamwise Reynolds normal stresses 〈u′u′〉. As apparent in Fig. 4 the distribution of k

forms a typical c-shape, which was described by Paik et al. [5] and confirmed by subsequent
studies, e.g. [2, 3].

There is a noticeable region of relatively calm turbulence between the main vortex V1
and the cylinder. Close to the bottom plate around x ≈ −0.6D not only the Reynolds
normal stresses (Fig. 4) but also the Reynolds shear stress 〈u′w′〉 have relatively small levels.
The latter is plotted in Fig. 5. 〈u′w′〉 has three positions of enhanced amplitude. Large
negative values can be found between the stagnation point S1 and the vortex core of V1,
which corresponds to the lower left sector of the main vortex. At the upper right sector
enhanced positive values of 〈u′w′〉 can be observed. Another negative peak is located close
to stagnation point S3. The distribution of the Reynolds stress 〈u′w′〉 is consistent with
observations of Devenport and Simpson [1] and Apsilidis et al. [2].

Fig. 5 Reynolds shear stresses normalized by the bulk velocity 〈u′w′〉/u2b in the symmetry plane in front of
the cylinder
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The low levels of turbulence close to the bottom wall between V1 and the cylinder can be
explained by the production of turbulent kinetic energy P = −〈u′

iu
′
j 〉∂〈ui〉/∂xj [20]. The

acceleration of the wall jet in upstream direction gives rise to negative normal stress produc-
tion P11 = −〈u′u′〉∂〈u〉/∂x, which dominates the total production P at this position [15].
The kinetic energy is transferred from turbulence to the mean flow and thus the turbulence
is damped here.

3.2 Near-wall flow

The strong pressure gradient at the bottom wall linked to the acceleration of the wall jet
becomes apparent in Fig. 6. LES #3 is the simulation with the finest grid, LES #2 the one
with the medium grid. The absolute pressure is adjusted in such a way that the pressure
coefficient cp = 〈p〉/(0.5ρub) at the streamwise position x = −1.5D is one in all three
simulations. ub is the bulk velocity in the symmetry plane of the undisturbed incoming flow.
The distribution of cp indicates two flow regimes. Upstream of the position of the main
vortex at x/D = −0.73 there is a relatively small adverse pressure gradient, and downstream
of the main vortex a large adverse pressure gradient can be seen. Both parts are separated
by a plateau of constant cp between x ≈ −0.80D and x ≈ −0.75D. This is in the zone in
which the jet fans out (Fig. 3). It is hardly visible in Fig. 6, but cp in fact exhibits a slight
decrease here. cp in LES #3 reaches its maximum at x = −0.53D, which corresponds to
the position of stagnation point S3. The small corner vortex V3 and the according positive
streamwise velocity at the wall are implied by the decreasing pressure coefficient between
S3 and the cylinder at x = −0.50D. Considering that the pressure difference between
x ≈ −0.73D and x ≈ −0.53D is approximately sixty percent of the dynamic pressure
head of the bulk velocity underlines the change of momentum of the wall jet driven by the
pressure gradient.

The differences between the three simulations are small in general. However, it is evident
from Fig. 6 that LES #1 and #2 are hardly able to resolve the small corner vortex V3.
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Fig. 6 Pressure coefficient cp along the bottom wall in the symmetry plane in the cylinder front taken from
LES #1 (coarse grid), LES #2 (medium grid) and LES #3 (fine grid). The pressure coefficient is adjusted
such that cp = 1 at x = −1.5D in all simulations
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Fig. 7 Profiles of the streamwise velocity 〈u〉 at four distinct x-positions in the symmetry plane in front of
the cylinder. Evaluated are data from LES #1 (coarse grid), LES #2 (medium grid) and LES #3 (fine grid)

The accordance to of the pressure distribution to the one measured by Dargahi [10] is satisfying
[14].

In Fig. 7 the time-averaged streamwise velocity 〈u〉 is evaluated for the three simula-
tions with different grid resolutions. First, the results of the simulation with the finest grid
(LES #3) are discussed followed by the influence of the grid resolution.

The profile closest to the cylinder is located at x = −0.60D. The upstream directed
wall jet described in Section 3.1 is indicated by a narrow peak of negative 〈u〉 close to the
wall. The maximum negative velocity is reached at δjet ≈ 0.005D above the wall. At this
position, the flow in the near-wall region accelerates in upstream direction due to the strong
pressure gradient. At x = −0.73D, which corresponds to the position of the core of V1,
the jet and thus the peak of negative 〈u〉 significantly expanded in the vertical direction.
Furthermore, the peak has slightly lifted off the wall (δjet ≈ 0.010D). Even though the
amplitude of 〈u〉 is approximately the same as at position x = −0.60D, the jet decelerates
here. The maximum negative velocity of the jet is reached at x ≈ −0.67D. At both positions
x = −0.60D and x = −0.73D the velocity profiles cross zero at a height of z = 0.06D,
which corresponds to the vertical position of the core of V1.

The profile at x = −0.90D is located upstream of V1 where the jet merges with the
recirculation zone located between S1 and S2. The amplitude of 〈u〉 is significantly smaller.
The most upstream position is located at x = −1.25D. Here, the approaching flow is not
separated yet but already decelerated by the adverse pressure gradient due to the cylinder.
This deceleration causes the velocity profile to deviate from the logarithmic law of the wall
(which is of course also true for the profiles at the other positions, Fig. 8).

The differences in the velocity profiles of the simulations with different grid resolution
are in general small in regions of positive streamwise velocity. However, there are some
deviations in the backflow region. LES #1 with the coarsest grid is not able to reproduce the
upstream recirculation zone - the flow is not separated yet at x = −0.90D. Furthermore,
in LES #1 the main vortex V1 is slightly shifted to the upstream and towards the bottom
wall. At x = −0.73D LES #1 predicts the position of 〈u〉 = 0 and thus the core of V1 to
be closer to the wall than the other simulations. As a result of the shifted topology and/or
the coarser grid in general, LES #1 under-predicts the amplitude of 〈u〉 at x = −0.60D and
over-predicts it at x = −0.73D. The deviations between LES #2 with the medium grid and
LES #3 with the finest grid are significantly smaller than the differences between LES #1
and LES #2. This implies a convergent behavior of the solution with grid refinement.

The velocity profiles discussed above are presented in inner scaling in Fig. 8. Figure 8
allows to draw two conclusions. First, the second grid point from the wall does not lie
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Fig. 8 Velocity profiles in inner
scaling at the four selected
positions in the symmetry plane
in the cylinder front taken from
LES #3 (fine grid). The wall
units are based on the local wall
shear stress
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exactly on the theoretical linear velocity profile in any of the investigated profiles. Never-
theless, it is close to the linear profile at all four profiles. This supports our assumption that
the first grid point lies in the linear sublayer. Second, none of the profiles is following the
logarithmic law of the wall anywhere. At x = −1.25D the momentum of the fluid in the
outer region is still large (Fig. 7), however, due to the adverse pressure gradient the wall
shear stress has already broken down. The velocity is thus significantly larger than what the
logarithmic law would predict for a velocity profile with the corresponding wall shear stress.
The flow in the backflow region under the horseshoe vortex at x = −0.90D, x = −0.73D
and x = −0.60D is subjected to large pressure gradients. Therefore, it is to be expected that
the corresponding velocity profiles deviate from the logarithmic law from a certain wall dis-
tance on. However, these profiles imply that there is no region in the near-wall layer where
the wall jet exhibits a behavior typical for a turbulent boundary layer. An estimation of the
wall shear stress based on the logarithmic law of the wall is thus not justified. It should be
noted that Fig. 8 does not allow for a general statement regarding the thickness of the vis-
cous layer in inner scaling. Nevertheless, it can be stated that all evaluated velocity profiles
deviate from the linear velocity profile approximately between the second and the third grid
point above the wall. Since the grid is equidistant, grid points represent the wall distance in
outer scaling. This suggests that the thickness of the viscous layer does not scale with the
wall shear stress but is determined by the outer flow.

The observations regarding the velocity profiles are in line with those regarding the wall
shear stress distribution in the symmetry plane in front of the cylinder (Fig. 9). We plot the
friction coefficient cf = 〈τw〉/(0.5ρub), where 〈τw〉 is the time-averaged local wall shear
stress. 〈τw〉 was estimated by assuming a constant velocity gradient between the wall near-
est grid point and the wall. Negative cf implies backflow. In LES #3 with the finest grid
stagnation point S2 (Fig. 3) is indicated by the zero crossing at x = −1.10D. The region of
relatively weak negative wall shear stress downstream of S2 corresponds to the recirculation
zone between S2 and S1. LES #2 exhibits these features, too, while LES #1 fails to represent
this weak backflow zone. The wide peak of negative cf further downstream indicates the
large momentum of the wall jet. Both the amplitude and the double peak shape of LES #2
and #3 are matching well. However, LES #1 shows a single peak only and underestimates
the amplitude in wide parts of the peak therefore. It should be noted that there is no stagna-
tion point at the bottom plate between the upstream backflow region (due to the upstream
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Fig. 9 Friction coefficient cf in the symmetry plane in the cylinder front taken from LES #1 (coarse grid),
LES #2 (medium grid) and LES #3 (fine grid)

recirculation zone) and the downstream one (due to V1) but these regions are connected by
weak backflow. This is in accordance to Fig. 3, which shows the streamlines closest to the
wall to connect S2 to S3, and to results documented in literature [1]. The narrow positive
peak close to the cylinder is the footprint of the small corner vortex V3. Due to the coarse
grid resolution, LES #1 cannot capture this vortex.

Again, the differences between LES #2 and #3 are significantly smaller than those
between LES #1 and #2. The deviation of LES #3 to a finer grid can be expected to be even
smaller. Furthermore, the wall shear stress is of the same amplitude in LES #2 and #3. We
thus consider the wall nearest grid point to lay in the linear sublayer. Due to the enormous
computational costs expected for a further refinement of the grid an additional simulation
is omitted. All results in the remainder of this paper are taken from LES #3 with the finest
grid.

4 Near-Wall Stress Balance

In the previous section the flow topology and velocity profiles close to the wall were pre-
sented. In the following, the stress balance which underlies these profiles is investigated. To
do so, the momentum balance in streamwise direction is integrated in wall-normal direction.
The expression for the streamwise wall shear stress 〈τw〉 gained from this balance is evalu-
ated by integration of the respective terms (Section 4.1) first. Second, it is discussed which
of the contributors suffice for an accurate reconstruction of the near-wall stress balance and
thus for modelling the wall shear stress (Section 4.2).

4.1 Integrated momentum balance

The streamwise (x-) component of the momentum balance written as Reynolds equation
reads [20]

ρ
∂〈u〉
∂t

+ρ
∂〈ui 〉〈u〉

∂xi
= − ∂〈p〉

∂x
+ρ ∂

∂xi
(ν + νt )

∂〈u〉
∂xi

−ρ
∂〈u′

iu
′〉

∂xi
(3)



Flow Turbulence Combust

where ui is the component of the velocity vector in xi-direction and u the one in x-direction.
Integration of Eq. 3 in the wall-normal (z-) direction gives an expression for the streamwise
wall shear stress 〈τw〉:

〈τw〉 = ρ(ν + νt )
∂〈u〉
∂z︸ ︷︷ ︸

Muz

−
∫ z

z1

∂〈p〉
∂x

dz

︸ ︷︷ ︸
pressure

−ρ〈w〉〈u〉︸ ︷︷ ︸
Mwu

−ρ〈w′u′〉︸ ︷︷ ︸
Fwu

−ρ

∫ z

z1

∂〈u〉〈u〉
∂x

dz

︸ ︷︷ ︸
Muu

−ρ

∫ z

z1

∂〈u′u′〉
∂x

dz

︸ ︷︷ ︸
Fuu

−ρ

∫ z

z1

∂〈v〉〈u〉
∂y

dz

︸ ︷︷ ︸
Mvu

−ρ

∫ z

z1

∂〈v′u′〉
∂y

dz

︸ ︷︷ ︸
Fvu

+ρ

∫ z

z1

∂

∂x
(ν + νt )

∂〈u〉
∂x

dz

︸ ︷︷ ︸
Mux

+ρ

∫ z

z1

∂

∂y
(ν + νt )

∂〈u〉
∂y

dz

︸ ︷︷ ︸
Muy

(4)

The labels in the under-braces give the references by which the corresponding terms are
referred to in the remainder of this paper. The wall shear stress 〈τw〉 is the integration con-
stant. We did not apply any wall-modelling, thus our code MGLET evaluates the wall shear
stress from the velocity gradient only. To be consistent with this procedure, the integrals in
Eq. 4 start at the first grid point of the numerical grid z1, not at the wall z0. Mwu and Fwu

are set to zero at z1. The stress balance at the first grid point thus reduces to 〈τw〉 = Muz,
which corresponds to the evaluation of τw in the LES.

We computed the terms in Eq. 4 on the four vertical profiles marked in Fig. 3. We plot
all terms in Fig. 10 except the viscous stresses in the streamwise (x-) and the spanwise (y-)
direction, Mux and Muy respectively. Due to the high Reynolds number, these contributors
remain small at all four positions. Nevertheless, both terms are included in the evaluation of
the full balance.

At every position the sum of all terms on the right hand side of Eq. 4 should balance
the wall shear stress 〈τw〉. However, the sum of all these terms (referred to as RHS Eq. 4 in
Fig. 10) slightly deviates from the shear stress at the wall. Close to the wall, the deviation
is considerably smaller than at z+ = 100 (not shown in Fig. 10), where it is of the same
order of magnitude as the wall shear stress. This error is intrinsic to the problem: Some
contributors to the stress balance gain amplitude with increasing wall distance and are larger
by two orders of magnitudes than the wall shear stress at z+ = 100. Small inaccuracies in
these large contributors cause large inaccuracies in the relative small residual of Eq. 4’s right
hand side. The errors stem from non-convergred statistics and postprocessing which not
fully complies with the difference formulae used during the simulation. Furthermore, errors
accumulate with increasing wall distance due to the integration. However, the discussed
deviation of Eq. 4’s right hand side from 〈τw〉 does not effect the magnitude of the terms
relative to each other. The conclusions regarding the relevance of single terms for near-wall
modelling drawn from this study thus do not suffer from the observed difference between
simulated and reconstructed wall shear stress.
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Fig. 10 Contributors to the stress balance in the streamwise direction as defined in Eq. 4 at four different
streamwise positions (Fig. 3) in the symmetry plane in front of the cylinder. The vertical axis is adjusted such
that its upper limit corresponds to z = 0.02D in outer scaling. All values are normalized by the magnitude
of the local wall shear stress 〈τw〉

The near-wall flow changes direction at x ≈ −1.1D, thus the wall shear stress is positive
at x = −1.25D (Fig. 10a) and negative at x = −0.90D (Fig. 10b), x = −0.73D (Fig. 10c)
and x = −0.60D (Fig. 10d). Due to the treatment of the wall-nearest grid point (Section 4.1),
the wall shear stress corresponds to the wall normal gradient of the velocity Muz in this
point at all four positions. All other terms are zero. As expected for turbulent flow, Muz

decreases rapidly with increasing wall distance and can be considered small at a wall
distance z+ ≥ 10.

Since the cylinder causes a positive pressure gradient in the approaching flow (Fig. 6),
the pressure term in Eq. 4 is negative at all four positions. Starting from zero in the first grid
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point at x = −1.25D (Fig. 10a) it is already five times as large as the wall shear stress at a
wall distance of z+ = 10. The positive pressure gradient causes a deceleration of the flow
in the streamwise direction as indicated by a positive Muu. It is plausible that the impact of
the positive pressure gradient in front of the cylinder is largest in the symmetry plane. Thus
the streamwise velocity has a local minimum in the symmetry plane and increases in the
spanwise direction (negative Mvu in Fig. 10a). The mentioned terms are balanced by the
Reynolds shear stresses Fwu and for z+ < 20 by a streamwise increase of 〈u′u′〉 (negative
Fuu). Fvu as well as Mux and Muy remain small in the investigated section of the profile
at x = −1.25D.

At x = −0.90D (Fig. 10b), the upper limit of the vertical axis z+ = 20 corresponds to
the zero crossing of the streamwise velocity. In the region plotted (z+ < 20) the stream-
wise velocity is thus negative. One can again observe the strong influence of the pressure
term on the stress balance. At z+ = 10, however, the term from the streamwise gradi-
ent of the streamwise Reynolds stress, Fuu, has approximately the same amplitude as the
pressure term, which is in line with a increase of 〈u′u′〉 in x-direction at this position
(Fig. 4). The term with the largest amplitude at this wall distance is the Reynolds shear
stress, Fwu, which balances the larger part of the pressure term and Fuu. The mean con-
vection of momentum in the spanwise direction, term Mvu, is considerably smaller than
the previously mentioned terms but of the same order of magnitude as the wall shear stress.
Mvu is positive, which means that the spanwise gradient of 〈v〉〈u〉 is negative. This can be
explained by the follwing considerations. 〈v〉 is close to zero in the symmetry plane and
increasing in spanwise direction. As 〈u〉 is negative, 〈u〉∂〈v〉/∂y < 0. On the other hand
〈v〉∂〈u〉/∂y << 1 as both contributors are small. Mwu is negative at z+ = 10, since the
recirculation zone between S2 and S3 results in both negative 〈u〉 and negative 〈w〉 (Fig. 3).
Mwu turns positive at z+ = 20 where 〈u〉 turns positive. In the section evaluated in Fig. 10b
Muu as well as Fvu remain small. These terms start to gain amplitude at z+ > 30 and
z+ > 40 respectively. Mux and Muy again remain small in the entire investigated section
of the stress balance at x = −0.90D.

The wall shear stress at x = −0.73D (Fig. 10c) is considerably larger than the one at
the positions of the previously discussed profiles. The upper limit of the vertical axis is set
to z = 0.02D. Since the core of the main horseshoe vortex V1 is located at z = 0.06D,
all data points plotted in Fig. 10c have negative streamwise velocity (Fig. 3). The upstream
directed jet along the bottom plate reaches its largest negative velocity at x ≈ −0.67D
(Section 3), thus the observed profile at x = −0.73D is in the deceleration zone of the
jet, which points in negative x-direction. This is represented in Fig. 10c by a strong Muu

component. The negative Muu is the result of an increasing amplitude of 〈u〉 in positive
x-direction, which is against the flow direction of the jet. While Muu is negative, Fuu is
positive, which visualises how the production term P11 shifts kinetic energy between mean
and fluctuating flow field at this position. At a wall distance of z+ = 10 the deceleration
is balanced in first line by the mean shear stresses Mwu. The streamlines in Fig. 3 indicate
that the wall jet fans out and the fluid lifts off the bottom wall at x = −0.73D, giving a
positive 〈w〉. Since 〈u〉 is negative in the whole observed range Mwu has to be positive, too.
At z+ = 10 all other terms are relatively small. However, their amplitude starts to increase
at approximately fifteen wall units significantly. Even though the pressure term strongly
contributes to the stress balance at z+ > 20, it is relatively small close to the wall. However,
it should be noted that the wall shear stress, by which the stresses are normalized, is larger
by a factor of five at x = −0.73D compared to the positions discussed above, x = −1.25D
and x = −0.90D respectively. Furthermore, due to the larger wall shear stress, the wall
units are smaller in Fig. 10c. The pressure gradient at position x = −0.73D at a certain
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wall distance in outer scaling is in fact of larger magnitude than in the previously discussed
profiles. Fvu shows a small gradient only but reaches the same amplitude as the wall shear
stress at z+ ≈ 50. The viscous terms Mux and Muy do not give a significant contribution
to the stress balance at x = −0.73D.

Last, the stress balance at x = −0.60D is discussed in Fig. 10d. At this position, 〈τw〉 is
larger than at all the other positions discussed. Ten wall units from the wall, there are only
four terms contributing significantly to the stress balance. The wall jet accelerates in the
upstream direction which gives a positive Muu. Since the jet and thus the upstream velocity
is strongest in the symmetry plane,Mvu is positive, too. Its large amplitude can be explained
by the blockage of the cylinder, which forces the fluid to accelerate in the spanwise direc-
tion to bypass the cylinder. However, this spanwise acceleration is still remarkable since
visualizations of the horizontal flow field along the bottom plate imply the fluid to move
upstream almost parallel to the x-axis in the region of the symmetry plane [1, 14]. Muu and
Mvu are balanced by a negative pressure term and a negative mean shear stress Mwu. The
latter results from negative 〈u〉 and negative 〈w〉, which in turn are caused by a compression
towards the bottom plate of the upstream pointing wall jet at this position (Fig. 3). Further
away from the wall, the amplitude of the mentioned stresses increase, while the other terms
of Eq. 4 remain small. Especially the small amplitude of terms based on Reynolds stresses
Fwu, Fuu and Fvu indicate the profile to be located in a region of relative calm turbulence,
which is consistent with the distribution of turbulent kinetic energy (Fig. 4).

4.2 Reconstruction of the wall shear stress

One goal of this study is to detect the significant contributors to the stress balance (Eq. 4)
which enable the reconstruction of the wall shear stress at a wall distance as large as possible
by a number of contributors as small as possible - preferred by terms which depend on the
local flow situation only and do not contain derivatives in the horizontal directions.

To deepen this issue, the contributors to the stress balance are grouped by the information
required for their evaluation to distinct subsets: “local” denotes the sum of all terms which
require local information only: τlocal = Muz + pressure term + Mwu + Fwu. The
pressure term is considered to be local even though it contains a derivative in the x-direction.
To evaluate the influence of the spatial flow situation, “local + streamwise” denotes the
sum of all local terms plus the terms containing derivatives in the streamwise direction
τlocal+streamwise = τlocal + Muu + Fuu while “local + spanwise” denotes the sum of all
local terms plus the terms containing derivatives in the spanwise direction τlocal+spanwise =
τlocal +Mvu+Fvu. The viscous terms Mux and Muy are small at all considered positions
and thus neglected. These groups are plotted in Fig. 11 at the four distinct profiles already
discussed above. The deviation between 〈τw〉 and Eq. 4’s right hand side is satisfying small
but noticeable (Fig. 10). Since a subset of this right hand side cannot be expected to resemble
〈τw〉 but the right hand side itself at the most, the data in Fig. 11 is normalized by the residual
of Eq. 4’s right hand side.

Figure 11 underlines that one needs to consider the full momentum balance (except the
viscous terms) in the investigated flow case to predict the wall shear stress. At a wall dis-
tance of ten wall units only, the best performing subsets of contributors to the stress balance
deviate form Eq. 4’s right hand side by approximately 25% (x = −0.60D, local plus span-
wise), 100% (x = −0.73D and x = −0.90D, local plus streamwise) and more than 100%
(x = −1.25D, local). These large deviations result from the fact that almost every term on
the right hand side of Eq. 4 exceeds the wall shear stress by a multiple at z+ = 10. Fur-
thermore, as the discussion in the previous Section 4.1 indicated, the relevance of the single
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Fig. 11 Subsets of contributors to the stress balance as defined in Eq. 4 normalized by Eq. 4’s right hand
side at four different streamwise positions (Fig. 3) in the symmetry plane in front of the cylinder

terms depends on the distinct position of the evaluated profile, as there is a significant local
change of the flow situation in the cylinder front. It is thus not surprising that different sub-
sets of stresses perform best at different positions. These observations are not only valid in
inner but also in outer scaling, as a analogous comparison of the subsets at a certain grid
point above the wall reveals.

When considering the distribution and the amplitude of the single contributors to the
stress balance as well as of the defined subsets, it becomes clear that a spatial approach
(including the derivatives in horizontal directions) has to be applied when the wall shear
stress is estimated based on data at a wall distance larger than two or three wall units in the
investigated complex flow situation.

From the necessity of including the horizontal (wall-parallel) derivatives into a wall-shear
stress estimation one can draw further conclusions: There are significant velocity gradients
in the wall-parallel direction, the boundary layer assumptions do therefore not hold in the
considered complex, three dimensional flow. To capture these wall-parallel gradients, the
data resolution in the respective directions has to be adequate. When a grid for a numerical
simulation is designed, the focus should thus not solely lie on the wall-normal, but also on
the wall-parallel grid resolution.
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5 Discussion

We investigated the near-wall flow under a horseshoe vortex system in front of a vertical
cylinder mounted on a flat plate at moderate Reynolds number. The goal of this study was
to evaluate the influence of single contributors to the total stress balance and thus to assess
their relevance for the evaluation and a possible modelling of the wall shear stress.

The reverse flow under the horseshoe vortex system is fully three-dimensional and char-
acterized by strong acceleration and deceleration. As expected, the velocity profiles strongly
deviate from the law of the wall. Large pressure gradients cause acceleration as well as
deceleration of the mean flow, which in turn result in significant increase and damping of
Reynolds stresses [15]. Accordingly, both Reynolds stresses and stresses due to the mean
flow are of major relevance for the total stress balance. However, it might be argued that the
mean flow field close to the wall depends on the flow topology in the outer region in first
line and thus can be described by outer scaling. Various studies investigating the Reynolds
number dependency of the horseshoe vortex system [2, 3, 16] observed no major changes
of the flow topology with Reynolds number for moderate Reynolds numbers. Since the wall
units become smaller with increasing Reynolds number, the mean stresses Mwu, Muu, and
Mvu are expected to be further away from the wall in inner scaling at higher Reynolds num-
bers. Consequently, a representation of the mean stresses by a computational grid would not
require a grid refinement with increasing Reynolds number.

It can be concluded from the presented data that for modelling the wall shear stresses
a balance including the local flow situation (represented by Muz, pressure term, Mwu

and Fwu in Eq. 4) is not sufficient. Due to the three dimensional nature of the flow, the
convective terms in the streamwise (Muu and Fuu) and in the spanwise (Mvu and Fvu)
direction have to be regarded as well to close the stress balance. An approach to model
the near-wall flow and the according wall shear stress which does not consider the spatial
flow situation but neglects the horizontal gradients will fail at least in most positions of the
examined flow. This is also true for models that assume the wall-normal velocity component
to be zero at a grid point outside the viscous sublayer. The viscous terms Mux and Muy

(and Muz for z+ > 10) can be considered to be small in the investigated flow. Furthermore,
the presented data implies the necessity of a wall-parallel data resolution, which is able to
capture wall-parallel gradients adequately.
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7. Palau-Salvador, G., Stoesser, T., Fröhlich, J., Kappler, M., Rodi, W.: Large eddy simulations and
experiments of flow around finite-height cylinders. Flow Turbul. Combust. 84(2), 239–275 (2010).
https://doi.org/10.1007/s10494-009-9232-0
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Abstract Subject of this study is the discussion of the dissipation of turbulent kinetic en-
ergy in front of a wall-mounted cylinder at three moderate Reynolds numbers by conducting
highly resolved Large-Eddy Simulation (LES). To achieve reliable results, we ensured that
the grid of the LES was fine enough to resolve most of the scales. A perceptible fraction
of the total dissipation was modelled. However, this fraction - about one third - was small
enough so that the total dissipation suffered only marginally from possible shortcomings of
the turbulence model. Individual terms of the pseudo dissipation tensor and their Reynolds
number scaling were discussed and compared among each other. It was shown that this ten-
sor and thus the turbulent small scale structures were not isotropic at the Reynolds numbers
investigated.

The turbulent length scale showed a strong spatial variability. In the region of the vortex
system in the cylinder front, its distribution revealed a similar shape as the one of the turbu-
lent kinetic energy and its amplitude was in the order of magnitude of the cylinder diameter.
In contrast to the region dominated by the approach flow, the turbulent length scale was
independent of the Reynolds number in the region dominated by the vortex system.

Even though the flow investigated was non-equilibrium common a priori estimations of
the Kolmogorov length scale based on macro scales gave satisfying results.

Keywords Dissipation · non-equilibrium flow · Large-Eddy simulation

1 Introduction

The knowledge of the dissipation rate of turbulent kinetic energy is of crucial importance
in turbulence modelling. It is also required to assess the Kolmogorov scales, the smallest
scales of motion in turbulent flow. A priori knowledge about these scales is needed for de-
signing both experiments and numerical simulations. However, an explicit evaluation of the
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dissipation is difficult, as Direct Numerical Simulation (DNS) without turbulence model is
still rare for practical flow problems. In Reynolds-Averaged Simulation (RANS) and Large-
Eddy Simulation (LES), the dissipation can be biased by the turbulence model. Furthermore,
it is extremely difficult to measure the dissipation rate, e.g. from laser based measurements,
since it is highly sensitive to noise in the recorded data [1].

“One of the cornerstone assumptions of turbulence theory” [24] is that the dissipation of
turbulent kinetic energy ε scales with the turbulent kinetic energy k = U2

t and a time scale
lt/Ut [23]

ε =
k3/2

lt
Cε . (1)

The energy is cascaded from large scale structures to structures of smaller scales to
structures of such small scale that viscous effects become active and the energy is dissipated
[17,27]. The characteristic velocity and length scales of the according structures are Ut and
lt respectively. The time scale lt/Ut is a measure for the time required to pass the energy
Ut through turbulent structures of the length scale lt . As in homogeneous, isotropic and
statistically stationary turbulence the energy driving the flow has to be equivalent to the
energy dissipated by the smallest scales of motion, the energy flux through the cascade of
motion is constant in a given situation and thus Cε = const. As reviewed comprehensibly by
Vassilicos [27], a multitude of studies investigated the dissipation coefficient Cε in the last
decades. The discussion in most of these studies is on the evaluation of the dissipation in a
periodic or closed box, in which turbulence was driven by an external source [5,22] (among
others), or on the region of decaying turbulence in the wake of an obstacle like a grid or
a cylinder [26,25] (among others). In these flow cases Cε is expected to be approximately
one and spatially constant, as the dissipation has to balance the available turbulent kinetic
energy [27].

However, as Nedić and Tavoularis [11] point out, homogeneous or, as they call it, fully-
developed flow conditions “may be achieved in carefully designed and meticulously oper-
ated laboratory settings and possibly in some environmental systems with a high level of
regularity” [11], but not in the majority of practical flow configurations. In the latter, the tur-
bulent kinetic energy is not necessarily dissipated at the same location as it is produced, but
transported away to other regions of the flow by the convection and the turbulent transport.
The contribution of these terms to the budget of turbulent kinetic energy can be tremendous
[19]. Nevertheless, if the energy is not cascaded continuously through all scales at the same
position, Cε can neither be expected to be approximately one nor to be spatially constant.
Thus, one can only expect that the dissipation rate of turbulent kinetic energy scales with
macro scale quantities, Ut and lt , but not that it can be directly calculated from them.

Eddy-viscosity models for Reynolds-averaged Simulation (RANS) are based on the
“cornerstone assumption” [24] mentioned above. These models express the momentum
transport effectuated by turbulent motion by an artificial viscosity νt which can be formu-
lated by the product of a turbulent velocity scale Ut and the length scale lt and the model
coefficient Cµ [16]. In two-equation models, the dissipation rate has been used as a surrogate
of the length, now termed lε [8],

lε = k3/2/ε , (2)

and the turbulent viscosity then becomes

νt =Cµ k2/ε . (3)
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In this context it is not only crucial to understand the characteristics of the turbulent
kinetic energy k (and thus the turbulent velocity scale Ut ) and its dissipation, but also of the
turbulent length scale lε . Therefore we investigated the dissipation rate in the flow around
a wall-mounted cylinder at three moderate Reynolds numbers ReD = 20000, ReD = 39000
and ReD = 78000 by highly resolved LES. The Reynolds numbers were based on the cylin-
der diameter D and the velocity averaged over the whole cross section of the approach flow.
To gain further insight in the characteristics of these quantities, we evaluated the turbulent
kinetic energy and its dissipation and estimated the turbulent length scale from these quan-
tities. The investigated flow configuration and the resulting flow topology are introduced in
section 2. The grid employed was fine enough to resolve approximately seventy percent of
the total dissipation. Accordingly, the influence of the modelled contribution to the solution
is small [19,18]. The numerical methods used to simulate the flow as well as the measures
taken to validate the presented data are presented in section 3. We present the dissipation ε
in front of the cylinder, where the so-called horseshoe vortex system causes rich dynamics
and large time-averaged gradients in all spatial directions, in section 4. In addition, individ-
ual terms of the pseudo dissipation are evaluated and compared among each other as well
as their Reynolds number scaling. Based of the evaluated dissipation, the turbulent length is
estimated in section 5.

2 Flow configuration

In this study a cylinder wall junction flow is considered. The flow configuration is docu-
mented in section 2.1 and the resulting flow topology in section 2.2. The numerical methods
and their validation employed to simulate this flow are presented in section 3.

2.1 Physical domain

We simulated the flow around a circular cylinder placed in an open channel with a flow
depth of H = 1.5D, where D is the diameter of the cylinder. We investigated three differ-
ent Reynolds numbers ReD = 20000, ReD = 39000 and ReD = 78000 based on D and the
velocity averaged over the whole cross section of the approach flow. The free surface was
modelled by a slip boundary condition (which corresponds to an infinitesimal small Froude
number), while a noslip condition was assigned to the bottom wall, the side walls and the
cylinder surface. The setup is sketched in figure 1. A precursor simulation was applied to
provide a fully-developed, turbulent open-channel flow as inflow condition [20].

2.2 Flow topology

A boundary layer flow, such as our open-channel flow, approaching a bluff body induces
a vertical pressure gradient in the body front. The resulting down-flow is deflected by the
bottom wall and forms the so-called horseshoe vortex system. Figure 2 illustrates the time-
averaged flow pattern in the symmetry plane in the cylinder front close to the bottom at
ReD = 39000. The flow facing edge of the cylinder was located at x = −0.5D. The down-
flow established a thin boundary layer along the surface of the cylinder which separated from
the cylinder at stagnation point S4. Fluid inside this boundary layer entered the small corner
vortex V3, while fluid in the freestream of this boundary layer was deflected in the upstream
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Fig. 1: Flow configuration: A circular cylinder mounted vertically on the flat bottom of an
open channel.

Fig. 2: Time-averaged streamlines in the symmetry plane in front of the cylinder at ReD =
39000.

direction along the bottom wall. The dividing streamline ended at stagnation point S3. Parts
of the fluid moving in the upstream direction formed the main vortex V1, while other parts
entrained a jet along the wall underneath. The fluid inside this wall jet was subject to a strong
acceleration between S3 at x=−0.53D and x≈−0.7D and deceleration from there on to x≈
−0.84D as indicated by the decreasing and increasing distance between the streamlines in
figure 2. The latter position corresponded to the streamwise position of stagnation point S1,
which separated the main vortex V1 from an additional weak recirculation further upstream.
This recirculation zone was constrained by the most upstream stagnation point S2 at x =
−1.10D (not shown in figure 2) at this Reynolds number. Since the fluid had to bypass the
obstacle, V1 bent around the cylinder. For this reason the vortex system is called horseshoe
vortex.

The data presented in figure 2 was taken from the simulation at ReD = 39000. At the
investigated Reynolds numbers, the main vortex V1 was slightly shifted upstream with in-
creasing Reynolds number, whereas the most upstream stagnation point was slightly shifted
downstream. However, since the the flow topology did not change in general with Reynolds
number, presenting the flow topologies at ReD = 20000 and ReD = 78000 was omitted here.

Devenport & Simpson [6] observed a bi-modal behaviour of the vortex system: In the
backflow mode, vortex V1 is located further upstream in the cylinder front and the wall
jet penetrates far into the oncoming boundary layer. The zero-flow mode is characterized
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by V1 located closer to the cylinder and the wall jet lifts and is ejected vertically off the
wall directly upstream of the main vortex V1. This bimodality was also observed in the
presented simulations. The consequences of this flapping of the jet for the dissipation of
turbulent kinetic energy will be discussed in section 4.

3 Computational configuration

The following section introduces the numerical method and the grid used for our simulations
(section 3.1) and discusses the measures taken to validate the employed approach (section
3.2). It should be noted that the simulation at the medium Reynolds number presented in this
study is exactly the same as the one discussed by Schanderl and Manhart [20], Schanderl et.
al [19] and Schanderl and Manhart [18].

3.1 Numerical methods

We conducted Large-Eddy simulation (LES) which was processed with our in-house Finite
Volume-code MGLET. Spatial gradients were approximated by central differences and time-
integration was done by a third order Runge-Kutta scheme. Since the grid was Cartesian,
the curved surface of the cylinder was represented by a conservative second order Immersed
Boundary Method [15,14]. The subgrid stresses were modelled by the wall-adapting local
eddy-viscosity (WALE) model [12]. This model facilitates the use of an Immersed Boundary
Method, as it does not require for a damping function. The turbulent viscosity decreases
naturally with proximity to the wall in this model.

The computational grid consisted of two major parts. First, a precursor (precursor grid)
with a length of approximately 30D and periodic boundary conditions in the streamwise (x-)
direction simulated a fully-developed, turbulent open-channel flow with a boundary layer
thickness of 1.5D. Instantaneous samples of this flow profile were set as inflow condition
at the second part of the grid (base grid), which contained the cylinder. MGLET provides
the possibility to refine the grid locally by nested grids [10]. This was used to achieve the
required grid resolution in the region of interest around the cylinder. In total, three levels
of refinement had to be applied until the grid study showed satisfying convergence of the
solution. Each refinement level reduced grid spacing by a factor of two, thus the total refine-
ment factor of the finest grid was eight relative to the precursor grid and the base grid. The
grid is stretched in the wall-normal (z-) direction by a stretching factor smaller than 1.01.
However, since this stretching was applied to the base grid and the precursor grid solely,
only every eighth cell of the finest embedded grid was incremented. It was shown that the
resolution was fine enough to resolve the viscous sublayer [20,18]. As the evaluation of the
dissipation of turbulent kinetic energy later in this study will show, grid spacing was approx-
imately two Kolmogorov length scales in the vertical (z-) direction and approximately eight
Kolmogorov length scales in the horizontal (x- and y-) directions. Parameters of the finest
locally embedded grids at each Reynolds number are listed in Table 1.

The instantaneous Courant-Friedrichs-Lewy number was 0.50 < CFLmax < 0.85. The
statistical data was time averaged over a time between T ≈ 900D/ub at the low Reynolds
number and T ≈ 570D/ub at the high Reynolds number after a statistically-steady state was
observed.
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Table 1: Grid parameters for all three Reynolds numbers investigated. The grid spacing
refers to the finest locally embedded grid around the cylinder. ηK was evaluated based on
the maximum total dissipation in the core of the main vortex in front of the cylinder and the
molecular viscosity ν .

ReD grid cells per diameter Kolmogorov lengths
cells horizontal; vertical ∆x/ηK = ∆y/ηK ; ∆z/ηK

20000 166 ·106 148; 571 8.0; 2.0
39000 400 ·106 250; 1000 6.4; 1.6
78000 1.6 ·109 440; 1778 6.8; 1.7

3.2 Validation

A grid study was conducted for each Reynolds number separately. Starting with the pre-
cursor grid and the base grid, the grid was successively refined in the region of interest
around the cylinder. Three levels of grid refinement turned out to be sufficient to achieve
results converged over grid spacing at each Reynolds number investigated. In figure 3 the
grid study at ReD = 39000 is exemplified, where the turbulent kinetic energy k = 0.5〈u′2i 〉 is
evaluated for three different simulations. u′i is the fluctuation of the velocity ui in direction xi
while 〈〉 denotes time averaging. The simulation referred to by LES39k #1 held one locally
embedded grid, LES39k #2 two local grids and in LES39k #3 the grid around the cylinder
was refined by three nested grids. Thus, grid spacing in LES39k #3 was four times smaller
than in LES39k #1 and eight times smaller than in the precursor grid and the base grid. A
discussion of the convergence of first order moments of the velocity field of the presented
LES at ReD = 39000 can be found in [20,19,18].

In figure 3, the turbulent kinetic energy normalized by ub was evaluated on a horizontal
profile in the symmetry plane in front of the cylinder. ub was the bulk velocity in the sym-
metry plane of the approach flow. The wall distance was z = 0.06D, which corresponded to
the wall distance of the core of V1 in the simulation with the finest grid. The distribution of
k can be divided in three regions. The first one corresponds to the down-flow region in front
of the cylinder downstream of x ≈ −0.65D, where the turbulence level was relatively low.
The second region indicates the presence of the main vortex V1 by significantly enhanced
k. However, as a comparison to the flow topology in figure 2 reveals, the peak of turbulent
kinetic energy reaches further upstream and also covers the area around stagnation point S1.
For x < 0.95D, k was again relatively small.

Figure 3 implies two kinds of changes with grid refinement: the amplitude of the peak
increased with grid refinement, and its position slightly moved downstream. The peak of
turbulent kinetic energy moved downstream together with the position of the main vortex
V1. This shift represents a change of the flow topology, which is the first order moment
of the statistics of the velocity field. The increasing amplitude represents changes in the
second order moments of the statistics of the velocity field. For both quantities the change
from LES39k #1 to LES39k #2 was significantly larger than the change from LES39k #2
to LES39k #3, which indicates that the simulations were in the convergent regime. As the
conducted LES used implicit filtering with a filter width defined by the grid spacing, the so-
lution converged towards the solution of a DNS [4]. However, as it is not possible to separate
the numerical error from the error of the model in a LES with implicit filtering, a decrease of
the error by second order cannot be expected, even though the used numerical methods are
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Fig. 3: Turbulent kinetic energy on a horizontal line in the symmetry plane in front of the
cylinder at ReD = 39000, taken from three simulations with different grid refinement. The
vertical position corresponds to the one of the core of the main vortex V1.

of second order [4]. As the differences between simulation LES39k #2 and LES39k #3 were
reasonably small, and changes between LES39k #3 and a simulation with further refined
grid were considered to be even smaller, a further grid refinement was omitted. A similar
behavior was observed in the simulations at ReD = 20000 and ReD = 78000.

In figure 4, the inplane turbulent kinetic energy kip normalized by ub from the simulation
LES39k #3 (figure 4a) is opposed to the one taken from the PIV measurements (figure 4b)
by Ulrich Jenssen, documented in Schanderl et al. [19]. The inplane turbulent kinetic energy
kip = 0.5〈u′2 +w′2〉 was chosen since the PIV data contained the velocity components in
the streamwise (x-) direction u and in the vertical (z-) direction w only, but not the one in
spanwise (y-) direction v. Even though the amplitude of the inplane turbulent kinetic energy
kip was smaller than the one of the total turbulent kinetic energy k by approximately 20%,
the distribution of kip was similar to the one of k [19]. The main peak of kip was located
in the region of vortex V1, from where a foot-like structure of enhanced kip reached to the
bottom plate. Together, the peak around V1 and the foot-like structure formed the typical
c-shape, which was described by Paik et al. [13] and confirmed by various studies, e.g.
[7,2], among others. Around V1 the Reynolds stresses in vertical direction 〈w′2〉 were the
dominant contributor to the turbulent kinetic energy, while 〈u′2〉 was the main contributor to
the branch reaching to the bottom plate [19]. The region between the main vortex and the
cylinder exhibited relatively calm turbulence.

The accordance of PIV and LES39k #3 was satisfying. This was especially true for
the distribution of kip, which showed a similar c-shape in both data sets. As the whole
vortex system was located slightly more upstream in the PIV (see the marked positions
of V1 in figure 4a and 4b respectively), this was also true for the distribution of turbulent
kinetic energy. However, the overall amplitude was larger by 20% to 30% in the PIV. An
investigation of the Reynolds normal stresses revealed that this deviation stemmed from a
larger 〈u′2〉 in the region of the main vortex V1 in the experiment, while the amplitude of
〈w′2〉 was approximately the same [19].

It should be noted that the deviation of the amplitudes cannot be caused by the fact
that the modelled turbulent kinetic energy kSGS was neglected in the evaluation of the nu-
merical data. In the presented study the modelled turbulent kinetic energy was defined as
kSGS = (νt/(0.094∆))2 [28,9], where ∆ was the filter width equivalent to grid spacing and
νt was the modelled viscosity. The ratio of the modelled to the resolved turbulent kinetic
energy kSGS/k in figure 5 is approximately 0.02 in the region covered by the vortex system
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Fig. 4: Inplane turbulent kinetic energy kip/u2
b in the symmetry plane in front of the cylinder

at ReD = 39000, (a) taken from the simulation LES39k #3 and (b) experimental data from
the same setup, taken from [19].

Fig. 5: Ratio of the modelled turbulent kinetic energy to the resolved one kSGS/k in the
symmetry plane in front of the cylinder at ReD = 39000, taken from LES39k #3.

and less than 0.01 outside of this region. The influence of the subgrid scale model on the
distribution of turbulent kinetic energy was thus considered small. Solely the region covered
by the small corner vortex V3 exhibits an enhanced ratio of kSGS/k≈ 0.15 in figure 5. Since
the grid spacing in the horizontal directions was four times larger than in the wall-normal
direction, the grid was not fine enough to capture the thin boundary layer along the cylinder
and the small corner vortex V3 without noticeable contribution of the subgrid-stress model.
However, this region was spatially constrained. The relatively enhanced contribution of the
subgrid stresses was also observed in the evaluation of the total budget of turbulent kinetic
energy [16] by Schanderl et al. [19]. They evaluated the budget and although the modelled
contributors to each term except the dissipation rate were neglected, the residual of the bud-
get was reasonable small (less than 10% of the production term) in the region covered by the
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horseshoe vortex. Solely in the region close to the cylinder the residual showed an enhanced
amplitude [19]. However, as the residual did not exhibit a constant shift but positive and
negative values alternated in wide regions, it can be acted from the assumption that no bud-
get term was over- or underestimated and the numerical dissipation of the employed setup
was marginal [19]. In addition, an evaluation of modelled and resolved stresses implied that
the modelled ones were small compared to the resolved ones [18].

All data presented in the following was taken from the simulation with the finest grid at
the corresponding Reynolds number.

4 Dissipation rate

In this section, the distribution and the modelled share of the dissipation rate are discussed
and compared to the so-called pseudo dissipation first (section 4.2). Afterward, contributors
to the pseudo dissipation and their Reynolds number scaling are evaluated.

4.1 Total dissipation

In an eddy-viscosity LES, the dissipation of turbulent kinetic energy ε is obtained by [16]

ε = 2ν〈si jsi j〉︸ ︷︷ ︸
εres

+ 2〈νtsi jsi j〉︸ ︷︷ ︸
εSGS

. (4)

ε is calculated based on the fluctuation of the strain rate tensor si j = 1/2
(

∂u′i/∂x j +∂u′j/∂xi

)
,

while the direct dissipation due to the time-averaged strain rate tensor Si j is not included.
The first summand in equation (4) is the resolved dissipation εres and the second summand
the modelled one εSGS. In the remainder of this study, the dissipation is normalized by the
bulk velocity in the symmetry plane of the approaching flow ub and the cylinder diameter
D.

The dissipation for all three Reynolds numbers investigated is evaluated in figure 6. Its
distribution bears three features: (i) a broad peak in the area covered by vortex V1; (ii) a
tail of large ε along the cylinder, leading into a peak at the junction of cylinder and bottom
wall; (iii) a thin stripe of large dissipation where the wall jet moves along the bottom wall
under vortex V1. With increasing Reynolds number, the main vortex V1 was slightly shifted
upstream as indicated by the corresponding marks in figure 6. Thus, the dissipation peak in
this region was shifted as well. Furthermore, the overall amplitude of ε slightly enhanced and
the peak at the wall under V1 became more pronounced with increasing Reynolds number.
The cause of this enhanced amplitude will be discussed in section 4.2. However, the changes
of ε with Reynolds number were rather small.

The dissipation in figure 6 is the sum of the resolved and the modelled dissipation.
The modelled share is presented separately with adjusted colorbar in figure 7 for ReD =
39000. εSGS exhibited the same three features as observed for the total dissipation. In fact,
the distribution of the modelled dissipation was similar to the one of the total dissipation
while its amplitude was approximately one third of the total one. This fraction is small for
LES.

The pseudo dissipation εp, which is defined as [21]

εp = ν〈
(

∂u′i
∂x j

)2

〉 , (5)
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Fig. 6: Dissipation ε ∗D/u3
b in the symmetry plane in front of the cylinder at ReD = 20000

(a), ReD = 39000 (b) ReD = 78000 (c).

facilitates a decomposition into individual contributors according to their spatial orientation.
εp as shown in figure 8 for ReD = 39000 does not contain modelled contributions. The
pseudo dissipation replicates ε in figure 6b without observable deviation. This is true for
both amplitude and distribution and supports the assumption that the pseudo dissipation is
a fairly good approximation of the dissipation in the considered flow setup at the Reynolds
numbers investigated.

4.2 Term-by-term evaluation of the pseudo dissipation

While the full dissipation rate of turbulent kinetic energy seems to be more or less indepen-
dent of the Reynolds number in the considered range, we are also interested in whether and
- if yes - how the individual contributions to the total dissipation rate change with Reynolds
number. This can be estimated from the individual terms of εp,i j as given by equation (5)
without summation over the indices. We first give an overlook over the full tensor and then
concentrate on two individual contributions to the dissipation rate tensor. In figure 9 the
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Fig. 7: Modelled dissipation εSGS ∗D/u3
b in the symmetry plane in front of the cylinder at

ReD = 39000.

Fig. 8: Pseudo dissipation εp ∗D/u3
b in the symmetry plane in front of the cylinder at ReD =

39000.

full pseudo dissipation tensor is evaluated. In each subfigure one individual term εp,i j of
the pseudo dissipation εp as given by equation (5) is plotted three times - once for each
Reynolds numbers investigated. The distribution on top of each subfigure corresponds to
ReD = 20000, the one at the bottom of each subfigure to ReD = 78000. The subfigures are
ordered according to their position in the pseudo dissipation tensor and plotted in a color
range from εp,i jD/u3

b = 0 to εp,i jD/u3
b = 0.02 with increments of 0.002.

From figure 9 it becomes evident that the dissipation rate was not isotropic as there are
terms of relative large amplitude in the region in front of the cylinder while other terms are
relatively small. In the center of the main vortex, the streamwise gradients of the wall-normal
component, εp,31 = ν〈(∂w′/∂x)2〉 had the largest contribution, followed by the wall-normal
gradients of the streamwise component εp,31 = ν〈(∂w′/∂x)2〉. Under the main vortex near
the wall, the dissipation rate was dominated by the wall-normal gradients of the streamwise
component εp,31. Another interesting feature becomes evident when the individual terms
are investigated with increasing Reynolds number. The distributions and amplitudes of the
two “large terms” did not change, see for example εp,13. However, the amplitudes of the
“small terms” increased significantly, see for example εp,12 = ν〈(∂u′/∂y)2〉. With increasing
Reynolds number, the small terms caught up to the large terms and the dissipation became
more isotropic. This was true for all small terms except the terms in the trace of the tensor
εp,ii, which remained small compared to the other terms. The behavior of the “small terms”
was consistent with the conventional picture of the energy cascade and the assumption that
the small scales become isotropic only at very large Reynolds numbers. With increasing
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ν〈(∂u/∂x)2〉 ∗D/u3
b ν〈(∂u/∂y)2〉 ∗D/u3

b ν〈(∂u/∂ z)2〉 ∗D/u3
b

ν〈(∂v/∂x)2〉 ∗D/u3
b ν〈(∂v/∂y)2〉 ∗D/u3

b ν〈(∂v/∂ z)2〉 ∗D/u3
b

ν〈(∂w/∂x)2〉 ∗D/u3
b ν〈(∂w/∂y)2〉 ∗D/u3

b ν〈(∂w/∂ z)2〉 ∗D/u3
b

Fig. 9: Pseudo dissipation tensor evaluated for all three Reynolds number investigated. The
colorbar ranges from εp,i jD/u3

b = 0 to εp,i jD/u3
b = 0.02 with increments of 0.002.

Reynolds number, the dissipation occurs at successively smaller scales, the cascade is longer
and the small structures have more time to develop towards and isotropic state. The increase
of the “small terms” was also what caused the mild increase of the total dissipation ε with
Reynolds number (figure 6).

In the following, we concentrate on two individual contributors to the pseudo dissi-
pation in more detail. Individual contributors can be related to specific vortex structures.
Small scale vertical vortices, e.g., give rise to large values of εp,12 = ν〈(∂u′/∂y)2〉 and
εp,21 = ν〈(∂v′/∂x)2〉. From figure 9 it can be inferred that both had similar distributions
and amplitudes with a similar Reynolds number dependence. Figure 10 zooms into εp,12 =
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Fig. 10: εp,12 ∗D/u3
b based on the spanwise gradient of fluctuations of the streamwise veloc-

ity at ReD = 20000 (a), at ReD = 39000 (b)and at ReD = 78000 (c) in the symmetry plane in
front of the cylinder.

ν〈(∂u′/∂y)2〉 which peaked in the upstream half of the main vortex between the core of V1
and stagnation point S1 (and so did εp,21). The amplitude of εp,12 was rather small, especially
at ReD = 20000. However, with increasing Reynolds number also the overall amplitude of
εp,12 increased and the distribution changed. At ReD = 78000 maximum values appeared
closer to the bottom wall in the region, in which the wall jet decelerated and lifted off the
wall. The fact that εp,12 and εp,21 had similar distributions and amplitudes suggests that in
the region in which these two were large, intense small scale vertical vortices occurred. In
deed it was observed by [3] and [19] that in front of the main vortex V1 many small scale
vertical vortices appear. These vortices are amplified by the vortex stretching mechanism
induced by the roll up of the fluid in front of the main vortex. Our results suggest that this
mechanism becomes more important with increasing Reynolds number.

Figure 11 shows the pseudo dissipation due to the vertical gradient of the fluctuations of
the streamwise velocity εp,13 = ν〈(∂u′/∂ z)2〉. The data was evaluated with adjusted colorbar
compared to figure 10. The amplitude of εp,13 was significantly larger than the one of other
contributors at every Reynolds number investigated. Furthermore, εp,13 held two peaks: one
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Fig. 11: εp,13 ∗D/u3
b based on the vertical gradient of fluctuations of the streamwise velocity

at ReD = 20000 (a), at ReD = 39000 (b) and at ReD = 78000 (c) in the symmetry plane in
front of the cylinder.

around the main vortex V1, and the other one underneath V1 at the bottom plate. Around
the main vortex, εp,31 exhibited a similar distribution than εp,13, which suggests that intense
small scale streamwise vortices can be found here. These streamwise vortices eventually can
be explained by a further wrapping of wall normal vortices around V1. The second peak in
εp,13 was found at the wall beneath the main vortex. As there was no other contributor to
the dissipation rate peaking at this location, we conclude that the large amplitudes of the
dissipation rate at the wall can be explained by a vertical flapping of the wall jet underneath
V1. With increasing Reynolds number, the overall amplitude increased only marginally,
which implies that the effects causing εp,13 changed only marginally, too.

5 Length scales

We now turn our attention to the length scales associated with the dissipation rate. First, we
discuss the distributions of the turbulent length scale lε constructed by the turbulent kinetic
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energy and its dissipation rate (section 5.1). Afterward, we discuss the Reynolds number
scaling of the Kolmogorov scale (section 5.2).

5.1 Turbulent length scale

In eddy viscosity based Reynolds averaged modelling (RANS), the turbulent viscosity,
which furnishes the dissipative effect of turbulence, is formulated as a product of a ve-
locity scale Ut and a length scale lt . The common approach in two equation modelling is to
estimate the turbulent length scale by the dissipation rate as a surrogate, hence lε , by equa-
tion (2). The dissipation rate ε is evaluated by an additional transport equation. However,
in the presented case the dissipation can be estimated from the LES, which allows for an a
posteriori evaluation of the turbulent length scale lε .

The turbulent length scale in figure 12 reveals a large spatial variability for all three
Reynolds numbers. In the oncoming flow and in the down flow in front of the cylinder
the length scale was large (O(D)). The c-shape found in the kinetic energy distribution
(figure 4) was as well found in the length scale distribution. Around the center of the main
vortex and in the foot-like peak underneath lε attained a local maximum, which indicates
that the fluctuations in this region are mainly due to large-scale spatial oscillations of the
main vortex. At the cylinder junction, very small values occurred which can be explained by
the spatially small corner vortex system.

The length scale was only mildly dependent on the Reynolds number in the main areas
around the horseshoe vortex, which underlines the Reynolds number independence of the
horseshoe vortex system. However, in the oncoming flow and the down flow in front of the
cylinder, the length scale lε grew from values of lε ≈ 0.3D at Re = 20000 to lε ≈ 0.8D at
Re = 78000.

5.2 Kolmogorov length scale

When performing Direct Numerical Simulation (DNS) or Particel Image Velocimetry (PIV),
knowledge about the Kolmogorov length scale is required so that grid spacing in DNS and
the particle size in PIV can be adjusted accordingly. As the Kolmogorov length scale [16]

ηK = (ν3/ε)1/4 (6)

depends on the dissipation rate ε , ε has to be estimated a priori by macro scale parameters.
In the considered setup, this estimation can be done by the bulk velocity in the symmetry
plane of the approach flow and the cylinder diameter u3

b/D [16], which were also used to
normalize the dissipation and the pseudo dissipation presented above. The corresponding
approximation of the Kolmogorov length scale is ηK,macro = (ν3/(u3

b/D))1/4. For all three
Reynolds numbers investigated, the dissipation computed from the LES was ε ≈ 0.08u3

b/D
in the core of the main vortex V1 and the corresponding Kolmogorov length scale thus
ηK = 1.88ηK,macro. This indicates, that even if the dissipation rate is locally underestimated
by a factor of more than ten, the macro scale estimation of the Kolmogorov length scale
ηK,macro is a fairly good approximation. However, it should be noted the ηK is relatively
insensitive to a deviation of ε , as the first scales with the latter by a power of 1/4.

By dimensional arguments, the Kolmogorov length scale is assumed to scale with 1/Re3/4.
Based on this assumption and the Kolmogorov length scale computed from the LES at
ReD = 20000 ηK,20k, the Kolmogorov length scales ηK,39k and ηK,78k at ReD = 39000 and
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Fig. 12: Turbulent length scale lε/D (equation (2)) at ReD = 20000 (a), at ReD = 39000 (b)
and at ReD = 78000 (c) in the symmetry plane in front of the cylinder.

ReD = 78000 respectively were estimated in the main vortex core and compared to a pos-
teriori evaluations of the LES data at the corresponding Reynolds number. Table 2 lists
the scaling factors resulting from both approaches. The column “A priori” gives the factor
200003/4/Re3/4

D which needs to be applied to scale the Kolmogorov length scale evaluated at
ReD = 20000 to the one at the higher Reynolds numbers according to the a priori estimation.
The column “A posteriori” gives the factor ηK,LES,ReD/ηK,LES,20K which has to be applied
to scale the Kolmogorov length scale according to the results of the conducted simulations.
This comparison demonstrates that the dimensional analysis scaling of the dissipation rate
in this flow is fairly good. This was not expected keeping in mind that the considered flow
is in strong non-equilibrium.

6 Conclusions

We conducted highly resolved Large-Eddy Simulation of the flow around a wall-mounted
cylinder at three moderate Reynolds numbers. The results were carefully validated and the
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Table 2: A priori and a posteriori estimation of the Kolmogorov length scale.

ReD A priori A posteriori

20000 1 1
39000 0.61 0.70
78000 0.36 0.38

grid was fine enough to resolve approximately 70% of the total dissipation of turbulent
kinetic energy. It was shown that the dissipation can be approximated by the pseudo dis-
sipation. The evaluation of individual terms of the pseudo dissipation tensor implied that
the pseudo dissipation and thus the small scale structures are not isotropic in such flow.
At ReD = 20000 the terms εp,13 and εp,31 were significantly larger than the other ones
and maintained both amplitude and distribution when the Reynolds number was increased.
The amplitudes of other terms (εp,12, εp,21 εp,23 and εp,32) - which were relatively small at
ReD = 20000 - increased with Reynolds number. This implies that the small scale structures
become more isotropic with increasing Reynolds number, as the energy cascade becomes
longer and the small scale structures are thus more likely to develop towards an isotropic
state. The smallest terms of pseudo dissipation tensor were the ones in its trace (εp,ii) at all
three Reynolds numbers investigated.

The estimation of the turbulent length scale lε exhibited a strong spatial variability. In
the region of the main vortex, the distribution of lε had a similar c-shape as observed for
the turbulent kinetic energy. Here, the amplitude of lε was in the order of magnitude of the
cylinder diameter D. In contrast to the region dominated by the approach flow, the Reynolds
number dependency of lε was weak in the region of the horseshoe vortex. This suggests that
one has to step with caution is the turbulent length scale in the horseshoe vortex system shall
be estimated by a model developed for equilibrium flow.

Our results implied that the magnitude of the Kolmogorov length scale can be reasonably
predicted by an estimation based on the macro scales in the flow configuration considered.
Furthermore, the Reynolds number scaling of the Kolmogorov length scale can be estimated
fairly well by 1/Re3/4.

Acknowledgements We would like to thankfully mention fruitful discussions with Ulrich Jenssen, who
conducted the companion experiments [19].

Compliance with Ethical Standards:
Funding: We gratefully acknowledge the financial support of the DFG under grant no. MA2062/11 and

the computing time, which was granted by the Leibniz Computing Center (LRZ) of the Bavarian Academy
of Sciences through grant no. pr84gi. No further funding was received.

Conflict of Interest: We declare that we have no conflict of interest.

References

1. Adrian, R.J., Westerweel, J.: Particle Image Velocimetry. Cambridge University Press, Cambridge (2011)
2. Apsilidis, N., Diplas, P., Dancey, C.L., Bouratsis, P.: Time-resolved flow dynamics and reynolds number

effects at a wall-cylinder junction. Journal of Fluid Mechanics 776, 475–511 (2015)
3. Apsilidis, N., Khosronejad, A., Sotiropoulos, F., Dancey, C., Diplas, P.: Physical and Numerical Model-

ing of the Turbulent Flow Field Upstream of a Bridge Pier. In: International Conference on Scour and
Erosion 6. Paris (2012)

4. Bose, S.T., Moin, P., You, D.: Grid-independent large-eddy simulation using explicit filtering. Physics
of Fluids 22(10), 105,103 (2010). DOI 10.1063/1.3485774



18 Schanderl & Manhart

5. Cadot, O., Couder, Y., Daerr, A., Douady, S., Tsinober, A.: Energy injection in closed turbulent flows:
Stirring through boundary layers versus inertial stirring. Physical Review E 56(1), 427–433 (1997)

6. Devenport, W.J., Simpson, R.L.: Time-dependent and time-averaged turbulence structure near the nose
of a wing-body junction. Journal of Fluid Mechanics 210, 23–55 (1990)

7. Escauriaza, C., Sotiropoulos, F.: Reynolds Number Effects on the Coherent Dynamics of the Turbu-
lent Horseshoe Vortex System. Flow, Turbulence and Combustion 86(2), 231–262 (2011). DOI
10.1007/s10494-010-9315-y

8. Leschziner, M.: Statistical Turbulence Modelling for Fluid Dynamics – Demystified. Imperial College
Press (2016)

9. Lilly, D.K.: The representation of small-scale turbulence in numerical simulation experiments. In: Pro-
ceedings of the IBM Scientific Computing Symposium on Environmental Sciences, IBM Form No. 320–
1951, pp. 195 – 210 (1967)

10. Manhart, M.: A zonal grid algorithm for DNS of turbulent boundary layers. Comput. Fluids 33(3),
435–461 (2004)
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This paper documents and discusses the Reynolds number scaling of the time average
velocity field, turbulence structure and the wall shear stress of the flow in front of a
cylinder-wall junction. The data were obtained by large-eddy simulations and particle
image velocimetry in an open channel at Reynolds numbers of ReD = 20000, 39000 and
78000.

The results indicate that in front of the cylinder, the amplitude of the friction coefficient
scales with the square root of the Reynolds number cf ∼ 1/

√
ReD similar to the behavior

of a Blasius boundary layer. We explain this scaling with the characteristic structure of
the turbulent kinetic energy in the cylinder front and the quasi-laminar behavior of the
near-wall flow in which no standard boundary layer dynamics can develop due to large
flow acceleration.

This manuscript is in a premature state.

1. Introduction

One of the characteristics of the flow around a wall-mounted bluff body is the vertical
pressure gradient in the body front, when a boundary layer approaches the body.
Triggered by this pressure gradient, a down-flow transports high momentum fluid towards
the bottom wall where the fluid is deflected in the upstream direction. Blocked by the
oncoming boundary layer, this fluid recirculates and forms the so-called horseshoe vortex.
However, some parts of the high momentum fluid close to the bottom wall constitute a
jet (Devenport & Simpson 1990) which starts right in front of the bluff body, passes
under the main horseshoe vortex and penetrates far upstream between the wall and the
oncoming flow.

The wall jet causes an enhanced wall shear stress at the bottom wall (Dargahi 1989),
which is challenging to estimate as the flow in the near-wall region in front of a wall-
mounted bluff body is three dimensional and in a non-equilibrium state. Due to the
large gradients of mean and turbulent stresses in all spatial directions, the boundary
layer assumptions cannot be applied to model the wall shear stress (Schanderl et al.
2017a), but the data resolution has to be high enough to resolve the wall jet adequately.
However, the three-dimensional boundary layer established by the wall jet is very thin
and the thickness of the respective linear sublayer - the layer which has to be resolved to
estimate the wall shear stress - is less than five wall units (Schanderl & Manhart 2016;
Schanderl et al. 2017a). Thus it is not surprising that numerous previous studies have
underestimated the amplitude of the wall shear stress in front of a bluff body (Schanderl
& Manhart 2016).

Nevertheless, reviewing the existing literature on the flow around a wall-mounted bluff

† Email address for correspondence: michael.manhart@tum.de
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body also reveals two issues which can facilitate the wall shear stress estimation. First,
the distinct pattern of acceleration of the wall jet strongly affects the turbulence structure
in front of the body and especially in the near-wall region (Devenport & Simpson 1990;
Schanderl et al. 2017b). Due to the adverse pressure gradient in the streamwise direction
in front of the cylinder, the fluid accelerates first before it decelerates when it faces
the oncoming boundary layer (Devenport & Simpson 1990; Schanderl et al. 2017a).
The acceleration gives rise to a negative normal production of turbulent kinetic energy
(Devenport & Simpson 1990) which dominates the total production in this region of the
jet (Schanderl et al. 2017b). In contrast, the deceleration of the jet triggers significant
positive normal stress production (Devenport & Simpson 1990), which causes a strong
increase of turbulent kinetic energy in that region (Devenport & Simpson 1990; Schanderl
et al. 2017b). Though, this turbulent kinetic energy does not disperse towards the bluff
body (Schanderl et al. 2017b), therefore the turbulence level contained by the down-flow
is not enhanced and the level of turbulent kinetic energy between the main vortex and
the bluff body in turn is relatively mild (Schanderl et al. 2017b).

The second issue which can be exploited to facilitate the wall shear stress estimation is
the Reynolds number scaling of the vortex system. Even though there are some changes
in the region of the main vortex with Reynolds number (the size and the position of
the main vortex, increase of turbulent kinetic energy in the deceleration region of the
jet), various studies document that the topology of the horseshoe vortex system is in
general invariant to a moderate Reynolds number (Roulund et al. 2005; Apsilidis et al.
2015; Schanderl & Manhart 2016, 2017). As the vortex system changes only slightly
with the moderate Reynolds number, this also must be the case for the influence of the
vortex system on the wall jet and its acceleration. The negative production due to this
acceleration as well as the calm turbulent kinetic energy in this region is maintained.

In the present study, we draw conclusions from the turbulence structure and its
Reynolds number scaling in the near-wall region in front of a bluff body and propose a
specific scaling law for the corresponding wall shear stress. To do so, we have conducted
both large-eddy simulation and particle image velocimetry of the flow around a cylinder
mounted vertically on the bottom wall of an open channel at three moderate Reynolds
numbers. We document the Reynolds number scaling of the flow topology and the
corresponding turbulence structure. Based on that, we investigated the Reynolds number
scaling of the wall shear stress and explained the scaling behavior by the two issues
mentioned above: the weak scaling of the outer flow and the calm turbulence in the
near-wall region.

The paper is structured as follows. Section 2 presents the flow configuration considered.
Sections 3 and 4 document the experimental and the numerical configuration respectively.
The flow topology in front of the wall-mounted cylinder as well as the corresponding
distribution of turbulent kinetic energy are presented in section 5 and 6 respectively.
Finally, section 7 documents the wall shear stress distribution and a specific scaling
law is proposed. The latter section also contains an explicit validation of the wall shear
stress, including a grid study of the numerical results and measurements evaluated by
two different post-processing algorithms.

2. Flow configuration

We investigated the flow around a circular cylinder mounted vertically on the bottom
wall of the bottom wall of a water channel with free surface (figure 1). The considered
Reynolds numbers were ReD = 20000, ReD = 39000 and ReD = 78000 based on the
diameter of the cylinder D and the velocity averaged over the whole cross section of
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Figure 1. Flow configuration investigated. The sketch is taken from Schanderl et al. (2017b).

the approaching flow. The flow depth was h = 1.5D for all three Reynolds numbers.
However, the ratio of the width of the channel w to the diameter D had to be adjusted
when the Reynolds number was increased. The width was w = 11.7D at ReD = 20000 and
ReD = 39000 and w = 7.3D at ReD = 78000. This difference resulted from experimental
constrains: In the experiment, the absolute width of the flume was fixed but the large
Reynolds number required a larger flow depth to keep the Froude number low. Since the
flow depth to diameter ratio was considered to have a larger influence on the flow field
around the cylinder than the width to diameter ratio, the first one was kept constant
while the latter one was changed for the high Reynolds number case. To assess the
influence of the width-to-diameter ratio, the ReD = 20000 flow case was simulated
for both widths 11.7D and 7.3D and only minor deviations between the two widths
were observed. Furthermore, these deviations were significantly smaller than the changes
with Reynolds numbers. The smaller aspect ratio of the water channel at ReD = 78000
was therefore considered to have no major influence on the observations made in this
study. The inflow condition was a fully-developed, turbulent open-channel flow with
small Froude number. In fact, the Froude number was Fr < 0.32 in the experiments
and infinitesimal in the simulation, since the free surface was approximated by a slip
boundary condition, which prevented all deformations of the free surface.

The configuration considered in the scope of this study was the same as described in
detail by Schanderl & Manhart (2016); Schanderl et al. (2017b,a); Schanderl & Manhart
(2017). It was similar to the configuration investigated by Dargahi (1989), Escauriaza
& Sotiropoulos (2011) and Apsilidis et al. (2015), which differ from ours in the ratio
of boundary layer thickness to cylinder diameter. However, they were performed at the
same range of Reynolds numbers.

3. Experimental configuration

Particle image velocimetry (PIV) was conducted in the laboratory of the Chair of
Hydromechanics at the Technical University of Munich. The experimental setup was
the same as the one employed by Jenssen et al. (2016); Schanderl et al. (2017b), who
compared the PIV results at ReD = 39000 to the corresponding large-eddy simulation
(LES). In the following, the experimental setup is presented first (section 3.1) before the
applied measurement techniques are discussed briefly (section 3.2).

3.1. Experimental setup

The flow configuration described in the previous section was reproduced in a 1.17m
wide and 30m long flume, which was fed by a high-level tank (figure 2). The discharge
was controlled by a magneto-inductive flow meter and the flow depth by a sluice gate
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Figure 2. Sketch of the experimental configuration, taken from Pfleger (2011)

at the outlet of the flume. A flow straightener damped the disturbances at the inflow
and a floating body the surface waves afterwards. Between this floating body and the
cylinder, the flow developed naturally over approximately 20m. The circular cylinder was
placed vertically in the symmetry plane of the flume. At ReD = 20000 and ReD = 39000,
the diameter of the cylinder was D = 0.10m while it was D = 0.16m at ReD = 78000
owing to the necessity of an increased flow depth as discussed in section 2. Thus, the
undisturbed inflow length was 200D at ReD = 20000 and ReD = 39000 and 125D at
ReD = 78000.

To enable the laser light to enter the water in a well-defined way from the top, a slightly
submerged slat of acrylic glass was installed at the free surface in front of the cylinder.
The slat was constructed such that its influence on the flow at the bottom wall was as
small as possible. It had a length of 0.15m in the streamwise direction, a width of 0.05m
in the spanwise direction and was submerged between 1mm and 5mm into the flow. As
indicated by Schanderl et al. (2017b), the influence of the slat on the flow phenomena
investigated in the scope of this study was small. However, there were some influences,
which will be discussed in the remainder of this study.

3.2. Measurement techniques

We employed two-dimensional, two-component PIV in the symmetry plane in front of
the cylinder. For the seeding hollow glass spheres with a diameter of dp = 10µm and a
density of ρp = 1100kg/m3 were given continuously into the inflow. The corresponding
relaxation time was τp = d2pρp/(18νρ) = 6.1 ∗ 10−6s (Raffel et al. 2007), which was small

compared to the macro-scale estimation of Kolmogorov time scale τK =
√
ν/εmacro =

4.7 ∗ 10−3 (Pope 2011) and thus allowed the particles to follow the flow without time
delay. As discussed by Schanderl et al. (2017b); Schanderl & Manhart (2017) the macro-
scale estimation of the dissipation of turbulent kinetic energy εmacro = u3b/D was a
conservative one. ub was the bulk velocity in the symmetry plane of the undisturbed
flow, ρ the water density and ν = 1.05 ∗ 10−6m2/s the dynamic viscosity of the water at
a water temperature of approximately 18◦C.

A 532nm Nd:YAG laser illuminated the particles by a light sheet with a thickness of
2mm in the spanwise direction. The light sheet entered the flow from the top through the
slat of acrylic glass discussed above. The image pairs with a resolution of 2048× 2048px
and a time delay of 700µs were recorded by a CCD camera which observed the flow
through the glass sidewalls of the open channel. The used sampling rate of 7.25Hz was
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ReD data points pixel focal recorded valid
per diameter per diameter f-number length image pairs vectors

20000 339 2713 2.8 105mm 20000 18500
39000 339 2713 2.8 105mm 27000 24000
78000 551 4409 5.6 105mm 46400 39000

Table 1. Data resolution and recorded image pairs of the conducted PIV. The numbers of
valid velocity vectors refer to the numbers which were achieved in wide regions of the flow.

too low to resolve the the temporal evolution of turbulent structures, however, as in this
study only time-averaged quantities were considered, this sampling rate was sufficient.
The images were evaluated by a standard PIV algorithm with interrogation windows
of 16 × 16px which overlap by 50% and were deformed according to the local velocity
gradient. In case of the detection of an invalid velocity vector, this individual 16× 16px
interrogation window was replaced by the corresponding 32×32px interrogation window
with the same position of the center. The number of image pairs recorded and the achieved
data resolution at each Reynolds number investigated are listed in table 1.

The standard PIV evaluation was complemented by the one of a single-pixel algorithm
(Westerweel et al. 2004; Kähler et al. 2006; Strobl et al. 2016). This algorithm is not
based on interrogation windows but provides a velocity vector for every individual pixel.
As the probability to detect a particle at a individual pixel was significant smaller as the
probability to detect a particle in an interrogation window, the number of valid samples
at each pixel was in the single-pixel PIV was smaller than in an interrogation window
in the standard PIV. Therefore the single-pixel results were more noisy. However, as the
present results show the achieved statistical convergence was sufficient to complement the
employed standard PIV and the LES. Furthermore, the larger data resolution allowed
for resolving the wall and thus for an evaluation of the wall shear stress via the wall
gradient.

4. Computational configuration

The computational configuration and the applied methods of the presented study were
corresponding to the ones described by Schanderl & Manhart (2016); Schanderl et al.
(2017b,a); Schanderl & Manhart (2017). In fact, the simulation at ReD = 39000 was
exactly the same as the one in the mentioned studies. The reliability of the simulation
was discussed in detail by Schanderl & Manhart (2016) and the numerical results were
compared to the experimental ones by Jenssen et al. (2016); Schanderl et al. (2017b).

In the following, the numerical methods are recapitulated (section 4.1) and the ad-
justments of the grids to match the individual Reynolds numbers are discussed (section
4.2). The influence of the subgrid-stress model on the solution is evaluated in section 4.3.
A further validation of the numerical results is done in the remainder of this study by
comparing them to the experimental ones (section 5 and 7) and by demonstrating the
convergence of the wall shear stress over grid refinement (section 7).

4.1. Numerical methods

The LES was done employing our in-house code MGLET, which is a Finite Volume
code with Cartesian grids on which the variables are arranged in a staggered way. Central
differences were used for spatial approximation and a third order Runge-Kutta procedure
for time integration. MGLET provides an algorithm to embed grids zonally for local
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ReD cells per diameter grid spacing grid
horizontal/vertical ∆x+/∆y+/∆z+wall cells

20000 148/571 7.0/7.0/1.8 166 · 106

39000 250/1000 7.4/7.4/1.9 400 · 106

78000 440/1778 7.8/7.8/1.9 1.6 · 109

Table 2. Grid resolution in inner and outer scaling in the region of interest around the cylinder
for all three Reynolds numbers investigated. The wall shear stress applied for the evaluation of
the wall units was taken from the approach flow.

grid refinement (Manhart 2004). Since the grid was Cartesian, the curved surface of the
cylinder was represented by a conservative second order Immersed Boundary method
(Peller et al. 2006; Peller 2010). The WALE model (Nicoud & Ducros 1999) furnished
the modelling of the subgrid stresses. As in this model the turbulent viscosity decreases
naturally towards the wall, no damping function had to be applied, which facilitates the
use of an Immersed Boundary method.

4.2. Computational grids

A precursor grid with periodic boundary conditions in the streamwise direction sim-
ulated the fully-developed, turbulent open-channel flow which was applied by one-way
coupling as inflow condition at the grid holding the cylinder. The free surface of the
open channel was modelled by a slip boundary condition, which prevented all surface
deformations and thus constituted an infinitesimal Froude number. The side walls and
the bottom wall of the channel were represented by a no-slip boundary condition. First,
the grid at ReD = 39000 was designed. In order to achieve the required grid resolution
in the region of interest around the cylinder we used locally embedded grids, each with
a refinement factor of two. We successively refined the region around the cylinder until
no substantial changes in the results, especially in the wall shear stress, was observed.
This status was reached with three locally embedded grids, which corresponded to a
total refinement factor of eight compared to the global grid. In addition, the grid was
stretched in the vertical direction from the bottom wall by a factor smaller than 1%.
Since this stretching was applied on the global grid solely, only every eighth cell of
the finest locally embedded grid was augmented. The grid study at ReD = 39000 was
discussed by Schanderl & Manhart (2016); Schanderl et al. (2017b,a). To adapt the grid
for ReD = 20000 and ReD = 78000, the grid was stretched and compressed respectively
in such a way that the grid resolution in inner units (based on the wall shear stress of
the approach flow) stayed the same. The grid study at ReD = 78000 was discussed by
Schanderl et al. (2017c); Schanderl & Manhart (2017) and is recapitulated in section 7.
The same converging behavior was observed for ReD = 20000, however, the respective
grid study is not presented here. The resulting grid spacing of the finest local grids at
each individual Reynolds number is listed in table 2. All data in the remainder of this
paper was taken from the simulation with the finest grid at the corresponding Reynolds
number except it is specified in a different way.

4.3. Influence of the subgrid-stress model

Figure 3a illustrates the ratio of the time-averaged modelled (turbulent) viscosity to
the molecular viscosity 〈νt〉/ν on a profile in the wall-normal (z-) direction in front
of the cylinder. The streamwise position x = −0.76D corresponded to the core of the
main vortex at this Reynolds number ReD = 78000. νt was evaluated for three different
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Figure 3. Time-averaged turbulent viscosity 〈νt〉 taken from three different LES with different
grid resolution (a) and contributors to the stress balance taken from the simulation with the
finest grid LES78k #3 (b) on profiles in the wall-normal (z-) direction. The streamwise position
x = −0.76D corresponded to the center of the main vortex at the evaluated Reynolds number
ReD = 78000. The wall shear stress applied to evaluate z+ was taken from the simulation with
the finest grid LES78k #3.

simulations, each holding a different number of local grids for grid refinement. LES78k
#1 refers to the simulation with only one locally embedded grid, while LES78k #2 held
two of them. As LES78k #3 was refined by three local grids and the grid spacing was
accordingly four times smaller than the one of LES78k #1 therefore. However, even
though the data was taken from three different simulations, the wall units employed for
normalizing the wall distance was based on the wall shear stress from the simulation with
the finest grid LES78k #3 for all three profiles. This shall facilitate the comparison of
the individual profiles.

In all three simulations the modelled viscosity decreased in the desired way with
proximity to the wall. The maximum of 〈νt〉 at z+ ≈ 180 indicated the position of the
center of the main horseshoe vortex (figure 3a). In all three simulations, the modelled
viscosity had a similar distribution but the amplitude decreased with approximately
second order as the grid spacing was reduced.

Figure 3b exhibits the influence of this modelled viscosity on the stress balance.
Evaluated were three contributors to the stress balance in the streamwise direction
normalized by the local time-averaged wall shear stress 〈τw〉 on a wall-normal profile
at the same position as the profiles in figure 3a. However, the data evaluated in figure
3b was taken from the simulation with the finest grid LES78k #3 only. Evaluated were
the viscous stresses excluding and including the modelled contribution ν〈∂u/∂z〉 and
〈(ν + νt)∂u/∂z〉 respectively as well as the resolved Reynolds shear stresses −ρ〈u′w′〉.
u denotes the velocity in the streamwise (x-) direction while w is the one in the wall-
normal direction. u′ and w′ represent the corresponding velocity fluctuations. ρ is the
fluid density. Close to the wall, the viscous stresses dominated the flow. As the modelled
viscosity was rather small in this region, the deviation between the viscous stresses
excluding and including the modelled contribution was small, too. In the region of the
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main horseshoe vortex, where 〈νt〉 had its maximum amplitude, there was a noticeable
contribution of the subgrid-stress model to the viscous stresses. However, outside of the
near-wall region the resolved Reynolds stresses were significantly larger than the viscous
stresses at the Reynolds numbers investigated (3b).

A similar evaluation at Re = 39000 was done by Schanderl & Manhart (2016);
Schanderl et al. (2017a). At this Reynolds number Schanderl et al. (2017b) showed that
the fraction of modelled turbulent kinetic energy was smaller by two orders of magnitudes
than the resolved one. Furthermore, an evaluation of the dissipation demonstrated that
the modelled dissipation was less than 30% of the total dissipation in the region of interest
around the cylinder (Schanderl et al. 2017b; Schanderl & Manhart 2017).

5. Flow topology

The focus of this study is on the wall shear stress and its Reynolds number scaling in the
cylinder front. This section presents the flow topology, before the underlying turbulence
structure is discussed in section 6 and the resulting wall shear stress in section 7.

Figure 4 shows the streamlines of the time-averaged flow field in the symmetry plane
in front of the cylinder at the three Reynolds numbers investigated. The data in the left
column was taken from the LES, the one in the right column from the PIV. From top
to bottom the results correspond to ReD = 20000, Re − D = 39000 and ReD = 78000
respectively. The vertical pressure gradient induced by the boundary layer approaching
the cylinder resulted in a down-flow, which was deflected when it met the bottom wall -
most of it in the upstream direction, little towards the cylinder. The dividing streamline
ended at stagnation point S3. Parts of the fluid moving in the upstream direction formed
the main vortex V1 of the horseshoe vortex system on the one hand. On the other hand,
parts of the fluid established a jet in the upstream direction along the bottom wall
underneath V1. This jet dominated the behavior of the wall shear stress, as the further
discussion will show. The blockage of the oncoming flow due to the vortex V1 forced the
flow to separate from the bottom wall at stagnation point S2 (not shown in figure 4).
Downstream of this stagnation point a weak recirculation zone established which was
separated from V1 by stagnation point S1. The down-flow along the flow facing edge
of the cylinder established a thin boundary layer, which separated from the cylinder at
stagnation point S4 and formed a small vortex V3 directly at the wall cylinder junction.
In general, the flow topology observed was in accordance to the ones documented in
literature (Devenport & Simpson 1990; Agui & Andreopoulos 1992; Paik et al. 2007;
Escauriaza & Sotiropoulos 2011; Apsilidis et al. 2015).

The Reynolds number dependency of the flow topology was rather weak. Both vortex
V1 and stagnation point S1 moved slightly upstream thus away from the cylinder
with increasing ReD, which was in line with the observations by Agui & Andreopoulos
(1992). In contrast, stagnation point S2 and the recirculation zone downstream of it were
moving downstream towards the cylinder. This can be explained by the larger near-wall
momentum of the approaching flow at the higher Reynolds numbers, which acted against
the flow separation and delayed the separation. Therefore, V1 and the weak recirculation
zone moved together with increasing Reynolds number in the observed range of Reynolds
numbers.

The only vertical shift was observed at the small corner vortex V3 in the simulation,
which was largest at ReD = 20000. As this shift was not observed in the experiment, we
speculated that it was caused by a grid resolution which was too coarse to resolve the
thin boundary layer along the cylinder and V3 properly in the LES at ReD = 20000. In
both numerical and experimental data sets at ReD = 78000 (figure 4 e and f) the weak
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Figure 4. Streamlines of the time-averaged flow field in the symmetry plane in front of the
cylinder for (a,b) ReD = 20000, (c,d) ReD = 39000 and (e,f) ReD = 78000, computed from LES
(left column) and PIV (right column).

recirculation zone between S2 and S1 formed a vortex, as the streamlines performed a
full turn. Furthermore, in the LES the recirculation zone was splitting up into a train of
several small sub-vortices. However, Agui & Andreopoulos (1992), who did measurements
of the horseshoe vortex system at ReD = 105 and ReD = 2.2 ∗ 105 stated that the
corresponding instantaneous flow structures “are very quickly evolving in time and space
making it impossible to depict through time-average measurements.” Considering this,
a possible explanation for the difference between LES and PIV is a more dynamic flow
behavior at the highest Reynolds number, which arose the necessity for a longer sampling
time to achieve fully-converged statistics.

The accordance of the flow topology between LES and PIV was satisfying. However,
in the experiment the main vortex V1 was smaller and located closer to the cylinder at
all Reynolds numbers. An investigation of the flow topology over the whole flow depth
revealed that in the experiment the stagnation point at the flow facing edge of the
cylinder was not located at the very top at z = 1.5D (where it was in the simulation)
but at z ≈ 1.25D. As discussed in section 3, a horizontal slat of acrylic glass had to be
employed at the free surface in the experiment to allow the laser light to enter the fluid in a
well-defined way. Along this slat a thin boundary layer developed, which caused a reduced
boundary layer thickness of the approaching flow. As a consequence, the boundary layer
thickness to diameter ration δ/D was smaller in the experiment than in the simulation,
which can explain the smaller vortex system in the experiment.

When discussing the bi-modality of the vortex system, Devenport & Simpson (1990)
observed that the upstream-directed jet along the bottom wall under vortex V1 has
a distinct acceleration pattern. Figure 4 indicates this pattern by the decreasing and
increasing distance between two neighboring streamlines, where a decreasing distance
suggests acceleration and vice versa. Starting at stagnation point S3, fluid close to the
bottom wall accelerated in the negative x-direction. The acceleration was largest right
above the wall. The fluid decelerated afterward before it accelerated again and merged
with the recirculation zone upstream of the main vortex or was transported out of plane
in the spanwise direction. As Schanderl et al. (2017b) pointed out, this distinct pattern
of acceleration directly affected the production of turbulent kinetic energy and thus on
the distribution of turbulent kinetic energy itself. How this acceleration pattern changed
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Figure 5. Wall-normal profiles of the streamwise velocity component normalized by he bulk
velocity 〈u〉/ub in the symmetry plane in front of the cylinder at different positions of the
adjusted coordinate xadj taken from the LES.

xadj = x−xc
xc−xV 1

20000 39000 78000

0.0 -0.50D -0.50D -0.50D
-0.25 -0.55D -0.56D -0.57D
-0.5 -0.61D -0.63D -0.63D
-0.75 -0.66D -0.67D -0.70D
-1.0 -0.71D -0.73D -0.76D
-1.25 -0.76D -0.79D -0.83D

Table 3. Adjusted x-positions of the velocity profiles in figure 5.

with Reynolds number is discussed in the remainder of this section. The consequences of
the acceleration pattern on the turbulence structure is pointed out in section 6.

Figure 5 shows profiles of the streamwise velocity component normalized by the bulk
velocity 〈u〉/ub at five positions inside the wall jet in the symmetry plane in front of the
cylinder. The data was taken from the LES with the finest grid at each Reynolds number.
Since the position of vortex V1 changed slightly with Reynolds number, we addressed
velocity profiles according to their streamwise position relative to the vortex core of V1
xV 1 and the flow facing edge of the cylinder xc = −0.5D, which resulted in an adjusted
streamwise coordinate xadj

xadj =
x− xc
xc − xV 1

. (5.1)

xadj = 0 corresponded to the flow facing edge of the cylinder, while xadj = −1 was
the position of the vortex core of V1. The position of vortex V1 did not change in the
wall normal direction, thus a comparable scaling was not applied on the z-coordinate.
For the profiles evaluated in figure 5, the positions in standard coordinates x/D for each
Reynolds number are listed in table 3.

In figure 5 the upstream-directed wall jet which established a boundary layer along the
bottom wall is indicated by the negative 〈u〉/ub close to the wall. The peak velocity of the
jet at a certain streamwise position is denoted as uδ and the corresponding wall distance
δ. In the following, the behavior of the jet is described in general first. Afterwards, the
differences between the Reynolds numbers are discussed.

Starting from the cylinder at xadj = 0, uδ increased with increasing distance to the
cylinder until it reached a maximum of uδ/ub ≈ 0.5 at xadj = −0.75. Between the
cylinder and xadj = −0.75, the wall distance of the distinct peak was almost constant
at δ = 0.004D. However, with increasing distance from the cylinder the peak became
broader and the jet widened up in the vertical direction. When following the jet further
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in the upstream direction from xadj = −0.75 to the position of the vortex core (xadj =
−1), the fluid slightly decelerated and the peak lifted off the bottom wall. Under V1 at
xadj = −1, the maximum velocity of the jet was located at δ = 0.013D above the wall.
After passing V1, the jet decelerated tremendously and further lifted off the bottom
wall, which is also visible in figure 4 where the streamlines turn away from the wall. At
xadj = −1.25, uδ was smaller by a factor of two approximately compared to the velocity
at xadj = −1. At all positions, the flow direction changed approximately at the height of
the core of the main vortex V1 at zV 1 = 0.06D.

As figure 5 reveals, there were some differences in the velocity profiles between the
Reynolds numbers. At xadj = −0.25 uδ was more than twice as large at ReD = 78000 than
at ReD = 20000. Since vortex V1 shifted upstream with increasing Reynolds number the
length scale of the adjusted coordinate system xc − xV 1 was larger at the high Reynolds
number. However, stagnation point S3 stayed in its position at xS3 = 0.53D for all
Reynolds numbers investigated. The result was that the position xadj = −0.25 was
significantly closer to stagnation point S3 at the lowest Reynolds number than it was
at the highest (table 3). Since the acceleration process started upstream of S3 and the
velocity was small at this stagnation point, it is nearby that the velocity profile at a lower
Reynolds number held a smaller amplitude than the velocity profile at a higher Reynolds
number at xadj = −0.25.

Even though between xadj = −0.25 and the position of the vortex center at xadj = −1.0
uδ was consistently largest at Re = 78000 and smallest at Re = 20000 the velocity
difference was small. However, there were notable differences in the deceleration region
upstream of V1 as 〈u〉/ub was significantly smaller at the highest Reynolds number
at xadj = −1.25. The deceleration thus increased with Reynolds number, which is
in accordance to the observation that vortex V1 and the upstream recirculation zone
moved closer together with increasing Reynolds number (figure 4). However, it should be
noted that this change of the deceleration at xadj = −1.25 with Reynolds number was
emphasized by the adjusted coordinate system. Again, the corresponding length scale
xc − xV 1 was largest and xadj = −1.25 was furthest upstream at the highest Reynolds
number. An investigation of the distribution and amplitudes of the velocity gradient
∂〈u〉/∂x ∗D/ub indicated nearly no notable differences when the Reynolds number was
changed. In the respective region the gradient of 〈u〉 in the streamwise direction increased
only mildly with Reynolds number.

In figure 5 uδ was largest at xadj = −0.75. Using this velocity and the respective wall
distance δ to estimate the Reynolds number of the boundary layer caused by the wall jet
along the bottom wall Reδ = uδδ/ν gave Reδ = 80 in LES20k, Reδ = 140 in LES39k and
Reδ = 240 in LES78k. These Reδ were remarkably low and suggested a laminar near-
wall flow. In addition, it should be noted that Reδ approximately doubled as ReD was
doubled, which indicated that the Reynolds number Reδ scaled with the global Reynolds
number Reδ ∼ ReD.

6. Turbulent kinetic energy

In such flow the distribution of the turbulent kinetic energy k, which is defined as

k =
1

2
(〈u′2〉+ 〈v′2〉+ 〈w′2〉) , (6.1)

has a distinct c-shape (Devenport & Simpson 1990; Paik et al. 2007; Apsilidis et al.
2015; Schanderl et al. 2017b). The upper branch of the c is formed by a peak of turbulent
kinetic energy in the region of the main vortex V1, from where a leg-like peak reaches
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Figure 6. Turbulent kinetic energy k/u2
b in the symmetry plane in front of the cylinder for

from top to bottom (a) Re = 20000, (b) Re = 39000 and (c) Re = 78000.

towards the bottom wall and thus forms the lower branch of the c. To the upper branch
the fluctuations of the vertical velocity component w′ give a strong contribution, while
the lower branch is due to large fluctuations in the streamwise direction u′ in first
line (Devenport & Simpson 1990; Apsilidis et al. 2015; Schanderl et al. 2017b). The
lower branch is located where the jet decelerates and as the amplitude of u′ increases
with Reynolds number here the lower branch of the c-shape becomes more pronounced
consequently (Apsilidis et al. 2015).

The same features as documented in literature were observed in the presented study
(figure 6). In the region covered by the main vortex V1, k peaked at k/u2b ≈ 0.09. The
amplitude of this peak increased slightly with Reynolds number, however, this change was
small. In contrast, the increase of k with Reynolds number was noticeable in the lower
branch, which was the only region showing such a strong scaling. While the maximum
here was k/u2b ≈ 0.05 at ReD = 20000, it was k/u2b ≈ 0.06 at ReD = 39000 and
k/u2b ≈ 0.07 at ReD = 78000. As the PIV was two dimensional only and thus did
not provide velocity fluctuations in the spanwise (y-) direction, the PIV data is not
presented here. However, the accordance of the inplane turbulent kinetic energy kip =
1/2(〈u′2〉 + 〈w′2〉) evaluated by LES and PIV was satisfying, which was true for both
amplitude and distribution. A detailed comparison and discussion of the corresponding
LES and PIV data at ReD = 39000 was done by Schanderl et al. (2017b).

The presented distribution of turbulent kinetic energy is not novel. However, we present
it in the scope of this study not only to underline the accordance of our results with those
documented in literature, but also to point out that there was a region of rather calm
turbulence between the main vortex V1 and the cylinder (figure 6). Even though the
horseshoe vortex system was violently turbulent, this turbulence did not disperse into
the region where the down-flow entered the vortex system. Here the turbulent kinetic
energy was of the same amplitude as in the approach flow. Furthermore, the rather calm
turbulence was maintained when the down-flow was deflected and formed a jet along the
bottom wall in the upstream direction.

This calm turbulence is further documented by figure 7, in which instantaneous samples
of the horseshoe vortex system are illustrated by isosurfaces of the Q-criterion. The
Q-criterion, which was evaluated for a value of QνD/u3b = 0.035 between z = 0 and
z = 0.15D, is the second invariant of the velocity gradient tensor and can be used to
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Figure 7. Isosurface of the Q-criterion QνD/u3
b = 0.035 at (a,b) Re = 20000, (c,d) Re = 39000

and (e,f) Re = 78000, computed from LES. The bottom wall is colored by the friction coefficient
cf .

identify vortical structures. In addition, the bottom wall was colored by the instantaneous
friction coefficient cf = τw/(0.5ρu

2
b) of the corresponding time step in all three instances

of figure 7. The top row in figure 7 is ReD = 20000 and the bottom row ReD = 78000.
At all three Reynolds numbers one can spot the main vortex V1 wrapping around the
cylinder. At ReD = 39000 one can also identify secondary vortices wrapping around the
main vortex. However, as the vortical structures became smaller in general with increasing
Reynolds number, these secondary vortices were not captured by the evaluated thresholds
of Q at ReD = 20000 and ReD = 78000. Figure 7 reveals that there were no vortical
structures which can be visualized by the chosen threshold of Q in the region where the
down-flow enters the vortex system and that this did not change with Reynolds number.
Furthermore, in the discussed region the corresponding sample of the friction coefficient
cf was relatively smooth. Upstream of V1 and downstream of the cylinder the pattern of
cf was significantly smaller-sized than in the region between V1 and the cylinder (figure
7). In addition, it is interesting to note that this smooth pattern was not only observed
in front of the cylinder but expanded lateral and covered the whole area defined by the
semi-circular shape of the vortex and the cylinder.

The smooth pattern of cf indicated the absence of small-scale turbulence in the near-
wall flow between V1 and the cylinder and in fact the turbulent kinetic energy of the



14 Schanderl et al.

Figure 8. Convection CD/u3
b (left column) and production PD/u3

b (right column) of turbulent
kinetic energy in the symmetry plane in front of the cylinder for Re = 20000 (a and b),
Re = 39000 (c and d) and Re = 78000 (e and f). The thick isolines mark P = 0 and C = 0
respectively.

down-flow did not increase when it was deflected in the upstream direction at the bottom
wall and formed the jet along the wall. This can be visualized be the convection of
turbulent kinetic energy C, which is defined as (Pope 2011)

C = −〈ui〉
∂k

∂xi
. (6.2)

The convection is not only a transport mechanism but also indicates the increase (C < 0)
and the decrease (C > 0) of turbulent kinetic energy along a streamline. C in the
symmetry plane in front of the cylinder is shown in figure 8 (left column) for all three
Reynolds numbers investigated. The white isoline marks C = 0 and thus separates
the regions of increasing k from those of decreasing k. The convection held its largest
amplitude in the region close to the bottom wall where the wall jet decelerated at
x ≈ −0.7D. In the other regions in front of the cylinder, the amplitude of C was rather
small, especially in the region of the down-flow. This proofs that the turbulence level did
not increase when the outer flow entered the vortex system. In fact, close to the bottom
wall where the down-flow was deflected and further upstream where the jet accelerated,
the convection was positive and thus indicated a decrease of turbulent kinetic energy. This
decrease was observed at all Reynolds numbers investigated, as the corresponding region
of positive C did not change with Reynolds number (figure 8, left column). However, this
behavior is self-evident considering that neither the flow topology nor the distribution of
turbulent kinetic energy changed significantly with Reynolds number.

In the budget of turbulent kinetic energy, the production term P represents the transfer
of kinetic energy from the mean flow to the turbulent fluctuations (when P > 0) and
vice versa (when P < 0) (Pope 2011):

P = −〈u′iu′j〉
∂〈ui〉
∂xj

(6.3)

The largest amplitude of negative P was located upstream of stagnation point S3, and
as the jet decelerated P turned positive at x ≈ −0.7D (figure 8, right column). The
local maximum in this zone of positive production increased significantly with Reynolds
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number, it was PD/u3b ≈ 0.3 at ReD = 20000, PD/u3b ≈ 0.4 at ReD = 39000 and
PD/u3b ≈ 0.5 at ReD = 78000. This production rate increasing with ReD was the source
of the increase of both k and C in the lower branch of the c-shape (figure 6figure 8, left
column respectively).

The production in front of the cylinder in the region of the jet along the bot-
tom wall is dominated by the normal stress production in streamwise direction P11 =
−〈u′u′〉∂〈u〉/∂xD/u3b Devenport & Simpson (1990); Schanderl et al. (2017b). This term
is positive if the flow decelerates and vice versa. Recall the distinct pattern of acceleration
of the upstream-directed wall jet (figure 4 and 5). The fluid accelerated from stagnation
point S3 at x = −0.53D in the negative x-direction until it reached the position under
V1. Since P11 is the dominating contributor to P in the region of the wall jet, also P is
negative where the wall jet accelerates (figure 8, right column).

In the acceleration zone of the wall jet upstream of S3, the similarity of the region of
positive C (and thus decreasing k) and the region of negative P was significant (figure 8).
Both distributions had a shape like a spike which reached far upstream along the wall to
the region where the jet decelerated again. This similarity suggests that the acceleration
of the wall jet, which caused the negative P11 thus the negative P , induced the decrease
or at least prevented an increase of turbulent kinetic energy in the near-wall region. As
a consequence, the flow between the main vortex V1 and the cylinder was of rather calm
turbulence. How this calm turbulence determined the scaling of the wall shear stress is
discussed in the following section.

7. Wall shear stress

In the previous section, it was discussed how the flow topology and the turbulence
structure in the cylinder front were linked. In this section it is described how this turbu-
lence structure affected the wall shear stress scaling. However, owing to the sensitivity of
the wall shear stress to data resolution and the evaluation algorithm, we will start with
an explicit validation of the wall shear stress.

7.1. Validation of the wall shear stress

At each Reynolds number investigated a grid study was conducted to proof the
convergence of the results with grid refinement. The grid study at ReD = 78000 is
exemplified in figure 9a, which documents the friction coefficient cf = 〈τw〉/(0.5ρu2b) in
the symmetry plane in front of the cylinder. Again, the data referred to as LES78k #1 was
taken from the simulation with one locally embedded grid, the data referred to as LES78k
#2 from the simulation with two of them and the data named LES78k #3 stems from a
simulation with three local grids. Each local grid refined the grid spacing by a factor of
two. The experimental data SPPIV78k refers to PIV data evaluated by the single-pixel
algorithm. Negative values indicate backflow regions. Because of the small corner vortex
V3 there was a thin region of positive wall shear stress close to the cylinder. The broad
peak of large negative cf was caused by the upstream-directed jet along the bottom
wall and the region of weak negative cf further upstream by the weak recirculation zone
upstream of the main vortex V1.

There were some differences between the solution of LES78k #1 and LES78k #2 in
the shape of the broad, which has a single-peak shape in LES78k #1 and a double-
peak shape in LES78k #2. Furthermore, LES78k #1 was too coarse to resolve the small
corner vortex V3. However, the solution of LES78k #2 followed the one of LES78k #3
in a satisfying way. In fact, the only substantial difference was in the region of the
corner vortex V3. LES78k #2 did not resolve this narrow peak accurately and therefore
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underestimated its amplitude. Nevertheless, the maximum amplitude did not increase
with grid refinement, which indicated that the viscous sublayer was resolved. This was the
case for all three Reynolds numbers. The assumption of a wall-resolved LES was further
supported by an investigation of the near-wall velocity profiles in front of the cylinder
at ReD = 39000 (Schanderl et al. 2017a). We considered the simulation converged over
grid spacing and omitted further refinement. As long as not specified in a different way,
all data in the remainder of this paper was taken from the simulation with the finest grid
at the respective Reynolds number.

Figure 9a also includes cf evaluated from the experiment by the single-pixel algorithm
(SPPIV78k). This algorithm has the advantage of being based on single pixels instead
of interrogation windows, which provides higher data resolution (Westerweel et al. 2004;
Kähler et al. 2006; Strobl et al. 2016). By applying this algorithm a similar wall resolution
as in the LES was achieved. The large scatter in the single-pixel data was owed to the
reduced number of samples compared to an interrogation window method. As the vortex
system in the experiment was located closer to the cylinder (figure 4), the peak of negative
wall shear stress caused by the wall jet was less broad as in the simulation. Because of the
scatter, it was hard to estimate the differences of the amplitude of SPPIV78k and LES78k
#3. However, we present the SPPIV78k data to explain the difference in the amplitude
compared to the wall shear stress evaluated by the standard PIV algorithm, which is
plotted in figure 9b. As the standard algorithm used interrogation windows of 16×16px,
the data resolution at the wall was coarser than the one of LES78k #3 and SPPIV78k.
Therefore, the amplitude of the wall shear stress in PIV78k was smaller by a factor of
approximately two, even though the shape of the distribution was in accordance to the
other data sets. However, when cf was evaluated based on velocities from SPPIV78k
taken not from the data point closest to the wall but from the eighth pixel above the
wall (which corresponded to half the window size in the standard PIV), both shape and
amplitude were matching in a satisfying way (figure 7.1b). Furthermore, evaluating cf
from LES78k #3 based on velocities with a similar wall distance as the eighth pixel
in the PIV data indicated accordance to the experiment as well. We thus concluded
that wall shear stresses estimated by experiment and simulation confirm each other. The
existing differences were explained by a smaller vortex system in the experiment and an
insufficient wall resolution in the standard PIV data.

7.2. Reynolds number dependence of the wall shear stress

In the previous sections we have shown that the turbulence structure was in general
independent of the Reynolds number within the investigated range. Solely in the region
where the wall jet decelerated an increase of turbulent kinetic energy with Reynolds
number was observed. In the following we propose that the friction coefficient in front of
the cylinder scales with the square root of the Reynolds number cf ∼ 1/

√
ReD similar to

a Blasius boundary layer and explain this behavior by the discussed turbulence structure.
Figure 10a documents the simulated friction coefficients cf at all three Reynolds

numbers investigated taken from the LES. The distribution of the friction coefficient was
similar at all three Reynolds numbers. As the wall shear stress was normalized by 0.5ρu2b
(figure 10a), it decreased with increasing Reynolds number. This was also observed for
the wall shear stress amplification factor by Roulund et al. (2005) in Reynolds-averaged
simulations. However, it should be noted that the amplification factor is defined as the
wall shear stress normalized by the undisturbed wall shear stress of the approaching flow.
In Figure 10b we present the friction coefficient multiplied with the square root of the
Reynolds number. In this normalization, the maximum amplitudes in this region match
each other and indicate a scaling of the friction coefficient with the inverse of the square
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Figure 9. Friction coefficient cf in the symmetry plane in front of the cylinder at ReD = 78000.
(a) from three different LES with varying levels of grid refinement and single-pixel PIV and (b)
from LES78k #3 and single-pixel PIV evaluated based velocities at different wall distances and
PIV. For reasons of visibility, only every second data point is plotted in case of symbols.
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Figure 10. Friction coefficient in the symmetry plane in front of the cylinder, taken from the
LES.

root of the Reynolds number cf ∼ 1/
√
ReD. Furthermore, even though the amplitude

was different in the standard PIV data and the results were more noisy in the single-pixel
PIV data, the same scaling behavior of the wall shear stress was observed in these data
sets (figure 11 and 12 respectively).

To evaluate if this scaling behavior is globally valid for the wall shear stress at the
bottom wall around a wall-mounted cylinder, we evaluated the profiles of cf

√
ReD at

an angle of 54◦ and 90◦ with respect to the symmetry plane taken from the LES (figure
13). At 54◦ the global maximum of cf was located (Schanderl & Manhart 2016). The
edge of the cylinder was at r = 0.5D and y = 0.5D respectively. The strong velocity
overshoot next to the cylinder led to a large wall shear stress amplification. Nevertheless,
this peak had a width of about 0.15D only and its amplitude was decreasing fast with
the distance to the cylinder. At an angle of 54◦, the friction coefficient scaled with the
proposed scaling behavior while this was not the case lateral of the cylinder at 90◦, which
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Figure 11. Friction coefficient in the symmetry plane in front of the cylinder, taken from the
standard PIV.
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Figure 12. Friction coefficient in the symmetry plane in front of the cylinder, taken from the
single-pixel PIV. Note the adjusted ordinate compared to figure 10 and 11.

supports the assumption that the scaling was caused by the distinct turbulence structure
in the cylinder front. As there was no down-flow and no wall jet at the side of the cylinder,
the respective mechanism damping the turbulence did not take effect.

The proposed scaling behavior cf ∼ 1/
√
ReD is similar to the one of a laminar

boundary layer. In the Blasius solution the wall shear stress scales with 1/
√
Rex, where

Rex is the Reynolds number based on the development length of the boundary layer
(Kundu et al. 2012). In the setup investigated in this study, the topology was subject to
minor changes only, so the development length of the boundary layer caused by the wall
jet did not scale with Reynolds number but with the cylinder diameter. Also, the peak
velocity of the boundary layer flow along the bottom wall did not scale with Reynolds
number but with the bulk velocity of the outer flow ub (figure 5). Thus, if the friction
coefficient scaled with the Reynolds number Rex based on the development length and
the peak velocity of a boundary layer it had to scale in the same way with the Reynolds
number ReD based on the cylinder diameter and bulk velocity. As the wall shear stress
in front and lateral of a wall-mounted cylinder behaved like the wall shear stress of a
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Figure 13. Friction coefficient cf at an angle of 54◦ (a) and 90◦ (b) taken from the LES.

laminar boundary layer, it is nearby to assume that the respective near-wall flow in fact
was a laminar boundary layer. This assumption is elaborated in the following.

In the conducted simulations, the Reynolds stresses were small in the near-wall flow
in the jet region as were the linked contributions to the stress balance (Schanderl et al.
2017a). This was a consequence of the acceleration of the near-wall flow which led to
a negative production of turbulent kinetic energy. The outer flow was independent of
the Reynolds number, which suggested that the acceleration of the near-wall flow and
the resulting negative production of turbulent kinetic energy will persist at even larger
Reynolds numbers. The only mechanism that could end the quasi-laminar scaling of the
wall shear stress is the development of instabilities in the boundary layer caused by the
wall jet. These instabilities will appear if the local Reynolds number computed by the
near-wall velocity peak and its wall distance Reδ exceeds a certain threshold. It should
be noted that this threshold is hardly to determine a priori as the flow situation is fully
three dimensional. In a standard Blasius boundary layer, the critical Reynolds number
for Tollmien-Schlichting waves is Reδ∗ = 520, δ∗ being the displacement thickness. This
corresponds to Reδ = 1481 which is one order of magnitude larger than Reδ in the
presented flow (section 5). At ReD = 78000 this local Reynolds number was Reδ ≈ 240.
Assuming a linear scaling of the local Reynolds number Reδ with ReD, a Reynolds
number of approximately ReD = 6 ∗ 78000 ≈ 470000 is required to obtain local near-wall
profiles in the jet region that are supercritical to the development of Tollmien-Schlichting
waves, and thus to trigger turbulence in the boundary layer caused by the wall jet.

8. Summary and Conclusions

We investigated the flow in front of a cylinder-wall junction by means of large-eddy
simulation and particle image velocimetry. The focus was on the scaling of the wall
shear stress for moderate Reynolds numbers. We found that the horseshoe vortex system
and the distribution of turbulent kinetic energy was rather independent of the Reynolds
number when it was normalized with the bulk velocity of the approaching flow.

However, the wall shear stress did scale with the Reynolds number. We observed a
scaling of the friction coefficient by cf ∼ 1/

√
ReD. This quasi-laminar behavior similar

to the one of a Blasius boundary layer was explained by the small Reynolds stresses in
this near-wall region between the horseshoe vortex and the cylinder. We expect that this
scaling persists to much larger Reynolds numbers as the production term of turbulent
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kinetic energy was negative in the corresponding region and will stay negative unless the
flow topology changes in general. In addition, the local Reynolds number of the boundary
layer established by the wall jet is relatively low and a significantly higher Reynolds
number is required to trigger instabilities in this boundary layer. In the region where the
wall jet decelerated a strong increase of the Reynolds normal stresses in the streamwise
direction u′u′ with Reynolds number was observed. For this reason, the proposed quasi-
laminar scaling of the wall shear stress broke down here.
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