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Abstract

We study the semi-Lagrangian method on curvilinear grids. The classical backward
semi-Lagrangian method [1] preserves constant states but is not mass conservative. Nat-
ural reconstruction of the field permits nevertheless to have at least first order in time
conservation of mass, even if the spatial error is large. Interpolation is performed with
classical cubic splines and also cubic Hermite interpolation with arbitrary reconstruction
order of the derivatives. High odd order reconstruction of the derivatives is shown to be a
good ersatz of cubic splines which do not behave very well as time step tends to zero. A
conservative semi-Lagrangian scheme along the lines of [2] is then described; here conser-
vation of mass is automatically satisfied and constant states are shown to be preserved
up to first order in time.

Keywords: Vlasov equation, guiding center model, semi-Lagrangian method,
curvilinear grid, mapped grid

AMS subject classification: 65M25, 78A35

1. Introduction

Plasmas, which are a collection of charged particles, can be described
quite accurately by kinetic models like the Vlasov-Maxwell equations, or
in some circumstances reduced models like the Vlasov-Poisson equation if
low frequency phenomena are of interest or the gyrokinetic model when a
strong background magnetic field is present. These models nonlinearly cou-
ple the Vlasov equation, which is a transport equation in phase space, with
the Maxwell equations, which describe the evolution of the self-consistent
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electromagnetic field generated by the charged particles. The coupling is
performed by solving alternatively the Vlasov and the Maxwell equations.
In this paper, we are specifically interested by the Vlasov part and will
not discuss the coupling, or the field equations. All these Vlasov or Vlasov
type equations in standard cartesian coordinates in the d-dimensional phase
space R% can be written equivalently in the two following abstract forms

(1) atf + V- (af) =0,
or
(2) of+a-Vyf=0,

where a: Q € R? — R is a divergence free vector field, which means that it
satisfies V; -a = 0, and the solution f = f(t,z), t e R, z € R?. Equation
(1) is called the conservative form and is equivalent, as the vector field a is
divergence free, to (2), which is called the advective form.

Because of the high dimension of phase space, up to six for the full
physical problem, the Monte Carlo type particle in cell method (PIC) is
one of the most used numerical method for its solution, see the book [3]
or the review article [4] for more information on this method. Another
method, which has been very successful for plasma simulations is the semi-
Lagrangian method, which couples particle tracking with a projection on
a phase space grid at each time step. The idea in the simple setting of the
Vlasov-Poisson equations dates back to Cheng and Knorr [5] and to [1] in
the general setting we are interested in here, based on the semi-Lagrangian
method, which was already quite successful for climate applications [6]. The
big advantage of the semi-Lagrangian method, with respect to other grid
based methods is that there is no strong CFL condition on the time step,
which for many problems in plasma physics introduces a time step restric-
tion, which is too severe due to the large velocity grid points compared to
what is needed for physical accuracy. Since then, many variants of the semi-
Lagrangian method have been introduced for plasma physics applications.
A convergence proof of this method appears in [7] for linear interpolation
and in [8] for high order interpolation. The estimates have been improved re-
cently in [9]. A semi-Lagrangian method on unstructured meshes has been
proposed in [10]. These methods, which solve the advective form (2) of
the Vlasov equation, go in the standard class of semi-Lagrangian methods
where characteristics are advected backward in time. We call this classi-
cal semi-Lagrangian method BSL for backward semi-Lagrangian method.
This is opposed in particular to CSL, conservative semi-Lagrangian meth-
ods, which solve the conservative form (1) of the Vlasov equation still with
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backward characteristics as in [11-13], and FSL, forward semi-Lagrangian
methods introduced in [14] for the Vlasov equation, which solves the char-
acteristics forward in time. There have also been works on positivity pre-
serving conservative Discontinuous Galerkin methods [15,16] and also on
semi-Lagrangian methods on adaptive grids based on wavelet interpola-
tion [17,18], see also [19] for a convergence proof. Note also a hybrid method
using only a semi-Lagrangian method in the velocity space [20], and a con-
servative semi-Lagrangian method based on WENO reconstruction [2,21].
Now somewhat outdated comparisons of different types of methods for the
Vlasov equation can be found in [22,23].

The present paper is dedicated to a difficulty appearing in applications
of the semi-Lagrangian method to the gyrokinetic model used in turbu-
lence simulations of magnetic fusion plasmas [24-26]. Due to the geometry
of magnetic fusion devices and the strong magnetic field which creates a
strong anisotropy on the solution and therefore imposes, if a reasonable cost
is to be kept, that the mesh be aligned on magnetic flux surfaces, it is stan-
dard to use specific curvilinear grids, aligned on magnetic field lines or flux
surfaces, for these simulations. It is well known that such grids introduce
additional numerical difficulties, in particular the free stream preservation
issue for conservative methods [27,28]. The free stream preservation enforces
that constant states are exactly preserved by the numerical method. This
is enforced trivially by the classical BSL method independently of the accu-
racy of the advection as constants are preserved by interpolation. For this
reason it appears that they are more robust in curvilinear coordinates. On
the other hand, a first attempt of using a split conservative semi-Lagrangian
method has been reported in [29], pinpointing some specific difficulties.

An important property of the advection field for the method to be sta-
ble in curvilinear coordinates is that it is divergence free at the discrete
level in some sense. This is most easily realised, when using a potential
formulation of the advection field. This is also most easily understood in
two-dimensions, but can be generalised to arbitrary dimensions as shown
n [27]. So in order to make our point it is enough to study the problem
in a two-dimensional space. We suppose that we can write the advection
field a = (0,,®, —0,,®)" = V1®, where T stands for the transposition,
and V*+ = (0,, —(0s,))". In applications a may depend on t and f(t,-),
but we will omit this point for the moment.

The classical BSL methods automatically preserve constant states, but
are not conservative. On the other hand the conservative CSL method is
conservative, but does not preserve constant states. We will show in this
paper that the BSL method can be made conservative up to at least first
order in time and on the other some CSL methods can be made to pre-
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serve constant states up to at least first order in time. Moreover different
interpolating methods will be compared for BSL to show its robustness.
Some numerical investigations of the splitting issue raised in [30] will also
be performed.

The outline of the paper is the following: First we are going to express
the two abstract forms of the Vlasov equations in curvilinear coordinates.
In the second part we recall the principles of the classical and conservative
semi-Lagrangian methods. Then we are going to propose different versions
of the BSL scheme and a new CSL scheme and prove their approximate
conservation properties. Finally detailed numerical investigations will be
performed to assess the strengths and weaknesses of the different schemes.

2. Obtention of the curvilinear equations

We consider here the curvilinear framework, that is we have a transforma-
tion (the mapping) .Z : Q — Q;n — x(n) from a logical domain  to the
physical domain  C R2. Polar coordinates are a simple example of such a
transformation, but more general, numerically defined transformations, are
needed to align the grid with the magnetic flux surfaces in actual tokamak
simulations. We want to define the equation for f(n) = f(x(n)). In the
sequel we will omit the tilde on f and other quantities, as on each identity
it should be clear form the context if we deal with functions of x (that is,
from the physical domain) or functions of n (from the logical domain). We

define the jacobian matrix [J] and the jacobian J by
<8771 ! 8,723:1

0771 x? 8772 x?

[J] = > J = det([J]).

Using the chain rule we can relate the differential operators with respect
to x to the differential operators with respect to 1. Denoting by [J]7T =
(1717, we get

() VS =UITV Ve (af) = 5V, (U] adg),
so that the advective form reads
ouf +([J] ") - Vyf =0,
and the conservative form becomes
B(Jf)+ V- ([J] ladf) =0
and the divergence free condition is

V., ([J]taJ)=0.
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Again from the chain rule, we find that

V@ =JJ]'V, .
So that if a = V3 ®, we get J[J]'a = V;-®. The advective form then
rewrites

1
(4) atf+jv;q>-vnf:o,

or expanding the coordinates

100 0f 100 of
M E ToEon  Togio ="

and the conservative form rewrites

(5) (I f)+ V- (V@) f) =0,
which becomes, expanding the coordinates
0 ,10d 0 , 100
X(Jf)+ 87771(387772Jf) - 87772(387771‘”) =0,

and the divergence free condition is automatically satisfied, as

1 1 9 09 1 0 ,09

(N a) =ty vie— 1 9 9%y 10 00

=0.

3. The characteristics

The semi-Lagrangian method is based on conservation properties along
the characteristics. Let us recall our Vlasov type equations in curvilinear
coordinates that we are interested in, denoting by b = V#gb the divergence
free advection field and J the jacobian of our curvilinear grid. The advective
form (4) then writes

(6 0uf + b Vuf =0,

and introducing f = Jf the conserved variable, the conservative form (5)
becomes

_ 1. -
(7) Of+Vy (5bf)=0.
To both of these equations we associate the same characteristics, which are
the integral curves of the differential equation

dH 1

(8) - jb, H(s) =n.
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We shall denote classically by H(¢;n, s), the solution at time ¢ of the char-
acteristic curve taking the value n at time s.

The solutions f of the advective form (6) and f = f.J of the conservative
form (7) obey the following conservation properties along the characteris-
tics:

Lemma 3.1. For given smooth vector field b and function J, the solution
f of (6) is conserved along the characteristics. More precisely

o LA m,5)) =0,

And the solution f = fJ of (7) satisfies

(10) F(t,H(t;n, 5)) det(VyH(t;m, 5)) | = 0.

dt
where V,H(t;m, s) denotes the Jacobian matriz of the transformation n —
H(t;n, s).

Proof. Using the chain rule we have

d dH
af(t, H(t;n, s)) = (0cf + = Vo)t H(t;n,s)) =0,

using the definition of the characteristics and the fact that f is a solution

of (6).

For the second conservation property, let us first observe that

< et (V,H(tm, 5)) = (V- ) (1 Ht; m,5)) det(V, H(t; m, 5)).

This follows from the definition of the characteristics and the fact that the
determinant is an n-linear alternating form. Then, a direct computation in

(10) yields

(% (¢ B, 9) + S (057,5) - V0. (1, ) ) der(V, (5 1.5)

+ (6 H(t5m, ) det(V, H(t5m, ) =
(g{ (t,H(t;m,s)) + m \% f(t,H(t;n,s))) det(V,H(t;n, s))
+ T, 9)(V, - 2) (0B, 2) det(, H ()
~ (s + |, <3f>] (1 FH(171.5) ) (5, Hi(t57.5)) = 0

as f is a solution of the conservation law at any point. O
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4. The Backward Semi-Lagrangian scheme (BSL2D)

The backward semi-Lagrangian scheme computes the time evolution of
our equation in advective form (6) using the characteristics (8).

4.1. Formulation of the scheme

We consider a uniform cartesian grid of the logical space (11,72) € [0,1]2
defined by Ny, Ny € N* and n} = (i — 1)Any, n? = (i — 1)Ane, i € R,
using a Fortran like indexing, with An, = 1/Ng, k = 1,2. We also define
tn = nAt, n € R, with At € RT*,

The unknowns at time ¢,, are

[l fltnmin), i=1,...,N1+1, j=1,... N+ 1, neN.

The classical backward semi-Lagrangian scheme uses the conservation prop-
erty (9) at each grid point to update the solution from one time step to the
next. This can be expressed as

f;hLl = f(tn7nz,j7tn+1))7

where n, ; = (1}, 7]]2) is a grid point and n;; = H(tn;n; ;,tnt1) the origin
of the characteristic ending at that grid point. In order to get a numerical
scheme from this equality, we need two steps:

1. Compute H(ty;n; ;,tnt+1)) by numerically solving the characteristics
equations (8) backward in time on one time step. If the advection field
b/J is analytically known, any standard ODE solver can be used. When
the problem is non linear and the advection field depends on f, a simple
solution is to use the backward Euler method. Note however that itera-
tions are needed as the advection field is not known at time ¢,,41. Two
are generally sufficient. The scheme reads

n; =n;; — At(b/J)(tn+1,1M; ),
i=1,... Ni41,j=1,...,Ny+1.

2. Interpolate f™ the solution at t, at the origin of the characteristics.
From grid values fy, = (fij)i=1,. . Ni+1, j=1,..No+1, We need to define a
reconstruction

I[f] :R? = R.

This reconstruction (the interpolator) should satisfy

O[fa](nim3) = fij, i=1,...,N1+1, j=1,... ,Na+1.

102

Bereitgestellt von | Technische Universitat Minchen

Heruntergeladen am | 14

Angemeldet

117 11:24



The semi-Lagrangian method on curvilinear grids

The algorithm then becomes:

1. Initialisation:
= fomind), i=1,...,N1+1, j=1,... Na+1,

2. From t,, to t,y1. Predict advection field b at time t¢,41 for non linear
problems and loop until convergence

(a) Compute origin of characteristics
n; =mn;; — At(b/J)(tn+1,1M; ),
1=1,...,Ni+1, 5=1,...,Ny+ 1.
(b) Interpolate
J?LI = H[fy] (7711 - Atazl,ja 77]2‘ - Ata?,j) )
i=1,....,Ny+1, j=1,...,No+1
with fil = (f];)i=1,..Ny 41, j=1,...Na+1-

4.2. Preservation of constant states

As soon as the reconstruction I reproduces the constants, we have preser-
vation of constant states, which can be written in this form, as the operator
is linear:

(fi=1,i=1,...,Ni+1, j=1,...,Na +1)
=><ff‘+1=1» i=1,...,N;1 +1, j:l,...,N2+1>.

4.3. First order conservation of mass in BSL2D

A priori, conservation of mass is not satisfied for the BSL2D scheme.
Using the jacobian at the grid points J; ; = J (771-17 77]2) , this would read

n+1 __ n
E :Ji,jfi,j - § :Ji,jfi,j'
(2] (2]

However, assuming our reconstruction is smooth enough, we can write a
Taylor expansion of first order in At, from our scheme:

FEFY =TT (i — Atby ) Jigynf — A7 5/ Ji ) = TS} (ni )

At O[fa], L Of] 1 o )
Jij <bi,j onl (nianj)‘FbLj a2 (nt,n?) | + O(AL?).
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So that
i T[] O [ f]
izj J +1 Z sz (bzlg 8771 (77117 77]2) + bl?,j 87]2 (7721’ 77]2)

+ O(At%).

So a first order condition is the following

N QxBTS O[]
1 2 2 1,2
A= E:E:b’] an 1 17773)+bi,j a2 (3 ,m5) = 0,

=1 j=1
which should be valid for all periodic sequences f;. Now, considering that

0Py, 0Py,
z'l,j = 87772( 1'1777]2')’ zz,j = _67771(772'1377]2')7

with a reconstruction ®; ~ &, the first order condition rewrites

M oPy, OI| fh 0%y, O1I[f] 1 2
(11) A= ZZ< 1 5 ) (nimy) = 0.
i=1 j=1 77 77 677 877 J

Using a reconstruction of the derivatives of the form

a OF =
(12) nz ) 77] Z aé 771+E: 77] 87]2 (7772[7 77]2) - Z Q%F(nzla 77]2'+E)7

{=r l=ro

for both F' =1I[f;,] and F' = &}, leads to

N1 N2 51 82

A= ZZ Z Z akag fh 772+k777])‘1’h("7za77j+e)

i=1 j=1 k=rq1 l=r2
_q)h(nzl-f—kv n?)ﬂ[fh] (77117 77]2—1—4))

N1 N» S1 S2
=> > TfHlnhn) DD akef(@rn g — Palnigm7-0)
i=1 j=1 k=71 f=ro
N1 Na
_Zznfh 771777] ZZ Qi kaé —j ak i Z)(I)h(nkvné)
i=1 j=1

prolongating o} = 0, i & {ry,...,s1} and a? =0, j & {re,...,s2}. The
condition A = 0 is thus true as soon as o/ji = —af, 1 €7, k=1,2, which
is a reasonable assumption for the derivative formula (12).
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We emphasize that such condition holds when the reconstructions II[f3]
and ®;, use the same formula for the derivative.

We also remark that the condition (11) is the same for cartesian and curvi-
linear case, as the jacobian is simplified and does no more appear.

For splines, the derivative is generally not expressed like in (12): derivatives
are obtained, by inverting a linear system. However, in the periodic setting,
the matrix for computing the derivatives is circulant and its inverse also,
which leads to a formula of type (12).

4.4. Examples of reconstructions: the 1D advective case

In this section, we review some choices for II;,. We focus here on the 1D
interpolation in the advective form, as the 2D case can be obtained through
tensor product.

Spline interpolation: SPL(d) (see e.g. [1] (for d = 3), [8], [31] (for
d = 3 and non-uniform grid))

We can consider here a non uniform mesh. Let N < Dmax € R. We
consider a discretization

M = Nmin <2 < -+ <NYNF1 = Tmax

of the interval [Nmin, Mmax)- Let d € N*, an odd number. We define a knot
sequence 7;, i = 1,..., N 4+ 2d + 1. The knot sequence satisfies

Ti+d = My, j=1...,N+1.
In the case of open boundary conditions, we take

Tj = Ta+1, j=1,...,d,
TN+j = TN+d+1, j=d+2,...,2d+ 1,

and for periodic boundary conditions, we take

T =TiyNn — L, 7=1,...,d,
TNy =T;+L, j=d+2,...,2d+ 1,

where L = 1max — Mmin- We can consider other possibilities for the 2d knots
TyeooyTqg a0d TN 1442, - .., TN124+1; We consider that

T < <70 S Td41, TN4d+1 S TNd42 < -0 S TN42d41-

We then can define, for j = 1,..., N 4 d, the B-spline B;Hl, of degree d
and order d 4 1, whose support is [7}, Tj+d41]-
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For all m € N* such that 7,,, < 7,41 and m > d+ 1 and m < N 4+ d, the
B-splines that are non-zero in the interval [7,,, 7,+1[ are

Bg“, l=m-—d,...,m,

with the exception that B&H!(7,,) = 0. For @ € [Ty, Tim11], we can compute
b; = bj(x), j=1,...,d+ 1, where bj(z) = B4 1+(2), by the following
algorithm:

bl<—1
for /=1,...,d do

T—Tm+1—4

Q<= Tm+1—"Tm+1—4

b1 — bl —

for k=2,...,4do
/8 — T—Tmtk—2

Tm+k— Tm+k—4

by +— b +a—0
a<+ f

end for

by,

bey1 <+ «
end for

Now, we look for a function fj of the form

N—+d
fh(n) = Z CijC‘lJrl(n)a Mmin < 7 < max-
j=1
Fori=1,..., N, we have

ISH

fi=Fn(n) = br(Tira)cio1ik:

k=1

This is enough for periodic boundary conditions. For open boundary con-
ditions, we can add the d conditions

d
;Y= =S "0 (ras)er, €=1,...,(d—1)/2,
k=1
d+1 )
fN+1 )(77N 1 Zbé)(T]\_/+d+1)CNfl+ka = 07"'7(d_ 1)/2
k=2

Typically, when periodic boundary conditions are not used, we take 0 for
the derivatives and extend the solution outside [fmin, max| to be

o) = f1, 1 < Mains (1) = N1, 7> Mmin.
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Note that, from [32], we can then obtain explicitly the d + 1 coefficients
Cks, CN—14k, k=1,...,(d+1)/2, and the N — 1 remaining coefficients are
then solution of a d-diagonal system, with matrix

b(d+1)/2(7—2+d) e bd(T2+d) 0 e e 0
M = 0...0 b1<Ti+d) e b(d+1)/2(7—i+d) “e bd(Ti+d) 0...0
0 e e 0 b]_ (TN+d) e b(d+1)/2(TN+d)
Once the coefficients are computed, we obtain fori =1,..., N, 0 <a <1
d+1
Fam) = cictanbi(Tiva + (Tizart = Tiva)), 1 =i + a(nir1 — ;).
k=1

Lagrange interpolation: LAG(2d+1) (see e.g. [9,23,33])
We consider here a uniform mesh. Lagrange interpolation of degree 2d + 1
reads

fn(n) = Z wi (@) fisks n=mi+almip1—n), i=1,...,N, 0<a <1,

d+1 .
with wi(a) = M

—. As boundary conditions, apart from periodic,
I a, jen(k—i

we often use

(13) fi=fnt, JEN, 2N+ fj=f,j €Z, j<1.

Cubic Hermite interpolation: H(p) (see e.g. [23] (for p = 4), [34]) Let
p € N. We consider here again a uniform mesh, and write

!/

fn(n) = wo0(a) fi + woi () fis +wio(a) firn +wia(@) fiy)-
77:?7i+04(m+1—7]i>, t1=1,....N, 0<a<1,
with wy o(a) = a?(3 — 2a), wop(a) = 1 — wi(a), woi(a) = a(l — a)?,

wy (@) = a?(a —1).
The derivatives are reconstructed in the following way

Si
fix = Z bF five-

f=r*

For p € N*, we take r™ = —|51, st = L%J, rT=—sT, 57 =—rt,
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st -
_b_é — b-‘r _ Hj=T+, jg{O,E}(_]) 0= T,Jr S+ Y/ 7& 0
— st N ’ ) ) ’
Hj:ﬁ, j;éé(é —J)
st
by === 30 b
j=rt, j#0

As examples, we have (negative indices are before ; in the brackets)

p=110b"=(
(14) b= bt = (_1/37_1/2717_1/6>7

p=4 bt =(1/12,-2/3:0,2/3, ~1/12),

p=5 bt =(1/20,—1/2;—1/3,1,—1/4,1/30),

p=6 bt = (—1/60,3/20,—3/4;0,3/4,—3/20, 1/60).

Boundary conditions are treated like for the Lagrange case.

4.5. Extension to 2D for BSL2D

This is achieved using a tensor product formulation. For the splines, for
each j =1,..., No+1, we compute first coefficients c%j, i=1,...,N1+di,
from the values f;;, ¢« = 1,..., Ny + 1. Then, for each i = 1,..., N1 + dy,
we compute coefficients ¢;;, j = 1,..., Na + da, from the values c}j, i =
1,...,Ny+di, j=1,..., Ny + 1. The formula for interpolation is then

di+1da+1

Fun'?) = D0 Y ik rvebr(Tivay + (Tivay 11 — Tivay))
k=1 (=1

be(Tjrd + B(Tjvdot1 — Tjtds)),
for
mo=nl+amiy—nl), i=1,...,N, 0<a<l, n?=ni+B02,—n2),
j=1,...,Ny, 0< B < 1.

Note that for open boundary conditions (in both directions), in addition to
fijo i=1,...,Ni1+1, j=1,..., Ny + 1, we have to specify

X , .
fi(jep) - 87’]flh(77@1777]2)’ J= 1)"'7N2+]-5 (S {17N1+1}’ t= 1’(d_1)/2’
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and also

O fu

e —(pind),i=1,...,Ni1+1, j € {1,Ny +1}, £ =1,...(d—1)/2,

0.6) _
fz] RN

together with

bty 010"
Fi) = W(nl,UQ), 0" € ik =1, (de=1)/2, k= 1,2.

i=1,...,Ni+d, j=1,...,Ny+ 1.

’L]’
Z £2) 1,(¢ .
From f Y720 and fij , we compute missing coefficients called c; (), 1=

N1 +d, je{l,No+1}, £ =1,...,(d2 —1)/2, in order to compute
ﬁnally, together with c}j the coefﬁcients Cij-
For Lagrange interpolation, the formula is

From f “0) and fij, we compute cl

di+1da+1

f ( Z Z wy, )fz-i—k,j—f—fa

k=1 (=1
and for Hermite, we can write

1

k1 b
fh(771>772) = Z Wk ko (O‘>w€1,€2 (B)fi((k;),lj)(b):

k1,k2,1 ,£2=0

defining #(0) =™, i(1) = (i—l—l)* and similarly, j(0) = j T, j(1) = (+1)~.
We take here fi(f"_) = fi(,(?’ and f ) f 0 We have to compute the values

FEO =1 N+ =1 Na

(2

f(’(;ia 1=1 7"'7N1+17 jzl,...,NQ—Fl,
f(jtyi i=1,..., Ny +1,5=1,...,Nag+1.

1T,

The values f ) are obtained from fij usmg the operator described in the
1D case in the ﬁrst direction. The values f i j i are obtained frorn fl j using

the same operator in the second direction. Finally, the values f i are ob-

1,0)

tained from f ;jx using the operator in the second direction (or equwalently

1)

from f it using the operator in the first direction).
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5. A split conservative semi-Lagrangian method

On curvilinear grids the free stream preservation property is essential for
conservative finite difference, finite volume or finite element solvers. This
means that for our problem a constant function must be preserved by a
constant coefficient advection.

Although the natural form of the conservative semi-Lagrangian method,
as proposed in [12], is based on a finite volume formulation where the un-
known is a cell average, we find it simpler to use a point based conserva-
tive method with a point based unknown as in a Finite Difference scheme.
This facilitates a symmetric reconstruction between the stream function ®
of the advection field and the unknown, which for the conservative form
of the equation (7) is f = fJ as we saw before. And, even more impor-
tantly this enables to define the Jacobian J only at the grid points, as well
for the distribution function as for the computation of the characteristics.
This avoids interpolation of the Jacobian, which is known to be bad for free
stream preservation. In the classical Finite Volume type method of [12], the
advected points are the cell edges and the Jacobian needs to be interpolated
or defined in another manner there, which prevents a direct cancellation as
we have for the point based method used in BSL and proposed here for the
conservative scheme. A conservative semi-Lagrangian method of this type
was introduced by Qiu and Shu [2]. We will consider here a specific exam-
ple, that permits to have the first order free stream preservation; a further
study may be pursued for designing a class of high order stable schemes,
sharing this property, in the same spirit of the BSL method; one difficulty
is to get the stability of the scheme, as already mentioned in [2]. A general
discussion on the respective advantages and drawbacks of Finite Difference,
Finite Volume and Discontinuous Galerkin discretisations for conservation
laws is given in [35].

5.1. Formulation of the 1D split conservative semi-Lagrangian method

(CSL)

Let us start from the model equation in conservative form (7) written
in logical coordinates, with f = J f, which we recall
of L,z
15 - (= =0
with (V#Qb) = (8772¢7 _8771 qb)—r
Using an operator splitting method, which can be of arbitrary order by
alternating the 1D solves with adequate coefficients, we need to solve the
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following two 1D advections:

af 9 (106 ;) of 9 (106 ;)
0 G+ o (Tom?) =0 G am (md) O

This leads us to introducing the conservative algorithm for a 1D con-
servative problem of the form
of 0 sa =
17 S (Sf) =0,
(17) ot on \J /

A key ingredient in our algorithm is the sliding average reconstruction,
which is classical in conservative Finite Difference methods for conservations
laws. This reconstruction aims at defining for a function G defined at grid
points a high order approximation of its derivative 0,G' at the same grid
points. For this, we introduce a function G related to G by the formula

1o
G = [, 9@
n

_An
2
so that

oG G+ 40— G(mi — A1)
(18) 6777(771) = 2 Ar 27,

When the averages of G on each cell, which are also the grid values G(n;), are
known, the reconstruction by primitive, standard in Finite Volume methods
can be used to approximate G at the cell extremities. Formulas for third
and fifth order reconstructions are given in [2], we shall use here a fourth
order reconstruction, for which it is straightforward to compute

(19) G(mi + %) ~ TZ(G(%) + G(Mig1) — %(G(m—ﬁ + G(niy2)).

Now, a conservative semi-Lagrangian algorithm is based on the conser-
vation property (10), which becomes for the 1D case

3 (Ferwn 9y wns) o

Introducing F a primitive in 1 of f,

Ftn) = | " Ft.) ai,
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where 77 is chosen arbitrarily for fixing the constant, this can be written
equivalently

(20) aata;;(t, n,s) =0, with F*(t,n,s) := F(t, H(t;n, s)).

Let us introduce a uniform grid of our logical domain [0, 1] characterised by
the number of cells N. The grid points are then defined by n; = (i — 1) An,
1 <4< N+1, with Ap = 1/N. The unknowns are defined at the grid
points ﬁ” ~ f(tn,n;) and we denote by f[; = (ﬁ'n)lgigNH the collection of
the grid values.

Integrating first in ¢ between t,, and t,,4+1 in (20) and evaluating at s = t41,

it yields
_ 6F*
f(tn-Ha 77) = 6’17 (tna 7, tn+1)’

as H(tni1;0,tng1) = 0 and G (tni1;,tns1) = 1. We suppose for the
moment that nf = H(t,; 7, tn+1), the origin of the characteristic ending at
7; satisfies

(21) ni <0 < Mig1-
Defining G(n) = F*(tn,n,tnt1) — F(tn,n), we get

. oG
ftnr,mi) = f(tn,mi) + 877(771')-

In order to get the scheme, we approximate %—g(m) from values
o
(22) G(m)= [ [f(t,9)dq

i

as explained before, that is using (18) together with (19).
To complete our algorithm we need to approximate G(n;). For this, we use
Lagrange interpolation of order 3 on the interval [n;, 7;+1[, using the values
e £ =—1,...,2, in order to approximate f(t,7),n € [1;,ni+1], in (22).
Note that other choices may be possible, but we warn the reader that, as
noted in [2], for stability reasons, such interpolation has to be combined

carefully with the quadrature formula which is here (19).
To summarize, our conservative semi-Lagrangian algorithm, generalized

to arbitrary displacement, as in [2], is based on the following steps:

1. The backward solution of the characteristics ending at the grid points

7; solution of
dH

a
T H(tp+1) = m,
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denoted by n = H(tn;n;,tnt1). These are the same characteristics as
for the split 1D BSL method and the algorithm to compute them is the
same. We shall consider here the backward Euler method.

2. The computation of the flux Fj /5. We denote by n; = n;« +a;An, 0 <
a; < 1. Let P; be the polynomial of degree < 3 satisfying P;(n;«4+x) =

fitgn £=-1,0,1,2. We compute

1 Ntk
fi,k = A / Pb(n)dna k= _1)07 ]-7 27
n Ni* +k

by using Simpson rule for example. We then define

(23) Fi+1/2:%(fi,O‘i‘fi,l)_%(fi,—l‘f'fiﬁ)‘i‘ R D> R

i+1<k<i* *4+1<k<i

3. The update of the solution. The new value of f at the grid points is then
given by

(24) FI =+ Fiap — Fioapo.

Note that in the derivation of the scheme, the assumption (21) corresponds
to the special case i* = i. Formula (23) is chosen by considering that the
local displacement is the decomposition of an exact displacement of a given
number of cells plus a positive displacement less than one cell. We can
check, as in [2] that the formula is continuous when «; approachs 1. We
clearly see from the flux form (24), that the scheme is mass conservative.
Note that in [2] explicit formulae are given for third and fifth order in the
context of WENOQO. We consider here the example of fourth order and do not
apply a WENO procedure. For constant displacement (with Jacobian equal
to one), this scheme corresponds to use the BSL scheme with Lagrange
interpolation of degree 4, where the stencil is chosen according to the sign
of the displacement.

5.2. Free stream preservation

As for the BSL method, where the mass is only preserved up to first
order in At, we shall prove here that ﬁ j is preserved by the update formula
up to first order in At if f = 1 or equivalently ﬁ] = J; j, which is our
version of free stream preservation. For this, taking ﬁ” = J;, we consider
for simplifying the exposition of the proof that (21) occurs, but we could
adapt the proof, removing the hypothesis. We use again the formulation of
the update formula from the last section:

=+ (F = F) () = Ji+ (F* = F)'(m;)
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and compute an approximation of (F* — F)'(n;) in the limit of small At.
As we saw in the previous subsection F* — F' is obtained by reconstruc-
tion of the grid function with sliding average

u a(n;
o) dn =~ A5 £ () + O(A®) = ~Ata(n) + O(AP)
i L
as we assume that fy(n;) = J(1;) = J;. Then denoting by S[ay| the sliding
average reconstruction of ap, = (a(7;))1<p<n+1, the update formula becomes
for ﬁn = JZ’

Frtt = J; — At Slap)(m) + O(A#).

Let us now apply this formula to the two split steps of our method
assuming a first order Lie splitting, but the same argument holds for
higher order splittings. For the advection in the first direction we have
for a given j, a = 0,,®. Numerically ® is approximated by its grid val-
ues (I)h = ((I)i,j)lﬁiSNLlSjﬁNw we denote also by <Dh,j = ((I)i,j)lgiSNl and
@i = (Pij)i<j<n, one grid line at constant j and i respectively. The
derivative in the 70 direction is approximated by the sliding average recon-
struction in the 7o direction Sa[®p,;]. Then ap, ; = (S2[®h ] (1;))1<i<n,- So
that our first update reads

5= Jig — At S1[Sa[®13](n)](m:) + O(AL?).

For the second split step, we first note that, as the reconstruction is linear
the two terms above can be treated separately (and the higher order terms
also). Then as there is a At in factor of the second term, this will be a
O(At?) after reconstruction. So, as now a = —0,,®, the formula is the
symmetric of the other split step, which yields

Fort = Jij — At (S1[S2[®ni) (1) (m:) — S2[S1[®n 51(m:)](n;)) + O(AL?)
= Jij + O(A?)

because of the linearity and the symmetry of the sliding reconstruction in
the two directions. This proves that the constant states are preserved up to
first order, which is needed for a consistent conservative approximation on
curvilinear grids.

6. Numerical results

6.1. Rotation
The domain is Q = [—7, 7). We take

®(z',2%) = —((2")? + (2%)*)/2
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and solve (4). The mapping, referred to as deformed mesh (see e.g. [27]) is
given by

(25) at(n',n?) = n' + asin(n'2n/Ly) sin(n*2m/ Lyz),

L n?) = n? + asin(n2r /L) sin(n?27/L,2)
for (n*,n?) € 4 = Q and for 0 < o < 1. Here, L1 = L,> = 2.
We use the cos-bell initial function defined by

cos(r)8, for r < 7/2,
0, else,

folz',2?) = {

with r = /(2! —2)2 + (22 — 22)2 and 2! = 1, 22 = —0.2.

We use a Verlet scheme for computing the characteristics backward in
BSL2D, which leads to a second order in time scheme; for the evaluation of
the fields, we use cubic splines in the fixed point algorithm (tolerance is put
to 107'2 an a maximum of 1000 iterations is allowed; when the convergence
is not reached, a warning message is given). Periodic boundary conditions
are used for this test, which can lead to small errors as the solution is not
periodic but vanishes in the vicinity of the boundary. For the choice of the
interpolation, we consider here only piecewise cubic polynomial reconstruc-
tions: SPL(3) and H(p). Note that LAG3 corresponds to H(3).

When not specified, we use the natural derivative for the potential,
that is: the same derivative, as the derivative of the interpolation scheme.
For H(p), when p is odd, the derivative is discontinuous; we choose the
derivative of order p + 1 as natural derivative for the potential (we do not
consider a discontinuous electric field here); this corresponds to taking the
mean between the right and left derivative of order p.

We will refer to FD4 (resp. FD6) for computing the derivative using
(14), with p = 4 (resp p = 6).

We consider different discretizations in space: N = N; = Np €
{32,64, 128,256} and time: At =27 i € {0,1,...,10}. The schemes under
consideration are here H2, H3, H4, H5, H6, H9, H10, H17 and SPL3.
Numerical results are given on Figure 1 (solution and error at time 7' = 20),
Figure 2 (error vs time step) and Figure 3 (evolution of mass).

On Figure 1, we see the solution and error of H17, using At =276, N = 32
(top) and N = 64 (bottom) at time 7" = 20 that is after 10/7 turns. We
see that the error is reduced, taking a finer mesh and that the error is
not located on the boundary, that is periodic boundary conditions do not
lead to problems, in this test. The mesh is superposed to the solution, and
we see that it is quite deformed. Note that the Jacobian becomes singular
for @ = 1. The higher « is, the more difficult it is to get accurate solution
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(see [36]). Here we always take v = 0.9 to see the robustness of the different
methods.
On Figure 2, we give the error in function of i, with At = 27% using the
different reconstructions and N = 32 (top left), N = 64 (top right), N =
128 (bottom left) and N = 256 (bottom right). The error is computed in
L norm taking the best constant that approaches in least square sense the
error between 7' = 10 and T = 20 (we use the fit command of gnuplot).
The error is multiplied by (N/32)3 as we expect third order convergence in
space for the different schemes (except H2).
So, we observe how the error behaves with respect to time for different
discretizations in space. One can expect to have an error of the form
(26) C1A? + %
(see [9] for example). We distinguish basically three zones. A first zone
(i = 0,1,2,3) when At is too big to observe convergence. Typically the
time step is too big for solving properly the characteristics which are quite
stiff to solve, as the mesh is very distorted. Then we observe a second zone,
where the error decreases like At?. This zone becomes bigger as N increases.
Finally, there is a third zone, where the error saturates. Multiplying by
(N/32)3 permits to have the error for N = 32 and to see how the ” constant”
in the space error behaves (which is Cs if the error is of the form (26)). For
N = 32 (top left), we observe that increasing the value of p in H(p) increases
the accuracy and SPL3 is little better that H6. Moreover, when At becomes
smaller, we see bad effect for the schemes that use a centered reconstruction
for the derivatives: SPL3 and H10 (looking at the solution, we see that
the error comes from the boundary; using other boundary conditions may
lead to improvements); for H6, which is a little more diffusive, it is not
observed here. When ¢ <= 3 the error is big and does not depend on
the reconstruction. H2 gets worser increasing IV, as it is not a third order
scheme; we also observe that taking smaller time steps leads to bigger error,
when time error is not predominant. For H3, the error saturates or little
increase with Af. We remark that is of order 3, comparing N = 128 and
N = 256. For the other schemes, increasing N, the difference between the
schemes is diminished, as the reconstruction for the derivatives is higher
than third order (for cubic splines it is fifth order, and the constant seems
to be smaller than for H5).
On Figure 3, we represent the evolution of mass, for the different reconstruc-
tions, with N = 32 (left), N = 64 (right), and At = 27> (top), At = 276
(middle) and At =277 (bottom).

-We observe an increase of error of mass, when the bell crosses the region
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where the mesh is the most distorted.

-Increasing N improves the mass for the lower accuracy methods (es-
sentially H2, H3, H4 and H5); it improves also the mass for all the methods,
when the bell is not touching the most distorted region.

-For fixed value of N, by diminishing the time step, mass conservation
is generally improved.

-For N = 64, we only see 3 types of curves: H2, H3 and the others
which are almost the same. In order to see more differences on the different
methods, we have to take a smaller value of N, like N = 32.

-We also can check that the centered reconstruction H2 (resp. H4) is
worse for mass conservation than H3 (resp H5) when At is big, but they
become better, when At is smaller, as expected from the analysis.

-We can also observe worse mass conservation using non natural re-
constructions for the derivatives (not shown here), when N = 32, but the
differences are slight, and we will see more difference in the guiding center
case.

Kelvin-Helmholtz instability in a pertodic box

We refer for example to [12] for this test case. This is a non linear test case,
where the stream function ® depends on f via the solution of the Poisson
equation —A® = f. The initial distribution fj is given by the formula :

fo(z', 2%) = sin(z?) + S cos(oz!)

where 8 = 0.015 and o = 0.5. Periodic conditions are considered both in !
and 22 direction. The domain is [0, L,1] x [0, L,z2], with L1 = 2%, L s = 2.
We use the same deformed mesh as in (25), with o = 0.9. We use mudpack
[37] for the curvilinear Poisson solver.

For BSL2D, we use a predictor-corrector scheme for the time loop as in [36],
together with Verlet for the characteristics (as in the case of the rotation).
For BSL1D, we replace the 2D advection, by 1D advection, using Strang
splitting, as in [12]; a trapezoidal rule is used for the 1D characteristics,
and again cubic splines for the evaluation of the fields, in the fixed point
algorithm.

For CSL, we compute the characteristics as for BSL1D and use the same
Strang splitting.

The schemes under consideration are here SPL3, SPL3-FD6 (SPL3 with
FD6 instead of cubic splines for the derivatives of the potential), SPL3-1d
(BSL1d with SPL3), H6, H6-SPL3 (H6 with cubic splines instead of FD6
for the derivatives of the potential), H17, H17-1d (BSL1d with H17) and
CSL.
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Numerical results for BSL are given on Figure 4 (solution at time 7" = 50)
and Figure 5 (evolution of mass). Numerical results for CSL are given on
Figure 6 (solution at time 7" = 50) and Figure 7 (evolution of free streaming

error). On Figure 7, L? norm et energy evolution are also shown for CSL
and BSL.

On Figure 4, we represent f at time 7' = 50 using H17 (left) and SPL3
(right), with N = 256, At =271 (top), N = 128, At = 2710 (middle) and
N = 128, At = 275 (bottom). Using N = 128, we have less details than
with NV = 256 for H17. This scheme leads to similar results, using different
small enough time steps for a given IN. Note that if we would take bigger
time steps (like At = 273 which can be taken in the case of uniform mesh
with o = 0), the error in time would increase and we would get different
(wrong) results. We see that this scheme is particularly robust with respect
to At. For example, for the fixed value of N = 128 (the exercise could be
repeated for N = 256), using At = 27° or At = 2710 leads to similar result.
On the other hand, SPL3, works very badly when the time step is small;
but, using a bigger time step as At = 27°, for N = 128, gives an acceptable
result almost as accurate as H17 for the same value of N. Indeed, we see
some more details in H17, which are also present on the ”reference solution”
(H17, N = 256 top left).

On Figure 5, we represent the evolution of mass for N = 256, At = 27°
(top left), At = 276 (top right), At = 277 (middle left), At = 2% (middle
right), At =279 (bottom left) and At = 270 (bottom right).

-We remark that BSL1d (here SPL3-1d and H17-1d) leads to huge mass
error, when the time step is big (see Figure top left); this confirms previous
analysis on uniform grid (see [12] for example); on the other hand, dimin-
ishing the time step (i = 5 to ¢ = 9) BSL1d and BSL2d become similar:
SPL3-1d converges to SPL3, and similarly H17-1d to H17.

-Diminishing the time step (i = 5 to i = 9), we get better conservation
of mass, except for the schemes that do not use the natural reconstruction
of the derivatives (SPL3-FD6 and H6-SPL3). This confirms the theoretical
analysis of Section 4.3, which was more difficult to point out in the rotation
case.

-For ¢ = 10, we have first better conservation of mass for SPL3 than
for H17 (which was the best for ¢ < 9) this is coherent with the theoretical
analysis of Section 4.3. On the other hand, the solution develops a lot of
oscillations (as shown on Figure 4 top right) and a numerical instability
appears. Note that instability appears before for SPL3-1d than for SPL3.
For H6, we also get an instability (which was not in the rotation case).
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On Figure 6, we represent f at time 7" = 50 using CSL, with N = 128 (left)
and N = 256 (right), for At = 275 (top), At = 275 (middle) and At =277
(bottom). The solution seems to converge to the "reference solution” (H17,
N = 256 top left). Sporadic out of bounds value of f appear and become
bigger by taking a smaller time step and these values are attenuated by re-
fining the space grid. We remark some slight grid effect, taking the biggest
At (that is At = 27%); this may be due to the fact that the characteris-
tics are not computed accurately enough. Some numerical oscillations are
present and in the mean time some details are diffused; this may be ex-
plained from the order of the scheme and the behaviour as At tends to 0
(here fourth order).

On Figure 7, we represent the free stream error. To compute it, we consider
a function initialized to 1 and let it evolve as f with the same advection
field and the same scheme. As the field is divergence free, the function
should remain 1, as it is the case for BSL. The free stream error is then
the L error between the solution and 1. It is represented versus time.
On top left, we multiply the error by (27°/At)? and otherwise not. It is
represented on top for CSL with the natural reconstruction of the field,
that is, FD4. On Figure 7 middle, we change the reconstruction to FD6
(left) and SPL3 (right). On Figure 7, bottom, we represent the evolution
of L?>mnorm (left) and energy (right) for CSL, and BSL (H3,H6,H17 and
SPL3), using At =275, or At =276 and N = 256. As seen on Figure 7 top
left, we check the order 2 accuracy of the free stream preservation. We can
notice, that is holds both in the linear phase, when everything is smooth
and remains in the non linear phase, where we are far from convergence.
On the other hand, the other reconstructions of the fields do not lead to
this property. Taking At = 277, N = 128, we even observe that the scheme
can become unstable (Figure 7 middle left). So the natural reconstruction
of the field seems here to prevent from the appearance of instability; the
sporadic out of bounds values can become higher and higher; so that at a
certain level, this destroys the solution. Other ingredients may be needed
for garantying the stability of the scheme and to permit to go to higher
order schemes. On Figure 7, bottom, it is confirmed that diffusion is not as
strong as H3, but more than other usual BSL schemes (H6,SPL3, H17).
We also see that energy is quite well preserved for CSL, certainly because
the scheme is mass conservative; on the other hand, diminishing the time
step also improves energy conservation for the BSL method (except for H3);
this is coherent with the analysis about mass conservation.
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On Figure 8, we represent the free streaming error, the mass, the L? norm
and the energy, in the cartesian case (i.e. @« = 0). We observe that free
streaming error is less important for the conservative method (Figure 8,
top left). We remark that it is more important for N = 256 than N = 128,
when At = 275, This may be due to the fact that the solution is more
complex when N = 256. On the other hand, diminishing the time step,
we observe that the free streaming error diminishes, as expected, because
we use FD4 for the reconstruction of the derivatives. Mass conservation is
really improved, using @ = 0 (Figure 8 top right) for the BSL methods.
The effect of diminishing the time step leads to small improvement of the
mass conservation, in constrast to the curvilinear case (o = 0.9), but the
conservation is already a lot better. We remark no real difference for the
L? norm (Figure 8, bottom left) and the energy is strangely not conserved
as well; the curve is however less oscillating.

On Figure 9, we represent the mass evolution, for bigger time steps: At =
273 or At = 27*, which corresponds to more standard time steps that
are used for this test case in cartesian geometry (see [12] e.g.) and for
a € {0,0.1,0.25,0.5}. We remark that the mass is really better conserved
on the cartesian mesh (o = 0), and as « increases, mass conservation is
degraded (for non conservative methods, of course). This can be seen even
for « = 0.1 which is almost uniform. As already shown, diminishing the
time step has a beneficial effect, which is not so clear for « =0 or a = 0.1
but which becomes clearer increasing the value of a. L? norm and energy
evolutions are plotted on Figure 10 for a € {0,0.5,0.9}. On these quantities
which are less accurately conserved in the cartesian case, we do not see
differences between the cartesian case a = 0 and the case a = 0.5. This
is good news, as it tells us that the time step restriction is not so severe;
diminishing the time step mainly helps in the conservation of the mass. In
the case of & = 0.9, for which reasonable simulation are shown for At < 275,
exhibit very bad mass conservation (here, there is no picture; the result is
similar to & = 0.5, but with values around 1 for At = 274 and between 6
and 7 for At = 27* at final time T' = 100). We see on Figure 10 that for
a = 0.9, the quantities are changed, especially for At = 273, and also for
the CSL method. Note that for At = 273, the simulation stops in the CSL
method, as we have added a test that prevents from having intersection
of characteristics. We see that the energy is less accurately conserved for
At = 274 for the CSL method, whereas it was not changing much from
a = 0 to a = 0.5. For the BSL method, the energy conservation is really
worse for At = 273, On the other hand, we remark that H17 performs the
best for At = 27% in comparison to the other methods.

A picture of the meshes for « = 0.25 and a = 0.5 is depicted on Figure 11,
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using N = 32 instead of N = 256 in order to better see the mesh.

7. Conclusion

We have studied the semi-Lagrangian method on curvilinear grids and
looked at mass and constant states preservation issues. A (mass) conser-
vative method that preserves constant states up to first order in time has
been exhibited and compared with the classical advective backward semi-
lagrangian method, which in turn always preserves constant states and for
which we have shown that it conserves mass up to first order in time. When
the mesh becomes distorted, the time step has to be small enough; otherwise
important errors appear, as in particular characteristics are badly solved.
In this setting, Hermite interpolation with high order odd reconstruction
of the derivatives exhibits more favorable behavior than cubic splines, but
the Hermite method can be also more expensive; so we may stick to cubic
splines when the mesh is not too distorted. The next step is to adapt such
methods to gyrokinetic simulations. The classical BSL: method may be pre-
ferred, as we can make it work for several reconstructions and it is more
robust, even though there is a loss of mass conservation. The CSL method
could also be tried, but we fear for stability and robustness issues, as the
design of such a scheme was already not easy in this simplified context. We
have tested the methods for a quite severely deformed mesh; we have seen
that, when the mesh is less deformed, the time constraint is relaxed. The
grid in a gyrokinetic simulation is imposed by the background magnetic
field, which does not vary in time. Hence the methodology described in this
paper can be directly applied as we can define a transformation, based on a
B-spline representation, which maps a logical domain onto the desired phys-
ical domain. Typical gyrokinetic simulations have magnetic configurations
not far from equilibrium, thus including the fluctuations of the magnetic
field in the grid information is not necessary for most applications. Among
the new difficulties that we can encounter in 5D gyrokinetic simulations, one
is due to the dimension, which leads to heavy computations; the model can
also lead to numerical instabilities, but collisions can be added to prevent
from this fact; the whole system can also become quite complex with all the
physical terms; boundary conditions and change of geometry have also to
be treated correctly. A possible further study is also to add slope limiters
or other tools in order to prevent from sporadic out of bounds values which
can destroy the solution when they become too high.
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Figure 2. Rotation case. Average of the error in maximum norm between ¢ = 10 and
t = 20 divided by ¢ versus i, where At = 1/2°.
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Figure 4. Guiding center case. Solution at time 7' = 50, on deformed mesh, with a = 0.9
(left: H17, right: SPL3), N = 256, At = 2719 (top), N = 128, At = 2719 (middle) and
N =128, At =275 (bottom). Mesh for N = 256 (top right) and N = 128 (middle right)
are also shown.
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Figure 5. Guiding center case. Evolution of mass.
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Figure 6. Guiding center case. Solution at time 7" = 50, on deformed mesh for CSL,
with o = 0.9 (left: N = 128, right: N = 256), At = 27° (top), At = 276 (middle) and
At =277 (bottom).

127

Bereitgestellt von | Technische Universitat Minchen
Angemeldet
Heruntergeladen am | 14.11.17 11:24



Evolution of (2'*/dt)error of free streaming - Guiding center
alpha=0.9 dt=1/2' FD4 for field

Hamiaz et al.

Evolution of error of free streaming - Guiding center
alpha=0.9 dt=1/2' FD4 for field
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Figure 7. Guiding center case. Evolution of free stream error: FD4 for field (top), FD6
(middle left) SPL3 (middle right). Evolution of L? norm (bottom left) and energy (bottom

right).
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Figure 8. Guiding center case in the cartesian case (o = 0). Evolution of free stream
error with FD4 for field (top left). Evolution of mass (top right), L? norm (bottom left)
and energy (bottom right).
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Figure 9. Guiding center case. Evolution of mass for « = 0, 0.1, 0.25, 0.5; N = 256
(from left to right, top to bottom).
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Evolution of L? norm - Guiding center
alpha=0. di=1/2' N=256
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Figure 10. Guiding center case. Evolution of energy (left) and L? norm (right) for
a =0, 0.5, 0.9 (from top to bottom).

Figure 11.
and a = 0.5.

130

Guiding center case. Representation of mesh, on 32 x 32 grid, for « = 0.25
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