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Zusammenfassung
Massive MIMO ist ein wichtiger Bestandteil zukünftiger Mobilfunknetze. Massive MIMO
und Senderkooperation für Innenraum-Kommunikation werden analysiert. Für doppelt
so viele Sendeantennen wie mobile Nutzer erhält man die meisten Vorteile von Massive
MIMO und erreicht einen guten Kompromiss zwischen Antennenkosten und spektraler
Effizienz. Einfache Sendeverfahren erreichen Fairness und nähern sich der Kapazität an.
Mit steigender Senderkooperation steigt die Performanz. Die Platzierung der Sender hat
einen großen Einfluss auf die Performanz, da sie die Pfadverluste durch Mauern und die
Interferenz bestimmt. Zudem wird die äquivalente isotrope Strahlungsleistung (englisch
equivalent isotropically radiated power (EIRP)) von MIMO-Arrays, die durch Regulierun-
gen beschränkt ist, analysiert. Oft können nur EIRP Schranken bestimmt werden. Mit
obere Schranken kann man zeigen, dass Beschränkungen nicht verletzt werden. In der
existierenden Literatur werden jedoch oft untere Schranken verwendet. Zwei neue obere
Schranken, die für Mehr-Stream-Senden gelten, werden gezeigt. Die Vorteile von Massive
MIMO sind auch für EIRP Beschränkungen erreichbar, die Beschränkungen sollten jedoch
bei Analysen berücksichtigt werden.

Abstract
Massive MIMO is a key part of future mobile networks. Massive MIMO and transmitter
cooperation for indoor communications are analyzed. A ratio of twice as many transmitter
antennas as mobile users is shown to provide most of the massive MIMO benefits and to
be a good tradeoff between antenna costs and performance. Simple transmission schemes
achieve fairness and perform close to capacity. Performance improves with the level of
transmitter cooperation. Transmitter placement is important since wall penetration losses
and interference dominate the performance. The equivalent isotropically radiated power
(EIRP) of MIMO arrays is also analyzed. The EIRP is constrained by regulations. Often
one can determine only EIRP bounds. Upper bounds allow to show that EIRP constraints
are not violated, but in the literature usually lower bounds are used. Two new upper
bounds are proposed which apply to multiple stream transmissions. The massive MIMO
advantages are achievable given EIRP constraints, but EIRP constraints should be included
in massive MIMO analyses.
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Introduction
The mobile data volume is expected to continue to increase, and this growth will open
possibilities for new applications in mobile networks [1]. One goal of new mobile com-
munication standards, for example, 5th generation mobile networks (5G), is to increase
the throughput per unit area or volume by a factor of 1000 [1]. For example, the METIS
(Mobile and wireless communications Enablers for the Twenty-twenty Information Society)
project [2] defines target traffic volume densities for different scenarios. The goals can be
achieved by [3]:

. Densifying base station (BS) deployments and increasing the number of served user
equipments (UEs);

. Increasing bandwidth, for example, by using the millimeter wave spectrum;

. Increasing spectral efficiency (SE) through multiple antenna communications, i.e.,
multiple-input multiple-output (MIMO) communications.

We concentrate on the third method and focus on an idea called massive MIMO.
MIMO allows one BS to transmit several streams to one or more UEs using spatial

degrees-of-freedom. Massive MIMO refers to a “vast” over-provisioning of BS antennas as
compared to the number of served single antenna UEs [4]. Massive MIMO claims several
advantages over conventional MIMO [5]:

. Massive MIMO increases capacity by a factor of 10 or more;

. Energy efficiency improves;

. Inexpensive, low-power components suffice;
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. The multiple-access layer is simplified;

. The latency is reduced;

. Massive MIMO is robust to jamming and interference.

This work consists of two parts. In Part I we analyze massive MIMO deployments in
an indoor scenario with and without cooperation. In Part II we study the equivalent
isotropically radiated power (EIRP) of MIMO arrays.

Outline of Part I
Many massive MIMO studies consider wide area outdoor scenarios, e.g., [4–6]. However,
most mobile traffic is generated by indoor users [7]. We analyze the performance of different
BS deployments with different levels of cooperation in the downlink of the 3rd Generation
Partnership Project (3GPP) indoor office scenario [8]. In Chapter 2 we explain the system
model and key schemes required to transmit information in a mobile network with multiple
antennas. In particular we present precoding and power allocation schemes, and discuss
massive MIMO in detail. Interference is often the main limitation in mobile networks. We
use the presented schemes to develop interference aware signal processing in Chapter 3.
The schemes differ in the level of cooperation between BSs. In Chapter 4 we present the
channel model, the indoor scenario and the BS deployments. We compare the presented
transmission schemes and the BS deployments in Chapter 5.
Our approach is as follows: We fix the number of served, single antenna UEs and sweep

the ratio of total number of BS antennas to the number of served UEs from one to ten.
This way we determine the ratio of BS antennas to served UEs that achieves the massive
MIMO benefits and provides a good tradeoff between antenna costs and SE. We compare
the performance of a single BS to distributed BSs inside and outside the building, and
with different levels of cooperation. As expected placing a single massive MIMO BS at the
center of a building causes UEs to experience large path loss and high wall penetration
loss. We analyze if our transmission schemes approach capacity, if scheduling provides
gains, and how our power allocations affect the performance. We compare the fairness of
the transmission schemes and the deployments, and we compare the separability of the
UEs in the different deployments. Finally, we quantify the performance loss due to channel
estimation errors. As in conventional MIMO, channel state information (CSI) is required
to enable precoding. Acquiring CSI might be more difficult in massive MIMO due to the
many antennas. Our results help guide design choices for future mobile communication
systems, e.g., 5G.

Outline of Part II
In the second part of this dissertation we discuss the EIRP of MIMO arrays. MIMO arrays,
and especially massive MIMO arrays, concentrate their transmit power in certain spatial
directions. The EIRP, i.e., the peak power density, is constrained by regulations which



3

serve to protect other devices and humans. However, the EIRP constraint is rarely included
in MIMO performance analyses. In Chapter 6 we review the EIRP definition and present
selected EIRP regulations. For most MIMO arrays one cannot measure or calculate the
exact EIRP, but must rely on EIRP bounds. In Chapter 7 we analyze an EIRP lower bound
in the indoor scenario of Part I. We check if the precoders violate EIRP constraints and
determine the tradeoff between performance and EIRP for different numbers of transmit
antennas for different levels of cooperation. In order to show that EIRP regulations are not
violated one must use EIRP upper bounds. In Chapter 8 we consider an example MIMO
array, which is the uniform linear array (ULA), in more detail. We review existing upper
bounds which apply to single stream transmissions only. We propose new upper bounds
which also apply to multiple stream transmissions and have less complexity for certain
scenarios. We complete the analysis by reviewing EIRP aware transmission schemes. We
conclude the work in Chapter 9.

Notation
We denote column vectors with bold lower case letters, e.g., x, and matrices with bold
upper case letters, e.g., X. The transpose is ·T, the complex conjugate is ·∗, and the
complex conjugate transpose is ·H. We denote the element in the i-th row and the j-th
column of matrixX as [X](i,j), the i-th row as [X](i,:) and the j-th column as [X](:,j). The
Euclidean norm of x is ‖x‖2, the l1 norm of x is ‖x‖1, and the Frobenius norm of X is
‖X‖F . The rank of X is rank (X). We denote a diagonal matrix having diagonal entries
x as diag (x). The M ×M identity matrix is IM . The trace of X is tr (X). We denote a
set with calligraphic letters, e.g., T = {1, 2, . . . , K}.
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2
System Model, and Basics
In the downlink of a mobile communication system the goal is to send information to several
user equipment (UE) devices. Each UE desires information bits that are encoded into a
sequence of transmit symbols. We normalize the average power of the sequence of transmit
symbols and we model the transmit symbols as independent and identically distributed
(i.i.d.). We denote the single transmit symbol at one time instant of the sequence desired
by the k-th UE as sk ∈ C. The number of UEs is K. We collect the transmit symbols of
all UEs into a vector

s =




s1
...
sK


 ∈ CK . (2.1)

In this chapter, we explain the system model of the considered mobile communication
system and some key concepts required to convey information to the UEs, for example, we
describe linear precoding schemes and the mercury/water-filling power allocation scheme.
These concepts are used in Chapter 3 to implement transmission schemes. Also we discuss
massive MIMO in detail.

2.1. Orthogonal Frequency-Division Multiplexing
Orthogonal frequency-division multiplexing (OFDM) is a key ingredient for modern mobile
communication systems. The available bandwidth is divided into subcarriers. The spectra
of the subcarriers may overlap but must be orthogonal, i.e., there is no interference between
subcarriers. The bandwidth of a single subcarrier is chosen smaller than the coherence
bandwidth of the channel so the fading of a subcarrier is almost flat. The inter symbol
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interference (ISI) between consecutive symbols on the subcarriers is eliminated by using a
guard interval or a cyclic prefix [9]. Hence we can express the channel of a subcarrier by
a complex scalar only.

2.2. Multiple-Input Multiple-Output

Communication systems where the base stations (BSs) and the UEs are equipped with
a single antenna are called single-input single-output (SISO) systems.1 Performance is
improved when multiple antennas are used at the BSs and/or at the UEs [9]. This is
called multiple-input multiple-output (MIMO). MIMO where multiple UEs are served is
called multi-user MIMO. We consider single antenna UEs but multiple antenna BSs, which
is more precisely called multi-user multiple-input single-output (MISO). For each UE we
obtain a scalar channel per subcarrier and BS antenna.
The UEs are served by all BSs jointly or by a single BS depending on the level of

cooperation between the BSs. A broadcast channel (BC) is a system where a single BS
or multiple BSs jointly serve all UEs. In contrast an interference channel has multiple
BSs which each serve a single UE independently. A multi-user interference channel has
multiple BSs which each serve a group of UEs independently. A point-to-point channel is
a system conisting of a single BS and a single UE.

2.3. System Model

We consider the downlink from NBS BSs to K single antenna UEs. The i-th BS has Mi

antennas. We apply OFDM with a sufficiently long cyclic prefix and the number of sub-
carriers is NSC. Unless otherwise mentioned we assume perfect channel state information
(CSI) of the complete network at all nodes. We consider one subcarrier first. The channel
coefficients from the antennas of the i-th BS to the k-th UE are collected in the row vector
hH
i,k ∈ CMi . We stack the channel coefficients from all BSs to the k-th UE in

hH
k =

[
hH

1,k, . . . ,h
H
NBS,k

]
∈ CM . (2.2)

The length of hk is the total number of BS antennas

M =
NBS∑

i=1
Mi. (2.3)

1We consider throughout this work BS sites with single cells which we call BSs. In some other works a
single BS site can host multiple cells.
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The signals transmitted over the antennas of the i-th BS are xi ∈ CMi and we stack these
as

x =




x1
...

xNBS


 ∈ CM . (2.4)

The signal received by the k-th UE is

yk = hH
kx+ zk ∈ C (2.5)

where zk ∈ C is independent proper complex additive white Gaussian noise (AWGN)
with variance σ2

N . The number of receive antennas is equal to the number of UEs K as
we consider single antenna UEs. The received signals of all UEs for one subcarrier are
collected in the vector

y =




y1
...
yK


 = HHx+ z ∈ CK (2.6)

where we collect the channel coefficients in

HH =




hH
1
...
hH
K


 ∈ CK×M (2.7)

and the i.i.d. noise random variables in

z =




z1
...
zK


 ∈ CK . (2.8)

For perfect CSI the transmit signals are precoded as

x = w
(
s,HH

)
(2.9)

where w (·, ·) is the precoding function that maps the transmit symbols and the channel
coefficients to the transmit signals. Note that the precoding function w can be restricted
to account for limited or no cooperation between BSs (see Chapter 3).
Our goal is to maximize the sum rate by choosing the precoding function w (·, ·) subject

to transmit power constraints. The sum rate is the sum of the rates achieved by the UEs
on all subcarriers. Other objectives besides the sum rate consider, for example, fairness
or minimum rate constraints. We measure the fairness of the sum rate maximization in
Section 5.8
Non-linear precoding schemes such as dirty paper coding (DPC), vector perturbation
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and lattice-aided methods achieve better performance at the cost of higher complexity [10].
In this work we consider low complexity linear precoding. However, we do consider DPC
for capacity bounding calculations.

2.3.1. Linear Precoding

For linear precoding the function w (·, ·) is linear and can be expressed by the matrix
W = [w1, . . . ,wK ] ∈ CM×K . The k-th column of W is the precoding vector wk ∈ CM

which determines the transmission of sk. We callW the precoding matrix.2 The transmit
signals are composed as

x = Ws. (2.10)
Note that the structure ofW might be restricted to account for limited or no cooperation
between BSs (see Chapter 3).
When using linear precoding we also assume a linear receiver and we treat interference

as noise. The achieved rate is determined by the signal-to-interference-plus-noise ratio
(SINR). Recall that we defined

E
[∣∣∣s(f)

k

∣∣∣
2]

= 1 (2.11)

for k ∈ {1, . . . , K} and f ∈ {1, . . . , NSC}. The SINR at the k-th UE on one subcarrier is

SINRk =

Desired signal︷ ︸︸ ︷
E
[∣∣∣hH

kwksk
∣∣∣
2
]

K∑
l=1
l 6=k

E
[∣∣∣hH

kwlsl
∣∣∣
2
]

︸ ︷︷ ︸
Interference

+E
[
|z|2

]

︸ ︷︷ ︸
Noise

=

∣∣∣hH
kwk

∣∣∣
2

K∑
l=1
l 6=k

∣∣∣hH
kwl

∣∣∣
2

+ σ2
N

. (2.12)

For linear precoding the maximization of the sum rate over all UEs and all subcarriers
given power constraints becomes the optimization problem

max
W (f), f∈{1,...,NSC}

K∑

k=1

NSC∑

f=1
C
(
SINR(f)

k

)
(2.13)

subject to transmit power constraints, where (f) indicates the subcarrier index and
C
(
SINR(f)

k

)
is the rate achieved at SINR(f)

k .

2Precoding is called beamforming when only a single UE is served. In this case the precoding matrix
consists of a single beamforming vector.



2.4. Optimal Linear Precoding Structure 11

2.3.2. Transmit Power Constraints
We consider two BS power constraints. The first constrains the power transmitted by each
BS on all subcarriers. The per-BS power constraints are

NSC∑

f=1
E
[∥∥∥x(f)

i

∥∥∥
2

2

]
≤ Pi, ∀i ∈ {1, . . . , NBS} (2.14)

where Pi is the maximal power that the i-th BS may transmit. The second constraint is a
relaxed version of the per-BS power constraint that constrains the total power transmitted
by all BS on all subcarriers. The total power constraint is

NBS∑

i=1

NSC∑

f=1
E
[∥∥∥x(f)

i

∥∥∥
2

2

]
=

NSC∑

f=1
E
[∥∥∥x(f)

∥∥∥
2

2

]
≤ Ptotal (2.15)

where Ptotal is the maximal power that all BSs may transmit jointly. Sometimes it is
simpler to find solutions for a total power constraint but usually these solutions are not
permissible for per-BS power constraints. We use the total power constraint to obtain
upper bounds or to obtain suboptimal schemes for per-BS power constraints by scaling
back the power. Of course for a single BS the two constraints (2.14) and (2.15) coincide.
The power constraints simplify for linear precoding. The per-BS power constraints

become
NSC∑

f=1
E
[∥∥∥x(f)

i

∥∥∥
2

2

]
=

NSC∑

f=1
E
[∥∥∥W (f)

i s(f)
∥∥∥

2

2

]
=

NSC∑

f=1

∥∥∥W (f)
i

∥∥∥
2

F
≤ Pi, ∀i ∈ {1, . . . , NBS} (2.16)

where W (f)
i is the part of the precoding matrix that creates the transmit signals at the

i-th BS xi. The total power constraint becomes

NSC∑

f=1
E
[∥∥∥x(f)

∥∥∥
2

2

]
=

NSC∑

f=1
E
[∥∥∥W (f)s(f)

∥∥∥
2

2

]
=

NSC∑

f=1

∥∥∥W (f)
∥∥∥

2

F
=

K∑

k=1

NSC∑

f=1

∥∥∥w(f)
k

∥∥∥
2

2
≤ Ptotal. (2.17)

Other constraints include per-antenna power constraints, per subcarrier power con-
straints or equivalent isotropically radiated power (EIRP) constraints.
We often omit the subcarrier index (f) for ease of notation in the remainder of this work

if f is clear from the context.

2.4. Optimal Linear Precoding Structure
In [11] the solution structure for a simpler version of the optimization problem (2.13) is
derived. The authors consider a BC with a single subcarrier where a single BS transmits
independent messages to the UEs. They assume that the precoding matrixW is restricted
by the total power constraint (2.15). They also assume that the number M of transmit
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antennas is larger than or equal to the number K of UEs.
This optimization problem is generally hard to solve [12, 13] but the optimal precoding

matrix’ structure is [11]

W opt = H
(
σ2
NIK + diag (λ)HHH

)−1
diag

(
popt

) 1
2 ∈ CM×K (2.18)

where λ ∈ RK and popt ∈ RK . The difficulty now lies in finding the λ and popt

which solve the optimization problem. The structure of the optimal solution consists
of two main parts: H the conjugate transpose of the channel matrix and the matrix(
σ2
NIN + diag (λ)HHH

)−1
. These two parts resemble two basic precoding schemes: max-

imum ratio transmission (MRT) and zero-forcing beamforming (ZFBF).

2.4.1. Maximum Ratio Transmission

For maximum ratio transmission (MRT) [14] we choose the precoding vector wk ∈ CM of
the k-th UE as a filter matched to its channel vector hH

k . The MRT precoding matrix for
all UEs is

WMRT = H diag
(
pMRT

) 1
2 ∈ CM×K (2.19)

where the diagonal matrix diag
(
pMRT

)
serves to distribute the transmission power while

fulfilling the power constraint. MRT precoding maximizes the received signal power at the
UEs [11]. The signal power scales proportional to the number M of BS antennas [6]. This
is called array gain. However, the interference between UEs is not considered, which is
visualized in Figure 2.1. The MRT precoding vector of the k-th UE wk,MRT points in the
same direction as hk the conjugate transpose of the channel vector.
MRT precoding is optimal in noise limited systems [11] or when transmitting a single

symbol to a single UE. We use MRT to transmit to a single UE in which case all power is
assigned to that single UE.
Note that MRT can be used for any ratio of transmit antennas to single antenna UEs.

However, interference is large when there are few transmit antennas compared to number
of UEs or for correlated channels. Increasing the number of antennas at the BS leads to
diminishing interference (as long as the condition number of the channel matrix increases
when adding antennas) [15]. This is one advantage of massive MIMO, as we will learn in
Section 2.9.
To show that MRT is optimal in the low signal-to-noise ratio (SNR) regime, we divide

the numerator and the denominator of the optimal precoding matrix (2.18) by σ2
N . Since

the diagonal matrix diag (popt) is subject to optimization we can move 1/σ2
N into diag (popt)

and arrive at
W opt = H

(
IK + 1

σ2
N

diag (λ)HHH

)−1

diag
(
popt

) 1
2 . (2.20)
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Subspace spanned by the conjugate
transpose of the channels to the other UEs:
span(h1, . . . ,hk−1,hk+1, . . . ,hK)

hk

wMRT
k

wZF
kwopt

k

Figure 2.1.: Conjugate transpose of the channel vector of the k-th UE hk, optimal precod-
ing vector wopt

k , MRT precoding vector wMRT
k and ZFBF vector wZF

k .

In the low SNR regime (σ2
N →∞) the optimal precoding (2.20) hence approaches MRT

lim
σ2
N→∞

‖W opt‖2
F≤Ptotal<∞

W opt = H diag
(
popt

) 1
2 . (2.21)

2.4.2. Zero-Forcing Beamforming

For zero-forcing beamforming (ZFBF) the linear precoding matrix is determined according
to an interference zero forcing objective

hH
i w

ZF
k = 0, i 6= k. (2.22)

Zero interference is visualized in Figure 2.1. The ZFBF precoding vector of the k-th UE
wZF
k ∈ CK is orthogonal to the subspace spanned by the transpose conjugate channel

vectors of all other UEs.
Also note that the optimal linear precoder wopt

k lies somewhere in between the MRT pre-
coding vector and the ZFBF precoding vector [11]. It is a trade off between maximization
of the received signal powers and the suppression of interference.
In matrix notation zero interference is

HHW ZF = diag (p̃)
1
2 (2.23)

where p̃ = [p̃1, . . . , p̃K ] ∈ CK and W ZF =
[
wZF

1 , . . . ,wZF
K

]
∈ CM×K . A solution exists if

the rank of the channel matrix HH is larger or equal to the number of UEs

rank
(
HH

)
≥ K. (2.24)
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For our system model we assume full column-rank for HH and at least as many transmit
antennas as UEs, i.e., M ≥ K. The received signals with ZFBF are

y = HHW ZFs+ z

= diag (p̃)
1
2 s+ z. (2.25)

We obtain K parallel interference-free channels. The optimization problem with an inter-
ference zero forcing constraint is

max
W ZF

K∑

k=1
C (SNRk)

s.t. HHW ZF = diag (p̃)
1
2 (2.26)

∥∥∥W ZF
∥∥∥

2

F
≤ Ptotal

where the SNR of the k-th UE is SNRk = p̃k
σ2
N
. Note that the SINR simplifies to the SNR

when there is no interference.
The optimal solution given the total power constraint (2.15) is the pseudo-inverse com-

bined with a power allocation [16]. The pseudo-inverse of the channel matrix HH is

H† = H
(
HHH

)−1 ∈ CM×K . (2.27)

The optimal zero-forcing precoder given the total power constraint (2.15) is

W ZF = H† diag (p̃)
1
2 = H

(
HHH

)−1
diag (p̃)

1
2 . (2.28)

where diag (p̃) is the diagonal power allocation matrix. It is easy to see that (2.28) fulfills
(2.23).
The total power transmitted on a single subcarrier is

E
[
‖x‖2

2

]
=
∥∥∥W ZF

∥∥∥
2

F
=
∥∥∥H† diag (p̃)

1
2
∥∥∥

2

F
. (2.29)

Allocating the same amount of power to different UEs has different effects on the total
power depending on the norm of the UE’s column of the pseudo-inverse matrix H†. The
norms of the columns of the pseudo-inverse are different since the product of the channel
matrix times its pseudo-inverse is not only a diagonal matrix but an identity matrix. This
means that for the same allocated power, UEs have the same received power. In other
words, UEs that are further away require more power than closer UEs. This means that
the columns of W ZF corresponding to the further away UEs have larger norms.
We split the diagonal power allocation matrix into

diag (p̃) = diag
(
h̃
)2

diag (p) ∈ RK×K (2.30)
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to make power allocation easier, where

h̃ =




h̃1
...
h̃K


 =




1∥∥∥[H†](:,1)

∥∥∥
2...

1∥∥∥[H†](:,K)

∥∥∥
2



∈ RK (2.31)

and the entries of the diagonal matrix diag (p) are

p = [p1, . . . , pK ] ∈ RK . (2.32)

The advantage of the diagonal power allocation matrix diag (p) is that the total transmit
power is equal to the sum of its diagonal elements

∥∥∥W ZF
∥∥∥

2

F
=
∥∥∥H† diag (p̃)

1
2
∥∥∥

2

F
=

∥∥∥∥∥∥∥∥∥∥




[
H†

]
(:,1)

√
p̃1

...[
H†

]
(:,K)

√
p̃K




∥∥∥∥∥∥∥∥∥∥

2

2

=
K∑

k=1

∥∥∥∥
[
H†

]
(:,k)

√
p̃k

∥∥∥∥
2

2

=
K∑

k=1
p̃k

∥∥∥∥
[
H†

]
(:,k)

∥∥∥∥
2

2
=

K∑

k=1
h̃2
kpk

∥∥∥∥
[
H†

]
(:,k)

∥∥∥∥
2

2
=

K∑

k=1
pk = ‖p‖1 . (2.33)

However, allocating the same amount of power to UEs in diag (p̃) does not lead to the same
received powers at these UEs. The received powers are scaled by the effective channels,
which are collected in h̃, i.e., the amplitudes of the interference free channels to the UEs
are the inverses of the norms of the columns of the pseudo inverse. The received signals
become

y = diag (p̃)
1
2 s+ z (2.34)

= diag
(
h̃
)

diag (p)
1
2 s+ z.

ZFBF precoding is optimal at high SNR (σ2
N → 0) [11]. Observe (2.18) at high SNR

lim
σ2
N→0

0<‖W opt‖2
F≤Ptotal

W opt = H
(
HHH

)−1
diag (λ)−1 diag

(
popt

) 1
2 . (2.35)

This is equal to (2.28) as
(

diag (λ)−1 diag (popt)
1
2

)
plays the role of diag (p̃)

1
2 .

The pseudo-inverse is not a unique solution to (2.23). A generalized inverse H− of a
channel matrix HH with full row-rank fulfills [16]

HHH− = IK . (2.36)
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The pseudo-inverse is optimal given a total power constraint. However, finding the optimal
generalized inverse for other power constraints, like the per-BS power constraint (2.16),
requires to solve a semi-definite program [16]. This is not in the scope of this work as we
are interested in low complexity calculations as well as implementations.
We discuss how we use the solutions for the BC given a total power constraint to find

suboptimal solutions for the BC given per-BS power constraints in Chapter 3.

2.5. Capacity of an AWGN Channel with QAM
The capacity of a SISO point-to-point AWGN channel without memory is [17]

C (SNR) = log2 (1 + SNR) . (2.37)

To achieve capacity continuous (Gaussian distributed) transmit symbols, continuous out-
put, and optimal channel coding are necessary. Optimal channel coding means that un-
limited effort may be taken in encoding and decoding, while the length of a code sequence
can approach infinity.
In real communication systems the transmit symbols are not continuous but from a

discrete set. We still assume a continuous output to upper bound the performance achieved
with finite quantization resolution at the analog-to-digital converters. One can view this as
a channel with discrete transmit symbols and continuous output. The discrete symbol set is
called a modulation alphabet, while the mapping from the encoded bits to the modulation
alphabet is called modulation. The combination of channel coding and modulation is called
coded modulation. The rates achievable with finite alphabet coded modulation are less
than capacity even with optimal channel coding.
We use rectangular quadrature amplitude modulation (QAM) with NQAM equiprobable

modulation symbols.3 We determine the capacity of a channel with equiprobable modula-
tion symbols (discrete transmit symbols) and continuous output as [19]

CNQAM (SNR) = log2 (NQAM)− 1
NQAM

NQAM−1∑

i=0
E


log2



NQAM−1∑

k=0
e−|SNR(s(i)−s(k))+z|2−|z|2






(2.38)
where z is the proper complex AWGN with unit variance and s(i) is the i-th symbol of the
modulation alphabet.
In order to save simulation time we do not calculate capacity by (2.38). Instead we

create a table of SNR and capacity value pairs and interpolate between them to obtain
the approximate capacity value for an SNR value.
Figure 2.2 shows the capacities of an AWGN channel with Gaussian modulation, 256

QAM, 64 QAM, and 16 QAM and continuous output. The capacity CNQAM with QAM is
close to C (SNR) for low SNR, while it saturates at log2 (NQAM) bit for higher SNR.

3The rates can be improved by shaping the probabilities of the modulation alphabet symbols [18].
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Figure 2.2.: Capacity of an AWGN channel with Gaussian modulation, 256 QAM, 64 QAM,
and 16 QAM and continuous output.

2.6. Mercury/Water-filling

Using OFDM and ZFBF we obtain K independent parallel channels for each of the NSC
subcarriers. Recall that h̃(f) are the effective channel gains of the f -th subcarrier. For
ease of notation when allocating power we collect the channel gains in

h =




h̃(1)

...
h̃(NSC)


 ∈ RKNSC . (2.39)

Now we can access a channel gain hi by the single index i. Recall that the noise variance
of each channel is σ2

N . Our goal is to maximize the sum rate given a total power constraint

popt = arg max
p: ‖p‖1≤Ptotal

KNSC∑

i=1
C (SNRi) (2.40)

where

p =




p1
...

pKNSC


 ∈ RKNSC (2.41)
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is the power allocation vector. The SNR is

SNRi =
E
[
|hi
√
pisi|

]2

σ2
N

= |hi|
2pi

σ2
N

(2.42)

We use a minimum mean squared error (MMSE) estimator at the receiver to estimate
the transmit symbol s. We denote the corresponding MMSE by MMSE (SNR) and the
inverse MMSE by MMSE−1 (ζ).

The inverse MMSE is the key ingredient of mercury/water-filling which finds the optimal
power allocation vector popt for channels with discrete input and continuous output [20,21].
It is a generalization of water-filling which finds the optimal power allocation for channels
with continuous input (i.e., Gaussian modulation) and continuous output [22].

The solution to (2.40) is [20]

p?i = σ2
N

|hi|2
MMSE−1

(
min

{
1, σ

2
N

|hi|2
η

})
, i = 1, . . . , KNSC (2.43)

where η is the unique solution to

KNSC∑

i=1
|hi|2
σ2
N

>η

σ2
N

|hi|2
MMSE−1

(
σ2
N

|hi|2
η

)
= Ptotal. (2.44)

For mercury/water-filling we first solve the nonlinear equation (2.44). Then we obtain the
optimal power allocation from (2.43).

The MMSE is related to capacity as [23]

1
loge (2)

dC (SNR)
d SNR = MMSE (SNR) . (2.45)

where the prefactor 1/ loge (2) converts the capacity from bits to nats.

For closed form capacity expressions one can obtain the MMSE and its inverse directly.
For Gaussian modulation the MMSE is [23]

MMSE (SNR) = 1
1 + SNR = 1

1 + |hi|2pi
σ2
N

(2.46)

and its inverse is
MMSE−1 (ζ) = 1

ζ
− 1. (2.47)



2.6. Mercury/Water-filling 19

0 2 4 6 8 100
0.2
0.4
0.6
0.8

1

SNR

M
M

SE
(S

N
R

) Gaussian
256 QAM
64 QAM
16 QAM

(a) Linear SNR.

0 dB 10 dB 20 dB 30 dB
0

0.1
0.2
0.3
0.4
0.5

SNR

M
M

SE
(S

N
R

) Gaussian
256 QAM
64 QAM
16 QAM

(b) Logarithmic SNR.

Figure 2.3.: MMSE of an AWGN channel with Gaussian modulation, 256 QAM, 64 QAM,
and 16 QAM and a continuous output.

Hence mercury/water-filling reduces for Gaussian modulation to water-filling [21]

pwf
i =





0, |hi|2
σ2
N
≤ η

1
η
− σ2

N

|hi|2
, |hi|2

σ2
N
> η

. (2.48)

However, for QAM inputs a closed form expression of the capacity is not known. The
MMSE for a rectangular equiprobable QAM with NQAM symbols can be obtained as [20]

MMSE (SNR) = 1− 1
NQAMπ

∫
∣∣∣∣
∑NQAM
i=1 s(i)e−|y−

√
SNR/2s(i)|2

∣∣∣∣
2

∑NQAM
i=1 e−|y−

√
SNR/2s(i)|2

dy. (2.49)

We choose a different approach and use a table of capacity versus SNR pairs. From
these pairs we approximate the inverse MMSE function. We obtain the MMSE versus
SNR pairs from the capacity versus SNR pairs by numerical differentiation. Figure 2.3
shows the MMSE plots for Gaussian modulation and different QAM constellations. The
inverse MMSE functions maps from an MMSE value ζ to an SNR value. We find the
two closest MMSE values to ζ and interpolate linearly to approximate the inverse MMSE
function. Figure 2.4 shows the inverse MMSE for Gaussian modulation and different QAM
constellations.
With the approximate inverse MMSE function we solve (2.44) and then (2.43) to obtain

the optimal power allocation. The optimal power allocation has two graphical interpre-
tations [21]: Figure 2.5 shows the first interpretation. The functions |hi|2

σ2
N
MMSE

(
|hi|2
σ2
N
pi

)

versus pi for each parallel channel are plotted in one diagram. The optimal power allo-
cation is found by a vertical line at height η. The height η is such that the p?i values,
corresponding to the intersections of the vertical line with the functions, add up to the
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Figure 2.4.: Inverse MMSE of an AWGN channel with Gaussian modulation, 256 QAM,
64 QAM, and 16 QAM and continuous output.
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Figure 2.5.: Visualization of mercury/water-filling with 16 QAM transmitted on three par-
allel channels. The noise is normalized to σ2

N = 1.

maximal total power Ptotal.
Figure 2.6 shows the second interpretation. The graphical interpretation of classic wa-

ter-filling is to pour water into vessels which are solid up to height σ2
N

|hi|2
. For mercury/

water-filling mercury of height ιi is filled into each vessel before the water is poured.
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Figure 2.6.: Graphical interpretation of mercury/water-filling with 16 QAM transmitted
on the same three parallel channels as in Figure 2.5.

The mercury accounts for the gap between ideal Gaussian modulation and the discrete
modulation. The height of the mercury is determined as

ιi =
G
(
ησ2
N

|hi|2

)
σ2
N

|hi|2
− σ2

N

|hi|2
(2.50)

where

G (ζ) =




1
ζ
−MMSE−1 (ζ) , 0 ≤ ζ ≤ 1

1, ζ > 1.
(2.51)

The water level in the vessels is 1/η while the water height over the mercury is the power
allocated to the parallel channel.
The excess power required by water-filling over mercury/water-filling is analyzed in

[21, 24]. We analyze the gap between rates achieved with mercury/water-filling and with
water-filling in Section 5.6. Mercury/water-filling can be extended to support varying
modulation alphabets on the parallel channels, different user priorities and limited CSI
[21,25,26].
Other power allocation schemes are described, for example, in [27,28].

2.7. Capacity of a MIMO OFDM Broadcast Channel
As a meaningful benchmark for the linear transmission schemes we determine the capacity
of a MIMO OFDM BC channel. We consider the capacity of a general MIMO BC first
and then explain how the calculations simplify for single antenna UEs with OFDM.



22 Chapter 2. System Model, and Basics

The capacity of a MIMO BC is achieved by DPC [29–32]. DPC [33] is a non linear
transmission scheme which requires to optimize the transmit covariance matrices. DPC is
considered too complex for implementation in practical networks.
The capacity of a BC is obtained by maximizing [34]

CBC
(
HH

1 , . . . ,H
H
K , Ptotal

)
= max

Σk�0
K∑
k=1

tr(Σk)≤Ptotal

[
log2

(
1 +HH

1 Σ1H1
)

+ (2.52)

log2

(
1 +HH

2 (Σ1 + Σ2)H2

1 +HH
2 Σ1H2

)
+ . . .+

log2

(
1 +HH

K (Σ1 + . . .+ ΣK−1 + ΣK)HK

1 +HH
K (Σ1 + . . .+ ΣK−1)HK

)]

where HH
k is the channel matrix of the k-th UE and the optimization is over the positive

semi-definite downlink covariance matrices {Σ1, . . . ,ΣK}. Finding the covariance matrices
is a non convex problem.
The problem can be transformed into the dual problem of a multiple-access channel

(MAC), where each UE desires to transmit information to the BS. Here the uplink channel
matrices are the conjugate transpose of the downlink channel matrices. The dual MAC
problem is [31]

max
Qk�0∑K

k=1 tr(Qk)≤Ptotal

log2

∣∣∣∣∣I +
K∑

k=1
HkQkH

H
k

∣∣∣∣∣ (2.53)

where the optimization is over the positive semi-definite uplink covariance matrices
{Q1, . . . ,QK}. The capacity of the dual total power constrained MAC and the BC are
equal [34]. The optimal downlink covariance matrices can be obtained by the MAC-BC
duality from the uplink covariance matrices [31].
A MAC problem with per-UE constraints is solved via iterative water-filling [35]. It

resembles the uplink in a wireless network. Since its constraints are separable it suffices
to optimize one covariance matrix after the other while treating the other covariances
matrices as constants [34]. The optimization of each covariance matrix is transformed into
water-filling. The water level of a UE is chosen such that its per-UE power constraint is
fulfilled.
However, the dual MAC we wish to solve has a total power constraint. To solve this

optimization problem the iterative water-filling is modified. We use the hybrid algorithm
from [34] where the covariance matrices are updated simultaneously. The covariance ma-
trices of the other UEs are treated again as constant at each UE during the update.
However, the constant covariance matrices are averaged over the previous steps to en-
sure convergence. Water-filling gives the new covariance matrices. This algorithm always
converges [34]. Other algorithms are described, for example, in [36, 37].
One can view the OFDM subcarriers as virtual antennas when determining capacity [38].
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We collect the subcarrier channel vectors of the k-th UE to obtain its block diagonal virtual
channel matrix

HH
k =




(
h

(1)
k

)H
0 · · · 0

0
(
h

(2)
k

)H · · · 0
... . . . . . . ...
0 · · · 0

(
h

(NSC)
k

)H



∈ NSC × CMNSC (2.54)

where
(
h

(f)
k

)H
is the channel vector of the k-th UE on the f -th subcarrier. Instead of

inserting theHH
k matrices directly into (2.52) we make use of their block diagonal structure.

2.8. Scheduling
Selecting the subset of UEs a BS transmits information to on a subcarrier is called schedul-
ing. Scheduling aims to maximize the sum rate or other performance measures [39].
Scheduling is especially helpful if the number K of UEs connected to a BS is larger than
the number M of BS antennas.
We use the low complexity scheduling algorithm from [40] to choose a UE subset for

each subcarrier when K > M . The goal of the algorithm is to maximize the sum rate in
a BC given a total power constraint. We choose this algorithm because it performs close
to optimal with lower computational complexity compared to other algorithms [40].
Sato’s upper bound of the capacity of a BC is obtained by assuming that the UEs are al-

lowed to cooperate which leads to a virtual point-to-point MIMO channel with distributed
antennas [41]. The algorithm schedules the UEs to maximize the sum rate of the virtual
point-to-point channel. The sum rate of the virtual point-to-point MIMO channel where
we allocate transmit power equally to the streams is [42]

R
(
HH

)
= log2

∣∣∣∣I + Ptotal

M
HHH

∣∣∣∣ . (2.55)

We simplify the algorithm from [40] for single antenna UEs and obtain Algorithm 2.1.
The algorithms first schedules the UE with the largest channel norm. Then it selects
greedily one UE per iteration to maximize the sum rate (2.55). The channel vector of the
scheduled UE is added to the matrix of the channel vectors of the already scheduled UEs.
The selection of the UE which maximizes the sum rate (2.55) is reformulated as a selection
rule which requires matrix inversions. The matrix inversions are calculated in a recursive
way with the help of a matrix Ω. The algorithm terminates and returns the schedule T if
the number |Ttemp| of scheduled UEs is equal to the number M of BS antennas, if all UEs
are scheduled, or if the sum rate Rtemp achieved in the actual BC reduces compared to the
sum rate Rlast in the actual BC in the previous step.
Other scheduling algorithms to select the UEs of a BC are described in [43–46].
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Algorithm 2.1 Max Upper Bound Greedy Scheduling Algorithm [40]
Tunscheduled = {1, 2, . . . , K} (set of unscheduled UEs)
T = ∅ (set of scheduled UEs)
Ω = Ptotal

σ2
N
IM (recursive initialization)

Rlast = 0
for i = 1 to min (M,K) do

t = arg max
t∈Tunscheduled

hH
t Ωht (selection rule)

Ttemp = T + {t}

Apply ZFBF on




hH
T (1)
...

hH
T (|Ttemp|)


 (channels of scheduled UEs)

and determine effective channels
[
h̃T (1), . . . , h̃T (|Ttemp|)

]
(see (2.31))

Rtemp = ∑
k∈Ttemp

log2

(
1 + Ptotal

|Ttemp|σ2
N
h̃k

)

if Rtemp < Rlast then (stop if rate decreases)
return T

else (else update sets)
T = Ttemp
Rlast = Rtemp
Tunscheduled = Tunscheduled − {t}

end if
Ω = Ω−Ω

hthH
t

1+hH
t Ωht

Ω (recursive update)
end for
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2.9. Massive MIMO
Massive MIMO is also know as “Very Large MIMO”, “Hyper MIMO”, “Full Dimension
MIMO”, “Large-Scale Antenna Systems”, or “ARGOS” [5]. Massive MIMO refers to a
“vast” over-provisioning of BS antennas as compared to the number of served single antenna
UEs [4]. Hence the term massive MIMO is not clearly defined. Massive MIMO may refer
to any MIMO configuration beyond the largest MIMO mode in the current Long Term
Evolution (LTE) standard, at present eight BS antennas, for example, 100 antennas or
more [15], or it may simply refer to a “large“ number of antennas at the BSs. A more
precise definition of massive MIMO is based on the ratio M/K of serving BS antennas to
the number of active UEs. However, the ratio M/K for which one can speak of massive
MIMO depends on the performance metric, the scenario, etc. [6].
Massive MIMO claims several advantages over conventional MIMO [5]:

. Massive MIMO increases capacity by 10 times or more and simultaneously increases
energy efficiency. The transmit signals are directed precisely to the UEs through
precoding which reduces interference. Each additional antenna increases the pre-
coding degrees-of-freedom assuming no mutual coupling and a sufficiently complex
propagation environment [15]. Simple linear precoding has a vanishing gap to op-
timal precoding [4, 6, 15]. For instance, the performance gap between ZFBF and
the optimal DPC vanishes with an increasing number of BS antennas. MRT is also
asymptotically optimal as the number of BS antennas increases, but for a smaller
number of BS antennas MRT performs well only in the low SNR regime [15]. In
contrast increasing the spectral efficiency (SE) of regular BSs, for example, in LTE,
by further sectorization is not feasible, while massive MIMO is scalable by adding
more antennas [47].

. Inexpensive, low-power components suffice. A large number of BS antennas makes
the system robust against noise, fading and hardware impairments or even failure
of antennas. This allows simpler transmitters and receivers at the BS, for example,
few or one bit quantization, hybrid digital-analog precoding, and constant envelope
precoding [6,48]. New types of BSs architectures are possible, for example, one could
imagine antenna arrays on the facade of buildings [47].

. The multiple-access layer is simplified. The channel hardens by the law of large
numbers [5,15]. This means that all subcarriers of one UE experience similar channel
gains. Hence scheduling does not improve performance because all UEs can be always
active on all subcarriers. Only power control is needed to distribute the power across
UEs depending on the slowly varying large-scale fading [6]. We analyze the channel
hardening for our scenario in Section 5.6 and in Section 5.8.

. The latency is reduced. Since all UEs are always scheduled, UEs need not wait for
good fading conditions.
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. Massive MIMO is robust to jamming and interference. Given accurate CSI the BSs
can use the surplus of precoding degrees-of-freedom to cancel interference or jamming.

Like in conventional MIMO, CSI is required to enable precoding. Acquiring CSI might
be more difficult in massive MIMO due to the many antennas. Many publications suggest
to use time division duplex (TDD) for massive MIMO, e.g., [4, 5, 15, 49]. In TDD the
uplink and downlink use the same frequencies at different times. The UEs transmit pilot
sequences from which the uplink channel is estimated. With TDD the downlink channel is
immediately known due to channel reciprocity. The number of pilot sequences scales with
the number of UEs and little feedback is required. This means that the overhead for CSI is
independent of the number of BS antennas. If the correlation between the BS antennas is
known the CSI quality improves with the number of BS antennas [6]. Note that codebook
based open-loop precoding is suitable only for small arrays [6].
For frequency division duplex (FDD) the BS must send pilot sequences also. The number

of pilot sequences scales with the number of BS antennas and the UEs then have to feedback
the CSI to the BS which creates additional overhead [6]. However, FDD is mandatory for
some frequency bands. Efficient FDD operation might still be possible [50].
With TDD other factors might limit communication [5]:

. While the channel is assumed to be reciprocal the hardware at the BS and UE might
not be reciprocal. However, calibration of the hardware is possible [6].

. The pilot sequences assigned to the UEs should be orthogonal. However, the number
of pilot sequences is constrained by the channel coherence time divided by the chan-
nel delay-spread. Hence the pilot sequences usually must be reused which leads to
”pilot contamination“ [4]. The BS estimates a linear combination of the channels of
the UEs with the same pilot sequence. Hence the BS directs the signals not only to
the intended UE but also to UEs with the same pilot sequence. This creates directed
interference which increases with the number of BS antennas. Remedies exist, for
example, optimized pilot sequence allocation, blind channel estimation, pilot con-
tamination precoding, angle-of-arrival based methods, and protocol-based methods
like time-shifted pilot schemes [5, 10, and references therein]. The number of BS
antennas for massive MIMO such that channel estimation error and interference are
small compared to ”pilot contamination“ is given in [49].

In order for massive MIMO to achieve its advantages with either TDD or FDD the
channel vectors of the UEs must be sufficiently different [5]. Some works assume i.i.d.
channel coefficients. However, in real scenarios the propagation environments are usually
more difficult. The advantages of massive MIMO and a similar performance as with i.i.d.
Rayleigh-fading channels are obtained in real measured channels [6,15,51]. Scheduling can
improve performance in difficult environments, for example, by removing a few ”worst“ UEs
[6]. The massive MIMO performance depends not only on the propagation environment
but also on the antenna pattern (for example, directive antennas) and the mutual coupling
between antennas. The negative effects of coupling can be compensated by matching
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networks at the cost of ohmic losses and diminishing bandwidth [15]. Note that ZFBF
and MMSE precoding approach the performance of i.i.d. channels faster than MRT and
that 10 times more BS antennas than single antenna UEs should suffice to approach the
ideal performance even in difficult propagation environments [5, 51]. We analyze the SE
gain of different massive MIMO deployments with linear ZFBF precoding in Section 5.2
and compare it to a capacity upper bound in Section 5.5.
In [48,52] the energy efficiency gain of massive MIMO systems is analyzed. The energy

used by a BS is the sum of the radiated power and the circuit power consumption. The
authors assume that for massive MIMO the circuit power consumption scales with the
number M of BS antennas and with the number K of UEs. In contrast, the power con-
sumption is often assumed constant for few of BS antennas. The optimization leads to the
following insights: For energy efficient transmissions M and K are of the same order of
magnitude, while M > K still holds; and energy efficient transmissions operate in higher
SNR regimes and suppress interference, for example, by ZFBF [48]. Depending on the
scenario, distributed BSs with cooperation might achieve a higher energy efficiency than
a single BS [52].





3
Cooperative and Non-Cooperative
Transmission Schemes

AWGN has been the major limitation in cellular networks. However, interference is becom-
ing more and more problematic. The SINR can be small due to inter-cell interference while
the SNR is large [53]. Interference management is important for modern wireless communi-
cation standards like, LTE [54], and Long Term Evolution-Advanced (LTE-Advanced) [55],
and for future standards like 5th generation mobile networks (5G). In most current wireless
networks (for example, LTE, wireless local area network (WLAN)) the BSs or the access
points do cooperate little or not at all. Reasons to avoid cooperation are limited backhaul
capabilities, simpler network design and operation, or limiting technical specifications of
wireless networks.
Several schemes that limit interference exist. One can categorize these schemes depend-

ing on the level of cooperation. Without any cooperation between BSs interference can
be treated as noise only. If we allow only little and long term cooperation we can employ
orthogonal resource reuse schemes, for example, frequency reuse. Interference coordination
requires more and quicker cooperation. Compared to orthogonal resource reuse schemes
capacity improves in proportion to the number of cells affected by the interference from a
BS [56]. Even more cooperation is required for network MIMO where all BSs act as one
BS. The latter two schemes are forms of coordinated multipoint (CoMP). Relays can also
aid to treat interference besides improving the communication between BSs and UEs [56].
However, relay-assisted cooperation is not in the scope of this work.
A general framework and optimization algorithms for multi-cell scenarios with different

levels of cooperation are presented in [12]. Interference balancing for quality-of-service
(QoS) constraints is described in [57]. However, we are interested in transmission schemes
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with low computational complexity. We describe the categories of cooperative schemes
and our implementations in the following. For ease of notation we describe the principle
for a single subcarrier and omit the subcarrier index (f). Combinations of schemes are also
possible.

3.1. No Cooperation
Non-cooperative BSs determine the transmit signals and the scheduled UEs locally. They
treat interference as additional noise and thus the interference limits reliable transmission
in many scenarios. As a result, backhaul requirements are low and only local CSI is
required.
Suppose the k-th UE is served by the î-th BS with the maximum average SNR

î = arg max
i

1
MiNSC

NSC∑

f=1

∥∥∥h(f)
i,k

∥∥∥
1

(3.1)

where h(f)
i,k is the conjugate transpose of the vector of channel coefficients from the i-th BS

to the k-th UE on the f -th subcarrier. The number of UEs served by the i-th BS is Ki.
Without loss of generality (w.l.o.g.) we assume that the first K1 UEs are served by the
first BS, the next K2 UEs are served by the second BS, and so on. Hence the indices of
the UEs served by the i-th BS are

Ki =



i−1∑

j=1
Kj + 1, . . . ,

i∑

j=1
Kj



 =




i−1∑

j=1
Kj + {1, . . . , Kj}



 . (3.2)

The vector of symbols intended for the UEs served by the i-th BS is si. We collect the
vectors of channel coefficients from the i-th BS to the UEs served by the j-th BS (with
indices Kj) in

HH
i,j =




hH
i,Kj(1)
...

hH
i,Kj(Kj)


 ∈ CKj×Mi . (3.3)

The channel matrix of the channel coefficients from all NBS BSs to all UEs is hence com-
posed as

HH =




HH
1,1 HH

2,1 · · · HH
NBS,1

HH
1,2 HH

2,2 · · · HH
NBS,2... ... . . . ...

HH
1,NBS

HH
2,NBS

· · · HH
NBS,NBS



. (3.4)

We define local CSI at the i-th BS as the channel matrix to the UEs served by the i-th BS
HH

i,i being available. In contrast global CSI refers to the case where HH is available (see
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Figure 3.3).
For no cooperation the precoding function determines the local transmit signal vector

xi based on local CSI. The precoding function of the i-th BS is

xi = wi
(
si,H

H
i,i

)
. (3.5)

For ease of notation we state the precoding function for a single subcarrier. Note that a
BS determines its transmit signals on all subcarriers jointly. The transmit signals of the
whole network are composed as

x =




x1
...

xNBS


 =




w1
(
s1,H

H
1,1

)

...
wNBS

(
sNBS ,H

H
NBS,NBS

)


 = w

(
s,HH

)
. (3.6)

The linear precoding vector for the k-th UE is

wT
k =

[
wT

1,k, . . . ,w
T
i−1,k︸ ︷︷ ︸

= 0

,wT
i,k,w

T
i+1,k, . . . ,w

T
NBS,k︸ ︷︷ ︸

= 0

]
(3.7)

where wj,k ∈ CMj is the part of precoding vector containing the precoding weights for the
antennas at the j-th BS. The precoding weights are zero except wi,k at the i-th BS which
serves the k-th UE. Recall that W = [w1, . . . ,wK ]. Hence the linear precoding matrix
has a block-diagonal structure

x = Ws =




W1 0 · · · 0

0 W2
. . . ...

... . . . . . . 0

0 · · · 0 WNBS



s (3.8)

where
Wi =

[
wi,Ki(1), . . . ,wi,Ki(Ki)

]
∈ CM×Ki (3.9)

is the precoding matrix at the i-th BS determined from local CSI HH
i,i.

The SINR achieved at the k-th UE served by the i-th BS with linear precoding and
treating interference as noise is

SINRNo Cooperation
k =

∣∣∣hH
kwk

∣∣∣
2

K∑
l=1
l 6=k

∣∣∣hH
kwl

∣∣∣
2

+ σ2
N

=

∣∣∣hH
i,kwi,k

∣∣∣
2

∑
l∈Ki
l 6=k

∣∣∣hH
i,kwi,l

∣∣∣
2

︸ ︷︷ ︸
Intra-cell interference

+
NBS∑
j=1
j 6=i

∑
l∈Kj

∣∣∣hH
j,kwj,l

∣∣∣
2

︸ ︷︷ ︸
Inter-cell interference

+σ2
N

.

(3.10)
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Intra-cell interference is the interference created by the transmissions to other UEs served
by the same BS. Inter-cell is the interference created by the transmissions by other BSs
which do not serve the UE.
As we know from Section 2.4.2 interference is mitigated by ZFBF. Without cooperation

we can mitigate only intra-cell interference

hH
i,kwi,l = 0, ∀l ∈ Ki, l 6= k (3.11)

while we cannot influence inter-cell interference due to unavailable CSI. ZFBF requires
that the i-th BS serves at most Mi UEs, i.e., we have Ki ≤ Mi. If Ki > Mi then we use
the low complexity scheduling algorithm from [40] described in Section 2.8 to select Mi

UEs and define Ki as the set of scheduled UEs. For ease of notation the channel matrices
do not include the unscheduled UEs in (3.12)-(3.15). The SINR of the unscheduled UEs
is zero. Note that the set of scheduled UEs may be different on each subcarrier. ZFBF
is accomplished at the i-th BS by the pseudo-inverse of the local channel matrix HH

i,i

combined with power allocation

Wi = H†i,i diag (p̃i)
1
2 = Hi,i

(
HH

i,iHi,i

)−1
diag (p̃i)

1
2 (3.12)

where
p̃i =

[
p̃i,Ki(1), . . . , p̃i,Ki(Ki)

]
∈ CKi (3.13)

is the power allocation vector at the i-th BS. We use mercury/water-filling as described
in Section 2.6 at each BS to allocate power according to a per-BS power constraint. The
SINRachieved at the k-th UE is

SINRlocal precoding
k =

∣∣∣hH
i,kwi,k

∣∣∣
2

NBS∑
j=1
j 6=i

∑
l∈Kj

∣∣∣hH
j,kwj,l

∣∣∣
2

+ σ2
N

=
p̃local precoding
i,k

NBS∑
j=1
j 6=i

∑
l∈Kj

∣∣∣hH
j,kwj,l

∣∣∣
2

+ σ2
N

. (3.14)

We call the presented non cooperative scheme local precoding. Figure 3.1 shows the system
model of local precoding.

3.2. Orthogonal Resource Reuse
The inter-cell interference is reduced when groups of BS use orthogonal spectral resources
which is called frequency reuse. Other orthogonal resources include orthogonal time slots
and orthogonal spreading codes. Orthogonal resource reuse schemes are static cooperation
schemes which operate on a long time scale. The backhaul requirements are hence very
low.
Only BSs sharing the same resource cause inter-cell interference. Choosing the BS

groups such that the distances between BSs of the same group are maximal reduces inter-



3.2. Orthogonal Resource Reuse 33

UE1
ŝ1y1

UE2
ŝ2y2

...

UEK

ŝKyK

BS1

ZFBF

x1

xM1

...

s1

s2

...

...

BSNBS

ZFBF
...

sK

...

Intercell
interference

Figure 3.1.: System model for local precoding.

cell interference. However, each BS group uses only a fraction of the available resources
which reduces the performance [58]. Often the average performance and especially the
peak performance are worse compared to local precoding. The SINR with reuse at the
k-th UE is

SINRorthogonal reuse
k =

p̃orthogonal reuse
i,k

∑
j∈Gi
j 6=i

∑
l∈Kj

∣∣∣hH
j,kwj,l

∣∣∣
2

+ σ2
N

(3.15)

where Gi is the set of indices of BSs group sharing the same resources as the i-th BS. We
consider orthogonal time slots as an example reuse scheme and call it orthogonal reuse.
The system model of orthogonal reuse per group of BSs is the same as for local precoding
in Figure 3.1.

Adaptive reuse improves performance but has higher requirements on the backhaul.
Adaptive reuse might be considered an interference coordination scheme, as described in
the next section.

With soft handover, cell-edge UEs are served simultaneously by different BSs on orthog-
onal resources. This improves the performance and coverage, but inter-cell interference is
still limiting [56].
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3.3. Interference Coordination

Interference coordination has each BS estimate its channels to all UEs, and each BS ex-
change its CSI with the other BSs. The resulting global CSI lets us coordinate the trans-
missions of the BSs, for example, by power allocation, precoding, and scheduling. This
way interference is mitigated. Still each UE is served by a single BS. At a BS only the
messages dedicated to the UEs served by the BS are available. The backhaul requirements
are modest and a signal-level synchronization of the BSs is not needed [56].
The set Ki of the Ki UEs served by the i-th BS is determined based on maximal SNR as

for no cooperation (3.1). For interference coordination the i-th BS estimates its channels
to all UEs

HH
i =




HH
i,1

HH
i,2
...

HH
i,NBS



. (3.16)

In contrast, for no cooperation the i-th BS estimates only its channels HH
i,i to the UEs it

serves. The BSs exchange their CSI HH
i such that the global CSI HH is available at all

BSs. The precoding function of the i-th BS is

xi = wi
(
si,H

H
)
. (3.17)

Again we state the precoding function for a single subcarrier for ease of notation. Note
that the transmit signals on all subcarriers are determined jointly. This is particularly
important to exploit the degrees-of-freedom while scheduling to coordinate interference.
The transmit signals are composed as

x =




x1
...

xNBS


 =




w1
(
s1,H

H
)

...
wNBS

(
sNBS ,H

H
)


 = w

(
s,HH

)
. (3.18)

Note that the only difference to the precoding functions with no cooperation is the available
CSI. Consequently the linear precoding matrix has the same block-diagonal structure as
in (3.8) but the precoding matrix at the i-th BS Wi is determined based on global CSI
instead of local CSI. The SINR is determined as for no cooperation in (3.10). However,
coordination allows to reduce both the intra-cell and the inter-cell interference.
The coordination can be accomplished at a central processor or locally at the BSs. The

distributed, local coordination can be realized in a competitive (game theoretic) way or
with the help of control messages over the backhaul. Note that to reduce the backhaul
requirements some coordination schemes exchange little or no CSI and some schemes ex-
change control messages instead.
The coordination schemes can be categorized into different types:



3.3. Interference Coordination 35

. Coordinated scheduling (CS) has the scheduling and power allocation optimized
jointly by all BSs. CS can increase sum rate compared to no cooperation. How-
ever, a convex formulation is unknown to most CS optimization problems [56]. A
promising idea is interference pricing [56, and the references therein]. Each BS mea-
sures the impact of its own transmission on the other BSs’s transmissions. The goal
is to minimize this measure. CS is also called coordinated power control.

. Coordinated beamforming (CB) has the precoding coordinated using available precod-
ing degrees-of-freedom to reduce interference. With increasing precoding degrees-of-
freedom more interference can be canceled until an interference zero-forcing solution
is possible when the precoding degrees-of-freedom are at least as large as the number
of interferers.

. The combination of CS and CB, which is called coordinated scheduling/coordinated
beamforming (CS/CB), is more common than pure CB. Here again convex optimiza-
tion formulations are unknown in general [56]. An uplink-downlink duality allows to
solve multi-cell power minimization problems. There is a dual problem formulation
but the maximization of the achievable rate region is often difficult [59].

. For CS, CB, and CS/CB interference is treated as noise. Performance can improve if
interference is detected at the UEs [56]. Coding for interference mitigation helps to
detect and treat interference at the UEs. The idea is to split messages into private
and common parts. The common parts are decoded by all UEs and are canceled at
the UEs to subtract interference. The private parts are transmitted with less power
and hence can be decoded only at the intended UEs.

. Another form of coding for interference mitigation is interference alignment (IA) [60].
The main idea of IA is to code the signal at the BSs such that interference aligns
at each UE in a subspace. The orthogonal subspace is used for interference-free
communication. The space can be spanned by MIMO antennas, by different channel
realizations, by lattice coding [60], or by carefully chosen subcarrier pairs [61].

3.3.1. Large-Scale MIMO
We consider large-scale MIMO (LS-MIMO) [62] as an example of an interference coordi-
nation scheme. LS-MIMO is a linear CB scheme which does not exchange CSI or control
messages over the backhaul. However, the i-th BS still estimates its channels to all UEs.
Sufficiently many antennas are required at each BS to allow the following. Each BS
uses ZFBF to mitigate the interference created at all UEs and thereby creates parallel
interference-free channels to the UEs it serves. Figure 3.2 shows the system model of
LS-MIMO.
The goal of LS-MIMO is to zero-force all interference from the transmissions of the i-th

BS
hH
i,kwi,l = 0, ∀i ∈ {1, . . . , NBS} , l ∈ Ki, l 6= k. (3.19)
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This is feasible if the matrix of the channel coefficients from the antennas of the i-th BS
to all UEs HH

i has rank satisfying

rank
(
HH

i

)
≥ K =

NBS∑

i=1
Ki. (3.20)

For our channel model this means that the number of antennas Mi at the i-th BS must
satisfy

Mi ≥ K. (3.21)
Hence LS-MIMO is feasible for the complete system if

M =
NBS∑

i=1
Mi ≥

NBS∑

i=1
K = NBSK. (3.22)

In contrast to local precoding each BS estimates its channels to all UEs HH
i (see Figure

3.3). Then the i-th BS uses the pseudo-inverse of the channel matrix HH
i combined with

a power allocation to zero force all interference and to create parallel interference-free
channels to its Ki UEs:

Wi = H†iK diag (p̃i)
1
2 = Hi

(
HH

i Hi

)−1
K diag (p̃i)

1
2 (3.23)

whereK =
[
0
Ki,
∑i−1

j=1 Kj
IKi0Ki,

∑NBS
j=i+1 Kj

]
chooses the precoding vectors of the UEs Ki and

p̃i is the power allocation vector at the i-th BS as defined in (3.13).
We again use mercury/water-filling as described in Section 2.6 to allocate power accord-

ing to a per-BS power constraint. The SINR with LS-MIMO is determined as for local
precoding in (3.14) but all interference is mitigated:

SINRLS-MIMO
k =

∣∣∣hH
kwk

∣∣∣
2

K∑
l=1
l 6=k

∣∣∣hH
kwl

∣∣∣
2

+ σ2
N

=

∣∣∣hH
i,kwi,k

∣∣∣
2

NBS∑
j=1

∑
l∈Kj
l 6=k

∣∣∣hH
j,kwj,l

∣∣∣
2

︸ ︷︷ ︸
Interference

+σ2
N

=
p̃LS-MIMO
i,k

σ2
N

. (3.24)

Note that local precoding requires

Mi ≥ Ki (3.25)

antennas at each BS, while LS-MIMO requires

Mi ≥ K (3.26)

antennas at each BS. However, local precoding creates interference at the UEs of the other
BSs.
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Figure 3.2.: System model for LS-MIMO.
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Figure 3.3.: Requied CSI knowledge of the first BS for the different transmission schemes.

Massive MIMO approaches the zero-forcing behavior of LS-MIMO with increasing Mi

as the channels to the UEs of the other BSs become orthogonal to the channels to the
served UEs [62].

Note that LS-MIMO can be made feasible by scheduling a subset of UEs, for example,
as in Section 2.8. However, we analyze LS-MIMO only if (3.26) is fulfilled.

A generalization of LS-MIMO and local precoding is full-pilot zero-forcing (P-ZF) com-
bining [63]. Here a BS estimates the channels to a subset of the UEs (to control the number
of pilots) and mitigates interference to all UEs with known channels. If the channels to
all UEs Hi are known P-ZF equals LS-MIMO. If only the channels to the UEs served by
a BS Hi,i are known P-ZF equals local precoding.
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3.4. Network MIMO
Network MIMO requires that the BSs are connected by a backhaul with low delay and high
throughput. Also the BSs must be synchronized. The distributed BSs act as one BS with
distributed antennas and the downlink channel becomes a BC. In contrast to interference
coordination, network MIMO may have interference enhance the signals at the UEs.
Network MIMO can be realized in different ways:

. The BSs sends their CSIHH
i (the channels to all UEs) to a central processor. At the

central processor the gathered global CSI and the messages for all UEs are available.
The central processor treats the distributed BSs as one BS with distributed antennas
and determines the transmit signals at the BSs. The BSs are sometimes called
“Remote Radio Heads”.

. The BSs exchange the messages of the UEs and their CSI HH
i . The transmit signals

are determined in a distributed fashion with the help of control messages or by
decentralized algorithms.

. Each central processor is connected to a group of BSs. The central processors ex-
change CSI and messages to determine the transmit signals in a distributed fashion.

For network MIMO we assume a perfect backhaul with unlimited capacity and zero delay.
We let all BSs act as a single BS with distributed antennas. This allows to apply ZFBF
as described in Section 2.4.2 without any constraints on the structure of the precoding
matrix W . However, we consider single BSs constrained by per-BS power constraints.
The classical MAC-BC duality does not determine the optimal precoder for per-BS power
constraints [56]. We use a low-complexity approach to obtain a suboptimal precoding
matrix for network MIMO with per-BS power constraints. First we determine for each
subcarrier the precoding matrix W using ZFBF. Then we use mercury/water-filling as
described in Section 2.6 to allocate power according to a total power constraint

NSC∑

f=1
E
[∥∥∥x(f)

∥∥∥
2

2

]
≤

NBS∑

i=1
Pi. (3.27)

Next, we determine the transmit power at each BS

P tx Pw
i =

NSC∑

f=1
E
[∥∥∥x(f)

i

∥∥∥
2

2

]
. (3.28)

Finally we scale the precoding matrix W with

γ =
√

Pi
maxi P tx Pw

i

. (3.29)
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The scaling factor γ ensures that the per-BS power constraint is satisfied at all BSs

γ2P tx Pw
i ≤ Pi, ∀i ∈ {1, . . . , NBS} (3.30)

where the inequality is tight at least at one BS. However, some BSs could transmit with
higher power. Hence this is a suboptimal approach, and better approaches can be found
for per-BS power constraints [64, 65] or for per-antenna power constraints [16, 66]. We
analyze the performance difference between a total power and a per-BS power constrained
network MIMO transmission scheme in Section 5.5. Recall that ZFBF is a linear precoding
scheme. Nonlinear precoding schemes like DPC improve performance [53]. The SINR of
network MIMO is

SINRnetwork MIMO
k =

∣∣∣γhH
kwk

∣∣∣
2

K∑
l=1
l 6=k

∣∣∣γhH
kwl

∣∣∣
2

+ σ2
N

=
γ2p̃network MIMO

i,k

σ2
N

. (3.31)

Figure 3.4 shows the system model of network MIMO. Note the similarities to the system
model of a deployment with a single BS in Figure 3.5.
Network MIMO helps to avoid rank deficient and poorly conditioned channel matrices

which are caused by spatial correlations or by the “keyhole” effect [67].
Network MIMO is sometimes called “distributed MIMO”, “MIMO cooperation”, “coher-

ently coordinated transmission”, “Joint Processing CoMP”, “Joint Transmission CoMP”,
“C-RAN (Cloud-RAN)” or “p-cell” [68].

3.4.1. Rate Limited Network MIMO
If the backhaul cannot exchange all UE messages, it is still beneficial to exchange CSI and
part of the UE messages [56]. Rate limited network MIMO is not in the scope of this work.

3.5. Cooperation Clusters
While it is most beneficial if all BSs of a communication network cooperate, it is usually
impossible in real networks. The backhaul traffic would require a large bandwidth, it would
be costly to obtain CSI of the complete network, and delay constraints for the backhaul
and for the cooperation algorithms would be very tight. A single central controller has the
additional drawback of being a single point of failure. Hence efficient CSI representations,
decentralized cooperation algorithms, and cooperation limited to cooperation clusters are
relevant for practical implementations [56]. Example decentralized cooperation algorithms
are turbo base stations, game theoretic models, and team decision theory approaches. Co-
operation clusters fit well to current communication networks. They reduce the complexity
of cooperation algorithms and require less backhaul traffic, as less BSs and UEs are in-
volved to cooperate within each cluster. However, inter-cluster interference remains. There
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Figure 3.5.: System model for a single BS.

are several approaches to limit the impact of inter-cluster interference, see [56,69, and ref-
erences within]. The size of the cooperation clusters is a trade-off between the overhead
of coordinating the transmissions to more UEs and the number of cell-edge UEs [70]. The
gain of cooperation clusters versus massive MIMO in an outdoor cell without shadowing
is analyzed in [71], for example.



4
Channel Model, Scenario, and
Deployments
We aim to compare different BS deployments in a realistic scenario. We use the Quasi
Deterministic Radio Channel Generator (QuaDRiGa) channel model to generate channel
coefficients for the 3rd Generation Partnership Project (3GPP) indoor office scenario. In
this chapter we present the QuaDRiGa channel model, the 3GPP indoor office scenario,
and the base station deployments.

4.1. QuaDRiGa
QuaDRiGa [72, 73] is an open-source 3GPP-3D channel model reference implementation,
which was developed at the Fraunhofer Heinrich Hertz Institute (HHI). The 3GPP-3D
channel model is the latest evolution of 3GPP geometry-based stochastic channel models.
It is based on the initial 3GPP spatial channel model (SCM) and it succeeds the channel
models of Wireless World Initiative New Radio (WINNER), Wireless World Initiative
New Radio II (WINNER II) and Wireless World Initiative New Radio+ (WINNER+).
QuaDRiGa fulfills the requirements of the mentioned geometry-based stochastic channel
models. Hence we can use QuaDRiGa to generate channel realizations according to the
WINNER II and WINNER+ channel model specifications and parameters.
QuaDRiGa has the following features (besides other features) which are relevant for our

analysis:

. Support of frequencies between 2 GHz and 6 GHz,

. Support of multi-user MIMO,
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. 3D propagation environment models,

. Support of massive MIMO,

. Same modeling approach for indoor, outdoor and combined indoor-outdoor environ-
ments,

. Common framework for line-of-sight (LOS) and non line-of-sight (NLOS) conditions,

. Improved correlation of large-scale parameters.

The pathloss between BSs and UEs is determined based on the geometric distance in
Quadriga and we enhance our simulations to count the number of walls to be able to
add the wall penetration loss. However, scattering clusters are distributed randomly in
the vicinity of each BS and UE for each channel realization. A scattering cluster consists
of 20 individual scatters. Each individual scatter or sub-path is modeled by a single
reflection. The scatterer of a cluster can be resolved in the spatial domain as their angles
of departure and angles of arrival differ sufficiently. However, they cannot be resolved
in the time-domain. Hence they are combined into a single signal which is called path,
tap, or multi-path component. When determining the channel coefficients, the angles of
departure and arrival are determined for each sub-path while path length and hence the
delay is determined per scattering cluster. The number of scattering clusters depends
on the scenario. The random positioning of the scattering clusters is determined by the
angular spread and the delay spread which are determined by the large-scale parameters
of the scenario. The large-scale parameters define the statistical distributions of channel
parameters like delay spread, delay values, path power, angle spread, angles-of-departure,
angles-of-arrival, shadow fading, and cross-polarization. The large-scale parameters of a
scenario are derived from measurement campaigns.

4.2. Scenario
We consider the indoor office scenario defined as “A1 - Indoor Office” in the WINNER
II deliverable D.1.1.2 [74]. Figure 4.1 shows the layout of the office building. One floor
of the office building consists of two corridors and 20 identical offices adjacent to each
corridor. The channel parameters are valid for frequencies between 2 GHz and 5 GHz [75].
We consider BS deployments inside and outside the building while the UEs are located
1.5 m above the floor inside the building. Hence we use indoor channel parameters and
outdoor-to-indoor channel parameters.

4.2.1. Indoor-to-Indoor Parameters
The indoor large-scale parameters are the “A1 - Indoor Office” channel model parameters
defined in WINNER II deliverable D.1.1.2 [74]. There are two sets of parameters: One
for LOS and one for NLOS conditions. For NLOS conditions a wall penetration loss is
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Figure 4.1.: Layout, and wall counting examples in the indoor office scenario defined in [74].

added, where the wall penetration loss is determined by counting the number of walls
between each BS and UE. When counting the number of walls, paths along the corridors
are considered as alternatives to the direct path, which might penetrate more walls. Figure
4.1 shows wall counting examples.
The model considers heavy and light walls. The loss for every wall beyond the first wall

is 12 dB for heavy walls and 5 dB for light walls. For no walls the LOS parameters are
used, otherwise NLOS parameters are used and we add the wall penetration loss.

4.2.2. Outdoor-to-Indoor Parameters
The outdoor-to-indoor large-scale parameters are the “B4 - Outdoor to indoor” channel
model parameters defined in WINNER+ deliverable D5.3 [76]. This scenario provides the
parameters to model outdoor BSs providing service to UEs of the “A1 - Indoor Office”
scenario. The outdoor BSs are below rooftop micro BSs. The model distinguishes between
LOS and NLOS conditions for the path from the BS to the outside wall of the building.
We assume a LOS path from the BS to the outside wall of the building. For each UE the
pathloss is calculated based on the path through the point on an outside wall nearest to
the UE. The number of penetrated walls is determined as for the indoor BSs.

4.3. Base Station Deployments
We define six different BS deployments which are shown in Figure 4.2. Four deployments
use indoor BSs only:

. Single central BS is a single BS with M antennas located in the corner of the room
southwest of the center (“1” in Figure 4.2). This deployment is the classic massive
MIMO deployment where all antennas are located at the same place.
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. Two indoor BSs are two BSs with M/2 antennas each. One BS is located in the
center of each corridor (“2”).

. Four indoor BSs are four BSs with M/4 antennas each. Two BSs are located at the
opposite ends of each corridor (“3”).

. Fourty indoor BSs are forty BSs with M/40 antennas each. One BS is located in the
center of each room (“4”). This deployment is similar to the deployment of p-cell [68].

One deployment uses outdoor BSs only:

. Outdoor BSs are two BSs with M/2 antennas each. One BS is located 15 m north of
the middle of the north outside wall and one BS is located 15 m south of the middle
of the south outside wall (“5”). Usually outdoor BSs are required to serve outdoor
UEs. They might suffice to serve indoor UEs also.

One deployment uses indoor and outdoor BSs:

. Indoor-outdoor BSs are three BSs withM/3 antennas each. One BS is in the location
of the single central BS deployment (“1”) while two are in the location of the outdoor
BSs deployment (“5”). If the BSs of the outdoor BSs deployment do not suffice, then
they might be supported by an indoor BS.

Note that we need a sufficient backhaul (not shown in Figure 4.2) for the two indoor
BSs deployment, the four indoor BSs deployment, the fourty indoor BSs deployment, the
outdoor BSs and the indoor-outdoor BSs deployment to permit LS-MIMO and network
MIMO. Also note that the BSs are not necessarily optimally placed.
The deployments serve outdoor and indoor UEs with different deployments as proposed

in [77]. We do not simulate interference from other outdoor BSs since we assume that the
inter-cell interference can be limited to few cells, for example, by the antenna down-tilt [69].

4.3.1. Antenna Array Configuration
The indoor BSs are rectangular arrays, while the outdoor BSs are uniform linear arrays
(ULAs). The rectangular arrays are mounted underneath the ceiling at a height of 3 m.
The antennas are spaced at half wavelength distance λL/2. We choose the side lengths of
the rectangle such that

⌈√
Mi

⌉
antennas fit per row and per column. Note that the last

rows might not be fully occupied by antennas. We made this choice to compare the same
number of antennas for different deployments. The area of the array is roughly

A = λ2
L

4

⌈√
Mi

⌉ ⌊√
Mi

⌋
≥ λ2

L

4 Mi (4.1)

which gives a realistic form factor [6]. The height of the outdoor BSs is 10 m and the
antennas of the ULAs are located on a line parallel to the long side of the building. The
antennas are again spaced equally at a λL/2 distance.
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Figure 4.2.: Base station deployments in the indoor office scenario [74].

Since we place the BS antennas with an antenna spacing of λL/2, we assume that antenna
array size increases with the number of antennas like in [49]. We assume that each antenna
element is an isotopic radiator and that there is no mutual coupling between antennas.
Unless otherwise stated, we assume ideal hardware, perfect synchronization, and perfect
CSI of the complete network at all nodes.





5
Simulation Results
In this chapter, we compare the deployments and transmission schemes which we intro-
duced in the previous chapters. Our results help guide design choices for future mobile
communication systems, e.g., 5G. We presented preliminary results in [78–80] and we add
the following results.

. Instead of using water-filling to allocate power, we refine the power allocation by
using mercury/water-filling, which is optimal for finite modulation alphabets [19].

. We analyze the gap between mercury/water-filling, water-filling and equal power
allocation.

. We analyze two additional deployments (the two indoor BSs deployment and the
fourty indoor BSs deployment presented in Chapter 4).

. We add LS-MIMO as an example of an interference coordination scheme.

. We analyze the per-UE SEs.

. We analyze fairness for Gaussian modulation.

. We analyze the singular value spread to understand how well the UEs are separated.

5.1. Simulation Setup
We fix the number of UEs to K = 24 and compare the deployments with different perfor-
mance measures for different numbers M of total BS antennas in the indoor office scenario
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defined as “A1 - Indoor Office” in WINNER II [74]. We simulate 300 drops where one drop
is a random placement of the UEs within the office building. For each drop we generate 10
channel realizations. The deployments and the generation of the channel coefficients are
explained in detail in Chapter 4. The antenna array configuration with half wavelength
spacing λL/2 is explained in Section 4.3.1. The wall penetration loss is 12 dB per wall.

We use a bandwidth of 20 MHz around a carrier frequency of 2.1 GHz. The active
bandwidth is 18 MHz and 1 MHz on each side of this bandwidth is a guard band. The
subcarrier spacing is 15 kHz and we obtain 1200 subcarriers. In LTE, subcarriers are
arranged in groups of 12 consecutive subcarriers which are called physical resource blocks
(PRBs). Hence we obtain 100 PRBs. The channel conditions of the subcarriers of one
PRB are usually very similar. The schedule, power allocation and precoder are the same
for all subcarriers of one PRB to save control signaling overhead. We save simulation time
by simulating a single subcarrier per PRB and assuming that the same performance is
achieved on the other subcarriers of the PRB.

Unless otherwise mentioned, we use 256 QAM, and we use mercury/water-filling to
allocate power. The per-BS power in dBm at the i-th BS is constrained by

Pi = 26 dBm− 10 log10 (NBS) . (5.1)

The maximal per-BS powers are such that the maximal sum power available to the BSs
is 26 dBm. We use a sum power constraint of Ptotal = 26 dBm to compare a sum power
constraint and per-BS power constraints, and to determine the ZFBF precoders for network
MIMO (see Section 3.4).

The thermal noise power is

Pthermal = −173.8 dBm + 10 log10 (15 kHz) = −132.1 dBm (5.2)

where 15 kHz is the subcarrier bandwidth and

−173.8 dBm = 10 log10 (kB · 1000 mW/W · 300 K) (5.3)

and the Boltzmann constant is

kB = 1.3807× 10−23 J/K. (5.4)

The noise figure at the receiver is
PNF = 7 dB. (5.5)

Hence the variance of the AWGN at the UEs, i.e., the noise level, is

σ2
N = Pthermal + PNF = −125.1 dBm. (5.6)

The simulation parameters are summarized in the Table 5.1. With these parameters,
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Table 5.1.: Simulation Parameters
Carrier frequency 2.1 GHz
Bandwidth 20 MHz
Active bandwidth 18 MHz
Subcarrier spacing 15 kHz
Number of subcarriers 1200
Number of PRBs 100
Antenna Spacing λL/2
Wall penetration loss 12 dB
Per-BS power constraint 26 dBm− 10 log10 (NBS)
Noise level −125.1 dBm
Largest modulation scheme 256 QAM
Number of UEs 24
Number of drops 300
Number of channel realizations per drop 10

the per-UE SE of the k-th UE without considering control signaling overhead is

Sk =
12 ·∑100

f=1C
(
SINR(f)

k

)
· 14

1 ms · 20 MHz (5.7)

where 12 is the number of subcarriers per PRB, 100 is the number of PRBs, 14 is the num-
ber of OFDM blocks per subframe, 1 ms is the duration of one subframe1 and C

(
SINR(f)

k

)

is the rate achieved at SINR(f)
k in bits (see Section 2.5). The sum SE in the building

without considering control signaling overhead is

S =
24∑

k=1
Sk (5.8)

where 24 is the number of UEs. The maximal sum SE for 256 QAM is

S∗ = 161.28 bit/s/Hz (5.9)

since the rate C
(
SINR(f)

k

)
is bounded by 8 bits for 256 QAM.

1An LTE subframe contains 14 OFDM blocks and has a duration of 1 ms.
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5.2. Sum Spectral Efficiency
We first analyze the average sum SE S achieved with 256 QAM and mercury/water-filling.
We do not show the 5 %-tile sum SE and the 95 %-tile sum SE as they follow the same
trends.
Figure 5.1 shows the average sum SEs of the deployments which use indoor BSs only for

M = 24 to 240 total BS antennas. For the single central BS deployment there is only one
BS, hence the curves for network MIMO, LS-MIMO, orthogonal reuse, and local precoding
are equal.
Consider the sum SE achieved with network MIMO first (solid curves). The single central

BS deployment, the two indoor BSs deployment, and the four indoor BSs deployment
perform poorly for the fully loaded MIMO system with M = 24 BS antennas. All degrees-
of-freedom are utilized to zero force interference leading to weak effective channels. The
sum SE improves significantly when few antennas are added. We discuss in Section 5.4 how
scheduling improves the sum SE for fully or close to fully loaded MIMO systems. Adding
more antennas increases the sum SE, but the gain per additional antenna decreases. A
ratio of twice as many BS antennas as UEs seems to be a good trade-off between achieved
sum SE and number of BS antennas. For the fourty indoor BSs deployment the trend is
similar, however, the fully loaded case is not included as the minimal number of antennas
is M = 40. As expected, the distributed deployments (two indoor BSs, four indoor BSs,
and fourty indoor BSs) outperform the single central BS deployment. The four indoor
BSs deployment performs better than the fourty indoor BSs deployment for 40 antennas,
which is an artifact of the suboptimal power allocation scheme. However, all distributed
deployments perform similarly. The performance loss of the single central BS deployment
(mainly due to wall penetration loss) is analyzed in more detail in Section 5.3. Note that
the four indoor BSs deployment approaches the maximal SE S∗ = 161.28 bit/s/Hz for only
M = 48 BS antennas, while the single central BS deployment requires more thanM = 240
antennas to approach S∗.
Next consider the sum SE achieved with LS-MIMO (dashed curves). Recall that for

LS-MIMO at least M = NBSK total BS antennas are required. Hence for the two indoor
BSs deployment with M = 48 and for the four indoor BSs deployment with M = 96 all
degrees-of-freedom are required to zero force interference and less BS antennas are not
feasible. Similar to network MIMO, adding more antennas increases the sum SE, and the
gain with each additional antenna decreases. Note that the two indoor BSs deployment
achieves the same sum SE with LS-MIMO atM = 84 and with network MIMO atM = 48.
One can trade off the costs of a backhaul with the number M of BS antennas to achieve
the same sum SE. For other CS/CB schemes, fewer BS antennas might be able to achieve
the same SE.
Local precoding is non-cooperative and performs poorly due to interference (dotted

curves). For all deployments the sum SE improves little when adding antennas. Many
more BS antennas are required as compared to network MIMO to achieve the same sum
SE. Again, one can trade off the costs of a backhaul with the number BS antennas. The
performance loss from network MIMO to local precoding is largest for the four indoor BSs
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Figure 5.1.: Average sum SEs for 256 QAM and mercury/water-filling of the deployments
which use indoor BSs only.

deployment. This is due to larger interference in the four indoor BSs deployment where not
all BSs are separated by a wall. Compared to LS-MIMO more BS antennas are required
to achieve the same sum SE, however, less CSI is required. Local precoding sometimes
performs better than network MIMO. This can be explained as follows: For network MIMO
all UEs are served. However, for local precoding, if more UEs are served by a BS than the
BS can serve, only the best UEs are served. Recall that the best UEs are selected by the
scheduling algorithm explained in Section 2.8. However, it may be beneficial to distribute
BS antennas even without cooperation. For example, the two indoor BSs deployment with
local precoding outperforms the single central BS deployment.
For orthogonal reuse we group the BSs into two groups (dash-dotted curves). For the two

indoor BSs deployment we have one BS per group. For the four indoor BSs deployment
the upper left BS and the lower right BS form the first group and the lower left BS and the
upper right BS form the second group. For the fourty indoor BSs deployment we group
the BSs such that neighboring BSs (also across the corridors) are in different groups.
The performance with orthogonal reuse is very poor since only a fraction of the spectral
resources is available at each BS, and since residual interference remains (except for the
two indoor BSs deployment). Hence we do not consider spectral reuse further in this work.
Figure 5.2 shows additionally the average sum SEs of the deployments which use outdoor



52 Chapter 5. Simulation Results

24 48 96 192

40

80

120

160

number M of BS antennas

av
er

ag
e

su
m

SE
S

[b
it/

s/
H

z]

single central BS
two indoor BSs
four indoor BSs
outdoor BSs
indoor-outdoor BSs

solid: network MIMO
dashed: LS-MIMO
dotted: local precoding

Figure 5.2.: Average sum SEs for 256 QAM and mercury/water-filling with outdoor-indoor
deployments.

BSs. We do not show the fourty indoor BSs deployment to improve clarity.
First we analyze the outdoor BSs deployment which is realized without any indoor BSs.

The performance with local precoding and with network MIMO are very close. There is
little interference from the lower BS to the UEs in the upper half of the building and vice
versa. However, this scheme performs poorly with all transmission schemes.
The indoor-outdoor BSs deployment combines the BSs of the single central BS deploy-

ment and the outdoor BSs deployment. The sum SE with network MIMO improves as
compared to the single central BS deployment and the outdoor BSs deployment. How-
ever, the gap to the two indoor BSs deployment and the four indoor BSs deployment is
still large. The performance of the indoor-outdoor BSs deployment with local precoding
decreases as compared to the outdoor BSs deployment due to increased interference.
For both deployments one achieves the same sum SE with network MIMO and with

LS-MIMO for a larger number of BS antennas. Again, scheduling a subset of UEs explains
the sum SE gains of local precoding over network MIMO for few BS antennas.
In conclusion, the SE increases with the number of BS antennas for all deployments

and all transmission schemes until it is limited by the maximal SE of the modulation.
Cooperation between indoor BSs provides large gains, while cooperation between outdoor
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BSs or indoor and outdoor BSs provides only smaller gains. Network MIMO performs
best, but CS/CB is an interesting alternative as the backhaul requirements are reduced.
Orthogonal reuse performs poorly and is worse than local precoding. As found in [63] a
ratio of two to eight times as many BS antennas as served UEs is a good trade-off between
performance and antenna costs, where the best trade-off depends on the transmission
scheme and the BS deployment. The placement of BSs is important to overcome wall
penetration losses and to control interference.

5.3. Average SNR Maps
In this section, we show why the deployments with only one or no indoor BS (single central
BS, outdoor BSs and indoor-outdoor BSs) perform poorly as compared to the distributed
indoor BSs deployments (two indoor BSs, four indoor BSs, and fourty indoor BSs).
We analyze the SNR achieved when a single UE is served at different positions within

the office building. The BSs use network MIMO under per-BS power constraints. Each
BS determines a MRT precoder coherently with the other BSs. We distribute the per-BS
transmit power equally among the subcarriers. Hence the precoder at one subcarrier is

w =




h1,1
‖h1,1‖2

√
P1
NSc

...
hNBS,1

‖hNBS,1‖2

√
PNBS
NSc



∈ CM . (5.10)

The SNR with MRT to the single UE serves as an upper bound to the SNR when more
UEs are served with ZFBF or any other linear precoding scheme, as serving more UEs
only reduces the degrees-of-freedom. When serving more UEs, the power used to convey
information to one UE is scaled, for example, for K = 24 UEs the power is on average
10 log10 (K) = 13.8 dB lower.
Figure 5.3 shows the average SNRs achieved with MRT and 48 total BS antennas. For

the fourty indoor BSs deployment the number of total BS antennas is only M = 40. We
average over 300 channel realizations for each sampled position.
The single central BS deployment achieves low SNR in many rooms, especially those

close to the outside wall. This is due to the wall penetration loss. Adding more antennas
improves the SNR only slightly. Whereas the two indoor BSs deployment and the four
indoor BSs deployment achieve higher SNR in the rooms close to the outside wall because
the wall penetration loss is less. The fourty indoor BSs deployment achieves with slightly
less BS antennas an even more uniform coverage than the two indoor BSs deployment
and the four indoor BSs deployment. The outdoor BSs deployment achieves acceptable
SNR in the rooms next to the outside walls. However, the SNR in the inner rooms and
the corridors is poor. The indoor-outdoor BSs deployment achieves higher SNR than the
outdoor BSs deployment or the single central BS deployment alone, but the SNR is still
lower than with the distributed indoor BSs deployments.
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Figure 5.3.: Average SNR achieved with MRT at a single UE for different positions.

We conclude that the lower SEs of the single central BS deployment, the outdoor BSs
deployment, and the indoor-outdoor BSs deployment are at least partly due to the large
wall penetration loss and the building penetration loss.
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5.4. Scheduling Gains
As we discussed in Section 2.9 one claim of massive MIMO is that with sufficient degrees-of-
freedom the transmit signals are directed precisely to the UEs through precoding [15]. It is
then optimal to schedule all UEs on each subcarrier and advanced scheduling/UE-selection
strategies do not provide gains [6]. We compare scheduling all UEs on all subcarriers to
the example Scheduling Algorithm 5.1 to analyze how many BS antennas are required for
this claim to be valid in our scenario.
The example Scheduling Algorithm 5.1 utilizes the following idea: When we use mer-

cury/water-filling as described in Section 2.6 there is usually no power allocated to some
UEs on some subcarriers. When no power is allocated to a subcarrier the interference zero-
forcing constraint for that UE is unnecessary on that subcarrier. Removing this constraint
leaves more degrees-of-freedom when determining the precoders for the other UEs, which
leads to potentially higher effective channel gains. Algorithm 5.1 starts by initializing
the schedules T (f) on all subcarriers as all UEs scheduled. Then we determine for each
subcarrier the ZFBF precoder for the UEs scheduled on the subcarrier. Next we collect
the effective channels obtained by ZFBF in h, where the effective channels of unscheduled
UEs are zero. We determine the power allocation p with mercury/water-filling. We then
determine for each subcarrier the new schedule T (f). The new schedule T (f) consists of the
UEs to which a positive power is allocated to. The next iteration starts with determining
the ZFBF precoder for the UEs scheduled on the subcarrier. The algorithm stops once all
schedules have converged. Note that fairness is not an objective of Scheduling Algorithm
5.1.
Figure 5.4 shows the average sum SEs of network MIMO achieved with 256 QAM and

mercury/water-filling for all UEs being scheduled on all subcarriers, and for the example
Scheduling Algorithm 5.1. As expected, the scheduling algorithm provides a considerable
gain for less than twice as many BS antennas as UEs. For the single central BS deployment,
the two indoor BSs deployment, and the four indoor BSs deployment the gain is small for
M = 48 and very little for M = 96. However, for the outdoor BSs deployment a small
gain and for the indoor-outdoor BSs deployment a larger gain appears for all considered
numbers of BS antennas. This is somewhat surprising as we would expect scheduling all
UEs on all subcarriers to be optimal for a larger number of BS antennas for all deployments.
We conclude that for indoor-to-indoor channels and more than two- to four-times as

many BS antennas as served UEs it is optimal to schedule all UEs on all subcarriers.
However, our scheduling algorithm is not optimal and other scheduling algorithms might
achieve gains for more BS antennas, e.g., [81]. However, for outdoor-to-indoor channels
scheduling does provide gains also for ten-times as many BS antennas as served UEs.

5.5. Comparison to Capacity Upper Bound
Massive MIMO lets simple transmission schemes approach capacity with an increasing
number of BS antennas. In the following, we analyze this statement for our network
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Algorithm 5.1 Example scheduling algorithm
for f = 1 to NSc do (all subcarriers)
T (f) = {1, 2, . . . , K} (initialize as all UEs scheduled)

end for
repeat

for f = 1 to NSc do (all subcarriers)
h̃(f) = 0 (set effective channels to zero)

Apply ZFBF on




(
h

(f)
T (f)(1)

)H

...
(
h

(f)
T (f)(|T (f)|)

)H




(channels of scheduled UEs)

and determine effective channels
[
h̃

(f)
T (f)(1), . . . , h̃

(f)
T (f)(|T (f)|)

]
(see (2.31))

end for
h =

[(
h̃(1)

)T
, . . . ,

(
h̃(NSc)

)T
]T

(collect effective channel coefficients)

allocate power p =
[(
p̃(1)

)T
, . . . ,

(
p̃(NSc)

)T
]T

by mercury/water-filling
for f = 1 to NSc do (all subcarriers)
T (f) =

{
k ∈ T (f)

∣∣∣∣
[
p̃(f)

]
(k)
> 0

}
(schedule UEs with positive power allocated)

end for
until convergence of all schedules T (f)

MIMO transmission scheme.
We upper bound the capacity of a deployment by the capacity of a BC under a total

power constraint. We allow all BSs of a deployment to cooperate and to act as one BS with
distributed antennas, and relax the per-BS power constraint to a total-power constraint.
Note that for the single central BS deployment the upper bound is tight. The capacity of
a BC is achieved by dirty-paper coding [29–32]. We find the optimal DPC transmission
policy as described in Section 2.7. We compare capacity to the SEs achieved with Gaussian
modulation, since 256 QAM limits SE, while Gaussian modulation allows to approach the
capacity upper bound.
Figure 5.5 shows the average sum SEs achieved with Gaussian modulation and network

MIMO under per-BS power constraints and under a total power constraint, and the ca-
pacity upper bounds. The general trends are similar as in Figure 5.1 and Figure 5.2 for
256 QAM, but the SEs increase without bound with the number of BS antennas. For
few BS antennas, the gap between the capacity upper bound and network MIMO is large,
but the gap could be reduced by more advanced scheduling. With an increasing number
of BS antennas, the gap decreases and the network MIMO scheme under a total power
constraint approaches capacity. For M = 48 BS antennas the gap between the capacity
upper bound and our schemes is already small. Twice as many BS antennas as served UEs
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Figure 5.4.: Average sum SEs of network MIMO for 256 QAM and mercury/water-filling.

seems to be a good trade-off between performance and the number of BS antennas. While
the gap vanishes completely under a total power constraint, a gap remains under per-BS
power constraints. Determining more accurate capacity upper bounds given per-BS power
constraints, and choosing better precoding and power allocation under per-BS power con-
straints would reduce the gap. We analyze the gap between a total power constraint and
per-BS power constraints for 256 QAM in the next section. In summary, massive MIMO
allows simple transmission schemes to approach capacity with an increasing number of BS
antennas in our scenarios.

5.6. Comparison of Power Allocations

So far we used mercury/water-filling under per-BS power constraints to allocate power
across subcarriers. Here we compare mercury/water-filling under per-BS power constraints
to an equal power allocation under per-BS power constraints, to water-filling under per-BS
power constraints, and to mercury/water-filling under a total power constraint.
For the equal power allocation we distribute the total transmit power Ptotal equally to
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Figure 5.5.: Average sum SEs of network MIMO for Gaussian modulation.

the subcarriers of all UEs
peq = Ptotal

KNSc
1 ∈ RKNSc . (5.11)

Then we scale the power allocation to fulfill the per-BS power constraint like for network
MIMO with mercury/water-filling in Section 3.4. If the channels harden, then the equal
power allocation should approach the performance of mercury/water-filling.
For water-filling under per-BS power constraints we proceed like for mercury/water-fill-

ing in Section 3.4: we do water-filling assuming a total power constraint and then scale
the power allocation to fulfill the per-BS power constraints. The SEs of more optimal
power allocations under per-BS power constraints are bounded by the SEs of mercury/
water-filling under a total power constraint.
Figure 5.6 shows the relative network MIMO sum SE gap of different power allocations

compared to mercury/water-filling under per-BS power constraints. The relative sum SE
gap is

S ′ − SmerWf

SmerWf
(5.12)
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where S ′ is the SE achieved by the considered power allocation and SmerWf is the SE
achieved by mercury/water-filling.
Consider the relative SE gap between the equal power allocation and mercury/water-

filling under per-BS power constraints (solid curves). Mercury/water-filling outperforms
the equal power allocation for all deployments except the fourty indoor BSs deployment.
Especially the single central BS deployment, the outdoor BSs deployment, and the indoor-
outdoor BSs deployment show a large gap for few BS antennas. For the fourty indoor
BSs deployment the equal power allocation achieves higher average SE. This is due to the
suboptimal scaling of mercury/water-filling to fulfill the per-BS power constraints. Note
that for the single central BS deployment, the outdoor BSs deployment, and the indoor-
outdoor BSs deployment a gap between 2.0 % to 4.1 % remains for many BS antennas.
Next compare mercury/water-filling and water-filling (dotted curves). Recall that water-

filling assumes Gaussian modulation although 256 QAM is used. The average SE achieved
with water-filling is only up to 4.3 % worse than with mercury/water-filling. For the fourty
indoor BSs deployment water-filling achieves higher average SE which we can explain again
by the suboptimal scaling to fulfill the per-BS power constraints while mercury/water-fill-
ing.
The relative gap between mercury/water-filling under a total power constraint and mer-

cury/water-filling under per-BS power constraints is large for few antennas (dashed curves).
For most deployments it decreases with an increasing number of BS antennas. This means
that the suboptimal scaling to fulfill the per-BS power constraints approaches optimality.
However, for the deployments with outdoor BSs (outdoor BSs and indoor-outdoor BSs) a
gap between 2.7 % to 3.7 % remains.
We conclude that the performance differences between power allocations become small

or disappear for more than twice as many BS antennas as the number of served UEs.

5.7. Per-UE Spectral Efficiency
We next analyze the per-UE SEs to understand the differences between the deployments
in more detail. For 256 QAM the maximal per-UE SE is S∗k = 6.72 bit/s/Hz.
Figure 5.7 shows the cumulative distribution function (CDF) of the per-UE SEs achieved

with network MIMO, 256 QAM, and mercury/water-filling. For the fully loaded case of
M = 24 BS antennas we observe a poor performance for most UEs. For all deployments a
fraction of the UEs achieves zero rate as no power is allocated to them on any subcarrier.
For example, for the single central BS deployment more than half of the UEs are not
served. This behavior is due to the sum rate maximization objective of mercury/water-
filling. We analyze the fairness between UEs in Section 5.8 in more detail. Changing the
power allocation can improve fairness at the cost of sum rate.
With an increasing number of BS antennas the CDF curves move to the right. The

deployments with cooperating indoor BSs (two indoor BSs, four indoor BSs and fourty
indoor BSs) achieve high median per-UE SEs and high 5 %-tile per-UE SEs with M = 40
BS antennas. The deployments with only one or no indoor BS (single central BS, outdoor
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Figure 5.6.: Network MIMO relative gap to mercury/water-filling under per-BS power
constraints.

BSs and indoor-outdoor BSs) achieve acceptable median per-UE SEs, but poor 5 %-tile
per-UE SEs with M = 40 BS antennas.
With M = 240 BS antennas the deployments with cooperating indoor BSs achieve the

maximal SE for almost all UEs. The deployments with only one or no indoor BS achieve
high median per-UE SEs, while the 5 %-tile per-UE SEs are still lower. For LS-MIMO the
trends are similar (keeping in mind that the fully loaded cases appear at different numbers
of BS antennas).
We conclude that deploying more than one indoor BS achieves high sum SEs and at the

same time high per-UE SEs for most UEs with fewer antennas as compared to deploying
only one or no indoor BS.

5.8. Fairness Analysis
In the previous section we saw that the UEs achieve different per-UE SE. In this section,
we analyze the fairness of our deployments and transmission schemes. Our transmission
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schemes should approach fairness with an increasing number of BS antennas as the channels
harden (see Section 2.9).
We measure fairness quantitatively with Jain’s index [82]

J (S1, S2, . . . , SK) =

(∑K
k=1 Sk

)2

K ·∑K
k=1 Sk

2 (5.13)

where Sk is the per-UE SE of the k-th UE. Jain’s index is 1 when all UEs achieve the same
per-UE SE and is 1/K when only one UE achieves a positive per-UE SE. The advantage
of Jain’s fairness index is that it is dimensionless and scale invariant, and it changes
continuously with SE changes [82].
Figure 5.8 shows the simulated fairness indices for 256 QAM and mercury/water-fill-

ing. For network MIMO and LS-MIMO the two indoor BSs deployment, the four indoor
BSs deployment, and the fourty indoor BSs deployment approach fairness indices of 1
with an increasing number of BS antennas. They achieve close to perfect fairness for
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Figure 5.8.: Jain’s fairness index for 256 QAM and mercury/water-filling.

network MIMO and M = 96 or for LS-MIMO and M = 192. This is partly due to all
UEs being served with the maximal per-UE SE S∗k of 256 QAM. For local precoding, the
fairness indices are lower and they do not approach a fairness index of 1 in the range of
BS antennas we consider. The single central BS deployment, the outdoor BSs deployment,
and the indoor-outdoor BSs deployment do not approach a fairness index of 1 with any
transmission scheme in the range of BS antennas, but the index increases with the number
M of BS antennas.
We analyze the fairness achieved by Gaussian modulation and water-filling in Figure

5.9 to learn how much the saturation at the maximal sum-SE S∗ of 256 QAM influences
fairness. For Gaussian modulation the SE is not limited. The trends of Jain’s fairness index
are similar, but no deployment achieves perfect fairness. The perfect fairness achieved for
256 QAM is hence due to the saturation of the SE. If network MIMO is used, fairness
increases when the BS antennas are more distributed.
Figure 5.10 shows Jain’s fairness index achieved for network MIMO, 256 QAM and

different power allocations and schedules. The Scheduling Algorithm 5.1 helps to increase
fairness for few BS antennas. The equal power allocation achieves mostly lower fairness
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Figure 5.9.: Jain’s fairness index for Gaussian modulation and water-filling.

indices as compared to mercury/water-filling. Although the same power is allocated to
each UE, the difference in channel attenuation seems to lead to divers SEs. Only for the
deployments with outdoor BSs (outdoor BSs and indoor-outdoor BSs) the equal power
allocation sometimes achieves higher fairness.
We conclude that fairness increases with the number of BS antennas, with the level of

cooperation between BSs, and with the distribution of BS antennas (given some cooper-
ation between BSs). Note that one can increase fairness by making it an objective while
scheduling and allocating power.

5.9. Singular Value Spread
Multiple UEs can be served simultaneously by using (massive) MIMO if the channel vectors
to the UEs are sufficiently different [5]. In the best case the channel vectors are jointly
orthogonal. This is also called ”favorable“ propagation or a very well conditioned channel
matrix. While the joint orthogonality of i.i.d. Rayleigh-fading channels increases with the
number of BS antennas [15] this must be verified for realistic channels [51].
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Figure 5.10.: Jain’s fairness index of network MIMO for 256 QAM.

We follow [51] to quantify the joint orthogonality by analyzing the singular value spread
of the normalized channel matrix. We normalize the channel matrix to remove the channel
attenuation and to keep the variations over the BS antennas and the frequencies only. The
normalized channel matrix at the f -th subcarrier is

(
H(f)

norm

)H
=




(
h

(f)
1,norm

)H

...
(
h

(f)
K,norm

)H



∈ CK×M (5.14)

where the k-th row is a scaled version of the channel vector
(
h

(f)
k

)H
of the k-th UE at the

f -th subcarrier

h
(f)
k,norm =

√√√√√√
MNSc

NSc∑
f=1

∥∥∥h(f)
k

∥∥∥
2

2

h
(f)
k ∈ CM . (5.15)
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The singular value decomposition (SVD) of the normalized channel matrix is
(
H(f)

norm

)H
= U (f)Υ(f)

(
V (f)

)H
(5.16)

where U (f) ∈ CK×K and V (f) ∈ CM×M are unitary and the diagonal matrix Υ(f) ∈ CK×M

contains the singular values υ(f)
1 , . . . , υ

(f)
K . Recall that M ≥ K. The singular value spread

is the ratio between the largest and the smallest singular value2

κ(f) =
max
k

υ
(f)
k

min
k
υ

(f)
k

. (5.17)

A large singular value means that at least two channel vectors are similar, i.e., they are
close to parallel. For κ(f) = 1 all channel vectors are orthogonal to each other. The rank
of the matrix

(
H(f)

norm

)H
is equal to the number of singular values larger than zero [83]. A

rank deficiency (rank
(
H(f)

norm

)
< K) hence implies an infinite singular value spread. When

serving multiple UEs, the more their channel vectors are jointly orthogonal the better the
performance.
In [51] the singular value spread is determined for ULA measurements and cylindrical

array measurements in outdoor environments. The results are compared to i.i.d. Rayleigh
fading channels. The authors find that for a fixed number of UEs the singular value spread
and its variance decrease with the number of BS antennas both for i.i.d. Rayleigh fading
channels and for the measured channels. The ULA achieves similar spreads as the i.i.d.
channel coefficients while the cylindrical array has larger spreads. In [15] an indoor BS
serves three indoor UEs and three outdoor UEs. Again for a large number of BS antennas
a low singular value spread with low variance is observed.
Figure 5.11 shows the CDF of the normalized singular value spread achieved with net-

work MIMO. We also include i.i.d. Rayleigh fading as a benchmark. With an increasing
number of BS antennas the singular value spread decreases. Adding few BS antennas to
the fully loaded caseM = 24 lowers the normalized singular value spread significantly. For
many antennas (M = 240) the UEs experience very similar effective channels. The single
central BS deployment, the two indoor BSs deployment, the four indoor BSs deployment,
and the indoor-outdoor BSs deployment achieve similar spreads. The outdoor BSs deploy-
ment has lower spreads, close to Rayleigh fading. The fourty indoor BSs deployment with
M = 40 BS antennas has significantly higher spreads. For M = 40 two or more UEs in
the same room with a BS are poorly separable since there is only a single antenna at each
BS.
In conclusion, the singular value spread follows similar trends as for the channel mea-

surements [15, 51]. It decreases as the number of BS antennas increases and is similar to
the singular value spread of i.i.d. Rayleigh fading.

2The singular value spread is equal to the condition number with respect to the l2-norm.
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5.10. Noisy Channel Estimation
So far we analyzed performance with perfect CSI. However, perfect CSI is usually not
available. In practical systems the channel coefficients are estimated with the help of pilots,
but also other methods are exist, for example, ray-tracing or channel prediction [78,84]. We
discuss the use of pilots to estimate channel coefficients in the context of massive MIMO
in Section 2.9. More details on channel estimation can be found in [84], for example.
Channel estimation schemes result in estimation errors, delays and overhead which affect
performance.
In this section, we analyze the effect of estimation errors on the average SE. We denote

the channel coefficient with estimation error from the m-th antenna of the i-th BS to the
k-th UE at the subcarrier f as

ĥ
(f)
i,k,m = h

(f)
i,k,m + e

(f)
i,k,m ∈ C (5.18)
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where e(f)
i,k,m ∈ C is the estimation error. We model the estimation error as zero-mean

proper complex Gaussian random variables, which are independent from each other and
from the channel coefficients. We also assume that the estimation error of the channel
between the i-th BS and the k-th UE is normalized such that its variance scales with the
average channel coefficient power of the UE across the BS antennas and the subcarriers

E
[∣∣∣e(f)

i,k,m

∣∣∣
2]

= 1
MNSc

M∑

m=1

NSc∑

f=1

∣∣∣h(f)
i,k,m

∣∣∣
2
σ2
E (5.19)

where σ2
E is the normalized estimation error variance.

We determine the precoding based on the channel estimation with error. For this pre-
coding, intra-cell interference occurs due to the estimation error. Figure 5.12 shows the
average SEs versus normalized estimation error variance achieved with network MIMO and
48 total transmit antennas, except for the fourty indoor BSs deployment where we deploy
only 40 total BS antennas. The performance of all deployments degrades with increasing
estimation error variance. In Section 5.6 we saw that, with perfect CSI, mercury/water-fill-
ing performs better than equal power allocation for all deployments except for the fourty
indoor BSs deployment. This is also the case for very low normalized estimation error
variance. However, for higher normalized estimation error variance mercury/water-filling
performs worse because mercury/water-filling is not aware of the intra-cell interference
introduced by the estimation error. To make mercury/water-filling more robust one could
gather the intra-cell interference statistics and adapt the power allocation based on these
statistics. The equal power allocation is more robust per se and is optimal in case of no
CSI [28]. The two indoor BSs deployment and the four indoor BSs deployment suffer most
from the channel estimation error. For mercury/water-filling and high normalized estima-
tion error variance the two indoor BSs deployment and the four indoor BSs deployment
are outperformed by the outdoor BSs deployment and the indoor-outdoor BSs deployment.
All deployments with mercury/water-filling achieve for a normalized estimation error vari-
ance of σ2

E = −50 dB more than 97 % of the average SE achieved with perfect CSI. For
σ2
E = −20 dB, they achieve between 51 % to 84 % and for σ2

E = −10 dB they achieve
between 26 % to 54 % of the average SE achieved with perfect CSI.

Figure 5.13 shows the average SEs versus normalized estimation error variance achieved
with local precoding and the same number of BS antennas as in Figure 5.12. We also
include the curves of network MIMO with mercury/water-filling from Figure 5.12 for com-
parison. The SEs of local precoding are unaffected by low normalized estimation error
variance and degrade for high normalized estimation error variance only. Inter-cell inter-
ference is always present for local precoding and dominates over the interference caused by
channel estimation errors for most of the normalized estimation error variance range. It is
interesting to see that local precoding outperforms network MIMO for a normalized esti-
mation error variance higher than −30 dB to −15 dB, which is because in network MIMO
mercury/water-filling is not aware of the intra-cell interference introduced by the estima-
tion error. However, recall that the performance of network MIMO with estimation errors
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Figure 5.12.: Average SE of Network MIMO with 48 total BS antennas (40 total BS anten-
nas with the fourty indoor BSs deployment) for a zero-mean proper complex
Gaussian distributed channel estimation error.

can be improved, for example, by making the power allocation more robust to additional
interference caused by estimation errors [28].
For more BS antennas the trends and performance differences are similar. We conclude

that all deployments suffer from channel estimation noise, while some deployments are more
sensitive. Good channel estimation is crucial to obtain the massive MIMO and network
MIMO benefits. However, more robust precoding techniques and power allocation schemes
could also improve performance in the presence of prediction errors [28].

5.11. Summary
We compared the performance of the BS deployments presented in Chapter 4 with lo-
cal precoding, orthogonal reuse, LS-MIMO and network MIMO. LS-MIMO and network
MIMO provide gains as compared to local precoding, where network MIMO outperforms
LS-MIMO. The gains are larger for cooperation between indoor BSs than for coopera-
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Figure 5.13.: Average SE of local precoding with 48 total BS antennas (40 total BS anten-
nas with the fourty indoor BSs deployment) for a zero-mean proper complex
Gaussian distributed channel estimation error.

tion between indoor and outdoor BSs. Orthogonal reuse performs worse than the other
transmission schemes. The single central BS deployment requires more antennas than the
deployments with distributed BSs to achieve the same performance. One can trade off
the costs of antenna elements with the costs for backhaul capability while achieving the
same performance. The positions of the BSs affect the wall penetration losses and the
strength of interference. A ratio of twice as many BS antennas as served UEs offers many
of the massive MIMO benefits and is a good tradeoff between the number of antennas
and SE. The channels harden for two- to four-times as many BS antennas as UEs. User
fairness and SE close to capacity are achieved with simple transmission schemes, while the
performance difference between the power allocations is small. The singular value spread
decreased as the number of BS antennas increased, and behaves similarly to i.i.d. Rayleigh
fading channel coefficients and measured channels. The massive MIMO and cooperation
benefits are obtained for sufficiently accurate channel estimations only.
A SE of 100 bit/s/Hz without considering overhead is achievable with 192 antennas

using local precoding and less than 28 antennas using two or four indoor BSs with network
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MIMO. Considering an overhead of 50 %, the required bandwidth to achieve the goals of the
METIS (Mobile and wireless communications Enablers for the Twenty-twenty Information
Society) project [2] is:

. For the TC1 virtual reality office:

0.1 Gbit/s/m2 · 5000 m2

50 bit/s/Hz = 10 GHz. (5.20)

More UE antennas, more base stations, or larger QAM constellations could reduce
the required bandwidth.

. For the TC2 dense urban information society:

0.7 Mbit/s/m2 · 5000 m2

50 bit/s/Hz = 70 MHz. (5.21)

This performance is achievable with single antenna UEs, few BSs, and 256 QAM
within a reasonable bandwidth.

In this part we analyzed massive MIMO given per-BS power constraints. In Part II we
analyze a different power constraint, the EIRP constraint.
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6
Introduction to EIRP

The transmission of antennas and antenna arrays is constrained by regulations, for ex-
ample, set by the International Telecommunication Union (ITU) or by the Federal Com-
munications Commission (FCC). A well known example is the base station (BS) total
radiated power constraint, which we called per-BS power constraint in Part I. The equiv-
alent isotropically radiated power (EIRP) constraint is less well known. The regulations
define a maximum EIRP depending on the used frequency and on the location where the
transmit antennas are placed. The reason for this regulation is to protect other devices
and the health of persons in the vicinity of the transmit antennas [85, p. 53]. However, the
EIRP constraint is rarely analyzed for multiple-input multiple-output (MIMO) systems.
When multiple antennas are used to transmit in a MIMO system, the signals from the

different antennas interfere constructively in certain spacial directions and destructively in
other directions. This creates the antenna power pattern. The constructive interference is
usually intended, as it potentially increases the received signal power at the receivers. On
the other hand, the constructive interference can lead to concentration of electromagnetic
energy, which might harm people or other devices. The EIRP measures the highest energy
density.
In this chapter, we show how the EIRP is defined and review regulations on EIRP. The

next chapter motivates the relevance of EIRP in MIMO systems by analyzing the EIRP
in the scenario of Part I. In Chapter 8, we analyze the EIRP of a uniform linear array
(ULA) in more detail, by analyzing lower and upper bounds, and by reviewing EIRP aware
transmission schemes.
Some works on the EIRP of MIMO systems exist. In [86, 87] it is shown that MIMO

transmissions achieve higher performances as compared to single antenna transmissions not
only under total radiated power constraints or per-antenna radiated power constraints, but
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also under EIRP constraints. However, most works consider the EIRP when a single user
equipment (UE) is served, for example, [86–91], while few works consider multiple UEs, for
example, [92]. However, the performance given an EIRP constraint and sufficiently many
BS antennas increases for multiple UEs being served as compared to a single UE being
served [92]. Also, most works on EIRP consider a ULA with isotropic radiators, while few
works consider more diverse antennas, for example, [88].

6.1. Definition of EIRP

Equivalent isotropically radiated power (EIRP) or, alternatively, effective isotropically
radiated power is the amount of power that a theoretical isotropic antenna (which evenly
distributes power in all directions) would emit to produce the peak power density observed
in the direction of the maximum antenna and array gain. In other words, the EIRP is
the total radiated power multiplied by the antenna and array gain in the direction of the
maximal antenna and array gain [93, p. 111]:

PEIRP = PtGt (6.1)

where Pt is the total radiated power and Gt is the maximal antenna and array gain. For a
single antenna the antenna gain is obtained from measurements or calculations. However,
the array gain of an antenna array changes with the precoding.1 For certain special cases of
array configurations and precoding, the array gain can be calculated directly, for example,
for ULAs with equal excitation amplitudes [93, Chapter 8], [94, Chapter 6].
The antenna and array gain is

Gt = 4πUmax

Pt
(6.2)

where Umax is the maximum radiation intensity [93, Section 2.5]. Hence the EIRP is

PEIRP = 4πUmax. (6.3)

The radiation intensity is the radiated power per unit solid angle [94, Section 2.4]. The
maximum radiation intensity is the peak of the power pattern in the far-field

Umax = max
θ∈[0,π]
ϕ∈[0,2π]

P (θ, ϕ) (6.4)

where θ and ϕ are the polar angle and the azimuth angle of a sphere around the antenna
array center. The power pattern in the far-field is the squared magnitude of the far-zone
field pattern E (θ, ϕ):

P (θ, ϕ) = |E (θ, ϕ)|2 . (6.5)

1Note that the array gain increases with M only for certain precoding and array configurations.
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For an antenna array with equal antennas the field pattern is

E (θ, ϕ) = Esingle (θ, ϕ)F (θ, ϕ) (6.6)

where Esingle (θ, ϕ) is the field pattern of one antenna and F (θ, ϕ) is the array factor. The
array factor is the field pattern of the array when its antennas are replaced by isotropic
antennas but their positions and excitation remain the same [93, Section 8.4]. The field
pattern of an isotropic antenna is

Eiso (θ, ϕ) = 1√
4π
. (6.7)

For ease of notation we consider isotropic antennas in this work. This leads to the array
power pattern

P (θ, ϕ) = |Eiso (θ, ϕ)F (θ, ϕ)|2 (6.8)

= 1
4π |F (θ, ϕ)|2 .

Hence the EIRP of an array with isotropic antennas is determined by the array factor

PEIRP = 4π max
θ∈[0,π]
ϕ∈[0,2π]

P (θ, ϕ) (6.9)

= max
θ∈[0,π]
ϕ∈[0,2π]

|F (θ, ϕ)|2 .

The array factor at the observation point at spatial angle (θ, ϕ) is the sum of the con-
tributions from the isotropic antennas at the observation point. The contribution of an
antenna is the product of the phase rotation times the excitation of the antenna. The phase
rotation is determined in the far field by the position of the antenna and the wavelength
λL. The array manifold vector a (θ, ϕ) ∈ CM collects the phase rotations and the general
expression is

a (θ, ϕ) =




e
j2π r1(θ,ϕ)

λL

...
e
j2π rM (θ,ϕ)

λL




(6.10)

where rm (θ, ϕ) is the distance from the m-th antenna to the observation point on the
sphere at spatial angle (θ, ϕ). We collect the excitations of the antennas at time t in the
vector x (t) ∈ CM . The array factor is then determined as

F (θ, ϕ) = a (θ, ϕ)T x (t) . (6.11)

However, this array factor fluctuates with the excitations and hence with the transmit
signals. Usually not the instantaneous peak power density is considered as the EIRP,
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but the time-averaged peak power density. EIRP measurements are possible only over a
non-zero time period in practice. The length of the measurement period Tmeas determines
how one determines the EIRP. If the measurement period Tmeas is very short, one must
determine the EIRP based on the instantaneous signals x (t). However, if the measurement
period Tmeas is longer than the duration of multiple symbols, then one can determine the
EIRP based on the covariance matrix of the transmit signals

S = 1
Tmeas

∫ Tmeas

0
x (t)xH (t) dt ∈ CM×M . (6.12)

As in [91] we assume a sufficiently long measurement period and hence obtain the EIRP
based on the covariance of the transmit signals

PEIRP = max
θ∈[0,π]
ϕ∈[0,2π]

1
Tmeas

∫ Tmeas

0

∣∣∣a (θ, ϕ)T x (t)
∣∣∣
2

dt

= max
θ∈[0,π]
ϕ∈[0,2π]

a (θ, ϕ)T
(

1
Tmeas

∫ Tmeas

0
x (t)x (t)H dt

)
a (θ, ϕ)∗ (6.13)

= max
θ∈[0,π]
ϕ∈[0,2π]

a (θ, ϕ)T Sa (θ, ϕ)∗ .

One can reformulate the EIRP expression as in [92,95,96]:

PEIRP = max
θ∈[0,π]
ϕ∈[0,2π]

a (θ, ϕ)T Sa (θ, ϕ)∗

= max
θ∈[0,π]
ϕ∈[0,2π]

tr
(
a (θ, ϕ)T Sa (θ, ϕ)∗

)
(6.14)

= max
θ∈[0,π]
ϕ∈[0,2π]

tr (R (θ, ϕ)S)

= max
θ∈[0,π]
ϕ∈[0,2π]

∑

i

λi (θ, ϕ)

where
R (θ, ϕ) = a (θ, ϕ)∗ a (θ, ϕ)T ∈ CM×M (6.15)

and the Eigenvalues λi (θ, ϕ) at spatial angle (θ, ϕ) are

λi (θ, ϕ) = eig (R (θ, ϕ)S) . (6.16)

6.1.1. EIRP for Linear Precoding
For linear precoding the covariance matrix is obtained from the precoding matrix. The
EIRP can be obtained also from the sum of the streams’ individual power patterns.
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For a linear precoding matrix W = [w1, . . . , wK ] ∈ CM×K and independent and iden-
tically distributed (i.i.d.) unit power transmit signals s (t) ∈ CK , the covariance matrix
is

S = 1
Tmeas

∫ Tmeas

0
Ws (t) sH (t)W Hdt

= W
1

Tmeas

∫ Tmeas

0
s (t) sH (t) dt

︸ ︷︷ ︸
=IK

W H (6.17)

= WW H

where we assume that Tmeas is longer than the duration of multiple symbols and shorter
than the duration of a precoder.2 We can also express the covariance matrix as the sum
over the K streams’ covariance matrices

S = WW H

=
K∑

k=1
wkw

H
k (6.18)

=
K∑

k=1
Sk

where the covariance matrix of the k-th stream is

Sk = wkw
H
k ∈ CM×M . (6.19)

For linear precoding one can obtain the EIRP by calculating the array power pattern for
each stream and then determining the peak of the sum of the individual power patterns

PEIRP = max
θ∈[0,π]
ϕ∈[0,2π]

a (θ, ϕ)T Sa (θ, ϕ)∗

= max
θ∈[0,π]
ϕ∈[0,2π]

a (θ, ϕ)T
K∑

k=1
wkw

H
k a (θ, ϕ)∗ (6.20)

= max
θ∈[0,π]
ϕ∈[0,2π]

K∑

k=1
a (θ, ϕ)Twkw

H
k a (θ, ϕ)∗

= max
θ∈[0,π]
ϕ∈[0,2π]

K∑

k=1

∣∣∣a (θ, ϕ)Twk

∣∣∣
2

2If Tmeas is longer than the duration of a precoder one determines the covariance matrix from multiple
precoders.
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We can also express the EIRP for linear precoding as in (6.14)

PEIRP = max
θ∈[0,π]
ϕ∈[0,2π]

tr (R (θ, ϕ)S) (6.21)

= max
θ∈[0,π]
ϕ∈[0,2π]

K∑

k=1
tr (R (θ, ϕ)Sk) .

6.1.2. EIRP Lower Bound
To determine the EIRP one should evaluate the power density at infinitely many sample
spatial angles, unless the peak power density is known. However, measuring or calculating
the power density at infinitely many samples is impossible. For many antennas and many
antenna arrays the peak power density is not known, and hence one can only measure or
calculate the power density at sample spatial angles. Consider the EIRP estimate formed
as the maximal power density at sample spatial angles:

PEIRP = max
(θ,ϕ)∈Φ

P (θ, ϕ) (6.22)

= max
(θ,ϕ)∈Φ

tr (R (θ, ϕ)S)

where Φ =
{

(θ1, ϕ1) , . . . ,
(
θNSamp , ϕNSamp

)}
is the set of NSamp sample spatial angles. The

i-th sample is defined by the polar angle θi and the azimuth angle ϕi. Clearly the EIRP
estimate is a lower bound since higher peak power densities can occur between the samples,
i.e., we have

PEIRP ≤ PEIRP. (6.23)
The accuracy of the estimate is determined by

. the distance between samples (and hence the number of samples NSamp),

. the antenna power patterns,

. the number M of BS antennas,

. the positions of the antennas,

. the covariance of the excitation of the individual antennas,

. and the wavelength λL.

We use the EIRP estimate (6.22) to analyze the EIRP in the scenario of Part I in
Chapter 7, while we quantify the accuracy of the estimate for ULAs in Chapter 8. The
EIRP estimate (6.22) is used in many works on EIRP and is treated as accurate without
further comment, for example, [86–89,92].
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6.1.3. Measuring EIRP
A probe used to measure EIRP naturally has a non-zero size and hence one cannot measure
the peak power density, but the average power density of the probe area. The peak average
power density is smaller than the peak power density. However, we consider the more strict
constraint on the peak power density in this work.
Another issue is that measuring the EIRP of an installed BS can be difficult due to

multi-path propagation. One solution is to measure the field strengths in the Fresnel
region of the near field and apply further processing to obtain the far field strengths [97].

6.1.4. EIRP of OFDM Transmissions
When orthogonal frequency-division multiplexing (OFDM) is used, the regulations specify
if the EIRP is constrained for all subcarriers or per subset of the subcarriers (even down
to single subcarriers). Since the subcarriers are orthogonal, the power pattern of each
subcarrier is determined individually. The EIRP is then determined as the peak power
density of the sum of the power patterns [89].
The power pattern of the f -th subcarrier for linear precoding is

P (f) (θ, ϕ) =
K∑

k=1

∣∣∣∣
(
a(f) (θ, ϕ)

)T
w

(f)
k

∣∣∣∣
2

(6.24)

where the array manifold vector a(f) (θ, ϕ) now depends on the wavelength of the f -th
subcarrier and the superscript (f) indicates the subcarrier. The EIRP for the subset NSC
is then

PEIRP = max
θ∈[0,π]
ϕ∈[0,2π]

∑

f∈NSC

P (f) (θ, ϕ) (6.25)

= max
θ∈[0,π]
ϕ∈[0,2π]

∑

f∈NSC

K∑

k=1

∣∣∣∣
(
a(f) (θ, ϕ)

)T
w

(f)
k

∣∣∣∣
2

where the set of subcarriers indices NSC varies from a single index f to all subcarriers
NSC = {1, . . . , NSC} depending on the bandwidth for which the EIRP is constrained in the
regulation. Again we obtain a lower bound PEIRP as in (6.22) by considering the power
densities at sample spatial angles instead of infinitely many spatial angles.

6.1.5. Connection of EIRP to Other Measures
The effective radiated power (ERP) is related to the EIRP. Instead of considering as a
reference the power that a theoretical isotropic antenna would emit to produce the peak
power density, one uses the power that an ideal half-wave dipole antenna would emit. The
two are related as [98]

PEIRP = PERP + 2.15 dB. (6.26)
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A similar constraint to the EIRP constraint is the specific absorption rate (SAR) con-
straint. SAR measures the absorption of electromagnetic energy by the body which causes
heating of tissue [96]. The SAR constraint applies especially to devices which are used
very closely to the human body, for example, an UE, while the EIRP constraint is more
relevant to BSs. The definition of SAR is similar to the definition of EIRP. However, while
the EIRP measures the peak power density in all directions, the SAR measures the power
densities in one or many worst case directions [96]. The worst case directions are obtained
form simulations of the SAR for human tissue models. This must be repeated for every
antenna array configuration and is suitable only with few antennas. An analysis of SAR
and SAR aware transmission schemes can be found in [96,99, and the references therein].

6.2. Regulatory EIRP Constraints
We present example regulations which constrain EIRP in wireless communication systems
such as Long Term Evolution (LTE), wireless local area network (WLAN) or ultra wide
band (UWB).
The ITU provides guidelines for telecommunication systems, for example, LTE, to pro-

tect humans from electromagnetic fields [100, Annex B]. Transmitters with a total radiated
power up to Pt ≤ 100 mW = 20 dBm are considered inherently compliant. A transmitter
where the EIRP is limited to PEIRP ≤ 2 W = 33 dBm is also considered inherently compli-
ant. For larger EIRP the compliance is determined from the accessibility of the transmitter,
the ability to spatially concentrate power in one direction, and the used frequency. For
LTE the EIRP is constrained for the full bandwidth of an OFDM system.
For WLAN networks EIRP regulations are defined, for example, by the FCC and by the

Electronic Communications Committee (ECC). The FCC restricts the total radiated power
to PEIRP ≤ 1 W = 30 dBm. However, this is decreased by 1 dB for each 3 dB exceeding a
directional array gain of 6 dB [101]. The directional array gain is calculated as the sum of
the maximal directional gain of an individual antenna in dB plus the number of antennas
in dB: 10 log10 (M). This means that with M = 16 isotropic antennas the radiated power
is restricted by

Pt ≤ 30 dBm− 10 log10 (16)− 6 dB
3 = 28 dBm (6.27)

and with M = 128 isotropic antennas the radiated power is restricted by

Pt ≤ 30 dBm− 10 log10 (128)− 6 dB
3 = 25 dBm. (6.28)

However, a lower directional gain is accepted but must be proven, for example, it must be
shown that the precoding strategy limits the directional gain [101]. The ECC regulations
for WLAN define a maximal EIRP of PEIRP ≤ 100 mW = 20 dBm. For WLAN the EIRP
is constrained for the total used bandwidth [89].
The EIRP is regulated by −41.3 dBm/MHz for UWB systems [90]. In OFDM-based

UWB systems the EIRP is constrained for each single subcarrier [90].



7
EIRP in the Local Area Scenario

This chapter serves to motivate the discussion of EIRP, and to show the relevance of EIRP
constraints and of EIRP controlling strategies in a realistic scenario. For this we analyze
the EIRP of the BSs in the local area scenario discussed in Part I.

7.1. Simulation Setup

We determine the network MIMO precoder and power allocation with mercury/water-fill-
ing for the single central BS deployment, the four indoor BSs deployment, and the outdoor
BSs deployment using the simulation parameters given in Section 5.1. We estimate the
EIRP for each BS by the lower bound PEIRP from (6.22). For each subcarrier we obtain
the power densities at uniformly spaced samples on a sphere around the BS 1. Then we
estimate the EIRP as the maximum of the sum of the power patterns of all subcarriers as
in (6.25). As we discuss in Chapter 8 the EIRP lower bound is sufficiently accurate if the
number of samples is high enough. Here the number of samples is Nsamp = 1024. Recall
that the 24 UEs are dropped randomly 300 times, that we consider 10 channel realizations
per drop, and that the EIRP is determined per BS. Hence we obtain 3000 PEIRP values
for each BS from which we determine the cumulative distribution function (CDF).

1We obtain uniformly spaced points on a sphere based on the technique in [102].
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7.2. EIRP of a Single Base Station
Figure 7.1 shows the CDF of the EIRP lower bound PEIRP for the rectangular array BS
of the single central BS deployment with the network MIMO scheme.2 One might expect
the EIRP to increase with the number of BS antennas, since more antennas increase the
ability to steer transmission power into certain directions. However, the mean PEIRP first
decreases from 34.03 dBm for M = 24 to 29.65 dBm for M = 48. Only then the mean
PEIRP increases with an increasing number of BS antennas, as expected. The variance of
PEIRP follows a similar trend, which is, however, less pronounced. The initial decrease of
PEIRP is explained by two effects:

. For few BS antennas the individual beam patterns are broader and have a smaller
peak power density. However, the beam patterns from the precoders of the 24 UEs
overlap and hence accumulate to a large PEIRP. With an increasing number of BS
antennas the beam patterns concentrate power more, but the overlap decreases.

. The effective channel gains after zero-forcing beamforming (ZFBF) are small for few
BS antennas. Hence the power is allocated mostly to the strong effective channels.
This increases the EIRP as few beam patterns are excited with large powers. With
an increasing number of BS antennas the power allocation becomes more uniform.

7.2.1. Example Beam Patterns
Next we study example beam patterns for the BS of the single central BS deployment to
demonstrate these effects. Figures 7.2, 7.3 and 7.4 show for a single subcarrier the power
densities of ZFBF beam patterns with M = 24, M = 48 and M = 192 BS antennas. The
distance from the origin indicates the power density in mW. The black mesh is the sum of
the power densities of the individual streams which are represented by the colored meshes.
In Figure 7.2 we observe that a positive power is allocated to only few precoders when we
use the network MIMO scheme with M = 24 BS antennas. However, the allocated powers
of 0.025 mW to 0.11 mW are large. The combination of large allocated powers and broad,
overlapping beam patterns creates a large peak power density of 3.06 mW. In Figure 7.3
the observations are different with M = 48 BS antennas. A positive power is allocated to
most precoders. However, the allocated powers of 0.005 mW to 0.028 mW are small. The
beam patterns also overlap little and hence the peak power density of 1.09 mW is small.
Figure 7.4 shows the power densities with M = 192 BS antennas. Now a positive power is
allocated to all precoders and the allocated powers of 0.0006 mW to 0.0193 mW are smaller
than withM = 48. Even though the beam patterns do not overlap the peak power density
1.84 mW is larger than with M = 48, since the precoding concentrates power in certain
directions, for example, so called “pencil beams”.

2Recall that for a single BS network MIMO, large-scale MIMO (LS-MIMO) and local precoding are
equivalent.
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Figure 7.1.: CDF of the EIRP estimate for the rectangular array BS of the single central
BS deployment with the network MIMO scheme.
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Figure 7.2.: Example beam pattern of a single subcarrier of the rectangular array BS of
the single central BS deployment with M = 24 antennas. The distance from
the origin indicates the power density in mW. The black mesh is the sum
of the power densities of the individual streams which are represented by the
colored meshes.
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Figure 7.3.: Example beam pattern of a single subcarrier of the rectangular array BS of
the single central BS deployment with M = 48 antennas. The distance from
the origin indicates the power density in mW. The black mesh is the sum
of the power densities of the individual streams which are represented by the
colored meshes.
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Figure 7.4.: Example beam pattern of a single subcarrier of the rectangular array BS of
the single central BS deployment with M = 192 antennas. The distance from
the origin indicates the power density in mW. The black mesh is the sum
of the power densities of the individual streams which are represented by the
colored meshes.
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Figure 7.5.: CDF of the EIRP estimate for one rectangular array BS of the four indoor
BSs deployment with the network MIMO scheme.

7.3. EIRP with Network MIMO
Figure 7.5 shows the CDF of the EIRP lower bound PEIRP for one rectangular array BS of
the four indoor BSs deployment with the network MIMO scheme. Here the EIRP estimate
PEIRP increases with an increasing number of BS antennas. However, the overall values
are lower than for the single central BS deployment which is due to the maximal per-BS
power Pi = 20 dBm in the four indoor BSs deployment while it is P1 = 26 dBm in the
single central BS deployment. The same effects as for the single central BS deployment
determine the trends of the EIRP. However, another effect decreases the EIRP for few BS
antennas. Recall that we determine the precoders and the power allocation assuming a
total power constraint and then scale the precoders to fulfill the per-BS power constraints.
Hence usually most BSs transmit with considerably less power than the per-BS power
constraint Pi in the four indoor BSs deployment. This effect is most prominent for few BS
antennas, where it reduces the EIRP. The effect also causes the larger variance of PEIRP.

7.4. EIRP of an Outdoor ULA
Figure 7.6 shows the CDF of the EIRP lower bound PEIRP for one ULA BS of the outdoor
BSs deployment with the network MIMO scheme. Even though the per-BS power in
the outdoor BSs deployment is constrained by Pi = 23 dBm instead of P1 = 26 dBm
in the single central BS deployment the EIRP estimates are higher. This is due to the
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Figure 7.6.: CDF of the EIRP estimate for one ULA BS of the outdoor BSs deployment
with the network MIMO scheme.

higher spatial concentration of UEs for the outdoor BS compared to the indoor BS of the
single central BS deployment. This also causes the non-zero probabilities of very high
PEIRP values. Here again the EIRP estimate decreases initially and then increases with an
increasing number of BS antennas.

7.5. EIRP with Large-Scale MIMO

Up to now we analyzed the EIRP with the network MIMO scheme. Next we analyze it
with the LS-MIMO scheme. Figure 7.7 shows the CDF of the EIRP lower bound PEIRP for
one rectangular array BS of the four indoor BSs deployment with the LS-MIMO scheme.
Here the EIRP estimate PEIRP decreases from the fully loaded case Mi = 24 to Mi = 28
BS antennas and then increases again with an increasing number of BS antennas. The
initial decrease is again caused by the power allocation. While the effective channel gains
are small and the power is concentrated to few precoders for the fully loaded case, with
few additional degrees-of-freedom the power allocation becomes more uniform. Overall the
values of PEIRP are lower with LS-MIMO than with network MIMO for the same number
Mi of per-BS antennas. This is due to the additional constraints of LS-MIMO which
restrict the precoding. The trends for one ULA BS of the outdoor BSs deployment with
the LS-MIMO scheme are similar.
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Figure 7.7.: CDF of the EIRP estimate for one rectangular array BS of the four indoor
BSs deployment with the LS-MIMO scheme.

7.6. Summary
In conclusion, the EIRP increases with an increasing number of BS antennas, though the
EIRP sometimes decreases when few degrees-of-freedom are added compared to the fully
loaded case. The power allocation has a large impact on the EIRP. If we ignore the power
allocation, two trends determine the EIRP as the number of BS antennas increases for
ZFBF: The beam patterns overlap less, which reduces EIRP, but at the same time the
transmission power becomes more concentrated in intended directions, which increases
EIRP. For network MIMO twice as many total BS antennas as served UEs seems to be
a good trade-off between EIRP and performance. For LS-MIMO the trade-off is achieved
for twice as many per-BS antennas as served UEs. However, with additional degrees-of-
freedom one could choose different precoders which might achieve a similar performance
at a reduced EIRP. Especially for a large number of BS antennas the many degrees-of-
freedom might allow to control EIRP and achieve a performance close to the performance
without an EIRP constraint. The EIRP estimates are lower for the LS-MIMO scheme as
compared to the network MIMO scheme. For a ULA they are higher as compared to a
rectangular array.
We observed that the EIRP estimate in the local area scenario of Part I can be up

to 40 dBm, while it is mostly between 24 dBm to 37 dBm. Some EIRP values violate
regulatory constraints. However schemes to lower the EIRP exist (see Section 8.7).
Note that, we considered an EIRP estimate which is a lower bound only. Hence the

presented results give a first insight only. To guarantee that the EIRP does not exceed
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a constraint we must consider EIRP upper bounds. In the next chapter we discuss such
bounds for a ULA.



8
EIRP of Uniform Linear Arrays

In this chapter, we analyze the EIRP of ULAs. Lower and upper bounds on the EIRP
of a ULA exist for single stream transmission. We review these bounds and propose new
bounds which apply to multiple stream transmissions. The combination of upper and lower
bounds allows to quantify the accuracy of EIRP estimates. We compare the EIRP bounds
and review EIRP aware transmission schemes.

ULA antennas are placed on a line and they are separated by a uniform spacing of

d = τλL (8.1)

where τ > 0 and λL = c
f
is the wavelength, which is determined by the frequency f and

the speed c of electromagnetic waves. Note that in OFDM λ depends on the subcarrier
frequency f and τ changes with the subcarrier frequency since d is constant. We assume
without loss of generality (w.l.o.g.) that the antennas are placed on a line in the zenith
direction as shown in Figure 8.1. For ease of derivations we assume that the antennas are
isotropic radiators (point sources) and that there is no mutual coupling between antennas.
With these assumptions the array factor becomes symmetric around the zenith direction,
i.e., the antenna gain is independent of the azimuth angle ϕ.

From Figure 8.1 we observe that the phase offset in the far field between the signals
from the m-th and the n-th antenna at polar angle θ is

2π
λL

(n−m) d cos(θ) = 2π (n−m) τ cos(θ). (8.2)
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Figure 8.1.: Uniform linear array.

The array manifold vector is defined as

a (θ) =




1
ej2πτ cos(θ)

ej2π2τ cos(θ)

...
ej2π(M−1)τ cos(θ)




. (8.3)

In the following we consider the EIRP of a single subcarrier for ease of notation. One can
obtain the EIRP of OFDM transmission by summing the power patterns of the subcarriers
as in (6.25), where the array manifold vector depends on the subcarrier frequency.
Recall from Section 6.1.1 that the EIRP with linear precoding is

PEIRP = max
θ∈[0,π]
ϕ∈[0,2π]

K∑

k=1

∣∣∣a (θ, ϕ)Twk

∣∣∣
2
. (8.4)

For a ULA we can drop the maximization over the azimuth angle. Hence the EIRP of a
ULA with linear precoding is

PEIRP = max
θ∈[0,π]

K∑

k=1

∣∣∣a (θ)Twk

∣∣∣
2

= max
θ∈[0,π]

K∑

k=1
tr (R (θ)Sk) (8.5)
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= max
θ∈[0,π]

tr (R (θ)S)

where Sk = wkw
H
k is the covariance matrix of the k-th stream with precoder wk and the

full covariance matrix is S = ∑K
k=1 Sk. For a ULA the matrix R (θ) simplifies to

R (θ) = a (θ)∗ a (θ)T

=




1 ej2πτ cos(θ) · · · ej2π(M−1)τ cos(θ)

e−j2πτ cos(θ) 1 . . . ...
... . . . . . . ej2πτ cos(θ)

e−j2π(M−1)τ cos(θ) · · · e−j2πτ cos(θ) 1



. (8.6)

8.1. Determining the EIRP with the IDFT
The EIRP of a ULA can be determined with the help of the NIDFT ×M inverse discrete
Fourier transform (IDFT) matrix

FNIDFT×M =




1 1 1 · · · 1
1 e

j2π 1
NIDFT e

j2π 2
NIDFT · · · e

j2π M−1
NIDFT

1 e
j2π 2

NIDFT e
j2π 4

NIDFT · · · e
j2π 2(M−1)

NIDFT

... ... ... . . . ...
1 e

j2π (NIDFT−1)
NIDFT e

j2π (NIDFT−1)2
NIDFT · · · e

j2π (NIDFT−1)(M−1)
NIDFT




. (8.7)

In [90] the EIRP for a single stream with precoder w1 is determined as

PEIRP = max
θ∈[0,π]

∣∣∣a (θ)Tw1
∣∣∣
2

= lim
NIDFT→∞

‖FNIDFT×Mw1‖2
∞ (8.8)

where the supremum norm is the supremum of the magnitudes of the vector elements
‖r‖∞ = sup {|r1|, |r2|, . . . , |rM |} of a vector r = [r1, r2, . . . , rM ]T ∈ CM . The supremum
norm is also called infinity norm or uniform norm.
The term

∣∣∣a (θ)Tw1
∣∣∣
2
equals the squared amplitude of an inverse Fourier transform of

the precoder w1 [90]. Hence for a ULA the EIRP is the maximum magnitude of the inverse
Fourier transform. Instead of using a continuous inverse Fourier transform one can use an
IDFT to approximate the EIRP. We extend the idea of determining the EIRP with the
help of the IDFT to multiple transmit streams with different precoders.

Theorem 8.1. The EIRP of a ULA transmitting K streams with linear precoding is

PEIRP = lim
NIDFT→∞

∥∥∥∥∥
K∑

k=1
|FNIDFT×Mwk|2

∥∥∥∥∥
∞

(8.9)
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where we make a slight abuse of notation by denoting the element-wise magnitude squared
of a vector x ∈ CM as

|x|2 =




∣∣∣[x](1)

∣∣∣
2

...∣∣∣[x](M)

∣∣∣
2



. (8.10)

Proof. Let θ̂ be the angle where the peak power density is achieved

θ̂ = arg max
θ∈[0,π]

K∑

k=1

∣∣∣a (θ)Twk

∣∣∣
2
. (8.11)

As we show in Lemma A.1 in Appendix A the angle θ̂ is unique for τ < 1
2 , one or two

angles θ̂ exist for 1
2 ≤ τ < 1, and multiple angles θ̂ exist for τ ≥ 1. At least one θ̂ exists

which fulfills

−1
2 ≤ τ cos

(
θ̂
)
<

1
2 . (8.12)

The EIRP is

PEIRP =
K∑

k=1

∣∣∣∣∣

[
1, ej2πτ cos(θ̂), ej2π2τ cos(θ̂), . . . , ej2π(M−1)τ cos(θ̂)

]T
wk

∣∣∣∣∣

2

. (8.13)

Note that we can substitute θ̂ by θ̃ where

0 ≤ τ cos
(
θ̃
)
< 1 (8.14)

since for −1
2 ≤ τ cos

(
θ̂
)
< 0 there exists a θ̃ where 1

2 ≤ τ cos
(
θ̃
)
< 1 such that for

0 ≤ m < M

ej2πmτ cos(θ̂) = ej2πmτ cos(θ̃). (8.15)

Then the EIRP is

PEIRP =
K∑

k=1

∣∣∣∣∣

[
1, ej2πτ cos(θ̃), ej2π2τ cos(θ̃), . . . , ej2π(M−1)τ cos(θ̃)

]T
wk

∣∣∣∣∣

2

. (8.16)

The n-th row of the IDFT matrix FNIDFT×M is

[FNIDFT×M ](n,:) =
[
1, ej2π

n−1
NIDFT , e

j2π 2(n−1)
NIDFT , . . . , e

j2π (M−1)(n−1)
NIDFT

]
. (8.17)
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Let n̂ be the index of the row which creates in (8.9) the maximum magnitude

n̂ = arg max
1≤n≤NIDFT

K∑

k=1

∣∣∣∣∣

[
1, ej2π

n−1
NIDFT , e

j2π 2(n−1)
NIDFT , . . . , e

j2π (M−1)(n−1)
NIDFT

]T
wk

∣∣∣∣∣

2

. (8.18)

Hence we obtain the maximum entry of the vector ∑K
k=1 |FNIDFT×Mwk|2 as

∥∥∥∥∥
K∑

k=1
|FNIDFT×Mwk|2

∥∥∥∥∥
∞

=
K∑

k=1

∣∣∣∣∣

[
1, ej2π

n̂−1
NIDFT , e

j2π 2(n̂−1)
NIDFT , . . . , e

j2π (M−1)(n̂−1)
NIDFT

]T
wk

∣∣∣∣∣

2

. (8.19)

Now compare the EIRP expression (8.13) and the maximum vector entry (8.19). The
only difference between the two terms is in the exponential functions of the array manifold
vector and of the row of the IDFT matrix. In (8.16) the exponents contain τ cos

(
θ̃
)
while

they contain n̂−1
NIDFT

in (8.19). The difference
∣∣∣τ cos

(
θ̃
)
− n̂−1

NIDFT

∣∣∣ < ε is bounded by the error
ε > 0 where the error approaches zero as the length of the IDFT matrix approaches infinity
limNIDFT→∞ ε = 0. Hence (8.19) becomes arbitrarily close to the EIRP with increasing
NIDFT. �

We obtain a second expression of the EIRP

PEIRP = lim
NIDFT→∞

∥∥∥diag
(
FNIDFT×MSF

H
NIDFT×M

)∥∥∥
∞
. (8.20)

Here the sum over the power densities of the K streams is replaced by the covariance
matrix S of the precoders. To obtain the second expression we transform the term inside
the maximum norm of (8.9)

K∑

k=1
|FNIDFT×Mwk|2 =

K∑

k=1
diag

(
FNIDFT×Mwkw

H
kF

H
NIDFT×M

)

= diag
(

K∑

k=1
FNIDFT×Mwkw

H
kF

H
NIDFT×M

)
(8.21)

= diag
(
FNIDFT×M

(
K∑

k=1
wkw

H
k

)
F H
NIDFT×M

)

= diag
(
FNIDFT×MSF

H
NIDFT×M

)

where we use
|r|2 = diag

(
rrH

)
. (8.22)

For a single stream K = 1 we reobtain the elegant term (8.8) from [90] from the EIRP
expression (8.9) as

PEIRP = lim
NIDFT→∞

∥∥∥|FNIDFT×Mw1|2
∥∥∥
∞

(8.23)



94 Chapter 8. EIRP of Uniform Linear Arrays

= lim
NIDFT→∞

‖FNIDFT×Mw1‖2
∞ .

Note that the EIRP of a multiple stream transmission is less than the sum of the EIRPs
of the individual transmissions, which one can conclude from the triangle inequality

lim
NIDFT→∞

∥∥∥∥∥
K∑

k=1
|FNIDFT×Mwk|2

∥∥∥∥∥
∞
≤ lim

NIDFT→∞

K∑

k=1
‖FNIDFT×Mwk‖2

∞ . (8.24)

8.1.1. EIRP Lower Bound for a ULA

For a finite NIDFT the EIRP in (8.9) is not exact. Instead we obtain the EIRP estimate

PEIRP =
∥∥∥∥∥
K∑

k=1
|FNIDFT×Mwk|2

∥∥∥∥∥
∞

(8.25)

which is a lower bound. The estimate PEIRP samples the power density at NIDFT equally
spaced polar angles θ and then determines the maximum power density of the sampled
points. These two operations lead to an EIRP lower bound as discussed in Section 6.1.2.
We can obtain the same lower bound when using a finite NIDFT in the second EIRP ex-
pression (8.20). In [90] the authors suggest that NIDFT = 64 suffices for practical purposes.
However, the accuracy of the EIRP lower bound depends on the numberM of BS antennas
and the number NIDFT of samples. In this chapter, we quantify the accuracy by analyzing
EIRP upper bounds and we show that oversampling, i.e., NIDFT

M
> 1, is necessary to obtain

meaningful bounds.
The number NIDFT of sample polar angles determines the complexity of the EIRP lower

bound PEIRP. We estimate the computational complexity by counting the number of
multiplications and magnitude squared operations. Let the number NIDFT of samples and
the numberM of BS antennas be powers of two. If NIDFT ≥M we can use the inverse fast
Fourier transform (IFFT) to calculate the length NIDFT IDFT of the vector wk. A length
NIDFT IFFT can be implemented with NIDFT

2 log2 (NIDFT) multiplications [103]. One might
be able to reduce the number of multiplications if NIDFT > M by modifying the IFFT
implementation. In case NIDFT < M we can use a length M IFFT and use only every
M/NIDFT-th value from the resulting vector, or we modify the IFFT algorithm. The IFFT
is executed K times and the magnitude squared KNIDFT times. Hence the computational
complexity of (8.25) is

CEIRP,IDFT = CMul K
NIDFT

2 log2 (NIDFT) + CMagSq KNIDFT. (8.26)

where CMul is the computational complexity of one complex number multiplication and
CMagSq is the computational complexity of one magnitude squared operation. The second
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option to calculate the EIRP in (8.20) has the computational complexity

CEIRP,IDFT = CMul

(
NIDFTM (1 +M) + M (M + 1)

2 K

)
(8.27)

where NIDFTM (1 +M) is the number of multiplications required to calculate the diagonal
elements, and M(M+1)

2 K is the number of multiplications required to determine the covari-
ance matrix S. As one might expect the computational complexity is less when the IFFT
is deployed.

8.2. Connection of EIRP to PAPR
The peak-to-average power ratio (PAPR) is usually defined as the ratio of the peak power
of a signal divided by its average power. We could define a PAPR in spatial domain: In
Section 6.1 we define the maximal power density as Umax while the average power density
is Pt

4π . Hence the PAPR of the transmission power pattern is equal to the antenna and
array gain:

PAPR = Umax
Pt
4π

= Gt. (8.28)

If we lower the PAPR of a transmission power pattern then we can increase the radiated
power Pt while the EIRP constraint remains fulfilled:

PEIRP = PtGt = Pt PAPR ≤ PEIRP,max. (8.29)

The conventional PAPR problem occurs for the PAPR of the time domain signal of an
OFDM transmission. As we saw in the previous section the EIRP of a ULA is obtained from
the “time domain” signal of an IDFT. Hence strategies developed to control the PAPR of
OFDM transmissions can be used to control the EIRP of a ULA with few adjustments [90].
We present two of these strategies in Section 8.7.

8.3. Existing EIRP Upper Bounds
Many works, for example, [86–91], assume that the EIRP lower bound obtained from
sampling the power density at different polar angles θ provides an accurate estimate of the
EIRP PEIRP ≈ PEIRP, but they do not verify this assumption. The assumption PEIRP ≈
PEIRP is only a good approximation when sufficiently many samples NIDFT are used. EIRP
upper bounds ensure that the EIRP is not greater than PEIRP ≤ PEIRP, and are feasible
to ensure that EIRP constraints are not violated. For oversampling ratios NIDFT

M
where

PEIRP ≈ PEIRP one can assume PEIRP ≈ PEIRP.
In this section, we review existing upper bounds on the PAPR of an OFDM transmission

which allow to bound the EIRP of a single stream transmission with a linear precoder
over a ULA. The extension of these bound to multiple streams should be possible but



96 Chapter 8. EIRP of Uniform Linear Arrays

seems to be non-trivial. Instead we propose new bounds which also apply to multi-stream
transmissions in the next section.

8.3.1. Upper Bound for Critical Sampling

Sampling at the Nyquist rate is called critical sampling. In [104] an upper bound on the
PAPR of an OFDM transmission based on the peak power of Nyquist rate samples is given.
This upper bound also applies to the EIRP of a ULA when the number of sample polar
angles is equal to the number of antennas NIDFT = M . If the peak power density from M
samples is PEIRP then the EIRP is bounded as [104]

PEIRP ≤ PEIRP,[104] =
( 2
π

loge (2M) + 2
)2
PEIRP. (8.30)

8.3.2. Upper Bounds for Oversampling

Many upper bounds on the PAPR of an OFDM transmission exist when the time domain
signal is oversampled. In [105] the PAPR of an OFDM transmission is upper bounded if
the time domain signal is oversampled at least twice. The result bounds the EIRP of a
ULA where PEIRP is the peak power density from NIDFT ≥ 2M polar angle samples [105]:

PEIRP ≤ PEIRP,[105] = 1
cos2

(
π
2
NIDFT
M

)PEIRP. (8.31)

This is the tightest bound we found in literature. A similar, but looser bound is obtained
in [106]. It bounds the EIRP of a ULA if there are more than NIDFT > π√

2M polar angle
samples [106]:

PEIRP < PEIRP,[106] =

(
NIDFT
M

)2

(
NIDFT
M

)2 − π2

2

PEIRP. (8.32)

8.4. Proposed EIRP Upper Bounds

In this section, we propose two upper bounds on the EIRP of a ULA with linear precoding.
These upper bounds are valid for single and multiple stream transmissions. Instead of
sampling the power density these bounds require the covariance matrix only. They have
low computational complexities if the covariance is available. The worst case upper bound
is mostly interesting to gain insights and it is very loose. However, the second upper
bound based on the covariance matrix provides a meaningful bound on the EIRP without
sampling.
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8.4.1. Worst Case Upper Bound
In the worst case the transmissions from all antennas interfere constructively in at least
one direction.

Theorem 8.2. The EIRP of an ULA with linear precoding is upper bounded as:

PEIRP ≤ PEIRP,worst =
M∑

m=1

M∑

l=1

∣∣∣[S](m,l)
∣∣∣ . (8.33)

Proof. We derive the worst case upper bound as

PEIRP = max
θ∈[0,π]

tr (SR (θ))

(a)= max
θ∈[0,π]

1T
(
S �R (θ)T

)
1 (8.34)

(b)
≤ max∣∣∣[R̃](m,n)

∣∣∣=1, ∀m,n
1T
(
S � R̃T

)
1

=
M∑

m=1

M∑

l=1

∣∣∣[S](m,l)
∣∣∣

where for (a) we use a result from [107]:

tr (AB) = 1T
(
A�BT

)
1 (8.35)

and 1 is the all ones vector. This property means that the trace of the multiplication of two
matrices is the sum over the elements of the Hadamard product of the two matrices. For
(b) we relax the optimization from the set of array manifold matrices R (θ) = a (θ)∗ a (θ)T

to the set of all matrices with unit magnitude entries. The array manifold matrices are
a subset of all matrices with unit magnitude entries, i.e., entries that only rotate the
phase. �

Note that the worst case upper bound can easily be extended to any antenna array with
linear precoding and isotropic antennas.
For a single stream the worst case upper bound assumes that the signals from all antennas

interfere constructively in at least one direction

PEIRP,worst =
M∑

m=1

M∑

l=1

∣∣∣[S](m,l)
∣∣∣

=
M∑

m=1

M∑

l=1

∣∣∣[w1](m) [w1]∗(l)
∣∣∣ (8.36)

=
M∑

m=1

M∑

l=1

∣∣∣[w1](m)

∣∣∣
∣∣∣[w1](l)

∣∣∣
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=
(

M∑

m=1

∣∣∣[w1](m)

∣∣∣
)2

.

Hence the worst case upper bound PEIRP,worst equals the maximal potential array gain for
a single stream. For a ULA the potential array gain increases in dB with 10 log10 (M).
However, usually the real array gain (especially for the transmission of multiple streams)
is smaller. For multiple streams the interpretation is not as intuitive, since the signals of
the different streams are pointing in different spatial directions at the antennas.

8.4.2. Upper Bound Based on the Covariance Matrix
The existing upper bounds, except for the worst case upper bound, are based on the peak
power density at sample polar angles. Here we propose a meaningful upper bound which
does not require sampling but relies solely on the covariance matrix.

Theorem 8.3. The EIRP of an ULA is upper-bounded as

PEIRP ≤ PEIRP,cov = tr (S) + 2
M−1∑

m=1

∣∣∣∣∣
M−m∑

l=1
[S](l+m,l)

∣∣∣∣∣ . (8.37)

Proof. To prove Theorem 8.3 first note that for a complex z = |z| ej∠z and an integer
m ∈ Z, we have

zm = |z|m ejm∠z (8.38)
which allows us to write R (θ) compactly as

R (θ) =




ω0 ω1 · · · ωM−2 ωM−1

ω−1 ω0 · · · ωM−3 ωM−2

... ... . . . ... ...
ω−M+2 ω−M+3 · · · ω0 ω1

ω−M+1 ω−M+2 · · · ω−1 ω0




(8.39)

where ω = ej2πτ cos(θ). Second, observe that for zm = |zm| ej∠zm ∈ C and αm ∈ R we have

zme
jαm + z∗me

−jαm = 2Re
{
zme

jαm
}

≤ 2
∣∣∣zmejαm

∣∣∣ (8.40)
= 2 |zm|

and we obtain the second property

max
α∈RM−1

M−1∑

m=1

(
zme

jαm + z∗me
−jαm

)
≤ 2

M−1∑

m=1
|zm| (8.41)
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where α = [α1, . . . , αM−1]T.
Now we upper bound the EIRP as

PEIRP = max
θ∈[0,π]

tr (R (θ)S)

(a)= max
θ∈[0,π]

1T
(
R (θ)� ST

)
1

(b)= max
θ∈[0,π]

(
M−1∑

m=1
ω−m

M−m∑

l=1

[
ST
]

(l+m,l)
+ tr

(
ST
)

+
M−1∑

m=1
ωm

M−m∑

l=1

[
ST
]

(l,l+m)

)

= tr (S) + max
θ∈[0,π]

(
M−1∑

m=1
ω−m

M−m∑

l=1
[S](l,l+m) +

M−1∑

m=1
ωm

M−m∑

l=1
[S](l+m,l)

)
(8.42)

(c)= tr (S) + max
θ∈[0,π]

(
M−1∑

m=1

(
ω−m

M−m∑

l=1
[S]∗(l+m,l) + ωm

M−m∑

l=1
[S](l+m,l)

))

= tr (S) + max
θ∈[0,π]



M−1∑

m=1


ωm

(
M−m∑

l=1
[S](l+m,l)

)
+ ω−m

(
M−m∑

l=1
[S](l+m,l)

)∗




(d)
≤ tr (S) + 2

M−1∑

m=1

∣∣∣∣∣
M−m∑

l=1
[S](l+m,l)

∣∣∣∣∣ = PEIRP,cov

where for (a) we use (8.35), for (b) we use the (off-)diagonal structure of R (θ) in (8.39),
for (c) we use that covariance matrices are Hermitian, i.e., [S](l,m) = [S]∗(m,l), and for (d)
we use the second property (8.41). �

Note that we have equality till (d), hence one might be able to improve the bound by
finding a better inequality to replace (8.41).
We can reformulate Theorem 8.3 due to the Hermitian covariance matrix as

PEIRP ≤ tr (S) + 2
M−1∑

m=1

∣∣∣∣∣
M−m∑

l=1
[S](l+m,l)

∣∣∣∣∣

= tr (S) + 2
M−1∑

m=1

∣∣∣∣∣
M−m∑

l=1
[S](l,l+m)

∣∣∣∣∣ (8.43)

=
M−1∑

m=1

∣∣∣∣∣
M−m∑

l=1
[S](l,l+m)

∣∣∣∣∣+ tr (S) +
M−1∑

m=1

∣∣∣∣∣
M−m∑

l=1
[S](l+m,l)

∣∣∣∣∣ .

The EIRP for a ULA is upper bounded by the magnitudes of the sums of the (off-)diagonals
of the covariance matrix of the transmit signals.
The computational complexity of the proposed EIRP upper bound PEIRP,cov is

CEIRP,cov = CMul
M (M + 1)

2 K + CMagSq (M − 1) . (8.44)

The computational complexity CEIRP,cov of the upper bound PEIRP,cov is higher than the
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complexity CEIRP,IDFT of the upper bounds based on sampling for low to medium oversam-
pling rates NIDFT

M
. The main contributor to the computational complexity is the calculation

of the covariance matrix. However, if the covariance matrix is already calculated for other
signal processing steps at the transmitter, the computational complexity of the proposed
upper bound is very low.
The presented EIRP upper bound PEIRP,cov also serves to upper bound the PAPR of an

OFDM transmission due to its connection with the EIRP of a ULA (see Section 8.2).

8.5. Three Antenna Example
In this section, we analyze the EIRP of a ULA with M = 3 antennas in a different way to
get more insights. The same steps can be applied to ULAs with more antennas.
Consider a ULA with M = 3 antennas which transmits a single stream with linear

precoding. The spacing between the antennas is d = τλL. W.l.o.g. let the precoding
vector be

w =




a1

a2e
jϕ2

a3e
jϕ3


 (8.45)

where a1, a2, a3 ∈ R and ϕ2, ϕ3 ∈ [0, 2π]. The EIRP is

PEIRP = max
θ∈[0,π]

|a (θ)w|2

= max
θ∈[0,π]

∣∣∣a1 + a2e
j(ϕ2+2πτ cos(θ)) + a3e

j(ϕ3+4πτ cos(θ))
∣∣∣
2

= max
θ∈[0,π]

[
a2

1 + a2
2 + a2

3 + 2a1a2 cos (ϕ2 + 2πτ cos(θ)) (8.46)

+ 2a1a3 cos (ϕ3 + 4πτ cos(θ)) + 2a2a3 cos (ϕ3 − ϕ2 + 2πτ cos(θ))]
= a2

1 + a2
2 + a2

3 + max
θ∈[0,π]

[2a1a3 cos (ϕ3 + 4πτ cos(θ))

+ 2a1a2 cos (ϕ2 + 2πτ cos(θ)) + 2a2a3 cos (ϕ3 − ϕ2 + 2πτ cos(θ))] .

If we assume that there exists a θ where all cosinusoidal functions in (8.46) are maximal
we recover the worst case upper bound:

PEIRP ≤ a2
1 + a2

2 + a2
3 + 2a1a3 + 2a1a2 + 2a2a3

= (a1 + a2 + a3)2 (8.47)

=
3∑

m=1

3∑

l=1

∣∣∣[S](m,l)
∣∣∣ = PEIRP,worst.

This upper bound is usually too loose as the cosinusoidal functions usually do not super-
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impose completely constructively. However, note that for M = 2 antennas, i.e., a3 = 0,
only one cosinusoidal function remains and hence the worst case upper bound is tight for
M = 2. This result shows that antenna selection is optimal for the transmission of a single
stream and M = 2 [91].
If we treat the term cos (θ) ∈ [−1, 1] in (8.46) as a time variable, we obtain constant

terms which equal the transmit power, and three harmonic oscillations: two with the
frequency 2πτ and one with twice the frequency 4πτ . The harmonic addition theorem,
which we discuss in detail in Lemma A.2 in Appendix A, allows to express cosinusoidal
functions with the same frequency as one cosinusoidal function. Hence we express the two
functions with frequency 2πτ as

2a1a2 cos (ϕ2 + 2πτ cos(θ)) + 2a2a3 cos (ϕ3 − ϕ2 + 2πτ cos(θ)) (8.48)
= 2a2ã cos (ϕ̃+ 2πτ cos(θ))

where
ã =

√
a2

1 + a2
3 + 2a1a3 cos (2ϕ2 − ϕ3) (8.49)

and

ϕ̃ = cos−1


 a1 cos (ϕ2) + a3 cos (−ϕ2 + ϕ3)√

a2
1 + a2

3 + 2a1a3 cos (2ϕ2 − ϕ3)


 . (8.50)

The EIRP becomes

PEIRP = a2
1 + a2

2 + a2
3 + max

θ∈[0,π]
[2a1a3 cos (ϕ3 + 4πτ cos(θ)) (8.51)

+ 2a2ã cos (ϕ̃+ 2πτ cos(θ))] .

Observing a2ã =
∣∣∣[S](2,1) + [S](3,2)

∣∣∣ and assuming that there exists a θ where both cosinu-
soidal functions are maximal, we recover the upper bound PEIRP,cov proposed in Theorem
8.3:

PEIRP ≤ a2
1 + a2

2 + a2
3︸ ︷︷ ︸

= tr(S)

+ 2a2ã︸ ︷︷ ︸
= 2|[S](2,1)+[S](3,2)|

+ 2a1a3︸ ︷︷ ︸
= 2|[S](3,3)|

= PEIRP,cov. (8.52)

We complete the section by discussing the power density terms of an example precoder
in Figure 8.2. The example precoder has normalized transmit power, i.e., a2

1 + a2
2 + a2

3 =
1. The first two curves are the cosinusoidal functions 2a1a2 cos (ϕ2 + 2πτ cos(θ)) and
2a2a3 cos (ϕ3 − ϕ2 + 2πτ cos(θ)) which have the same frequency. One could interpret these
functions as the power density variations caused by the interference of the transmissions
from the first and second antenna, and from the second and third antenna, respectively.
Their sum is the third curve 2a1ã cos (ϕ̃+ 2πτ cos(θ)). Note that the amplitude of this cos-
inusoidal function is less than the amplitudes of the individual functions. This is considered
in the proposed upper bound based on the covariance matrix PEIRP,cov, while the worst
case upper bound PEIRP,worst assumes that the amplitudes of the individual cosinusoidal
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Figure 8.2.: Power density of an example precoder for M = 3 antennas.

functions add constructively. In this example the worst case upper bound is PEIRP,worst = 3.
The fourth curve is the cosinusoidal function 2a1a3 cos (ϕ3 + 4πτ cos(θ)) which has twice
the frequency as the two aforementioned cosinusoidal functions. One could interpret this
function as the power density variation caused by interference of the transmissions from
the first and third antenna. The sum of the three cosinusoidal functions and the transmit
power is the power density. In this example a small gap exists between the maximum of
the power density, i.e., the EIRP, and the proposed upper bound PEIRP,cov.

8.6. Comparison of EIRP Bounds
We compare the EIRP bounds for proper complex Gaussian i.i.d. precoder coefficients. We
normalize the precoding matrix

‖W ‖2
F ≤ 0 dBm (8.53)

such that the total transmit power is 0 dBm independent of the number K of streams and
the number M of antennas. We average over 105 precoder realizations.
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Figure 8.3 shows for a single stream (K = 1) the average EIRP and the average of
the EIRP bounds. We obtain the EIRP with high accuracy from NIDFT = 64M sample
polar angles, i.e., we oversample the number M of antennas by a factor of 26. For our
precoder choice the increase of EIRP PEIRP becomes slower with an increasing number M
of antennas. Next consider the EIRP lower bound PEIRP for NIDFT = 24, NIDFT = 28, and
NIDFT = 212 sample polar angles θ. The lower bound is close to the EIRP up to critical
sampling NIDFT = M . For undersampling the EIRP lower bound PEIRP does not increase
with the number M of antennas and underestimates the EIRP. The lower bound PEIRP
seems to be a better estimate than the upper bounds up to critical sampling. However,
to ensure that EIRP constraints are fulfilled one must use upper bounds. We examine the
error of the lower bound PEIRP in Figure 8.4. The EIRP upper bound PEIRP,[105] is feasible
when oversampling at least twice. Hence for NIDFT = 24 it provides bounds until M = 23,
for NIDFT = 28 until M = 27, and for NIDFT = 212 until M = 211, respectively. The gap
to the EIRP is small for four times oversampling and very small for eight or more times
oversampling. Hence it seems that at least NIDFT = 4M samples are required to be able to
estimate the EIRP accurately. The bound PEIRP,[104] for critical sampling is very loose for
small numbers M of antennas. Here the worst case EIRP upper PEIRP,worst, proposed in
Section 8.4.1, is better. However, for more thanM > 28 antennas PEIRP,[104] is better. Note
that the worst case bound PEIRP,worst increases linearly with M while the EIRP increases
more slowly. The EIRP upper bound based on the covariance matrix PEIRP,cov, proposed
in Section 8.4.2, does not require sampling at polar angles and achieves a smaller gap than
the worst case EIRP upper PEIRP,worst and than the bound for critical sampling PEIRP,[104].
However, the bound becomes loose as the number M of antennas increases.
Figure 8.4 shows the average and the maximum error of the EIRP lower bound PEIRP

for NIDFT = 24, NIDFT = 28, and NIDFT = 212 sample polar angles θ observed for 105

precoder realizations. We already saw in Figure 8.3 that the average error increases slowly
as the oversampling becomes smaller. The minimal error is as low as zero. However, the
maximum error observed for 105 precoder realizations is larger and increases rapidly around
critical sampling. Note that for more precoder realizations the maximum error might be
even larger. These observations verify the significance of EIRP upper bounds and show
that the EIRP lower bound PEIRP cannot show the compliance with EIRP constraints.
Figure 8.5 shows the EIRP PEIRP, the lower bound PEIRP and the proposed upper bounds

PEIRP,worst, and PEIRP,cov for K = 1 stream, K = 2 streams, and K = 8 streams. The
EIRP decreases with the number K of streams for a constant total transmit power. The
EIRP bounds decrease similarly.
In conclusion, the EIRP upper bounds based on sampling require at least a four times

oversampling to provide accurate bounds. The EIRP lower bound with at least critical
sampling is on average a good estimator, but cannot show compliance with EIRP con-
straints. The EIRP upper bound PEIRP,cov, proposed in Section 8.4.2, offers an interesting
alternative which is not based on sampling at polar angles. With an increasing number of
streams and constant total transmit power the EIRP usually decreases while the gaps of
the EIRP bounds remain similar.
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Figure 8.3.: EIRP and EIRP bounds for a single stream with proper complex Gaussian
i.i.d. precoder coefficients and normalized total transmit power.

8.7. EIRP Aware Transmission Schemes
We conclude this chapter by a review of EIRP aware transmission schemes. We review
linear precoding schemes only. Some of the described strategies also work for other antenna
arrays.

8.7.1. Antenna Selection
A simple method to control the EIRP is to select a single antenna to transmit each stream.
Usually one selects the antennas which achieve the largest received signal-to-noise ratio
(SNR). To fulfill the EIRP constraint one can transmit at each antenna with a transmit
power equal to the difference of the EIRP limit minus the antenna gain of the single
antenna. This scheme is suboptimal in general, but it achieves capacity when transmitting
to a single UE in the following scenarios [91]:

. Antenna selection combined with power allocation is optimal when two transmit
antennas are deployed under an EIRP constraint.
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Figure 8.4.: Error of the EIRP lower bound PEIRP for a single stream with proper complex
Gaussian i.i.d. precoder coefficients and normalized total transmit power.

. At low SNR, antenna selection is optimal for any number of transmit antennas under
an EIRP constraint.

. If there are fewer BS antennas than UE antennas, transmitting one stream per BS
antenna is optimal at high SNR.

. For a single antenna UE, antenna selection is always optimal under an EIRP con-
straint.

However, these scenarios are not massive MIMO scenarios.

8.7.2. Power Control
Another simple option is to scale the power of a transmission scheme which is unaware
of the EIRP constraint. Let W be the precoding matrix obtained by applying an EIRP
unaware transmission scheme. The precoding matrix which fulfills the EIRP constraint is
then found as

W scaled = W

√
PEIRP,max

PEIRP
(8.54)
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Figure 8.5.: EIRP and EIRP bounds for different numbers K of streams with proper com-
plex Gaussian i.i.d. precoder coefficients and normalized total transmit power.

where PEIRP,max is the EIRP limit and PEIRP is the EIRP of the precoding matrix W .
Example transmission schemes are maximum ratio transmission (MRT) and ZFBF given a
per-BS power constraint as presented in Section 2.4. More advanced ways of power control
to comply with EIRP constraints are possible, for example, one could scale the power of
some streams only. We learned in Chapter 7 that transmitting many low power streams
usually causes less EIRP than transmitting few high power streams.

8.7.3. Optimal Precoding

The optimal precoder is known for a ULA when transmitting a single stream under an
EIRP constraint [86]. It is the solution to the following optimization problem:

ŵ1 = arg max
w1

∣∣∣hHw1
∣∣∣
2

(8.55)

s.t. lim
NIDFT→∞

‖FNIDFT×Mw1‖2
∞ ≤ PEIRP,max.
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For a single transmit stream the EIRP constraint is fulfilled with equality at the optimum
[90]. Note that, instead of constraining the peak power density, we can constrain the power
density at NIDFT angles where NIDFT →∞ approaches infinity

ŵ1 = arg max
w1

∣∣∣hHw1
∣∣∣
2

(8.56)

s.t.
∣∣∣[FNIDFT×M ](n,:)w1

∣∣∣
2 ≤ PEIRP,max ∀n ∈ {1, . . . , NIDFT} .

The optimization problem (8.56) is non-deterministic polynomial-time (NP) hard since the
objective is concave. However, it can be approximated as a second order cone problem
(SOCP) [86]. Two observations lead to the SOCP formulation: Firstly note that any
solution ŵ1 to the original problem can be multiplied with a phase shift ejυ such that
ejυhHŵ1 becomes real and non-negative. The resulting vector ejυŵ1 is also a solution to
the original problem. Hence one can fix w.l.o.g. the precoder ŵ1 such that hHŵ1 is real and
non-negative. Secondly the constraints at infinitely many angles are replaced by equally
spaced sample polar angles, hence instead of the real EIRP PEIRP the EIRP lower bound
PEIRP is considered. The optimization problem becomes

ŵ1 = arg max
w1

hHw1

s.t.
∣∣∣[FNIDFT×M ](n,:)w1

∣∣∣
2 ≤ PEIRP,max ∀n ∈ {1, . . . , NIDFT} (8.57)

hHw1 ∈ R
hHw1 ≥ 0.

As we saw in Section 8.6, oversampling of NIDFT
M

= 8 or more times as many sample polar
angles as the number M of ULA antennas allows the approximation that the EIRP lower
bound equals the EIRP PEIRP ≈ PEIRP. However, to ensure that the EIRP constraint is
fulfilled one should use an EIRP upper bound, as discussed in Section 8.3.
The SOCP can be solved, for example, with CVX [108], but, the algorithm has a high

computational complexity [90]. The complexity increases when the optimal precoders are
determined for multiple OFDM subcarriers jointly. Determining the optimal precoder for
each precoder individually usually results in a performance loss [89]. Good performance
is achieved with lower complexity when the optimization is carried out over groups of
subcarriers with low correlation instead of over all subcarriers [89].
To the best of our knowledge, the optimal precoding strategy for the transmission of

multiple streams given an EIRP constraint is not known.

8.7.4. Perturbation of Maximum-Ratio Transmission

Two transmission schemes targeted for UWB transmission of a single stream per subcarrier
given an EIRP constraint are proposed in [90]. The transmission schemes improve perfor-
mance as compared to antenna selection, and to MRT scaled to fulfill the EIRP constraint,
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while they have a lower computational complexity than optimal precoding.1 The schemes
make use of the connection between the EIRP of a ULA and the PAPR of OFDM (see
Section 8.2). Two schemes originally developed to reduce the PAPR of OFDM transmis-
sions are applied to the MRT vector to reduce the EIRP. The schemes are enhanced to
ensure that the direction of peak radiation is preserved. The first PAPR reduction scheme
compresses the values of the MRT vector, while the second PAPR reduction scheme applies
iterative soft clipping and filtering to the values of the MRT vector. Both approaches ra-
diate more energy in directions other than the direction of peak radiation, which increases
the received signal strength while keeping the peak power density unchanged. This way
one approaches the optimal precoding under an EIRP constraint [90].

8.7.5. EIRP Constrained Codebooks
Another way to control EIRP is to use precoding vectors from a codebook with known
EIRP. One approach based on Golay sequences is presented in [95]. Many works on codes
with low PAPR targeted at OFDM systems exist, for example, see [104]. They might also
help to control the EIRP.

8.7.6. Heuristic Optimization
One can use heuristic optimization methods to obtain suboptimal solutions for a wide range
of antenna arrays and scenarios. The objective would be to maximize some performance
metric while the EIRP constraint is not violated.

8.8. Summary
We analyzed the EIRP of a ULA and reviewed existing upper bounds for ULAs which
apply to single stream transmissions only. We derived new upper bounds based on the
transmission covariance matrix, which also apply to multiple stream transmissions. If the
covariance matrix is already available the new bounds have low computational complexity,
while the gap to the EIRP is small for low numbers of antennas. The IDFT allows to
implement an sampling based EIRP lower bound efficiently. The EIRP upper bounds
based on sampling require at least a eight times oversampling to provide accurate bounds.
Increasing the number of streams while the total transmit power is constant reduces the
EIRP. We reviewed EIRP aware transmission schemes. The optimal precoding is unknown
for many scenarios and is often computationally complex when it is known.

1In [90] eigen-beamforming is considered instead of MRT. Eigen-beamforming is a generalization of MRT
from a UE with a single antenna to a UE with multiple antennas. However, still a single stream is
transmitted per subcarrier. In this case eigen-beamforming is optimal.
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Conclusions
We discussed two aspects of massive MIMO which is a key strategy to achieve the goals of
future mobile networks. We analyzed massive MIMO in an indoor scenario in Part I and
the EIRP of MIMO arrays in Part II.

Conclusions to Part I
We presented precoding and power allocation schemes which allowed us to create trans-
missions with different levels of cooperation between BSs. We compared their performance
in the 3rd Generation Partnership Project (3GPP) indoor office scenario. We fixed the
number of active, single antenna UEs and swept the ratio of total number of BS antennas
to the number of served UEs from one to 10-times more BS antennas. We found that a
ratio of twice as many BS antennas as UEs provides most of the massive MIMO benefits.
We further found that this ratio is a good tradeoff between the number of antennas ver-
sus spectral efficiency (SE). Channel hardening occurred for two- to four-times as many
BS antennas as served UEs for indoor BSs. The performance differences between power
allocations were small and scheduling did not provide gains. The suboptimal transmis-
sion schemes approached a capacity upper bound and achieved user fairness. Cooperation
between BSs provided gains as compared to no cooperation, which became larger as the
level of cooperation increased. Cooperation between indoor BSs provided large gains,
while cooperation between outdoor BSs or indoor and outdoor BSs provided only small
gains. The positions of BSs determined the wall penetration loss and the interference,
which dominated performance. The same performance as a single massive MIMO BS is
achieved by distributed BSs with cooperation and fewer antennas. The costs of antenna
elements could be traded off with the costs for backhaul capability, while achieving the
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same performance. Channel estimation had to be accurate to obtain the massive MIMO
and cooperation benefits.
Future research topics include:

. Extend the analysis to a building with more floors. One must deal with interference
between floors and more BS deployments are possible.

. Optimize the positions of the BSs.

. Extend the optimization problem to a cost minimization problem or a energy effi-
ciency maximization problem, where costs or required energy are defined, for exam-
ple, per antenna, per BS, or per backhaul link.

. Many interference coordination schemes exist besides LS-MIMO. Their performance
could be evaluated in the indoor office scenario.

. Mixed or adaptive transmission schemes could achieve further improvements, for ex-
ample, depending on their positions some UEs could be served with network MIMO,
others with local precoding.

. One could include particular channel estimation techniques, for example, pilot based
techniques to study the effects of pilot contamination, or channel channel prediction
techniques.

. One could evaluate the performance experimentally in a real environment.

. In a real mobile network the number of UEs changes over time. One could include
the variable UE load.

Conclusions to Part II
We defined the EIRP and learned that in most cases one can determine only EIRP bounds,
since measuring or calculating the power density at infinitely many positions is infeasible.
We reviewed EIRP constraints in regulations. We analyzed an EIRP lower bound of the
precoders in the indoor scenario of Part I. The EIRP increased with an increasing number
of BS antennas, but, it also decreased when few antennas were added to a fully loaded sce-
nario. The power allocation had a large impact on the EIRP. Transmitting more streams
at a constant total transmit power reduced the EIRP. Two- to four-times as many BS
antennas as served UEs seems to be a good trade-off between EIRP and performance.
The EIRP sometimes violates the typical regulations, and EIRP controlling measures are
required. However, with additional degrees-of-freedom one can choose different precoders
that might achieve a similar performance at a reduced EIRP. We concluded that mas-
sive MIMO achieves its advantages also given EIRP constraints. However, one should
include EIRP constraints when analyzing massive MIMO and use EIRP aware transmis-
sion schemes. EIRP upper bounds help to design precoders that ensure that the EIRP
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does not violate the constraints. We reviewed existing upper bounds for ULAs which apply
to single stream transmissions. We derived new upper bounds, which apply also to multi-
ple stream transmissions and which have low computational complexity if the covariance
matrix is available. We found that, for ULAs, the EIRP upper bounds based on sampling
require at least a four times oversampling to provide accurate bounds. We reviewed EIRP
aware transmission schemes and found that the optimal precoding is either unknown or
computationally complex for most scenarios.
For the EIRP many open problems exist.

. To the best of our knowledge, no EIRP upper bounds exist for rectangular arrays
or other advanced arrays. In future research one might be able to use the two-
dimensional IDFT to obtain EIRP bounds in a similar way as with the IDFT for the
ULA.

. The existing EIRP upper bounds apply to single stream transmissions only and
should be extended to multiple streams. Also, new upper and lower bounds could
be discovered.

. The existing EIRP aware transmission schemes could be extended to multiple stream
transmissions, and new schemes could be discovered. For example, one could use the
proposed EIRP upper bound based on the covariance matrix as a constraint while
maximizing a performance metric.

. One simple method to control EIRP could be EIRP aware power allocation and
scheduling.

. To the best of our knowledge, the capacity given an EIRP constraint is not known
for most scenarios.





A
Proofs for Part II
Lemma A.1. Let θ̂ be the angle which solves

θ̂ = arg max
θ∈[0,π]

K∑

k=1

∣∣∣a (θ)Twk

∣∣∣
2

(A.1)

where wk ∈ CM and the array manifold vector is

a (θ) =




1
ej2πτ cos(θ)

...
ej2π(M−1)τ cos(θ)



. (A.2)

The angle θ̂ that solves (A.1) is unique for 0 < τ < 1
2 , one or two angles θ̂ exist for

1
2 ≤ τ < 1, and multiple angles θ̂ exist for τ ≥ 1.

Proof. The angle θ̂ is not unique if there is an angle θ̃ 6= θ̂ for which

a
(
θ̃
)

= a
(
θ̂
)
. (A.3)

This is the case if all elements of the vectors are equal, i.e., ∀m ∈ {1, . . . ,M} we have
[
a
(
θ̃
)]

(m)
=
[
a
(
θ̂
)]

(m)
(A.4)

= ej2π(m−1)τ cos(θ̃) = ej2π(m−1)τ cos(θ̂)
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⇔ 2π (m− 1) τ cos
(
θ̃
)

mod 2π = 2π (m− 1) τ cos
(
θ̂
)

mod 2π (A.5)

⇔ (m− 1) τ cos
(
θ̃
)

mod 1 = (m− 1) τ cos
(
θ̂
)

mod 1 (A.6)

⇔ τ cos
(
θ̃
)

mod 1 = τ cos
(
θ̂
)

mod 1. (A.7)

Note that in (A.7) the antenna index m vanished, since it is an integer. Hence we have to
consider only one equation instead of M equations.
W.l.o.g. let −1

2 ≤ τ cos
(
θ̂
)
< 1

2 and choose n ∈ Z such that −1
2 ≤ τ cos

(
θ̃
)
− n < 1

2 .
Now we restate (A.7) as

τ cos
(
θ̃
)

= τ cos
(
θ̂
)

+ n (A.8)

⇔ cos
(
θ̃
)

= cos
(
θ̂
)

+ n

τ
. (A.9)

For n = 0 it follows that θ̂ = θ̃. For n 6= 0 we obtain

θ̃ = arccos
(

cos
(
θ̂
)

+ n

τ

)
. (A.10)

The inverse cosine function is defined as [83, p. 126]

θ̃ = arccos (x)⇔ x = cos
(
θ̂
)

(A.11)

where 0 ≤ θ̃ ≤ π and −1 ≤ x ≤ 1.
Hence multiple solutions to (A.10) and multiple angles exist if there is at least one n,

n 6= 0, which fulfills
−1 ≤ cos

(
θ̂
)

+ n

τ
≤ 1. (A.12)

For τ < 1
2 it follows that n

τ
> 2 except for n = 0. Hence only n = 0 is feasible and a unique

angle θ̃ exists. For τ ≥ 1 it follows that there is a nontrivial n 6= 0 such that
∣∣∣n
τ

∣∣∣ ≤ 1.
Hence at least one n 6= 0 is feasible and multiple solutions to (A.1) exist. For 1

2 ≤ τ < 1
the number of feasible n depends on cos

(
θ̂
)
and τ . The angle θ̃ can be unique or multiple

angles can exist. �

Lemma A.2 (Harmonic Addition Theorem [109, slightly modified]). Let a, b, α, β, κ, t ∈
R. The sum of two cosinusoidal functions with frequency κ can be expressed as one
cosinusoidal function:

a cos (α + κt) + b cos (β + κt) = c cos (γ + κt) (A.13)

where

c =
√
a2 + b2 + 2ab cos (α− β) (A.14)
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γ = cos−1


 a cos (α) + b cos (β)√

a2 + b2 + 2ab cos (α− β)


 . (A.15)

Proof. Expand the left hand side of (A.13) as

a cos (α + κt) + b cos (β + κt) (A.16)
= (a cos (α) + b cos (β)) cos (κt)− (a sin (α) + b sin (β)) sin (κt)

and the right hand side of (A.13) as

c cos (γ + κt) = c cos (γ) cos (κt)− c sin (γ) sin (κt) . (A.17)

Comparing (A.16) and (A.17), the following two equations must hold:

a cos (α) + b cos (β) = c cos (γ) (A.18)
a sin (α) + b sin (β) = c sin (γ) . (A.19)

We solve for c by adding the square of (A.18) to the square of (A.19):

(a cos (α) + b cos (β))2 + (a sin (α) + b sin (β))2 = c2 (A.20)

⇔
√
a2 + b2 + 2ab cos (α− β) = c. (A.21)

Once we find c, we solve for γ in (A.18) as

cos−1


 a cos (α) + b cos (β)√

a2 + b2 + 2ab cos (α− β)


 = γ. (A.22)

�
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Abbreviations

List of Abbreviations

3GPP 3rd Generation Partnership Project
5G 5th generation mobile networks
AWGN additive white Gaussian noise
BC broadcast channel
BS base station
CB coordinated beamforming
CDF cumulative distribution function
CoMP coordinated multipoint
CS coordinated scheduling
CS/CB coordinated scheduling/coordinated beamforming
CSI channel state information
DPC dirty paper coding
ECC Electronic Communications Committee
EIRP equivalent isotropically radiated power
ERP effective radiated power
FCC Federal Communications Commission
FDD frequency division duplex
i.i.d. independent and identically distributed
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IA interference alignment
IDFT inverse discrete Fourier transform
IFFT inverse fast Fourier transform
ISI inter symbol interference
ITU International Telecommunication Union
LOS line-of-sight
LS-MIMO large-scale MIMO
LTE Long Term Evolution
LTE-Advanced Long Term Evolution-Advanced
MAC multiple-access channel
METIS Mobile and wireless communications Enablers for the Twenty-twenty

Information Society
MIMO multiple-input multiple-output
MISO multiple-input single-output
MMSE minimum mean squared error
MRT maximum ratio transmission
NLOS non line-of-sight
NP non-deterministic polynomial-time
OFDM orthogonal frequency-division multiplexing
P-ZF full-pilot zero-forcing
PAPR peak-to-average power ratio
PRB physical resource block
QAM quadrature amplitude modulation
QoS quality-of-service
QuaDRiGa Quasi Deterministic Radio Channel Generator
SAR specific absorption rate
SE spectral efficiency
SINR signal-to-interference-plus-noise ratio
SISO single-input single-output
SNR signal-to-noise ratio
SOCP second order cone problem
SVD singular value decomposition
TDD time division duplex
UE user equipment
ULA uniform linear array
UWB ultra wide band
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w.l.o.g. without loss of generality
WINNER Wireless World Initiative New Radio
WINNER II Wireless World Initiative New Radio II
WINNER+ Wireless World Initiative New Radio+
WLAN wireless local area network
ZFBF zero-forcing beamforming
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