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Abstract This work is devoted to the development of
a mathematical model of the early stages of atheroscle-
rosis incorporating processes of all time scales of the
disease and to show their interactions. The cardiovascu-
lar mechanics is modeled by a fluid-structure interaction
approach coupling a non-Newtonian fluid to a hyperelas-
tic solid undergoing anisotropic growth and a change of
its constitutive equation. Additionally, the transport of
low-density lipoproteins and its penetration through the
endothelium is considered by a coupled set of advection-
diffusion-reaction equations. Thereby, the permeability
of the endothelium is wall-shear stress modulated re-
sulting in a locally varying accumulation of foam cells
triggering a novel growth and remodeling formulation.
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The model is calibrated and applied to an murine-
specific case study and a qualitative validation of the
computational results is performed. The model is utilized
to further investigate the influence of the pulsatile blood
flow and the compliance of the artery wall to the athe-
rosclerotic process. The computational results imply
that the pulsatile blood flow is crucial, whereas the
compliance of the aorta has only a minor influence on
atherosclerosis. Further, it is shown that the novel model
is capable to produce a narrowing of the vessel lumen
inducing an adaption of the endothelial permeability
pattern.
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1 Introduction

Atherosclerosis is an inflammatory disease resulting in
the pathological alteration of the intima and media of
arteries such as e.g. the aorta. Inducing sequelae like
stroke, heart attack or angina, atherosclerosis is the lead-
ing cause of death in western societies. It is characterized
by an accumulation of inflammatory cells and lipids in
the intima and media leading to their thickening and
hence to a narrowing of the vessel lumen. It is now well-
accepted that a significant first step for the initiation
of the early atherosclerotic process is a dysfunction of
the endothelium allowing the penetration of low-density
lipoproteins (LDL) through the monolayer of endothe-
lial cells into the vessel wall. Thereby, the role of the
endothelium is crucial since it acts as a transportation
barrier between the lumen and the intima. LDL in the
vessel wall is prone to oxidative modifications initiating
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the inflammatory processes. The inflammation further
triggers a complex biochemical immune response leading
to the migration of monocytes into the artery wall induc-
ing their differentiation into macrophages. Macrophages
ingest the modified LDL and can transform to so-called
foam cells. These lipid-laden foam cells accumulate re-
sulting in the development of atherosclerotic plaques
and hence a thickening of the artery wall. A significant
narrowing of the vessel lumen can occur and a potential
rupture of the plaque can lead to subsequent diseases
like stroke or myocardial infarction [84,92,28,10].

Over the recent decades more and more evidence
was found that low wall-shear stresses (WSS), resulting
from flow recirculations and oscillatory flows, locally
trigger atherosclerosis by an increased permeability of
the endothelium with respect to LDL. However, the
concrete interplay of hemodynamic forces, endothelial
permeability and atherosclerosis progression is not yet
fully understood [80,82].

To study the influence of the mechanobiology to
atherosclerosis a broad spectrum of mathematical and
computational models were established. For a general
overview of existing models and their specific applica-
tions, see e.g. [79,45,101] and therein. A great challenge
for computational models are different time scales in-
volved in the atherosclerotic process. On the one hand
the LDL penetration, the inflammatory processes as
well as the foam cell accumulation is on the time scale
of weeks, months or years. On the other hand the hemo-
dynamics and therefore the long-time endothelial per-
meability is governed by the time scale of cardiac cycles
being in the range of seconds.

Long time scale models can roughly be divided into
the ones focusing on LDL penetration and the ones em-
phasizing the biochemical reactions of the inflammatory
processes. Many of the LDL penetration models con-
sider the transmural flow driven by the pressure gradient
across the endothelium as well as the pressure driven
transportation within the vessel wall to be of impor-
tance, see e.g. [81,96,106]. In contrast, others model
the penetration and transportation as a purely diffusive
process [46,11]. A broad spectrum of models for the
inflammatory processes exist [13,34,32,78,17,11]. Some
consider only a few key species [13,11], where others
identify up to 16 important players [34]. Some identified
chemotaxis to be crucial [13,34], where others restrict
themselves to pure ordinary differential equation models
[78]. Since from a medical point of view the complex bio-
chemical processes involved are not yet fully understood
and since a quantitative validation of the mathematical
models by experiments is not yet achieved, it is difficult
to distinguish the validity of these models. Additionally,
some of the models also consider the plaque develop-

ment process [11,34,96] in terms of heuristic growth
laws. Only very few models consider all of the before-
hand mentioned processes at the large time scale. One
can highlight the work in [11] considering the transmu-
ral flow within the artery wall, a simple but convenient
biochemical reaction model and an induced heuristic
growth.

Small time scale models in contrast focus on a phys-
iological description of the cardiovascular mechanics.
This includes mainly two aspect missing in most of the
large time scale models: pulsatile blood flow and com-
pliance of the vessel wall. It is frequently stated that
pulsatile flow should not be neglected [58,66,93] lying in
contradiction to many models, which commonly assume
stationary blood flows. The influence of the compliance
of the artery is usually investigated using fluid-structure
interaction (FSI) models allowing for a physiologically
more realistic deformation of the artery wall [19,58,71,
107,31]. However, the influence of the compliance on the
atherosclerotic process has not been considered much
[21]. For the small time scales one can highlight the work
in [58], were a non-stationary FSI simulation, a model
of the species transportation and penetration as well as
a linked model of the transmural flow is considered. The
back coupling from the large time scale, i.e. the plaque
development process and subsequent geometry changes
crucial to atherogenesis are not included therein.

A suitable multiscale in time strategy is necessary to
bring together the aforementioned small and large time
scale phenomena. General multiscale frameworks exist,
see e.g. [31], but a suitable framework for atherosclerosis
is not yet established. As a first step [58,93] consid-
ered the influence of the flow pattern to LDL penetra-
tion, but not vice versa. In contrast, [96,11] modeled
the large time scale growth process and studied the
induced changes to hemodynamics, both assuming sta-
tionary flows and phenomenological growth laws. Still,
[96] shows the back-coupling from the large time scale
due to growth being of major importance. It may explain
that the so-called fatty streak formation observable in
early stages of the disease is a result of the adjusted LDL
penetration due to the thickened artery wall altering
the blood flow.

In this contribution, the objective is to develop a
mathematical model of early atherosclerosis incorporat-
ing all beforehand mentioned phenomena and include
and discuss their interactions. Therefore, a multiphysics
model of the cardiovascular mechanics as well as for
the transportation and penetration of LDL is devel-
oped focusing on the following aspects: pulsatile blood
flow, compliant artery wall, WSS dependent migration
of LDL and growth and remodeling. To achieve mean-
ingful results the model is calibrated to and solved for
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a murine-specific geometry segmented from an in vivo
magnetic resonance angiography. The proposed model is
designed for the small time scale and is capable to phys-
iologically adapt to the long time processes of plaque
development and the induced narrowing of the blood
vessel. Therefore a state of the art FSI model of the
cardiovascular mechanics as well as a sequentially cou-
pled scalar transport model including a novel way for
calibrating the law for LDL penetration is established.
A simple phenomenological model of the inflammatory
processes is utilized to represent the large time scale
processes of foam cell accumulation triggering a novel
growth and remodeling formulation. The model is able
to reproduce important cardiovascular quantities gained
by measurements and simulations of previous studies.
We further utilize the model to study the interaction
between the two time scales. In particular, the ques-
tion of the influence of pulsatile blood flow and vessel
compliance on atherosclerosis are addressed.

The paper is organized as follows. In the next Sec-
tion we give an overview of the simplified model of the
atherosclerotic process and its mathematical formulation
describing the cardiovascular mechanics, species migra-
tion as well as the growth and remodeling processes.
Section 3 briefly presents the numerical procedure. In
section 4 the model is calibrated to a murine-specific
case and computational results are presented. Finally,
results are discussed in section 5 and critically reflected
in sections 6 and 7.

2 Modeling

2.1 Overview of the simplified model

To reproduce the atherosclerotic process in a mathemat-
ical model reasonable simplifications and assumptions
have to be made. Here the main interest is to study
the mechanobiological influence of the cardiovascular
mechanics driven by the hemodynamics on the athe-
rosclerotic process and vice versa. Therefore, we consider
the following assumptions:

– The hemodynamics is governed by the pulsatile blood
flow interacting with the elastic artery wall.

– LDL molecules are transport by advection and dif-
fusion in the lumen and solely by diffusion in the
artery wall.

– The initiator of the atherosclerotic inflammation is
the migration of LDL through the endothelium into
the artery wall.

– The endothelium has an increased permeability with
respect to LDL at regions of low wall shear stresses.

– In the artery wall LDL triggers a series of bio-chemi-
cal processes which lead to the production of foam
cells.

– The accumulation of foam cells in the artery wall
leads to a thickening of the artery wall with an
induced change of its mechanical properties.

– The thickening of the artery wall is considered to be
stress free in the reference configuration.

For a schematic overview of the simplified model and the
considered main aspects in the atherosclerotic process,
see Figure 1.

artery wall blood flow
narrowing transportation LDL in the

artery walllumen

LDL in the

wall-shear stresses

endothelium

LDL penetration

inflammationthickening foam cell

accumulation

Fig. 1 Schematic overview of the simplified model and the
considered main aspects in the atherosclerotic process.

The simplified model of atherosclerosis is represented
by a mathematical formulation as follows. The govern-
ing equations are a coupled fluid-structure-advection-
diffusion-reaction model, that we subsequently denote as
fluid-structure-scalar-scalar interaction (FS3I). It can be
subdivided into a model of the interaction of the blood
flow with the artery wall and a model of the transport
and reactions of the key species involved. The former is
realized by a FSI approach coupling an incompressible
non-Newtonian fluid including embedded three-element
Windkessels with a hyperelastic structure, which under-
goes species concentration dependent anisotropic growth
and a species concentration dependent remodeling of its
constitutive equation. The transportation of LDL with
the blood flow is governed by the advection-diffusion
equation and its migration through the endothelium
into the artery wall by a WSS dependent, modified ver-
sion of the Kedem-Katchalsky equations. LDL in the
artery wall is modeled by the diffusion-reaction equation
leading to the production of the growth inducing species
of foam cells.

2.2 Notations and domain overview

In the following domains are denoted by Ω ⊂ R3 and
boundaries are denoted by Γ ⊂ ∂Ω. They undergo finite
deformations in time t, which is explicitly expressed by
Ω(t) and Γ (t), respectively, when of particular interest.
The variables for space are X and x, which denote the
material and spatial coordinates, respectively, where the
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bolding denotes a vector or tensor valued quantity. The
displacements and velocities of a material point X at
time t are denoted by d(t,X) and u(t,X) = d

dtd(t,X),
respectively.

To account for the deformable domain of the fluid
within the FSI problem an Arbitrary-Lagrangian-Euler-
ian (ALE) observer is utilized. The ALE domain is
thereby denoted by ΩG0 since it is convenient to think of
it as the domain of the grid G of the ALE fluid. When
reformulating an Eulerian problem describing the mo-
tion of a quantity (?) to an ALE observer, the so-called
ALE time derivative ∂

∂t (?)
∣∣
χ
has to be exploited [26,27].

We usually omit the time and space dependencies to
ease notation, except in cases where it is crucial.

In the context of atherosclerosis a special focus lies
on bifurcations of large arteries where atherosclerotic
plaques are frequently located. Hence, in this context the
aortic arch with the branching subclavian and common
carotid arteries is utilized as the computational region of
interest Ω. The overall computational domain Ω can be
subdivided into the domain of the lumen and the domain
of the artery wall. Within the lumen the computational
domains of the fluid ΩF , of the ALE observer ΩG and
of the scalar-valued concentration in the fluid (fluid-
scalar) ΩFS are located. Within the artery wall the
domains of the structure ΩS and of the scalar-valued
concentrations in the structure (structure-scalars) ΩSS

are situated, see Figure 2.
To easily distinguish the affiliation of a quantity (?)

to the five computational domains its name is placed
as a superscript, i.e. the quantity is denoted by (?)

F ,
(?)
S , (?)G , (?)FS or (?)SS . Names of quantities are in-

dicated as subscript. Each computational domains con-
tains a boundary ΓIn and nOut ≥ 1 boundaries ΓOut,i,
i = 1, . . . , nOut. The fluid-structure interface as well
as the (fluid-scalar)-(structure-scalar) interface, short
the fluid-structure-scalar-scalar interface corresponding
to the endothelium is denoted by ΓFS3I. The boundary
connecting the outer artery wall with the surrounding
tissue is called ΓWall. For a schematic overview of the
different domains and boundaries, see Figure 2.

2.3 Cardiovascular mechanics

The cardiovascular mechanics is modeled by a FSI
method [19,70,61,107,57] coupling an incompressible
non-Newtonian fluid including embedded three-element
Windkessels with a hyperelastic solid undergoing finite
deformations, anisotropic growth and a change of its
constitutive equation.

ΓOut,5

ΩS,ΩSS

ΩF ,ΩG,ΩFS

ΓOut,2 ΓOut,3 ΓOut,4ΓOut,1

ΓFS3I ΓWall

ΓIn

Fig. 2 Schematic overview of the domains and boundaries
of an aortic arch: fluid domain ΩF , structure domain ΩS ,
ALE observer domain ΩG , fluid-scalar domain ΩFS , structure-
scalars domain ΩSS , inlet boundary ΓIn, outlet boundaries
ΓOut,i (i = 1, . . . , 5), fluid-structure-scalar-scalar interaction
interface ΓFS3I and outer wall boundary ΓWall.

2.3.1 Fluid model of the blood

We model blood as an incompressible non-Newtonian
fluid. The blood flow on the deformable domain ΩF (t) is
governed by the incompressible Navier-Stokes equations
in an ALE frame

%F
∂

∂t
uF
∣∣
χ
+ %F

(
(uF − uG) ·∇

)
uF

− 2ηF (uF )∇ · ε
(
uF
)
+∇pF = 0

(1)

∇ · uF = 0, (2)

where ∂
∂tu
F ∣∣

χ
denotes the ALE time derivative of the

fluid velocities uF , see [26,27]. The motion of the ALE
observer is described in section 2.3.4 and its velocity
field is denoted by uG . The constant %F and ε

(
uF
)
=

1
2 (∇uF +(∇uF )T ) are the mass density and strain rate
tensor, respectively. Blood exhibits a shear-thinning
property, i.e. a decrease of its viscosity when its strain-
rate increases [16,66,14]. We use the Carreau-Yasuda
model to account for the shear-thinning property of
blood [16,9,2,37]

ηF (uF ) = η∞ +
η0 − η∞(

1 + (κ γ̇(uF ))b
)a , (3)

where η∞, η0, κ, a and b are constants and γ̇(uF ) =√
2 tr (ε(uF )2) is the shear-rate of the fluid. The Carreau-

Yasuda model is recommended for low and mid-range
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velocities [51] and is especially well-suited for our appli-
cation.

On ΓFIn the following Dirichlet condition is applied

uF (t,x) = −QFIn(t)g(t,x) nFIn, (4)

where in general n
(?1)
(?2)

denotes the outside pointing

unit surface normal on the deformed surface Γ (?1)
(?2)

. The
scalar-valued function g(t,x) corresponds to the applied
velocity profile and QFIn(t) to the total volume influx.
Thereby QFIn(t) is a TCycl-periodical function, to regard
the pulsatile nature of blood flow with a cardiac cycle du-
ration of TCycl. We want to account for the Windkessel
effect of succeeding arteries to achieve a physiological
pressure range for the fluid. Therefore, time varying
pressures pFWK,i from the underlying Windkessel models
(see section 2.3.2) are applied as tractions on each of
the outflow boundaries ΓFOut,i:

σFnFOut,i = −pFWK,i nFOut,i, (5)

where σF = −pF1 + 2ηF
(
uF
)
ε
(
uF
)
is the Cauchy

stress tensor of the fluid.

2.3.2 Windkessel model of the blood pressure

To achieve a physiological pressure range of the fluid
and to physiologically split the total flux to the different
bifurcations, a separate three-element Windkessel model
[102,77,105,50] is used on each of the outflow boundaries
ΓFOut,i:

Ci
d

dt
pFWK,i(t) +

1

RP,i
pFWK,i(t)

= CiRC,i
d

dt
QFOut,i(t) +

(
1 +

RC,i

RP,i

)
QFOut,i(t),

(6)

where QFOut,i(t) =
∫
ΓFOut,i

uF (t) · nFOut,ida is the current

outflux through ΓFOut,i. The constants RC,i, RP,i and
Ci correspond to the characteristic resistance, periph-
eral resistance and artery compliance of the successive
artery network, respectively. They have to be fitted to
the specific case to produce physiologically meaningful
results, see section 4.1.

2.3.3 Structure model of the artery wall

The artery wall is a multi-component structure that
also contains a fluid phase [106]. Here, its mechanical
response is modeled through a anisotropic hyperelastic
material law [47], while we allow for movement of species
inside the artery tissue, see Section 2.4.2. Hence, we
follow the frequently used approach of modeling the

artery wall as a solid [19,71,58,21,31] governed by the
balance of linear momentum on ΩS0

%S0
d2

dt2
dS −∇ ·

(
FSSS(CS)

)
= 0, (7)

with FS = 1 +∇dS being the deformation gradient,
CS =

(
FS
)T

FS the right Cauchy-Green deformation
tensor and SS the second Piola-Kirchhoff stress tensor.
The constant %S0 is the reference mass density of the
artery wall.

To incorporate the effect of the tissue surrounding
the aorta, a spring and dashpot combination on ΓSWall
[71,67] is applied:(
FS SS

)
NSWall = −kSWalld

S − cSWallu
S , (8)

where in general N
(?1)
(?2)

denotes the outside pointing unit

surface normal on the undeformed surface Γ (?1)
(?2)

. The
constants kSWall and cSWall are the spring stiffness and
dashpot viscosity of the surrounding tissue, respectively.
To respect the influence of the succeeding aortic tissue
on all boundaries ΓSOut,i sliding springs and dashpots
acting only in the direction of the surface normal and
allowing a free movement in the boundary plane are
applied:(
FS SS

)
NSOut,i

= NSOut,i ·
(
−kSOutd

S − cSOutu
S)NSOut,i,

(9)

where kSOut and c
S
Out are the spring stiffness and dashpot

viscosity of the succeeding aortic tissue, respectively.
On the boundary ΓSIn, a zero displacement Dirichlet
condition is applied.

Growth

In addition to the elastodynamics we consider the non-
elastic process of growth due to the deposition of foam
cells in the atherogenesis [101]. We assume the growth
of the artery wall to be stress free in the reference
configuration [87] and hence utilize a multiplicative split
of the deformation gradient FS of the structure into an
elastic part FSElast and a growth part FSGrowth [60,1]:

FS = FSElast FSGrowth. (10)

The so introduced growth configuration is denoted by
ΩSGrowth(t) and the respective coordinates are denoted
by χ̂. To respect the stress-free nature of the growth, the
second Piola-Kirchhoff stress tensor SS in equation (7)
is computed as a pull-back of the elastic stresses SSElast,
i.e. SS = (FSGrowth)

−1SSElast(F
S
Growth)

−T . We further
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assume the artery wall to be hyperelastic with strain-
energy density function ΨS , i.e. the elastic stresses can
be calculated by

SSElast = 2
∂

∂CSElast
ΨS
(
CSElast

)
,

CSElast =
(
FSElast

)T
FSElast.

(11)

The natural direction of growth is the luminal di-
rection, as it is induced by the accumulation of foam
cells in the intima and the adjacent media. Furthermore,
growth of the aorta in the axial or circumferential direc-
tion would stretch collagen and elastin fibers inside the
artery wall and hence introduce additional wall stresses.
For a better understanding of the theory of anisotropic
growth we first assume the unit radial direction ra, the
unit axial direction ax and the unit circumferential di-
rection ci to be constants (an assumption that we drop
in the subsequent discussion). Hence, we postulate the
following form of the growth deformation gradient [56]:

FSGrowth = ϑ(cSSFC) ra⊗ ra + ax⊗ ax + ci⊗ ci, (12)

where the scalar-valued function ϑ(cSSFC) is the growth
factor and does depend on the local (mass) concen-
tration of the growth inducing species cSSFC. Since the
set {ra,ax, ci} is an orthonormal basis of R3 we can
simplify equation (12) to

FSGrowth = 1 +
(
ϑ(cSSFC)− 1

)
ra⊗ ra, (13)

which now only depends on the unit radial direction ra.
The model of the foam cells is described in section 2.4.2.
For the computation of the growth factor ϑ(cSSFC) we
exploit the idea that the increase of volume ∆VGrowth(t)
due to growth at all times t is proportional to the mass
of foam cells MFC(t) at this time. Hence, we demand

∆VGrowth(t) = α MFC(t), (14)

where α is the proportionality constant and corresponds
to the amount of volume occupied by a unit mass of
foam cells, i.e. it is the inverse of the statistical mass
density of foam cells. We can deduce

VGrowth(t)− V (0) = α MFC(t) (15)

and express this in terms of integrals over the corre-
sponding domains∫
ΩSGrowth(t)

1 dV̂ −
∫
ΩS0

1 dV = α

∫
ΩS(t)

cSSFC(t) dv, (16)

where dV̂ , dV and dv denote an integration over the cor-
responding growth, material and spatial configurations,

respectively. We pull-back all integrals to the material
configuration to achieve∫
ΩS0

JSGrowth(t) dV −
∫
ΩS0

1 dV = α

∫
ΩS0

JS(t)cSSFC(t) dV,

(17)

where JS(t) = det (FS(t)) and JSGrowth(t)

= det
(
FSGrowth(t)

) (13)
= ϑ(cSSFC(t)) are the Jacobian deter-

minants of the deformation gradient FS and the growth
part FSGrowth(t) of the deformation gradient at time t, re-
spectively. Since (17) also holds locally we can conclude
with a result similar to [56]:

ϑ
(
cSSFC(t)

)
= 1 + αJS(t)cSSFC(t). (18)

In an atherosclerosis specific setup the unit radial
direction ra at time t is equal to the unit outer normal
nSFS3I(t) of the deformed surface ΓSFS3I(t). Hence, the
radial direction does change due to the hemodynamics
and preceded growth. Thus, equation (13) is not valid
in an atherosclerotic context and we have to use an
incremental definition of the growth part FSGrowth of the
deformation gradient [38,56]. Let therefore be t, τ be in-
stances in time with τ < t, where in the interval [τ ; t] the
growth direction can be assumed to be constant. Conse-
quently, we can compute the growth part FSGrowth(t) of
the deformation gradient at time t by

FSGrowth(t) = ∆FSGrowth(τ, t) FSGrowth(τ), (19)

where FSGrowth(τ) is the growth history part of the de-
formation gradient at time τ and ∆FSGrowth(τ, t) is the
incremental growth deformation gradient from τ to t.
The incremental growth deformation gradient is com-
puted by

∆FSGrowth(τ, t) = 1

+
ϑ(cSSFC(t))− ϑ(cSSFC(τ))

ϑ(cSSFC(τ))
nSFS3I(t)⊗ nSFS3I(t).

(20)

This incremental growth deformation gradient corre-
sponds to a growth of the structure in the current radial
direction nSFS3I(t) by the factor (ϑ(t)− ϑ(τ))/ϑ(τ) com-
pared to the state at time τ .

Remark. Iff the direction of growth is constant for all
times t, then the incremental growth deformation gradi-
ent based formulation, i.e. equations (19) and (20) are
equivalent to the representation in equation (13).
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Remodeling and constitutive laws

In the previous section, we have derived a growth model
of the structure representing the increase of volume due
to the deposition of foam cells. Along with growth also
the change of mechanical properties of the structure
is considered since foam cells feature a very different
mechanical behavior compared to healthy aortic tissue.
We follow the idea that with increased accumulation of
foam cells the constitutive law of the structure locally
and gradually changes to the one of foam cells. Hence,
we compute the strain-energy density function ΨS of
the hyperelastic structure as a convex combination of
the strain-energy density function ΨSAo of healthy aortic
tissue and the strain-energy density function ΨSFC of
pure foam cells

ΨS = λ(cSSFC)Ψ
S
Ao + (1− λ(cSSFC))Ψ

S
FC, (21)

where λ(cSSFC) ∈ ]0; 1] is the remodeling factor. It is a non-
linear function depending on the local concentration cSSFC
and describes the ratio between the two extrema. To
be more precise the remodeling factor λ describes the
fraction of volume of healthy aortic tissue compared to
the overall (grown) volume. Since the change of overall
volume relative to the initial volume is given by the
growth factor ϑ(cSSFC) we can calculate the remodeling
factor by

λ(cSSFC) =
1

ϑ(cSSFC)

(18)
=

1

1 + αJScSSFC
. (22)

Consequently, at a position without foam cells, i.e. cSSFC =

0 we get λ = 1 resulting in healthy aortic material. In
contrast, a large amount of foam cells, i.e. cSSFC → ∞
results in λ = 0 and hence in the mechanical properties
that we assume for pure foam cells.

Since artery tissue is nearly incompressible [12,23],
we use an additive split for both strain-energy functions
into a volumetric and isochoric part [44,74]. For the
specific choices of the volumetric parts ΨSVol, see [73,
24]. The artery wall can be seen as a ground material
which is reinforced by fibers representing the collagen
and elastin fibers. Hence, for the isochoric part of the
healthy aortic tissue ΨSAo we exploit a four-fiber family
model, see [47,40,30,83]

ΨSAo =
c0,Ao

2

(
ICS − 3

)
+

4∑
k=1

c1,k
4c2,k

(
e(c2,k((λk)

2−1)2) − 1
)
,

(23)

where the constants c0,Ao, c1,k and c2,k are aortic tissue
specific material parameters. ICS = (JS)−2/3tr(CS) is
the first modified invariant of the right Cauchy-Green

deformation tensor CS and λk is the stretch of the k-
th fiber family, respectively. Thereby, the stretch λk is
calculated by the total Cauchy-Green tensor CS , see
[86], and hence by λk =

√
MT

k CS Mk where Mk =

[0, sin(δk), cos(δk)]
T is the direction of the k-th fiber in

the radial, axial and circumferential coordinate system.
The directions of the fibers are parametrized by the
angles δ1, δ2, δ3 and δ4, which are material specific
constants.

The mechanical behavior of atherosclerotic plaques
is more comparable to a fluid than to a solid [68]. There-
fore, a visco-hyperelastic Maxwell-like material, i.e. a
spring and dashpot in series like approach is utilized
as constitutive equation of foam cells [72,41,53,109].
The relaxation time of the viscous dashpot is τFC [72]
and for the isochoric part of the strain-energy density
function ΨSFC we follow the idea of [5] using a modified
neo-Hookean law

ΨSFC =
c0,FC

2

(
ICS − 3

)
, (24)

where the constant c0,FC is a material specific parameter.

Remark. If more species are assumed to induce the
growth and remodeling of the artery wall, the presented
laws can be generalized in a straightforward manner.
The growth factor ϑ defined in equation (18) can be
generalized to ϑ

(
cSS

)
= 1 + JS

∑
i αic

SS
i , where cSS

is the vector of all concentrations cSSi of all growth in-
ducing species i and αi are the corresponding growth
parameters. The generalization for the remodeling pro-
cess governed by equation (22) reads ΨS = 1

ϑ(cSS)
ΨSAo

+ JS

ϑ(cSS)

∑
i αic

SS
i ΨSi , where the sum is again over all

remodeling inducing species i.

2.3.4 ALE mesh movement

We model the ALE field as quasi-elastostatic structure
on the domain ΩG0 [108]. Its interface deformation is
governed by the structure’s interface displacement field
reading dG = dS on ΓGFS3I. Analogue to the structure
field a zero Dirichlet condition and zero traction bound-
ary conditions are prescribed at in- and outflow cross
sections ΓGIn and ΓGOut,i, respectively.

2.3.5 Fluid-structure interaction

At the FS3I interface ΓFS3I, we require kinematic conti-
nuity of fluid and structure velocity fields, i.e.

uF = uS , (25)
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as well as the equilibrium of interface traction fields [61]

σSnSFS3I = hSFS3I = −hFFS3I = −σFnSFS3I, (26)

where σF and σS are the Cauchy stress tensors of the
fluid and structure, respectively. The kinematic con-
straint is enforced weakly via a Lagrange multiplier
field Λ, which allows for an interpretation of the La-
grange multiplier field as the interface traction. Here, we
make the arbitrary choice Λ = hSFS3I, i.e. the Lagrange
multiplier field is seen as the interface traction acting
onto the structure side of the interface ΓSFS3I.

2.4 Scalar concentrations of species

All species are modeled by a continuum approach, i.e.
we describe them as mass concentrations. The general
framework of our simplified atherosclerosis model as
described in section 2.1 is given by the advection-diffu-
sion-reaction equation [58,65,99]. The LDL transport
in the lumen is dominated by advection, whereas in
the artery wall it is assumed to be solely driven by
diffusion. In addition, in the artery wall species are
produced and degraded by biochemical reactions. The
complex heterogeneous structure of the artery wall is
currently neglected and we utilize a so-called fluid-wall
model [110,81], where the endothelium is considered
to be the only transport barrier. The endothelium acts
as a semi-permeable membrane leading to a significant
discontinuity between the concentrations in the blood
and in the artery wall. Therefore, the calculation of
LDL is divided into two separate, but coupled domains:
the domain of the scalar-valued concentration in the
fluid ΩFS (fluid-scalar) and the domain of scalar-valued
concentrations in the structure ΩSS (structure-scalars).
The domains ΩFS and ΩSS match the domains of the
fluid ΩF and the structure ΩS , respectively. Still we
denote the corresponding quantities with FS and SS
to easily distinguish between the fluid, structure, fluid-
scalar and structure-scalar quantities.

2.4.1 Concentrations in the blood

The transportation of the mass concentration of LDL
with the blood flow is modeled by the advection-diffusion
equation. Hence, the dynamic of the scalar-valued con-
centration cFSLDL of LDL inside the deformable fluid-
scalar domain ΩFS(t) is described by

∂

∂t
cFSLDL

∣∣
χ
+ (uF − uG) · ∇cFSLDL

−∇ ·
(
DFSLDL∇cFSLDL

)
= 0,

(27)

in an ALE observer frame. The motion of the ALE
observer is the same as for the fluid field, see section 2.3.4.

The constantDFSLDL is the diffusivity of LDL in blood. On
the inflow boundary ΓFSIn we apply a Dirichlet condition:

cFSLDL = cFSLDL,In. (28)

On the outflow boundaries ΓFSOut,i we use the symmetry
condition

∇cFSLDL · nFSOut,i = 0. (29)

The flux of LDL through the FS3I interface ΓFSFS3I, i.e.
the endothelium is described by(
−DFSLDL∇cFSLDL + (uF − uG)cFSLDL

)
· nFSFS3I = −JSol(cLDL),

(30)

where JSol(c
FS
LDL) is the solute flux and is described

in section 2.4.3. It is important to note that we have
assumed the artery wall is a solid. Hence, using equation
(25) reduces the flux condition to:

−DFSLDL∇cFSLDL · nFSFS3I = −JSol(cLDL). (31)

2.4.2 Concentrations in the artery wall

The transport and interaction of species in the artery
wall is modeled by the diffusion-reaction equation. Hence,
the dynamic of the concentration cSSLDL of LDL in the
deforming structure-scalars domain ΩSS(t) is described
by

∂

∂t
cSSLDL

∣∣
χ
+ cSSLDL∇ · uS

−∇ ·
(
DSSLDL∇cSSLDL

)
− rSSLDL(c

SS) = 0,
(32)

in an ALE observer frame. The motion of the arbi-
trary observer is given by the structure field (see section
2.3.3) and its velocity field is uS . The constant DSSLDL is
the diffusivity of LDL in the artery wall. The reaction
term rSSLDL(c

SS) is a function depending on the con-
centrations cSS of all species considered in the artery
wall.

We restrict ourself to a simplistic model of the
atherosclerotic process in the artery wall. It considers
two species only: LDL and foam cells. Thereby LDL
does not exclusively model low-density lipoproteins but
represents more general all species involved in the inflam-
matory processes such as LDL, radical oxygen species,
high-density lipoproteins or modified LDL. Foam cells
represent the final products of the complex biochemical
processes like monocytes, macrophages, smooth muscle
cells, foam cells and others. Inside the domain ΩSS the
concentration of foam cells cSSFC is in analogy to equation
(32).

We assume that there are healing processes resulting
in the degradation of the scalar-valued quantity cSSLDL.
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Furthermore, foam cells are produced if the concentra-
tion of LDL cSSLDL exceeds a given threshold cSSLDL,Thres.
Hence, the reactive term of LDL is

rSSLDL(c
SS) = −dSSLDL c

SS
LDL − γSSLDL

(
cSSLDL − cSSLDL,Thres

)
+
,

(33)

where the constants dSSLDL and γSSLDL are the degradation
and reaction rate of LDL, respectively. The index (?)+
denotes the positive branch of (?), i.e. it is zero when
its argument is negative. Foam cells are a product of
LDL and are not degraded. The reactive term of foam
cells reads

rSSFC(c
SS) = γSSLDL

(
cSSLDL − cSSLDL,Thres

)
+
. (34)

On the boundaries ΓSSIn and ΓSSOut,i we use the symmetry
conditions

∇cSSLDL · nSSIn =0 = ∇cSSLDL · nSSOut,i (35)

∇cSSFC · nSSIn =0 = ∇cSSFC · nSSOut,i. (36)

We assume the artery wall to be impervious at its outer
boundary ΓSSWall and hence no flux conditions

−DSSLDL∇cSSLDL · nSSWall =0 (37)

−DSSFC∇cSSFC · nSSWall =0 (38)

are imposed. The diffusive influx of LDL through ΓSSFS3I,
i.e. the endothelium is given by

−DSSLDL∇cSSLDL · nSSFS3I = JSol(cLDL), (39)

whereas foam cells can not migrate through the endothe-
lium:

−DSSFC∇cSSFC · nSSFS3I = 0. (40)

Remark. It is highlighted again that the present model
neglects the advective transport of LDL through the
endothelium and inside the artery wall driven by trans-
mural pressure gradients. To consider these effects either
a full fluid-porous-structure interaction approach must
be chosen for the cardiovascular mechanics or the pre-
sented model has to be enriched by a flow model on the
structure domain as in [58].

2.4.3 Kedem-Katchalsky equations and wall-shear stress
modulated permeability

The endothelium is frequently modeled as semi-perme-
able membrane described by the equations of Kedem and
Katchalsky [55,95,106,11,54,46,81]. We have assumed
the artery wall to be a pure solid and hence the second

Kedem-Katchalsky equation describing the solute fluxes
reduces to [11,46]

JSol (cLDL) = PD
(
cFSLDL − cSSLDL

)
, (41)

where PD is the diffusive permeability of the endothe-
lium. This neglection of the convective mass transport
through the endothelium lies in agreement with obser-
vations in literature [97,46]. It is well-accepted that the
localization of atherosclerosis correlates with hemody-
namic factors such as low wall-shear stresses [80,82,59,
3,43]. The wall-shear stresses1 τF of the fluid acting
on the FS3I interface ΓFS3I, i.e. the endothelium, are
calculated by removing the normal parts of the tractions

τF = σF nFFS3I −
((

nFFS3I
)T
σFnFFS3I

)
nFFS3I. (42)

The WSS dependency of the endothelium is on a much
larger time scale than the cardiovascular mechanics. It is
considered by adapting the diffusive permeability PD by
a function s depending on the norm of the time-averaged
WSS <τF>t

JSol
(
cLDL, τ

F) = PD s(‖<τF>t‖)
(
cFSLDL − cSSLDL

)
(43)

where time-average of the WSS τF at time t is defined
as

<τF>t =
1

TCycl

t∫
t−TCycl

τF (s) ds. (44)

Remark. One could also include other hemodynamic
factors like the oscillatory shear index (OSI) or the rela-
tive residence time [43,80,89] into the calculation of s(?).

We call s(‖<τF>t‖) the permeability scaling factor
(PSF). For the shape of the PSF s we follow the idea
in [11]:

s(‖<τF>t‖) =
1

ln(2)
ln

(
1 +

m1

‖<τF>t‖+m2

)
, (45)

where the constants m1 and m2 are free model param-
eters which have to be fitted to the specific geometry,
see section 4.1. The PSF is a monotonically decreasing
function with respect to WSS resulting in an increased
permeability of the endothelium with respect to LDL
at regions of low WSS.

1 Wall-shear stresses is the esablished name even though
wall-shear tractions would be more acurate
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2.5 Initial conditions and prestressing

To achieve a well-defined initial value problem the spe-
cific initial conditions are stated. For the FSI part we
use zero initial conditions and smoothly increase the
prescribed fluid influx QFIn(t) to its physiological level.
We aim at utilizing geometries stemming from in vivo
medical imaging that do not represent a stress-free con-
figuration. We therefore apply prestressing according
to [35] for the structure field. Therein, the Windkessel
pressure on the outflow boundaries does lead to a phys-
iological diastolic pressure of the fluid field and hence
to physiological loading of the structure comparable to
the in vivo state.

For the concentrations in the artery wall zero ini-
tial conditions are prescribed. For initial condition of
the concentration in the blood, constant concentrations
equal to values prescribed on the inflow boundary ΓFSIn
are utilized.

3 Numerical procedure

For computationally solving the model the weak form
is established, its spatial and temporal discretization
is performed and stability issues arising in the advec-
tion dominated fields are dealt with. Additionally, an
appropriate strategy for solving the strongly coupled
discrete problem is introduced, resulting in large linear
systems solved by suitable methods. The following gives
a brief overview of the utilized methods without going
into detail. All implementations have been done in the
multiphysics framework BACI [100].

3.1 Weak form

The establishment of the weak form of the model from
the strong equations requires the definition of appropri-
ate solution spaces S and trial spaces T for all fields:

SuF =
{

uF ∈
(
H1(ΩF )

)3 ∣∣∣
uF = −QFIn g nFIn on ΓFIn

} (46)

SpF =
{
pF ∈ L2(ΩF )

}
(47)

SdS =
{

dS ∈
(
H1(ΩS)

)3 ∣∣∣ dS = 0 on ΓSIn
}

(48)

SdG =
{

dG ∈
(
H1(ΩG)

)3 ∣∣∣ dG = 0 on ΓGIn
}

(49)

SΛ =

{
Λ ∈

(
H− 1

2 (ΓFS3I)
)3}

(50)

ScFS =
{
cFS ∈ H1(ΩFS)

∣∣∣ cFS = cFSIn on ΓFSIn

}
(51)

ScSS =
{
cSS ∈ H1(ΩSS)

}
, (52)

where H1(Ω(?)), L2(Ω(?)) and H− 1
2 (Γ(?)) are the usual

Sobolev spaces. The trial spaces T are equal to the
corresponding solution spaces S, but with homogeneous
Dirichlet conditions. The overall weak subproblem of the
FSI model of the cardiovascular mechanics reads: Find
uF ∈ SuF , p

F ∈ SpF ,dS ∈ SdS ,d
G ∈ SdG ,Λ ∈ SΛ such

that [70]:

0 =rF =

(
δuF , %F

∂

∂t
uF
∣∣
χ

)
ΩF

+
(
δuF , %F

((
uF − uG

)
·∇
)
uF
)
ΩF

+
(
∇δuF , 2ηF (uF )ε(uF )

)
ΩF

−
(
∇ · δuF , pF

)
ΩF
−
(
δpF ,∇ · uF

)
ΩF

+
(
δuF , pFWK,in

F
Out,i

)
ΓFOut,i

+
(
δuF ,Λ

)
ΓFFS3I

,

(53)

0 =rS =

(
δdS , %S0

d2

dt2
dS
)
ΩS

+
(
∇δdS ,FS SS

(
CS , cSSFC

))
ΩS

+

(
δdS , kSWalld

S + cSWall
d

dt
dS
)
ΓSWall

+

(
δdS ,NSOut,i ·

(
kSOutd

S+

cSOut
d

dt
dS
)

NSOut,i

)
ΓSOut,i

−
(
δdS ,Λ

)
ΓSFS3I

,

(54)

0 =rcoupl =
(
δΛ,dS − dG

)
ΓSFS3I

, (55)

for all δuF ∈ TuF , δpF ∈ TpF , δdS ∈ TdS , δdG ∈ TdG
and δΛ ∈ TΛ. Thereby, (?, ?)Ω(?) and (?, ?)Γ (?) de-
note the usual L2 inner products on Ω(?) and Γ (?),
respectively. The overall weak subproblem of the SSI
model for the scalar concentrations of species reads:
Find cFSi ∈ ScFS and cSSi ∈ ScSS such that [108]:

0 = rFSi =

(
δcFSi ,

∂

∂t
cFSi

∣∣
χ

)
ΩFS

+
(
δcFSi ,

(
uF − uG

)
· ∇cFSi

)
ΩFS

+
(
∇δcFSi , DFSi ∇cFSi

)
ΩFS

−
(
δcFSi , JSol(ci, τ

F )
)
ΓFSFS3I

,

(56)

0 = rSSi =

(
δcSSi ,

∂

∂t
cSSi
∣∣
χ

)
ΩSS

−
(
δcSSi , cSSi ∇ · uS

)
ΩSS

+
(
∇δcSSi , DSSi ∇cSSi

)
ΩSS

−
(
δcSSi , rSSi

(
cSS

))
ΩSS

+
(
δcSSi , JSol(ci, τ

F )
)
ΓSSFS3I

,

(57)

for all δcFSi ∈ TcFS , δcSSi ∈ TcSS and i = LDL,FC.
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3.2 Discretization

A Galerkin Finite Element approximation of the weak
form is performed. Therefore, the domains ΩF and ΩS

are discretized using nF and nS elements, respectively.
The remaining domains ΩG , ΩFS and ΩSS match ei-
ther ΩF or ΩS and utilize the same meshes. To obtain
the semi-discrete problem the spatial discretization is
performed by means of the finite element method with
Lagrange polynomials as shape and ansatz functions.

The spatially discrete but temporal continuous, non-
linear coupled problem for the vector
y(t) = [uFh , p

F
h ,d

S
h ,d

G
h ,Λh, c

FS
h , cSSh ]T of the nodal an-

satz coefficients can be written in the form

d

dt
y(t)− f(t,y(t)) = 0, (58)

where the nonlinear function f corresponds to the spa-
tially discrete version of the model. For the discretization
in time, the one-step-θ scheme is exploited to achieve
an approximating sequence {yn}n=0,1,... of the time
continuous problem by finding the root of the discrete
residual r:

r(tn+1,yn+1) =yn+1 − yn −∆t
(
θf(tn+1,yn+1)

+ (1− θ)f(tn,yn)
)
= 0

(59)

for each n = 0, 1, . . . , nT , where tn = n∆t and yn =

y(tn). The time step size is denoted by ∆t and nT time
steps are performed. The scheme coefficient θ is chosen
to be θ = 0.5.

To overcome numerical stability issues arising from
the spatial, equal-order Finite Element discretization,
stabilization terms are added to the discrete fluid resid-
ual rF . Namely we utilize the streamline-upwind Petrov-
Galerkin (SUPG), pressure-stabilized Petrov-Galerkin
(PSPG) and grad-div stabilization, see [27,76] and therein.
The stabilization parameter is chosen according to [6].
Further, an additional backflow stabilization on each
of the outflow boundaries ΓFOut,i is applied due to the
pulsatile flow pattern enabling spontaneous backflows
at these Neumann boundaries [39].

To stabilize the advection dominated fluid-scalar
field we utilize the Galerkin least-squares method. Ad-
ditionally, the YZβ discontinuity-capturing is applied
[7,54] to also resolve the steep concentration gradients
occurring near the FS3I interface [62]. The stabilization
parameter is chosen according to [18].

3.3 FS3I solver strategy

A suitable solver strategy is exploited taking into account
the specific couplings between the individual fields. Due
to the strong coupling between the fluid, structure and

ALE field by the FSI coupling conditions the strongly
coupled FSI subproblem is addressed by a monolithic
approach. The (fluid-scalar)-(structure-scalar) interac-
tion (SSI) subproblem is solved monolithically too to
account for the strong SSI interface coupling. FSI and
SSI subproblems are only coupled in terms of growth
and remodeling induced by foam cell taking place on a
much larger time scale compared to the time scale of the
FSI subproblem. Hence, the natural choice for solving
the overall FS3I problem is by a sequentially staggered
scheme coupling the monolithic FSI with the monolithic
SSI problem. A schematic overview of the solver strategy
including the corresponding coupling variables is given
in Figure 3.

Sequentially	 staggered	FS3I

Monolithic	 SSIMonolithic	 FSI

Structure Fluid-
scalar

JSol (cLDL,�)

Structure-scalar

Structure-scalarWindkessel pF
WK,i

ALE	Fluid

Growth	and	remodeling #(cSS
FC), �(cSS

FC)

d, u, ⌧F
�

d�, h�

rS(cS)
uF
� ,

Fig. 3 Overview of the solver strategy for the presented
fluid-structure-scalar-scalar interaction (FS3I) model includ-
ing the coupling variables between the fields. Simple and
double arrows mark one-way and two-way couplings, respec-
tively. Dotted arrows denote weak couplings, whereas solid
arrows represent strong couplings. The subindex (?)Γ indi-
cates a surface coupled quantity (?), whereas without explicit
subindex a volume coupled quantity is denoted.

3.4 Monolithic FSI

The monolithic FSI problem to solve for the incremental
structure displacements ∆dSh , fluid velocities ∆uFh and
Lagrange multipliers ∆Λh reads [70]

∂
∂dSh

rSh 0 ∂
∂Λh

rSh
0 ∂

∂uFh
rFh

∂
∂Λh

rFh
∂
∂dSh

rcoupl
h

∂
∂uFh

rcoupl
h 0


n+1

i

∆dSh
∆uFh
∆Λh

n+1

i+1

= −

 rSh
rFh

rcoupl
h

n+1

i

,

(60)

where n = 0, 1, . . . , nT is the time step and i = 0, 1, . . .

is the Newton step. rSh , r
F
h and rcoupl

h denote the spatial
and temporal discrete non-linear residuals of the struc-
ture, fluid and FSI coupling, respectively. To ease the
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notation fluid pressure and ALE displacement degrees
of freedom are merged together with the fluid velocities.
The Newton iteration for time step n is stopped if all 2-
norms ‖r(?)‖2 of the individual single field residuals r(?)

scaled to their lengths are below 10−5.
To resolve the coupling of the fluid with the mul-

tiple three-element windkessel models an analytic re-
lationship pFWK,i(Q

F
Out,i) between the windkessel pres-

sures pFWK,i and the outfluxes QFOut,i through the dif-
ferent outflow boundaries ΓFOut,i can be derived [77].
Hence, the interface traction on the fluid (see equation
(5)) can be expressed directly by an integrated quantity
of the velocity unknowns. No additional field for the
windkessel subproblems and no additional unknowns for
the windkessel pressure are introduced.

The linear system (60) is solved by a parallel precon-
ditioned GMRES [85] with FSI specific block precondi-
tioning based on algebraic multigrid [36].

3.5 Monolithic SSI

The (fluid-scalar)-(structure-scalar) interaction problem
is solved by a monolithic approach too. The monolithic
linear problem to solve for the incremental concentra-
tions in the fluid ∆cFSh and in the structure ∆cSSh reads
[108](

∂
∂cFSh

rFS ∂
∂cSSh

rFS

∂
∂cFSh

rSS ∂
∂cSSh

rSS

)n+1

i

(
∆cFSh
∆cSSh

)n+1

i+1

= −
(

rFS

rSS

)n+1

i

(61)

where n = 0, 1, . . . , nT is the time step and i = 0, 1, . . . is
the Newton step. rFS and rSS denote the fully discrete
fluid-scalar and structure-scalars residuals, respectively.
The Newton iteration for the time step n is stopped if
both 2-norms ‖rFS‖2 and ‖rSS‖2 scaled to their lengths
are below 10−5.

Solving of the linear system (61) for the unknown
step increments ∆cFSh and ∆cSSh is again performed by
parallel GMRES [85] with block preconditioning [36].

3.6 Meshing

Our discretizations are generated using Trelis (Csimsoft)
and satisfy the following properties:

– It is conforming on the FS3I interface ΓFS3I.
– All elements are characterized by a characteristic

element length h.
– In the fluid domain ΩF a boundary refinement is

introduced to better resolve velocity gradients and
concentrations cLDL near the FS3I interface ΓFFS3I.

– The structure domain ΩS is meshed using hexahe-
dral elements with F-bar technology [90,25].

The lumen of patient-specific geometries of the aortic
arch are non-trivial to mesh with hexahedral elements.
Hence, a tetrahedral dominated mesh with a hexahe-
dral boundary layer is generated. The tetrahedral and
hexahedral elements of the fluid mesh are connected by
pyramid shaped elements. The boundary layer consists
of 4 layers of hexahedral elements with individual layer
thicknesses of h2 ,

h
4 ,

h
8 and h

16 towards the direction of
the FS3I interface ΓFS3I. The structure domain is adja-
cent to the FS3I interface ΓFFS3I with thickness T . It is
meshed in 6 element layers with an equidistant thickness.
The meshes of the ALE domain ΩG and the fluid-scalar
domain ΩFS equal the fluid mesh. The mesh of the
structure-scalars domain ΩSS is equal to the structure
mesh.

4 Computational case study and results

In the following section we calibrate the presented math-
ematical and computational model to a murine-specific
case, give the computational results of the case study
and compare the results with various literature. The
geometry of the case study is a murine-specific recon-
struction of the lumen of a non-atherosclerotic mouse
(type C57BL/6J), see Figure 4. It was segmented from
an in vivo magnetic resonance angiography by our med-
ical partners. The segmentation was performed in a
semi-automatic fashion using Mimics (Materialise). The
measurement was performed on a horizontal bore 7T
small animal scanner (Discovery MR901, GE Healthcare)
applying a ECG-triggered 3D gradient echo sequence
achieving an in-plane resolution of 59 µm with a slice
thickness of 250 µm. The achieved resolution did not al-
low for an exact segmentation of the artery wall. As only
a small part of the artery tree is considered, the varia-
tion of the wall thickness is neglected and a constant
wall thickness T is employed.

The discretization for the performed case study
of our murine-specific geometry is visualized in Fig-
ure 4. A detailed summary of the utilized mesh as
described in section 3.6 with a characteristic element
length h = 0.06 mm (for comparison: the radius of the
inflow boundary ΓFIn is RIn = 0.57 mm) and a constant
artery wall thickness T = 0.08 mm [104] is given in
Table 1. A mesh convergence analysis is performed in
section 4.3.



A Multiphysics Approach for Modeling Early Atherosclerosis 13

Fig. 4 Conforming FS3I mesh generated using Trelis consisting of tetrahedral, hexahedral and pyramid shaped elements with
a characteristic element length h = 0.06 mm. Gray represents the mesh used for the fluid domain ΩF , ALE domain ΩG and the
fluid-scalar domain ΩFS . Blue represents the mesh used for the structure domain ΩS and the structure-scalars domain ΩSS .
The numbers indicate the numbering of the outlet boundaries and the lines AB and CD are the profile lines used in the mesh
convergence analysis.

Table 1 Overview of the number of elements, number of nodes, degrees of freedom (DOF) per node and total DOF of the fluid
domain ΩF , structure domain ΩS , ALE domain ΩG , fluid-scalar domain ΩFS structure-scalars domain ΩSS and combinations
of the mesh with a characteristic element length h = 0.06 mm.

Domains # Elements # Nodes # DOF per node # DOF
ΩF Tet4 315896, Pyr5 9523, Hex8 47615 108986 4 435944
ΩS Hex8 57138 67298 3 201894
ΩG Tet4 315896, Pyr5 9523, Hex8 47615 108986 3 326958
ΩFS Tet4 315896, Pyr5 9523, Hex8 47615 108986 1 108986
ΩSS Hex8 57138 67298 2 134596

ΩF ∪ΩS ∪ΩG 430172 176284 5.47 964796
ΩFS ∪ΩSS 430172 176284 1.38 243582

All 430172 176284 6.85 1208378

4.1 Model parameters

Due to a lack of suitable in vivo data, we use an ex-
emplary set of key physiological data of mice from lit-
erature and derive from it a set of model parameters
for the given patient-specific geometry. The experimen-
tal results in [52] are utilized providing a complete set
of physiological data – the mean volume influx Q

F
In,

the length of the cardiac cycle TCycl, the diastolic pres-
sure pdia

F and the systolic pressure psys
F – from a single

source. However, this data-set is just one possible choice
representing the mice studied in [52] where the systolic
pressure psys

F seems to be low compared to other stud-
ies [103,4]. First, we give an overview of the parameters
which have to be calibrated to the specific geometry and
afterwards list the remaining parameters taken from
literature, see Tables 3 and 4.

For the prescribed inflow velocities on ΓFIn given by
equation (4) the velocity profile g(t,x) and the total
volume influx QFIn(t) need to be specified. For the inflow
profile g(t,x) a 9th order polynomial-shaped function
is utilized [88], which is superimposed by a womersley
profile respecting the influence of the oscillatory influx
on the velocity profile [49]. The temporal shape of the
volume influx QFIn(t) is taken from [77] and is scaled
such that the length of the cardiac cycle TCycl and the
mean influx Q

F
In fits to the murine physiology [52,29,4]:

TCycl = 0.1 s, Q
F
In = 16.2 ml

min . The resulting prescribed
influx QFIn(t) is plotted in Figure 5.

The parameters of each of the five three-element
Windkessels must be fitted to the murine physiology
and the specific geometry. For the murine physiology
a diastolic pressure pFdia = 77 mmHg = 10265.8 Pa and
a systolic pressure pFsys = 100 mmHg = 13332.2 Pa are
assumed as measured in [52].
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Fig. 5 Prescribed volume influx QFIn(t) through ΓFIn . The
function is periodic with a periodicity of TCycl = 0.1 s.

The compliance of the geometry is approximated
by a simulation of the structure subproblem, where
only a hydrostatic pressure is applied. Thereby, the
geometry is first prestressed to the diastolic pressure pdia
and afterwards the pressure is further increased to the
systolic pressure pFsys. Then the compliance of the given
geometry can be approximated by

Cgeo ≈
V Fsys − V Fdia

pFsys − pFdia
= 11.86 · 10−4 mm3

Pa
, (62)

where V Fsys and V Fdia are the volume of the lumen mea-
sured at the systolic and diastolic pressure level, re-
spectively. Furthermore, the approximated portions of
volume outflux %QFOut,i through each of the five outflow
boundaries ΓFOut,i is approximated by the ratio of the
surface area of ΓFOut,i to the total surface area of all
five outflow boundaries. Following the approach of [105]
and [50], we achieve Windkessel parameters as given in
Table 2.

Table 2 Parameters for the calibration of the three-element
Windkessel and calibrated results. Approximated portion of
volume outflux %QFOut,i and resulting characteristic resis-
tance RC,i, peripheral resistance RP,i and artery compli-
ance Ci of each of the five three-element Windkessels. All
units are in mm, g, s.

i %QFOut,i RC,i RP,i Ci · 104

1 11.36 % 16.93 Pa s
mm3 384.18 Pa s

mm3 4.29 mm3

Pa

2 8.97 % 19.56 Pa s
mm3 426.39 Pa s

mm3 3.29 mm3

Pa

3 12.73 % 12.00 Pa s
mm3 369.63 Pa s

mm3 4.81 mm3

Pa

4 7.55 % 21.49 Pa s
mm3 441.62 Pa s

mm3 2.86 mm3

Pa

5 59.39 % 4.67 Pa s
mm3 69.73 Pa s

mm3 21.50 mm3

Pa

The growth parameter α in equation (18) corre-
sponds to the amount of unite volume occupied by a
unit scalar of foam cells. We follow the approach of [34]
and ask for a constant mass density %S of the artery
wall, which in later states consists of both, the healthy
aortic tissue and the foam cell population. Hence, we

utilize:

α =
1

%S0
= 1.0 · 103 mm3

g
. (63)

The remaining parameters of the FSI subproblem
are independent of the specific geometry and are taken
from literature. However, no complete data-set based
on murine experiments exists such that the used param-
eters for the Carreau-Yasuda model, the surrounding
tissue and the constitutive laws are based on human
experiments. An overview of fitted as well as the re-
maining parameters of the FSI subproblem is found in
Table 3.

For the calibration of the permeability scaling fac-
tor s(‖<τF>‖) in equation (45) we generalize the idea
of [11]. We determine the two model parameters m1

and m2 of the monotonically decreasing function such
that the following two conditions are fulfilled:

1. The scaling factor vanishes, when the norm ‖τF‖
of the wall-shear stresses is equal to the reference
value ‖τF‖. This reference value is approximated
by considering a stationary Poiseuille flow with an
equivalent total volume influx Q

F
In through a straight

pipe with the same radius RIn as the inflow bound-
ary ΓFIn . Hence, we require

s(‖τF‖) = 1 with (64)

‖τF‖ = 4

π

η∞Q
F
In

R3
In

= 6.404 Pa. (65)

2. According to measurements in [42] the local perme-
ability of the endothelium with respect to LDL in
regions with high permeability is up to a factor of 25
higher than in regions with low permeability. We as-
sume the harmonic mean of those two extrema being
the case of s(‖τF‖) = 1. Since the permeability is
highest for the case ‖τF‖ = 0 we require the PSF
to fulfill

s(0) = 5. (66)

The two assumptions lead to

s(‖<τF>‖) = 1

ln(2)
ln

1 +

(
1 + 1

2s(0)−2

)
‖τF‖

‖<τF>‖+ 1
2s(0)−2‖τ

F‖


=

1

ln(2)
ln

(
1 +

6.618 Pa

‖<τF>‖+ 0.213 Pa

)
, (67)

which is plotted in Figure 6.
An overview of the calibrated and remaining physio-

logical parameters for the SSI subproblem is found in
Table 4.
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Table 3 Overview of all parameters of the fluid-structure interaction subproblem. Parameters are sorted by the first appearance
in the model. All units are in mm, g, s, Pa.

Parameter Equation Description Value Source
%F (1) Mass density of blood 1.05 · 10−3 g

mm3 [51]
η∞ (3) Dynamic viscosity of blood for high shear rates 3.45 · 10−3 Pa s [16]
η0 (3) Dynamic viscosity of blood for zero shear rates 5.6 · 10−2 Pa s [16]
κ (3) Characteristic time of Curreau-Yasuda model 1.902 s [16]
b (3) Parameter of Curreau-Yasuda model 1.25 [16]
a (3) Parameter of Curreau-Yasuda model 0.624 [16]

QFIn(t) (4) Influx rate over time Figure 5 [77,52]
TCycl (4) Length of cardiac cycle 0.1 s [29]
Q
F
In (4) Mean influx rate 270.0 mm3

s
[52]

Ci (6) Artery compliances of Windkessels on ΓFOut,i Table 2 Table 2
RC,i (6) Characteristic resistances of Windkessels on ΓFOut,i Table 2 Table 2
RP,i (6) Peripheral resistances of Windkessels on ΓFOut,i Table 2 Table 2
%S0 (7) Reference mass density of artery wall 1.0 · 10−3 g

mm3 [34]
kSWall (8) Spring stiffness of embedded tissue 5.0 · 103 Pa

mm
[22,71]

cSWall (8) Dashpot viscosity of embedded tissue 100.0 Pa s
mm

[71]
kSOut (9) Spring stiffness of succeeding tissue 2.0 · 104 Pa

mm
[71]

cSOut (9) Dashpot viscosity of succeeding tissue 100.0 Pa s
mm

[71]
α (18), (22) Growth parameter 1.0 · 103 mm3

g
eq. (63)

c0,Ao (23) Stiffness of aortic ground material 47.43 · 103 Pa [83]
c1,1 (23) Stiffness of first fiber 35.23 · 103 Pa [83]
c2,1 (23) Exponential parameter of first fiber 7.65 · 10−6 [83]
δ1 (23) Angular of first fiber 0◦ [83]
c1,2 (23) Stiffness of second fiber 40.84 · 103 Pa [83]
c2,2 (23) Exponential parameter of second fiber 0.1 [83]
δ2 (23) Angular of second fiber 90◦ [83]
c1,3 (23) Stiffness of third fiber 15.21 · 103 Pa [83]
c2,3 (23) Exponential parameter of third fiber 2.58 [83]
δ3 (23) Angular of third fiber 48.98◦ [83]
c1,4 (23) Stiffness of fourth fiber 15.21 · 103 Pa [83]
c2,4 (23) Exponential parameter of fourth fiber 2.58 [83]
δ4 (23) Angular of fourth fiber −48.98◦ [83]
τFC (24) Relaxation time of lipid material 47.5 · 10−3 s [72]
c0,FC (24) Stiffness of lipid material 10.0 · 103 Pa [5]

Table 4 Overview of all parameters of the SSI subproblem. Parameters are sorted by the first appearance in the model. All
units are in mm, g, s, Pa.

Parameter Equation Description Value Source
DFSLDL (27) Diffusivity of LDL in the blood 3.07 · 10−5 mm2

s
[64,98]

cFSLDL,In (28) Concentration of LDL at ΓFSIn 1.22 · 10−6 g
mm3 [33]

DSSLDL (32) Diffusivity of LDL in the artery wall 5.4 · 10−8 mm2

s
[98,42]

DSSFC (32) Diffusivity of foam cells in the artery wall 0.0 [34]
PD (43) Diffusive permeability of the endothelium 1.7 · 10−8 mm

s
[97,106]

m1 (45) Permeability scaling factor parameter 6.618 Pa eq. (67)
m2 (45) Permeability scaling factor parameter 0.213 Pa eq. (67)

4.2 Dimensionless parameters

From the parameters in Table 3 and Table 4 dimension-
less parameters are calculated. For the fluid problem the
Reynolds number Re at the inflow boundary is given by

Re =
2%F‖uF‖RIn

η∞
, (68)

where uF is the characteristic velocity. Using the peak
velocity at the inflow boundary ΓFIn , i.e.maxuF∈ΓFIn ‖u

F‖

results in an approximation for the peak Reynolds
number RePeak = 411.3. Using the temporal and spa-
tial mean of the velocities on the inflow boundary re-
sults in an approximation for the mean Reynolds num-
ber ReMean = 91.9. The peak and mean Reynolds num-
bers are slightly bigger than found in literature [29,4,
48,94] The Womersley number Wo of the fluid is given
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Fig. 6 Calibrated law for the permeability scaling factor
s(‖<τF>‖) plotted over the norm of the time-averaged wall-
shear stresses ‖<τF>‖ of the fluid. ‖τF‖ = 6.404 Pa is the
approximated reference value of the WSS.

by

Wo =

√
2π%FR2

In
TCycl η∞

= 2.49, (69)

fitting very well to the murine physiology [29,4,48,94].
Since both Reynolds numbers RePeak and ReMean as well
as the Womersley number Wo are small, the behavior
of the fluid is viscous-dominated and in the laminar
regime.

The dimensionless parameter for the transportation
of LDL with the blood flow governed by the advection-
diffusion equation is the Peclet number Pe given by

Pe =
2‖uF‖RIn

DFSLDL
. (70)

Inserting again the peak and mean velocity the range for
the Peclet number is Pe ∈ [9.82 · 106; 4.40 · 107] being in
the physiological regime of LDL transport [91]. Hence,
the transportation with the blood flow is advection
dominated, except for regions close to the no-slip fluid-
structure interface ΓFFS3I.

4.3 Convergence analysis

To prove the validity of the computational results a
spatial and temporal convergence analysis is performed.
We exemplarily check the convergence of the fluid veloci-
ties uF and the ALE displacements dG over two distinct
lines AB and CD as indicated in Figure 4.

The spatial convergence is analyzed by utilizing the
constant time step size ∆t = 2.5 · 10−4 s in combi-
nation with meshes as described in section 3.6 with
characteristic element lengths h of 0.04 mm, 0.06 mm,
0.09 mm and 0.12 mm. The velocity profiles of the
four meshes over the lines AB and CD at the peak of
the systolic phase of the fifth cardiac cycle (i.e. t =

0.412 s) is plotted in Figure 7. The meshes with h =

0.04 mm and h = 0.06 mm posses qualitatively the
same behavior. Quantitatively, the relative L2-error of
the velocities ‖u

F
h=0.04mm−uFh=0.06mm‖
‖uFh=0.06mm‖

and the displace-

ments ‖d
G
h=0.04mm−dGh=0.06mm‖
‖dGh=0.06mm‖

over the lines AB and CD
between the finest two meshes are below 1, 6%.

Additionally to the velocities and displacements, we
exemplarily check the spatial convergence of the WSS
and von Mises stresses at the four intersection points
of the fluid-structure interface ΓFFS3I and the lines AB
and CD. The relative errors of the WSS between the
finest two meshes at these four points are below 2.75%.
The relative errors of the von Mises stresses between the
finest two meshes at these four points are below 7.38%

but are well within the asymptotic range.
To analyze the temporal convergence the mesh with

a characteristic element length h = 0.06 mm is utilized
with three time step sizes ∆t of 1.25 · 10−4 s, 2.5 · 10−4 s

and 5.0 · 10−4 s. Again the velocity profiles over the
lines AB and CD are analyzed and plotted at time t =
0.412 s in Figure 8. Temporal convergence is sufficiently
reached with a time step size of ∆t = 2.5 · 10−4 s.
Quantitatively, the relative L2-error of the velocities and
the displacements over the lines AB and CD between
the smallest two time step sizes are below 1, 3%.

The qualitatively same spatial and temporal con-
vergence behavior was observed for other points and
profile lines too. As the wall stress is no quantity of
particular interest in the present model, we further
employ the mesh with a characteristic element length
h = 0.06 mm in combination with a constant time step
size ∆t = 2.5 · 10−4 s.

4.4 Model validation

Due to lack of detailed experimental data, the presented
mathematical model and its parameters are solely qual-
itatively validated by comparing the computational re-
sults to cardiovascular measurements and computational
results from literature. The Windkessel subproblems de-
termining the pressure of the fluid starts with an unphys-
iological zero pressure and requires approximately four
cardiac cycles to reach a periodic state. Hence, in the fol-
lowing the computed results from the seventh simulated
cardiac cycle are utilized. Exemplarily, the Windkessel
pressure at the outflow boundary ΓOut,5 over time t is
plotted in Figure 9. In its periodic state the Windkessel
subproblem at ΓOut,5 is oscillating between the diastolic
pressure pdia ≈ 74.0 mmHg = 9867.0 Pa and systolic
pressure psys ≈ 102.5 mmHg = 13660.6 Pa, being close
to the assumed pressure levels in [52]. Still, the systolic
pressure is approximately 10− 20 % low compared to
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Fig. 7 Spatial convergence study.
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Fig. 9 Pressure from three-element Windkessel on outflow
ΓOut,5 over time t. After approximately four cardiac cycles the
periodic state with the diastolic pressure pdia = 74.0 mmHg
and the systolic pressure psys = 102.5 mmHg is reached.

of interest here, namely WSS and PSF have only negligi-
ble sensitivity to the absolute hydrostatic pressure level
due to the applied prestressing procedure. Therefore,
the impact of higher pressure levels to the presented
results was computationally investigated (results not
shown) showing that they are only minor affected. The
qualitative shape of the pressure over time is in good
agreement with the results achieved in [77].

As a result of the fluid pressure and the prestressing
of the structure, the structure undergoes a maximal

radial enlargement of the inner artery wall of around
14− 17 % in the aortic arch and around 8− 12 % in its
branches, which is in good agreement to the measure-
ments in [67]. Thus, the distensibilities (i.e. the radial
enlargements per pressure increase) of the aortic arch
and its branches are around 5 − 6 · 10−3 1

mmHg and
3− 4 · 10−3 1

mmHg , respectively, lying in the same order
of magnitude as reported in [4].

Due to the pulsatile fluid flow the instantaneous
WSS τF changes rapidly over time. But since the WSS
dependent migration of LDL into the artery wall is on a
much larger time scale than the cardiac cycle, it is con-
venient to look at the time-averaged WSS <τ>F , where
we have dropped the time index to ease notation. If not
explicitly stated otherwise the time-average is over the
seventh simulated cardiac cycle. The estimated reference
WSS ‖τF‖ = 6.404 Pa (see equation (65)) lies in per-
fect agreement with measurements from literature [15].
The norm of the peak of the computed time-averaged
WSS ‖<τF>‖ is 49.28 Pa which corresponds to the 7.7

times of the norm of the reference WSS ‖τF‖, both ly-
ing in good agreement with computational results from
literature [29,94]. When the instantaneous WSS τF is
used in equation (67) the instantaneous PSF s(‖τF‖)
is computed. However, in experiments the long time
behavior is measured, which is determined by the mean
of the PSF . Therefore, one can computationally inves-
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Fig. 8 Temporal convergence study.

tigate three different scenarios: the time-average of the
instantaneous PSF <s(‖τF‖)>, the PSF of the time-
averaged norm of the WSS s(<‖τF‖>) and the PSF of
the norm of the time-averaged WSS s(‖<τF>‖). The
computational study of these three cases showed that
only the latter case is able to match observations from
literature [69,29]. The second case did produce a quali-
tatively but not quantitatively correct PSF pattern and
the first did result in a more or less homogeneous PSF.
In the following we call s(‖<τF>‖) the time-averaged
PSF to ease the language. It is visualized from the an-
terior and posterior view in Figures 10(a) and 10(b),
respectively. The time-averaged PSF varies in the range
between 0.18 and 4.74. Hence, the computed scalings
differ by a factor of 26.3 showing very good agreement
to the measurements in [42].

As visible in Figure 10(a) the simulated regions with
high endothelial permeability and hence high risk for
atherosclerotic driven plaque development are located
at the ascending aorta, near bifurcations and at the
bottom and side of the aortic arch. This qualitative
phenomena was also observed in experiments [69,3] and
computational results by others [19,29,8,94]. Further,
is the location of atherosclerotic plaques at theses sites
qualitatively supported by our own experimental obser-
vations with atherosclerotic mice models, see Figure 11.

Fig. 11 Dissection of an aortic arch of a LDL receptor defi-
cient mouse (type B6.129S7-Ldlrtm1Her/J) with atheroscle-
rotic plaques (white).

Remark. Even if not explicitly considered in the com-
putation of the PSF the spatial distribution of the
OSI o(τF ) = 1

2

(
1− ‖<τF>‖

<‖τF‖>

)
[43,80,89] is plotted from

two perspectives in Figures 10(c) and 10(d). An OSI
of zero corresponds to regions of non-oscillatory and
an OSI of 0.5 to regions of highly oscillatory flow. As
visible the pattern is comparable to the computed PSF
visualized in Figures 10(a) and 10(b). This supports
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Fig. 10 Spatial distribution of the time-averaged permeability scaling factor and oscillatory shear index.
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the theory that the OSI may also be a valid indicator
for atherosclerosis plaque localization as is critically dis-
cussed in literature, see [80] and therein. But since the
actual influence of the OSI to the endothelial perme-
ability is unknown it is not explicitly considered in the
presented model and is subject to future research.

4.5 Influence of the compliance of the structure and the
pulsatile flow

We study the influence of model reductions frequently
found in literature. Therefore, the PSF derived from
the present model with the PSF of reduced models is
compared. As model reductions we assume two simplified
versions of the presented model.

The first reduced model is the case of a non-compliant
artery wall, resulting in a rigid wall model. This sim-
plification is enforced by the addition of the condition
dS = 0 compared to the full model. Such types of
models are frequently proposed, especially in the con-
text of porous media models of the artery wall, see
e.g. [81,106,11,66,93]. The computed time-averaged
PSF s(‖<τF>‖) of the rigid wall model is visualized
in Figure 12(a). The computed OSI o(τF ) for the rigid
wall model is visualized in Figure 12(c).

The second reduced model scenario frequently found
in literature is the case of time-averaged, stationary
flows [99,51,96,11,71]. This simplification is achieved
by assuming the influx to be constant in time, i.e. by
QFIn(t) = Q

F
In. As consequence, the pressure of the fluid

determined by the Windkessel subproblems is constant
and no displacements can be expected from the loaded
in vivo state. Hence, the time-averaging of flows implies
dS = 0. The computed PSF s(‖<τF>‖) of the time-
averaged flow model is visualized in Figure 12(b). The
computed OSI o(τF ) for the time-averaged flow model
is visualized in Figure 12(d).

4.6 Growth and remodeling

To show the capability of the cardiovascular model to
adapt to the narrowing of the lumen due to the foam
cell accumulation we compare the spatial distribution of
the PSF at different times. Since bio-chemical reactions
and growth and remodeling processes take place on a
much larger time scale as the hemodynamics (compare
e.g. the orders of the length of the cardiac cycle TCycl
and the diffuse permeability PD) and as the model is
not embedded into a multiscale strategy, some model pa-
rameters are increased to accelerate atherosclerosis pro-
gression to the duration of a few cardiac cycles. Hence,
after the cardiovascular model obtained its periodic

state the following adapted model parameters were used:
DSSLDL = 6.0 · 10−2 mm2

s , dSSLDL = 1.0 1
s , γ

SS
LDL = 0.4 1

s ,
cSSLDL,Thres = 2.0 · 10−3 cFSLDL,In, PD = 5.0 · 10−4 mm

s ,
kSWall = 1.0 · 106 Pa

mm and α = 4.1 · 1010 mm3

g . In Fig-
ures 13(a) and 13(b) the time-averaged PSF of the
grown artery wall at different times are visualized. Fig-
ures 13(c), 14(b) and 14(c) show the growth and remod-
eling factors of the grown artery wall at time t = 1.2 s.

5 Discussion

We have presented a methodology to calibrate our model
to a specific geometry and a given set of key physio-
logical data. The validation of the model in section 4.4
showed that computed key physiological quantities such
as blood pressure, artery wall displacements and WSS
derived from the considered exemplary set of murine
physiological data are qualitatively in good agreement
with measurements and simulations performed by others.
However, there are large inter- and intramouse varia-
tions of these quantities depending on the condition,
type, age or size of the specific mouse and its geometry,
see e.g. [15,103,63] and therein. Still, a quantitative
validation of the developed model remains to be done,
once a complete in vivo data-set is available to us.

The newly developed calibration of the time-averaged
WSS dependent law for the scaling of the endothelial
permeability s(‖<τF>‖) to the specific geometry can
be used to estimate potential plaque locations. The pre-
dicted plaque locations are geometry-driven and thus
only a qualitative agreement with other studies could
be found. A quantitative validation of the developed
PSF for the specific geometry remains to be done. We
plan to image the in vivo plaque locations and compare
them to the predicted locations by the PSF in terms of
a suitable metric, see e.g. the work in [21]. A picture of
a dissection of a murine aortic arch with atherosclerotic
plaques is given in Figure 11. The alternative formula-
tions for the time-averaged endothelial PSF <s(‖τF‖)>
and s(<‖τF‖>) did not result in physiologically mean-
ingful results.

In literature, models of atherosclerosis with time-
averaged flows are commonly utilized. This is often
argued by the idea that the growth and remodeling
process in atherosclerosis is on a much larger time scale
than the hemodynamics and hence also the mean blood
flow is a right indicator for the mechanobiology behind.
In contrast to this argument, the comparison of our pro-
posed model with the reduced time-averaged flow model
introduced in section 4.5, shows a significant difference
in the WSS pattern and hence their time-averaged PSF
pattern, see Figures 10(a) and 12(b). This observation is
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0.18 4.74

time-averaged PSF s(k<⌧F>k) [1]

(a) Anterior view of the spatial distribution of time-averaged
permeability scaling factor s(‖<τF>‖) of the rigid wall
model.

0.18 4.74

time-averaged PSF s(k<⌧F>k) [1]

(b) Anterior view of the spatial distribution of time-averaged
permeability scaling factor s(‖<τF>‖) of the time-averaged
flow model.

0.50.0

oscillatory shear index o(⌧F ) [1]

(c) Anterior view of the spatial distribution of the oscillatory
shear index o(τF ) of the rigid wall model.

0.50.0

oscillatory shear index o(⌧F ) [1]

(d) Anterior view of the spatial distribution of the oscillatory
shear index o(τF ) of the time-averaged flow model.

Fig. 12 Spatial distribution of time-averaged permeability scaling factor and oscillatory shear index for the rigid and mean-flow
model.
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0.18 4.74

time-averaged PSF s(k<⌧F>0.5 sk) [1]

(a) Spatial distribution of time-averaged permeability scal-
ing factor s(‖<τF>0.5 s‖) at time t = 0.5 s.

0.18 4.74

time-averaged PSF s(k<⌧F>1.2 sk) [1]

(b) Spatial distribution of time-averaged permeability scal-
ing factor s(‖<τF>1.2 s‖) at time t = 1.2 s.

(c) Grown artery wall, spatial distribution of growth factor ϑ(cSSFC(1.2 s)) at time t = 1.2 s and comparison of grown cross
sections with aortic cross sections from LDL receptor deficient mice (type B6.129S7-Ldlrtm1Her/J) with early (left top) and
advanced (right) atherosclerotic plaques. The murine cross sections were stained with haematoxylin.

Fig. 13 Cross sections of spatial distribution of time-averaged permeability scaling factor and growth factor at different times
and comparison of grown cross sections with mouse experiments.
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even more valid when comparing the OSI computed by
the two models, see Figures 10(c) and 12(d). This effect
is due to the unphysiological averaging of the pulsatile
nature of blood flow preventing flow recirculations and
oscillatory flows frequently occurring in the diastolic
phase of the cardiac cycle, where the cardiac output
is close to zero. In the case of time-averaged flows we
do not observe such oscillatory flows at all, see Fig-
ure 12(d). This observation strongly supports the theory
that the above described model reduction of neglecting
the pulsatile nature of blood flow and hence using a
time-averaged flow is misleading, as is stated by others
too [66,93,29,58].

In contrast, the comparison of results of the full
model with its rigid wall simplification shows that the
displacements of the artery wall only have a minor influ-
ence on the WSS and PSF patterns, see Figures 10(a)
and 12(a). Similar observations are also made for the
computed OSI of the two models, see Figures 10(c)
and 12(c). In our case study we find that the time-
averaged WSS and OSI and hence the endothelial per-
meability is only slightly affected by radial enlargements.
Hence, the rigid wall model is also capable to properly
compute the spatial distribution of the time-averaged
PSF and the OSI patterns and hence is also suited to
predict the potential plaque development locations. The
difference in the PSF mainly is that the non-compliant
artery wall model yields sharper transitions between low
and high permeability regions, where in contrast the
compliant artery wall does produce broader and more
blurred high permeability regions. Similar observations
for the WSS patterns in carotid arteries were observed
in [20]. However, in [20] a significant influence of the
compliant artery wall to the OSI was observed which
lies in contrast to our observations.

Still we also support the idea that a FSI-like ap-
proach to model atherosclerosis is indispensable. This is
also stated by others [58,20,21], but the reason for our
conclusion is different. Our observations indicate that
not the radial enlargement of the lumen arises the need
for a FSI approach, but much more the ability of the
model to capture the permanent displacements of the
endothelium due to the artery wall thickening. Conse-
quently, a classical FSI approach is not mandatory, but
mainly a rigid wall and pulsatile flow model where the
vessel lumen adapts to growth and remodeling. Still, a
pure CFD simulation is not sufficient since growth and
remodeling processes can only be captured in a physi-
ological manner when the specific layout of the artery
wall, i.e. a suitable constitutive law is considered. Hence,
a FSI-like approach is indispensable to physiologically
capture the influences of the large time scale phenomena
in atherosclerosis to the cardiovascular mechanics.

To accelerate the development of atherosclerotic
plaques to a few cardiac cycles some parameters of
the model had to be adapted. This was done in a way
such that the developed plaques qualitatively match
plaques found in our experiments with atherosclerotic
mice models, see Figure 13(c).

As indicated in Figures 13(a) and 13(b), growth
successively narrows the lumen and induces a drastic
change of the PSF pattern representing the endothelial
permeability. To give a quantitative example, the lumi-
nal area of cross section EF (see Figure 13(c)) is reduced
by 36, 8% compared to the initial state, see Figure 14.
Even if the results were achieved with our simplistic in-
flammatory model, this illustrates the presented model
of the cardiovascular mechanics is capable to adjust
dynamically to the large time scale atherosclerotic pro-
cess of growth and remodeling. For the primary high
permeability regions with already developed plaques
there are two main trends. On the one hand can the
endothelial permeability could decrease such that the
healing processes outweigh the continuing LDL pene-
tration and hence the atherosclerotic process locally
stagnates resulting in a stable plaque. In the contrary
case, the endothelial permeability would be too high for
the plaque to become stable and the plaque continues
to grow. To be able to predict the stability outcome of a
plaque, a predictive reaction model for the species must
be established to replace our simplified model. However,
such a mathematical model is yet not developed. Fur-
ther, it is inevitable to embed the presented model into
a suitable multiscale strategy as e.g. presented in [31].

6 Limitations

The presented model is affected by five main limita-
tions. First, the conclusions drawn from the developed
mathematical and computational model are based only
on a single murine-specific computational case study
which is based on a single set of physiological data from
literature. Hence, the murine-specific setup in our model
only differs in the geometry and geometry-derived model
parameters. Still, the computational case study of our
model showed that our proposed model is well appli-
cable in the context of atherosclerosis. We expect that
the qualitatively same results are achieved also for other
murine-specific geometries and derived parameter sets.
In further work more murine-specific cases will be solved
to further confirm the presented conclusions.

Second, the reaction model is a drastic simplification
of the complex bio-chemical processes in atherosclero-
sis. Many important processes and key species involved
in the development of atherosclerotic plaques were ne-
glected and a simple heuristic reaction model with solely
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growth factor #(cSS
FC(0.0 s)) [1]

1.0 4.0

(a) Initial cross section EF and
spatial distribution of growth fac-
tor ϑ(cSSFC(0.0 s)) at time t = 0.0 s.

1.0

growth factor #(cSS
FC(1.2 s)) [1]

4.0

(b) Grown cross section EF and
spatial distribution of growth fac-
tor ϑ(cSSFC(1.2 s)) at time t = 1.2 s.

remodeling factor �(cSS
FC(1.2 s)) [%]

25 75

(c) Grown cross section EF and spa-
tial distribution of remodeling fac-
tor λ(cSSFC(1.2 s)) at time t = 1.2 s.

Fig. 14 Initial and grown cross section EF (compare Figure 13(c)) and spatial distribution of growth factor and remodelling
factor at different times.

two species (LDL and foam cells) was utilized. However,
a quantitatively validated and predictive model for the
development of early atherosclerotic plaques is yet not
available and hence more sophisticated reaction models
from literature would not increase the validity of our
computational results. The development of such a pre-
dictive model and its implementation into the present
model is ongoing work.

The third limitation of the proposed model is its
computational cost preventing it from a straightforward
application to predict the long time process of atheroscle-
rosis. In future work the model has to be embedded into
a suitable multiscale in time strategy, e.g. similar to
[31]. Thereby, the presented models of cardiovascular
mechanics and concentrations in the blood can be uti-
lized on the small time scale. In contrast, the model
of concentrations in the artery wall (with a more so-
phisticated reaction model) can be used on the large
time scale. As has been shown here, the modeling of the
small time scale is indispensable and hence the usage of
a multiscale in time strategy is unavoidable.

Another limitation of the model is that it suffers
from a variety of uncertainties which were yet not as-
sessed. The utilized magnetic resonance angiography has
a rather coarse spatial resolution (especially through-
plane) compared to other imaging techniques like micro
computer tomography. Thus, due to the common se-
quence of imaging, segmentation and simulation, imma-
nent inaccuracies in the segmented geometry of the
lumen may result in geometry-driven alterations of
computed results, especially of the WSS and PSF pat-
terns [63]. Additionally, the coarse resolution did not
allow for a segmentation of the artery wall thickness

and thus the simplification of a constant wall thickness
was employed. Further, some model parameters are only
roughly known as they are very difficult to measure (such
as the spatial variation of the diffusive permeability) or
were not yet measured based on murine experiments
(such as the parameters for the surrounding tissue). A de-
tailed quantification of theses uncertainties in our model
is very challenging and must be individually addressed
in future work.

Finally, the neglection of the transmural pressure
gradient driven porous media flow inside the artery wall
and the subsequent neglection of the convective solute
flux through the endothelium is another limitation. But
since the mechanical properties are dominated by the
adventitia and media layers of the artery wall and these
layers mainly consist of a solid phase [106] the influence
of the fluid phase to the cardiovascular mechanics here
is assumed to be minor. Additionally, the importance
of the porous media flow on the transportation of LDL
through the endothelium is controversial, see e.g. [97]
and [75], and requires further investigations.

7 Conclusion

A novel mathematical multiphysics model of early ather-
osclerosis has been proposed. It consists of a fluid-
structure interaction model of cardiovascular mechanics
including a novel scalar dependent anisotropic growth
and remodeling formulation. Further, an advection-dif-
fusion-reaction model including a law for the endothelial
permeability was introduced to account for the species
transport in the blood and their migration into and
reaction in the artery wall.
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It was shown how the model can be calibrated to
given physiological data sets and murine-specific geome-
tries such that it reproduces important cardiovascular
quantities such as the blood pressure, radial displace-
ments, wall shear stresses and others. The novel law for
the up- and downscaling of the endothelial permeabil-
ity with respect to LDL proved to be a good indicator
for potential atherosclerotic plaque development. The
analysis of our computational case study further sup-
ports the theory that neglecting the small time scale
of cardiovascular mechanics in terms of averaging flows
and neglecting the deformation of the artery wall is mis-
leading in the context of atherosclerosis. It was shown
that successive growth influences the wall-shear stress
pattern and hence a dynamical adjustment of the LDL
penetration is induced. In future work, the present multi-
physics model must be enriched by a more sophisticated
model of the inflammatory processes. Additionally, it
must be embedded into a suitable multi-scale in time
strategy.
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