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Current human factors research on automated driving aims to ensure its safe introduction into road traffic. 

Although informative results are crucial for this purpose, most studies rely on point estimates and dichoto-

mous reject-nonreject decisions that have been declared obsolete by more recent statistical approaches like 

new statistics (Cumming, 2014) or Bayesian parameter estimation (Kruschke, 2015). In this work, we show 

the objective advantages of Bayesian parameter estimation and demonstrate its abundance of information on 

parameters. In Study 1, we estimate take-over times with a relatively uninformed prior distribution. In 

Study 2, the resulting posterior distributions of Study 1 were then used as informed prior distributions for 

interval estimations of mean, standard deviation and distribution shape of take-over time in different traffic 

densities. We obtained 95 % credible interval widths between 490 ms and 600 ms for mean take-over times, 

depending on the condition. These intervals include the 95 % most probable values of the mean take-over 

time and represent a quantification of uncertainty in the estimation. Given the data and the experimental 

conditions, a take-over requires most likely 2.51 seconds [2.27, 2.76] when there is no traffic, 3.40 seconds 

[3.11, 3.71] in medium traffic and 3.50 seconds [3.21, 3.78] in high traffic. Bayesian model comparison with 

Bayes Factor is discussed as an alternative approach in conclusion.  

 

CURRENT STATISTICAL METHODS IN 

RESEARCH ON AUTOMATED DRIVING 

The introduction of automated vehicles to road traffic is ac-

companied by discussion and research on technical, legal, and 

human factors aspects. The aim of human factors research ac-

tivity in this domain is to predict the interaction between hu-

man and vehicle automation in order to detect any kind of lim-

itation of human performance, error proneness, potential for 

misuse or similar potential threats for a safe use. A frequent 

research topic is the estimation of the take-over time – a cer-

tain type of response time which is defined as the time be-

tween the automated vehicle’s request from the driver to re-

gain vehicle control and the first conscious manual driver in-

put (Gold & Bengler, 2014). These estimates have to be as 

precise as possible in order to arrive at valid conclusions about 

the safety of automated driving. Take-over times have already 

been estimated in past publications, however, these estimates 

are unfortunately mostly reported and interpreted as point esti-

mates (Gold, Damböck, Lorenz, & Bengler, 2013; Radlmayr, 

Gold, Lorenz, Farid, & Bengler, 2014; Zeeb, Buchner, & 

Schrauf, 2015). Although the standard deviation gives infor-

mation about the dispersion, point estimates give no infor-

mation about the precision of an estimation. Both point esti-

mates and blind reliance on a dichotomous reject-nonreject de-

cision strategy based on null hypothesis significance testing 

(NHST) have been deemed as uninformative, flawed, ineffec-

tive for scientific progress and thus obsolete by more recent 

approaches based on interval estimation combined with effect 

sizes (referred to as new statistics; Cumming, 2014) and 

Bayesian parameter estimation (Kruschke, 2015). Although 

other research domains are already transitioning to these ap-

proaches (Kruschke, Aguinis, & Joo, 2012), human factors re-

search on automated driving has yet not implemented them. 

This work, therefore, discusses two different approaches to in-

terval estimation and applies Bayesian parameter estimation to 

take-over times. 

FREQUENTIST AND BAYESIAN PARAMETER 

ESTIMATION 

In frequentist inference, the precision of an estimation is ex-

pressed in form of a confidence interval (CI). A confidence in-

terval is defined as “an interval or range of plausible values for 

some quantity or population parameter of interest” (Cumming 

& Finch, 2001, p. 533). This interval is centered on the best 

point estimate while its width represents the imprecision of the 

estimate, which is caused by sampling error and measurement 

error. Its width is also determined by a chosen confidence level 

c, with higher desired confidence resulting in wider intervals 

(other parameters being equal). Since experimental results 

with samples are merely estimations of population parameters, 

CIs reflect the view of results as estimates better than point es-

timates, because CIs report not only effect size but also preci-

sion (Cumming, 2014). The interval represents a set of plausi-

ble values for a parameter (e.g. population mean) and values 

outside of the interval are deemed implausible. If assumptions 

are met, an individual estimation error – the difference of the 

sample mean from the true mean of a population – is not 

greater than the margin of error (MOE) of a CI at a chosen 

confidence level c, e.g. 95 % (Cumming, Fidler, Kalinowski, 

& Lai, 2012). Because of these advantages over NHST, Cum-

ming (2014) promotes the use of CIs in his data analysis ap-

proach called the new statistics and encourages a paradigm 

shift in data analysis towards it. However, probabilities that 

are associated with CIs are subject to the same assumption as 

p-values, namely that the only source of imprecision is sam-

pling error, which is doubtful to be fulfilled in empirical stud-

ies (Kline, 2013). CIs represent a frequentist method of infer-

ence and therefore have to be interpreted in frequentist terms: 

A (1 − ) % confidence interval is an interval from a notional 

infinite sequence of random samples that includes the un-

known, fixed parameter θ (1 − ) % of the times (Steiger & 

Fouladi, 1997). This follows from the frequentist interpreta-

tion of probability as the asymptotic relative frequency of an 
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event in infinitely repeated trials under identical conditions 

and error only by chance (Brandstätter & Kepler, 1999; Reich-

ardt & Gollob, 1997). Because the population parameter is 

fixed, the conclusion that a 95 % CI has a 95 % probability to 

include it is not correct. Frequentism allows no such statement 

for any single certain CI, thus, the parameter is either in the 

interval or not. Because of this, confidence intervals yield no 

distributional information and parameter values in the center 

of CIs are not more probable than values at its limits (Kru-

schke & Liddell, 2015). Distributions that are sometimes su-

perimposed on CIs (Cumming & Fidler, 2009) are hypothe-

sized sampling distributions of the parameter’s sample estima-

tor. Because of this, they suffer from the same flaw as p-val-

ues since both are determined by the researcher’s stopping and 

testing intentions. Depending on the choice of them, one can 

create many different CIs out of a single data set (Kruschke 

& Liddell, 2015). In fact, Morey et al. (2015) show that CIs 

do not necessarily have any of the attributed properties, and 

may lead to irrational inferences. Bayesian statistics circum-

vent this limitation, firstly, because probability is interpreted 

not as an asymptotic relative frequency but as belief, plausibil-

ity or state of knowledge. Secondly, a population parameter is 

not seen as a fixed, true value, but as a random variable with 

its own distribution based on plausibility and the state of 

knowledge. Bayesian parameter estimation represents the pro-

cess of updating a prior belief or state of knowledge on a pa-

rameter value by experimental data. This results in a posterior 

probability distribution (referred to as posterior) that depicts 

the likelihood of a parameter value given the experimental 

data. This distribution provides the expected value of the dis-

tribution as a point estimate and, at the same time, reflects the 

uncertainty of this estimate (Kline, 2013). Intervals of this 

posterior distribution are called credible intervals or highest 

density intervals (HDI). Therefore, a Bayesian 95 % credible 

interval implies what is often incorrectly attributed to CIs: it 

includes the parameter with a probability of 95 % (Castro So-

tos, Vanhoof, van den Noortgate, & Onghena, 2007). That is 

because the posterior represents an actual probability distribu-

tion of the parameter value, given the data, and the HDI is the 

constructed so that it contains the 95 % of this distribution. Pa-

rameter values in the center tend to have higher credibility 

than parameter values at the limits. By the implementation of 

prior knowledge into the estimation, the Bayesian view on 

probability thus takes into account that not all parameter val-

ues or hypotheses are equally plausible or likely. Prior 

knowledge is used by the researcher to state his prior hypothe-

sis on the parameter value before data are collected or ana-

lyzed. The experimental data then update this prior belief. The 

relationship between the prior hypothesis and the experimental 

results is reasonable: exotic or implausible hypotheses require 

strong evidence to be supported and the prior becomes less 

and less impactful the more empirical evidence is collected. 

Imprecise data have less impact on the posterior in relation to 

the prior than precise data. The same is true for the prior: the 

more informed the prior is formulated, the more weight it has 

on the posterior. Confidence intervals and Bayesian intervals 

only yield the same information if the chosen prior distribution 

is a flat uninformed prior, i.e. no prior knowledge or belief is 

available and the posterior distribution is a result solely from 

sample data (Reichardt & Gollob, 1997). It is rarely the case 

that a researcher has no prior belief about his hypotheses and 

thus a CI is not optimal for parameter estimation if prior 

knowledge exists. Usually, an informed prior can be formu-

lated based on prior beliefs, knowledge or previously collected 

empirical data. For the purpose of parameter estimation, the 

prior is then updated by the obtained experimental data and 

this process results in extended, updated knowledge, the poste-

rior, which is the probability distribution of the parameter 

value given the obtained data. The estimates of the posterior 

distribution are a weighted combination of prior distribution 

and the empirical evidence (data) while the weight is deter-

mined by each source’s precision (Kline, 2013). The aim of 

this article is to perform such a Bayesian interval estimate on 

take-over times in different traffic conditions by creation of a 

95 % HDI based on prior experimental data. We use a previ-

ously conducted study (Study 1) as prior knowledge on the 

central tendency, dispersion and shape of the take-over time 

that is estimated by the data of Study 2.  

STUDY I 

This study was used to formulate a prior distribution for study 

2 that is informed and generated by empirical data. In order to 

generate a plausible informed prior distribution, we chose an 

experiment that had similar conditions. A more detailed de-

scription of the experiment can be found in Radlmayr et al. 

(2014); therefore, we only give a brief description of the ex-

perimental setup here. 

Sample and experimental setup 

A total of n = 16 participants, 3 (19 %) female and 13 (81 %) 

male, were analyzed in this study. Mean age of the sample was 

M = 34.88 years (SD = 11.15) with a range from 19 to 

58 years. Participants possessed their driver’s license for a 

mean duration of M = 20.60 years (SD = 9.12) and the major-

ity of them (10; 62.50 %) indicated that their annual mileage 

was between 5,000 km and 10,000 km per year. 12 (75 %) par-

ticipants have already taken part in a driving simulator experi-

ment before. No participant had experience with highly auto-

mated driving (HAD) before. 

Participants drove highly automated (Gasser, 2012; Level 3 in 

NHTSA, 2013) on a six-lane highway for the whole experi-

mental track. HAD allows the driver to engage in a non-driv-

ing-related task and to simulate this activity, the participants 

had to solve a cognitive task (2-back task; Reimer, Mehler, 

Wang, & Coughlin, 2010) and the Detection Response Task 

(DRT; Conti, Dlugosch, Vilimek, Keinatz, & Bengler, 2012) 

during the drive prior to the take-over process. The take-over 

request (TOR) was given due to an obstacle in form of a car 

crash with two stationary vehicles on participant’s lane. A 

seven seconds (= 233 m at 120 km/h) take-over time budget 

was provided. We analyzed two conditions: with (traffic) and 

without (no traffic) other surrounding road users. 

Generation of a posterior distribution of take-over times 

We conducted the parameter estimation based on scripts by 

Kruschke (2015) implemented in the statistical computer soft-

ware R. JAGS (Plummer, 2003) was used as Markov Chain 
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Monte Carlo (MCMC) method to approximate the posterior 

distribution. With this method, the integral for the cumulated 

evidence, p(Data), does not have to be explicitly calculated. A 

Markov chain represents a stochastic process which stepwise 

samples a large number of combinations of credible parameter 

values from the posterior distribution that each accommodates 

both data and prior distribution. For every discrete step, the 

likelihood of this parameter combination is calculated. The se-

quence of steps is probabilistic such that the likelihood of a 

combination scales with its frequency of appearance in the 

chain. Repeating this step a large number of times, the evalua-

tion of the chain results in a high resolution approximation of 

the continuous posterior distribution (see Figure 1 for an ex-

ample). For the estimation of the take-over time y, we chose a 

generic, relatively uninformed and robust prior distribution 

that was only minimally informed by the scale of the data. The 

mean μ was estimated with a normal prior distribution that 

was adjusted to the descriptive values of the sample data. σ 

was estimated with a flat uninformed prior with boundaries 

adjusted to the sample standard deviation. To take potential 

outliers into account, the take-over time y was assumed to 

follow a heavy-tailed t-distribution instead of a normal distri-

bution. Therefore, the normality parameter ν, which deter-

mines its tails and thereby its shape, was estimated as well.  

μ ~ normal(mean(y), 1/(SD(y) 100)²) 

σ ~ uniform(SD(y)/1000, SD(y)·1000) 

ν ~ exponential(1/30.0) 

y ~ t(μ, 1/σ², ν) 

The distribution of the take-over times was tested for 

normality graphically (Q-Q-Plot, histogram) and with 

Kolmogorov-Smirnov-tests with Lilliefors correction 

(ptraffic = .200, pno traffic = .012). Besides one outlier in no traffic, 

normal distribution was given. The obtained MCMC chains 

have been successfully checked if they meet the quality 

criteria representativeness, accuracy, and efficiency 

(Kruschke, 2015). The resulting posterior distributions were 

then used as an informed prior for the parameter values of 

Study 2 in order to generate a more precise posterior 

distribution of the take-over times. 

STUDY II 

A more detailed description of the experiment can be found in 

(Körber, Gold, Lechner, & Bengler, 2016), therefore, we only 

give a brief description of the experimental setup here. 

Sample and experimental setup 

A total of 72 participants were analyzed, 14 (19.4 %) female 

and 58 (80.6 %) male. Mean age was M = 44.97 years 

(SD = 22.16) with a range from 19 to 79 years. Participants 

held their license for a mean of M = 27.48 years (SD = 22.37). 

Annual mileage per year was between 5,000 km and 

20,000 km for the majority of participants (41; 56.94 %). The 

high standard deviation of age is caused by the initial sam-

pling of participants into a young and older age group. How-

ever, since confidence intervals for take-over times overlapped 

in the analysis between 31 % and 71 % with a mean difference 

of 254 ms between the groups, both groups were merged into a 

single sample. While 23 (31.90 %) participants already were 

experienced with a driving simulator, only 6 participants had 

taken part in a study on HAD yet.  

In this experiment, three traffic density (TD) conditions were 

simulated in a within-subject design, i.e. each participant ex-

perienced a take-over situation in each TD condition. In Zero 

TD (TD 0), no other vehicles were on the road at the moment 

of the TOR. For the other two conditions, Medium TD 

(TD 10) and High TD (TD 20), traffic density was manipu-

lated by the number of other vehicles and their constant and 

equal distance to the ego vehicle The prior for each traffic 

condition was informed by the posterior of the corresponding 

traffic condition in Study 1 (see Table 1). 

 
Table 1: The posterior distributions of Study 1 allocated as prior distributions 

for Study 2 

Posterior  Prior 

Study 1 no traffic  Study 2 no traffic 
   

Study 1 traffic 
 Study 2 medium traffic 

 Study 2 high traffic 

 

A hands-free cell phone conversation was simulated by means 

of the 20 questions task (TQT; Merat, Jamson, Lai, & 

Carsten, 2012) for half of the participants since this will be a 

common use case for HAD (Kyriakidis, Happee, & Winter, 

2015). The confidence intervals of take-over times of each 

group overlapped by 75.34 % and 90.03 %, therefore we did 

not distinguish between both groups in the further analysis. 

Participants drove highly automated (Level 3 NHTSA, 2013) 

on a six-lane highway (three lanes in each direction) at a speed 

of 120 km/h for the whole experimental track. The system lim-

its were each represented by a broken down vehicle on the 

participant’s current lane. It suddenly appeared 233 meters 

ahead on a straight stretch and an auditory TOR was given 

seven seconds before the ego vehicle would have collided with 

the obstacle. 

Results: Estimation of a 95 % HDI of take-over time 

In condition TD 0, one participant did not notice the TOR and 

therefore had to be removed from further analysis. The poste-

rior distribution of the parameter values of Study 1 have been 

used to build an informed prior distribution for the parameter 

values in Study 2. The same set of parameters was estimated 

for the three TD conditions. Each prior for μ is a normal dis-

tribution with a mean and standard deviation taken from the 

posterior of Study 1. The prior of σ as well as ν are each given 

a gamma distribution with each shape and rate (derived from 

the desired mode and standard deviation of the gamma distri-

bution) based on the posterior of Study 1. A gamma distribu-

tion was chosen because it only contains positive values and 

can implement long tails. The prior for the take-over times y is 

again a t-distribution. 

μ ~ normal(mean(μStudy1), SD(μStudy1)) 

σ ~ gamma(shape(σStudy1), rate(σStudy1)) 

ν ~ gamma(shape(νStudy1), rate(νStudy1)) 

y ~ t(μ, 1/σ², ν) 
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The distribution of the take-over times was again tested for 

normality graphically (Q-Q-Plot, histogram) and with Kolmo-

gorov-Smirnov-tests with Lilliefors correction (pTD 0 = .011, 

pTD 10 = .200, pTD 20 = .200). The deviation of TD 0 from nor-

mality was caused by one outlier and is seen as non-critical at 

a sample size of n = 71. The resulting posterior distributions 

central tendencies and HDIs are shown in Table 2–4. 

 
Table 2: Results of the parameter estimation for TD 0. 

 

 Mean Median Mode 

HDI 

Lower 

Limit 

Upper 

Limit 

μ 2.51 2.51 2.53 2.27 2.76 

σ 0.92 0.92 0.93 0.75 1.11 

ν 27.73 18.69 7.99 2.11 83.03 

 
Table 3: Results of the parameter estimation for TD 10. 

 

 Mean Median Mode 

HDI 

Lower 

Limit 

Upper 

Limit 

μ 3.40 3.40 3.42 3.11 3.71 

σ 1.25 1.25 1.24 1.05 1.45 

ν 46.58 38.50 22.41 4.25 108.64 

 
Table 4: Results of the parameter estimation for TD 20. 

 

 Mean Median Mode 

HDI 

Lower 

Limit 

Upper 

Limit 

μ 3.50 3.50 3.52 3.22 3.79 

σ 1.18 1.18 1.17 1.00 1.38 

ν 45.71 37.30 21.66 4.11 109.06 

 
Table 5: Comparison between confidence intervals (CI) and highest density 

intervals (HDI). 

 

 

CI HDI 

Lower 

Limit 

Upper 

Limit 

Lower 

Limit 

Upper 

Limit 

TD 0 2.35 2.83 2.27 2.76 

TD 10 3.12 3.73 3.11 3.71 

TD 20 3.25 3.82 3.22 3.79 

 
Table 6: Comparison between confidence intervals (CI) and highest density 

intervals (HDI) with n = 15. 

 

 

CI HDI 

Lower 

Limit 

Upper 

Limit 

Lower 

Limit 

Upper 

Limit 

TD 0 2.42 3.52 2.53 3.46 

TD 10 2.69 3.84 2.66 3.81 

TD 20 2.57 3.94 2.59 3.84 

DISCUSSION 

The purpose of this work was to create a 95 % highest density 

interval (HDI) for take-over times based on prior experimental 

data. The results of the parameter estimation offer a detailed 

interval estimation of take-over times and of the effect of dif-

ferent traffic densities. In addition to a point estimate for the 

mean take-over time, the uncertainty of the estimation is quan-

tified and a range of the most probable values including their 

probability distribution is given. The mean take-over time lies 

within the HDI with a probability of 95 % and the probability 

given the data of a certain take-over time can be determined. 

The resulting intervals, shown in Table 2–4, are only margin-

ally smaller than the corresponding CIs (see Table 5), but pos-

sess the aforementioned advantages over them in interpretabil-

ity and abundance of information. A CI relies on a hypothet-

ical sampling distribution which is not a probability distribu-

tion. In contrast, the HDI contains the 95 % most probable 

values of the mean take-over time and offers the probability 

distribution of interest, i.e. the probability of a take-over time 

value given the experimental data (= p(take-over time|Data)); 

whereas the CI only provides the probability p(Data|take-over 

time). Also, the HDI contains more information at the same 

size because values in the center have higher credibility than 

values at the limits, whereas each value is equally likely in a 

CI. An informed prior makes stronger predictions and there-

fore leads to more precise estimations if the obtained data 

match the prior. We reduced the sample size to n = 15 by ran-

domly sampling from the whole sample and re-calculated CIs 

as well as HDIs (see Table 6). In this case, the HDI is up to 

15 %/170 ms smaller than the CI, which is a considerable pe-

riod in time-critical situations like a take-over. Furthermore, 

the established posterior distribution provides a prior for fu-

ture analyses of other researchers. This work also provides 

practitioners an interval of the most probable mean take-over 

time values, including their probability distribution and quan-

tified uncertainty. The design and functionality of the vehicle 

automation can be refined based on this data. 

It should be taken into account in the interpretation of the data 

that Study 1 and Study 2 are very similar experiments, yet the 

conditions differ slightly. Therefore, the prior distributions for 

Study 2 did not match the experimental setting perfectly. 

However, with a sample size like that in Study 2, the prior dis-

tribution has less influence on the posterior distribution than 

the empirical evidence. Future research should not only ana-

lyze estimates for means but should also consider the bounda-

ries (e.g. 5 % and 95 % quantile) of the posterior distribution to 

ensure a safe use of automated driving for the whole popula-

tion (Körber & Bengler, 2014). 

This is the first paper to the authors’ knowledge that uses 

Bayesian parameter estimation in a take-over study, but more 

and more research domains transition to Bayesian data analy-

sis (Kruschke et al., 2012). We encourage this step and evalu-

ate this method as an addition of another tool for data analysis. 

The scope of this work was an interval estimation of the pa-

rameter take-over time. If a research question requires a hy-

pothesis test, HDIs can further be used for this purpose in the 

same way as CIs (Kruschke, 2015). However, it is also possi-

ble to test hypotheses by comparison of a null model (H0) with 

an alternative model (H1). The comparison is expressed in a 

Figure 1: Exemplary posterior distribution for μ in TD 0 
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likelihood ratio called Bayes Factor (BF), which is the ratio 

between the probability of the data given the null model and 

the probability of the data given the alternative model. In other 

words, it expresses if the obtained data are more compatible 

with a null hypothesis or an alternative hypothesis 

(Schönbrodt, Wagenmakers, Zehetleitner, & Perugini, 2015). 

Usually, the null model states that only a null value (e.g. 0) is 

possible and uses a prior that allocates all credibility on it. 

Complementary, the alternative model states that it’s possible 

to attain a broad range of other values as well and uses a prior 

that allocates credibility over many parameter values (Rouder, 

Speckman, Sun, Morey, & Iverson, 2009). When compared to 

NHST, this approach allows sequential testing, a default BF 

always approaches the correct boundary with increasing sam-

ple size, it quantifies evidence both for H0 and H1 and allows 

gradual interpretation of evidence instead of a forced all-or-

none decision (Schönbrodt et al., 2015). However, the danger 

of dichotomous decision making is also prevalent in this ap-

proach. The choice for an approach depends on the research 

question: If it is of interest whether a null model is more or 

less credible than a specific alternative model, a model com-

parison is the best choice. If one strives for an estimation to be 

as exact and informative as possible or the relative credibility 

of all candidate parameter values is of interest, parameter esti-

mation should be used (Kruschke, 2011). 
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