©ACM, 2017. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in
CAN’17: Cloud-Assisted Networking Workshop, December 12, 2017, Incheon, Republic of Korea, https://doi.org/10.1145/3155921.3158429

Towards Optimal Adaptation of NFV Packet Processing to
Modern CPU Memory Architectures

Christian Sieber, Raphael Durner, Maximilian
Ehm, Wolfgang Kellerer

Chair of Communication Networks
Technical University of Munich, Germany
c.sieber@tum.de,r.durner@tum.de, maximillian.ehm@
tum.de,wolfgang.kellerer@tum.de

ABSTRACT

Network Functions Virtualization (NFV) aims to move network
functions away from expensive hardware appliances to off-the-shelf
server hardware. NFV promises higher flexibility and cost reduc-
tion for the network operator. In order to achieve high throughput
performance with this commodity hardware, fast packet process-
ing frameworks like NetMap or the Data Plane Development Kit
(DPDK) can be used. It is known that packet processing perfor-
mance is very sensitive regarding copying of packets. In this paper
we take steps towards quantifying the efficiency of NFV regarding
packet copying overhead at hardware level. As modern servers
are often built up of multiple CPUs with segregated memory, we
evaluate the performance penalties resulting from this segregation
in conjunction with DPDK. Additionally we evaluate the effects of
cache misses on packet processing in detail. Subsequently a met-
ric that quantifies the efficiency of a running VNF is introduced
and an optimization scheme is outlined which describes the use of
the metric. Our results show how both cache misses and memory
segregation reduce the network efficiency.

CCS CONCEPTS

» Networks — Network servers; Network performance analysis;
Computer systems organization — Processors and memory
architectures;

KEYWORDS

NFV, NUMA, LLC, performance, optimization, measurements

ACM Reference Format:

Christian Sieber, Raphael Durner, Maximilian Ehm, Wolfgang Kellerer
and Puneet Sharma. 2017. Towards Optimal Adaptation of NFV Packet Pro-
cessing to Modern CPU Memory Architectures. In Proceedings of CAN’17:
Cloud-Assisted Networking Workshop (CAN’17). ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3155921.3158429

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CAN’17, December 12, 2017, Incheon, Republic of Korea

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5423-3/17/12...$15.00
https://doi.org/10.1145/3155921.3158429

Puneet Sharma
Hewlett Packard Labs
Palo Alto
puneet.sharma@hpe.com

1 INTRODUCTION

Network functions, such as routers, firewalls or load balancers,
are commonly realized using integrated solutions which contain
the hardware as well as the software in one box. In 2012, ETSI
proposed Network Functions Virtualization (NFV) in a white paper
[5]. NFV is designed to enable network functions using commodity
servers and virtualization techniques. This promises an increase in
flexibility as the Virtual Network Functions (VNFs) can be placed in
the network as required by the operator. Additionally, off-the-shelf
components promise cost reduction.

One main challenge is the performance and lack of performance
guarantees of the NFV environment. In contrast to traditional so-
lutions, hardware and software are no longer developed together,
but the VNFs should run on commodity hardware. One issue is the
high number of packets that have to be processed. For simple VNFs,
like for example a load balancer, the complexity of processing one
packet is very low. If a hash table is used, it can be as low as O(1).
Because of that, other effects which can be usually neglected gain
more importance. [11] shows that shuffling a packet processing
workload between cores can reduce the packet rate significantly, as
the cache locality is not guaranteed. Fast packet processing frame-
works address this and other issues to provide high packet rates
on commodity servers. In this work we utilize virtual network
functions realized with the Dataplane Development Kit (DPDK).
The DPDK is a set of libraries for Linux to facilitate fast packet-
processing on common server hardware. It was first introduced by
Intel in 2013 and since then has become a Linux Foundation Project
with broadening vendor-support.

In this work we evaluate the memory architecture of modern
CPUs with regard to packet processing. The contribution of this
work is as follows. First, we introduce a measurement methodology
and show measurement results quantifying the overheads associ-
ated with different VNF placements. Second, we propose a new
metric called Network Efficiency Index (NEI) which captures the
efficiency of a running VNF in terms of packet handling. Third, we
outline an optimization scheme which maximizes the NEI for a set
of VNFs. The formulation of the optimization is left for future work.

The paper is structured as follows: Section 2 introduces the eval-
uated Non-Uniform-Memory-Access (NUMA) architecture. Section
3 describes Methodology and Implementation of the measurements.
Section 4 shows the measurement results and evaluates the findings.
Section 5 introduces the metric and outlines a possible optimization
scheme. Section 6 gives an overview of the related work in this field
and finally Section 7 concludes the work and depicts the next steps.

https://doi.org/10.1145/3155921.3158429
https://doi.org/10.1145/3155921.3158429

CAN’17, December 12, 2017, Incheon, Republic of Korea

DDR4 RAM B S
3268 | R R
DMA .~ 4 % 38,4 GB/s <> o

ZDDIo NUMA Node O NUMA Node 1
NiC sy
it xs4o, o LLC (30 MB) LLC (30 MB)
2x10

Gb/s 2x
PCle 2.1x8 L1(64KB) L1 (64 KB) 19,2 GB/s L1 (64 kB) 11 (64 K8)
4GB/s Core 0 Core 1 Core 0 Core 1

Figure 1: Non-Uniform-Memory-Access (NUMA) architec-
ture with DDIO for the NIC-local NUMA node. DDIO allows
direct access to the local LLC. DMA is used for packets des-
tined to the remote node. Each Core has a L1/L2 cache, the
LLC is shared between all cores on one node. A Quick-Path
Interconnect (QPI) bus with 2x19.2 GBps connects the nodes.

2 NUMA ARCHITECTURE

In the following we describe the NUMA architecture by example of
the hardware used in our evaluation testbed. As the production of
large chips is expensive, multi-processor systems are used for high
end servers. Each socket houses one processor with multiple cores.
The sockets are then connected using high speed bus connections.

The testbed consists of multiple Dell PowerEdge R530 servers
with Intel Xeon E5-2650 v4 2.2GHz CPUs and Intel C610 chipsets.
Figure 1 illustrates the NUMA cache hierarchy and interconnec-
tion technologies of the aforementioned testbed hardware. The
servers have two CPUs, called NUMA nodes, connected via two
bi-directional Intel QuickPath Interconnect (QPI) lanes with a band-
width of 19,2 Gbyte/s each. An Intel Ethernet X540 NIC is connected
to one NUMA node via PCI-express 2.1 x8. Each NUMA node con-
tains 12 CPU cores with each 64 Kbyte of L1-cache and 256 Kbyte
of L2-cache. A Last Level Cache (LLC) with a capacity of 30 Mbyte
is shared among the CPU cores of a NUMA node. The caches are
much faster than the system memory. Therefore, if multiple VNFs
share the LLC, the performance is degraded compared to the VNF
running alone on the processor due to interference effects. 32 Gbyte
of DDR4 RAM capacity is attached to each node with a bandwidth
of 38,4 Gbytes/s.

Intel Data Direct I/O (DDIO) allows NICs to copy packets straight
to the LLC-cache of the NIC-local NUMA node, instead of doing the
round-trip to the main memory and back to the LLC-cache when
the processing application tries to read the packets. However, this
is only possible for the NUMA node where the NIC is attached to,
not for the remote NUMA node.

3 METHODOLOGY

In this section we discuss the measurement setup, the implementa-
tion of the VNFs and how the CPU load is measured.

The test environment consists of the load generation PC which
runs DPDK-Pktgen Application and the Device-under-test (DUT),
which is one of the servers described in Section 2 in detail. The PC
generates packets with a limit of 2 Mpps and sends it to the DUT
with a constant rate. At the DUT the packets are processed from
one of the VNFs described in Section 3 and sent back to the PC.
As we concentrate on CPU metrics in this work, no packets are

C. Sieber, R. Durner, M. Ehm, W. Kellerer, P. Sharma

RX

B>

L
ne) ! | RX ring | N ACL
! \
El / AR Rule Set
“ rte_ring ACL -
1 N Lt classification | g
H X e
\

-~

:: Buffer ’,'
]

Figure 2: The function chain consisting of one RX, one ACL
and one TX process. Each process runs exclusively on one
core. The RX and TX processes move the packets between
the respective buffers and rings. The ACL process checks
each packets against the its rule set.

received by the load generation machine, i.e. they are dropped by
the NIC. Our study concentrates on CPU performance metrics, like
core utilization and cache hit rates. In consequence all statistics are
gathered directly on the DUT. For all cache related measurements
we are using the Processor Counter Monitor (PCM) tool.

3.1 Minimal VNF

First we consider a minimal network function that only receives
packets and does not do any processing or forwarding. Using this
implementation we can show the overhead of the NUMA communi-
cation for packet processing without any side effects. The minimal
VNF drops all packets after receiving.

3.2 Function Chain Implementation

The chain implementation consists of three separate entities as illus-
trated by Figure 2. A receiving, a sending and a packet classification
process, each running exclusively on one CPU core following the
DPDK best-practices. Two receiving rings, one for each physical
NIC port, are connected to a software switch, which writes the
packet pointers to a buffer. The interconnection between the three
entities is implemented via a rte_ring data structure. A rte_ring is
a lockless, fixed-size queue implementation provided by the DPDK.
The ACL classification core matches the received packets against
the loaded ACL rules and decides to either forward or drop the
packets. The sending core moves the packets to be forwarded to
the TX rings of the physical NIC ports.

3.3 Measuring CPU Load with Polling

One of the techniques that DPDK uses to increase the packet
throughput is the change from an interrupt-based packet retrieval
to a polling-based packet retrieval. Usually, if a packet arrives on the
NIC, the CPU is interrupted and the packet is then copied and pro-
cessed by the OS. DPDK does not use interrupts, instead it checks
for packets at the NIC, processes these packets and then checks
again for packets in an infinite loop. As a consequence, conven-
tional CPU utilization tools do not work as the CPU is always fully
utilized by the loop. Because of that we developed an algorithm
shown in Algorithm 1 to evaluate the current CPU load. The main
idea is to rely on the cycles reported by the CPU, as they are avail-
able without much overhead. During the main processing loop,

Towards Optimal NFV Packet Processing on Modern CPU Architectures

the cycles are read before and after the packet processing to deter-
mine the cycles needed for processing, i.e. the OPS. Additionally,
the cycles needed for each loop are measured as reference counter
REF. Both counters are reported regularly to the monitor. The CPU
utilization can then be computed with the following formula:

e OPS
CPU Utilization = ——
REF

Using this definition of CPU utilization, a utilization of 100 % is
reached with the maximum possible packet rate. As can be observed
in the results plotted in Figure 3, the utilization is roughly linearly
dependent on the packet rate.

4 PERFORMANCE IMPACTS

In the following we evaluate the influence of the memory architec-
ture on the packet receiving performance. In the first and second
part we evaluate the impact of the NUMA architecture with the
minimal VNF and the function chain. The third part evaluates the
performance degradation when using VNFs with a large working
set, i.e. when the caches of the processor are exhausted.

4.1 NUMA Impact - Minimal VNF

In the first scenario, the receiver is placed on the same node as the
NIC is attached to, denoted as node 0 in the following. In the second
scenario, the receiver is placed on the remote NUMA node, in the
following denoted as node 1. Figure 3 illustrates the receiver’s
core utilization for packet rates from 0 to 1 million packets per
second for both scenarios. Confidence intervals are not visible as
the measurements showed little variation.

The figure shows that the core utilization increases by 41 %
(14.7 % utilization compared to 20.8 %) when the NIC is attached to a
different NUMA node than the RX process. This is due to overhead
which is required for transferring the packets first to the remote
memory and afterwards to the processor cache. In case the NIC
is attached to the same node, DDIO allows a direct transfer to the
processor cache as shown in Figure 1.

Subsequently we take a look at the LLC hit ratio and memory
read throughput for the two placements to confirm the source of
the bottleneck described above. Figure 4 shows the hit ratio (4(a))
and the memory throughput (4(b)) for packet rates up to 1 million
packets per second. For packet rates close to zero (200 packets per
second) we observe a LLC hit ratio of 40 % for the node 0 placement

Algorithm 1 Measure CPU Utilization

OPS, REF = 0
cyc_last « read CPU cycles from register
while True do
cyc_before « read CPU cycles from register
REF + = cyc_before - cyc_last
cyc_last « cyc_before
if packets received then
process packets
cyc_processed < read CPU cycles from register
OPS + = cyc_processed- cyc_before
end if
end while

CAN’17, December 12, 2017, Incheon, Republic of Korea

—_ —) [
[« W [=] [}
1 1 1

RX Core Utilization (%)

W
1

1 1 1
0.0 M 02M 04 M 0.6 M 0.8 M 1.0M
Packets per second (10%)

Figure 3: Simple Receiver: Utilization of the core for increas-
ing packet rates and two different placements (node 0 and
node 1). The NIC is attached to node 0. A 41 % increase in uti-
lization is observed when the receiver is executed on node 1
(20.8 % utilization compared to 14.7 %), due to the overhead
in fetching packets from the NIC through the QPI.

100 Q)
2 200
804 NodeO | 2
IS =}
b g 150
£ 60 .
Z w0l g 100+
E E Node 1
= 20 Node 1 E 501
&« é
04 3 o

0.0M 05M 1.OM 0.0M 0.5M 1.OM
Packets per second (10%) Packets per second (10%)

(a) LLC hit ratio (b) Memory read node 1

Figure 4: LLC cache hit ratio and memory read rate on node
1 for two placements of the minimal VNF for increasing
packet rates up to 1 million packets per second. The figure
confirms that a placement on the remote NUMA node with-
out DDIO support results in cache misses and high main
memory access rates.

and 20 % for the node 1 placement. For higher packet rates the hit
ratio increases rapidly to about 100 % for the node 0 placement and
0% for the node 1 placement. The unexpected hit ratios for low
packet rates are due to the influence of the underlying operating
system and measurement scripts. That influence diminishes with
higher packet rates. Figure 4(b) gives the memory read throughput
for the node 1 placement. The figure shows that the throughput
increases linearly with the packet rate. The results confirm the
previous statement that DDIO allows a direct transfer of the packets
from the NIC to the LLC cache of the processor, which results in
a 100 % cache hit ratio. In case of the placement on node 1, the
packets are transferred via DMA to the main memory of the node
first. The access by the receiver results in a cache miss for every
packet and therefore the memory read throughput increases.

4.2 NUMA Impact - Function Chain

The influence of the NUMA placement on the performance of the
function chain is described in the following. We place a chain of
3 elements on two possible locations, which results in 9 possible

CAN’17, December 12, 2017, Incheon, Republic of Korea

30 A 3
S 0-1-0 |
z N
£ 20 1 oo
8 1-0-1 o ° 8
= L J
= o 8
:qj \ o ° — o
5 101 e T X N
3 o 1-1-1 0-0-0
= */'/./

O -

T T T T T
0.0 M 0.5M L.OM 1.5M 20M

Packets per second (10%)

Figure 5: ACL core utilization for four different placements
of the firewall function chain (RX-ACL-TX) depending on
packet rates. Placement 0-0-0 represents the best case place-
ment without remote NUMA access and 0-1-0 the worst case
where remote NUMA memory has to be accessed. The re-
sults shows an increase in utilization for the worst case
placement of roughly 73 % compared to the best case.

placements. The placements are denoted with RX-ACL-TX on the
two NUMA nodes 0 and 1. E.g. 0-1-0 indicates a placement where
the RX function is put on NUMA node 0, the ACL function on
NUMA node 1 and the TX function is placed on NUMA node 0.
The NIC is connected again to node 0. With placement 0-0-0 no
packet copying between the NUMA nodes is necessary, therefore
this placement is expected to be the best case. On the other hand,
placement 0-1-0 is expected to be the worst case regarding the ACL
utilization, as the packets first have to be copied to NUMA node 1
for ACL classification and then back to node 0 for transmitting.
Figure 5 illustrates the utilization of the ACL core for the four
placements (0-0-0, 0-1-0, 1-0-1 and 1-1-1) of the function chain. The
figure shows a linear increase of the core’s utilization for increasing
packet rates up to 2 million packets per second. For 2 Mpps, the
measurements show an utilization of about 29 % for the worst case
0-1-0 and 17 % for the best case 0-0-0. Hence, there is a penalty of
roughly 73 % regarding the CPU load between best case and worst
case placement This means that NUMA-level copying caused by a
non-optimized placement has severe performance impacts.

4.3 Impact of Cache Exhaustion

Next, we discuss the performance impact of cache exhaustion on the
ability of a core to process packets. For this we keep the packet rate
constant at 2 Mpps and increase the size of the ACL. We evaluate
ACL sizes from 64 KB to 320 MB. For the LLC cache size of 30 MB,
an ACL size of 320 MB results in a 10.6 times over-subscripted LLC.

Core utilization of the ACL function is caused by packet process-
ing (copying packets, accessing headers, etc.) and additionally by
accesses to the memory for the ACL. The performance penalty for
accessing data in the memory largely depends on the locality of
the data, i.e. if it is in a L1, L2 or LLC or if it is in DRAM, as the
processing core has to wait for the data [4].

Figure 6 illustrates the ACL core cache hit ratios of the L2 and
LLC depending on the ACL size for the four different placements
0-0-0, 0-1-0, 1-0-1 and 1-1-1. As expected, the hit ratio of the small
L2 cache falls fast to about 0 % for all four placements. As the core

C. Sieber, R. Durner, M. Ehm, W. Kellerer, P. Sharma

LLC 1.0{ e LLC
<
€064 |« 00071111 Cosd | 0-0-0/1-1-1
2 oaf om0 Zoo "{/01 0/1-0-1
T T H iy e
g 2 0.4 %i ﬁ
=] o
O 0.21 O
- 0.2
Q Q °
< < °
0.04 0.04¢
0 100 200 300 0 100 200 300
Rule Size (Megabytes) Rule Size (Megabytes)
(@) L2 (b) LLC

Figure 6: ACL core cache hit ratios of the L2 and LLC de-
pending on the ACL size for the four different placements.
As expected, the hit ratio of the small L2 cache falls fast to
about 0 % for all four placements. For the LLC, we measure
a hit ratio of 7% for the worst case placements 0-1-0 and
0-1-0, where the packet is not yet in the LLC. For the best
case placements 0-0-0 and 1-1-1, where the packet is already
available in the LLC, we measure a hit ratio of of 30 %.

—_ L2 LLC]
® " - . .
Z6 = :
E g
S /7 LY
S K
E 4 ;(’—": 0-0-0/1-1-1 :
=1 /
k= o
Sa
)
5 0-1-0/ 1-0-1 o
O

0

0 50 100 150 200 250 300 100 200 300

ACL Size (MB)
(a) Impact of L2/LLC cache exhaustion

ACL Size (MB)
(b) AMAT Model

Figure 7: Impact of memory accesses on the core utilization
of the ACL core. Increasing ACL size for a constant packet
rate. L2 cache capacity is 256 KB and LLC cache capacity is
30 MB. The figure shows the additional utilization caused by
memory access. The additional utilization follows for the
placements 1-0-1 and 0-1-0 roughly the trend of a simple
Average Memory Access Time (AMAT) model (right figure).
The dots in the right figure are the measurement points of
the 0-1-0 placement.

does not access the packet before the classification, the packet can
not be available in the L2 cache. Furthermore, the chance that a
specific ACL rule was accessed before decreases fast as the quotient
between L2 size and ACL size gets very small.

For the LLC, we measure a hit ratio of 7 % for the worst case
placements 0-1-0 and 0-1-0 where the packet is not yet in the LLC.
For the best case placements 0-0-0 and 1-1-1, where the packet is
already available in the LLC due to the TX process being placed on
the same NUMA node, we measure a hit ratio of 30 %.

Figure 7(a) illustrates the ACL core utilization penalty for increas-
ing ACL size for the four placements of the RX, TX and ACL cores.
The two horizontal lines mark the capacities of the L2 and LLC. The
figure shows that for the 0-0-0 placement, the utilization increases

Towards Optimal NFV Packet Processing on Modern CPU Architectures

about linearly for an ACL size between the L2 and LLC capacity.
For the 0-1-0 and 1-0-1 placement, the penalty first jumps from 0 %
to 1.2 % and subsequently stagnates until the LLC is exhausted. The
stagnation is due to the fact that the 0-1-0 and 1-0-1 placements
allow the ACL core to use the NUMA 1 node’s LLC exclusively.
Therefor, the impact of the LLC exhaustion is only visible for larger
ACL sizes compared to the 0-0-0 and 1-1-1 placements where the
LLC is shared between the RX, TX and ACL cores. After the LLC
cache is exhausted, the utilization increase depends, in addition to
the ACL size, on the cost in terms of time for accessing the memory
hierarchy and on the cache hit ratios.

The behavior follows roughly the recursive Average Memory
Access Time (AMAT) model from [6]. Equation (1) and Equation
(2) define the AMAT model. Hx denotes the hit time, the time
the processor needs to access the data on cache level x, if it is
available in the cache. MR, denotes the miss rate. We assume in
our model that one ACL rule can be fetched by one cache access
and that every packet triggers the same amount of cache accesses
uniformly. Hence, we define MRy as the chance of missing the
cache based on the size of the cache Sy and size of ACL rule set

Sx
Sacr: MRy = max(0,1 — Sact).

AMAT = Hy; + MRy - AMPy, (1)

with AMPy as average miss penalty of cache level x:
AMPy = Hyx11 + MRx+1 - AMPx 11 (2

The CPU load Lcpy for accessing data depending on the packet

rate Rp can then be computed with Equation (3), where fcpy is

the CPU frequency. R
P

feru)
Due to performance optimizations and pipelining in modern
CPUs, the timings can not be named easily. We fitted the the cache
timings to the measuring results using least squares method. Figure
7(b) illustrates the memory access penalty as a function of the
ACL size Sy according to the AMAT model. The dots show the
measurements with placement 0-1-0, the line denotes the model.
The figure shows that the core utilization penalty follows roughly
the AMAT model, with a small offset for smaller ACL sizes < 30 MB.
To summarize the findings we can see, that the additional CPU
utilization caused by cache exhaustion is clearly visible but smaller
than the NUMA penalty (roughly 15 % vs 7 %).

Lepy = AMAT -

5 NETWORK EFFICIENCY INDEX

In the following we are using the results from the measurements to
propose the Network Efficiency Index (NEI), a metric for quantify-
ing the network efficiency of a deployed VNF. We describe how the
metric can be used in a holistic optimization approach to maximize
the performance of a NFV system and the influence of the traffic
distribution on the NEI. Traffic distribution is here defined as the
frequency of the 4-tuple packet headers (IP/port source and destina-
tion). The NEI of a specific VNF is defined as the ratio between the
packets accessed by the VNF from the LLC and the total number of
packets received by the VNF in a time interval, e.g. 1 second:

LLC hit on packets by VNF
Total number of packets received by VNF

NEIyNF =

CAN’17, December 12, 2017, Incheon, Republic of Korea

Pareto Optimal Solution

Server p s
Specification gy
! VNF Affinity |
l Maximizes .. i RX/TX Core |
i ! Affinity i

e e pefoptmizerfes '
o L) e '

VNFs L--.' NIC Queue
Affinity

/ .. by adjusting
Traffic = | ipacket to Queue

Distribution

L Affinity |
~ o

Figure 8: Illustration of how the Network Efficiency Index
(NEI) can be used in an optimization to describe the cost of a
placement of a VNF in terms of NUMA and cache overhead.
This overhead depends on the NUMA node and core the VNF
is placed on, the relative location of the RX and TX cores and
the NIC queue packet distribution.

Packet — Queue NIC Queue 5
Affinity Affinity
NUMAO NUMA1
€ T i Ry

LLC LLC
[|i) ||||||© mnja2 @ oo | [z | {—i Dol
NF2 | i

Physical 2 i ja3 4 core1 | [core3 |

/MAC 7
Layer i
VNF 1 VNF 2 e
3 njai njar (/RX Core Affinity
| |
nja3 a3 LT T 6

Figure 9: Detailed illustration of the influence of the traf-
fic distribution, packet queue affinity and NIC queue affin-
ity. At (1) Ethernet frames arrive at the physical layer. At (2)
the packets are distributed by the NIC to internal queues. (3)
shows a possible queue placement of packets for each VNF.
(4), (5) and (6) illustrate the challenge of placing the TX/RX
cores and the VNFs.

In the best case, the NEI of a VNF equals 1.0 where all packets are
received from the LLC. In the worst case, the NEI of a VNF equals
0.0 where all packets have to be fetched from the local or remote
main memory first.

Figure 8 illustrates how the NEI can be used in an optimization
to describe the cost of a placement of a VNF. The NEI depends
a) on the server specification, i.e. number of NUMA nodes, LLC
architecture and how the NIC is connected to the NUMA nodes, b)
the traffic distribution, i.e. which packets are placed in which NIC
queues and how the NIC queues are connected to the cores and c)
on the number and placement of the VNFs. The objective of the
optimization is to maximize the NEI of all VNFs in terms of a higher
level objective defined by the operator, e.g. max-min-fairness or
overall performance. The optimization chooses a) the VNF affinity,
i.e. which core executes which VNF, b) the RX/TX core affinity, i.e.
which cores are designated for the receive and transmit loops, c)
the NIC queue to TX/RX core affinity, i.e. which TX and RX cores
handle which NIC queues and d) the packet to NIC queue affinity.
We now discuss (d), the packet to NIC queue affinity in detail.

Figure 9 shows the path of received network packets through the
system. In (1) Ethernet frames arrive at the physical layer in an order
defined by the sending system and with a traffic distribution as
defined by the routing policy of the network. The packets are then
distributed by the NIC to internal queues (2) based on either rules,

CAN’17, December 12, 2017, Incheon, Republic of Korea

e.g. in the case of Intel FlowDirector, or based on a hash algorithm
like the Toeplitz hash[12]. The challenging part is how to fine-tune
the hash or how to set the rules such that packet distribution per
VNF (3) is optimal with respect to the NIC queue affinity (4), the
architecture (5), the core affinity (6) and the VNF affinity (7).

The advantage of the approach can be summarized as follows.
The end-to-end optimization considers the whole packet processing
path to improve data locality and therefore increases the efficiency
and reduces network latency of the system. Furthermore, no human
intervention is necessary and the optimization can be performed au-
tonomously. Also, the optimization can react on-demand to changes
in the hardware and/or software environment. Finally, to implement
this into existing NFV environments, no extensions to the system
are required and all interfaces and metrics are already available.

The formulation of the optimization to maximize the NEI in a
running system is left for future work.

6 RELATED WORK

Some works that study the performance of NFV with focus on
memory and data locality bottlenecks already exist: Authors of [13]
study the performance of DPDK in conjunction with single-root
input/output virtualization (SR-IOV). SR-IOV is a passthrough I/O
technology which enables VMs to access the NIC hardware directly.
The work shows the sensibility of the performance to the NUMA
placement, although the focus of the study is on the performance
impact of the number of VMs.

Authors of [8] use DPDK for developing so called Mikro VNFs,
which locally process the packets of user VMs. The evalution shows
that the DPDK based approach has clear performance advantages.
In contrast to our work the authors focus on introducing a new
architecture for VNFs in a general purpose cloud.

Authors of [10] study the usage of DPDK for very high packet
rates. Their results show that a data rate of 100Gb/s can be achieved
using a single server. For multi-threaded packet processing multi-
queue NICs are used. Authors evaluate the effects of different queue
to core mapping strategies. They evaluate their system in terms
of packet drop rate. Cerrato et. al [2] study the performance of
VNFs using DPDK and different memory architectures. Their re-
sults show that a DPDK-based packet processing system with a high
number (>100) of tiny network functions can deliver satisfactory
throughput performance, although the experienced delay becomes
high. Authors of [7] developed a NUMA aware thread scheduling
approach, that reduces the slowdown caused by the NUMA archi-
tecture. The authors propose a performance slowdown index based
on the inter-socket overhead caused by L3 cache misses.

Banerjee et. al [1] and Dobrescu et al. [3] show the performance
impacts on VMs when comparing the VM on the same NUMA node
as the NIC versus the remote node. Their results show a high num-
ber of cache misses when placing the VM on the remote node. They
also provide an approach for determining a NUMA aware place-
ment in virtualized environments. In [9], Kulkarni et al. introduce
NFVnice, a framework for scheduling NFs on a server. They look at
the problem of how computing resources can be allocated to NFs
using rate-cost proportional fair shares.

In our work we concentrate on the performance bottlenecks in
the CPU architecture and therefore do not use any virtualization
techniques to avoid side effects. Furthermore we introduce a model

C. Sieber, R. Durner, M. Ehm, W. Kellerer, P. Sharma

that aims to quantify the network efficiency of NFV placements,
with respect to architectural specifics.

7 CONCLUSION

With the move from dedicated hardware to multi-purpose hardware
for packet processing applications, performance aspects of this hard-
ware are getting increasingly important. In this work we outline
an optimization scheme for VNF on-server placement and evaluate
the effects of the memory architecture to the packet processing
performance. The results show that copying packets between the
NUMA nodes increases the CPU load drastically and should be
avoided if possible. The measurements using an increasing ACL
size in memory show that the effects of CPU cache exhaustion
should be considered when designing VNFs. Additionally, we show
that the CPU cycles needed for memory access follow the AMAT
model. Overall performance penalty of copying between NUMA
nodes is bigger than accessing the memory at the local socket.

In the future we want to use the measurements results to provide
a complete formulation of the proposed optimization scheme and
extend our measurements to additional architectures.

ACKNOWLEDGMENTS

This work has been partially carried out at the Hewlett Packard
Labs, Palo Alto as part of Christian’s internship. It was also partly
funded by the German Research Foundation (DFG) under the grant
number KE1863/6-1 and by the German Federal Ministry for Re-
search and Education (BMBF) in the framework of the SARDINE
project (Project ID 16KIS0261). The authors alone are responsible
for the content of the paper.

REFERENCES

[1] Amitabha Banerjee, Rishi Mehta, and Zach Shen. 2015. NUMA Aware I/O in
Virtualized Systems. In IEEE 23rd Annual Symposium on High-Performance Inter-
connects (HOTI). IEEE.

[2] Ivano Cerrato, Mauro Annarumma, and Fulvio Risso. 2014. Supporting fine-
grained network functions through Intel DPDK. In Third European Workshop on
Software Defined Networks (EWSDN). IEEE.

[3] Mihai Dobrescu, Katerina Argyraki, and Sylvia Ratnasamy. 2012. Toward Pre-
dictable Performance in Software Packet-Processing Platforms. In Proceedings of
NSDI 12. USENIX.

[4] Dr. David Levinthal PhD. - Intel. 2009. Performance Analysis Guide for Intel Core
i7 Processor and Intel Xeon 5500 processors.

[5] ETSI 2012. Network Functions Virtualisation - Introductory White Paper. SDN
and OpenFlow World Congress (2012).

[6] John L. Hennessy and David A. Patterson. 2012. Computer Architecture a Quanti-

tative Approach Fifth Edition.

Yang Hu and Tao Li. 2016. Towards efficient server architecture for virtualized

network function deployment: Implications and implementations. In 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO).

Ryota KAWASHIMA and Hiroshi MATSUO. 2017. A Generic and Efficient Local

Service Function Chaining Framework for User VM-dedicated Micro-VNFs. IEICE

Transactions on Communications (2017).

Sameer G Kulkarni, Wei Zhang, Jinho Hwang, et al. 2017. NFVnice: Dynamic

Backpressure and Scheduling for NFV Service Chains. In Proceedings of the

Conference of the ACM Special Interest Group on Data Communication, SIGCOMM

'17. ACM.

Peilong Li, Xiaoban Wu, Yongyi Ran, and Yan Luo. 2017. Designing Virtual

Network Functions for 100 GbE Network Using Multicore Processors. (2017).

Marek Majkowski. 2015. Cloudflare Blog: How to receive a million packets per

second. (2015). https://blog.cloudflare.com/how-to-receive-a-million-packets/

Bryan Veal and Annie Foong. 2007. Performance scalability of a multi-core

web server. In Proceedings of the 3rd ACM/IEEE Symposium on Architecture for

networking and communications systems. ACM.

Chengwei Wang, Oliver Spatscheck, and Vijay et al. Gopalakrishnan. 2016. To-

ward High-Performance and Scalable Network Functions Virtualization. IEEE

Internet Computing (2016).

7

8

[

[10

—_
o

[12

[13

https://blog.cloudflare.com/how-to-receive-a-million-packets/

	Abstract
	1 Introduction
	2 NUMA Architecture
	3 Methodology
	3.1 Minimal VNF
	3.2 Function Chain Implementation
	3.3 Measuring CPU Load with Polling

	4 Performance Impacts
	4.1 NUMA Impact - Minimal VNF
	4.2 NUMA Impact - Function Chain
	4.3 Impact of Cache Exhaustion

	5 Network Efficiency Index
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

