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Abstract—In software-defined networking (SDN), the control 

plane is separated from the switching plane (i.e., data plane). The 

logically centralized control plane is implemented by physically 

distributing several controllers throughout the network for 

scalability and resilience. The problem of finding the number and 

location of the SDN controllers is known as the controller 

placement problem (CPP). In this paper, we consider the 

following robust CPP problem variant. For a given maximum 

switch-controller (SC) delay and a given maximum controller-

controller (CC) delay in the regular state, we aim to find a CPP 

solution that maximizes the network robustness for a given 

number of malicious node attacks. First, we guarantee that if all 

but one controller nodes are shutdown, there is still a switching 

path from any switch to the surviving controller. We propose an 

ILP based method aiming to enumerate all such solutions. Then, 

for different malicious node attacks corresponding to different 

attacker’s strategies, we evaluate the previous solutions to 

determine the ones that maximize the minimum number of 

switches that can still be connected to at least one controller. We 

compare the robust CPP solutions with non-robust CPP solutions 

which aim solely to minimize the average SC delay or average 

CC delay. In the latter cases, we propose ILP models that can be 

solved efficiently by standard solvers. Finally, we present a set of 

computational results showing the trade-off between the 

robustness improvement of the proposed solutions against the 

resulting penalties on the SC and CC delays. 

Keywords—SDN, controller placement, malicious node attacks, 

integer linear programming 

I.  INTRODUCTION 

Disaster based failures can seriously disrupt a 
telecommunications network, making its services unavailable 
[1]. Due to the current importance of telecommunication 
services and the rising risk of large human-made attacks, 
improving the preparedness of networks to such attacks is 
becoming a key issue (see [2] for a recent survey on security 
challenges in communication networks conducted within the 
COST Action RECODIS). In this paper, we consider disasters 
caused by malicious attacks to multiple network nodes. When 
such a disaster occurs, it is important not only to quickly 
recover the shutdown nodes but also to minimize its impact on 
the capacity of the surviving nodes to keep working properly. 

Software-defined networking (SDN) is a network 
architecture that separates the control plane from the switching 

plane (i.e., data plane). The logically centralized control plane 
is implemented by placing controllers at different locations for 
scalability and resilience. How many controllers and where to 
place them is commonly known as the controller placement 
problem (CPP), a facility location type of problem known to be 
NP-hard [3]. Note that SDN exhibits unique vulnerabilities to 
malicious node attacks. For example, if an attacker is able to 
shut down all controller places, the whole network collapses 
even if the surviving network is fully connected. 

In general, the network can be either in the regular state 
(i.e., with all nodes operational) or in a failure state (i.e., when 
one or more nodes are shutdown). We assume that the operator 
aims to improve the network robustness to malicious attacks of 
p simultaneous nodes and, therefore, the operator aims to 
distribute C controllers with 𝐶 = 𝑝 + 1 (if C is less, an attacker 
knowing the controller locations may be able to shut down all 
controllers causing total network collapse). 

In this paper, we address the following robust variant of the 
CPP problem. The CPP solution must (i) be compliant with a 
given maximum switch-controller (SC) delay and a given 
maximum controller-controller (CC) delay in the regular state 
and (ii) guarantee in the failure state that if any p controller 
nodes are shutdown, there is still a switching path from any 
switch to the surviving controller. Then, among all solutions 
fulfilling these requirements (i.e., all feasible solutions), the 
aim is to find the CPP solutions that maximize the network 
robustness for different malicious node attacks corresponding 
to different possible attacker’s strategies. The optimal CPP 
solutions are the ones that maximize the minimum number of 
switches that can still be connected to at least one controller 
node among all attacks. To compute the robust CPP solutions, 
we propose an integer linear programming (ILP) based 
methodology, and a speedup technique, aiming to enumerate 
all feasible solutions and, then, we evaluate each solution to 
select the optimal ones. We also compare the robust CPP 
solutions with non-robust CPP solutions which aim solely to 
minimize the average SC and CC delays. Finally, we present 
computational results showing the trade-off between the 
robustness improvement of the proposed solution against the 
resulting penalties on the SC and CC delays. 

In general, the CPP solution is biased by the considered 
constraints. The most common constraint is related to the SC 
delay. Until recently, most of the literature has focused in 
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minimizing the average or the maximum SC delays in order to 
reduce the time to set up new flows requested by a switch [4]. 
The authors in [5] propose a CPP solution minimizing the 
number of required controllers and SC delay. However, the 
distribution of different controllers supported by e.g., ONOS 
[6] and ODL [7], adds requirements to guarantee an efficient 
synchronization among controllers and to keep a consistent 
network view. These requirements are related to the distance 
between controllers. The most used metric for this purpose is 
the maximum CC delay [5]. Note that (i) minimizing the 
average SC delay, in general, increases the average CC delay, 
and vice-versa, as shown in [8], and (ii) increasing the number 
of controllers will, in general, decreases the average SC delay 
but increases the average CC delay (controllers placed closer to 
the switches become more spread over the whole network).  

In order to overcome the limitation of having each switch 
assigned to one controller through one control channel, as 
initially considered, several works have proposed CPP 
solutions to make SDN more resilient to failures. In [9], the 
control channel availability is increased by considering (i) two 
disjoint control paths between any switch and its assigned 
controller or (ii) two controller replicas to each switch with 
disjoint control paths. The solutions consider SC delays and 
show that both strategies provide significant gains in control 
path availability, while adding a limited penalty to the average 
SC delay in case of single failures. In [10], the authors address 
controller failures presenting ILP models for the regular and 
failure states. For the regular state, the goal is to minimize the 
number of controllers assuming maximum values for both SC 
and CC delays to guarantee reasonable network performance 
(they assume that each switch connects to the closest available 
controller). Load balance is also guaranteed by imposing a 
given maximum value to the load difference among controllers. 
For the failure state, the controllers are assumed to fail with a 
given probability and, when a controller does fail, each of its 
switches reconnects to the closest available controller. The 
objective in this case is a combination of minimizing the 
number of controllers and the average SC delays. 

Getting closer to the multiple failure scenario considered in 
this paper, the authors in [11] address targeted attacks to an 
SDN network. Assuming that the attacker has knowledge of the 
network topology but neither the number of controllers nor 
their location, the authors study the network vulnerabilities to 
centrality-based attacks. The proposed algorithm proposes 
controller placements based on the least critical nodes, as a way 
to cheat the attacker (i.e., the attacker is expected to choose the 
most critical nodes hoping to cause maximum disruption). On 
the other hand, authors in [12] propose a CPP solution that, 
given a multiple failure scenario, finds the location of the 
controllers given the min cut sets of the topology. 

This paper is organized as follows. Section II discusses how 
non-robust CPP solutions can be optimally computed to 
minimize the average SC and CC delays. Section III explains 
how to compute the robust CPP solutions and describes the set 
of considered malicious node attacks. Section IV presents a set 
of computational results showing the trade-off between the 
SDN robustness improvement and the resulting penalties on the 
average SC and CC delays. Finally, Section V presents the 
main conclusions of the work. 

II. THE NON-ROBUST CPP PROBLEM 

Consider a SDN switching network represented by a 
directed graph 𝐺 = (𝑁, 𝐴), where 𝑁 is the set of SDN switches 
and 𝐴 is the set of directed links. The total number of nodes is 
|𝑁| = 𝑛 and each link direction is represented by the arc (𝑖, 𝑗). 
Also consider 𝑉(𝑖) as the set of neighbor nodes of node 𝑖. 
Given the delay of each arc, the shortest path delay between 
nodes 𝑖 and 𝑗 is denoted as 𝑑𝑖𝑗 . 

In the non-robust CPP problem, the aim is to optimize the 
SDN control plane performance in its regular state by 
minimizing the average SC and CC delays and guaranteeing 
that: (i) the SC delay between any switch and its primary 
controller does not exceed a given 𝐷𝑠𝑐  and (ii) the CC delay 
between any pair of controllers does not exceed a given 𝐷𝑐𝑐 . 
Consider the following decision variables: 

𝑦𝑖 ∈ {0,1}  binary variable that is 1 if a controller is placed in 
node 𝑖, and 0 otherwise. 

𝑧𝑖𝑗 ∈ {0,1}  binary variable that is 1 if the primary controller of 

switch 𝑖 is placed in node 𝑗, and 0 otherwise. 

𝑐𝑖𝑗 ∈ {0,1}  binary variable that is 1 if a controller is placed on 

node 𝑖 and another controller is placed on node 𝑗, 
with 𝑗 > 𝑖, and 0 otherwise (i.e., 𝑐𝑖𝑗 = 𝑦𝑖 ∙ 𝑦𝑗). 

Then, a proper set of linear constraints defining the set of 
all feasible solutions is as follows: 

∑ 𝑦𝑖𝑖∈𝑁 = 𝐶  (1) 

∑ 𝑦𝑗𝑗:𝑑𝑖𝑗≤𝐷𝑠𝑐
≥ 1 𝑖 ∈ 𝑁  (2) 

𝑦𝑖 + 𝑦𝑗 ≤ 1 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑑𝑖𝑗 > 𝐷𝑐𝑐  (3) 

∑ 𝑧𝑖𝑗𝑗:𝑑𝑖𝑗≤𝐷𝑠𝑐
= 1 𝑖 ∈ 𝑁  (4) 

𝑧𝑖𝑗 ≤ 𝑦𝑗 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁  (5) 

𝑐𝑖𝑗 ≤ 𝑦𝑖  𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑗 > 𝑖  (6) 

𝑐𝑖𝑗 ≤ 𝑦𝑗 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑗 > 𝑖  (7) 

𝑐𝑖𝑗 ≥ 𝑦𝑖 + 𝑦𝑗 − 1 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑗 > 𝑖  (8) 

𝑦𝑖 ∈ {0,1} 𝑖 ∈ 𝑁 (9) 

𝑧𝑖𝑗 ∈ {0,1} 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁  (10) 

𝑐𝑖𝑗 ∈ {0,1} 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑗 > 𝑖  (11) 

Constraints (1–3) are the basic set of constraints: constraint 
(1) guarantees that C controller nodes are selected; for each 
node 𝑖, constraints (2) guarantee that there is at least one 
controller in some node distanced at most 𝐷𝑠𝑐  from 𝑖 (including 
itself) and constraints (3) guarantee that any two controllers are 
not placed in nodes distanced further than 𝐷𝑐𝑐  from each other. 
Constraints (4–5) guarantee a proper assignment of primary 
controllers to switches: constraints (4) guarantee that the 
primary controller of each switch is placed in a node whose 
distance in not higher than 𝐷𝑠𝑐  and constraints (5) guarantee 
that if the primary controller of a switch is at node j, a 
controller must be placed at that node. Constraints (6–8) 
guarantee a proper assignment of variables 𝑐𝑖𝑗  (they are the 



standard set of linear constraints imposing 𝑐𝑖𝑗 = 𝑦𝑖 ∙ 𝑦𝑗). 

Finally, constraints (9–10) are the variable domain constraints. 

The average SC delay of a feasible solution is the sum of all 
SC delays divided by the number of switches without 
collocated controllers: 

𝑓𝑠𝑐(𝑧) =
1

𝑛 − 𝐶
∑ ∑ 𝑑𝑖𝑗𝑧𝑖𝑗

𝑗∈𝑁\{𝑖}𝑖∈𝑁

 

The average CC delay of a feasible solution is the sum of 
all CC delays divided by the number of controller pairs: 

𝑓𝑐𝑐(𝑐) =
2

𝐶(𝐶 − 1)
∑ ∑ 𝑑𝑖𝑗𝑐𝑖𝑗

𝑗∈𝑁:𝑗>𝑖𝑖∈𝑁

 

It is well-known (as in [8]) that, in general, there is no 
single solution that simultaneously minimizes both functions 
𝑓𝑠𝑐(𝑧) and 𝑓𝑐𝑐(𝑐). The joint optimization of both functions is a 
bi-objective optimization problem and has multiple optimal 
solutions (the so-called Pareto solutions) representing different 
trade-offs between the two objectives. Here, we consider the 
two extreme cases: 

MinAvgSC solution – the solution that minimizes the average 
SC delay and, among all such solutions, the one that 
minimizes the average CC delay. 

 MinAvgCC solution – the solution that minimizes the average 
CC delay and, among all such solutions, the one that 
minimizes the average SC delay. 

These solutions can be determined by solving in sequence 
two ILP models. To compute the MinAvgSC solution, we first 
solve the model: 

Minimize  𝑓𝑠𝑐(𝑧)   

Subject to:   (1–11)  

and then, assuming its optimal value 𝑧𝑠𝑐, we solve the model: 

Minimize  𝑓𝑐𝑐(𝑐)   

Subject to: 𝑓𝑠𝑐(𝑧) ≤ 𝑧𝑠𝑐  ,  (1–11)  

The solution of the second ILP model minimizes the 
average CC delay while guaranteeing that the minimum 
average SC delay 𝑧𝑠𝑐 is met. The MinAvgCC solution is 
computed similarly with 𝑓𝑐𝑐(𝑐) as the objective of the first 
model and 𝑓𝑠𝑐(𝑧) as the objective of the second model. In our 
computational results, both methods are solved very efficiently 
by a standard ILP solver (we used CPLEX 12.6.1) where the 
total runtime was always below 6 seconds in all cases. 

III. THE ROBUST CPP PROBLEM 

Consider a SDN switching network modelled as described 
at the beginning of Section II. In a failure state, we assume that 
each switch dynamically selects the closest surviving controller 
as its primary controller and, so, any controller acts as a backup 
controller for any switch. Moreover, we assume that when a 
node hosting a controller is shutdown, both the controller and 
its collocated switch fail. 

In the robust CPP problem, besides the maximum SC and 
CC delay requirements related with the regular state, the 

selection of the 𝐶 controller nodes must satisfy an additional 
requirement: there must be a routing path from each switch to 
each controller not passing through any other controller. This 
requirement guarantees that all switches can still connect to the 
surviving controller if any 𝑝 = 𝐶 − 1 controller nodes are 
shutdown (although, in the failure state, the maximum delay 
requirement imposed for the regular state might be not 
ensured). Consider variables 𝑦𝑖  as defined in Section II 
(variables 𝑧𝑖𝑗  and 𝑐𝑖𝑗  are no longer needed) and the following 

new variables: 

𝑥𝑖𝑗
𝑘 ∈ ℕ0

+  non-negative integer variable indicating the number 

of paths that use arc (𝑖, 𝑗) from switch 𝑘 to all 
controllers. 

A proper set of linear constraints defining the set of all 
feasible solutions of the robust CPP problem is as follows: 

(1–3), (9) 

∑ (𝑥𝑖𝑗
𝑘 − 𝑥𝑗𝑖

𝑘)𝑗∈𝑉(𝑖) ≤ 𝑦𝑖  𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁\{𝑘} (12) 

∑ (𝑥𝑖𝑗
𝑘 − 𝑥𝑗𝑖

𝑘)𝑗∈𝑉(𝑖) ≥ 0 𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁\{𝑘} (13) 

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉(𝑖) ≤ 𝐶(1 − 𝑦𝑖) 𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁 (14) 

∑ 𝑥𝑗𝑖
𝑘

𝑗∈𝑉(𝑖) ≥ 𝑦𝑖 − 𝑦𝑘  𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁\{𝑘} (15) 

𝑥𝑖𝑘
𝑘 = 0 𝑘 ∈ 𝑁, 𝑖 ∈ 𝑉(𝑘) (16) 

𝑥𝑖𝑗
𝑘 ∈ ℕ0

+ 𝑘 ∈ 𝑁, (𝑖, 𝑗) ∈ 𝐴 (17) 

Constraints (1–3) and (9) guarantee that variables 𝑦𝑖  define 
a proper set of C controller places such that both maximum SC 
and CC delays are guaranteed (as explained in Section II). 

Constraints (12–17) guarantee the additional requirement in 
the following way. For each switch 𝑘 ∈ 𝑁, if node 𝑖 does not 
host a controller (i.e. 𝑦𝑖 = 0), constraints (12–13) are 

equivalent to ∑ (𝑥𝑖𝑗
𝑘 − 𝑥𝑗𝑖

𝑘)𝑗∈𝑉(𝑖) = 0 and are the typical path 

conservation constraints; in this case, constraints (14–15) are 
redundant. On the other hand, if node 𝑖 hosts a controller (i.e., 
𝑦𝑖 = 1), constraints (14) guarantee that there are no node 𝑖 
outgoing arcs in any path from 𝑘 (ensuring that all paths 
originated at 𝑘 have no intermediate controller nodes) and 
constraints (12–13) and (15) guarantee that there is exactly one 
path ending at node 𝑖 (ensuring that there is one path originated 
at 𝑘 that reaches each controller). Finally, constraints (16) 
guarantee that there is no path from 𝑘 to itself and constraints 

(17) are the domain constraints of the new variables 𝑥𝑖𝑗
𝑘 . 

In order to understand constraints (12–17), let us consider 
the example presented in Fig. 1, which depicts an SDN 
network with 8 switching nodes and C = 3 controllers 
(controller locations highlighted in gray). The controller 
locations of Fig.1(a) are eliminated by constraints (12–17) 
since there is no path from node 7 to controller placed at node 2 
without passing either through node 5 or 6 (the same happens 
with node 8). In this case, if controller nodes 5 and 6 are shut 
down, the surviving network is not fully operational. On the 
other hand, constraints (12–17) allow the controller locations of 
Fig. 1(b) since, from every switching node there is always a 
routing path to each controller not passing through any other 



controller. Fig. 1(b) shows a set of 𝑥𝑖𝑗
𝑘  variable values (the 

variables not shown are 0) that are compliant with constraints 
(12–17) and define a set of three paths from node 1: one to 
node 3, one to node 4 and one to node 7. In this case, if any  
two controller locations are shutdown, the surviving network is 
still fully operational. 
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Fig. 1. Illustration of the additional property 

The final goal of the robust CPP problem is to find the 
feasible solution that maximizes the network robustness for a 
given set of malicious node attacks. The most standard way to 
reach this goal would be to define a proper ILP model whose 
optimal solution is the targeted CPP solution. In this work, 
however, we adopt a different approach. First, we aim to obtain 
all feasible solutions, i.e., the solutions defined by (1–3), (9), 
(12–17), or at least a large number of them (when the total set 
is too large). Then, we evaluate each solution against a given 
objective (or a combination of objectives). Since this 
evaluation runs in polynomial time, we have total flexibility in 
the way we can define the target optimization goal. 

In the next three subsections, we separately describe, first, a 
basic method to compute the feasible solutions, then, a speedup 
technique that, plugged into the basic method, reduces 
significantly its computational runtimes and, lastly, how all 
solutions are computed to find the most robust solutions for a 
given set of malicious node attacks. 

A. Basic Method 

To obtain all possible solutions, we define the following 
ILP model: 

Maximize  ∑ 𝜑𝑖𝑦𝑖𝑖∈𝑁  (18) 

Subject to: (1–3), (9), (12–17) 

The coefficients 𝜑𝑖 of the objective function (18) are given 
by the values of a node centrality measure. This is motivated 
by the assumption that nodes with higher centrality values are 
more promising candidates to place controllers (in our 
computational results we have used the closeness centrality). 

To obtain all feasible solutions, we start by solving the 
above ILP model which returns the first solution (defining a set 
of C controller nodes). Then, iteratively, the obtained set of 
controller nodes {𝜌1, … , 𝜌𝐶} of the previous solution is 
eliminated from the feasible set by adding constraint 𝑦𝜌1

+

⋯ + 𝑦𝜌𝐶
≤ 𝐶 − 1 to the ILP model and the augmented model 

is solved. The iterations continue until the augmented model is 
infeasible, meaning that all solutions have been found. When 

the number of feasible solutions is very high, this method can 
take too long. So, we consider a 𝐿max parameter and we stop 
the procedure when either the model is infeasible or 𝐿max 
solutions have been generated. 

B. Speedup Technique 

In practice, solving an ILP model for each feasible solution 
can be very time consuming. To reduce the required runtime, 
we devised a speedup technique where most of the feasible 
solutions are computed by a more efficient means. 

The speedup technique is based on a random walk that 
starts with a feasible solution and repeatedly moves from a 
feasible solution to a neighbor solution by randomly changing 
the location of one controller. If the neighbor solution is 
feasible, the random walk progresses from it; otherwise, the 
procedure progresses from the previous feasible solution.  All 
feasible solutions are stored and the random walk stops when 
𝐼max consecutive neighbor solutions are infeasible (𝐼max is an 
input parameter). The plugging of the speedup technique into 
the basic method is as follows: 

(a) A feasible solution is computed by solving the ILP model. 
If the ILP model is infeasible, the procedure stops. 

(b) The solution of (a) is used to generate a neighbor solution, 
by randomly changing a controller from its current node to 
a neighboring node that does not already have a controller 
– we refer to this change as a controller hopping operation. 

(c) The neighbor solution is evaluated for feasibility. If 
feasible, the neighbor solution becomes the current 
solution and the controller hopping operation is applied to 
generate a neighbor solution. 

(d) Step (c) is repeated until the neighbor solution is 
infeasible; then, the procedure sets the current solution to 
the last feasible solution and the controller hopping 
operation is applied to generate a neighbor solution. 

(e) The generation of neighbor solutions continues until a 
maximum number 𝐼max of infeasible solutions are 
consecutively generated. Then, the ILP model is augment-
ted with the constraints associated to all feasible solutions 
meanwhile computed and the procedure returns to step (a).  

In addition, a list of feasible solutions is initialized empty 
and a feasible solution counter is initialized as0. Then, in all 
steps where a new feasible solution is computed, and if it is not 
in the list: (i) the solution is added to the list, (ii) the feasible 
solution counter is incremented and (iii) the procedure stops if 
the counter reaches the value 𝐿max.  

Note that the feasibility evaluation of a neighbor solution 
has polynomial complexity. Recall that a solution is feasible if 
it is compliant with the maximum given 𝐷𝑠𝑐  and 𝐷𝑐𝑐 delays in 
the regular state and if the controller locations are compliant 
with the additional requirement. First, the shortest path delay 
𝑑𝑖𝑗  between all pairs of nodes can be computed in polynomial 

time and only once at the beginning. To check if the maximum 
SC delay is met, we need to compute for each node i not 
hosting a controller the minimum value 𝑑𝑖𝑗  for all nodes j 

hosting a controller, which has complexity Θ(𝑛 × 𝐶). To check 
if the maximum CC delay is met, we need to compute the 



minimum value 𝑑𝑖𝑗  among all node pairs i and j hosting a 

controller each, which has complexity Θ(𝐶 × 𝐶). Finally, to 
check if there is a routing path from each switch to each 
controller not passing through any other controller, we first 
eliminate from the original graph 𝐺 = (𝑁, 𝐴) all arcs (𝑖, 𝑗) for 
all nodes i that host a controller. Then, in this graph and for 
each node i not hosting a controller, we need to compute the 
shortest path tree from i to all nodes hosting controllers, which 
has complexity Θ(𝑛2). 

C. Robust CPP Solutions 

With the feasible solutions computed as described in the 
previous subsections, the aim is to find those that maximize the 
network robustness to a given set of M malicious attacks to p 
simultaneous nodes. Each malicious attack is defined by a set 
of p nodes that the attacker can shut down simultaneously. A 
set of M malicious attacks is a set of M different combinations 
of p nodes such that the nodes of each combination can be 
simultaneously shutdown. 

The robustness of each feasible solution is evaluated as 
follows. For each combination 𝑚 = 1, … , 𝑀 of p nodes, we 
start by computing a graph 𝐺𝑚 by eliminating from the original 
graph 𝐺 = (𝑁, 𝐴) all p nodes. Then, we compute the number 
𝑛𝑠

𝑚 of surviving nodes that have connectivity to at least one 
surviving controller node in graph 𝐺𝑚. In this process, we also 
compute the number 𝑛𝑠𝑐

𝑚  of surviving nodes whose shortest 
path delay to its primary controller is not higher than 𝐷𝑠𝑐 . 
Finally, 𝑛𝑠 is computed as the minimum among all 𝑛𝑠

𝑚 values 
and 𝑛𝑠𝑐 is computed as the minimum among all 𝑛𝑠𝑐

𝑚  values. 
Besides the graph transformations, the robustness evaluation of 
each feasible solution has complexity Θ(𝑀 × 𝑛2). For each 
feasible solution, 𝑛𝑠 is the minimum number of nodes that still 
have a primary controller among all M attacks and 𝑛𝑠𝑐 is the 
minimum number of nodes that still have a primary controller 
with a SC delay not higher than 𝐷𝑠𝑐  (the maximum delay 
required for the regular state) among all M attacks. Then, when 
comparing the robustness of different feasible solutions, we 
consider that a solution is better if (i) it has a higher value of 
𝑛𝑠𝑐 or (ii) the same value of 𝑛𝑠𝑐 and a higher value of 𝑛𝑠. 

In order to define a proper set of malicious node attacks, we 
have assumed, as in other works (for example [11]), that the 
attacker has knowledge of the network topology but neither of 
the number of controllers or their location. In this case, the 
attacker chooses the p nodes based on node centrality metrics. 
We have considered 𝑀 =  3 attacks: the p nodes are selected 
by node degree (measures how many direct connections the 
node has with other nodes), node closeness (measures how 
close each node is to all other nodes) and node betweenness 
(measures how many shortest paths between all other node 
pairs include each node). In all cases, the node with the highest 
centrality value is first selected. Then, the selected node is 
eliminated from the graph, the node centrality values are 
recomputed and the resulting highest centrality node is 
selected. The selection continues until p nodes are selected. 

IV. COMPUTATIONAL RESULTS 

In the computational results, we have considered two 
network topologies. Germany50 (Fig. 2) has 50 nodes, 88 
undirected links and an average node degree of 3.52 

(information available at http://sndlib.zib.de). CORONET 
CONUS (Fig. 3) has 75 nodes, 99 undirected links and an 
average node degree of 2.64 (information available at http:// 
www.monarchna.com/topology.html). As in other works (for 
example [10]), we have defined the delays in terms of shortest 
path lengths and the maximum delay parameters (𝐷𝑠𝑐  and 𝐷𝑐𝑐) 
are defined as percentages of the graph diameter 𝐷𝑔 (the largest 

shortest path length among all node pairs). Based on the node 
geographical coordinates of each network topology, we have 
determined the length of each link by computing the shortest 
path length over the Earth surface between the locations of its 
end nodes. These link lengths were than used to compute the 
shortest path length 𝑑𝑖𝑗  between all network node pairs. The 

resulting graph diameters are 𝐷𝑔 = 934 km for Germany50 

and 𝐷𝑔 = 6472 km for CORONET CONUS.  

 

Fig. 2. Germany50 network topology with 50 nodes and 88 links 

 

Fig. 3. CORONET CONUS network topology with 75 nodes and 99 links 

In both networks, we have considered malicious attacks of 
p = 3, 5 and 7 simultaneous nodes. Then, for each network and 
each value of 𝐶 = 𝑝 + 1, we have considered three sets of 
maximum 𝐷𝑠𝑐  and 𝐷𝑐𝑐  delay values representing different 
compromises between SC and CC delays which are tight but 



still guarantee that both the non-robust and the robust CPP 
problems are feasible. To obtain the list of robust CPP feasible 
solutions, the proposed basic method plugged with the speedup 
technique (as described in Section III.B) was implemented in 
C++, using the CPLEX 12.6 callable library for solving the ILP 
models. Based on preliminary tests, 𝐿max was set to 100000 
and 𝐼max was set to 10000. All computational results were 
obtained on a PC with 8 cores and 64 GB of RAM.  

Table I (for Germany50) and Table II (for CORONET 
CONUS) present for each problem instance the number of 
controllers (column ‘C’), the considered maximum SC delay 
(column ‘𝐷𝑠𝑐’) and maximum CC delay (column ‘𝐷𝑐𝑐’), the 
total number of feasible solutions found (column ‘Nsols’), the 
total runtime in seconds to find all feasible solutions (column 
‘Runtime (s)’), the percentage of feasible solutions found by 
the speedup technique (column ‘Nsols (%)’) and the percentage 
of the total runtime spent by the speedup technique (column 
‘Runtime (%)’). Recall that when the number of feasible 
solutions found is 𝐿max, it means that the method was not able 
to find all existing solutions (there is only one such case, the 
Germany50 instance with ID=9 highlighted in Table I with an 
‘*’). The total number of feasible solutions varies significantly 
between the different problem instances. 

TABLE I.  FEASIBLE SOLUTION RESULTS OF GERMANY50 

   

TABLE II.  FEASIBLE SOLUTION RESULTS OF CORONET CONUS 

    

Concerning the merits of the speedup technique, the results 
of both tables show that in almost all cases, the speedup 
technique computes a very large percentage of solutions while 
using a small percentage of the total runtime. The exceptions 
are the Germany50 instance with ID=2 (the speedup technique 
found 1 out of 2 existing solutions with a negligible runtime) 
and the CORONET CONUS instance with ID=3 (the speedup 
technique did not find any of the 4 existing solutions but also 

took a very small fraction of the total runtime). On average, the 
larger the total number of solutions is, the percentage of 
solutions that are obtained by the speedup technique is higher 
while the percentage of the total runtime is lower. The extreme 
case is the Germany50 instance with ID=9 (100000 solutions 
found and all but the first solution computed by the speedup 
technique) where the total runtime was less than one second 
(mainly the runtime to solve the initial ILP model by CPLEX).  

In order to compare the non-robust and the robust CPP 
solutions, we have also conducted the following additional 
computations. For the MinAvgSC and MinAvgCC non-robust 
CPP solutions (determined as described in Section II), we have 
first checked if they meet the additional robustness property 
(RP) that there must be a routing path from each switch to each 
controller that does not pass through any other controller and, 
then, we have computed the 𝑛𝑠𝑐 and 𝑛𝑠 robustness values 
based on the same set of malicious node attacks as described in 
Section III.C. On the other hand, among all optimal robust CPP 
solutions (determined as described in Section III), we have 
computed the one with the minimum average SC delay and the 
one with the minimum average CC delay. 

The obtained results for Germany50 are presented in Table 
III (with the solution results for the minimum average SC 
delays) and Table IV (with the solution results for the 
minimum average CC delays). Similarly, the results for 
CORONET CONUS are presented in Table V and Table VI. In 
these tables, column ‘SC delay (%)’ shows the minimum 
average SC delay of the best solution, column ‘CC delay (%)’ 
shows the minimum average CC delay of the best solution and 
column ‘RP’ indicates if the robustness property is met by the 
non-robust CPP solution. Then, columns ‘𝑛𝑠𝑐’ and ‘𝑛𝑠’ are the 
robustness values of the solutions for the 3 malicious node 
attacks as defined in Section III.C. 

Concerning the results of Table III, they show that the 
average SC delays are very close between the non-robust and 
the robust CPP solutions. In fact, there are two instances (ID=2 
and ID=3) where both solutions are equal. Concerning the 
robustness improvements, 𝑛𝑠𝑐 improves in all other cases (i.e., 
more switches can always connect to a surviving controller 
with a delay not higher than 𝐷𝑠𝑐) and the improvement tends to 
be higher for higher values of p simultaneous nodes. On the 
other hand, in all instances and in both the non-robust and 
robust CPP solutions, 𝑛𝑠 is always equal to 𝑛 − 𝑝, which 
means that all surviving nodes can always connect to at least 
one surviving controller (this is explained by the fact that 
Germany50 has a high average node degree). Finally, all but 
one non-robust CPP solutions have the robustness property. 

Concerning the results of Table IV, in this case, the non-
robust and robust CPP solutions are equal in all instances for 
𝑝 =  3 (ID=1, ID=2 and ID=3). For the other cases, the 
conclusions follow closely the ones from the previous table. 
The only difference is that, although most of the CC delays are 
close between the non-robust and the robust CPP solutions, 
there is one instance where the difference is more significant: 
in instance with ID=6, the average CC delay increases from 
22.0% to 26.1% from the non-robust to the robust CPP solution 
while the 𝑛𝑠𝑐 improves from 39 to 42 switches (out of a total of 
45 surviving switches). 

ID   C  D sc D cc Nsols Runtime (s) Nsols (%) Runtime (%)

1 4 30% 60% 16 4,9 87,5% 27,9%

2 4 35% 40% 2 1,2 50,0% <0,1%

3 4 40% 35% 201 3,5 98,5% 2,4%

4 6 25% 65% 227 52,5 93,0% 25,9%

5 6 30% 60% 7469 920,3 98,7% 5,6%

6 6 35% 40% 59 3,4 94,9% 0,9%

7 8 20% 75% 100 93,8 83,0% 13,0%

8 8 25% 65% 27603 7254,6 99,2% 4,9%

9 8 30% 60% 100000* 0,8 99,9% <0,1%

ID   C  D sc D cc Nsols Runtime (s) Nsols (%) Runtime (%)

1 4 30% 55% 22 14,2 77,3% 1,3%

2 4 35% 40% 23 16,4 78,3% 0,8%

3 4 40% 30% 4 8,4 0,0% 1,0%

4 6 20% 80% 15 19,2 80,0% 0,8%

5 6 25% 55% 3 2,2 66,7% 1,9%

6 6 30% 50% 50 34,0 74,0% 1,1%

7 8 20% 65% 2109 1048,3 95,9% 1,5%

8 8 25% 55% 506 203,5 92,9% 1,2%

9 8 30% 50% 505 711,0 80,6% 0,5%



TABLE III.  RESULTS OF GERMANY50 FOR SC DELAYS 

  

TABLE IV.  RESULTS OF GERMANY50 FOR CC DELAYS 

  

Concerning the results of Table V, recall first that these 
results were obtained with CORONET CONUS which has a 
much lower average node degree than Germany50. Once again, 
these results show that the average SC delays are very close 
between the non-robust and the robust CPP solutions. On the 
other hand: (i) the robustness gains are now much higher, on 
average, than in Germany50, (ii) there are also observable 
gains in the 𝑛𝑠 values and (iii) less non-robust CPP solutions 
have the robustness property. The most significant examples 
are the instances with ID=2, ID=4 and ID=7. In these instances, 
the robust CPP solutions have only slightly higher average SC 
delays (when compared with the non-robust CPP solutions) and 
improve the 𝑛𝑠𝑐 values from 49 to 68 switches, from 49 to 61 
switches and from 50 to 64 switches, respectively. These 
improvements represent an increase of 38.8%, 24.5% and 
28.0% on the number of switches that can still work properly 
after any of the considered malicious node attacks. 

Finally, concerning the results of Table VI, the conclusions 
also follow closely the ones from the previous table but the 
average CC delays between the non-robust and the robust CPP 
solutions are not as close as in the SC delay cases. Moreover, 
the robustness gains, although more significant than in the 
Germany50 case (seen in Table IV), are not as high, on 
average, than the ones obtained in the previous Table V. 

Comparing the results of all tables, the following 
conclusions can be drawn. Firstly, for the same value of p, the 
robustness gains are higher for the CORONET CONUS which 
has a higher number of nodes. At the beginning, this might not 
be expected (the same p represents a smaller percentage of 
nodes being shut down in this network) but, since CORONET 

CONUS has a much smaller node degree, a smaller value of p 
has a higher impact on the network connectivity disruption. 
Therefore, the robust CPP problem is more relevant for 
network topologies with lower average node degrees. 

Secondly, the robustness gains are small for 𝑝 =  3 in all 
cases (meaning that such attacks are not too damaging on these 
networks) but become higher, on average, for higher values of 
p. These gains are obtained with small delay penalties when the 
average SC delay is considered but, in some cases, with 
significant delay penalties when the average CC delay is 
considered. The latter case, though, might not be so relevant 
since the maximum CC delay is the main parameter that 
impacts the synchronization efficiency between controllers [5] 
and so the average CC delay is not as important.  

TABLE V.  RESULTS OF CORONET CONUS FOR SC DELAYS 

  

TABLE VI.  RESULTS OF CORONET CONUS FOR CC DELAYS 

  

Finally, the non-robust CPP solutions minimizing the 
average CC delays tend to be more robust (to malicious node 
attacks) than the non-robust CPP solutions minimizing the 
average SC delays, as shown by the higher (on average) 
robustness values 𝑛𝑠𝑐 and 𝑛𝑠 of the MinAvgCC solutions when 
compared with the same values of the MinAvgSC solutions. 

For illustration purposes, Fig. 4 presents a chart comparing 
the average SC delays of the MinAvgSC solutions and of the 
robust CPP solutions for the CORONET CONUS where it is 
easy to see that the delay values are very close for all instances. 
Fig. 5 presents the robustness gains (both in terms of 𝑛𝑠𝑐 and 
𝑛𝑠 values) between the same solutions. In Fig. 5, we can 
observe different cases: (i) large improvements in both values 
(ID=7), (ii) large 𝑛𝑠𝑐 improvement and small (or inexistent) 𝑛𝑠 
improvement (ID=2 and ID=4) and (iii) small improvements in 

ID p SC delay (%) n sc n s   RP  SC delay (%) n sc n s

1 16,0 44 47 Yes 16,2 47 47

2 18,8 34 47 Yes 18,8 34 47

3 17,6 47 47 Yes 17,6 47 47

4 13,4 28 45 Yes 14,0 43 45

5 12,6 33 45 Yes 14,0 44 45

6 17,2 37 45 Yes 18,2 42 45

7 11,0 29 43 Yes 11,6 34 43

8 11,5 31 43 Yes 12,0 40 43

9 11,4 26 43 No 12,4 40 43

3

5

7

Non-robust CPP Robust CPP

ID p CC delay (%) n sc n s   RP  CC delay (%) n sc n s

1 40,1 47 47 Yes 40,1 47 47

2 29,2 34 47 Yes 29,2 34 47

3 21,5 47 47 Yes 21,5 47 47

4 38,5 39 45 Yes 40,8 43 45

5 29,1 38 45 Yes 30,8 44 45

6 22,0 39 45 Yes 26,1 42 45

7 40,2 23 43 Yes 43,8 34 43

8 31,8 30 43 Yes 35,9 40 43

9 24,5 31 43 No 28,3 40 43

3

5

7

Non-robust CPP Robust CPP

ID p SC delay (%) n sc n s   RP  SC delay (%) n sc n s

1 16,4 69 71 Yes 16,4 71 71

2 17,4 49 71 No 19,4 68 71

3 21,4 56 71 Yes 21,5 56 72

4 11,2 49 69 Yes 11,3 61 69

5 14,1 59 68 Yes 14,8 60 68

6 15,2 65 68 No 15,5 65 69

7 10,8 50 52 Yes 11,7 64 67

8 12,6 64 66 Yes 12,9 64 67

9 14,2 55 55 No 14,5 55 55

Non-robust CPP Robust CPP

3

5

7

ID p CC delay (%) n sc n s   RP  CC delay (%) n sc n s

1 33,1 67 71 Yes 42,7 71 71

2 23,8 66 71 Yes 24,4 68 71

3 19,6 56 71 No 22,9 56 72

4 46,7 60 69 Yes 48,1 61 69

5 39,3 60 68 Yes 39,3 60 68

6 28,0 32 34 Yes 30,7 65 69

7 36,0 63 66 Yes 37,2 64 67

8 33,0 61 66 Yes 33,8 64 67

9 23,8 32 34 Yes 26,4 55 55

3

5

7

Non-robust CPP Robust CPP



both values. Note that this comparison does not take into 
account the robustness property that is always guaranteed in the 
robust CPP solutions but is not observed in some MinAvgSC 
solutions (see column ‘RP’ in Table V). For example, the 
robust CPP solution of instance with ID=9 does not obtain any 
robustness improvement (compared with the MinAvgSC 
solution) and has a slightly worse average SC delay because 
the MinAvgSC solution does not exhibit the robustness 
property. 

 
Fig. 4. Average SC delay of MinAvgSC solutions (in blue) and of robust CPP 

solutions (in red) 

 
Fig. 5. Robustness values 𝑛𝑠𝑐 (in dark blue) and 𝑛𝑠 (in light blue) of 

MinAvgSC solutions; robustness improvements of 𝑛𝑠𝑐 (in dark red) 

and 𝑛𝑠 (in light red) of robust CPP solutions 

V. CONCLUSIONS 

Due to the rising risk of large human-made security attacks, 
improving the preparedness of networks to such attacks is 
becoming a key issue. In this paper, we have considered the 
preparedness of SDN networks to multiple node malicious 
attacks. We have addressed a robust controller placement 
problem where the aim is to maximize the network robustness 
for a given number of malicious node attacks assuming that the 
attacker chooses the nodes based on centrality metrics hoping 
to cause maximum network disruption. We have proposed an 
ILP based method aiming to enumerate all feasible solutions 
and, then, for the different malicious node attacks, we 
described how to evaluate in polynomial time the solutions and 
determine the ones that maximize the minimum number of 
switches that can still be connected to at least one controller. 

With a set of computational results based on two large 
network topologies, we have conducted a trade-off analysis 

between the robustness improvement of the proposed solutions 
against the resulting penalties on the SC and CC delays 
compared with CPP solutions aiming solely to minimize the 
average SC and CC delays. The main conclusions were that the 
robustness gains become more significant, on average, for 
sparser networks (i.e., with lower average node degrees) and 
for attacks shutting down more nodes (although, they vary a lot 
between different instances). On the other hand, the average 
SC delay penalties are always small and the average CC delay 
penalties vary significantly between different instances but, in 
some of them, can be significant.   
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