
Robust SDN Controller Placement to

Malicious Node Attacks

Dorabella Santos

Instituto de Telecomunicações

Aveiro, Portugal

dorabella@av.it.pt

Amaro de Sousa

Instituto de Telecomunicações

DETI, Universidade de Aveiro

Aveiro, Portugal

asou@ua.pt

Carmen Mas Machuca

Technical University of Munich

Chair of Communication Networks

Munich, Germany

cmas@tum.de

Abstract—In software-defined networking (SDN), the control

plane is separated from the switching plane (i.e., data plane). The

logically centralized control plane is implemented by physically

distributing several controllers throughout the network for

scalability and resilience. The problem of finding the number and

location of the SDN controllers is known as the controller

placement problem (CPP). In this paper, we consider the

following robust CPP problem variant. For a given maximum

switch-controller (SC) delay and a given maximum controller-

controller (CC) delay in the regular state, we aim to find a CPP

solution that maximizes the network robustness for a given

number of malicious node attacks. First, we guarantee that if all

but one controller nodes are shutdown, there is still a switching

path from any switch to the surviving controller. We propose an

ILP based method aiming to enumerate all such solutions. Then,

for different malicious node attacks corresponding to different

attacker’s strategies, we evaluate the previous solutions to

determine the ones that maximize the minimum number of

switches that can still be connected to at least one controller. We

compare the robust CPP solutions with non-robust CPP solutions

which aim solely to minimize the average SC delay or average

CC delay. In the latter cases, we propose ILP models that can be

solved efficiently by standard solvers. Finally, we present a set of

computational results showing the trade-off between the

robustness improvement of the proposed solutions against the

resulting penalties on the SC and CC delays.

Keywords—SDN, controller placement, malicious node attacks,

integer linear programming

I. INTRODUCTION

Disaster based failures can seriously disrupt a
telecommunications network, making its services unavailable
[1]. Due to the current importance of telecommunication
services and the rising risk of large human-made attacks,
improving the preparedness of networks to such attacks is
becoming a key issue (see [2] for a recent survey on security
challenges in communication networks conducted within the
COST Action RECODIS). In this paper, we consider disasters
caused by malicious attacks to multiple network nodes. When
such a disaster occurs, it is important not only to quickly
recover the shutdown nodes but also to minimize its impact on
the capacity of the surviving nodes to keep working properly.

Software-defined networking (SDN) is a network
architecture that separates the control plane from the switching

plane (i.e., data plane). The logically centralized control plane
is implemented by placing controllers at different locations for
scalability and resilience. How many controllers and where to
place them is commonly known as the controller placement
problem (CPP), a facility location type of problem known to be
NP-hard [3]. Note that SDN exhibits unique vulnerabilities to
malicious node attacks. For example, if an attacker is able to
shut down all controller places, the whole network collapses
even if the surviving network is fully connected.

In general, the network can be either in the regular state
(i.e., with all nodes operational) or in a failure state (i.e., when
one or more nodes are shutdown). We assume that the operator
aims to improve the network robustness to malicious attacks of
p simultaneous nodes and, therefore, the operator aims to
distribute C controllers with 𝐶 = 𝑝 + 1 (if C is less, an attacker
knowing the controller locations may be able to shut down all
controllers causing total network collapse).

In this paper, we address the following robust variant of the
CPP problem. The CPP solution must (i) be compliant with a
given maximum switch-controller (SC) delay and a given
maximum controller-controller (CC) delay in the regular state
and (ii) guarantee in the failure state that if any p controller
nodes are shutdown, there is still a switching path from any
switch to the surviving controller. Then, among all solutions
fulfilling these requirements (i.e., all feasible solutions), the
aim is to find the CPP solutions that maximize the network
robustness for different malicious node attacks corresponding
to different possible attacker’s strategies. The optimal CPP
solutions are the ones that maximize the minimum number of
switches that can still be connected to at least one controller
node among all attacks. To compute the robust CPP solutions,
we propose an integer linear programming (ILP) based
methodology, and a speedup technique, aiming to enumerate
all feasible solutions and, then, we evaluate each solution to
select the optimal ones. We also compare the robust CPP
solutions with non-robust CPP solutions which aim solely to
minimize the average SC and CC delays. Finally, we present
computational results showing the trade-off between the
robustness improvement of the proposed solution against the
resulting penalties on the SC and CC delays.

In general, the CPP solution is biased by the considered
constraints. The most common constraint is related to the SC
delay. Until recently, most of the literature has focused in

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in

any current or future media, including reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works.

minimizing the average or the maximum SC delays in order to
reduce the time to set up new flows requested by a switch [4].
The authors in [5] propose a CPP solution minimizing the
number of required controllers and SC delay. However, the
distribution of different controllers supported by e.g., ONOS
[6] and ODL [7], adds requirements to guarantee an efficient
synchronization among controllers and to keep a consistent
network view. These requirements are related to the distance
between controllers. The most used metric for this purpose is
the maximum CC delay [5]. Note that (i) minimizing the
average SC delay, in general, increases the average CC delay,
and vice-versa, as shown in [8], and (ii) increasing the number
of controllers will, in general, decreases the average SC delay
but increases the average CC delay (controllers placed closer to
the switches become more spread over the whole network).

In order to overcome the limitation of having each switch
assigned to one controller through one control channel, as
initially considered, several works have proposed CPP
solutions to make SDN more resilient to failures. In [9], the
control channel availability is increased by considering (i) two
disjoint control paths between any switch and its assigned
controller or (ii) two controller replicas to each switch with
disjoint control paths. The solutions consider SC delays and
show that both strategies provide significant gains in control
path availability, while adding a limited penalty to the average
SC delay in case of single failures. In [10], the authors address
controller failures presenting ILP models for the regular and
failure states. For the regular state, the goal is to minimize the
number of controllers assuming maximum values for both SC
and CC delays to guarantee reasonable network performance
(they assume that each switch connects to the closest available
controller). Load balance is also guaranteed by imposing a
given maximum value to the load difference among controllers.
For the failure state, the controllers are assumed to fail with a
given probability and, when a controller does fail, each of its
switches reconnects to the closest available controller. The
objective in this case is a combination of minimizing the
number of controllers and the average SC delays.

Getting closer to the multiple failure scenario considered in
this paper, the authors in [11] address targeted attacks to an
SDN network. Assuming that the attacker has knowledge of the
network topology but neither the number of controllers nor
their location, the authors study the network vulnerabilities to
centrality-based attacks. The proposed algorithm proposes
controller placements based on the least critical nodes, as a way
to cheat the attacker (i.e., the attacker is expected to choose the
most critical nodes hoping to cause maximum disruption). On
the other hand, authors in [12] propose a CPP solution that,
given a multiple failure scenario, finds the location of the
controllers given the min cut sets of the topology.

This paper is organized as follows. Section II discusses how
non-robust CPP solutions can be optimally computed to
minimize the average SC and CC delays. Section III explains
how to compute the robust CPP solutions and describes the set
of considered malicious node attacks. Section IV presents a set
of computational results showing the trade-off between the
SDN robustness improvement and the resulting penalties on the
average SC and CC delays. Finally, Section V presents the
main conclusions of the work.

II. THE NON-ROBUST CPP PROBLEM

Consider a SDN switching network represented by a
directed graph 𝐺 = (𝑁, 𝐴), where 𝑁 is the set of SDN switches
and 𝐴 is the set of directed links. The total number of nodes is
|𝑁| = 𝑛 and each link direction is represented by the arc (𝑖, 𝑗).
Also consider 𝑉(𝑖) as the set of neighbor nodes of node 𝑖.
Given the delay of each arc, the shortest path delay between
nodes 𝑖 and 𝑗 is denoted as 𝑑𝑖𝑗 .

In the non-robust CPP problem, the aim is to optimize the
SDN control plane performance in its regular state by
minimizing the average SC and CC delays and guaranteeing
that: (i) the SC delay between any switch and its primary
controller does not exceed a given 𝐷𝑠𝑐 and (ii) the CC delay
between any pair of controllers does not exceed a given 𝐷𝑐𝑐 .
Consider the following decision variables:

𝑦𝑖 ∈ {0,1} binary variable that is 1 if a controller is placed in
node 𝑖, and 0 otherwise.

𝑧𝑖𝑗 ∈ {0,1} binary variable that is 1 if the primary controller of

switch 𝑖 is placed in node 𝑗, and 0 otherwise.

𝑐𝑖𝑗 ∈ {0,1} binary variable that is 1 if a controller is placed on

node 𝑖 and another controller is placed on node 𝑗,
with 𝑗 > 𝑖, and 0 otherwise (i.e., 𝑐𝑖𝑗 = 𝑦𝑖 ∙ 𝑦𝑗).

Then, a proper set of linear constraints defining the set of
all feasible solutions is as follows:

∑ 𝑦𝑖𝑖∈𝑁 = 𝐶 (1)

∑ 𝑦𝑗𝑗:𝑑𝑖𝑗≤𝐷𝑠𝑐
≥ 1 𝑖 ∈ 𝑁 (2)

𝑦𝑖 + 𝑦𝑗 ≤ 1 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑑𝑖𝑗 > 𝐷𝑐𝑐 (3)

∑ 𝑧𝑖𝑗𝑗:𝑑𝑖𝑗≤𝐷𝑠𝑐
= 1 𝑖 ∈ 𝑁 (4)

𝑧𝑖𝑗 ≤ 𝑦𝑗 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (5)

𝑐𝑖𝑗 ≤ 𝑦𝑖 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑗 > 𝑖 (6)

𝑐𝑖𝑗 ≤ 𝑦𝑗 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑗 > 𝑖 (7)

𝑐𝑖𝑗 ≥ 𝑦𝑖 + 𝑦𝑗 − 1 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑗 > 𝑖 (8)

𝑦𝑖 ∈ {0,1} 𝑖 ∈ 𝑁 (9)

𝑧𝑖𝑗 ∈ {0,1} 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (10)

𝑐𝑖𝑗 ∈ {0,1} 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑗 > 𝑖 (11)

Constraints (1–3) are the basic set of constraints: constraint
(1) guarantees that C controller nodes are selected; for each
node 𝑖, constraints (2) guarantee that there is at least one
controller in some node distanced at most 𝐷𝑠𝑐 from 𝑖 (including
itself) and constraints (3) guarantee that any two controllers are
not placed in nodes distanced further than 𝐷𝑐𝑐 from each other.
Constraints (4–5) guarantee a proper assignment of primary
controllers to switches: constraints (4) guarantee that the
primary controller of each switch is placed in a node whose
distance in not higher than 𝐷𝑠𝑐 and constraints (5) guarantee
that if the primary controller of a switch is at node j, a
controller must be placed at that node. Constraints (6–8)
guarantee a proper assignment of variables 𝑐𝑖𝑗 (they are the

standard set of linear constraints imposing 𝑐𝑖𝑗 = 𝑦𝑖 ∙ 𝑦𝑗).

Finally, constraints (9–10) are the variable domain constraints.

The average SC delay of a feasible solution is the sum of all
SC delays divided by the number of switches without
collocated controllers:

𝑓𝑠𝑐(𝑧) =
1

𝑛 − 𝐶
∑ ∑ 𝑑𝑖𝑗𝑧𝑖𝑗

𝑗∈𝑁\{𝑖}𝑖∈𝑁

The average CC delay of a feasible solution is the sum of
all CC delays divided by the number of controller pairs:

𝑓𝑐𝑐(𝑐) =
2

𝐶(𝐶 − 1)
∑ ∑ 𝑑𝑖𝑗𝑐𝑖𝑗

𝑗∈𝑁:𝑗>𝑖𝑖∈𝑁

It is well-known (as in [8]) that, in general, there is no
single solution that simultaneously minimizes both functions
𝑓𝑠𝑐(𝑧) and 𝑓𝑐𝑐(𝑐). The joint optimization of both functions is a
bi-objective optimization problem and has multiple optimal
solutions (the so-called Pareto solutions) representing different
trade-offs between the two objectives. Here, we consider the
two extreme cases:

MinAvgSC solution – the solution that minimizes the average
SC delay and, among all such solutions, the one that
minimizes the average CC delay.

 MinAvgCC solution – the solution that minimizes the average
CC delay and, among all such solutions, the one that
minimizes the average SC delay.

These solutions can be determined by solving in sequence
two ILP models. To compute the MinAvgSC solution, we first
solve the model:

Minimize 𝑓𝑠𝑐(𝑧)

Subject to: (1–11)

and then, assuming its optimal value 𝑧𝑠𝑐, we solve the model:

Minimize 𝑓𝑐𝑐(𝑐)

Subject to: 𝑓𝑠𝑐(𝑧) ≤ 𝑧𝑠𝑐 , (1–11)

The solution of the second ILP model minimizes the
average CC delay while guaranteeing that the minimum
average SC delay 𝑧𝑠𝑐 is met. The MinAvgCC solution is
computed similarly with 𝑓𝑐𝑐(𝑐) as the objective of the first
model and 𝑓𝑠𝑐(𝑧) as the objective of the second model. In our
computational results, both methods are solved very efficiently
by a standard ILP solver (we used CPLEX 12.6.1) where the
total runtime was always below 6 seconds in all cases.

III. THE ROBUST CPP PROBLEM

Consider a SDN switching network modelled as described
at the beginning of Section II. In a failure state, we assume that
each switch dynamically selects the closest surviving controller
as its primary controller and, so, any controller acts as a backup
controller for any switch. Moreover, we assume that when a
node hosting a controller is shutdown, both the controller and
its collocated switch fail.

In the robust CPP problem, besides the maximum SC and
CC delay requirements related with the regular state, the

selection of the 𝐶 controller nodes must satisfy an additional
requirement: there must be a routing path from each switch to
each controller not passing through any other controller. This
requirement guarantees that all switches can still connect to the
surviving controller if any 𝑝 = 𝐶 − 1 controller nodes are
shutdown (although, in the failure state, the maximum delay
requirement imposed for the regular state might be not
ensured). Consider variables 𝑦𝑖 as defined in Section II
(variables 𝑧𝑖𝑗 and 𝑐𝑖𝑗 are no longer needed) and the following

new variables:

𝑥𝑖𝑗
𝑘 ∈ ℕ0

+ non-negative integer variable indicating the number

of paths that use arc (𝑖, 𝑗) from switch 𝑘 to all
controllers.

A proper set of linear constraints defining the set of all
feasible solutions of the robust CPP problem is as follows:

(1–3), (9)

∑ (𝑥𝑖𝑗
𝑘 − 𝑥𝑗𝑖

𝑘)𝑗∈𝑉(𝑖) ≤ 𝑦𝑖 𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁\{𝑘} (12)

∑ (𝑥𝑖𝑗
𝑘 − 𝑥𝑗𝑖

𝑘)𝑗∈𝑉(𝑖) ≥ 0 𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁\{𝑘} (13)

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉(𝑖) ≤ 𝐶(1 − 𝑦𝑖) 𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁 (14)

∑ 𝑥𝑗𝑖
𝑘

𝑗∈𝑉(𝑖) ≥ 𝑦𝑖 − 𝑦𝑘 𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁\{𝑘} (15)

𝑥𝑖𝑘
𝑘 = 0 𝑘 ∈ 𝑁, 𝑖 ∈ 𝑉(𝑘) (16)

𝑥𝑖𝑗
𝑘 ∈ ℕ0

+ 𝑘 ∈ 𝑁, (𝑖, 𝑗) ∈ 𝐴 (17)

Constraints (1–3) and (9) guarantee that variables 𝑦𝑖 define
a proper set of C controller places such that both maximum SC
and CC delays are guaranteed (as explained in Section II).

Constraints (12–17) guarantee the additional requirement in
the following way. For each switch 𝑘 ∈ 𝑁, if node 𝑖 does not
host a controller (i.e. 𝑦𝑖 = 0), constraints (12–13) are

equivalent to ∑ (𝑥𝑖𝑗
𝑘 − 𝑥𝑗𝑖

𝑘)𝑗∈𝑉(𝑖) = 0 and are the typical path

conservation constraints; in this case, constraints (14–15) are
redundant. On the other hand, if node 𝑖 hosts a controller (i.e.,
𝑦𝑖 = 1), constraints (14) guarantee that there are no node 𝑖
outgoing arcs in any path from 𝑘 (ensuring that all paths
originated at 𝑘 have no intermediate controller nodes) and
constraints (12–13) and (15) guarantee that there is exactly one
path ending at node 𝑖 (ensuring that there is one path originated
at 𝑘 that reaches each controller). Finally, constraints (16)
guarantee that there is no path from 𝑘 to itself and constraints

(17) are the domain constraints of the new variables 𝑥𝑖𝑗
𝑘 .

In order to understand constraints (12–17), let us consider
the example presented in Fig. 1, which depicts an SDN
network with 8 switching nodes and C = 3 controllers
(controller locations highlighted in gray). The controller
locations of Fig.1(a) are eliminated by constraints (12–17)
since there is no path from node 7 to controller placed at node 2
without passing either through node 5 or 6 (the same happens
with node 8). In this case, if controller nodes 5 and 6 are shut
down, the surviving network is not fully operational. On the
other hand, constraints (12–17) allow the controller locations of
Fig. 1(b) since, from every switching node there is always a
routing path to each controller not passing through any other

controller. Fig. 1(b) shows a set of 𝑥𝑖𝑗
𝑘 variable values (the

variables not shown are 0) that are compliant with constraints
(12–17) and define a set of three paths from node 1: one to
node 3, one to node 4 and one to node 7. In this case, if any
two controller locations are shutdown, the surviving network is
still fully operational.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

21
12 x

11
13 x

11
24 x

11
25 x 11

57 x

(a)

(b)

Fig. 1. Illustration of the additional property

The final goal of the robust CPP problem is to find the
feasible solution that maximizes the network robustness for a
given set of malicious node attacks. The most standard way to
reach this goal would be to define a proper ILP model whose
optimal solution is the targeted CPP solution. In this work,
however, we adopt a different approach. First, we aim to obtain
all feasible solutions, i.e., the solutions defined by (1–3), (9),
(12–17), or at least a large number of them (when the total set
is too large). Then, we evaluate each solution against a given
objective (or a combination of objectives). Since this
evaluation runs in polynomial time, we have total flexibility in
the way we can define the target optimization goal.

In the next three subsections, we separately describe, first, a
basic method to compute the feasible solutions, then, a speedup
technique that, plugged into the basic method, reduces
significantly its computational runtimes and, lastly, how all
solutions are computed to find the most robust solutions for a
given set of malicious node attacks.

A. Basic Method

To obtain all possible solutions, we define the following
ILP model:

Maximize ∑ 𝜑𝑖𝑦𝑖𝑖∈𝑁 (18)

Subject to: (1–3), (9), (12–17)

The coefficients 𝜑𝑖 of the objective function (18) are given
by the values of a node centrality measure. This is motivated
by the assumption that nodes with higher centrality values are
more promising candidates to place controllers (in our
computational results we have used the closeness centrality).

To obtain all feasible solutions, we start by solving the
above ILP model which returns the first solution (defining a set
of C controller nodes). Then, iteratively, the obtained set of
controller nodes {𝜌1, … , 𝜌𝐶} of the previous solution is
eliminated from the feasible set by adding constraint 𝑦𝜌1

+

⋯ + 𝑦𝜌𝐶
≤ 𝐶 − 1 to the ILP model and the augmented model

is solved. The iterations continue until the augmented model is
infeasible, meaning that all solutions have been found. When

the number of feasible solutions is very high, this method can
take too long. So, we consider a 𝐿max parameter and we stop
the procedure when either the model is infeasible or 𝐿max
solutions have been generated.

B. Speedup Technique

In practice, solving an ILP model for each feasible solution
can be very time consuming. To reduce the required runtime,
we devised a speedup technique where most of the feasible
solutions are computed by a more efficient means.

The speedup technique is based on a random walk that
starts with a feasible solution and repeatedly moves from a
feasible solution to a neighbor solution by randomly changing
the location of one controller. If the neighbor solution is
feasible, the random walk progresses from it; otherwise, the
procedure progresses from the previous feasible solution. All
feasible solutions are stored and the random walk stops when
𝐼max consecutive neighbor solutions are infeasible (𝐼max is an
input parameter). The plugging of the speedup technique into
the basic method is as follows:

(a) A feasible solution is computed by solving the ILP model.
If the ILP model is infeasible, the procedure stops.

(b) The solution of (a) is used to generate a neighbor solution,
by randomly changing a controller from its current node to
a neighboring node that does not already have a controller
– we refer to this change as a controller hopping operation.

(c) The neighbor solution is evaluated for feasibility. If
feasible, the neighbor solution becomes the current
solution and the controller hopping operation is applied to
generate a neighbor solution.

(d) Step (c) is repeated until the neighbor solution is
infeasible; then, the procedure sets the current solution to
the last feasible solution and the controller hopping
operation is applied to generate a neighbor solution.

(e) The generation of neighbor solutions continues until a
maximum number 𝐼max of infeasible solutions are
consecutively generated. Then, the ILP model is augment-
ted with the constraints associated to all feasible solutions
meanwhile computed and the procedure returns to step (a).

In addition, a list of feasible solutions is initialized empty
and a feasible solution counter is initialized as0. Then, in all
steps where a new feasible solution is computed, and if it is not
in the list: (i) the solution is added to the list, (ii) the feasible
solution counter is incremented and (iii) the procedure stops if
the counter reaches the value 𝐿max.

Note that the feasibility evaluation of a neighbor solution
has polynomial complexity. Recall that a solution is feasible if
it is compliant with the maximum given 𝐷𝑠𝑐 and 𝐷𝑐𝑐 delays in
the regular state and if the controller locations are compliant
with the additional requirement. First, the shortest path delay
𝑑𝑖𝑗 between all pairs of nodes can be computed in polynomial

time and only once at the beginning. To check if the maximum
SC delay is met, we need to compute for each node i not
hosting a controller the minimum value 𝑑𝑖𝑗 for all nodes j

hosting a controller, which has complexity Θ(𝑛 × 𝐶). To check
if the maximum CC delay is met, we need to compute the

minimum value 𝑑𝑖𝑗 among all node pairs i and j hosting a

controller each, which has complexity Θ(𝐶 × 𝐶). Finally, to
check if there is a routing path from each switch to each
controller not passing through any other controller, we first
eliminate from the original graph 𝐺 = (𝑁, 𝐴) all arcs (𝑖, 𝑗) for
all nodes i that host a controller. Then, in this graph and for
each node i not hosting a controller, we need to compute the
shortest path tree from i to all nodes hosting controllers, which
has complexity Θ(𝑛2).

C. Robust CPP Solutions

With the feasible solutions computed as described in the
previous subsections, the aim is to find those that maximize the
network robustness to a given set of M malicious attacks to p
simultaneous nodes. Each malicious attack is defined by a set
of p nodes that the attacker can shut down simultaneously. A
set of M malicious attacks is a set of M different combinations
of p nodes such that the nodes of each combination can be
simultaneously shutdown.

The robustness of each feasible solution is evaluated as
follows. For each combination 𝑚 = 1, … , 𝑀 of p nodes, we
start by computing a graph 𝐺𝑚 by eliminating from the original
graph 𝐺 = (𝑁, 𝐴) all p nodes. Then, we compute the number
𝑛𝑠

𝑚 of surviving nodes that have connectivity to at least one
surviving controller node in graph 𝐺𝑚. In this process, we also
compute the number 𝑛𝑠𝑐

𝑚 of surviving nodes whose shortest
path delay to its primary controller is not higher than 𝐷𝑠𝑐 .
Finally, 𝑛𝑠 is computed as the minimum among all 𝑛𝑠

𝑚 values
and 𝑛𝑠𝑐 is computed as the minimum among all 𝑛𝑠𝑐

𝑚 values.
Besides the graph transformations, the robustness evaluation of
each feasible solution has complexity Θ(𝑀 × 𝑛2). For each
feasible solution, 𝑛𝑠 is the minimum number of nodes that still
have a primary controller among all M attacks and 𝑛𝑠𝑐 is the
minimum number of nodes that still have a primary controller
with a SC delay not higher than 𝐷𝑠𝑐 (the maximum delay
required for the regular state) among all M attacks. Then, when
comparing the robustness of different feasible solutions, we
consider that a solution is better if (i) it has a higher value of
𝑛𝑠𝑐 or (ii) the same value of 𝑛𝑠𝑐 and a higher value of 𝑛𝑠.

In order to define a proper set of malicious node attacks, we
have assumed, as in other works (for example [11]), that the
attacker has knowledge of the network topology but neither of
the number of controllers or their location. In this case, the
attacker chooses the p nodes based on node centrality metrics.
We have considered 𝑀 = 3 attacks: the p nodes are selected
by node degree (measures how many direct connections the
node has with other nodes), node closeness (measures how
close each node is to all other nodes) and node betweenness
(measures how many shortest paths between all other node
pairs include each node). In all cases, the node with the highest
centrality value is first selected. Then, the selected node is
eliminated from the graph, the node centrality values are
recomputed and the resulting highest centrality node is
selected. The selection continues until p nodes are selected.

IV. COMPUTATIONAL RESULTS

In the computational results, we have considered two
network topologies. Germany50 (Fig. 2) has 50 nodes, 88
undirected links and an average node degree of 3.52

(information available at http://sndlib.zib.de). CORONET
CONUS (Fig. 3) has 75 nodes, 99 undirected links and an
average node degree of 2.64 (information available at http://
www.monarchna.com/topology.html). As in other works (for
example [10]), we have defined the delays in terms of shortest
path lengths and the maximum delay parameters (𝐷𝑠𝑐 and 𝐷𝑐𝑐)
are defined as percentages of the graph diameter 𝐷𝑔 (the largest

shortest path length among all node pairs). Based on the node
geographical coordinates of each network topology, we have
determined the length of each link by computing the shortest
path length over the Earth surface between the locations of its
end nodes. These link lengths were than used to compute the
shortest path length 𝑑𝑖𝑗 between all network node pairs. The

resulting graph diameters are 𝐷𝑔 = 934 km for Germany50

and 𝐷𝑔 = 6472 km for CORONET CONUS.

Fig. 2. Germany50 network topology with 50 nodes and 88 links

Fig. 3. CORONET CONUS network topology with 75 nodes and 99 links

In both networks, we have considered malicious attacks of
p = 3, 5 and 7 simultaneous nodes. Then, for each network and
each value of 𝐶 = 𝑝 + 1, we have considered three sets of
maximum 𝐷𝑠𝑐 and 𝐷𝑐𝑐 delay values representing different
compromises between SC and CC delays which are tight but

still guarantee that both the non-robust and the robust CPP
problems are feasible. To obtain the list of robust CPP feasible
solutions, the proposed basic method plugged with the speedup
technique (as described in Section III.B) was implemented in
C++, using the CPLEX 12.6 callable library for solving the ILP
models. Based on preliminary tests, 𝐿max was set to 100000
and 𝐼max was set to 10000. All computational results were
obtained on a PC with 8 cores and 64 GB of RAM.

Table I (for Germany50) and Table II (for CORONET
CONUS) present for each problem instance the number of
controllers (column ‘C’), the considered maximum SC delay
(column ‘𝐷𝑠𝑐’) and maximum CC delay (column ‘𝐷𝑐𝑐’), the
total number of feasible solutions found (column ‘Nsols’), the
total runtime in seconds to find all feasible solutions (column
‘Runtime (s)’), the percentage of feasible solutions found by
the speedup technique (column ‘Nsols (%)’) and the percentage
of the total runtime spent by the speedup technique (column
‘Runtime (%)’). Recall that when the number of feasible
solutions found is 𝐿max, it means that the method was not able
to find all existing solutions (there is only one such case, the
Germany50 instance with ID=9 highlighted in Table I with an
‘*’). The total number of feasible solutions varies significantly
between the different problem instances.

TABLE I. FEASIBLE SOLUTION RESULTS OF GERMANY50

TABLE II. FEASIBLE SOLUTION RESULTS OF CORONET CONUS

Concerning the merits of the speedup technique, the results
of both tables show that in almost all cases, the speedup
technique computes a very large percentage of solutions while
using a small percentage of the total runtime. The exceptions
are the Germany50 instance with ID=2 (the speedup technique
found 1 out of 2 existing solutions with a negligible runtime)
and the CORONET CONUS instance with ID=3 (the speedup
technique did not find any of the 4 existing solutions but also

took a very small fraction of the total runtime). On average, the
larger the total number of solutions is, the percentage of
solutions that are obtained by the speedup technique is higher
while the percentage of the total runtime is lower. The extreme
case is the Germany50 instance with ID=9 (100000 solutions
found and all but the first solution computed by the speedup
technique) where the total runtime was less than one second
(mainly the runtime to solve the initial ILP model by CPLEX).

In order to compare the non-robust and the robust CPP
solutions, we have also conducted the following additional
computations. For the MinAvgSC and MinAvgCC non-robust
CPP solutions (determined as described in Section II), we have
first checked if they meet the additional robustness property
(RP) that there must be a routing path from each switch to each
controller that does not pass through any other controller and,
then, we have computed the 𝑛𝑠𝑐 and 𝑛𝑠 robustness values
based on the same set of malicious node attacks as described in
Section III.C. On the other hand, among all optimal robust CPP
solutions (determined as described in Section III), we have
computed the one with the minimum average SC delay and the
one with the minimum average CC delay.

The obtained results for Germany50 are presented in Table
III (with the solution results for the minimum average SC
delays) and Table IV (with the solution results for the
minimum average CC delays). Similarly, the results for
CORONET CONUS are presented in Table V and Table VI. In
these tables, column ‘SC delay (%)’ shows the minimum
average SC delay of the best solution, column ‘CC delay (%)’
shows the minimum average CC delay of the best solution and
column ‘RP’ indicates if the robustness property is met by the
non-robust CPP solution. Then, columns ‘𝑛𝑠𝑐’ and ‘𝑛𝑠’ are the
robustness values of the solutions for the 3 malicious node
attacks as defined in Section III.C.

Concerning the results of Table III, they show that the
average SC delays are very close between the non-robust and
the robust CPP solutions. In fact, there are two instances (ID=2
and ID=3) where both solutions are equal. Concerning the
robustness improvements, 𝑛𝑠𝑐 improves in all other cases (i.e.,
more switches can always connect to a surviving controller
with a delay not higher than 𝐷𝑠𝑐) and the improvement tends to
be higher for higher values of p simultaneous nodes. On the
other hand, in all instances and in both the non-robust and
robust CPP solutions, 𝑛𝑠 is always equal to 𝑛 − 𝑝, which
means that all surviving nodes can always connect to at least
one surviving controller (this is explained by the fact that
Germany50 has a high average node degree). Finally, all but
one non-robust CPP solutions have the robustness property.

Concerning the results of Table IV, in this case, the non-
robust and robust CPP solutions are equal in all instances for
𝑝 = 3 (ID=1, ID=2 and ID=3). For the other cases, the
conclusions follow closely the ones from the previous table.
The only difference is that, although most of the CC delays are
close between the non-robust and the robust CPP solutions,
there is one instance where the difference is more significant:
in instance with ID=6, the average CC delay increases from
22.0% to 26.1% from the non-robust to the robust CPP solution
while the 𝑛𝑠𝑐 improves from 39 to 42 switches (out of a total of
45 surviving switches).

ID C D sc D cc Nsols Runtime (s) Nsols (%) Runtime (%)

1 4 30% 60% 16 4,9 87,5% 27,9%

2 4 35% 40% 2 1,2 50,0% <0,1%

3 4 40% 35% 201 3,5 98,5% 2,4%

4 6 25% 65% 227 52,5 93,0% 25,9%

5 6 30% 60% 7469 920,3 98,7% 5,6%

6 6 35% 40% 59 3,4 94,9% 0,9%

7 8 20% 75% 100 93,8 83,0% 13,0%

8 8 25% 65% 27603 7254,6 99,2% 4,9%

9 8 30% 60% 100000* 0,8 99,9% <0,1%

ID C D sc D cc Nsols Runtime (s) Nsols (%) Runtime (%)

1 4 30% 55% 22 14,2 77,3% 1,3%

2 4 35% 40% 23 16,4 78,3% 0,8%

3 4 40% 30% 4 8,4 0,0% 1,0%

4 6 20% 80% 15 19,2 80,0% 0,8%

5 6 25% 55% 3 2,2 66,7% 1,9%

6 6 30% 50% 50 34,0 74,0% 1,1%

7 8 20% 65% 2109 1048,3 95,9% 1,5%

8 8 25% 55% 506 203,5 92,9% 1,2%

9 8 30% 50% 505 711,0 80,6% 0,5%

TABLE III. RESULTS OF GERMANY50 FOR SC DELAYS

TABLE IV. RESULTS OF GERMANY50 FOR CC DELAYS

Concerning the results of Table V, recall first that these
results were obtained with CORONET CONUS which has a
much lower average node degree than Germany50. Once again,
these results show that the average SC delays are very close
between the non-robust and the robust CPP solutions. On the
other hand: (i) the robustness gains are now much higher, on
average, than in Germany50, (ii) there are also observable
gains in the 𝑛𝑠 values and (iii) less non-robust CPP solutions
have the robustness property. The most significant examples
are the instances with ID=2, ID=4 and ID=7. In these instances,
the robust CPP solutions have only slightly higher average SC
delays (when compared with the non-robust CPP solutions) and
improve the 𝑛𝑠𝑐 values from 49 to 68 switches, from 49 to 61
switches and from 50 to 64 switches, respectively. These
improvements represent an increase of 38.8%, 24.5% and
28.0% on the number of switches that can still work properly
after any of the considered malicious node attacks.

Finally, concerning the results of Table VI, the conclusions
also follow closely the ones from the previous table but the
average CC delays between the non-robust and the robust CPP
solutions are not as close as in the SC delay cases. Moreover,
the robustness gains, although more significant than in the
Germany50 case (seen in Table IV), are not as high, on
average, than the ones obtained in the previous Table V.

Comparing the results of all tables, the following
conclusions can be drawn. Firstly, for the same value of p, the
robustness gains are higher for the CORONET CONUS which
has a higher number of nodes. At the beginning, this might not
be expected (the same p represents a smaller percentage of
nodes being shut down in this network) but, since CORONET

CONUS has a much smaller node degree, a smaller value of p
has a higher impact on the network connectivity disruption.
Therefore, the robust CPP problem is more relevant for
network topologies with lower average node degrees.

Secondly, the robustness gains are small for 𝑝 = 3 in all
cases (meaning that such attacks are not too damaging on these
networks) but become higher, on average, for higher values of
p. These gains are obtained with small delay penalties when the
average SC delay is considered but, in some cases, with
significant delay penalties when the average CC delay is
considered. The latter case, though, might not be so relevant
since the maximum CC delay is the main parameter that
impacts the synchronization efficiency between controllers [5]
and so the average CC delay is not as important.

TABLE V. RESULTS OF CORONET CONUS FOR SC DELAYS

TABLE VI. RESULTS OF CORONET CONUS FOR CC DELAYS

Finally, the non-robust CPP solutions minimizing the
average CC delays tend to be more robust (to malicious node
attacks) than the non-robust CPP solutions minimizing the
average SC delays, as shown by the higher (on average)
robustness values 𝑛𝑠𝑐 and 𝑛𝑠 of the MinAvgCC solutions when
compared with the same values of the MinAvgSC solutions.

For illustration purposes, Fig. 4 presents a chart comparing
the average SC delays of the MinAvgSC solutions and of the
robust CPP solutions for the CORONET CONUS where it is
easy to see that the delay values are very close for all instances.
Fig. 5 presents the robustness gains (both in terms of 𝑛𝑠𝑐 and
𝑛𝑠 values) between the same solutions. In Fig. 5, we can
observe different cases: (i) large improvements in both values
(ID=7), (ii) large 𝑛𝑠𝑐 improvement and small (or inexistent) 𝑛𝑠
improvement (ID=2 and ID=4) and (iii) small improvements in

ID p SC delay (%) n sc n s RP SC delay (%) n sc n s

1 16,0 44 47 Yes 16,2 47 47

2 18,8 34 47 Yes 18,8 34 47

3 17,6 47 47 Yes 17,6 47 47

4 13,4 28 45 Yes 14,0 43 45

5 12,6 33 45 Yes 14,0 44 45

6 17,2 37 45 Yes 18,2 42 45

7 11,0 29 43 Yes 11,6 34 43

8 11,5 31 43 Yes 12,0 40 43

9 11,4 26 43 No 12,4 40 43

3

5

7

Non-robust CPP Robust CPP

ID p CC delay (%) n sc n s RP CC delay (%) n sc n s

1 40,1 47 47 Yes 40,1 47 47

2 29,2 34 47 Yes 29,2 34 47

3 21,5 47 47 Yes 21,5 47 47

4 38,5 39 45 Yes 40,8 43 45

5 29,1 38 45 Yes 30,8 44 45

6 22,0 39 45 Yes 26,1 42 45

7 40,2 23 43 Yes 43,8 34 43

8 31,8 30 43 Yes 35,9 40 43

9 24,5 31 43 No 28,3 40 43

3

5

7

Non-robust CPP Robust CPP

ID p SC delay (%) n sc n s RP SC delay (%) n sc n s

1 16,4 69 71 Yes 16,4 71 71

2 17,4 49 71 No 19,4 68 71

3 21,4 56 71 Yes 21,5 56 72

4 11,2 49 69 Yes 11,3 61 69

5 14,1 59 68 Yes 14,8 60 68

6 15,2 65 68 No 15,5 65 69

7 10,8 50 52 Yes 11,7 64 67

8 12,6 64 66 Yes 12,9 64 67

9 14,2 55 55 No 14,5 55 55

Non-robust CPP Robust CPP

3

5

7

ID p CC delay (%) n sc n s RP CC delay (%) n sc n s

1 33,1 67 71 Yes 42,7 71 71

2 23,8 66 71 Yes 24,4 68 71

3 19,6 56 71 No 22,9 56 72

4 46,7 60 69 Yes 48,1 61 69

5 39,3 60 68 Yes 39,3 60 68

6 28,0 32 34 Yes 30,7 65 69

7 36,0 63 66 Yes 37,2 64 67

8 33,0 61 66 Yes 33,8 64 67

9 23,8 32 34 Yes 26,4 55 55

3

5

7

Non-robust CPP Robust CPP

both values. Note that this comparison does not take into
account the robustness property that is always guaranteed in the
robust CPP solutions but is not observed in some MinAvgSC
solutions (see column ‘RP’ in Table V). For example, the
robust CPP solution of instance with ID=9 does not obtain any
robustness improvement (compared with the MinAvgSC
solution) and has a slightly worse average SC delay because
the MinAvgSC solution does not exhibit the robustness
property.

Fig. 4. Average SC delay of MinAvgSC solutions (in blue) and of robust CPP

solutions (in red)

Fig. 5. Robustness values 𝑛𝑠𝑐 (in dark blue) and 𝑛𝑠 (in light blue) of

MinAvgSC solutions; robustness improvements of 𝑛𝑠𝑐 (in dark red)

and 𝑛𝑠 (in light red) of robust CPP solutions

V. CONCLUSIONS

Due to the rising risk of large human-made security attacks,
improving the preparedness of networks to such attacks is
becoming a key issue. In this paper, we have considered the
preparedness of SDN networks to multiple node malicious
attacks. We have addressed a robust controller placement
problem where the aim is to maximize the network robustness
for a given number of malicious node attacks assuming that the
attacker chooses the nodes based on centrality metrics hoping
to cause maximum network disruption. We have proposed an
ILP based method aiming to enumerate all feasible solutions
and, then, for the different malicious node attacks, we
described how to evaluate in polynomial time the solutions and
determine the ones that maximize the minimum number of
switches that can still be connected to at least one controller.

With a set of computational results based on two large
network topologies, we have conducted a trade-off analysis

between the robustness improvement of the proposed solutions
against the resulting penalties on the SC and CC delays
compared with CPP solutions aiming solely to minimize the
average SC and CC delays. The main conclusions were that the
robustness gains become more significant, on average, for
sparser networks (i.e., with lower average node degrees) and
for attacks shutting down more nodes (although, they vary a lot
between different instances). On the other hand, the average
SC delay penalties are always small and the average CC delay
penalties vary significantly between different instances but, in
some of them, can be significant.

ACKNOWLEDGMENT

This article is based upon work from COST Action
CA15127 ("Resilient communication services protecting end-
user applications from disaster-based failures ‒ RECODIS")
supported by COST (European Cooperation in Science and
Technology). The work was also supported by FCT
(“Fundação para a Ciência e Tecnologia”), Portugal, under the
project UID/EEA/50008/2013 and through the postdoc grant
SFRH/BPD/111503/2015.

REFERENCES

[1] J. Rak, D. Hutchison, E. Calle, T. Gomes, M. Gunkel, P. Smith, J.
Tapolcai, S. Verbrugge, L. Wosinska, “RECODIS: Resilient
communication services protecting end-user applications from disaster-
based failures”, in ICTON, July 2016, We.D1.4.

[2] M. Furdek, L. Wosinska, R. Goscien, K. Manousakis, M. Aibin, K.
Walkowiak, S. Ristov, J. Marzo, “An overview of security challenges in
communication networks”, in RNDM, Sep. 2016, pp. 43-50.

[3] B. Heller, R. Sherwood and N. McKeown, “The controller placement
problem”, in ACM HotSDN, New York, USA, 2012, pp. 7-12.

[4] Y. Jimnez, C. Cervell-Pastor, and A. J. Garca, “On the controller
placement for designing a distributed SDN control layer,” in IFIP
Networking Conference, 2014

[5] D. Hock, M. Hartmann, S. Gebert, M.l Jarschel, Th. Zinner, P. Tran-Gia
“Pareto-Optimal Resilient Controller Placement in SDN-based Core
Networks,” in ITC’13, Shanghai, China 2013.

[6] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B.
Lantz, B. O’Connor, P. Radoslavov, W. Snow and G. Parulkar, “ONOS:
Towards an open, distributed SDN OS,” in ACM HotSDN, New York,
USA, 2014.

[7] OpenDaylight: A Linux foundation collaborative project. [Online].
Available: http://www.opendaylight.org

[8] T. Zhang, A. Bianco and P. Giaccone, “The role of inter-controller
traffic in SDN controllers placement”, 2016 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-
SDN), Palo Alto, USA, 2016, pp. 87-92.

[9] P. Vizarreta, C. Mas Machuca and W. Kellerer, “Controller placement
strategies for a resilient SDN control plane”, 2016 8th International
Workshop on Resilient Networks Design and Modeling (RNDM),
Halmstad, Sweden, 2016, pp. 253-259.

[10] N. Perrot and T. Reynaud, “Optimal placement of controllers in a
resilient SDN architecture”, 2016 12th International Conference on the
Design of Reliable Communication Networks (DRCN), Paris, France,
2016, pp. 145-151.

[11] D. F. Rueda, E. Calle and J. L. Marzo, “Improving the Robustness to
Targeted Attacks in Software Defined Networks (SDN)”, 2017 13th
International Conference on Design of Reliable Communication
Networks (DRCN), Munich, Germany, 2017, pp. 1-8.

[12] G. Nencioni, B. E. Helvik and P. E. Heegaard, "Including Failure
Correlation in Availability Modelling of a Software-Defined Backbone
Network", to appear in IEEE Transactions on Network and Service
Management.

