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ABSTRACT
HBV infection is a major cause of liver cirrhosis and
hepatocellular carcinoma. Although HBV infection can be
efficiently prevented by vaccination, and treatments are
available, to date there is no reliable cure for the >240
million individuals that are chronically infected
worldwide. Current treatments can only achieve viral
suppression, and lifelong therapy is needed in the
majority of infected persons. In the framework of the
French National Agency for Research on AIDS and Viral
Hepatitis ‘HBV Cure’ programme, a scientific workshop
was held in Paris in June 2014 to define the state-of-
the-art and unanswered questions regarding HBV
pathobiology, and to develop a concerted strategy
towards an HBV cure. This review summarises our
current understanding of HBV host-interactions leading
to viral persistence, as well as the roadblocks to be
overcome to ultimately address unmet medical needs in
the treatment of chronic HBV infection.

INTRODUCTION
HBV infection is a major public health problem
with >240 million chronically infected individuals
worldwide. These subjects are at high risk of devel-
oping liver cirrhosis and hepatocellular carcinoma
(HCC). Whereas effective and safe vaccines exist to
prevent HBV infection, there is no cure for the
majority of patients with chronic infection. Several
antiviral agents are approved for the management
of these patients, including interferon (IFN)-α or
pegylated (PEG) -IFN-α and nucleoside analogues
(NUC). A 48-week (PEG) -IFN-α-based therapy
leads to a sustained virological response (SVR) and
HBsAg loss off-treatment in only 3–7% of
patients.1 2 Adverse effects and contraindication to
(PEG) -IFN-α administration represent major draw-
backs of this treatment. Long-term oral treatment
with NUC is better tolerated, but the duration of
the treatment is unpredictable and the chance to
achieve an SVR and HBsAg loss off-treatment is
very low (approximately 1% per year).3 4 The main
goal of current antiviral therapies is sustained sup-
pression of HBV viraemia (ie, circulating HBV), yet
without decreasing intrahepatic replication, thereby
only slowing down progression of liver disease.

Recent antiviral agents can induce reduction of vir-
aemia below threshold of detection in 95–100% of
cases with virtually no emergence of resistance
(reviewed in ref. 5). However, as these treatments
do not eradicate the intrahepatic replication of the
virus, they require lifelong and costly administra-
tion that is not affordable in most middle and
underdeveloped countries with endemic HBV
infection. Given these issues, there is an unmet
medical need for an efficient HBV cure.6

The French ANRS (National Agency for Research
on AIDS and Viral Hepatitis) recently created the
‘HBV Cure’ programme to (i) promote basic and
translational science studies, (ii) shape the organisa-
tion of HBV research in France and (iii) foster
international collaborations in the field of HBV,
similarly to what has been implemented with the
HIV Cure Initiative.7 A coordinated action has been
launched in 2014, and a first scientific workshop
was organised on 17 June 2014 in Paris to bring
together researchers, clinicians and pharmaceutical
companies to define the current state-of-the-art and
unanswered questions in HBV pathobiology in
order to develop a concerted strategy towards an
HBV cure.
In this review, we summarise key unanswered

questions both at clinical and basic research
levels as well as our current understanding of
HBV host-interactions leading to viral persistence
(boxes 1 and 2). We also highlight the roadblocks
that were addressed during the workshop, which
need to be overcome in order to fulfil unmet needs
in the treatment of chronic HBV infection.

THE CLINICAL NEEDS FOR CHRONIC HEPATITIS
B: DEFINING A CURE FOR HBV
HBV is an enveloped DNA virus of the
Hepadnaviridae family comprising a partially double-
stranded relaxed circular DNA (rcDNA) genome.
Following entry into human hepatocytes, this rcDNA
is converted into a covalently closed circular DNA
(cccDNA) in the host cell nucleus. Around 10% of
the virions contain double-stranded linear DNA,
which are the major precursors for integration of
viral DNA into host DNA8 9 (1:10 000 hepatocytes).
But contrary to retroviruses, HBV DNA integration
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into the host DNA is not required for completion of the HBV rep-
lication cycle; however, this phenomenon may lead to carcinogen-
esis.10 As linearisation leads to disruption of at least one open
reading frame, only cccDNA serves as a template for the transcrip-
tion of all four viral RNAs that function as mRNAs for translation
of the seven HBV proteins: the envelope protein consisting of
three separate surface proteins (large (L), middle (M) and small (S)
proteins—HBsAg); the DNA polymerase (P protein); the core
protein or capsid protein, also termed hepatitis B c antigen
(HBcAg); the hepatitis B x protein (HBx); and the hepatitis B e
antigen (HBeAg). The latter is a secreted proteolytically modified
form of the capsid protein, which is derived from translation from
a start codon upstream the core AUG resulting in frame translation
of the pre-core region targeting the protein to the secretory
pathway. Furthermore, one of these RNAs, which also encodes for
HBcAg and the polymerase, represents the template for viral repli-
cation via reverse transcription and is accordingly termed prege-
nomic RNA (pgRNA). This RNA, but also the HBeAg encoding
mRNA, is transcribed under the control of the basal core pro-
moter. HBV RNAs can also be spliced allowing additional proteins
to be produced such as hepatitis B spliced protein (HBSP).11 12

HBV is classified into 10 different genotypes (A–J) with distinct
geographical distributions. HBV genotypes influence disease sever-
ity, risk of HCC development and response to IFN therapy.13 14

The natural history of HBV infection is variable, and the
outcome of infection is mostly dependent on the age of

individuals at the time of infection: while infection with HBV
during adulthood results in acute self-resolving infection in the
vast majority of individuals, infection at birth by perinatal trans-
mission or during childhood usually progresses to chronic hepa-
titis B. Chronic HBV carriers can pass through different disease
phases that correlate with immunopathology. These often
include an ‘immune-tolerant’ phase, an ‘immune-reactive’ phase,
an ‘inactive carrier’ stage and a ‘reactivation’ phase, mainly
based on clinical markers such as serum levels of HBV DNA
(ie, viraemia) and transaminases (reviewed in ref.15). Diagnosis
of ongoing HBV infection is based on the detection of serum
HBV DNA and HBsAg. The presence of HBsAg-specific anti-
bodies in the serum (HBsAg seroconversion) testifies either to
recovery from HBV infection or to immunisation. In rare cases,
HBsAg and anti-HBs antibodies can be detected in parallel, par-
ticularly during fulminant acute hepatitis. HBeAg can also be
detected in the serum of HBV-infected patients. Loss of HBeAg
and development of anti-HBeAg antibodies (HBeAg seroconver-
sion) correlates with resolution of active disease and, often but
not always, of the infection. However, chronic carriers can be
classified into either HBeAg-positive or HBeAg-negative chronic
hepatitis B. The latter are characterised by a low viral load and
HBV genome harbouring nucleotide substitutions in the
pre-core regions generating a stop codon, thereby abrogating
production of HBeAg or mutations in the basal core promoter
region leading to decreased HBeAg expression. HBeAg-positive
patients can achieve HBeAg loss and seroconversion to anti-
HBeAg antibodies during antiviral therapy, but they remain at a
higher risk of HBV reactivation than patients with spontaneous
HBeAg seroconversion.16 Noteworthy, although the ‘immune-
tolerant’ phase—related to perinatal transmission and clinically
defined as HBeAg-positive with high serum HBV DNA levels
but normal aminotransferases—is usually asymptomatic and
characterised by low incidence of liver inflammation and fibro-
sis. However, accumulating evidence challenges this concept.17

Indeed, newborns are not devoid of virus-specific T cell
responses and preserved T cell functions have been reported in
patients with immune-tolerant HBV.18 It has been suggested that
absence of liver inflammation in these patients may reflect a
reduced proinflammatory cytokine reaction characteristic of
young individuals.17 19 Moreover, a recent study in mice where
HBV persistence was modelled by hydrodynamic injection of an
HBV genome-containing plasmid suggested that HBV persist-
ence may induce hepatocyte-intrinsic immunotolerance that
leads to an HBV-specific systemic adaptive immune tolerance.20

Cohort studies are very valuable to better understand the
natural course of HBV infection. Before the implementation of
a mass vaccination programme, Taiwan had one of the highest
rates of HBV infection in the world with a 15–20% HBsAg
carrier rate, liver cancer representing the second leading cause
of mortality in this country.21 22 This nationwide vaccination
programme led to a dramatic decrease in HBsAg prevalence and
incidence of liver cancer.23 24 Furthermore, within the past
years, the clinical outcomes of Taiwanese patients with HBV
have been thoroughly studied in three large cohorts of patients
(REVEAL-HBV, SEARCH-B and ERADICATE-B). This led to
the identification of several factors associated with disease pro-
gression. The risk factors for a greater risk of HCC include
male gender, age, high alanine aminotransferase (ALT) levels,
high HBV DNA levels, high HBsAg levels and HBV
genotype C.25 First, HBV viral load is a strong independent risk
predictor for cirrhosis and HCC in patients aged 30 or older,
patients with persistently high HBV DNA levels having the
highest risk of liver disease progression;26 27 the risk of HCC

Box 1 Unanswered questions in the clinical
management of hepatitis B

▸ Advance our understanding of viral and host factors involved
in the pathogenesis of chronic HBV infection in order to
improve strategies for chronic hepatitis B management and
treatment.

▸ Identify biomarkers of disease progression to efficiently
prevent cirrhosis and hepatocellular carcinoma (HCC).

▸ Assess the impact of treatment of immune-tolerant patients
or inactive carriers on the prevention of cirrhosis and HCC.

▸ Identify appropriate short-term and long-term endpoints to
define an HBV cure.

▸ Develop new classes of antivirals and therapeutic strategies,
including combination therapies, to ultimately cure the
majority of patients with chronic hepatitis B.

Box 2 Unanswered questions in basic HBV research

▸ Uncover the molecular mechanisms of HBV entry.
▸ Characterise the molecular mechanisms underlying formation

and regulation of covalently closed circular DNA.
▸ Determine the exact role of the hepatitis B X protein.
▸ Develop novel in vitro models for the study of viral

dissemination.
▸ Assess the role of innate immunity in HBV clearance.
▸ Identify virus-specific determinants of HBV-specific T cell

exhaustion involved in viral persistence.
▸ Understand the role of B cells in the control of HBV

infection.
▸ Characterise the mechanisms involved in HBV-induced

hepatocellular carcinoma.
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development in patients with high HBV levels and normal ALT
remains to be determined. In clinical practice, the close monitor-
ing of HBV viral load may help define which HBV carriers aged
30 or older are at high risk of developing cirrhosis and HCC.
Second, in spontaneous HBeAg seroconverters with HBV geno-
type B or C infection, a low serum HBsAg level at the early
HBeAg-negative phase was associated with a higher HBsAg loss
rate. However, serum HBV DNA levels were a better predictor
than HBsAg levels of disease progression in spontaneous HBeAg
seroconverters.28 29 Third, despite the lack of correlation
between pre-core/core promoter HBV variants and HBeAg-
negative hepatitis, a major proportion of basal core promoter
mutants was associated with an increased risk of cirrhosis for
patients with high viral load.30 Thus, persons with high fre-
quency of core promoter mutants should be considered to
receive early therapy. Taken together, the findings from these
cohort studies suggest that HBV DNA and HBsAg are comple-
mentary markers for the risk of disease progression.31

Moreover, these results led to the definition of an algorithm to
categorise disease progression in Asian HBV carriers. The algo-
rithm provides a risk score for development of HCC, which
may thereby improve the clinical management of patients with
chronic HBV.31 32 Nevertheless, to date the costs for assessing
the different risk parameters remain an economic issue and thus
more cost-effective risk calculators are currently being devel-
oped. Moreover, it was recently described that the risk of HCC
cannot be confidently predicted using HCC risk scores at base-
line nor during therapy in Caucasians.33 Currently, international
liver societies recommend antiviral treatment only during the
inflammatory phase of the disease. The goal of antiviral therapy
is the prevention of disease progression towards end-stage liver
disease and HCC. Nevertheless, even subjects in ‘inactive
carrier’ stage can develop liver cancer in the long term, and this
may be an issue for individuals that have been infected very
early in life.34 A better understanding of time course of HBV
pathogenesis is required to better predict disease progression
and improve the clinical management of chronic hepatitis
B. With this in mind, ANRS launched CO22 HEPATHER, a
large French cohort that aims to include 10 000 patients with
viral hepatitis B from 32 clinical centres and gather clinical and
therapeutic data, biological collections and quality-of-life
criteria. Subjects will be followed for 8 years and about one
million biological samples will constitute an unprecedented
biobank. This cohort will enable scientists to better describe the
progression of chronic viral hepatitis in the long term and iden-
tify associated prognosis factors, including biomarkers. It will
also allow evaluation of clinical effectiveness and safety of treat-
ments in ‘real-life’ situation in order to identify treatments that
will most likely improve overall patient health while limiting the
emergence of escape variants and viral breakthroughs.
Moreover, this cohort will define cost-effective strategies for the
management and treatment of chronic viral hepatitis. Finally, it
will provide resources for clinical trials or research on biomar-
kers in tailored subpopulations.

To achieve a cure for chronic hepatitis B, it is important to
discuss the definition of the concept of ‘HBV cure’ and end-
points of antiviral treatment. In theory, the virological definition
of cure would be the eradication of cccDNA (as the ultimate
goal), but in practice the clearance of HBsAg would be more
easily achievable in a shorter term. A definition of a functional
cure would be HBsAg seroconversion even in case of liver
cccDNA persistence, along with cessation of liver disease35

(table 1). When viral eradication is not achievable, lowering of
liver cccDNA levels, inactivation of cccDNA-directed

transcription to prevent viral replication and induce a remission
of liver disease could be a realistic endpoint. However, aiming
for an inactive carrier status is probably not ambitious enough
given that these subjects remain at risk for developing
HCC.33 34 Moreover, the long-term consequences of HBV
genome integration will have to be taken into account even fol-
lowing viral eradication or control. It is worth noting that
persons who clear HBV infection after a chronic infection have
a greater risk of developing HCC than individuals who have not
been infected with HBV.36 37 Moreover, patients that resolved
an infection may see virus reactivation, with attendant liver
disease, in case of immunosuppressive therapy for cancer, auto-
immune disease or organ transplantation.38 Therefore, in the
near future, the aims of the field are to (i) advance our under-
standing on the viral and host factors involved in HBV patho-
genesis, including innate and adaptive antiviral immune
responses; (ii) uncover biomarkers of disease progression in
order to identify patients with minimal hepatitis who are at risk
of developing cirrhosis and HCC and (iii) define new targets for
antiviral therapy to achieve an HBV cure.

Furthermore, it is important to take into account that
between 5% and 10% of chronic HBV carriers are also chronic-
ally infected with the hepatitis delta virus (HDV), an infectious
agent that needs HBV for its production. In HBV/HDV coin-
fected patients, HDV virions are produced in coinfected liver
cells, along with HBV particles. HDV virions are coated with
the envelope proteins of the helper HBV and contain an inner
ribonucleoprotein (RNP) consisting of the HDV RNA genome
and HDV-encoded proteins. The HDV RNA can replicate to
very high levels in hepatocyte nucleus, leading to the production
of HDV RNPs that can egress only in the presence of HBVenve-
lope proteins and after assembly of HDV virions. The latter can
subsequently infect human hepatocytes using the same entry
pathway as the one used by HBV (figure 1) to propagate infec-
tion throughout the liver. The result of chronic HBV/HDV
coinfection significantly worsens the course of the liver
disease.39 40

STATE-OF-THE-ART AND UNANSWERED QUESTIONS IN
HBV BASIC RESEARCH
Model systems to study HBV
Within the past years, researchers have used various model
systems (table 2) to characterise the HBV replication cycle
(figure 1) and identify novel antiviral targets as well as to study
HBV pathogenesis and assess the efficacy of novel therapeutic
strategies. HBV particles are taken up by hepatocytes through a
receptor-mediated internalisation mechanism that is not well
understood yet. After internalisation, viral capsids are released
and subsequently directed to the nucleus where HBV genomes
are liberated. In the nucleus, rcDNA genomes are converted
into cccDNA that may persist in the nucleus of infected cells as
minichromosomes and serve as template for viral RNA tran-
scription. In the cytoplasm, together with the viral polymerase,
pgRNA is encapsidated and reverse transcribed within the
nucleocapsid into progeny rcDNA. Mature nucleocapsids are

Table 1 Definitions of HBV cure

HBsAg Anti-HBs Ab Viraemia cccDNA

Functional cure − + − +
Complete cure − + − −

Ab, antibodies; cccDNA, covalently closed circular DNA.
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then either directed to the multivesicular body pathway for
envelopment with HBV envelope proteins or directed to the
nucleus to establish a cccDNA pool.41

Several steps of the HBV life cycle are now known in detail,
but the mechanisms of viral entry, cccDNA formation and regu-
lation, intracellular trafficking and morphogenesis, as well as
interaction with the host immune system, are still poorly under-
stood. This lack of information is due to the difficulties encoun-
tered in obtaining a robust tissue culture system (table 2) and
the lack of practical animal models recapitulating the HBV life
cycle and pathogenesis (table 3).

Human hepatocytes are the natural target cells of HBV and
HDV. These cells can be isolated from liver resections and retain
susceptibility to HBV infection for a short period in culture.42

However, the accessibility to fresh human liver resections, the
quality and the variability of the individual preparations limit
their use. In the mid-1990s, several laboratories showed that
primary hepatocytes of Tupaia belangeri were also susceptible to

HBV infection (reviewed in refs. 43 44). Although primary tupaia
hepatocytes are valuable to study HBV infection, the difficulty
to rear these animals and the absence of tupaia-specific reagents
for functional studies limit their use. To bypass the hurdles to
using primary cell cultures, human hepatoma Huh7 and HepG2
cell lines were used for many years to perform in vitro experi-
ments on HBV. Although those cells are permissive to HBV rep-
lication and viral particle assembly, they are not susceptible to
infection due to the lack of expression of the receptor(s) and
thus only allow study of post-transcriptional steps of the HBV
life cycle after plasmid transfection. Alternatively, the HepaRG
cell line, described in 2002, can be used for in vitro studies.
HepaRG cells are liver progenitors that become susceptible to
HBV and HDV infection after differentiation in culture.45

However, infection rates are low and virus spread within the
cultures was never observed. Since the recent discovery of
sodium taurocholate co-transporting polypeptide (NTCP) as an
HBV/HDV receptor,46 47 HepG2 and Huh7 cell lines (over)-

RNA DNA

HBV mRNAs

HDV
virion

HBV
virion

HBV
cccDNA

integrated HBV DNA

HDV RNA

HDV mRNA

HDV
RNP

HBV
NC

HBV SVPs

nucleus

MVBER

Golgi

IC

human hepatocyte

Figure 1 Schematic overview of the HBV/hepatitis delta virus (HDV) life cycles. cccDNA, covalently closed circular DNA; MVB, multivesicular
bodies; RNP, ribonucleoprotein; SVP, subviral particles.

Table 2 Human cells for HBV study in vitro

Immortalisation Transformation Availability Variability
Rate of
infection

DMSO for
infection

cccDNA
levels*

HBV
propagation

Innate
immunity Maintenance

Primary human
hepatocytes

− − + +++ 20–100% 1.8–2% 1–2 copies per
nuclei

− +++ 2–3 weeks

Differentiated HepaRG
cell line

+ − +++ ++ 5–20% 1.8–2% 0.2–0.5 copies
per nuclei

− +++ >6 months

HepG2/Huh7 cell lines + + +++ + 0% 0% − − − −
NTCP-HepG2 cell line + + +++ + 50–100% 2.5–3.5% 1–5 copies per

nuclei
− − 10 days

*After HBV infection with a multiplicity of infection of 1000 vge/mL (viral genome equivalent per mL).
cccDNA, covalently closed circular DNA; DMSO, dimethyl sulfoxide; NTCP, sodium taurocholate co-transporting polypeptide.
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expressing NTCP have been generated. These cells are suscep-
tible to HBV and HDV infection, but their capacity to allow
virus propagation remains to be determined as does their rele-
vance, because of their transformed nature, for studies of virus–
host cell interactions. Finally, a recent study showed that micro-
patterning and co-culturing of primary human hepatocytes or
induced-pluripotent stem cells differentiated into hepatocyte-
like cells with fibroblasts maintains prolonged HBV infection,48

a model eventually amenable to study virus–host interactions
and antiviral drugs affecting early infection steps.

While cell culture models are very valuable to characterise
defined aspects of the viral life cycle, in vivo models are necessary
to study HBV pathogenesis and new antiviral strategies including
immunotherapies (table 3). HBV has an extremely narrow host
range since it only infects hominoid apes including chimpanzees.
The latter have been used in pivotal studies deciphering host
responses during acute HBV infection49 50 but are no longer avail-
able for experimental studies.51 Therefore, macaques, which have a
93% sequence identity with humans and are highly used in toxicol-
ogy, have been considered as an alternative model to study viral
hepatitis. In addition, a naturally occurring, transmissible, chronic
HBV infection has been found in cynomolgus macaques from
Mauritius with a prevalence of 53%. The viraemia lasted up to
9 months and interspecies transmission was possible to the sylvanus
macaques of Morocco.52 It was found that the preS1 binding site in
sylvanus macaques NTCP is identical to that of Macaca fascicularis
in bearing substitutions at positions 157–158 (Isabelle Chemin, per-
sonal communication) that were described as detrimental to an
HBV receptor function.46 53 Further studies are required to
improve the robustness of the model before using macaques as an
alternative to chimpanzees and for developing immunotherapeutic
approaches. There are also various HBV-related viruses such as
duck HBV, woodchuck HBV and ground squirrel HBV that have
been invaluable models to study HBV infection. The woodchuck is
one of the best models available and has been used to explore many
aspects of Hepadnaviridae biology such as the pathogenesis of the
infection, new vaccines, therapeutic vaccination, drug toxicity and
antiviral drugs.54 However, this is an expensive model with a very
limited number of animals available from commercial sources. In
addition, there is a series of limitations: cancer development is strik-
ingly different to humans as woodchucks integrate linearised
genomes close to N-myc; the metabolism changes with their hiber-
nation limiting the time during which studies can be performed;
and sophisticated immunological tools that would allow an examin-
ation of the virus-specific immunological responses are lacking.
Mice are naturally not susceptible to HBV infection, but they can be
humanised to study HBV infection in vivo. Four murine models
have been used to generate human liver-chimeric (HuHEP) mice:

urokinase-type plasminogen activator-severe combined immuno-
deficiency (uPA-SCID), FRG (Fah−/− Rag2−/− IL2Rγc−/−), thymi-
dine kinase (NOD/Shi-scid/IL-2Rγnull) (TK-NOG) and AFC8.55

These mice are characterised by a progressive degeneration of
mouse liver cells and immunodeficiencies, thereby allowing engraft-
ment of human hepatocytes. Re-population of the liver by human
hepatocytes is monitored by determination of the human albumin
levels in the serum of the mice. Recently, an ’ANRS Consortium on
Humanized Mouse Models for Viral Hepatitis’ was created to
develop, compare, optimise and master HuHEP models in France
and for share with the ‘viral hepatitis’ research community. The
ANRS consortium focuses on three main models: FRG, uPA-SCID
and BRGS (BALB/c Rag2−/− IL-2Rγc−/− SIRPα.NOD) uPA
models. FRG mice have a triple knock out: fumaryl acetoacetate
hydrolase (FAH)−/−, Rag2−/− and IL2Rγc−/−. The knock-out
of FAH induces liver toxicity, which can be controlled by
administration of NTBC 2-(2-nitro-4-trifluoromethylbenzoyl)
cyclohexane-1,3-dione to control the degree of liver damage and
the engraftment of human hepatocytes postinfusion.56 Inoculation
of human liver-chimeric FRG mice with HBV leads to a sustained
production of HBV particles in the serum of these mice for up to
10 weeks.57 uPA-SCID mice express the uPA transgene under the
control of the albumin promoter, which induces liver damage and
allows subsequent repopulation with human hepatocytes.56

Inoculation of liver humanised uPA-SCID mice with HBV also
leads to productive infection,58 and this model has been used for
proof-of-concept studies assessing the efficacy of novel antiviral
strategies (refs. 59 60 61 and reviewed in ref.62). Furthermore,
human liver-chimeric uPA-SCID mice have already been used to
study HBV/HDV coinfection.63 64 Nevertheless, the absence of a
functional immune system and human liver microenvironment in
these models precludes the study of defined aspects of HBV/HDV
infection. To allow assessment of viral pathogenesis in the context
of a functional human immune system and to test immunother-
apies, a double humanised mouse, carrying both a humanised
immune system and human hepatocytes (HIS-HuHEP mice), was
created in BRGSuPA mice (Strick-Marchand, personal communi-
cation). Following infection with HBV, the cross-talk between the
immune system and the infected hepatocytes was analysed, and a
balance between proinflammatory and immunosuppressive modu-
lators was observed in HIS-HuHEP mice (Strick-Marchand, per-
sonal communication), suggesting that this model may recapitulate
key aspects of chronic viral hepatitis in patients. Finally, two
immunocompetent mouse models of chronic HBV infection have
been established recently by using low doses of
adenovirus-associated65 or adeno-associated virus-mediated66

gene transfer of HBV. The further development of such small
animal models will allow testing of novel therapies

Table 3 In vivo models for HBV study

Chimpanzees Macaques Tupaia belangeri HuHep mice His-HuHep mice Ad-HBV or AAV-HBV mice

HBV entry + ? + + + −
HBV production + + + + + +
cccDNA establishment + ? + + + −
Chronic HBV infection − ? + + ? +
HCC development − ? ? ? ? ?
Adaptive immune responses + ? ? − + +
HBV tolerance − ? ? − + +
Antiviral drug testing + ? + + + +
Therapeutic vaccine development + ? ? − + +

cccDNA, covalently closed circular DNA; HCC, hepatocellular carcinoma.
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combining direct-acting antivirals (DAAs) with immunomodula-
tory drugs, as well as the consequences of coinfection by hepatic
viruses and HIV.

The HBV replication cycle: from molecular mechanisms to
antiviral targets
HBV/HDV entry into hepatocytes: the first steps of
virus–host interactions
HBV entry into hepatocytes requires both viral and host factors.
Given that HBVand HDV share the same envelope proteins, HDV
has been widely used as a surrogate model to study HBV entry.
While the viral determinants of HBV/HDVentry have been exten-
sively characterised over the past years, the host factors involved in
HBV/HDV entry remained elusive until the recent discovery of
NTCP as an HBV/HDV receptor.46 The viral membrane contains
three forms of the viral envelope protein: large (L), middle (M)
and small (S). They are translated from their own start codons but
share the same C-terminal amino acids, called the S domain. As a
consequence, the M protein contains an extra domain called the
pre-S2 domain compared with the S protein, and the L protein
contains two extra domains called the pre-S2 and pre-S1 domains.
It has been known for a long time that the M protein67 68 as well
as glycosylation of the envelope protein is dispensable for HBV/
HDV assembly/infectivity.69 On the contrary, pre-S1 is crucial to
infectivity of HBV and HDV70 and needs a minimal spacer
between pre-S1 and the transmembrane domain 1 (TMD1) for
activity in viral entry.71 It was also shown that the antigenic loop
(AGL) in the S protein—but not in the L protein—is essential for
infectivity and that this AGL and the pre-S1 infectivity determi-
nants work independently of each other.72 73 AGL mediates
attachment to cell surface heparan sulfate proteoglycans
(HSPGs).74 75 Noteworthy, hepatocytes synthesise very liver-
specific HSPG sequences that may contribute to the tissue specifi-
city of the infection. TMD1 was also shown to be instrumental in
infectivity.76 However, it is not yet known whether it contains a
fusion peptide like other enveloped viruses. Identification of a
fusion peptide essential for viral entry is a fundamental unresolved
issue about HBV. Finally, cholesterol in the viral membrane (but
not in the target cells) is required for infectivity.77 Very import-
antly, it was shown that a myristoylated pre-S1-specific peptide (2–
48Myr also known as antiviral candidate Myrcludex) is a potent
inhibitor of viral entry,78 79 working within nanomolar ranges.
The Wenhui Li Beijing group recently used this peptide as a bait to
pull down the HBV/HDV receptor and identified NTCP,46 a
member of the solute carrier protein family, as a functional HBV
entry factor. It is expressed at the basolateral membrane of the
hepatocytes for uptake of bile acids but also for transport of hor-
mones and several xenobiotics. Two determinants of HBV recep-
tor function in NTCP (amino acids 84–87 and 157–165) have
been identified.46 53 Interestingly, a number of polymorphisms
have been reported in human NTCP, which alter bile acid trans-
porter activity, but it remains to be determined whether they all
correlate to a lack of HBV receptor activity. That is, for instance,
the case for the S267F mutation observed in 7.5% of Chinese
Americans, leading to a loss of bile acid transport and a loss of sus-
ceptibility to HBV infection.80 Altogether, the available data on
HBV/HDVentry allow proposing a relatively simple model involv-
ing HSPGs as low-affinity receptors for virus docking at the
human hepatocyte surface, and NTCP as high-affinity, liver-specific
receptor.81 However, our knowledge of the HBV/HDVentry mech-
anism is still limited, despite recent progress. Indeed, additional
host cell factors, functioning as co-receptors, are probably involved
in the HBV entry process, either prior to NTCP binding or
post-NTCP binding, to participate in an eventual fusion

mechanism. Subviral particles may also play a role in viral entry
because they are fully equipped to interact with HSPGs and theoret-
ically also with NTCP. Indeed, it remains to be determined whether
the amount of L proteins in subviral particles is too low for efficient
interaction with NTCP or whether an alternative mechanism pre-
vents them from competing with Dane particles. It also remains to
be determined whether entry involves clathrin-dependent endoc-
tyosis or raft/caveolar endocytosis.77 82 83 Using microscopy and
pharmacological inhibitions, it was demonstrated that HBV capsids
are transported to the nucleus through a microtubule-dependent
mechanism84 involving direct interaction with specific dynein light
chains (Michael, Kann, personal communication). Once arriving in
the nuclear periphery the capsids interact with importin α/β recep-
tors,85 HBV capsids pass the nuclear pores intact and arrive in the
nuclear basket. It was shown that capsids interact with one specific
protein of the nuclear basket, called Nup153, that arrests them.85

While immature capsids stay arrested, mature capsids (containing
rcDNA) disintegrate, leading to viral genome release.85

cccDNA formation and regulation: key steps for viral persistence
cccDNA is responsible for HBV persistence in the liver and even a
single copy could theoretically reactivate full infection. Despite
>30 years of molecular biology study on HBV, little is known
about how cccDNA is formed and regulated. A better understand-
ing of these mechanisms will probably be instrumental to curing
HBV infection. cccDNA is exclusively produced from rcDNA,
either from incoming virions or from neoformed nucleocapsids,
probably by a multistep process including (i) the removal of the
polymerase (P) protein covalently linked to the minus strand of
rcDNA, (ii) removal of the RNA primer covalently linked to the
plus strand of rcDNA, (iii) generation of exactly one unit length
double-stranded DNA and (iv) ligation of the ends of both strands.
It is believed that most of these activities are provided by the host
cell. A very recent study uncovered the mechanism of P protein
removal from rcDNA.86 Indeed, it was demonstrated that
tyrosyl-DNA-phosphodiesterase (TDP)2 can specifically cleave the
Tyr–DNA bond and release P protein from authentic HBV rcDNA
in vitro. Moreover, interfering RNA (RNAi)-mediated TDP2
depletion in human cells significantly slowed down the conversion
of rcDNA to cccDNA, while ectopic TDP2 expression in the same
cells restored conversion kinetics.86 These data strongly suggest
that TDP2 is one but likely not the only host DNA-repair factor
involved in HBV cccDNA biogenesis. Once formed, cccDNA per-
sists as a minichromosome in the nucleus of infected cells87 88 and
the regulation of its transcription occurs through epigenetic modu-
lations. Using chromatin immunoprecipitation assays (ChIP), it has
been shown that modification of histones bound to cccDNA regu-
lates its transcriptional activity. Indeed, HBV replication parallels
the acetylation status of HBV cccDNA-bound H3 and H4 histones
in HBV replicating cells and in patients.89 A number of transcrip-
tion factors, chromatin-modifying enzymes as well as viral proteins
(ie, HBc and HBx), were identified as cccDNA-bound and
involved in its modulation88 90 HBx was shown to be necessary
for the transcription from cccDNA through epigenetic regula-
tion.90 91 However, studies of the epigenetic regulations of
cccDNA are still limited in current HBV replication models.
Indeed, the detection limit of ChIP assays is 0.2 cccDNA copies
per cell and 0.5–1 cccDNA copies per cell are necessary to assess
multiple parameters in the same biopsy sample, but it also depends
on the number of infected cells in the sample.

Assembly and dissemination of virions
Following cccDNA transcription by host RNA polymerase II
into HBV mRNAs in the nucleus and translation of the latter to

Zeisel MB, et al. Gut 2015;64:1314–1326. doi:10.1136/gutjnl-2014-308943 1319

Recent advances in basic science

group.bmj.com on December 18, 2017 - Published by http://gut.bmj.com/Downloaded from 

http://gut.bmj.com/
http://group.bmj.com


viral proteins, assembly of core protein subunits with pgRNA
into nucleocapsids in the cytoplasm represents the initial step in
the assembly of progeny virions. Neoformed nucleocapsids then
interact with the HBV envelope proteins at a postendoplasmic
reticulum, pre-Golgi compartment, before being released from
the cells as mature enveloped virions through the multivesicular
body pathway,92 whereas the huge excess of HBV envelope pro-
teins that is a characteristic of an HBV-infected cell is exported
as empty subviral particles through the cell secretory pathway.
Some key aspects of viral assembly and dissemination of virions
remain unanswered. For instance, mechanisms that are favouring
secretion of neoformed nucleocapsids rather than recycling
towards the nucleus and vice versa are still unclear. Virus assem-
bly in the setting of antiviral-induced inhibition of viral DNA
synthesis (for instance, by NUC) has not been studied either.
Indeed, for instance, the fate of pgRNA-containing nucleocap-
sids (degradation or secretion) is unknown.

HBV pathogenesis: interplay between the virus and the
immune system
The outcomes of HBV infection are highly dependent on interac-
tions between the virus and the host immune system. Indeed,
whereas 95% of immunocompetent adults will clear the infec-
tion, only 5–10% of children will be able to do so. Infection of
hepatocytes is non-cytopathic in the short term. But as hepato-
cytes are long lived (half-life of ∼6 months) and have self-
renewing properties, the liver loses genetic complexity over time.
By increasing cell death, hepatitis increases this loss of complexity
and increases hepatocyte clonality. For instance, in a healthy
50-year-old individual, with one turnover per year, liver com-
plexity will drop down to about 2% of what it was at the start of
life. For a patient with active liver disease, turnover is elevated
5-fold to 10-fold. A 50-year-old patient could therefore have a
500-year-old liver. Chronic infection will thus have a major
impact on complexity loss by raising the daily rate of hepatocyte
turnover. The loss of hepatocyte complexity and/or the increase
of DNA damage in proliferating hepatocytes could trigger hep-
atocyte transformation and tumour development. Transient
infection causes one liver turnover and does not have a significant
impact in the long term. When HBV enters the liver, it is con-
fronted with many different cell types. Indeed, the liver is a
complex and structured organ that contains hepatocytes (paren-
chymal cells), non-parenchymal cells such as liver sinusoidal
endothelial cells, stellate cells and numerous resident immune
cells, including Kupffer cells (KC), dendritic cells (DCs), natural
killer (NK)/NKT, CD4+ T cells, CD8+ T cells, regulatory T cells
(Treg) and B cells. These cells are organised according to a very
particular and unique architecture. The importance of the whole
liver microenvironment is often underestimated, and one should
be cautious with in vitro experiments using hepatocytes that may
behave differently when studied outside this microenvironment.
Because it contains so many immune cells, the liver is considered
as a secondary lymphoid organ, with crucial immune functions.93

However, the liver is also associated with the induction of
immune tolerance,94 as exemplified by transplantation tolerance.
Acute self-limited HBV infection involves coordinated immune
responses. The immune response is delayed by 4–6 weeks postin-
fection, during which time HBV DNA is detectable in the serum.
Strong polyclonal CD8+ T and CD4+ T cell responses are then
activated, which respectively result in the destruction of infected
hepatocytes and antibody production.95 It has been shown that
HBV replication early in the immune clearance phase is sup-
pressed by non-cytopathic mechanisms involving cytokines.49 In
contrast, during chronic HBV infection, there is an uncontrolled

viral replication and ongoing liver damage, with a strong influx
of non-HBV-specific Tcells in the liver. Chronic HBV infection is
characterised by (i) a low frequency of HBV-specific CD8+ Tcell
responses that have an exhausted phenotype characterised by
overexpression of PD-1, CTLA-4, CD244, Tim3, and so on; (ii)
an impaired production of interleukin (IL)-2 and impaired prolif-
eration of CD4+ T cells and (iii) an increase in the number of
Treg in the liver and in the number of IL-10-secreting T cells.96

For a long time, HBV has been considered as a ‘stealth’ virus
since there was no gene modulation following the onset of vir-
aemia in HBV-infected chimpanzees50 and very low cytokine
production in patients with HBV.97 However, it was also shown
that NK/NKT98 as well as KC99 play a role in the early control of
infection and that a strong replication of HBV in vitro led to a
productive IFN response in hepatocytes.100 These conflicting
data suggest that the virus could be detected by innate immunity
sensors, but it probably sets up strategies to escape from the
nascent response. Indeed, it has been shown that HBV can block
innate immunity at several steps in hepatocytes (for review, see
ref.101), as well as in other liver cells. In particular, HBV has been
shown to alter KC functions by blocking the secretion of
IL-1β,102 preventing dsRNA-mediated type-1 IFN gene expres-
sion103 and inducing IL-10 production.104 HBV is also able to
block pDC functions,105 106 as well as the cross-talk between
pDC and NK cells.107 Moreover, HBV has been reported to
downregulate TLR2 expression in chronically infected
patients108 and Taqman Low-Density Array data confirmed sig-
nificant impairment of innate immune pathways in chronically
infected patients compared with non-infected controls.109

Thus, the exact role played by innate immunity in HBV clear-
ance is still unclear and, for instance, pathogen recognition
receptors involved in HBV sensing and detection remain
unidentified. Understanding interactions between HBV and its
host is crucial to achieve an HBV cure. Indeed, experience from
the ‘HIV Cure’ initiative launched in 2010 clearly showed the
importance of a detailed understanding of the relationship
between host and virus to achieve HIV cure. For instance,
recent studies allowed the identification of four host restriction
factors (TRIM5, APOBEC3G, Tetherin and SAMHD1) that bind
to target viral compounds and inhibit viral replication at a specific
point in its replication cycle (for review, see ref.110). Moreover, a
study on a cohort of patients with HIV showed a very strong
genetic bias in long-term non-progressors and elite controllers for
whom the levels of the HIV reservoir remained highly stable over
10 years. The exceptional elite controller status is usually not
driven by virus gross genetic defects, despite some virus attenu-
ation resulting from immune selective pressure, but is frequently
determined by host’s genetic factors permitting robust cell-
mediated immunity to control the virus replication and reservoirs.
For instance, the only genetic marker associated with non-
progression was found in chromosome 6 in the major histocom-
patibility complex locus and is particularly associated with human
leucocyte antigen (HLA)-B27 and the HLA-B57.111

Transcriptomic analysis also identified three specific signatures
involving overexpression of T cell receptor and costimulation sig-
nalling pathways, overexpression of the PRDM-1/Blimp-1 tran-
scriptional repressor, and downmodulation of type I IFN-related
genes. Among subsets, the PRDM1/Blimp-1 upregulation was
associated with lower levels of both cellular HIV-DNA and HIV
mRNA levels.112

DRUG DISCOVERY: TOWARDS AN HBV CURE
To broaden the therapeutic landscape in chronic hepatitis B
management and to ultimately achieve a reliable HBV cure,
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novel antivirals with original mechanisms of action are needed.
Drug development thus focuses on strategies targeting cccDNA
either by preventing cccDNA formation, eliminating cccDNA or
silencing cccDNA transcription. Control of cccDNA should be
achievable by either capsid disassembly, inhibition of rcDNA
entry into the nucleus, inhibition of conversion of rcDNA to
cccDNA, physical elimination of cccDNA, inhibition of cccDNA
transcription (epigenetic control) or inhibition of viral or cellu-
lar factors contributing to cccDNA stability/formation. Drugs
with such activity could be DAAs targeting the virus or
host-targeting agents (HTAs), including inhibitors of key host
factors required for the viral replication cycle and immunomo-
dulatory agents (table 4).

Among the emerging DAAs against HBV currently in the pipe-
line are novel polymerase inhibitors, capsid inhibitors, rcDNA–
cccDNA conversion inhibitors, DNA cleavage enzymes and small
interfering RNA (siRNA)-based strategies.113–115 While the pro-
spects of novel polymerase inhibitors remain to be determined,
capsid inhibitors, inhibitors of cccDNA formation and DNA cleav-
age enzymes have great potential as novel antiviral strategies that
could directly impact cccDNA pools. The recent achievement to
produce recombinant HBV polymerase at a large scale may be
instrumental to design novel improved polymerase inhibitors.116

However, these novel inhibitors, whether they inhibit the priming,
the RNA-dependent or DNA-dependent DNA synthesis, or the
RNAseH activity of the polymerase, will have to show significant
advantage over the existing nucleos(t)ide analogues with a high
antiviral potency and a high barrier to resistance.117 118 The HBV
capsid plays a central role in the viral life cycle. It is essential for
HBV genome packaging, reverse transcription, intracellular

trafficking and maintenance of chronic infection as encapsidated
HBV genomes are imported into the nucleus. The first family of
nucleocapsid inhibitors, phenylpropenamide derivatives, were
shown to interfere with HBV RNA packaging, leading to the for-
mation of empty capsids and reducing the amount of intracellular
immature capsids, mature viral particles and intracellular cccDNA
pools, without affecting HBcAg levels.119 120 Interestingly, a syner-
gistic antiviral activity between phenylpropenamide derivatives
and polymerase inhibitors, as well as a lack of cross-resistance, was
reported in vitro, highlighting the potential of combining capsid
inhibitors with other antivirals for therapy.119 121 122

Heteroaryldihydropyrimidines (HAPs) constitute another family
of capsid inhibitors.123 124 HAPs were shown to bind to core parti-
cles in a specific but reversible manner and to reduce both HBV
DNA and HBcAg levels, the latter due to degradation by the prote-
asome pathway.124 In addition to inducing capsid disassembly,
HAPs have been shown to enhance viral assembly and to favour
assembly of aberrant particles, indicating that HAPs interfere with
capsid formation/stability in a complex manner.125–127 Similar to
phenylpropenamide derivatives, HAPs are able to efficiently
inhibit viral variants that are resistant to current polymerase inhibi-
tors.122 Moreover, a short-term study using HBV-infected human
liver-chimeric mice demonstrated an HAP-induced reduction of
viral load, with virus production increasing again following dis-
continuation of the drug.61 Morphothiadine mesilate (GLS4) is
the first member of this family of compounds having entered early
clinical development; phase I and II clinical trials have been con-
ducted in China.128 129 Furthermore, HBV capsid proteins can
traffic to the nucleus of infected cells and exert additional bio-
logical functions by repressing the transcription of several

Table 4 Emerging drugs against HBV

Targets Compounds Stage of development

References or
ClinicalTrials.gov
Identifier

DAAs HBV capsid Phenylpropenamide derivatives
Heteroaryldihydropyrimidines

Preclinical and early clinical phase
Morphothiadine mesilate (GLS4) in
phase II

119, 120

123, 124, 128

rcDNA-cccDNA conversion Disubstituted sulfonamide Preclinical 133

cccDNA DNA cleavage enzymes Preclinical 114, 134, 135, 136

HBV RNA siRNA
antisense

ARC-520 in phase II
ISIS-HBVRx in phase I

NCT02065336
170, 171

HTAs NTCP HBV preS1-derived lipopeptide
cyclosporine A, ezetimibe

Myrcludex-B in phase II
FDA approved but not tested for HBV

149

146, 147, 148

Host factors involved in HBV
secretion and budding

Iminosugar derivatives of butyldeoxynojirimycin
and related glycolipids

Preclinical 145

α-glucosidase inhibitors Preclinical 145

triazol-o-pyrimidine derivatives Preclinical 150

benzimidazole derivative Preclinical 151

phosphorothioate oligonucleotides REP 9 AC in phase II 152

Innate immune responses LTβR agonists Preclinical 153

TLR7 agonists Phase II NCT02166047
thymosin α1 Phase IV NCT00291616
Nitazoxanide Phase I 156, 157

interleukin-7 Phase I/II NCT01027065
IFN-λ Phase II NCT01204762

Adaptive immune responses PD1 blockade

X-S-Core proteins (antigen-based vaccine)
HBV DNA (DNA-based vaccine)

Phase I/II for HCC

GS-4774 in phase II,
DV-601 in phase I
DNA vaccine pCMVS2.S
in phase I/II

NCT01658878
172, 173

159, 160

NCT00536627
161, 162, 164

Molecules and compounds are currently moving rapidly from one development phase to another. Updated information can be found on http://www.hepb.org/professionals/hbf_drug_
watch.htm.
cccDNA, covalently closed circular DNA; DAA, direct-acting antiviral; FDA, US Food and Drug Administration; HCC, hepatocellular carcinoma; HTA, host-targeting agent; IFN, interferon;
LTβR, lymphotoxin-β receptor; NTCP, sodium taurocholate co-transporting polypeptide.
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IFN-stimulated genes103 130 131 or activating the transcription of
viral genes from cccDNA;132 these nuclear functions may
represent additional targets for drug development. Interestingly, it
was also suggested that HAPs might directly affect cccDNA
stability.132

A complementary approach to the development of capsid
inhibitors with direct impact on cccDNA pools is the design of
enzymes targeting cccDNA formation or decay. Recently, a
small-molecule library screen was conducted to uncover com-
pounds inhibiting cccDNA synthesis. This led to the discovery
of disubstituted sulfonamide (DSS) compounds as inhibitors of
cccDNA in cell-based assays.133 DSS did not appear to directly
promote the degradation of rcDNA or cccDNA but rather to
inhibit de novo cccDNA formation by interfering with rcDNA
conversion into cccDNA.133 Furthermore, DNA cleavage
enzymes, including homing endonucleases or meganucleases,
zinc-finger nucleases, TAL effector nucleases and CRISPR-
associated system 9 proteins, specifically targeting the cccDNA
are currently being engineered.114 134–136 These enzymes can be
delivered as genes within viral vectors to target hepatocytes.137

Computational modelling studies suggested that several enzymes
may have to be administered concomitantly in order to avoid
selection of resistant viruses.114 Of note, enzyme-based strat-
egies are currently also being evaluated in other viral infections,
including HIV infection, where this approach is used in order to
modify the viral receptors CCR5 and CXCR4 on T cells ex vivo
(reviewed in ref.138). Further studies are needed to evaluate the
potential of these novel antiviral strategies against HBV infec-
tion. Noteworthy, cccDNA transcription can be silenced to
some extent using small molecules targeting different classes of
chromatin-modifying enzymes, similar to the epigenetic silen-
cing of cccDNA by IFN-α,139 140 which would lead to func-
tional, although transient, HBV cure.

Silencing HBV gene expression using RNAi constitutes
another original antiviral approach against HBV. Polymer formu-
lations enable efficient delivery of siRNA to hepatocytes.141

ARC-520 is a combination of siRNAs directed against conserved
HBV RNA sequences and efficiently knocks down HBV RNA,
proteins and DNA levels. ARC-520 is currently being evaluated
in a phase II clinical trial (ClinicalTrials.gov identifier
NCT02065336). Other siRNAs are also at the preclinical stage.
Interestingly, HBV gene silencing could also be combined with
IFN induction in the liver. Indeed, 50-triphosphate (3p) siRNAs
directed against HBV can bind and activate cytosolic helicase
retinoic acid-inducible protein I to induce expression of type I
IFNs. The antiviral activity of these bifunctional, HBV-specific,
3p-siRNAs was more efficient and sustained for a longer time
than 3p-RNAs without silencing capacity or siRNAs that tar-
geted identical sequences but did not contain 3p.142

In addition to interfering with cccDNA formation and stability,
future drugs aiming at curing HBV infection may target other
host cell pathways to interfere with the viral replication cycle
and/or restore anti-HBV immune responses (reviewed in ref.143).
The recent clinical development of HTAs for the treatment of
chronic hepatitis C highlights the promise of this approach to
address unmet needs in the treatment of virus-induced liver
disease (reviewed in ref.144). In contrast to HCV, few HTAs tar-
geting the HBV replication cycle have been described. These
include inhibitors of the recently uncovered HBV receptor
NTCP and inhibitors of HBV envelope protein maturation and
secretion (reviewed in refs.81 113 145). Small-molecule com-
pounds binding to NTCP, including cyclosporine A and ezeti-
mibe, have been shown to inhibit HBV/HDV entry in cell
culture models, and although licensed for other clinical settings,

none of these compounds has so far been tested in vivo against
HBV.146–148 In contrast, the well-known HBV pre-S1-derived
lipopeptide Myrcludex-B that competes with HBV/HDV for
binding to NTCP efficiently prevents HBV/HDV entry both in
vitro and in human liver-chimeric uPA-SCID mice.64 79 149

Furthermore, this lipopeptide was also able to impair viral dis-
semination when administered subsequent to viral inoculation
in this mouse model.59 Myrcludex-B is currently being evalu-
ated in a phase II clinical trial in Russia.

The HBV secretory pathway is another potential target for
novel antivirals, as inhibiting HBV secretion and budding
should decrease the release of progeny subviral particles and
virions. This could not only decrease HBV DNA levels but also
interfere with HBsAg-mediated immunosuppression, thereby
restoring antiviral immunity. Several inhibitors of HBV secretion
have been described so far, including iminosugar derivatives of
butyldeoxynojirimycin and related glycolipids, α-glucosidase
inhibitors, triazol-o-pyrimidine derivatives and a benzimidazole
compound.145 150 151 The benzimidazole BM601 has recently
been reported to selectively inhibit intracellular re-localisation
of the HBV surface protein to the Golgi apparatus. Thereby, it
decreases HBsAg and HBV release without affecting HBeAg
secretion or induces the release of cellular proteins with an ori-
ginal mechanism of action compared with previously described
inhibitors of HBV maturation and secretion.151 Moreover,
amphipathic DNA polymers such as phosphorothioate oligonu-
cleotides have been shown to inhibit HBsAg release, thereby
contributing to immunological control of HBV infection.152

Noteworthy, such compounds exhibit broad antiviral activities
and are also evaluated as HIV and HCV fusion inhibitors
(reviewed in ref.144). As potential disadvantages, HBsAg accu-
mulation could lead to storage diseases and the block of mature
virion synthesis could increase cccDNA copy number.

In order to circumvent the systemic side effects of IFN-α that
limit its clinical use, efforts are ongoing to uncover other means
of inducing intrahepatic antiviral immune responses in the
infected host. Most recently, an original mechanism to activate
antiviral immune responses has been described using antibodies
directed against the lymphotoxin-β receptor (LTβR).153

Similarly to members of the IFN or TNF family of cytokines,
antibodies activating LTβR reduced HBV DNA, HBsAg and
cccDNA levels in relevant cell culture models in the absence of
detectable hepatotoxicity. Antibody-mediated activation of LTβR
appeared to have a dual mechanism of action, targeting both
HBV replication and cccDNA stability via induction of deamin-
ation and apurinic/apyrimidinic site formation in cccDNA and
upregulation of the expression of nuclear APOBEC3 deami-
nases.153 This approach may however imply a significant
problem as the increased mutation rate may support generation
of resistant variants as it was shown for HIV. The potential syn-
ergistic effect of combinations of LTβR agonists and current
polymerase inhibitors remains to be assessed.

Other immunomodulatory compounds exhibiting activity
against HBV in clinical development include TLR7 agonists
(ClinicalTrials.gov identifier NCT02166047), thymosin α1
(ClinicalTrials.gov identifier NCT00291616) and nitazoxanide,
which induce the production of IFN and/or activation of B and T
cells.154–158 Furthermore, recombinant IL-7 and IFN-λ have also
been considered to enhance immune functions against HBV
(ClinicalTrials.gov identifier NCT01027065 and NCT01204762).
Interestingly, the immunomodulatory properties of some of these
compounds have also been suggested to be of interest in treating
other infectious diseases, including chronic HCV infection.
However, it remains to be demonstrated whether they can clear
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viral infection. Finally, therapeutic vaccines designed to trigger
both humoral and cellular immune responses against HBVare also
currently being evaluated in clinical trials159–164 (ClinicalTrials.gov
identifier NCT01943799, NCT01023230 and NCT00536627)
and may be potentiated with the use of NUC165 and/or TLR-9
agonists that induce the formation of intrahepatic myeloic cell
aggregates involved in T cell expansion and support HBV clear-
ance by favouring local cytotoxic T lymphocyte expansion, at least
in mouse models of HBV infection.166–168

CONCLUSIONS AND PERSPECTIVES
The recent progress in HCV therapy with novel DAAs allowing
to cure chronic HCV infection169 has created expectations of a
cure for other chronic viral infections. Although HCV and HBV
both target human hepatocytes and induce chronic liver disease
and HCC, they are fundamentally different in terms of genomic
structure and virus replication cycle. The ability of HBV to
persist as cccDNA and to integrate into the host genome
hampers its eradication. The recent development of novel in
vitro infection models opened a new era for the study of HBV,
and the time seems right to develop a concerted strategy to
achieve HBV cure and reduce the burden of HBV-induced liver
disease and HCC. The main challenges towards an HBV cure
and the new concepts to be explored have been discussed
during the ANRS workshop. The main conclusions were that
the primary aims of the field are to (i) develop novel model
systems to further characterise the molecular mechanisms of the
HBV replication cycle, particularly the formation and regulation
of cccDNA; (ii) advance our understanding on the viral and
host factors involved in HBV pathogenesis, including innate and
adaptive antiviral immune responses; (iii) uncover biomarkers of
disease progression to better identify patients who are at risk of
developing cirrhosis and HCC; and (iv) define new targets for
antiviral therapy to achieve an HBV cure. A concerted action of
academic centres and pharmaceutical industries will also be war-
ranted to hasten the development of new antiviral strategies to
combat HBV infection.
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