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Abstract: In this paper, we propose a simple non-parametric goodness-of-fit test for elliptical
copulas of any dimension. It is based on the equality of Kendall’s tau and Blomqvist’s beta for
all bivariate margins. Nominal level and power of the proposed test are investigated in a Monte
Carlo study. An empirical application illustrates our goodness-of-fit test at work.
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1 Introduction

Nowadays, copulas are a standard tool for modeling multivariate dependence. There exist many copula
classes such as Archimedean, elliptical and Marshall-Olkin copulas (see e.g. |Scherer| (2012)) and the choice
of the right copula class is crucial for an accurate multivariate data analysis. Therefore, goodness-of-fit
tests for copulas have been an objective of active research in recent years, see e.g. (Genest et al.| (2009), Berg
(2009) and the overview [Fermanian| (2013). In financial applications, elliptical copulas are commonly used
to capture the dependence structure.

This paper is concerned with the construction of a simple non-parametric goodness-of-fit test to ex-
amine whether the underlying dependence structure follows some elliptical copula of any dimension d.
Therefore, the null hypothesis that the unknown copula C of the given data belongs to the class of elliptical
copulas CPt, j.e.

Hy:Ce Cdlipt,
is tested against the alternative
Hy: C ¢ celivt,

In case of bivariate elliptical copulas, which are symmetric and radially symmetric, one could first use
the tests of |Genest et al.| (2012) and |Genest and Neslehova| (2014) to statistically confirm both symmetry
properties. If at least one of these statistical tests is rejected, then the bivariate copula of the underlying
data cannot be elliptical. Otherwise, a new statistical test is needed to identify bivariate elliptical copulas
within symmetric and radially symmetric copulas. In case of multivariate elliptical copulas, one could test
only for radial symmetry.

Li and Peng| (2009) construct a goodness-of-fit test for the tail copula of a d-dimensional distribution,
whose dependence structure is expressed by an elliptical copula. [Kliippelberg et al| (2008) derive, in
Lemma 1, the parametric form of the tail copula of elliptical distributions and argue, in Section 2, that it
depends only on the underlying elliptical copula and is independent of the marginal distributions. Hence,
the test in |Li and Peng| (2009) can also be seen as a goodness-of-fit test for elliptical copulas. To the best
of our knowledge, this is the only goodness-of-fit test for elliptical copulas of any dimension d. However,
this test utilizes the tail dependence concept and therefore, the class of copulas for the null hypothesis
has to be restricted to elliptical copulas with positive tail dependence. This tail dependence assumption
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discards for example the Gaussian copula from the null hypothesis and consequently shrinks the class of
elliptical copulas under consideration. Furthermore, the test is based on the upper order statistics of the
data and therefore has to deal with the difficulties of extreme value statistics. We propose a new simple
non-parametric goodness-of-fit test, which takes into account the dependence structure of the whole data
set. In particular, it is based on the equality of Kendall’s tau and Blomqvist’s beta for all bivariate margins
of meta-elliptical distributions resulting from [Fang et al.[(2002) and |Schmid and Schmidt| (2007).

Elliptical copulas are specified by their generator function and parameters. If the choice of the generator
function is fixed, many general goodness-of-fit tests can be used to test whether an underlying copula
belongs to this specified subclass of elliptical copulas. However, the choice of the generator function is
not an obvious and simple task. Our goodness-of-fit test does not require the knowledge of the generator
function and in this sense, it is general. Moreover, it is simple since its critical values are directly computed
from an asymptotic x2-distribution of a test statistic.

The rest of the paper is organized as follows. Section [2| briefly discusses elliptical copulas as well as
Kendall’s tau and Blomqvist’s beta. Section [3| presents our test statistic and its limiting y2-distribution un-
der the assumption that the copula data comes from an elliptical family. The description of the simulation
study and numerical results on the nominal level of the test as well as on its power are given in Section
Ml Section [5| deals with an application of our goodness-of-fit test to real data. Section [6| concludes and
Appendix |A| contains the proof of the asymptotic x2-distribution of our test statistic.

2 Basics

2.1 Elliptical copulas

Here and in the sequel, we will just consider distribution functions with continuous margins. A copula
is a cumulative distribution function over the unit square [0,1]¢ with uniform margins. One of the most
prominent parametric classes of copulas are elliptical copulas. They are implicit copulas, which do not
possess a simple closed-form analytic expression. More precisely, elliptical copulas are derived from
multivariate elliptical distribution functions with the help of Sklar’s theorem from |Sklar| (1959).

Theorem 2.1. (Sklar’s theorem)
Let H be a cumulative distribution function on R? with continuous margins Fy, ..., Fy. Then there exists a unique
copula C : [0,1]% — [0,1] such that for all x € RY, it holds that

H(X) =C (F1(x1),. . .,Fd(xd)) .

In particular, Sklar’s theorem allows to treat margins and the copula separately resulting in two inde-
pendent and simpler problems. Further, Sklar’s theorem provides an universal construction framework
for copulas. Without loss of generality, let F;~ be the generalized inverses of F;, i € {1,...,d}. Then, the
copula C(u) of H for any u € [0,1]4 is given by

C(u) = H (F (u1),...,F; (ug)) .

Further, we denote by Cy, the marginal copula of the k-th and ¢-th component with k,¢ € {1,...,d} and
k#4.

We first introduce elliptical distributions, from which elliptical copulas are derived. Our exposition
follows Chapter 2 in [Fang et al| (1990) and is based on spherical distributions that stay invariant under
orthogonal transformations of the underlying random vectors. Spherical distributions are an important
sub-class of elliptical distributions.
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Definition 2.2. (Elliptical distribution)
Let S denote the space of all symmetric d x d matrices. A random vector X € R? is said to have an (non-degenerate)
elliptical distribution with parameters p € R? and £ = (ke )k eeqn,...ay € Sa, if

X=pnu+AY,

where Y has a m-dimensional spherical distribution and A is a d x m matrix such that AAT = £ with rank(Z) =
m.

Thus, elliptical distributions are defined as the class of affine transformations of spherical distributions.
A bivariate elliptically distributed random vector X resulting from the application of the linear transfor-
mation A to the spherically distributed random vector Y has elliptically contoured density level surfaces.
This explains the name of elliptical distributions. Definition[2.2]is the stochastic representation of elliptical
distributions. Note that elliptical distributions can alternatively be defined through their generator func-
tion. For further details about elliptical distributions and the definition of spherical distributions we refer
to|[Fang et al.| (1990).

Since Sklar’s theorem determines the copula of multivariate distributions with continuous margins in
an unique way, elliptical copulas are defined as follows.

Definition 2.3. (Elliptical copula)
Elliptical copulas are the copulas of elliptical distributions.

Consequently, an elliptical copula C is defined as the copula of the underlying elliptical distribution
H and is typically not available in closed form. The two most popular elliptical copulas are the Gaus-
sian and the t-copula. Distributions with an elliptical copula are called (meta)-elliptical distributions
(see Fang et al. (2002)). These distributions are fully specified through the matrix R = (k) sc (1,...d}
:= (0ke/ \/Tkk00) Kbell,..d) the generator function and the marginal distributions.

2.2 Ordinal measures of dependence

In this section, we will consider ordinal or concordance measures of dependence, which are invariant with
respect to monotone increasing, not necessarily linear transformations and can also be expressed in terms
of the underlying copula. More precisely, we introduce Kendall’s tau and Blomqvist’s beta, which are
fundamental for our test statistic. The test will be based on the dependence between all bivariate pairs of
the components of the random vector X € R?. Therefore, we will introduce these measures in a bivariate
setting. For multivariate extensions of Kendall’s tau, we refer to |Kendall and Babington Smith| (1940) and
Joe (1990). A multivariate extension of Blomqvist’s beta was introduced in|Schmid and Schmidt (2007).

2.2.1 Kendall’s tau

We start with the concordance measure Kendall’s tau, which belongs to the most popular dependence
measures and is defined as follows.

Definition 2.4. (Kendall’s tau)
Let (X11,X21) " and (X12, X0) " be independent copies of the random vector (X1, Xp) " of continuous random
variables X1 and Xp. Then, Kendall’s tau is defined by

Tip : = E[sgn(X11 — X12)sgn(Xo1 — X22)]
=TP((X11 — X12)(X21 — X22) > 0) = P((X11 — X12) (X1 — X0) < 0),

where sgn denotes the sign function.
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Hence, Kendall’s tau equals the probability of concordance minus the probability of discordance. Fur-
thermore, for continuous random variables X; and X, with copula Cyp, Kendall’s tau is completely deter-
mined by their copula Cj, (see Theorem 5.1.3 in Nelsen| (1999))) and can be expressed as

1 41
T2 = T¢p, = 4/0 /o Cia(uy, up) dCio(uq,up) — 1. 1)

For the sample version of Kendall’s tau, we look at a random sample of n observations (X1, Xo1) ", ...,

(X1, X2n) " from the random vector (X1, Xp)". In total, there are (}) = "("271) different pairs of observa-

tions (X;;, Xo;) " and (X, Xz]-)T and we get

R 2
o i= oy Y. sgn(Xy; — Xqj)sgn(Xyi — Xo;) 2)
n(n—1) 1<i<j<n

as the minimum variance unbiased estimator for Kendall’s tau (see |[Denker| (1985)).

2.2.2 Blomgqvist’s beta

The second concordance measure, we want to consider, is Blomqvist’s beta, also referred to as the medial
correlation coefficient. The intention of Blomqvist (1950) was to design a simple rank correlation coefficient
which can be easily applied in practice. Blomqvist’s beta is defined as follows.

Definition 2.5. (Blomgquist’s beta)
Let Xy and X be continuous random variables. Then, Blomquist’s beta is defined by

B2 := E[sgn(X; — %1 )sgn (X, — %2)]
=P((X; — 1) (X2 — %2) > 0) = P((Xg — %1)(X2 — %2) <0),

where %1 and %, denote the population medians of Xy and Xp, respectively.

Hence, Blomqvist’s beta equals the probability of X; and X, being both either smaller or greater than
their respective medians minus the probability of one being smaller and the other one being greater than
its median. Blomqvist’s beta can easily be expressed in terms of the copula Cj, of the distribution of
(X1,X2) " and is given by

P12 = Bc,, = 4C12 (;/ ;) -1. 3)

Consequently, for copulas with a closed-form analytical expression, Blomqvist’s beta can be explicitly de-

rived. This displays one advantage of Blomqvist’s beta over other more complicated dependence measures.
Now, let (X11,X21) ", ..., (X14, X2n) " be again a random sample of n observations from the random

vector (X1, Xz)T and let Xl,n and len be the sample medians of the components of the sample. Definition

trivially leads to the following sample version of Blomqvist’s beta given by

~ 13 - -

Bion = - Y sgn (X1; — Xy,4) sgn (Xoi — Xon) - (4)

i=1

2.3 Relation between Kendall’s tau and Blomqvist’s beta for elliptical distributions
and copulas

In Theorem 3.1 of Fang et al|(2002), it is proven that the classical relation between Kendall’s tau and the
linear correlation coefficient known for bivariate normal distributions is valid within the more general
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class of meta-elliptical distributions. In particular, let (X1, X;) " be a meta-elliptically distributed random
vector with association p1,, which coincides with the correlation between X; and Xj in case of finite second
moments of the latter two. Then, the following relation between Kendall’s tau 71, and p1, holds:

2 .
T2 = arcsin(pyz) - o)

Further, Proposition 8 in [Schmid and Schmidt (2007) implies a similar result for Blomqvist’s beta 81, and
P12

B2 = %arcsin(pu) . (6)

Equations and (6) show that Kendall’s tau 73, and Blomqvist’s beta 1, are uniquely determined
by the association p;, for bivariate meta-elliptical distributions. Second, they coincide. The equality of
Kendall’s tau and Blomqvist’s beta is an intrinsic property of meta-elliptical distributions and therefore of
elliptical copulas. Hence, we build our goodness-of-fit test on this characteristic of elliptical copulas. To
the best of our knowledge, such a simple goodness-of-fit test has not been considered in the literature so
far.

3 Goodness-of-fit test for elliptical copulas

In financial applications, it is often assumed that a copula C belongs to the class of elliptical copulas.
Therefore, our aim is to provide a statistical test to verify this assumption. From now on, we assume that
we are given a copula sample and neglect unknown marginal distribution functions and their estimation.
In practice, marginal distribution functions can be estimated parametrically and non-parametrically, which
will affect the statistical inference of the test statistic. This is a subject of our future research.

Let Uy, ..., Uy € [0,1]% be a sample from the statistical model (([0, 119", B([o,1]%)®", P®”), where P
is a distribution with copula C and uniform margins. Under the hypothesis of an elliptical copula C, also
all marginal copulas have to be elliptical. We construct our test on the equality of Kendall’s tau 7¢,, and
Blomqvist’s beta B¢,, given by

Tc,, = Bcy ()

for all pairs k, ¢ € {1,...,d} with k < ¢. By virtue of (7), our test statistic will be constructed using
the difference ‘B\kg/n — Tke n between the empirically estimated Blomqvist’s beta ‘/B\ké‘/n and Kendall’s tau Ty ,,.
Asymptotic distributions of the empirical estimators for Kendall’s tau and Blomqvist’s beta are well known
and reviewed below.
First, we outline the derivation of the asymptotic distribution of the Kendall’s tau estimator. According
to (2), an unbiased estimator of Ty is given by
Tety = n(nz—l) Y. sgn(Uy; — Ugj)sgn(Uy — Uyj) . (8)

1<i<j<n

The estimator Ty, is a U-statistic and |Hoeffding| (1948) showed that \/n(Tys, — Tx¢) converges weakly

to a centred Gaussian random variable with variance o7, := Var(2hg 1 ((Ugg, Upp) 7)), where

hor (Ur, Upr) T) = E [sgn(Ugq — Uga)sgn(Upy — Upa) [Ugr, Upy] -
If the copula Cy, is assumed to be known, then fzkm has the following representation

Fre 1 (Ukt, Un) 7)) = 1 —2Ugq — 2Upy + 4Che(Ugr, Uy ) )
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and o2

7, can be represented through the copula Cy, (see Theorem 4.3 in Dengler| (2010)) as

07, = 64F [Clzz(uklf Um)} — 64IE [Uyy Cro (Ux, Up1)] — 64 [Uypy Crp (U, Upn)] + 32E [Cre (U, Upr)] 10)
+16E [u,%l} +16E [Uﬂ — 16[E [Uyy] — 16IE [Ujy] + 32 [Ujy Upy ] + 1 — 4% .
The variance (7%{ , can be further simplified using the theoretical moments of uniformly distributed random

variables and Equation (T)) for Kendall’s tau. We get

07, = 64E [Clgé(ukll Um)] — 64IE [Uyy Ciee (Ugr, Up1)] — 64E [Up1 Cop (U, Up )]
11)
20 (
+ 32 [U Up1 | + 3 T8k — 4.

If we do not impose any parametric assumption on the copula Cyy, the asymptotic variance from
needs to be estimated non-parametrically. For this, each expectation involving Ci, can be consistently es-
timated with the corresponding V-statistic (see Denker| (1985) or [Mises|(1947)) by employing the empirical
copula Cy/ ,, given by

n
1Zl{uki <u, Uy <o},
s

Cren(u,0) =

where I{-,-} denotes the indicator function. The remaining mixed moment can be consistently estimated
by the corresponding empirical moment and Ty can be estimated by Ty, from (8). However, this frame-
work cannot ensure a positive variance estimate, since U%k , from has been computed using theoretical
moments of the uniform distribution as well as Equation (I). If we additionally estimate the moments
of the uniform distribution in Equation empirically, then the resulting variance estimate can still be
negative due to the direct estimation of Tj.

Below we describe our estimation framework for a%k ,» which is the variance of 201 ((Ugy, Upy) 7). For

a sample (Ugy, Up) ", ..., (Ugn, Ugy) T, we propose to estimate fig 1 ((Uy;, Uy;) T) non-parametrically by
Fon (Ugi, Ugi) T) = 1= 2Ujg — 2Up; + 4Cig,n (Ugi, Up), i€ {1,...,n}. (12)

Now, 2

7, 1s estimated by the sample variance of

2001 (Ui, Unn) 7)o 20001 (U, Up) 7).

This leads to a consistent and positive estimation of (T%k ,- Consistency follows again from the consistency
of the corresponding V-statistics resulting from the empirical copula Cy,, combined with the estimation
of moments. Note that our variance estimate is equivalent to the estimate based on Equation (10), when
Ty is estimated using the empirical copula Cy ;.

For copula data (U, Upn)',...,(Ug, Uyg,) ", the empirical estimator for Blomqvist’s beta By, is given
by

N 12
Prin =~ ) sgn (Uy; — 0.5) sgn (Uy; — 0.5) .
=

The asymptotic normality of the estimator B ke,n of Blomqvist’s beta follows in the case of known marginal
distributions trivially from the central limit theorem and was already stated in |Blomqvist| (1950). Thus, we
have the following result

vn (Bkz,n - ﬁkz) ~ N(0,03 ),

where
0 = Var[sgn (U — 0.5) sgn (Uys —05)] = 1— B,
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and ~~ denotes convergence in distribution.

Now, we know how to estimate Kendall’s tau and Blomqvist’s beta for each pair (k, £) of coordinates.
The test statistic will be based on all d(d — 1)/2 differences between the corresponding estimators for
Kendall’s tau and Blomqvist’s beta. Hence, we define the statistic D,

-~

D, := vec,(B) — vec,(T), (13)

in terms of the matrices B\ = (B\kg,”>k,€6{1,m,d} and T := (Tgt,u)re{n,..d), Where Bkk,n = Tk = 1 and
vec,(A) is the vectorization operator that extracts the elements strictly above the main diagonal of a
matrix A € §; in a row-wise manner, i.e.

o T
vecu(.A) = (alz, a13,..-,a14,023,024, - - -, 424, - - ,ad,l,d) .

The following theorem contains the asymptotic distribution of D, for a sample from an elliptical copula.
Moreover, it states our test statistic T, and its limiting distribution under the null hypothesis C € C¢/P*,

Theorem 3.1.
Let Uy, ..., Uy € [0,1]9 be a sample from the statistical model (([0,1]’1)”,[3’([0,1]d)®”,P®2, where P is a dis-

tribution with elliptical copula C and uniform margins. Then, the statistic Dy, defined in (13)) has the following

asymptotic distribution
Vn-Dy ~ N(0,V)

with

Zaa—-1)/2
V= (Id(ﬂlfl)/2 _Id(dfl)/z) x <_It(i(d)1)/2 '

where X is defined in Equation and Lyg_1) /7 is the unit matrix of dimension d(d —1)/2.
Now, let V,, be a consistent estimator of V and consider the Wald-type statistic

T, :=nD, VD, . (14)
Then, it holds that
2
Tn ~ Xaga-1y/2-
where x?, denotes the x?-distribution with m degrees of freedom.

The proof of Theorem [3.1]is given in the Appendix. The second result of Theorem [3.1 depends on a
consistent estimator of the covariance matrix V since I is unknown. In the following remark, we indicate
the construction of such a consistent estimator V,,.

Remark 3.2. The asymptotic covariance matrix X depends on the unobserved hyy 1 (Ugy, Upp) 7)), fork, £ € {1,...,d}
and k # (. However, £ can be consistently estimated using hyy 1 ((Ug;, Upi)T), i = 1,...,n, defined in (I2). This
results in the consistent estimator V,, of the covariance matrix V.

Based on Theorem we propose the test function

6(Ut, .-, Un) = HTu > Xia1y/21 o)

to test ' ‘
Hy : C e celhirt against Hy : C ¢ celirt,

where x2, , denotes the a-quantile of the x2-distribution with m degrees of freedom.
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4 Simulation study

In order to assess the finite-sample performance of the proposed test for ellipticity based on the test statistic
Ty, a Monte Carlo study was conducted. We are interested in the ability of the test to hold its nominal
level as well as the power of the test to detect alternatives. For ease of notation we skip all indices in the
bivariate examples and just use them when they are needed.

4.1 Setup

First of all, we fixed a significance level of & = 0.05 for the test throughout the study. Furthermore, the
number of Monte Carlo replications was set to N = 1000. The simulation study was then carried out for
different dimensions d, copula families, levels of dependence (measured in terms of Kendall’s tau) and
sample sizes. In particular, we have considered samples of dimension d = 2,3 and 6.

To investigate the level of the test, random samples from two elliptical copula families were considered,
namely the Gaussian copula and the t-copula (with 5 and 10 degrees of freedom). To study the power
of the test, random samples from non-elliptical copula families were examined (see Section [£.2). Here,
we looked at random samples from the Frank, Clayton and Gumbel family as well as from a mixture of
two elliptical copulas and a copula derived from the mixture of two elliptical distributions with different
association parameters, respectively. For the mixtures, we chose a Gaussian and a t-copula as well as a
Gaussian and a t-distribution, respectively.

In order to assess the effect of the strength of dependence, five different levels of dependence were
chosen, according to T € {0.1,0.25,0.5, 0.75, 0.9}. Each value of T was converted to a unique association
or dependence parameter of a multivariate copula. As a consequence, all bivariate marginal copulas of
the resulting multivariate copula are then identical. For the copulas based on mixtures, four different
levels of dependence were considered. The different levels are given by a combination of 7; for the
Gaussian copula/distribution and t; for the t-copula/distribution. These parameters (7, 7;) had values in
{(0.25,0.75), (0.75,0.25), (0.5,0.25), (0.5,0.75) }. Finally, for every choice of copula family and fixed level of
dependence, random samples of size n € {100, 250,500, 1000,5000} were considered.

To get an impression of the common copula families used in the simulation study, Figure [I| displays
scatter plots of bivariate random samples of size n = 1000 for the levels of dependence corresponding
to T € {0.25,0.5,0.75}. Further, scatter plots of the bivariate mixture copula and of the copula derived
from the mixture of bivariate elliptical distributions are illustrated for the different combinations of 7 and
7; in Figure [2| and Figure [3] respectively. First, we would like to point out that the scatter plots for the
Gaussian and the Frank copula in Figure|l|are quite difficult to distinguish. Moreover, the scatter plots for
the mixtures in Figures [2|and [3| could easily be assigned erroneously to data from elliptical copulas.

4.2 Non-elliptical copula classes for the power study

In the following, we briefly overview Archimedean copulas and copulas based on special mixtures of
elliptical copulas or elliptical distributions, which constitute three non-elliptical copula classes used for the
power study.

421 Archimedean copulas

Here, we outline bivariate Archimedean copulas and follow [Nelsen| (1999). For d-dimensional Archimedean
copulas with d > 2, we refer to Chapter 2 of [Scherer| (2012). Thus, we consider the simplest construction
of multivariate Archimedean copulas, which are exchangeable and have only one parameter.
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Figure 2: Scatter plots of random samples of size 1000 from the copula based on the mixture of two
bivariate elliptical copulas with (15, 7:) = (0.25,0.75), (0.75,0.25), (0.25,0.5) and (0.75,0.5) (from left to
right).

(Teauss » T1) = (0.25, 0.75) (Teauss » 7)) = (0.75, 0.25) (Tcauss » ) = (0.5, 0.25) (Teauss » 1) = (0.5, 0.75)

Figure 3: Scatter plots of random samples of size 1000 from the copula based on the mixture of two
bivariate elliptical distributions with (7, %) = (0.25,0.75), (0.75,0.25), (0.25,0.5) and (0.75,0.5) (from left
to right).

Definition 4.1. (Bivariate Archimedean copula)
Let ¢ : [0,1] — [0, 0] be a continuous, strictly decreasing, convex function with ¢(1) = 0. Then, the function
Cy : [0,1]% — [0,1] given by

Co(u,0) = L U(p(u) + ¢(v)) (15)

is a copula, where ¢~V is a pseudo-inverse of ¢ . Copulas of this form are called Archimedean copulas and ¢ is called
a generator. If (0) = oo, the generator is called strict, p! =)= ¢~1 and Cy(u,v) = ¢~ (p(u) + ¢(v)) is said to
be a strict Archimedean copula.

Table |1| summarizes generators with parameter ranges and the resulting explicit expression for the
bivariate Archimedean copulas from the Frank, Clayton and Gumbel family.

For a bivariate Archimedean copula C, one can compute Kendall’s tau using its generator ¢. More
precisely, the following relation (see|Genest and MacKay| (1986)) holds:

TC:1+4/01 ;f,((?) dt.

Further, Equation (3) and Definition [4.T|imply for Blomqvist’s beta:

fmse e (1)
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Copula family Po(t) RS Co(u,v)
e ¥ —1 1 (7 —1) (e7 —1)
Lo _ 0, —0_ 1) /°
Clayton 0 (t 1) (0,00) (u +v 1)
0 0 0]1/6
Gumbel (—Int) [1,00) exp|— [(f Inu)” + (—Inv) }

Table 1: Summary of generators, parameter ranges and explicit expressions for the bivariate Frank, Clayton
and Gumbel copula.

Archimedean copulas are exchangeable by construction. Moreover, the bivariate Frank copula is even
radially symmetric, i.e. the survival copula coincides with the copula itself. Being exchangeable and
radially symmetric, bivariate Frank copulas possess the same symmetry properties as bivariate elliptical
copulas. Therefore, it is very important to distinguish between them when modeling the dependence
of bivariate data. Table 2| reports Kendall’s tau, Blomqvist’s beta and the symmetry properties for the
bivariate Frank, Clayton and Gumbel copula.

Copula family Tp Bo exch. rad. sym.
4 _ 4. (1,00
Frank 145 (D1(6)=1) 1+3In (2 (e +1)> v v
4 6+1 -1/
Clayton s 4 (2 - 1) —1 v X
Gumbel 00%1 222" 4 4 X

Table 2: Summary of Kendall’s tau, Blomqvist’s beta, and the symmetry properties for the bivariate Frank,
Clayton and Gumbel copula. Note: Dy(x) is the Debye function, which is defined for any k € N by

k

4.2.2 Mixture of bivariate elliptical copulas

The aim of this section is to consider another class of bivariate non-elliptical copulas, which are symmetric
(i.e. exchangeable) and radially symmetric. For this, we mix two bivariate elliptical copulas with different
parameters. More precisely, a bivariate Gaussian copula with correlation p; and a bivariate f-copula with
v degrees of freedom and association parameter p¢, where p; # pg, are mixed with probabilities p € [0,1]
and 1 — p, respectively. The resulting bivariate mixture copula is given by

CMixLeop (1, ) = pcgg”“(u,v) +(1-p) Ci,pt(u, v), (u,0)€0,1)%.

By choosing pg # pr, we expect this bivariate mixture copula to be non-elliptical. However, this is not
trivial to show since elliptical copulas are only implicitly defined as the copulas of elliptical distributions.
To the best of our knowledge, such mixtures of elliptical copulas have not been investigated so far.

It should be noted that the proposed construction of such mixture copulas is general and can be ex-
tended to any dimension. Further, it is very easy to draw a random sample from the mixture copula. For
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this, the random sample is drawn from the Gaussian copula nguss with probability p and with probability
(1—p) from the t-copula Cf,,p ,- In our simulation study, we set p = 0.5, v = 5 and varied the association pa-
rameters p; and p;. By virtue of the one-to-one correspondence between Kendall’s tau and the association
parameter p (correlation coefficient for v > 2) given in (5), this is equivalent to varying Kendall’s tau.

4.2.3 Copulas derived from the mixture of bivariate elliptical distributions

Here, we have a closer look on bivariate copulas derived from the mixture of bivariate elliptical distri-
butions. Again, the framework presented below is general and can be extended to any dimension. The
idea is to mix two bivariate elliptical distributions in such a way that the resulting bivariate distribution
is not elliptical any more. We expect that its copula is then also non-elliptical, but we have no theoretical
justification. Without loss of generality, we set # = 0 in Definition Now, one can easily argue that the
mixture of two bivariate elliptical distributions with different parameters X; and X, is not elliptical.

In the following, a bivariate Gaussian distribution N, (0, Pg) with correlation pg and a bivariate t-
distribution #; (v, 0, P¢) with correlation p;, where p; # pg, are mixed with probabilities p € [0,1] and 1 — p,
respectively. The cumulative distribution function H™*! of the resulting bivariate mixture distribution is
given by .

H"(x,y) = pPps(x,y) + (1 = p) tup (v, y),  (x,y) €R?,

where @, and t, ,, are the cumulative distribution functions of N>(0, Pg) and t2(v, 0, P;), respectively. The
margins F"** and G™*! of this mixture distribution can be determined using the margins of the underlying
Gaussian and t-distribution. Then, according to Sklar’s theorem (see Theorem [2.I), the bivariate copula
Cmixtdistr (y v) of the mixture distribution H™™, for any u,v € [0,1], is given by

Cmixt,distr(u, ZJ) _ Hmixt((Fmixt)f (u), (Gmixt)f (U)) ,

where (F*)~ and (G™**)~ denote the generalized inverses of F"*! and G"*, respectively. Since we
chose pg # p1, the resulting bivariate mixture distribution H™* is non-elliptical.

Just like for the mixture of elliptical copulas, it is easy to draw a random sample from the mixture
distribution. First, the random sample is drawn with probability p from the bivariate Gaussian distribution
N;(0, Pg) and with probability (1—p) from the bivariate t-distribution t, (v, 0, P;).Then, the random sample
is transformed using the margins F"** and G™* to get copula data. For the simulation study, we set again
p = 0.5, v = 5 and varied the association parameters p; and p;. With the same argument as before, this is
equivalent to varying Kendall’s tau.

4.3 Level

Tables and [5| display the empirical level of the test for ellipticity with significance level « = 0.05 as
observed in 1000 random samples for dimension d = 2,3 and 6, respectively, and all possible scenarios
from the simulation setup. Note that for d = 3 and d = 6, all off-diagonal elements of the correlation
matrix R of the Gaussian and ¢-copula are identical and related to the level of dependence 1¢.

For dimensions d = 2 and d = 3, the test seems to hold its nominal level (see Tables 3| and . Only
for large values of Kendall’s tau in combination with a small sample size of n = 100 or n = 250, the test
turns out to be too liberal. As the distributional result for the test statistic holds only asymptotically, this
explains why there might occur some problems especially for small sample sizes.

Table 5shows that the proposed test requires large sample sizes to hold its level for higher dimensions.
For d = 6 and medium level of dependence 1, a sample size of at least # = 1000 is required. This can
be explained by the asymptotic nature of our test. The accuracy of the distributional approximation with
the limiting x?-distribution is very poor for small sample sizes and gets improved significantly for larger
sample sizes. This is illustrated by the QQ-plots for the t-copula with 5 degrees of freedom in Figure 4



A SIMPLE NON-PARAMETRIC GOODNESS-OF-FIT TEST FOR ELLIPTICAL COPULAS

C Tc | n=100 n=250 n=>500 n=1000 n = 5000
0.10 | 0.046 0.052 0.046 0.061 0.044
0.25 0.044 0.045 0.060 0.053 0.053
Gauss | 0.50 | 0.063 0.044 0.044 0.055 0.048
0.75 0.054 0.040 0.049 0.054 0.051
0.90 | 0.090 0.047 0.053 0.053 0.064
0.10 | 0.048 0.048 0.047 0.049 0.053
t 0.25 0.049 0.051 0.042 0.043 0.053
(v=>5) | 050 | 0.047 0.042 0.034 0.051 0.047
0.75 0.072 0.052 0.049 0.050 0.046
090 | 0.077 0.046 0.035 0.054 0.059
0.10 | 0.063 0.051 0.058 0.050 0.051
t 0.25 0.041 0.043 0.044 0.052 0.052
(v=10) | 0.50 | 0.052 0.046 0.050 0.053 0.038
0.75 0.056 0.056 0.060 0.057 0.065
090 | 0.073 0.051 0.047 0.062 0.050
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Table 3: d = 2: Empirical level of the test for ellipticity with significance level « = 0.05 based on the test
statistic T;;: rate of rejecting Hy as observed in 1000 random samples of size n from copula family C with
Kendall’s tau tc.

C Tc | n=100 n=250 n=>500 n=1000 n = 5000
0.10 | 0.054 0.046 0.045 0.049 0.041
0.25 0.054 0.044 0.062 0.055 0.045
Gauss | 0.50 | 0.048 0.066 0.062 0.062 0.059
0.75 0.081 0.057 0.055 0.053 0.045
090 | 0.213 0.111 0.077 0.063 0.043
0.10 | 0.047 0.048 0.042 0.039 0.048
t 0.25 0.067 0.039 0.051 0.058 0.061
(v=>5) | 050 | 0.055 0.052 0.054 0.038 0.053
0.75 0.071 0.058 0.045 0.054 0.042
090 | 0.173 0.080 0.066 0.072 0.048
0.10 | 0.059 0.052 0.051 0.067 0.044
t 0.25 0.051 0.045 0.054 0.045 0.044
(v=10) | 0.50 | 0.060 0.050 0.053 0.062 0.045
0.75 0.073 0.059 0.049 0.062 0.045
090 | 0.169 0.096 0.062 0.056 0.048

Table 4: d = 3: Empirical level of the test for ellipticity with significance level & = 0.05 based on the test
statistic Tj;: rate of rejecting Hy as observed in 1000 random samples of size n from copula family C with
Kendall’s tau t¢.

Hence, the results of our simulation study for dimension d = 6 are reliable only for large sample sizes.
Therefore, we consider only samples of size n = 1000 and n = 5000 in the power study for dimension

d=6.
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C Tc | n=100 n=250 n=>500 n=1000 n = 5000
0.10 | 0.155 0.092 0.069 0.063 0.043
0.25 0.195 0.091 0.075 0.044 0.059
Gauss | 0.50 | 0.266 0.126 0.074 0.060 0.067
0.75 0.484 0.243 0.153 0.104 0.057
090 | 0.642 0.591 0.403 0.193 0.075
0.10 | 0.167 0.069 0.070 0.054 0.059
t 0.25 0.196 0.092 0.090 0.054 0.046
(v=>5) | 050 | 0.244 0.122 0.067 0.054 0.037
0.75 0.479 0.220 0.127 0.069 0.040
0.90 | 0.501 0.528 0.285 0.154 0.056
0.10 | 0.160 0.074 0.058 0.048 0.052
t 0.25 0.197 0.080 0.065 0.053 0.054
(v=10) | 0.50 | 0.275 0.113 0.079 0.065 0.047
0.75 0.469 0.225 0.128 0.086 0.046
090 | 0.605 0.572 0.332 0.182 0.074

Table 5: d = 6: Empirical level of the test for ellipticity with significance level « = 0.05 based on the test
statistic T;;: rate of rejecting Hy as observed in 1000 random samples of size n from copula family C with
Kendall’s tau tc.
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50
40

80
1

o
o

40
1
30

60
1
30
1
20
1

20

Sample Quantiles
20
Il

10
1

20
L
10 20 30 40 50 60

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

Theoretical Quantiles

Figure 4: QQ-plots of T, for t-copula with 5 degrees of freedom, d = 6, 7c = 0.75 and n = 100, 500, 1000
and 5000.

4.4 Power

The results for the empirical power of the test for ellipticity with significance level & = 0.05 based on 1000
random samples from the Frank, Clayton and Gumbel family are presented in Tables [} [7] and [§] for the
different dimensions d = 2,3 and 6. For the random samples from the mixture copula and the copula
derived from elliptical distributions, we report the results only for d = 2 in Tables [J] and [10} respectively.
This is due to the fact that huge sample sizes are generally needed to achieve satisfactory empirical power
for the bivariate mixture copula constructions. This lacks in practical relevance and, therefore, we do not
consider these mixture copulas in higher dimensions.

First of all, when we look at Tables 6] - [10} we notice that the observed power varies enormously across
the level of dependence and the sample size as well as across the copula families. In general, the rejection
rate increases with the sample size, as expected. In addition to that, the rejection rate increases with the
level of dependence. Since the non-ellipticity becomes more apparent for higher values of Kendall’s tau,
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C Tc | n=100 n=250 n=>500 n=1000 n = 5000

0.10 0.063 0.072 0.063 0.074 0.243

0.25 0.074 0.097 0.179 0.298 0.903

Frank | 0.50 0.145 0.256 0.492 0.743 1.000
0.75 0.157 0.341 0.567 0.854 1.000

0.90 0.181 0.232 0.379 0.620 1.000

0.10 0.049 0.052 0.052 0.056 0.058

0.25 0.062 0.061 0.047 0.053 0.066

Clayton | 0.50 0.053 0.050 0.075 0.102 0.228
0.75 0.121 0.136 0.266 0.452 0.981

0.90 0.169 0.194 0.288 0.514 0.986

0.10 0.050 0.050 0.051 0.062 0.049

0.25 0.047 0.052 0.037 0.067 0.067

Gumbel | 0.50 0.056 0.053 0.044 0.029 0.055
0.75 0.059 0.044 0.073 0.053 0.080

0.90 0.088 0.046 0.065 0.074 0.086

Table 6: d = 2: Empirical power of the test for ellipticity with significance level « = 0.05 based on the test
statistic T;;: rate of rejecting Hy as observed in 1000 random samples of size n from copula family C with
Kendall’s tau tc.

C Tc | n=100 n=250 n=>500 n=1000 n = 25000

0.10 0.070 0.065 0.077 0.114 0.376

0.25 0.096 0.145 0.234 0.430 0.992

Frank | 0.50 0.175 0.323 0.603 0.883 1.000
0.75 0.232 0.379 0.651 0.918 1.000

0.90 0.411 0.348 0.457 0.710 1.000

0.10 0.056 0.056 0.052 0.054 0.059

0.25 0.059 0.044 0.057 0.049 0.065

Clayton | 0.50 0.075 0.065 0.083 0.091 0.272
0.75 0.142 0.177 0.272 0.504 1.000

0.90 0.336 0.284 0.365 0.549 0.997

0.10 0.065 0.050 0.053 0.048 0.068

0.25 0.044 0.047 0.060 0.050 0.076

Gumbel | 0.50 0.064 0.050 0.063 0.056 0.051
0.75 0.099 0.057 0.073 0.068 0.082

0.90 0.217 0.120 0.105 0.076 0.104

Table 7: d = 3: Empirical power of the test for ellipticity with significance level « = 0.05 based on the test
statistic Tj;: rate of rejecting Hy as observed in 1000 random samples of size n from copula family C with
Kendall’s tau t¢.

which can also be observed in Figure [1} this is also expected. The empirical power also increases with
increasing dimension as soon as the distributional approximation with the x? distribution is sufficiently
accurate. Some exceptions occur in connection with the Gumbel family, which we discuss later on.
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C ¢ | n=1000 »n = 5000

0.10 0.176 0.794

0.25 0.678 1.000

Frank 0.50 0.974 1.000
0.75 0.959 1.000

0.90 0.862 1.000

0.10 0.059 0.077

0.25 0.056 0.061

Clayton | 0.50 0.122 0.260
0.75 0.532 0.996

0.90 0.745 1.000

0.10 0.062 0.080

0.25 0.055 0.057

Gumbel | 0.50 0.074 0.062
0.75 0.101 0.104

0.90 0.238 0.139

Table 8: d = 6: Empirical power of the test for ellipticity with significance level « = 0.05 based on the test
statistic T;;: rate of rejecting Hy as observed in 1000 random samples of size n from copula family C with
Kendall’s tau tc.

44.1 Power for Archimedean copula families

For the Frank copula, the test appears to perform well for all considered dimensions. If Kendall’s tau has
a value of at least 0.5, a sample size of n = 1000 suffices to achieve a good power. For dimension d = 2
and d = 3 and small levels of dependence, a larger sample size is needed. Table [§shows that the empirical
power for d = 6 is larger than the corresponding power for lower dimensions, such that here a sample size
of n = 1000 is sufficient for small levels of dependence.

From Section 4.2} we know that the bivariate Frank copula is the only Archimedean copula which is not
only exchangeable but also radially symmetric. Since radial symmetry is an important necessary condition
for a copula to be elliptical, the fact that the test performs quite well for this family is a very promising
feature. Note that elliptical copulas of d > 3 can but do not have to be exchangeable.

In case of the Clayton family, quite similar observations can be made, though with slightly lower
rejection rates. Still, we can say that the test seems to be good in detecting the lack of ellipticity if the level
of dependence is not too close to independence.

In contrast to the previous results, the rejection rates for the Gumbel family appear to be very low.
Since the test statistic T}, is based on the difference between Kendall’s tau and Blomqvist’s beta, we have to
take a closer look at those two measures in order to find some explanation. Figure [5|illustrates Kendall’s
tau and Blomqvist’s beta as functions of the copula family parameter 6 for the bivariate Frank, Clayton
and Gumbel copulas. Here, the reason for the low rejection rates becomes apparent: Kendall’s tau and
Blomqvist’s beta are very close and almost not distinguishable for the Gumbel family. Nevertheless, even
in this case, the test is able to provide some indication against the null hypothesis for huge sample sizes if
the level of dependence is high enough, meaning Kendall’s tau being equal to 0.75 or higher. To confirm
this presumption, we carried out the simulation study for the bivariate Gumbel copula with a Kendall’s
tau of 0.75 and chose a sample size of n = 10°, which delivered a quite acceptable rejection rate of 0.648.
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Figure 5: Comparison of Kendall’s tau and Blomqvist’s beta as functions of the copula family parameter ¢
for different copula families.

4.4.2 Power for the bivariate mixture copula constructions

For the mixture of bivariate elliptical copulas, the test generally achieves good power only for huge sample
sizes (n = 10°), which we do not consider in our simulation study. If the absolute difference of the values
of Kendall’s tau for the Gaussian and the t-copula is large enough then an acceptable empirical power can
be observed already for a sample size of n = 5000.

C G T n=100 n=250 n=500 n=1000 n = 5000
025 | 075 | 0.077 0.080 0.134 0.249 0.776
Mixture | 0.75 | 0.25 | 0.079 0.070 0.118 0.176 0.604
(p=05) | 050 | 025 | 0.041 0.043 0.061 0.046 0.054
050 | 0.75 | 0.048 0.062 0.069 0.075 0.202

Table 9: d = 2: Empirical power of the test for ellipticity with significance level « = 0.05 based on the test
statistic T),;: rate of rejecting Hy as observed in 1000 random samples of size n from a mixture C of bivariate
elliptical copulas with Kendall’s tau combinations (7g, 7).

C G Tt |n=100 n=250 n=500 n=1000 n =>5000
025 | 0.75 | 0.053 0.064 0.068 0.099 0.232
Mixture | 0.75 | 0.25 | 0.092 0.128 0.236 0.366 0.948
(p=05) | 050 | 0.25 | 0.047 0.042 0.056 0.061 0.150
050 | 0.75 | 0.041 0.061 0.039 0.051 0.065

Table 10: d = 2: Empirical power of the test for ellipticity with significance level « = 0.05 based on the
test statistic T;;: rate of rejecting Hy as observed in 1000 random samples of size n from a copula C derived
from the mixture of bivariate elliptical distributions with Kendall’s tau combinations (g, 7¢).

Similar observations on the empirical power can be made for the copula derived from the mixture of
bivariate elliptical distributions. There is only one exception. It turns out that the empirical power depends
not only on the absolute difference but also on the sign of the difference. Thus, the empirical power of
0.948 for the combination of 7z = 0.75 and 7; = 0.25 is observed. Whereas, we get the empirical power of
0.232 if we switch the values of the dependence levels.

Since it is not easy to graphically detect the non-ellipticity for the samples of the mixture copulas used
in the simulation study, our test is still useful.
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4.5 Level and power for pseudo-observations

As it was suggested by one of the referees, we have investigated the empirical level and power of the
proposed test for the more realistic situation with unknown marginal distributions. For this, we have
simulated copula data from the considered copula families and transformed the uniform marginal dis-
tributions to exponential distributions with unit rate. Thus, we deal now with observations X; € R4,
i =1,...,n. We have applied our test to pseudo-observations Uy; = nFy n(Xki)/ (n+ 1), where Fy,, is the
empirical cumulative distribution function of the k-th component, k € {1,...,d}. So, we do not make any
assumptions on the marginal distributions, which corresponds to practical applications. Below, we present
our results for the bivariate case.

C Tc | n=100 n=250 n=>500 n=1000 n = 5000
0.10 | 0.063 0.049 0.054 0.042 0.043
0.25 0.053 0.048 0.063 0.048 0.049
Gauss | 0.50 | 0.046 0.060 0.058 0.044 0.041
0.75 0.069 0.055 0.036 0.053 0.045
090 | 0.082 0.060 0.051 0.050 0.049
0.10 | 0.063 0.049 0.059 0.056 0.053
t 0.25 0.055 0.047 0.050 0.043 0.046
(v=>5) | 050 | 0.058 0.055 0.043 0.060 0.048
0.75 0.058 0.053 0.044 0.058 0.057
090 | 0.075 0.067 0.048 0.045 0.050
0.10 | 0.044 0.052 0.057 0.046 0.054
t 0.25 0.053 0.041 0.053 0.047 0.059
(v=10) | 0.50 | 0.049 0.047 0.043 0.048 0.055
0.75 0.051 0.072 0.054 0.061 0.046
0.90 | 0.080 0.059 0.054 0.048 0.054

Table 11: d = 2: Empirical level of the test for ellipticity with significance level & = 0.05 based on the test
statistic T,: rate of rejecting Hy as observed in 1000 random samples of pseudo-observations of size n from
copula family C with Kendall’s tau c.

Table [11| shows the empirical level of our test for d = 2 and unknown margins. As one can observe,
the test keeps its nominal level across all sample sizes and dependence levels for the considered copula
families. Compared to Table [3] the empirical levels are similar for both situations: known and unknown
margins. This supports our testing procedure for copula data in real applications.

Table |12 now shows the empirical power of our test for 4 = 2 and unknown margins. We do not
observe any significant differences in comparison to the empirical power results from Table [ Thus, it
seems that the test is equally powerful for known as well as unknown marginal distributions. Summarizing
the empirical findings of this section, we can recommend our test also in the case of unknown marginal
distributions, although the observations are now dependent and therefore the limit results do not hold as
stated in Theorem

4.6 Power under the local alternatives

As indicated by one referee, the simple functional form of the test statistic allows to investigate the power
of the proposed goodness-of-fit test under local alternatives. Since the accuracy of the distributional ap-
proximation for our test statistic T, is not satisfactory for small sample sizes and large dimensions, we



A SIMPLE NON-PARAMETRIC GOODNESS-OF-FIT TEST FOR ELLIPTICAL COPULAS

C Tc | n=100 n=250 n=>500 n=1000 n = 5000

0.10 0.052 0.082 0.060 0.093 0.251

0.25 0.092 0.101 0.176 0.310 0.910

Frank | 0.50 0.125 0.258 0.475 0.753 1.000
0.75 0.169 0.336 0.534 0.851 1.000

0.90 0.166 0.224 0.372 0.609 1.000

0.10 0.047 0.055 0.051 0.063 0.049

0.25 0.041 0.050 0.038 0.072 0.065

Clayton | 0.50 0.054 0.043 0.061 0.087 0.218
0.75 0.098 0.138 0.272 0.445 0.982

0.90 0.168 0.176 0.292 0.506 0.990

0.10 0.050 0.055 0.057 0.052 0.056

0.25 0.049 0.040 0.051 0.049 0.061

Gumbel | 0.50 0.039 0.056 0.057 0.033 0.046
0.75 0.046 0.047 0.047 0.057 0.077

0.90 0.078 0.071 0.058 0.070 0.086
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Table 12: d = 2: Empirical power of the test for ellipticity with significance level & = 0.05 based on the test
statistic T,: rate of rejecting Hy as observed in 1000 random samples of pseudo-observations of size n from
copula family C with Kendall’s tau c.

restrict ourselves to dimension d = 2. For the null hypothesis Hy : § = 7, local alternatives of the form
B=1+A/ \/n are considered for varying A. It follows in lines of the proof of Theorem that the
asymptotic distribution of the test statistic under the local alternatives is the non-central x2-distribution
with one degree of freedom and non-centrality parameter A?/v?, where v? is the asymptotic variance of
D, for d = 2. In applications, the asymptotic variance v? should be consistently estimated and depends on

the underlying data.

Power

o Copula data
4 Approx. copula data

Figure 6: Asymptotic local power curve for the bivariate Frank copula with 7c = 0.75 and B¢ = 0.804. Cir-
cles and triangles correspond to the empirical power for copula data and pseudo-observations, respectively,
of sample sizes n = 100, 250, 500, 1000, 5000.
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For varying A, Figure [ shows the theoretical asymptotic power of our test under the sequence of local
alternatives when the data comes from a Frank copula with 7 = 0.75 and B¢ = 0.804. The asymptotic
variance is estimated using a sample of size 10000. This estimate is then used instead of the unknown
asymptotic variance v2. Further, the five circles in Figure E] indicate the empirical power of our test from
Table[6]for the Frank copula and the five sample sizes n = 100,250, 500, 1000 and 5000. For each sample size
n, the position of the circles on the x-axis is computed by /1 (Bc — 7¢). Thus, the circles are located further
to the right with increasing sample size n. We see that the asymptotic local power is in good agreement
with our empirical results. Moreover, the five triangles in Figure [f| similarly display the empirical power of
our test applied to pseudo-observations from Section For the considered simulation scenario, Figure [f]
shows that the empirical power of our asymptotic test does not significantly fall in quality and agrees well
with the asymptotic local power even if marginal distributions are unknown.

5 Empirical analysis

We consider the daily log-returns of the DAX, the Dow Jones Industrial Average and the Euro Stoxx 50
indices for 10 years starting from January 1, 2006 till December 31, 2016. For our test, we need i.i.d.
data. Therefore, we fit a time series model to each series of log-returns and then use the standardized
residuals of these models. More precisely, we choose ARMA(1,1) - GARCH(1,1) models with Student’s
t innovations to capture autocorrelation and volatility clustering in the daily log-returns. The model fits
have been validated with QQ-plots of the standardized residuals.

To get the copula data, the standardized residuals have to be transformed to achieve approximate i.i.d.
uniform margins. This can be done non-parametrically by using the empirical cumulative distribution
functions. Apart from that, one can use a Student’s t distribution to parametrically transform the resid-
uals, which is due to the fact that the considered ARMA(1,1) - GARCH(1,1) models have Student’s ¢
innovations. Figure [7] displays the scatter plots of the standardized residuals after the non-parametric
(above the diagonal) as well as the parametric transformation with the fitted ¢-distribution (below the di-
agonal). Here, we can visually observe a high dependence between the margins as well as symmetry and
radial symmetry of the underlying data. Therefore, an elliptical copula would be a natural choice to model
the dependence structure of the standardized residuals of the three indices.

Now, we apply our goodness-of-fit test to the underlying copula data. We get p-values of 0.030 and
0.048 for the non-parametrically and the parametrically transformed residuals, respectively. Hence, our
test rejects the null hypothesis that the dependence structure of the considered data can be captured by a
three dimensional elliptical copula at the significance level of 5%. This is a surprising statistical result and
indicates that one should be careful when choosing elliptical copulas in financial applications.

Further, we get p-values between 0.018 and 0.056, when we apply our test to the bivariate margins of
the non-parametrically and the parametrically transformed residuals. Even if we cannot reject the null
hypothesis of ellipticity for some bivariate margins, we would not favour elliptical copulas for modeling
the two dimensional dependence structures of the given data.

6 Conclusion

In this paper, we derive a simple non-parametric goodness-of-fit test for elliptical copulas of any dimension.
It is based on the equality of Kendall’s tau and Blomqvist’s beta for all bivariate margins. However, to
our best knowledge, it is an open problem whether this equality does completely characterize elliptical
copulas. The distinguishing property of our test is its ability to differentiate between elliptical and non-
elliptical copulas of any dimension even if the underlying copulas are radially symmetric. In the bivariate
case, our test can even detect symmetric non-elliptical copulas.
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DOW JONES

EURO STOXX 50

Figure 7: Pairwise scatter plots of the non-parametrically (above the diagonal) and parametrically (below
the diagonal) transformed residuals of the ARMA-GARCH models for the DAX, Dow Jones and Euro
Stoxx 50 indices.

In an intensive Monte Carlo study, we investigate the nominal level and the power of the proposed test.
Unfortunately, our test is not powerful enough to reject samples of moderate and large sizes from the Gum-
bel copula. In the bivariate case, we propose to use it in combination with tests for symmetry and radial
symmetry by |Genest et al.| (2012) and |Genest and Neslehova| (2014), respectively. For moderate dependent
data, our test has sufficient power starting from sample size 1000 for the considered Archimedean copulas,
except the Gumbel family. When considering bivariate copulas derived from mixture constructions, the
power depends on the values of the association parameters and the distance between them. In some cases,
sufficient power can already be achieved using samples of size 5000. In future research, we aim to develop
and design more powerful goodness-of-fit tests for elliptical copulas using small and moderate sample
sizes.

Our test requires copula data, which is usually not available in empirical applications due to unknown
marginal distributions. It seems that the performance of our asymptotic test is not significantly influenced
by non-parametric estimation of unknown marginal distributions. The referees pointed out that the lim-
iting distribution of the test statistic in case of unknown margins and bivariate data can be derived by
considering the empirical copula process and applying the functional Delta method (see Theorem 3.9.4 in
van der Vaart and Wellner| (1996)). In the following, we outline this derivation.

Under non restrictive smoothness assumptions on the copula C, Segers| (2012) showed that the empirical
copula process converges weakly towards the Gaussian field G, whose covariance structure is determined
by the unknown copula C. Formulated for the bivariate case, it holds that

Vi(Cp—C) ~ G, in £2([0,1]),
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where ;
1
Cn(uy,uz) = - Y H{F (X)) < up, Bou(Xoi) < un}
i—1

1

is the empirical copula for the bivariate random sample (X11,Xo1) ', .., (X1, X2,) " and £°(]0,1]2) de-
notes the metric space of all uniformly bounded functions on the unit square [0,1]? equipped with the
metric induced by the supremum norm.

Using the representation of empirical Blomqvist’s beta (see Schmid and Schmidt (2007) or |Genest et al.
(2013)) and Kendall’s tau (see [Gaenssler and Stute| (1987)) through the empirical copula, our test statistic
can be rewritten as

~ . 11
Bn— T =4Cy (2, 2) —4/[0 " Cn(v1,v2)dCy(v1, 1) .

Generalizing Blomqvist’s beta for any cutting point (11, 1) instead of (%, %) in (B), one obtains B(u1,uy)
(see (5) in |Schmid and Schmidt (2007)) and its empirical counterpart is then given by En(ul,uz). By the
functional Delta method, it follows that

Vi (Ba(n,u2) = % = (B, 1u2) = 7)) = Vit ($(Ca) = $(C)) ~ ¢/ (Gc),

where ¢ : £°([0,1]?) — ¢=([0,1]?), h — 4h — 4f[0 12 h(vy,vz2)dh(v1,v2). Note that the mapping ¢ is
Hadamard-differentiable at ¢(C) due to Lemma 3.9.17 in van der Vaart and Wellner| (1996) and this leads
to the limiting Gaussian field

Gc(ul,uz) = QDI(GC) = 4GC(H1,L{2) *4/[0 1]2 C(Ul,vz)dGc(Ul,vz) —4 [0”2 Gc(vl,vz)dC(Ul,Uz> .

Hence, we get the following weak convergence result for our test statistic under the null hypothesis
Vi(Ba (5122 w Neo,02 )
n 2/ 2 n 7 GC 7

2
= (11
where Uéc =E {GC (j, §> }
2

The limiting Gaussian field G¢(u1,us) and hence g

bootstrap procedures should be used to approximate the limiting distribution (see e.g. Chapter 2 in Biicher,
(2011)), which is possible due to Theorem 3.9.11 in[van der Vaart and Wellner| (1996). In future research, we
consider bootstrap approximations for the limiting distribution N(0, Uéc) and compare them to our naive

. depend on the unknown copula C. Therefore,

approach from Section Moreover, we intend to extend the described approach to the d-dimensional
case.
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A Proof

In this section, we give the proof of Theorem [3.1| about the asymptotic normality of the difference statistic
D,, and the limit distribution of the test statistic Tj,.
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Proof of Theorem[B.1} Let d > 2 be the dimension of the sample Uy, ..., Up € [0,1]7 from the statistical
model
(0.1, B([o,1)%", PE"),

where P is a distribution with copula C and uniform marginals. Next, we define the matrices

Ui = (sgn(Uy; — 0.5)sgn(Uy; — 0.5)) pe1, gy €Sa and  H;:= <2flkz,1((uki/ Ufi)T)) S4

€
ke{l,....d}

as well as
B:= (Bx)kieqr,..ay €Sa  and  T:= (Tr)ieeq,. a} € Sa,

where By := 1 and Ty := 1. Using the matrices i; and H;, we define the vectors Ziﬁ := vecy (U;) and
Z7 = vec,(H;).
Now, we consider the empirical estimator
2

:L’\kg, = —— sgn Uk' — Uk< sgn U[ - Ug' (16)
n I’l(l’l—l) 1Si<z]'§n g ( 1 ]) g ( 1 ])

of Ty, which is a U-statistic of degree two with kernel function h (w1, wy) := sgn(wi; — wip)sgn(wy; —
wy), where w; = (wy;, wy;) ", for i = 1,2. Hoeffding’s decomposition for U-statistics implies (see Theorem
1.2.1 in Denker| (1985)) that Ty, — Tis can be represented as 2Uyy 1 + Uy 42, where

1& /- .
- Y. (hkz,l((uki, Uy) ' ) — ka)

i=1

Ugp 1 =

and Uy o := (Tkon — Tke) — 2Ugs 1. Note that Uy ,,p is a U-statistic of degree two with the degenerate
kernel hyp (W1, Wa) = h (W1, W2) — hypp (W) — hgen (W2) + T, iee.

E [hk(z,z ((ukl,Um)T,(ukz, U(zz)T) |(Uk1/U61)T} = E [Ige 2 (W1, W2) [W1] =0

almost surely with Wy, Wj L Cy¢. From Theorem 1.2.4 in|Denker| (1985) it follows that

A
E [(Vi1- Uen)?| < =20, a7

where Ay, is a constant depending only on the kernel /(- -). Therefore, /1 - Uiy 2 L2 0asn — oo, and

. 18
Vi (Tn — ) and Vi 2Uggu = Vn (n Y 2 (Ui, Ugi) T) = ZTu)
i=1

have the same limiting normal distribution. The multivariate central limit theorem implies

/i (Zn B (veCu(ﬁ))> ~N(0,Z),

vecy, (T)

7%\ - 1yn
where Z; := <Z1T> s Ly = ;Y 1Z; and
l L =Cov(Z;). (18)
For example, the covariance matrix X for d = 2, k = 1 and [ = 2 has the following form
(Var (sgn(Uy; — 0.5)sgn(Up; — 0.5)) Cov <sgn(ll11 —0.5)sgn(Uy; — 0.5), 2k ((Uyy, UZl)T)>)
Cov <Sgn(U11 —0.5)sgn(Upy — 0.5), 271 ((Uy1, Uzl)T)> Var (Zﬁl((un, Uzl)T)>
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For an elliptical copula C, the multivariate statistic D, is then equal to 7B, — vecy, ((:f\kg,n)krge {l,‘..,d})'
which has the same limiting distribution as

zP, ~Z7,.
By applying the Delta method (see Proposition 6.2 in |Bildeau and Brenner| (1999)) with
¢RI 5 RICZ xs (e, X1 2) T = (Raga—) 210 ¥aga-1) |
we obtain
NG (ﬁn - ?n) ~N(0,V)

under the null hypothesis C € C¢//#*, where

Y, vecy, (B) ’ vec,(B)
v=9e <<Vecu(‘r))> X ((VeCu(T)
and ¢’ denotes the Jacobian matrix of ¢. Since ¢ is a linear map, ¢’ is independent of B and T. Moreover,
it is given by

T

(Id(d—l)/z _Id(dfl)/z) ,

where Z;(;_)/, is the unit matrix of dimension d(d —1)/2.

The second statement of the theorem is obvious. The asymptotic distribution of T, defined in
follows from the asymptotic normality of D,;, the multivariate Slutsky Theorem (see Lemma 6.3 in [Bildeau
and Brenner| (1999)) and the continuous mapping theorem.

O
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