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Abstract 

People in growing urban areas are more and more influenced by emissions coming from 
numerous vehicles and factories. In this paper we inspect the concentration of particulate 
matter (PM2.5) visually over time. This information stems from a data set of air quality 
measurements from 36 static sensors in Beijing over one year (from 8.02.2013 till 
8.02.2014). One possibility for creating an overview for 36 positions with varying PM2.5 
measurements in time is the use of interpolation techniques. In our approach, we generate 
surfaces of PM2.5 concentration using inverse distance weighting (IDW). The resulting 
surfaces represent interpolated PM2.5 values, based on averaged PM2.5 information (e.g. 
average of one day). We create simple interactive visualizations using points as surface 
representations. Each surface point within the 3D visual analysis display exhibits its PM2.5 
value by differing coloration and z-value (height component). The interactivity consists of 
using selection circles for stacked 3D displays of interpolated PM2.5 surfaces for different 
times (time series). The aim of this visual information analysis is the possible detection of 
periodical hotspots of high PM2.5 concentrations, which might be useful for people with 
respiratory diseases. For the detection of dynamic PM2.5 hotspot variations, we introduce 
thresholds for querying only the highest PM2.5 values of the surfaces. Afterwards, these 
points are aggregated into convex hulls (polygons), with the idea of comparing the size and 
shape of the PM2.5 hotspots in each created surface. The change of position and size of 
these polygons over time may be an indicator for air quality changes within an urban envi-
ronment. Considering the above, this may be a starting point for the conception of a person-
alized routing solution for pedestrians or vehicle drivers with respiratory diseases, who 
want to avoid these hotspots of high PM2.5 concentrations. 

1 Introduction 

In today’s environment, especially in urban areas, we can observe changes in air quality 
due to an increasing number of people, vehicles, and factories. For ZHENG et al. (2013) the 
air quality in urban spaces is characterized by non-linear variations. Additionally there are 
multiple factors influencing air quality like weather, traffic, or land use type (ZHENG et al. 
2013). Especially higher PM2.5 concentration is an indicator of adverse health effects (CAO 
et al. 2013). Therefore, the analysis of air quality is required, especially its influence on 
human health. This can include, for example, spatial analysis of air pollution and mortality 
(JERRETT et al. 2005). Since sensors for air quality measurements are often static (CAO et 
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al. 2013), the resulting information is limited to point positions. One possibility for the 
visual analysis of georeferenced point data sets can be the creation of surfaces using point 
interpolation techniques. 

1.1 Point Interpolation Techniques 

There are numerous approaches in environmental and health research using interpolation 
techniques for air quality data, especially for PM concentration (TRAN et al. 2012, WONG et 
al. 2004, JERRETT et al. 2005). Spatiotemporal interpolation of fine PM2.5 has already been 
performed using inverse distance weighting (LI et al. 2014), radial basis functions (LOSSER 
et al. 2014), and kriging (MWENDA & SHI 2012). Within this thematic field, especially 
when creating continuous fields from point data, the term uncertainty becomes really im-
portant, because it can be represented differently (VČKOVSKI 1995). The reason is that after 
interpolating point information, there are additional variances stemming from the influence 
of the used interpolation technique on a map. Therefore SENARATNE et al. (2012) describe 
how to compare interpolated PM10 concentration and its uncertainty with different types of 
maps. 

ZHENG Y et al. (2013) compare linear point interpolation with an individual interpolation 
method by the name of U-Air for PM10 measurements for 22 stations in Beijing. The re-
sults of the comparison show that U-Air can consist of more detailed PM10 distribution 
than linear interpolation. This shows that the used method for point interpolation has a 
decisive influence on the resulting surfaces. 

There are numerous already implemented point interpolation methods nowadays used in 
GIS software. Well-known point interpolation techniques include Kriging, first described 
by KRIGE (1951), the mentioned linear point interpolation, spline interpolation, and inverse 
distance weighting (IDW), which was introduced by SHEPARD (1968). The general idea of 
the last mentioned interpolation method is that each measured value has a weight that is 
inversely proportional to the distance to the estimated point values. For WATSON & PHILIP 

(1985) one restriction of IDW is that estimated values have to be within the range of the 
extrema of the sample values. For our approach, we use IDW, and do not consider this as a 
disadvantage, due to the sparse amount of points and the simplicity of this method. 

1.2 Defining a Continuous Field 

In general, there is a differentiation between discrete and continuous geodata. Discrete data 
refers to discrete objects in space with defined boundaries, like, for example, waterbodies, 
roads, or buildings. On the other hand, there is continuous data describing surfaces or 
fields, with a certain value for each location (in 2D). For GOODCHILD & GLENNON (2009) 
many geographic phenomena are continuous. Besides air quality measures, there are nu-
merous other phenomena that appear as continuous fields. This includes an additional time 
component of continuous data, which extends continuous fields to progressively varying 
continuous fields. Examples for the last-mentioned term are atmospheric movement, ocean 
circulations, temperature, humidity, or vehicle and pedestrian movements. Some of these 
progressively varying surfaces can be modelled by deriving information from multispectral 
imagery data. The other case is to produce interpolated continuous fields based on discrete 
data, due to unavailability of continuous geodata. In case of points with time components, 
this step consists of point interpolation techniques for different moments or time windows. 
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Based on the knowledge of Tobler’s First Law of Geography (TOBLER 1970), which states 
that nearby objects or things are more similar to each other than more distant things, point 
interpolations can be proved by intentions. Therefore, GOODCHILD (2009) states that this 
assumption allows the interpolation of continuous surfaces based on point observations. 
Nevertheless, some difficulties in standard statistical methods can be carried jointly, as 
interpolated surface properties are assumed to be uniform (GOODCHILD 2009). 

1.3 Ideas for Visualizing Progressively Varying Continuous Fields 

There are numerous possibilities for progressively visualizing varying continuous fields. 
One possibility may be the use of animation, where each static state of the investigation 
areas is pictured successively. In most cases this option does not allow interactive visual 
data analysis, and serves only for a rough overview of the changes. Our approach consists 
of averaging measured PM2.5 concentrations for one day, and performing inverse distance 
weighting on this averaged information for 36 points in Beijing. The raster data sets are 
subsequently converted into sets of points. Afterwards, we iterate this step for a rash of 
days, and define the z-values as averaged PM2.5 concentration. We visualize each surface 
with darkening coloration and increasing z-coordinates for higher values in a three-
dimensional coordinate system, and optionally perform queries on selecting points that 
match road elements. The final step consists in generating a stacked view of these 3D views 
with ascending order by day from the bottom to the top. By using selection circles, we 
detect suitable thresholds for the extraction of polygons representing high PM2.5 concen-
tration areas for each surface.  

2 Description of the Test Data 

Our test data set is freely available and was provided by Microsoft Research Asia (ZHENG 
et al. 2013, 2014). The data format and its properties will be described in the following. 
There are 36 monitoring stations, which are described in a separate CSV file with their 
respective station name, identification, and geographic coordinates. Table 1 provides a 
structural overview of the list of monitoring stations. 

Table 1: Structure of the used CSV file “Station” 

Columns Station ID Station name Latitude Longitude 

Unit None None Degree (°) 

Meaning Each station with unique id Chinese name A station’s position 

The measurements of each of the 36 inspected stations are provided in another CSV file, 
which is simply called “crawled data”. An overview of this data set is provided in table 2. 
In this table, the data structure is described, showing only the selected air quality parame-
ters with their respective units and meanings. 
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Table 2: Structure of the used CSV file “CralwedData” 

Columns Unit Meaning 

Station ID None Each station with unique id 

Time None Data updated time 

PM2.5 AQI value None Current AQI of PM2.5 

Besides Time and PM2.5 AQI value, the attribute Station ID is used in our approach (see 
table 2). The Station ID is used for connecting each measured PM2.5 value with the exact 
station position. Since we want to investigate the values of PM2.5, the other 7 attributes are 
neglected for our study: PM10 AQI, NO2, Temperature, Pressure, Humidity, Wind, and 
Weather. The question is now how to interpolate 36 positions with differing PM2.5 values. 
It should be noted here that the inspected data set includes some missing PM2.5 measure-
ments, which means that the time of acquisition is not always constant. Therefore, we aver-
age the measured PM2.5 values for certain time windows to guarantee its appearance in all 
36 positions. As a result, we can say that the temporal accuracy of the data will be reduced. 
In our examples, we aggregate the PM2.5 values to daily average PM2.5 values, which are 
the basis for the further creation of interpolated surfaces. The positions of these stations are 
pictured in figure 1. 

Fig. 1: 
Positions of the 36 stations in Beijing, 
where air quality was measured, projected 
on an OSM basemap 

In figure 1, the positions of the measuring stations in Beijing are shown on an OpenStreet-
Map (OSM) basemap. In the central area, a dense distribution of the points is detectable. 
This fact might be useful for the later interpolation step, because it provides insight into the 
reliability of the interpolations results, which are in our case surfaces of PM2.5. 

3 Visualization of Interpolated PM2.5 Surfaces 

Our idea for visualising the presented test data set is based on creating a time series of in-
terpolated surfaces for the description of a progressively varying continuous field. In the 
following we describe the surface generation workflow, and show how to visualize inter-
polated PM2.5 information in 3D. One extension of this visualization is a stacked view of 
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multiple surfaces from different times, with interactive selection possibilities. Based on this 
interactivity, we propose a technique for extracting PM2.5 hotspots, by introducing thresh-
olds, point clustering, and convex hull calculation. 

3.1 Description of the Used Method for Spatiotemporal Visualization 

As already mentioned, the first steps consist of connecting the 2 CSV files by joining them 
with the attribute station ID, and of averaging the measured PM2.5 values for certain time 
windows. Afterwards, the points are projected onto a map. Depending on their spatial dis-
tribution, we select a suitable point interpolation technique, which is in our case inverse 
distance weighting (IDW), for creating raster surface representations with a cell size of 2 
meters. We provide this technique using a variable search radius, which is dependent on the 
number of nearest input points. In our case we use 12 input points to interpolate the PM2.5 
value for each cell in the resulting raster surface.  

Afterwards, we derive center points of the raster cells for representing the surfaces with 
points. This workflow for creating interpolated PM2.5 surfaces is pictured in figure 2. 
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Fig. 2: Workflow for creating interpolated PM2.5 value surfaces and three-dimensional 
surface visualization 

The end product of the presented workflow in figure 2 is a series of interpolated PM2.5 
surfaces, which are represented by regularly ordered points. 

3.2 3D surface Representations of Interpolated PM2.5 Values 

Our interpolated PM surfaces are now visualized in 3D by using the third coordinate axis to 
depict PM2.5 values for certain two-dimensional positions. As already mentioned in the 



Spatio-temporal Visualization of Interpolated Particulate Matter (PM2.5) in Beijing 469 

workflow in figure 2, we have the option of querying the surface points that match the road 
network. The reason why we only use interpolated PM2.5 values that match the road net-
work of Beijing is to provide orientation for the visual analysis of a possible end user. An 
example of an interpolated PM2.5 surface for one day is pictured in figure 3, where the z-
value of the surface starts at the fixed registration point of PM2.5 is equal to 0. For reasons 
of orientation ,this point starts in figure 3, where the road network is shown (bottom).  

Fig. 3: 
Three-dimensional representation of an 
interpolated PM2.5 surface in Beijing 
reduced to road network areas (top), and 
its corresponding road network based on 
OSM data (bottom) 

In figure 3, a surface is presented with colors, showing the classified interpolated PM2.5 
values and varying height depending on the relative distribution of these values. By interac-
tively changing the 3D viewing angle, we can detect two bigger PM2.5 concentration peaks 
in the center of Beijing. 

3.3 Comparison of Multiple Interpolated PM2.5 Surfaces within a Stacked 
3D View 

After the generation of six surfaces representing PM2.5 values for certain time windows, an 
extended visualization technique is used for the spatiotemporal analysis. The displays for 
comparing different PM2.5 surfaces consist of stacked 3D surfaces similar to the view in 
figure 3. The z-axis represents two attributes in this display: the time component in deci-
mals (number of 3D surfaces), and PM2.5 concentration (z-axis within each 3D surface). 
With the use of a selection circle we further inspect the interpolated values. This inspection 
is deduced from the need of gaining insight into certain surface partitions with respect to 
the time component. Selecting a certain amount of surface points enables the derivation of 
histograms for interpolated PM values. With this method it is possible to visually compare 
surfaces of different time windows by their differences. Further analysis of the surfaces is 
possible with calculating differences between the interpolated PM2.5 values in time. 

3.4 Creating Hotspot Polygons by Introducing Constant Thresholds and 
Aggregation 

After inspecting the PM2.5 maxima on the surfaces, we introduce a constant threshold for 
applying a query for the higher PM2.5 values. Based on this selection, certain areas of the 
surfaces represent multiple hotspots within the investigation area. For detecting areas with 
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higher PM2.5 concentration we first provide a distance-based clustering on the selected 
surface points (former cell size: 2 meters), with a search distance of around 50 meters, and 
aggregate the resulting point clusters by creating convex hulls (polygons). For the step of 
creating convex hulls we use the approach based on JARVIS (1973). After this aggregation 
step is used for four example time windows, we derive different polygons for different time 
windows. Afterwards, these different polygons will be compared with each other by visual 
inspection. The workflow for creating PM 2.5 hotspot polygons is pictured in the diagram 
in figure 4. 
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Fig. 4: Workflow for creating PM2.5 hotspot polygons 

The resulting polygons are computed for four day averages, with the aim of testing possible 
polygon intersections. Intersected areas may show certain periodically appearing PM2.5 
hotspots. 

In case hotspot polygons are created based on a consistent PM2.5 threshold, empty surface 
point selections are generally possible: PM2.5 maximum is below the selected threshold. 
This may result in missing hotspot polygons within a series of inspected PM2.5 surfaces. 

4 Results 

In the following we will show example results for the visualization of PM2.5 surfaces. 

4.1 Visual Analysis Using a Stacked View for Three-dimensional Surfaces 

The visual analysis of multiple PM2.5 surfaces (day averages) is now presented with an 
example. In this stacked 3D surface view we have a number of interpolated PM2.5 surfaces 
from different times displaced on the z-axis. This series of surfaces is ordered by time, with 
a surface arrangement of ascending days from the bottom to the top. Each fixed registration 
point of each PM2.5 surface is equal to 0. The idea behind this is to avoid intersections of 
different surfaces. Further analysis on the interpolated surfaces consists of detecting points 
of interest (e.g. PM2.5 extrema) within the investigation area, and their selection and in-
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spection over a period of time. One example of such linked or connected view is pictured in 
figure 5, where a certain area in Beijing is selected. 

 

Fig. 5: Example of a stacked view of a series of interpolated PM2.5 surfaces (left), and 
corresponding graph of average PM2.5 values for a selection circle query (right) 

Figure 5 shows on the left hand side the stacked surface series visualization with six surface 
layers. Darker colorations come along with higher z-values, and conclude higher PM2.5 
concentrations. Additionally, there is a column on respectively the same geographic loca-
tion, which is based on an extruded selection circle, and represents an interactive selection 
possibility. We use this spatial query for averaging values for the same selected area. One 
example of such PM2.5 average results is shown on the right hand side of figure 5, with a 
Time-PM2.5-diagram. The variation of interpolated PM2.5 values within the same area 
during six days can be detected in this chart. 

4.2 Visual detection of PM2.5 hotspots by using polygons 

After the generation of interpolated PM2.5 surfaces, we introduce polygons that are derived 
by certain selected thresholds, and represent higher PM2.5 concentrations. This method is 
described by a workflow diagram in figure 4. In figure 6, one example of four daily average 
PM2.5 hotspot polygons is pictured in a map view. 

The setting of the PM2.5 threshold in this example is 230 μg/m³ and consistent for all  
derived polygons of four days. Besides some intersecting polygons, there are large varia-
tions of the polygons in shape and size, which shows high concentration variations between 
the days. Overlapping patterns can be described formally by type of interaction. 
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Fig. 6: Comparison of PM2.5 hotspot polygons for four different time windows 

5 Conclusion 

Our method for the visualization of PM2.5 by three-dimensional interpolated surfaces de-
livers good results for getting an overview about the relative changes of PM2.5 concentra-
tion over time. The stacked view is useful for comparing concentrations of different times, 
and hotspot polygons help to immediately detect higher values. Nevertheless, it is difficult 
to detect detailed information on air quality using our visual analysis method. Additionally, 
we need expert knowledge for defining critical concentrations, especially when creating 
polygons. Further knowledge on other air quality measures is needed for detecting correla-
tions, which may include linked visual analysis displays or the use of visual geodata mining 
techniques. 

6 Outlook 

Besides inspecting PM2.5 surfaces derived using IDW, we can test other interpolation 
techniques on this data. Additionally, time-dependent PM2.5 hotspot polygons can be test-
ed for their use for personalized routing solutions. Another question is how to guarantee 
reasonable routing results based on costs of continuous fields, which are connected to 
transportation networks. This conception was presented by KARRAIS et al. (2014), with 
some differing examples of how to connect interpolated point information represented by 
raster data and urban road networks represented by vector data. Depending on the used 
point interpolation technique, and on the connection with road elements, different paths 
with differing accumulated costs were computed for the same start and end points. Never-
theless, no clear answer was given on the best solution, which opens initiatives to conduct 
further tests on this complex of problems. Additionally, it must be mentioned that the pre-
sented polygons in this paper can be used for personalized routing solutions as obstacle 
polygons. They represent high PM2.5 values, and could be avoided within a personalized 
routing solution for people with respiratory problems.  
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