
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Flugsystemdynamik

A Total Capability Approach for
the Development of

Safety-Critical Functions

Dipl.-Ing. Univ. David Löbl

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Markus Zimmermann

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Florian Holzapfel

2. Prof. Dr.-Ing. Manfred Hajek

Die Dissertation wurde am 16.01.2018 bei der Technischen Universität München eingereicht

und durch die Fakultät für Maschinenwesen am 22.05.2018 angenommen.





Abstract

The development and certification of safety-critical functions for aircraft with novel topologies

or operations pose a serious challenge when it is required to follow common, experience-based

certification specifications, which prescribe specific design solutions to ensure safety. A lack

in past experience for novel applications makes this conventional approach unfeasible.

The research leading to this thesis aims at filling this specification gap by a model-based devel-

opment approach, the so-called Total Capability Approach (TCA). The idea is to consider the

total capabilities of a system and its components in the presence of uncertainties, disturbances

and failures in an integrated manner throughout the whole development process. A physically

motivated break-down of safety-driven top-level requirements results in design specifications

that are specifically derived for the intended application. The resulting specifications are not

as conservative as prescriptive design requirements for common applications, since they do not

have to ensure safety for a broad range of possible designs.

The shift in paradigm towards the proposed top-down requirements derivation process comes

along with the need for more sophisticated verification methods, but also enables additional

powerful means for validation, design and implementation of safety-critical functions. This dis-

sertation presents the concept of this novel and promising development approach, it discusses

challenges and objectives and proposes new methods for the different development phases,

which include requirements derivation, validation, design, implementation and verification.

A flexible framework for efficient evaluation of specified and developed functions during the

individual phases is established, to ensure easy utilization of the introduced methods and pro-

cedures for many different applications. This smoothes the way towards a quick transition to

real industry applications, which is highly intended to fill the upcoming specification gap. The

implementation of the TCA is boosted by latest findings on efficient stochastic methods, which

are required to evaluate very small failure probabilities usually inherent to the safety-critical

functions in aviation. These methods are extensively used for the implementation of the TCA,

which is why they are explained in detail in this thesis.

Beyond the (offline) development process, runtime verification is considered as additional

powerful means to further exploit the potential of novel aircraft operations and support their

certification. Therefore, this topic is thoroughly discussed and a novel online monitoring

algorithm for dynamic systems with safety-critical functions is introduced and evaluated.

Eventually, all ideas, methods and developed algorithms described in this thesis are applied to

real-life examples, to demonstrate proof of principle.





Zusammenfassung

Die Entwicklung und Zulassung sicherheitskritischer Funktionen für Flugzeuge mit neuarti-

gen Topologien oder operationellen Konzepten stellen eine große Herausforderung dar, wenn

es erforderlich ist, erfahrungsbasierten Zertifizierungsanforderungen zu folgen. Diese schreiben

oftmals spezifische Entwurfslösungen vor um das erforderliche Maß an Sicherheit zu gewährleis-

ten. Der Mangel an Erfahrungen mit solch neuartigen Anwendungen führt dazu, dass der

konventionelle Ansatz nicht mehr praktikabel ist.

Die dieser Arbeit zugrundeliegende Forschung zielt darauf ab, die entstehende Spezifikations-

diskrepanz durch einen modellbasierten Ansatz aufzulösen, den sogenannten Total Capabil-

ity Approach (TCA) (“Gesamtleistungsansatz”). Die Idee ist, während des gesamten En-

twicklungsprozesses die Gesamtleistung eines Systems und seiner Komponenten mit all ihren

Unsicherheiten, Störungen und möglichen Fehlern in einer ganzheitlichen Weise zu betra-

chten. Ein physikalisch getriebener Ableitungsprozess für Sicherheitsanforderungen von höch-

ster Ebene führt zu dedizierten Entwurfsanforderungen, die speziell auf ein Fluggerät und

seinen Betrieb zugeschnitten sind. Daher sind diese Anforderungen auch weniger konservativ

im Gegensatz zu erfahrungsbasierten Anforderungen aus Spezifikationskatalogen, die üblicher-

weise ein breites Spektrum an möglichen Flugzeugkonfigurationen abdecken müssen.

Der Paradigmenwechsel hin zu einem Top-Down Ableitungsprozess für sicherheitsgetriebene

Anforderungen erfordert komplexere Verifikationsmethoden, eröffnet jedoch auch den Weg für

zusätzliche, zum Teil mächtige Werkzeuge für die Validierung, den Entwurf und die Implemen-

tierung von sicherheitskritischen Funktionen. Diese Dissertation stellt den vielversprechenden

TCA vor und diskutiert die daraus resultierenden Herausforderungen und Ziele. Des Weit-

eren werden die erforderlichen neuen Methoden und Vorgehensweisen für die unterschiedlichen

Entwicklungsschritte eingeführt, von Anforderungsableitung bis zur Verifikation. Es wird ein

flexibler Rahmen für die effiziente Auswertung von spezifizierten, entwickelten und implemen-

tierten Funktionen begründet, der eine einfache Anwendung der vorgestellten Methoden auf

eine Vielzahl von unterschiedlichen Entwicklungsaufgaben ermöglicht. Dies ebnet den Weg

hin zur industriellen Anwendung, was höchst wünschenswert ist, um der aufkommenden Spez-

ifikationsdiskrepanz frühzeitig zu begegnen. Die Anwendung des TCA wird auch ermöglichst

durch neueste Erkenntnisse im Bereich effizienter stochastischer Methoden, welche für die

Auswertung üblicherweise sehr kleiner zulässiger Fehlerwahrscheinlichkeiten von sicherheitskri-

tischen Funktionen in der Luftfahrt erforderlich sind. Diese Methoden werden ausgiebig bei

der Umsetzung des TCA eingesetzt, weshalb sie auch ausführlicher beschrieben werden.
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Neben dem (Offline-)Entwicklungsprozess ist Verifikation während des Betriebs (“runtime ver-

ification”) ein zusätzliches wirkungsvolles Werkzeug um das volle Potential neuartiger opera-

tioneller Konzepte auszunutzen und deren Zertifizierung zu unterstützen. Deshalb wird dieses

Thema auch ausgiebig diskutiert und ein neuartiger Echtzeit-Überwachungsalgorithmus für

dynamische Systeme mit sicherheitskritischen Funktionen vorgestellt.

Schlussendlich werden die in dieser Dissertation beschriebenen Ideen, Methoden und entwick-

elten Algorithmen auf beispielhafte, realistische Entwicklungsaufgaben angewendet, um das

Prinzip des TCA und seine Anwendung zu demonstrieren.
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Introduction

1.1 Background

Beginning with the early days of aviation, improving and maintaining safety standards is of

outstanding importance for aviation industry [Fed08, chapt. 1]. In the late 1940s, the Interna-

tional Civil Aviation Organization (ICAO) first published international standards on airworthi-

ness of aircraft, known as Annex 8 to the Convention on International Civil Aviation [Int10].

This document gives broad standards which define the minimum basis for the recognition of

certificates of airworthiness by other states. More detailed design standards are specified by

individual states and supranational institutions, e.g. by the Federal Aviation Administration

(FAA) in the USA and the European Aviation Safety Agency (EASA) in the EU. Although

the so called design code has been continuously extended since their original release in the

1960s (e.g. airworthiness standards for transport category airplanes 14 CFR Part 25 [Fed64]),

the given certification specifications mainly focus on conventional aircraft topologies and op-

erations, which have not changed much during the past 50 years. However, in recent years

aircraft design and operation undergo a radical change. While this has not been an issue at

initiation of this research, clear changes can be identified today on various fronts, especially

driven by technological advances in the field of electric propulsion. With increasing complexity

of aircraft, futuristic aircraft concepts and especially also fast growing markets of unmanned

and autonomous aircraft [SES16], new areas of conflict in the field of aircraft design and

certification emerged.

First, aircraft functions become increasingly complex, often requiring a high number of com-

ponents. However, especially for the market of small to mid-size Unmanned Aerial Vehicle

(UAV), weight, size, cost and energy consumption limitations are in conflict with conventional

design standards requiring components with high quality and quantity to obtain a desired level

of safety and survivability. Furthermore, development teams for novel aerospace applications

are often small and fast development and certification is aspired, which is in contrast to lots of

artifacts, proofs, and documents which must be generated to demonstrate safety and reliability.

The result is usually a long and expensive certification process, to prove safety. This is mainly,

because “the process of certifying a civil aircraft, whilst technically about proving that the air-
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craft is safe, in practice is about proving that the aircraft/ engine/ system meets the relevant

certification standard” [Gra15, p. 4]. Additional conflicts emerge from the non-existence of

specific design and certification standards for novel aircraft concepts and operations.

This work aims at resolving the challenges of developing and certifying novel aircraft appli-

cations by introducing a model based development approach. It takes the total capabilities

of developed functions and resulting systems into account throughout the whole development

process and operation to achieve a certain desired level of safety. In the context of aircraft

and its systems, development means to ”[. . . ] establish the process and methods to be used

to provide the framework for the aircraft/system architecture development, integration and

implementation“ [SAE10, p. 19]. This includes requirements management, validation, imple-

mentation, verification and certification.

Non-compliance of safety-critical functions with today’s design standards is interpreted as non-

admissible safety risk. This introduction shall highlight the drawbacks of today’s approaches for

development and certification of safety-critical aircraft functions and outline how this research

contributes to tackle future challenges of implementing novel, pioneering aircraft functions

and systems.

1.2 State of the Art and Motivation

Safety is of utmost importance for aviation. A reasonable measure of safety is risk, which is

the probability that an event occurs that results in an unsafe condition. Unfortunately, today’s

safety measures for development of safety-critical functions mainly rely on past experience. The

underlying assumption is that if certain specifications resulted in safe systems for past years and

decades, these specifications will also lead to safe implementations for new similar designs.

Examples for such historically grown specifications can be found in airworthiness standards

for aircraft, which are continuously updated and extended since their initial release in the

1960s [Fed64, Fed67], mainly when incidents or accidents revealed flaws in the specifications.

Such detailed airworthiness standards give requirements on how specific functions must look

like. If safety-critical functions are designed, implemented and verified according to these

specifications, they are considered to be safe since they fulfill the underlying airworthiness

standards. The main disadvantages of this experience-based specification and certification

approach are:

• It is non-probabilistic: Although a certain level of safety is achieved, no statement on

the actual risk is given, i.e. the resulting overall failure probability and hence the level of

safety is unknown. While for one system, today’s prescriptive design requirements could

lead to a very safe implementation, for others safety could be lower than expected.

• It is conservative: Usually, the prescriptive design requirements are conservative to allow

their application for a certain range of aircraft designs, which however results in overly

safe systems. To comply with these requirements, functions often need to be complex,
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requiring components with high quality and quantity. By that, developments become

complex and expensive. Using today’s approach, the actual level of safety cannot be

quantified, preventing alternative, simpler implementations to be used, which would still

result in a desired level of safety although violating today’s conservative prescriptive

design requirements.

• It is only applicable to specific topologies: Aircraft topologies – i.e. the layouts of aircraft

– have not changed much during past decades. With only a few exceptions, aircraft

designs were very similar. Hence, airworthiness standards are mainly formulated for

these common designs, also because the prescriptive design requirements are based on

experience. This is a show-stopper for novel concepts, which do not follow conventional

aircraft categories. Furthermore, this also slows down advance through technology, since

novel ideas without any historic example lack in specific design requirements and so called

“special conditions” must be negotiated with certification authorities, which can take

a long time [Eur13, p. 11]. Special conditions are determined by a panel of experts

[Eur07, Section 2, Article 3] and are likely to follow a conservative line to qualitatively

ensure safety.

Despite the drawbacks, the currently established procedures and development approaches are

applied due to the lack of alternatives. Only during the recent months, a shift in paradigm

started to take place towards a more probabilistic development approach, caused by aircraft

highly deviating from conventional designs for which a safe design according to conventional

standards is no longer possible. The latest revision of the European Certification Specifications

for Normal-Category Aeroplanes CS-23 [Eur17d] released in March 2017 is completely reor-

ganized compared to previous releases and now follows a more proportionate and risk-based

approach to aeroplane standards by “[. . . ] removing the arbitrary weight-driven separation of

technical standards that are no longer appropriate for modern technology” [Eur17a, p. 2].

Similar actions are carried out in the USA [Dep16, p. 1]. The objective of this new rulemaking

is “[. . . ] to provide clear safety objectives without prescribing design solutions” [Dep16, p.

326]. This results in replacement of many requirements on how specific functions must look

like by considerably less requirements on how safe those functions must be, where safety is

now defined in a quantitative probabilistic and hence risk-based manner.

Similar certification and operation standards are envisaged for unmanned systems. Current

draft documents for a regulatory framework for the operation of drones mainly require that

“UAS of all class shall be designed and manufactured to fly safely” [Eur17c, p. 49]. Again, this

is a risk-based approach, where a specific safety goal must be met for systems and operation.

Although a risk-based approach is independent from technological changes and theoretically

eliminates the disadvantages of today’s deterministic experience-based approach, the unavail-

ability of clear design requirements now leads to a huge challenge for the overall development

process: How can the risk of a specific function be quantified and hence compliance with novel

probabilistic certification standards be shown?
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The shift towards a risk-based certification approach must not be confused with one prob-

abilistic aspect of the aircraft and systems development process that is already established

today: There is one paragraph in current certification specifications that deals with safety

impacts of installed equipment (e.g. CS23.1309 and CS25.1309 for small and large aircraft

respectively [Eur17d, Eur17b]). It specifies that equipment, systems and installations must not

cause critical events with a probability higher than specified by admissible failure probabilities.

However, this paragraph only results in probabilistic requirements for availability and integrity

of the implementation of safety-critical functions, where the function itself is still defined in a

conservative and prescriptive manner as described above [SAE10].

1.3 Objectives

Several years ago, the limitations of conventional airworthiness standards for development and

certification of upcoming novel aircraft concepts and operations were recognized, also at the

Institute of Flight System Dynamics (FSD) of the Technical University of Munich (TUM). The

idea of a probabilistic development approach was born, where the major design objective to

obtain a safe system is achieved by a top-down approach, which allows a quantitative evaluation

of risk instead of using the prescriptive design specifications from airworthiness standards. As

discussed in the previous section, this change in paradigm also started to become of interest

for certification authorities.

To close the gap between risk-based top level requirements and the lack of specific design

requirements, the so called Total Capability Approach (TCA) for development of safety-critical

functions originated, where the idea is to use a physically driven system development process

that takes all components and uncertainties contributing to the overall system performance

into account during requirements derivation, design and verification. This approach promises

to enable quantification of the actual risk emerging from a developed function and hence its

quantitative contribution to safety of the overall system.

The TCA affects the overall development process. Very briefly, this especially includes the

following steps:

1. Requirements formalization: In contrast to the conventional bottom-up process for

specification of safety-critical functions, the TCA is a top-down process, where proba-

bilistic top-level requirements are broken down to a level that allows design and imple-

mentation of the intended functionality.

2. Design and verification: Taking the whole knowledge about uncertainties, distur-

bances and failures into account during system design, allows design solutions tailored

to the actual application and mission. However, this comes with additional efforts re-

quired for verification to proof compliance with probabilistic requirements.

3. Runtime verification: During development following the TCA, models and uncertain-

ties are not exactly known and hence assumptions must be made. This necessitates
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runtime verification to ensure that assumptions are met in reality and safe operation

results.

The research presented in this PhD thesis condenses the first efforts on establishing the Total

Capability Approach. Further research conducted by researches at the Institute of Flight

System Dynamics already focuses on specific aspects of such a probabilistic development

approach as well as a proof in practice.

1.4 Contributions

This thesis aims at the introduction of the Total Capability Approach, working out the influ-

ences of this novel development approach on the individual steps of the development process,

highlighting challenges related to it and introducing possible solutions for some of the chal-

lenges. The following points condense the contributions of this thesis beyond the state of the

art, which correlate well with the main steps of the TCA presented above:

• Establishing the Total Capability Approach: The central contribution is the in-

troduction of the overall concept of the Total Capability Approach. This also includes

in-depth discussions of the implications for the individual steps of today’s well estab-

lished aircraft and system development process. For that, profound evaluation of today’s

standards is conducted and the arising challenges are elaborated. To the best knowl-

edge of the author, no comparable top-down, model-based approach for development

and certification of safety-critical functions has been introduced before. To highlight

the advantages of the novel concept, the individual steps are demonstrated using se-

lected examples from the development of an autopilot for close formation flight of large

transport aircraft.

• Model-based derivation of requirements: One major challenge of the TCA is the

breakdown of probabilistic top-level requirements to specific lower-level requirements

that can be used for system design. Besides the introduction of the overall concept,

special attention is paid to the fact that the admissible failure probabilities are usually

very small and hence conventional stochastic methods cannot be applied for risk assess-

ment. Main contribution for this development task is the specification of the simulation

environment needed for model-based requirements breakdown. Based thereon, a novel

method for quantification of lower-level requirements is developed, with the focus on

break-down of top-level safety requirements with very low admissible violation probabili-

ties. Furthermore, the model-based derivation process supports requirements validation

during early development phases – this is also introduced in this thesis.

• Stochastic verification: Verification in the context of the TCA must be conducted to

ensure that the designed and implemented function meets the probabilistic top-level re-

quirements. Again, the usually very small admissible failure probabilities pose additional
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challenges, even more since the models, which are suitable for model-based verification,

are usually very sophisticated and hence require a lot of computational resources. The

major contribution here is the definition of a framework for model-based verification of

probabilistic requirements, with special attention to efficiency and ease of operation.

For that, state of the art stochastic algorithms are applied to the underlying engineering

problem.

• Runtime verification: A major tool for runtime verification is online monitoring. To

facilitate this, an online monitoring algorithm for one common, important type of re-

quirements is developed that ensures that the assumptions made during development are

also valid in reality and hence the offline verification results are true. Furthermore, the

developed algorithm can be used to monitor the current safety level and hence operation-

dependent safety goals can be implemented. This can highly increase availability of novel

aviation applications. Note that only a certain aspect of runtime verification is consid-

ered, while there is currently a lof of research conducted in the field of online monitoring

[Rus08, Leu08, Gro+17].

• Enhanced stochastic analysis is applied for different steps of the TCA. Therefore, a

detailed evaluation of applicable stochastic algorithms is provided in chapter 2. Much

emphasis is put on descriptive explanations and derivations supporting the understanding

of the methods. The goal is clearly not to deliver another stochastic textbook including

well-known proofs, but to provide the necessary relations between theory and application

for risk assessment. Despite no novel stochastic methods are developed, this chapter

contributes a very condensed guide to enhanced stochastic evaluation for risk assessment.

A detailed literature review, concerning the contributions and particular aspects of the devel-

opment process investigated in this work, can be found in the introductions of the topics in

the respective chapters.

1.5 Outline

This thesis is structured as follows. In chapter 2 detailed descriptions of enhanced stochastic

methods applied throughout the overall development process are given. To ensure a common

understanding, first types of uncertainties and principles of failure probability estimation are

discussed in sections 2.1 and 2.2. Afterwards, stochastic algorithms for risk assessment are

discussed, starting with conventional Monte Carlo simulation in section 2.3, followed by rare

event sampling methods in the subsequent sections. The explanations do not only include the

algorithms themselves, but also the underlying mechanisms as well as a detailed evaluation of

confidence intervals, which are essential for the interpretation of the results of risk analysis.

In chapter 3, the concept of the Total Capability Approach is presented. After a general

introduction, the influence of this novel development approach on today’s well established
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aircraft and system development processes are discussed and arising challenges elaborated.

Furthermore, the relations between the different steps of the TCA are discussed, while detailed

considerations of the individual steps follow in subsequent chapters. Requirements derivation

in the scope of the TCA is discussed in chapter 4. Initially, the underlying idea of model-based

derivation of requirements is given in section 4.1. Afterwards, a new method for quantification

of lower-level requirements based on probabilistic top-level requirements is described in 4.2

and 4.3. In section 4.4 it is shown how this model-based approach can support requirements

validation. Open challenges in this field are discussed in 4.5.

The first section in chapter 5 is dedicated to the design process of functions in a probabilis-

tic framework. It is discussed how design methods for controlled systems can be utilized to

optimize the compliance with probabilistic requirements. However, no dedicated research has

been conducted in this field, since it is currently subject of independent research by associates

at the Institute of Flight System Dynamics. Universal verification methods are described in

section 5.2 that can be used to check compliance of implemented functions with probabilistic

requirements. Here, especially the application of enhanced stochastic methods for the verifica-

tion process is discussed. Finally, chapter 6 describes the necessity for runtime verification, the

state-of-the-art of online monitoring algorithms is evaluated and a novel method for monitoring

of compliance of an implemented function with a certain type of probabilistic requirements is

presented in section 6.4.

In chapter 7, the different steps of the TCA are demonstrated using selected examples from

development of an autopilot for close formation flight of two civil transport aircraft. An

introduction of the formation flight concept, problem formulation and specification of top-

level requirements are given in section 7.1. Models for flight dynamics and uncertainties used

in this example are given in 7.2. In section 7.3, it is shown how the methods developed in this

research support requirements derivation, verification and online monitoring. The examples

given in chapter 7 need to be seen as illustrative examples for the future potential of the TCA.

Finally, chapter 8 concludes this thesis. There, special attention is given to the outlook,

highlighting the way towards a proof in practice.
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2

Fundamentals of Stochastic Analysis

The Total Capability Approach relies on stochastic analysis throughout the whole development

process. The fields of application for the analysis of effects of uncertainties in this context are:

• Risk analysis: Risk analysis is the quantification of the probability of occurrence of

critical events. Particularly here, risk analysis is about the evaluation of usually very

unlikely events, quantified by the tails of probability distributions of relevant system

responses.

• Failure analysis: Failure analysis deals with the identification of most probable scenarios

that lead to failure events. While risk analysis is only interested in the pure knowledge

about criticality, failure analysis enables in-depth analysis of critical events and their

causes.

Risk and failure analysis usually go hand in hand, where in the majority of cases, analysis is

only possible using numerical methods due to the complexity of models usually required for a

quantitative risk analysis. In the context of developing safety-critical functions, the analysis

process must have a high degree of automation to facilitate ease of operation and usability.

In the following, methods for risk and failure analysis are presented that are of importance for

this work. Beforehand, uncertainties and their modeling are discussed.

2.1 Uncertainties

Models are used for risk and failure analysis. Usually models cannot exactly reproduce the

behavior of a real system due to uncertainties. This section does not discuss possible sources

of uncertainties – for that, see section 4.1.4. Instead, it is assumed that a model is available

that includes effects of relevant uncertainties.

2.1.1 Types of Uncertainties

On an abstract level, uncertainties can be described by Uncertain Parameters (UPs) and their

known probabilistic properties, e.g. their Probability Density Function (PDF). The UPs can
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be distinguished into two groups:

• Influential uncertain parameters: Change of the value of a single UP can have a high

influence on the system response. For an aircraft dynamics model, this is for example

the case for location of center of gravity, mass and moment of inertia.

• Non-influential uncertain parameters: Change of the value of a single UP has only

infinitesimal influence on system response, i.e. the response is insensitive to a single

parameter. Instead, the combination of uncertain parameters is crucial, which can be

interpreted as an “integral” effect of these parameters. This is the case for stochastic

uncertainties, which are discretized for simulation and are described by single uncertain

parameters per time step. While the change of the value of an uncertain parameter

for a single time step does only infinitesimally change the system response, it is the

combination of the values at many subsequent time steps that leads to a noticeable

system response. The number of time steps is proportional to simulation time and

sample frequency, hence the total number of non-influential UPs is usually much higher

than the number of influential UPs.

2.1.2 Modeling and Realization of Uncertain Parameters

Uncertain parameters are described by their joint PDF. In most cases, the probability distri-

bution of individual parameters is known or at least possible ranges of an uncertain parameter

limited by known bounds are available. In the latter case, there is no knowledge about the

actual parameter distribution. Often uniform distributions are used to model such uncertain

parameters. This assumption is legitimate if the objective is to identify the whole solution

space, i.e. to evaluate all possible effects of bounded uncertainties. However, this could lead

to biased failure probability estimations in the context of risk analysis since a more critical

parameter value could occur with a higher or lower probability than modeled by the uniform

distribution. Figure 2.1 shows an example where the uncertain parameter θ is limited by

θlow < θ < θup. For the exemplary case that θ = a, the effect of this specific realization

of the uncertain parameter is overrated if a uniform distribution is assumed, while for θ = b

the effect is underrated. Note that this does not allow inference on the criticality of a certain

parameter realization – underestimation for the case θ = b means that if this uncertain pa-

rameter value would lead to a critical event, the probability for this event would be estimated

too low since the unknown actual probability of occurrence of this parameter is higher. To

be on the safe side, the most critical parameter value, i.e. the parameter value that leads to

the most critical system response, must be assumed to occur with a probability of one. This

assumption gives an valid, but conservative upper bound for the estimated failure probability

in case that no probability distribution for some bounded influential uncertain parameters is

available. Theoretically, this procedure would also be applicable for non-influential uncertain

parameters, which could be for example an arbitrary but bounded input signal. However, the

practical implementation is virtually impossible since the individual effect of each of many non-
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θlow θup

uncertain parameter θ

probability density

uniform
distribution

true (unknown)
distribution

a b

Figure 2.1: Modeling of uncertain parameters by intervals – effect of assuming a uniform
distribution

influential parameters on the system response is usually infinitesimally small. In combination

with the arbitrariness of the values, this theoretically leads to infinite most critical cases.

For simulation, samples of the uncertain parameters according to their probability density

function must be generated. For each parameter, a high number of Independent and iden-

tically distributed (i.i.d.) random values (i.e. realizations for each uncertain parameter with

the according PDF) must be generated. For simulation of random numbers from a uniform

distribution, quasirandom number generators are used. Efficient methods are available for

generation of samples from common distributions. For arbitrary distributions, methods exist

that transform uniformly or Gaussian distributed samples to any desired distribution. Well

known representatives are Inverse CDF Method, Acceptance/Rejection Methods and use of

Markov chains. Generation of random numbers is a well researched and documented process

with verified and efficient tools available for that task. Hence, this aspect is not discussed

in this thesis. More details on generation of random numbers can be found for example in

[Dev86, BDF98, Gen03].

2.2 Risk Analysis

2.2.1 Definition of Failure Events

Estimation of the failure probability is similar to the question of reliability of a system. There-

fore it is often also referred to as reliability analysis. The objective of reliability analysis is

the estimation of the probability of occurrence of predefined events, taking all uncertainties,

represented by uncertain parameters, into account. The failure probability is defined as

P (F ) = PF = P (r < rlimit) (2.1)

11
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where F denotes the failure event and r the scalar positive Response variable (RV), defined

as continuous response metric

r = h (x (θ) , θ) , h : Rn 7→ R (2.2)

with x ∈ R
n being the state vector of the system and θ ∈ R

k a vector containing the k

uncertain parameters. The value of the response variable is calculated by the function h

usually based on the results of a simulation run that takes the uncertain parameter vector θ

as input. In most cases, the critical system response can be adequately represented by a scalar

response variable. A simultaneous consideration of multiple response variables is usually not

possible since in this case the solution would lie on a Pareto frontier on which the probability

for one elementary event depends on the probability of another event. For failure probability

analysis, two elementary cases can be identified: The individual failure events are either linked

by AND- or OR conjunctions. In the first case, failure only occurs if all response variables

exceed their limits (logical conjunction – intersection of failure events). In the second case,

the failure occurs when at least one out of many response variables exceeds its limit (logical

disjunction – union of failure events). For these cases a scalar response variable can be defined

by:

r =











min
i=1...k

ri/ri,limit for r1 ∩ r2 ∩ · · · ∩ rk (conjunction)

max
i=1...k

ri/ri,limit for r1 ∪ r2 ∪ · · · ∪ rk (disjunction)
(2.3)

where the limit value of the joint response variable r is rlimit = 1 due to normalization of

the individual ri. For the definition given in equation (2.3), the individual limit values ri,limit

must not be zero, which however would be a meaningless selection since r is defined as

positive measure. This is no limitation since any arbitrary response can be transformed to

a positive measure with a non-zero limit value ri,limit by shifting and scaling. The resulting

joint response variable for both cases is shown in figures 2.2 and 2.3 exemplarily for the case

of two independent response variables. Combinations of logical con- and disjunctions can be

formulated using min and max appearing in the same order. For example, when a failure

occurs if (r1 ∩ r2) ∪ (r3 ∩ r4), the resulting response variable is calculated by

r = max

(

min

(

r1

r1,limit
,

r2

r2,limit

)

, min

(

r3

r3,limit
,

r4

r4,limit

))

(2.4)

2.2.2 Estimation of the Failure Probability

The failure probability can be calculated by solving the following integral over the uncertain

parameter space:

PF =
∫

F
Q (θ) dθ =

∫

Q (θ) IF (x (θ) , θ) dθ (2.5)
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Figure 2.2: Contour map for the response variable r of disjunct and conjunct failure events.
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Figure 2.3: Common relations of elementary failure events.

where Q (θ) denotes the k-dimensional probability density function of θ. Since the failure

region F is usually not a-priori known, the integral is solved over the whole uncertain parameter

space and at each point the indicator function IF is evaluated, which is one if a sample lies in

the failure region and zero otherwise:

IF (x (θ) , θ) =







1 if r = h (x (θ) , θ) > rlimit

0 else
(2.6)

For the sake of readability, subsequently the indirect dependency of the indicator function on

the uncertainties via the state vector x is written as a general function of θ, i.e. IF (θ) =

IF (x (θ) , θ).

Mostly, the integral (2.5) cannot be solved analytically. A numeric solution of the integral by

discretization of θ is not possible due to the exponential growth of required evaluations of

the indicator function IF with increasing dimension of the uncertain parameter space k. The

evaluation of IF is usually the most computationally expensive and hence limiting task, since

it is often linked to the evaluation of exhaustive simulation models. Therefore the number of

evaluations of IF should be kept as small as possible.
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2.3 Monte Carlo Simulation

2.3.1 Algorithm

The idea of Monte Carlo (MC) simulation is to solve the integral in equation (2.5) by treating

it as estimation, i.e.

PF =
∫

Q (θ) IF (θ) dθ = Eq [IF (θ)] (2.7)

where the samples used to obtain the expectation Eq are distributed according to Q (θ). The

estimated failure probability P̂F for a sample size N is calculated by

P̂F =
1

N
·

N
∑

i=1

IF (θi) =
number of failure samples

total number of samples
(2.8)

with independent realizations of the uncertain parameter vector θi. In general, a hat above

a symbol denotes an estimated quantity. The Monte Carlo algorithm for failure probability

estimation can be described as follows:

Conventional Monte Carlo algorithm

1. Generate N independent uncertain parameter vectors θi, i = 1 . . . N distributed

according to Q (θ).

2. For each sample, run a simulation to obtain the system response x (θi) and evaluate

the indicator function IF (θi).

3. Calculate the estimated probability by averaging the indicator function according to

equation (2.8).

With increasing number of samples N , the estimated failure probability P̂F lies closer to PF

and converges almost surely to PF for N →∞. This is known as strong law of large numbers

[GT13, p. 13ff.]. The unbiasedness of the estimator can be proven by taking the expectation

of equation (2.8):

E
[

P̂F

]

= E

[

1

N
·

N
∑

i=1

IF (θi)

]

=
1

N
·

N
∑

i=1

E [IF (θi)]

= 1/N ·NPF = PF

(2.9)

where the interchange of expectation and sum is possible because of the independence of the

individual samples θi.
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2.3.2 Variance Estimation

Equation (2.8) provides a good estimation of the failure probability if the sample size is large

enough. In the following, an expression for reasonable sample sizes is derived. The variance of

a single sample var [IF (θi)] is the same for every sample since the uncertain parameter vectors

θi are independent and identically distributed. IF (θi) follows a Bernoulli distribution, i.e. it

takes the value 1 with failure probability PF and 0 with probability (1− PF ). The variance of

a Bernoulli-distributed random variable is

var [IF (θ1)] = E
[

IF (θ1)
2
]

−E [IF (θ1)]2 = PF − P 2
F

= PF (1− PF )
(2.10)

where the algebraic formula for the variance is used [CH13b, p. 50]:

var [X] = E
[

(X − E(X))2
]

= E
[

X2
]

− E [X]2 (2.11)

Using the variance of a single sample, the variance of the estimated failure probability can be

derived. First note that

var
[

P̂F

]

= E
[

(

P̂F − PF

)2
]

= E





(

1

N

N
∑

i=1

(IF (θi)− PF )

)2




=
1

N2
E





(

N
∑

i=1

(IF (θi)− PF )

)2




=
1

N2

N
∑

i=1

var [IF (θ)]

(2.12)

Again, the interchange of sum and variance in the last step is possible since the individual

samples are not correlated, i.e. the sum of the variance of independent random numbers is the

variance of the sum of those numbers [DS12, p. 35]. Substituting equation (2.10) into (2.12)

yields

var
[

P̂F

]

=
1

N2
·

N
∑

i=1

var [IF (θi)] = 1/N2 ·Nvar [IF (θ1)]

=
var [IF (θ1)]

N

=
PF (1− PF )

N

(2.13)

with IF (θ1) = IF (θ2) = IF (θi) since the realizations of θ are independent and identically

distributed. Although theoretically correct, this equation cannot be used for estimation of

the variance in practice since the exact failure probability and hence the variance of a single

sample is usually not known. Instead, the sample variance can be used, which is an unbiased
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estimator of the sample distribution variance [Beh13, p. 292]:

var [IF (θ1)] ≈
1

N − 1

N
∑

i=1

(

IF (θ1)− P̂F

)2

=
1

N − 1

(

N
∑

i=1

IF (θ1)
2 −N · P̂ 2

F

)
(2.14)

where the second line results from equation (2.11). Using
∑N

i=1 IF (θi)
2 =

∑N
i=1 IF (θ1) =

N · P̂F , since IF (θi) is either 0 or 1, leads to

var [IF (θ1)] ≈
N

N − 1

(

P̂F

(

1− P̂F

))

(2.15)

and hence for the variance of the estimated failure probability

var
[

P̂F

]

≈
P̂F

(

1− P̂F

)

N − 1
(2.16)

The factor N − 1 compared to N in equation (2.13) arises from the fact that the failure

probability used in equation (2.14) is an estimated quantity instead of its expectation E
[

P̂F

]

=

PF , which would be the formal definition of the variance. This can be interpreted as loss

of information: For only one sample, the estimated probability is similar to the one and only

sample – i.e. 0 or 1 – and hence the first sample does not provide any information for the

variance. The factor N − 1 compensates this effect and leads to an unbiased estimator of the

variance. The proof can be found in [Beh13, p. 293].

For risk analysis, the variance is not informative without relation to the estimated probability.

Therefore, the coefficient of variation CoV is introduced, which is a standardized measure for

the variability of the estimation. It relates the square root of the variance (known as standard

deviation σ) to the mean:

CoV =

√

var
[

P̂F

]

E
[

P̂F

] (2.17)

The estimation error of the failure probability
(

P̂F − PF

)

usually follows a Gaussian distri-

bution. Hence, the coefficient of variation gives the standard deviation of the relative es-

timation error
(

P̂F − PF

)

/PF . This means that the estimated probability P̂F lies between

PF (1− CoV ) and PF (1 + CoV ) with a probability of approximately 68.3%, which is the

probability that a value lies within ±1σ for a standard Gaussian distribution. By inserting

equations (2.9) and (2.10) into (2.17), the CoV for Monte Carlo simulation is obtained:

CoV =

√

1− PF

NPF
≈

√

√

√

√

1− P̂F

NF
(2.18)

where NF is the number of failure samples. According to a rule of thumb for Monte Carlo
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simulation, the number of samples should be approximately ten times the inverse of the

probability N ≈ 10/PF . In average, this results in ten failure samples. Inserting this into

equation (2.18) leads to a CoV ≈ 0.3 for small failure probabilities where 1− P̂F → 1. Given

a specific probability, (2.18) can be used to calculate the required number of samples to obtain

a desired accuracy CoVdes:

Nreq =
1− PF

PF CoV 2
des

(2.19)

For small probabilities, the required number of samples is inversely proportional to the prob-

ability, i.e. it increases hyperbolically with decreasing probability. Writing the probability in

exponential form PF = m · 10−n, the statement is equivalent to an exponential growth of the

number of samples with increasing (negative) order of the probability n.

Note that according to (2.18), CoV can never be larger than one if there is at least one failure

sample. However, the assumption that the estimation error follows a Gaussian distribution

only holds if there are sufficient samples in the failure domain, which will be shown in the

next section. That this assumption cannot be true for high CoV can be deduced from the

following consideration: If CoV = 1, the lower single standard deviation bound would be

PF (1− CoV ) = 0. Since the estimated failure probability cannot be smaller than zero, it is

obvious that the resulting estimation error cannot be Gaussian distributed, which would mean

that with a probability of (1− 68.3%) /2 the estimated failure probability would be smaller

than zero.

2.3.3 Confidence Intervals

In this section, the assumption that the estimation error is Gaussian distributed will be justified

and an expression for the confidence interval of P̂F will be derived. For that, an interval around

the estimation P̂F is looked for that overlaps with the actual value of PF with a high probability

(1− α):

P
(

P̂low < PF < P̂up

)

= 1− α (2.20)

The interval
[

P̂low, P̂up

]

is referred to as (1− α) confidence interval. This means that P̂low <

PF < P̂up with a probability of (1− α) and only with a probability of α the failure probability

PF lies out of the interval, see figure 2.4. Exemplarily, α = 0.02 refers to the (1− α) = 98%

confidence interval, which means that the true failure probability PF lies within the estimated

confidence interval
[

P̂low, P̂up

]

with a probability of 98% and only with a chance of 2% outside.

The evaluation of a single sample can be compared to a Bernoulli trial with exactly two

possible outcomes: “failure” or “no failure”. The failure probability is the same every time the

experiment is conducted. The result of multiple Bernoulli trials follows a binomial distribution.

According to the De Moivre–Laplace theorem, a binomial distribution can be approximated by

a Gaussian distribution if the number of samples is large enough. A criteria for validity of the

De Moivre–Laplace theorem is that NPF (1− PF ) > 9 [CH13b, p. 95]. Figure 2.5 shows the
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Figure 2.4: Examples for double sided confidence intervals

binomial distribution and its Gaussian approximation for a failure probability PF = 0.2 and

different number of samples N . Mean and standard deviation of the approximating Gaussian

distribution are µ = NPF and σ =
√

NPF (1− PF ) respectively. To satisfy the validity

criteria for PF = 0.2, the number of samples must be higher than 56. For the displayed

cases with more than 60 samples (lower two plots in figure 2.5), a very good approximation is

recognizable.
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Figure 2.5: Approximation of binomial distribution by normal distribution
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Given that the validity criteria is fulfilled, the standardized arithmetic mean of the random test

PF,s =
P̂F − PF
√

var
[

P̂F

]

=
P̂F − PF

√

(PF (1− PF )) /N
(2.21)

is distributed according to a standard Gaussian distribution N (0; 1). Symmetric bounds lead

to the following definition of the confidence interval:

P
(∣

∣

∣P̂F − PF

∣

∣

∣ < c
)

= 1− α (2.22)

where c denotes an (initially unknown) upper bound for the estimation error.
(

P̂F − PF

)

is

Gaussian distributed, however it is not standard Gaussian distributed, which results in c being

not only a function of α but also of the variance of
(

P̂F − PF

)

. To cancel the dependency on

the variance, equation (2.21) is substituted in (2.22), which results in a normalized description

of the confidence interval:

P





∣

∣

∣P̂F − PF

∣

∣

∣

√

(PF (1− PF )) /N
<

c
√

(PF (1− PF )) /N



 = P
(

|PF,s| < z1−α/2

)

= 1− α

(2.23)

where z1−α/2 is the (1− α/2)-quantile of the standard Gaussian distribution, which now only

depends on α due to normalization by
√

var
[

P̂F

]

=
√

(PF (1− PF )) /N . The (1− α/2)-

quantile is the symmetric threshold ±z of the standardized Gaussian PDF φ (z) which is not

exceeded with a probability higher than α/2 at the lower and upper end of z, see figure

2.6. The quantile can be obtained using the inverse Φ−1 (z) of the Cumulative Distribution

Function (CDF) of the standard Gaussian distribution:

Φ (z) =
1√
2π

∫ z

−∞
e−t2/2dt (2.24)

φ(z; 0; 1)

1− α

α/2

z

α/2

−z1−α/2 z1−α/2

Figure 2.6: 1− α/2 quantile for standard normal distribution

Neither the CDF nor its inverse can be expressed in terms of elementary functions. A table

for common values of (1− α) is given in appendix A.2.
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Equation (2.23) can be rearranged to yield a quadratic inequality in PF :

∣

∣

∣P̂F − PF

∣

∣

∣

√

(PF (1− PF )) /N
< z1−α/2

(

P̂F − PF

)2

(PF (1− PF )) /N
< z2

1−α/2

(

P̂F − PF

)2
<

PF (1− PF )

N
z2

1−α/2

(2.25)

The solution of the inequality gives the following (1− α) confidence interval for PF :

N

N + z2
1−α/2





P̂F +
1

2N
z2

1−α/2 −
√

√

√

√

z2
1−α/2

N
P̂F

(

1− P̂F

)

+

(

z2
1−α/2

2N

)2




 < PF

<
N

N + z2
1−α/2





P̂F +
1

2N
z2

1−α/2 +

√

√

√

√

z2
1−α/2

N
P̂F

(

1− P̂F

)

+

(

z2
1−α/2

2N

)2






(2.26)

For estimation of failure probabilities, often only an upper bound is of interest, for the cases

that an event happens more likely than estimated. The single-sided confidence interval is

defined as (see also figure 2.7):

P
(

0 < PF < P̂up

)

= 1− α (2.27)

P̂
(1)
F

P̂
(2)
F

P̂
(3)
F

P̂
(4)
F

sample nr.

PF

P (1)
up

Figure 2.7: Examples for single sided confidence intervals

The equation for the upper bound can be derived analogously to the double-sided interval and

is given by:

0 < PF <
N

N + z2
1−α





P̂F +
1

2N
z2

1−α +

√

√

√

√

z2
1−α

N
P̂F

(

1− P̂F

)

+

(

z2
1−α

2N

)2




 (2.28)
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which is similar to equation (2.26) with the only difference that here the z2
1−α confidence

threshold is used instead of z2
1−α/2, which ensures that still with only a single-sided confidence

interval the overall probability of exceeding the specified interval is α.

Reformulation of equation (2.23) and setting z1−α/2 = 1, which corresponds to a single

standard deviation with (1− α) = 68.3%, leads to

∣

∣

∣P̂F − PF

∣

∣

∣ <

√

PF (1− PF )

N
= PF · CoV (2.29)

Hence, the coefficient of variation CoV corresponds to the standardized confidence interval
∣

∣

∣P̂F − PF

∣

∣

∣ /PF for (1− α) = 68.3%. Due to the unknown probability PF , the CoV in equa-

tion (2.18) can only be approximated using the estimated probability P̂F . In contrast, the

confidence intervals given in equations (2.26) and (2.28) only depend on known quantities.

For both the CoV as well as the confidence intervals, the De Moivre-Laplace theorem must be

fulfilled to obtain valid results.

A more general and easy to calculate upper bound for the estimation error is given by Cheby-

shev ’s inequality. It is defined by [BN87, p. 219]:

P
(∣

∣

∣P̂F − PF

∣

∣

∣ < ε
)

≥ 1− σ2

ε2
(2.30)

Substituting σ2 by the equation for the variance of the binomial distribution, an upper bound

for the estimated failure probability is obtained:

P
(∣

∣

∣P̂F − PF

∣

∣

∣ < ε
)

≥ 1− PF (1− PF )

N
· 1

ε2
(2.31)

The main advantage of Chebyshev ’s inequality is that it is valid for any arbitrary distribution,

especially if it is very different from a Gaussian distribution. On the other hand, it is a very

weak upper bound in case that samples are approximately Gaussian distributed as in the case of

risk analysis. Figure 2.8 compares exemplarily the upper bound given by Chebyshev ’s inequality

to confidence intervals calculated by equation (2.26). The ε required for equation (2.31) is

obtained by comparison of equations (2.22) and (2.30):

ε = c⇒ ε = z1−α/2

√

PF (1− PF )

N
(2.32)

It can be seen that the intervals obtained by Chebyshev ’s inequality are much higher, especially

for high levels of confidence (1− α). Although Chebyshev ’s bounds are easy to calculate, their

conservativeness makes them impractical in the context of failure probability estimation.
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Figure 2.8: Comparison between Chebyshev’s inequality and confidence intervals for PF =
10−6, N = 109

2.3.4 Conclusions on Standard Monte Carlo Simulation

Since its invention in the 1940s, Monte Carlo simulation has proven to be a valuable method

for stochastic analysis. It is easy to understand and implement. Furthermore, it is a black box

method: it is sufficient to consider only inputs and outputs of a system while no knowledge

of its internal working is required. The algorithm allows a high level of parallelization, which

makes it efficient for many applications. However, the required number of samples grows

hyperbolically with decreasing probability, which makes conventional Monte Carlo simulation

no viable option for estimation of small probabilities.

2.4 Introduction to Variance Reduction Techniques

The performance of stochastic simulation methods is determined by the product of cost and

variance, i.e. lower computational cost and lower variance of the estimation characterize a

more performant algorithm. Such algorithms are referred to as variance reduction techniques,

where either the variance with respect to a given number of samples is reduced or the number

of samples, which highly correlates with computational cost, for a desired variance. This can

be achieved through a more efficient investigation of rare events by generating more failure

samples. Variance reduction techniques can be divided into two groups:

• Direct simulation: More samples in the failure region are directly generated using

preknowledge about the system and its failure modes.

• Adaptive simulation: New samples closer to failure region are adaptively generated in

the course of evaluation based on older samples.

Loosing generality and robustness comes along with most variance reduction techniques. While

there are for example efficient algorithms for evaluation of failure events for linear systems,
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these algorithms are usually not applicable to the general case. The subsequent sections will

describe variance reduction techniques that are of relevance for this research. For a general

overview of enhanced stochastic algorithms beyond the ones presented here, see e.g. [RT09,

GT13].

2.5 Importance Sampling

2.5.1 Algorithm

Importance Sampling (IS) is a representative of direct simulation methods. The idea is that

certain realizations of uncertain parameters, i.e. regions in the uncertain parameter domain,

have more impact on the estimated failure probability. Hence, instead of using the origi-

nal distribution of the uncertain parameters Q (θ) for generation of samples, an importance

sampling probability density function, also refereed to as importance sampling density S (θ)

is chosen. This density utilizes pre-knowledge to directly generate more samples in relevant

regions. Since this would lead to a biased failure probability estimation using the standard

Monte Carlo estimator (2.8), the estimator is adjusted by weighting the individual samples

with the likelihood ratio, which is the ratio of the probability of the original to the importance

sampling density:

PF =
∫ Q (θ)

S (θ)
IF (θ) S (θ) dθ = ES

[

Q (θ)

S (θ)
IF (θ)

]

(2.33)

The subscript S of the expectation ES denotes that the samples of the uncertain parameter

vector θ are distributed according to the importance sampling density S (θ). The probability

can be estimated using equation (2.34) if the samples θi, i = 1 . . . N are distributed according

to S (θ):

P̂F =
1

N
·

N
∑

i=1

Q (θi)

S (θi)
IF (θi) (2.34)

The importance sampling algorithm is very similar to the conventional Monte Carlo algorithm

and can be formalized as follows:

Importance Sampling algorithm

1. Generate N independent and identically distributed uncertain parameter samples

θi, i = 1 . . . N distributed according to an importance sampling density S (θ).

2. For each sample, run a simulation to obtain the according system response x (θi),

evaluate the indicator function IF (θi) and calculate the likelihood ratio Q (θi) /S (θi).

3. Average the products of indicator function and likelihood ratio of all samples using

equation (2.34).
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2.5 Importance Sampling

2.5.2 Variance Estimation

According to [AW14, pp. 48-49], the coefficient of variation of the Importance Sampling failure

probability estimation (2.34) can be calculated by

CoVIS =

√

√

√

√

CoV 2
F + 1

PF,S
− 1 (2.35)

where PF,s is the probability that a sample θ drawn from the importance sampling density

S (θ) is a failure sample, i.e. that the indicator function IF (θ) = 1:

PF,s =
∫

IF (θ) S (θ) dθ (2.36)

CoVF describes the variability of the likelihood ratio in the failure region, where the expectation

in the denominator is used for normalization of the variance:

CoVF =

√

var
[

Q(θ)
S(θ)
|F
]

E
[

Q(θ)
S(θ)
|F
] (2.37)

Figure 2.9 shows exemplary importance sampling densities S1 (θ) and S2 (θ) where the re-

sponse variable is chosen to be equal the uncertain parameter r = θ and the objective is

to find P (r > θlimit). The shaded areas indicate the probability that a sample drawn from

the importance sampling density lies in the failure region, which is calculated by (2.36). The

importance sampling density S1 (θ) results in a lower variability of the likelihood ratio, which

is the ratio between the original uncertain parameter distribution Q (θ) and the importance

sampling density S (θ) in the failure region. The ratio Q (θ) /S1 (θ) changes much less over θ

than the ratio Q (θ) /S2 (θ).

S2 (θ)S1 (θ)

Q (θ)

θ

Probability density

PFθlimit

QF for S1

QF for S2

Figure 2.9: Variability of the likelihood ratio in the failure region

According to equation (2.35), the number of samples in the failure region must be maximized

and the variability of the likelihood ratio minimized to minimize the variance of importance

sampling estimations. Theoretically, the coefficient of variation CoVIS of the estimated prob-

ability can be zero, i.e. the failure probability can be perfectly estimated without any error.
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This is the case if the importance sampling density is the original parameter distribution Q (θ)

conditional on the failure region:

S (θ) = Q(θ|F ) = Q (θ)
IF (θ)

PF
(2.38)

which means that all samples lie in the failure domain and their relative distribution is equal

to the original distribution. The ideal distribution is shown in figure 2.10. Unfortunately,

samples cannot be directly drawn from this distribution since the probability PF is usually

unknown and the evaluation of IF (θ) is computationally expensive. However, it underlines

the requirement that an adequate importance sampling density S (θ) should lead to many

failure samples and has a small variability of the likelihood ratio in the failure region. On

the contrary, an unfavorable importance sampling density could lead to a worse variance than

conventional Monte Carlo simulation.

S (θ) = Q (θ|F )

QF = 1Q (θ)

θ

Probability density

PF

Figure 2.10: Ideal importance sampling distribution

2.5.3 Selection of the Importance Sampling Density

Selection of the Importance Sampling density is a challenging task and usually requires knowl-

edge about probable failure regions. In civil engineering, methods are applied that approximate

the failure region based on most probable points [ZO99, KC06]. These points in the uncertain

parameter domain theoretically give the highest probability of failure occurrence. One idea

for generation of an importance sampling density is to use densities centered on such most

probable points. This concept is referred to as “shifting distribution”, especially if the original

parameter distribution is kept and only the mean is shifted to the location of the most probable

points [DC00].

To illustrate this, consider the following example: The problem is described by two uncertain

parameters θ1 and θ2. Both follow a standard Gaussian distribution, i.e. a Gaussian distribution

with zero mean and unit variance. The failure domain is described by hyperbolas that fulfill

the equation

θ2
1 − θ2

2 > 32 (2.39)
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For this example, the most probable points can be determined analytically, which are the points

of the hyperbolas θ2
1 − θ2

2 = 32 that are closest to the origin. Figure 2.11 shows samples θi

generated by conventional Monte Carlo simulation in the upper plot and Importance Sampling

in the lower plot, where the original parameter distribution is shifted to the two design points.

While for conventional Monte Carlo simulation only very few samples lie in the failure region,

with importance sampling the number of failure samples is much higher.
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Figure 2.11: Samples for conventional Monte Carlo and Importance Sampling. (a) Conven-
tional Monte Carlo sampling; (b) Importance sampling

Ideally, the importance sampling estimator has the same properties as the standard Monte Carlo

estimator, i.e. the estimation is bias-free and convergence to the actual failure probability is

given for large number of samples. However, this only holds as long as the importance sampling

density is correctly chosen. Assume the case that in the previous example only the left most

probable point θ(1) is considered for the Importance Sampling density. This leads to a total

neglection of the right failure region and hence the estimated failure probability is biased.

Figure 2.12 shows exemplary simulation histories for the estimated failure probability P̂F versus

number of samples for conventional Monte Carlo simulation as well as Importance Sampling

with correct and incorrect importance sampling density. The estimated probability for Monte

Carlo simulation shows a high variation due to the low number of samples in the failure region

and converges only slowly to the actual failure probability of PF = 1.8e − 3. In contrast,

the results for importance sampling both quickly converge to a certain value. However, the

convergence of the importance sampling with only a single design point (dotdashed line) is

deceptive since it converges to a wrong value.
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Figure 2.12: Simulation histories for the estimated failure probability using Monte Carlo and
Importance Sampling; dashed line is true failure probability PF

2.5.4 Conclusions on Importance Sampling

The importance sampling density must be carefully chosen to obtain correct results, especially

since a wrong choice can result in a deceptive convergent result towards a biased probability.

Although there exist methods for linear systems to identify the most probable points, this is

not the case for general systems. There are attempts to apply importance sampling in high

dimensions [AB03], however it is virtually impossible to design an importance sampling density

for a high number of uncertain parameters that correctly covers the most probable areas in

the high-dimensional parameter space. Nevertheless, importance sampling can be a useful tool

for certain cases or to efficiently re-evaluate estimations after approximate failure regions were

identified using other algorithms.

In the next chapter, a powerful method is described that does not need any preknowledge

about the system and is nevertheless able to efficiently generate more samples in relevant

regions. Although this method does not reach the performance of ideal Importance Sampling,

it is much more robust and easier to apply.

2.6 Subset Simulation

2.6.1 Introduction

A high number of samples is required for conventional Monte Carlo simulation to obtain

sufficient samples in the failure region and hence an adequate confidence in the estimated

failure probability. The idea of Subset simulation is to describe a highly improbable event

leading to a failure F by a sequence of conditional failure events with higher conditional

27



2.6 Subset Simulation

failure probabilities Fi:

PF =
m
∏

k=1

P (Fk|Fk−1) =
m
∏

i=1

PFk
(2.40)

where m is the number of conditional failure levels and Fk are the conditional failure events

with decreasing probability F0 = R
k ⊃ F1 ⊃ . . . ⊃ Fm = F . P (Fk|Fk−1) is the conditional

failure probability, i.e. the probability that the event Fk happens given that the samples lie in

the failure region Fk−1. The procedure is explained using figure 2.13. Subfigure a) shows the k-

dimensional parameter domain, the failure domain F for which the probability of occurrence is

looked for and samples generated by conventional Monte Carlo simulation distributed according

to the distribution of the uncertain parameter vector Q (θ). Instead of increasing the number

of samples to obtain samples in the failure domain F , a conditional failure domain F1 ⊃ F

is introduced, which is a superset of F (subfigure b). The probability for the intermediate

failure event F1 is usually much larger than the probability of the actual failure event F . Hence

considerably less samples are required to accurately estimate the conditional failure probability

PF1. The first failure domain is also referred to as first subset, since it is a subset of the overall

parameter space. In the next step, samples distributed according to Q(θ|F1) are generated

based on the samples already lying in F1, see subfigure c). The samples are distributed similar

to their original distribution Q (θ) but conditional on the first subset, i.e. only samples lying

in the first conditional failure region F1 are generated. This distribution is described by

Q(θ|F1) = Q (θ)
IF1 (θ)

PF1

(2.41)

By definition, all of these samples lie within the failure region F1 and hence are in average

closer to the target failure region. If there are still not sufficient samples in the actual failure

domain F , the procedure is repeated. This is shown exemplarily in subfigure d), where another

intermediate failure domain F2 ⊂ F1 is introduced, which is a subset of the first conditional

failure domain F1 and hence is also referred to as second subset. Now, samples are generated

conditional on the failure domain F2 according to Q(θ|F2) (subfigure e). In the example,

sufficient samples of the second subset lie in the actual failure domain F , see subfigure f).

In general, this procedure is repeated until there are sufficient samples in the target failure

region and the conditional probability P (F |Fk) is large enough. In practice, the intermediate

failure events are defined by increasing limit values of the response variable r. This means if

PFi
= P (r < ri,limit), then r1,limit < r2,limit < . . . < rk,limit = rlimit. Since the conditional

probabilities are relatively high compared to the target probability, the number of samples

required to obtain accurate estimates of the conditional failure probabilities and hence the

total number of samples to estimate the failure probability is lower – this will be discussed

in detail in section 2.6.4. Eventually, the actual failure probability PF is the product of the

conditional failure probabilities, see equation (2.40).

The high number of samples close to and in the failure region facilitates detailed failure
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Figure 2.13: Principle idea of Subset simulation

analysis, i.e. evaluation of failure causes and consequences, since each sample is linked to

an individual scenario leading to the failure event. Furthermore, the gradual generation of

samples towards the failure region enables accurate estimation of the CDF and especially

the Complementary Cumulative Distribution Function (CCDF) of the response variable. In

contrast to the conventional CDF, which describes the probability that a random value lies

within an interval from minus infinite to a certain threshold X, the CCDF gives the probability

that a random variable lies above a particular threshold X. It is defined as

Q̄ (X) = P (x > X) =
∫ ∞

X
q (x) dx = 1−Q (X) (2.42)

where Q (x) and Q̄ (x) denote the cumulative and complementary cumulative distribution

function respectively and q (x) the probability density function, see also figure 2.14. The

main advantage of the CCDF is the direct information about the probability of exceeding

any arbitrary threshold X. Particularly, for risk analysis this means that for any threshold
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CCDF Q̄ (x)CDF Q (x)
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Figure 2.14: Complementary cumulative distribution function

X the according probability of exceedance can be directly obtained and vice versa, for a

certain admissible failure probability the according threshold X directly results. Although the

conventional CDF indirectly offers the same information, the CCDF enables direct access to this

information, which is valuable for risk analysis. To obtain the CCDF from Subset simulation

results, the definition of the response variable equation (2.3) is utilized: The probability of

failure, or more general the probability that the response variable r exceeds a certain threshold

rlimit, is determined by the ratio of samples lying above the threshold to the total number

of samples. Since the actual response variable r of each sample is known, the comparison

with arbitrary limit values rlimit can be performed by post-processing with low computational

effort. To obtain the CCDF, consequently the limit value can be defined as rlimit = x, with

x = −∞ . . . X, and by counting the samples lying above the individual threshold and division

by the total number of samples, the according value of the CCDF Q(x) is obtained.

The main challenge of Subset simulation is the generation of conditional failure samples that

are distributed according to Q(θ|Fi). These conditional distributions are usually no standard

distributions and not a priori known, which renders direct generation of samples impossible.

For that task, Markov Chain Monte Carlo (MCMC) simulations are used where conditional

failure samples are generated based on previous samples. Hence, Subset simulation counts to

the adaptive simulation methods among the variance reduction methods.

In the following, first MCMC with the underlying theory is introduced, followed by the descrip-

tion of the Subset algorithm and an analysis of the achievable estimation variance reduction.
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2.6.2 Markov Chain Monte Carlo

Introduction

Markov Chain Monte Carlo simulation uses Markov chains for generation of samples from

arbitrary distributions. It is especially used when samples cannot or not efficiently be generated

directly from a known distribution. In a later step it will be explained how Markov Chain Monte

Carlo supports rare event sampling, specifically the generation of conditional failure samples

where the conditional failure distributions are actually unknown.

Markov Chains

A Markov chain is a stochastic process that satisfies the Markov property, which is also referred

to as memoryless property. This property says that the future states of a Markov chain only

depend on the current state. A Markov chain is fully described by its initial state and the

transition probabilities that describe the transition from the i-th chain state θ(i) to the (i+1)-

th state θ(i+1). For Markov chains with discrete state space, the transition probability is given

by a transition matrix, see also figure 2.15 for an example with a Markov chain with only two

possible states x1 and x2.

State
x1

State
x2

P1,2 = 0.3

P2,1 = 0.8

P2,2 = 0.7P1,1 = 0.2

P =

[

0.2 0.3
0.8 0.7

]

Figure 2.15: Discrete-state Markov chain with two states

The counterpart to the transition matrix in continuous state space is the transition probability

density function. Figure 2.16 shows a single discrete time Markov chain with continuous state

space. θ(i) denotes the state of the Markov chain at the i-th step where the superscript in

brackets denotes the step number and is not to be understood as exponent. Each chain element

can take an arbitrary value within a continuous parameter space in contrast to the discrete

chain example in figure 2.15, where the only possible values are x1 and x2. The transition

from one chain element to the next – i.e. from one state to the next – is described by the

conditional transition probability density function Pθ(2)|θ(1) (b|a) that describes the probability

of θ(2) being equal to b given that θ(1) is a.

For further analysis, it is useful to introduce an ensemble of Markov chains, which is the

aggregation of multiple Markov chains with the same properties, i.e. same transition probability

density functions, but with different initial values, see figure 2.17.
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Figure 2.16: Time descrete Markov chain with continuous states
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Figure 2.17: Discrete time Markov chain with continuous states

In the following, only discrete time Markov chains with continuous state space are considered

since only those are suitable for generation of samples from arbitrary distributions. For more

information on Markov chains with discrete state space it is referred to literature, e.g. [Beh00].

For generation of samples from an arbitrary distribution, a Markov chain is required that has

the desired distribution as equilibrium distribution. For a single Markov chain, equilibrium

distribution means that the aggregation of all samples after n burn-in steps [θ(n+1), θ(n+2), . . .]

follows a constant distribution. For a chain ensemble, the same explanation holds, however

if the size of the ensemble is large enough, also the components of the individual chain

elements after the burn-in phase θ(n+1) =
[

θ1
(n+1), θ2

(n+1), . . .
]

follow a constant distribution.

This constant distribution is referred to as equilibrium distribution. A Markov chain does

not necessarily have an equilibrium distribution. A sufficient condition for a Markov chain to

converge to an equilibrium distribution is that it fulfills the detailed balance criterion and is

ergodic.

Detailed Balance Criterion

The detailed balance criterion is also referred to as reversibility. If fulfilled, the transition rate

is uniform between two arbitrary states when the Markov chain is in its stationary state. The

detailed balance criterion can be written as

Pθ(i+1)|θ(i) (b|a) Pe (a) = Pθ(i+1)|θ(i) (a|b) Pe (b) (2.43)

where Pe is the equilibrium distribution of the Markov chain. For a chain ensemble, this

criterion reads as follows: If the components of the n-th element of a chain ensemble θ(n)

are distributed according to the equilibrium distribution Pe, then the samples of all θ(n+i), i =
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1, 2, . . . are distributed according to this distribution. Figure 2.18 shows an example where

a chain ensemble with 100 components θ1 . . . θ100 is initiated according to the equilibrium

distribution, indicated by the black solid line. Note that this line is not the approximated

distribution extracted from the samples but the target distribution, i.e. the distribution the

samples should have. To obtain finer resolution of the histogram, plots were obtained using

40 individual chain ensembles with 100 components each. A histogram gives the number of

samples in defined intervals, i.e. the height of the bars represent the number of samples lying

within the according bin. Using a transition probability that ensures detailed balance (discussed

later), also the second and tenth chain element follows the same equilibrium distribution.

Deviations are caused by statistical outliers.
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Figure 2.18: Markov chain ensemble with stationary initiation that fulfills detailed balance
condition; plots are for first, second and 10th step; solid line indicates target distribution

While the detailed balance criterion ensures that a Markov chain stays in its equilibrium state,

it is not ensured that it converges to the equilibrium state for arbitrary initial conditions.

Ergodicity

A Markov chain with discrete states is called ergodic if it is possible to go from every state to

every other state, however which must not necessarily be possible in one step. For a continuous

state space, this means that there is a non-zero probability that the Markov chain visits any

area in the state space. If a Markov chain is ergodic, then it is guaranteed that if the initial

chain ensemble θ(1) is distributed according to any arbitrary distribution S, it converges to the

equilibrium distribution Pe:

lim
n→∞

Sθn (a) = Pe (·) (2.44)

where Sθn (a) denotes the distribution of the chain states at the n-th step, if the chain is

initialized with θ(1) = a. This criterion holds for a chain ensemble as well as for a single chain,

where the aggregation of all chain elements after the n-th step are distributed according to

the equilibrium distribution Pe. No algorithm exists that ensures ergodicity of a Markov chain.

However, several examples are given below to show the contributing factors that influence

ergodicity.

First, assume a chain ensemble with 10000 Markov chains that are all initialized with the
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same value 0.4, see figure 2.19. After the first step, the components of the chain ensemble

start to diversify. Already the components of the fifth chain element (i.e. after the fourth

step) are almost perfectly distributed according to the equilibrium distribution, which is again

indicated by the solid line. The steps until the chain reaches its equilibrium are called burn-in.

The Markov chain used in this example is obviously ergodic. In the next example, a single
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Figure 2.19: Markov chain ensemble with non-stationary initiation that fulfills detailed bal-
ance criterion; plots are for first, second and fifth step; solid line indicates target distribution

Markov chain is considered which is initiated with a value of θ(1) = 0.5. Figure 2.20 shows

the histograms of the initial state as well as the aggregation of the states of the first 100

and first 500 steps, i.e. where a random vector is composed by all samples from the first to

the 100th and 500th step respectively. The black solid line represents the target distribution

while the blue solid line is the approximated probability distribution based on the values of the

samples shown by the histogram. The higher the number of considered samples, the better

the equilibrium distribution is approximated. The lower graph shows the history of the Markov

chain for all steps. Here it becomes apparent that the Markov chain performs a random

walk where more probable regions of the equilibrium distribution are more often visited than

others. The shaded background is a contour plot for the the approximate distribution of the

aggregated samples up to the respective chain index. It gives the approximated probability

density indicated by the blue lines in the upper figure, where darker regions indicate higher

probabilities and vice versa. While the approximation is inaccurate and changes rapidly for

lower number of samples, there are no more substantial changes of the resulting distribution

after approximately 400 samples, hence it can be said that in this example the stationary

distribution is well sampled, if the number of considered samples is larger than 400.

The random walk process can cause non-ergodicity if the desired distribution has non-connected

regions. This is the case for the example given in figure 2.21. The plots have the same meaning

as in the previous example. However, in this case the desired distribution has two separated

regions and a gap in the middle. Due to a relatively small step size of the random walk process,

the Markov chain cannot leave one subspace and hence the distribution of the aggregated

samples does not converge towards the desired distribution. However, if a chain ensemble

is initiated according to the equilibrium distribution, the chain again converges towards the

equilibrium. This is shown in figure 2.22, where the simplest case was chosen with a chain
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Figure 2.20: Single ergodic Markov chain with cumulative histograms up to the first, 100th
and 500th chain sample
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Figure 2.21: Single non-ergodic Markov chain with cumulative histograms up to the first,
100th and 500th chain sample

ensemble comprising two Markov chains, each initiated in one of the two separated regions.

Furthermore, the average step size of the Markov chain is specified by the transition probability
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density function. A wider transition PDF leads to bigger steps while a narrower transition PDF

leads to smaller steps. Figure 2.23 give the results of the single chain example but with a
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Figure 2.22: Ensemble of two non-ergodic Markov chains initialized according to the sta-
tionary distribution; cumulative histograms up to the first, 100th and 500th chain sample
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Figure 2.23: Single ergodic Markov chain with higher step width; cumulative histograms up
to the first, 100th and 500th chain sample
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bigger step size. Although this enables convergence to the equilibrium distribution with only

one chain, bigger steps come along with other disadvantages, which will be discussed in the

next section.

To summarize, ergodicity depends on the shape of the desired distribution as well as on the

algorithm used to generate the transition probability density function. The desired distribution

is usually connected, preventing non-ergodicity. The influence of the algorithm is discussed in

the next chapter.

Generation of Markov Chains

There exist several ways to generate Markov Chains that fulfill the detailed balance criterion.

The most common and fundamental method is the Metropolis algorithm [Met+53]. Many

other algorithms are based on the original Metropolis algorithm, which is why it is explained

in detail first.

The Markov chain fulfills a random walk where the next state only depends on the current

state. The following Metropolis algorithm can be used to calculate the transition from one to

the next state of a Markov chain, where the equilibrium distribution Pe is equal to the desired

distribution D. The individual steps are discussed in detail below.

Metropolis algorithm for generation of samples from arbitrary distributions

1. Generate a candidate uncertain parameter vector θ∗(i+1) from a proposal density

P ∗
(

·; θ(i)
)

, where P ∗
(

·; θ(i)
)

is a symmetric distribution about the current chain

state θ(i).

2. Calculate the acceptance ratio r with the desired distribution D:

r = min





D
(

θ∗(i+1)
)

D
(

θ(i)
) , 1



 (2.45)

3. Set the new chain state: Generate a random number p from a uniform distribution

in the range from 0 to 1.

θ(i+1) =







θ∗(i+1) if p < r

θ(i) otherwise
(2.46)

In the first step, a candidate uncertain parameter vector θ∗(i+1) is generated where i is the

current chain index and the asterisk denotes the candidate. The uncertain parameter vector of

the current chain index θ(i) is referred to as seed vector, since it is the seed from which the next

chain state is generated. The multivariate proposal density P ∗
(

·; θ(i)
)

describes the probability

distribution of θ∗(i+1) which is centered at the current chain state θ(i). This distribution must

be symmetric about θ(i). The notation must not be confused with conditional distributions,

where the arguments would be separated by a vertical bar P ∗ (·|·). While the first argument of
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the distribution denotes the k-dimensional uncertain parameter vector for which the probability

of occurrence is calculated, the second argument – separated by a semicolon – represents a

parameter of the distribution, which in this case is the center of the distribution. Often a

Gaussian N or uniform distribution U is used where the mean is equal to θ(i), see figure 2.24.

probability
distribution

probability
distribution

θ(i)

θ(i)

θ∗(i+1)

θ∗(i+1)

P ∗
(

·; θ(i)
)

= N
(

θ(i); Σ2
)

P ∗
(

θ∗(i+1); θ(i)
)

P ∗
(

·; θ(i)
)

=

U
(

θ(i) −W /2; θ(i) + W /2
)

P ∗
(

θ∗(i+1); θ(i)
)

W

D (·)

D (·)

Figure 2.24: Different proposal densities for the Metropolis algorithm; top: normal distribu-
tion, bottom: uniform distribution

The width of the proposal distribution P ∗ can be interpreted as the step width of the random

walk. Small step widths lead to slow progress of the chain. Hence, it can take many steps

until the chain reaches its equilibrium distribution and the whole parameter space is adequately

sampled. In contrast, bigger steps could lead to a faster convergence of the chain to its

equilibrium distribution. However, the reasonable maximum step size is limited by the second

step of the Metropolis algorithm.

In step two, the acceptance ratio r is calculated, which is the ratio of the probability of the

desired distribution D (·) at the candidate θ∗(i+1) and the seed θ(i), see figure 2.25. The

acceptance ratio represents the probability with which the candidate is accepted in the third

step. Since the probability of acceptance cannot be higher than one, the acceptance ratio r in

equation (2.45) is bounded above by one. The candidate parameter vector is accepted with

a probability r: This means, that using a random number distributed according to a uniform

distribution between 0 and 1, the candidate is accepted if the random number is smaller than

the acceptance ratio r. Otherwise, the seed is kept and is used as the new state. From the

equation for the acceptance ratio follows that the candidate parameter is always accepted if it

is more probable than the seed vector. As opposed to this, candidates that are less probable
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probability
distribution

θ(i) θ∗(i+1)

P ∗
(

·; θ(i)
)

D
(

θ∗(i+1)
)

D
(

θ(i)
)

D (·)

Figure 2.25: Desired and proposal distribution for the calculation of the acceptance ratio

than the seed are only accepted with a probability smaller than one. For large step widths, the

acceptance ratio tends to zero and hence the chain does not move anymore. This is shown in

figure 2.26. Larger step widths correspond to higher variances of the proposal density P ∗. For
probability
distribution

θ(i) θ∗(i+1)

P ∗
(

·; θ(i)
)

D
(

θ∗(i+1)
)

≈ 0

D
(

θ(i)
)

D (·)

Figure 2.26: Decreasing acceptance ratio with increasing width of proposal density P ∗

large proposal widths – as shown in figure 2.26 – the probability that a candidate θ∗(i+1) lies far

from the desired distribution D (·) is high, which results in D
(

θ∗(i+1)
)

≈ 0 and consequently

the acceptance ratio (2.45) tends to zero. A safe strategy is to choose the spread of the

proposal density P ∗ to be of the same order as the spread of the desired distribution [AW14,

p. 123].

The Metropolis algorithm generates Markov chains that fulfill the detailed balance criterion

and where the equilibrium distribution is equal to the desired distribution D (·). This can

be proven as follows: The transition probability density is denoted as Pθ(i+1)|θ(i) (b|a) and

describes the probability distribution of the next uncertain parameter vector θ(i+1) given the

current vector θ(i). The values a and b are exemplary realizations of the current and next

uncertain parameter vector. This transition probability can be split up in two parts:

Pθ(i+1)|θ(i) (b|a) = PA (a) · Pθ(i+1)|θ(i) ((b|a) |A)

+ (1− PA (a)) · Pθ(i+1)|θ(i)

(

(b|a) |Ā
) (2.47)
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The first term on the right describes the case that a candidate is accepted as new state,

which happens with an acceptance probability PA (a) while the second term stands for the

case that a candidate is rejected and hence the new state is equal to the seed. The acceptance

probability can be obtained by solving the integral of the product of proposal density P ∗ (·)
and the acceptance ratio r:

PA (a) =
∫

P ∗ (θ; a) min

(

1,
D (θ)

D (a)

)

dθ (2.48)

PA (a) can be interpreted as probability that a candidate b is accepted given that the current

chain state is a, see figure 2.27. The transition probability given that the candidate vector b

probability
distribution

θa

D (·)
P ∗ (θ; a)

P ∗ (θ; a) ·min
(

1, D(θ)
D(a)

)

PA (a)

Figure 2.27: Acceptance probability of the Metropolis algorithm

is accepted can be written as

Pθ(n+1)|θ(n) ((b|a) |A) = PA (a)−1 P ∗ (b; a) min

(

1,
D (b)

D (a)

)

(2.49)

where the inverse of the acceptance probability ensures that the transition probability distribu-

tion Pθ(i+1)|θ(i) ((·|a) |A) integrates to one. The transition probability given that the candidate

is rejected is a Dirac delta function δ (x), which is +∞ if x = 0 and zero otherwise:

Pθ(n+1)|θ(n)

(

(b|a) |Ā
)

= δ (a − b) (2.50)

Inserting equations (2.49) and (2.50) in (2.47) gives the transition probability Pθ(i+1)|θ(i) (b|a).

Pθ(i+1)|θ(i) (b|a) = P ∗ (b; a) min

(

1,
D (b)

D (a)

)

+ (1− PA (a)) · δ (a − b) (2.51)

To prove that the Markov chain constructed using the Metropolis algorithm is reversible, the

following condition must be fulfilled:

Pθ(i+1)|θ(i) (b|a) D (a) = Pθ(i+1)|θ(i) (a|b) D (b) (2.52)

The proof for the rejection case, i.e. a = b is trivial. To prove the acceptance case, equation
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(2.51) is multiplied by the distribution D (·):

Pθ(i+1)|θ(i) (b|a) D (a) = P ∗ (b; a) min

(

1,
D (b)

D (a)

)

D (a)

= P ∗ (a; b) min

(

1,
D (a)

D (b)

)

D (b)

= Pθ(i+1)|θ(i) (a|b) D (b)

(2.53)

where for the second line symmetry of the proposal distribution P ∗ (b; a) = P ∗ (a; b) as well

as the fundamental identity min (1, x/y) · y = min (1, y/x) · x are used. This proves detailed

balance of the Markov chain generated by the Metropolis algorithm.

In case that the candidate uncertain parameter vector is not accepted, the Metropolis algorithm

requires to use the seed vector as new chain state θ(i+1), i.e. the old chain state is kept as new

state. This leads to a higher correlation between samples which is unfavorable for statistical

estimation. One could have the idea to modify the Metropolis algorithm in a way that new

candidate uncertain parameter vectors are repeatedly generated until a candidate is accepted,

which leads to the following (wrong) algorithm:

Wrongly modified Metropolis algorithm using repeated sampling

1. Generate a candidate uncertain parameter vector θ∗(i+1) from a proposal density

P ∗
(

θ∗(i+1); θ(i)
)

, where P ∗
(

θ∗(i+1); θ(i)
)

is a symmetric distribution about the

current chain state θ(i).

2. Calculate the acceptance ratio r with the desired distribution D:

r = min





D
(

θ∗(i+1)
)

D
(

θ(i)
) , 1



 (2.54)

3. Set the new chain state: Generate a random number p from a uniform distribution

in the range from 0 to 1.

θ(i+1) =







θ∗(i+1) if p < r

otherwise repeat steps 1-2 with old seed
(2.55)

In this case, the transition probability density Pθ(i+1)|θ(i) (b|a) is the transition probability of

the original Metropolis algorithm conditional on the case that the candidate is accepted, see

(2.49).

Pθ(i+1)|θ(i) (b|a) = Pθ(i+1)|θ(i) ((b|a) |A) = PA (a)−1 P ∗ (b; a) min

(

1,
D (b)

D (a)

)

(2.56)

Similar to the proof for the original Metropolis algorithm, multiplication by the desired distri-
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bution gives

Pθ(n+1)|θ(n) (b|a) D (a) = PA (a)−1 P ∗ (b; a) min

(

1,
D (b)

D (a)

)

D (a)

= PA (a)−1 P ∗ (a; b) min

(

1,
D (a)

D (b)

)

D (b)

(2.57)

where in the second line the same transformations are made as for equation (2.53). By

comparison of (2.57) and the detailed balance condition (2.52) one can see that detailed

balance is only ensured for the trivial case that a = b, i.e. PA (a) = PA (b). For the general

case, it is not ensured that PA (a) = PA (b) holds and therefore the incorrect algorithm with

resampling in case of rejection leads to Markov chains that do not fulfill the detailed balance

condition. Hence it is not ensured that samples generated by such a wrongly modified algorithm

are distributed according to the desired distribution D (·). However, there exist algorithms that

increase the acceptance probability and which ensure detailed balance. Since they require many

additional evaluations of the desired distribution, which is usually computationally expensive

in the scope of failure probability estimation, such algorithms are not further discussed here.

For an example of such an algorithm, see e.g. [GM01].

Metropolis-Hastings Algorithm

Hastings generalized the Metropolis algorithm to also allow for non-symmetric proposal distri-

butions P ∗ [Has70]. The resulting Metropolis-Hastings algorithm is as follows:

Metropolis-Hastings algorithm for generation of samples from arbitrary distributions

1. Generate a candidate uncertain parameter vector θ∗(i+1) from a proposal density

P ∗
(

·; θ(i)
)

, where P ∗
(

·; θ(i)
)

is an arbitrary distribution centered at the current

chain state θ(i).

2. Calculate the acceptance ratio r with the desired distribution D:

r = min





D
(

θ∗(i+1)
)

D
(

θ(i)
)

P ∗
(

θ(i); θ∗(i+1)
)

P ∗
(

θ∗(i+1); θ(i)
) , 1



 (2.58)

3. Set the new chain state: Generate a random number p from a uniform distribution

in the range from 0 to 1.

θ(i+1) =







θ∗(i+1) if p < r

θ(i) otherwise
(2.59)

The algorithm is very similar to the original Metropolis algorithm. For symmetric proposal

distributions P ∗ (·; ·), the algorithm becomes the original Metropolis algorithm. The only

difference is that the acceptance ratio also takes the ratio between the proposal density centered
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at the proposal vector and evaluated at the seed and the proposal density centered at the seed

and evaluated at the proposal vector into account. The Metropolis-Hastings algorithm fulfills

the detailed balance criterion which can be shown analogously to the original Metropolis

algorithm. The transition probability for the acceptance case becomes

Pθ(n+1)|θ(n) ((b|a) |A) = PA (a)−1 P ∗ (b; a) min

(

1,
D (b)

D (a)

P ∗ (a; b)

P ∗ (b; a)

)

(2.60)

with the acceptance probability

PA (a) =
∫

P ∗ (θ; a) min

(

1,
D (θ)

D (a)

P ∗ (a; θ)

P ∗ (θ; a)

)

dθ (2.61)

Inserting equation (2.60) into (2.47) and multiplication by the desired distribution D (·) proves

detailed balance of the Metropolis-Hastings algorithm for the non-trivial case, i.e. a 6= b.

Pθ(n+1)|θ(n) (b|a) D (a) = P ∗ (b; a) min

(

1,
D (b)

D (a)

P ∗ (a; b)

P ∗ (b; a)

)

D (a)

= P ∗ (b; a) min

(

1,
D (a)

D (b)

P ∗ (b; a)

P ∗ (a; b)

)

P ∗ (a; b)

P ∗ (b; a)
D (b)

= P ∗ (a; b) min

(

1,
D (a)

D (b)

P ∗ (b; a)

P ∗ (a; b)

)

D (b)

= Pθ(n+1)|θ(n) (a|b) D (b)

(2.62)

where again the fundamental identity min (1, x/y) · y = min (1, y/x) · x is used.

Figure 2.28 shows an asymmetric proposal distribution P ∗ (·; ·) and exemplarily the accep-

tance probability PA (a) represented by the shaded area. Given that the proposal distribution

is adequately chosen, it is possible to obtain a higher acceptance probability for a given step

width. This theoretically reduces the correlation between samples and hence increases the

estimation accuracy. However, the proposal distribution should follow standard distributions

from which samples can be efficiently drawn. There exist no expression for the optimal pro-

posal distribution. Furthermore this optimal distribution is likely no standard distribution from

probability
distribution

θa

D (·)
P ∗ (·; a)

P ∗ (θ; a) ·min
(

1, D(θ)
D(a)

P ∗(a;θ)
P ∗(θ;a)

)

PA (a)

Figure 2.28: Asymmetric proposal distribution and acceptance probability of the Metropolis-
Hastings algorithm
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which samples can be efficiently generated. Therefore, mostly symmetric proposal distributions

are chosen. Note that only for a uniform desired distribution D (·) that completely overlaps

a uniform proposal distribution P ∗ (·; ·), an acceptance probability of PA (a) = 1∀a can be

achieved. For all other desired distributions there exist no proposal distribution so that the

acceptance probability (2.61) is one. For very small step sizes, i.e. narrow proposal distribu-

tions, very high acceptance ratios can be achieved, since in this case the value of the desired

distribution D (θ) does not change much between the state θ = a and θ = b and hence it

can be considered approximately as uniform distribution within the range of the step width of

the proposal distribution. However, this would result in a very slow random walk, very high

correlations between the samples and it would require very many steps to evaluate the whole

desired distribution. An optimal acceptance rate of 0.234 under quite general conditions has

been found for the multidimensional Metropolis algorithm [RGG97].

Unfortunately, the Metropolis as well as the Metropolis-Hastings algorithm are imperfect for

higher dimensions of the uncertain parameter vector θ, i.e. for increasing numbers of uncertain

parameters. This problem is related to the “curse of dimensionality”. With increasing size of

the uncertain parameter space the acceptance ratio decreases. Figure 2.29 exemplarily shows

the decreasing ratio for a multivariate Gaussian distribution as proposal density P ∗. This effect
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Figure 2.29: Acceptance ratio of Metropolis algorithm vs. number of uncertain parameters;
averaged over 20000 independent samples

can be described by the increasing distance of the candidates from the seed with increasing size

of the parameter space. Assume that the proposal distribution P ∗ is a multivariate Gaussian

distribution centered at the seed with unit standard deviation. For Gaussian distributed can-

didates around the seed, the distance of each candidate from the seed given by the Euclidean

norm of the k-dimensional vector θ − θ∗ exactly represents the definition of a χ-distribution

with k degrees of freedom [Hol13, p. 96]. The mode, i.e. the most frequent value of such a

χ-distribution, is given by
√

k − 1. This means that for high dimensions k, the mean distance

of a candidate is approximately proportional to the square root of the dimension. The variance

of the χ-distribution is given by

σ2 = k − µ2 (2.63)
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where the mean of this distribution is obtained by

µ =
√

2
Γ ((k + 1) /2)

Γ (k/2)
(2.64)

Γ (z) denotes the Gamma function which can be calculated for z with positive real part

according to

Γ (z) =
∫ ∞

0
xz−1e−xdx (2.65)

Figure 2.30 shows the mean and according 99% confidence intervals for the Euclidean distance

of the candidate θ∗ from the seed θ. Additionally, estimates of these quantities using 200

independent random samples are plotted to underline the theoretical results.
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Figure 2.30: Average distance of candidate from seed vector vs. number of uncertain param-
eters

It can be seen that with increasing dimension of the uncertain parameter vector θ also the

average distance increases. Since the variance does not increase in the same order, virtually

no samples are generated close to the seed for higher dimensions. With increasing distance

from the seed also the acceptance ratio decreases. The increasing distance with increasing

dimension could be encountered and compensated by tighter proposal densities P ∗. However,

this is no option for very high dimensions (>1000), since in this case the individual uncertain

parameters would almost not change. This would lead to immobile Markov chains which

cannot evaluate the whole parameter domain.

The convergence of the acceptance ratio to zero can also be proven theoretically ([AW14,

p. 149]): Suppose that the multivariate proposal density is a product of one-dimensional
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probability density functions:

P ∗ (θ∗; θ) =
k
∏

j=1

P ∗
n

(

θ∗
j ; θj

)

(2.66)

where the chain indices in superscript were skipped for the sake of clarity. Furthermore, the

proposal density is the same for every parameter, i.e. P ∗
i = P ∗

1 . The uncertain parameters

are also assumed to be independent with similar distribution, leading to the joint probability

density

D (θ) =
k
∏

j=1

D1 (θj) (2.67)

Given that the seed θ is distributed according to the target distribution D and the candidate

θ∗ is obtained by the proposal density P ∗, the acceptance ratio can be calculated by

r =
k
∏

j=1

D1

(

θ∗
j

)

D1 (θj)

P ∗
(

θj ; θ∗
j

)

P ∗
(

θ∗
j ; θj

) =
k
∏

j=1

rj (2.68)

Note that the min expression used for the acceptance ratio in equation (2.58) is omitted here

since it will be shown later that 1/r → 0 for k → ∞ and hence the upper saturation for r

is not decisive for the derivation of the convergence of r. The acceptance ratio r denotes

the probability that a candidate is accepted. Hence, small r means that the candidate will

probably be rejected. For the subsequent explanation, the following transformation is made:

1

k
ln (r) =

1

k

k
∑

j=1

ln (rj) (2.69)

Since for this proof P ∗
j = P ∗

1 and Dj = D1 are chosen and hence the rj are independent and

identically distributed, it follows from the law of large numbers that

1

k
ln (r)→ E [ln (rj)] (2.70)

Jensen’s inequality says that E [f(rj)] < f(E [rj]) for any strictly concave function f [Nee93].

Since the natural logarithm is a strictly concave function, an upper bound for E [ln (rj)] results:

E [ln (rj)] < ln (E [rj]) (2.71)

The expectation of rj is obtained using equation (2.68),

E [rj ] =
∫ ∫

rjf
(

θj , θ∗
j

)

dθjdθ∗
j

=
∫ ∫

D1 (θ∗
1)

D1 (θj)

P ∗
1

(

θj ; θ∗
j

)

P ∗
1

(

θ∗
j ; θj

)D1 (θj) P ∗
1

(

θ∗
j ; θj

)

dθjdθ∗
j

(2.72)
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=
∫ ∫

D1

(

θ∗
j

)

P ∗
1

(

θj ; θ∗
j

)

dθjdθ∗
j = 1

since θj and θ∗
j are distributed according to the joint probability density function f

(

θj , θ∗
j

)

=

D (θj) P ∗
1

(

θ∗
j ; θj

)

which integrates to one. From this follows that E [ln (rj)] < ln (1) = 0,

hence

E [ln (rj)] = −C (2.73)

with the constant C > 0. Back transformation gives the following expression for the accep-

tance ratio:

r1/k = e−C < 1 for k →∞ (2.74)

This implies that r is proportional to a number smaller than 1 to the power of k which

converges towards zero for k →∞.

Component-Wise Metropolis-Hastings Algorithm

To overcome the curse of dimensionality, a component-wise Metropolis-Hastings algorithm

can be used [AB01]. Instead of calculating the acceptance ratio r for the whole uncertain

parameter vector θ, the ratio is calculated individually for every uncertain parameter θj and

the accept/reject step is applied for each parameter instead of collectively for the whole vector.

This requires independence of the uncertain parameters and hence of the components of the

desired density D (a) =
∏k

j=1 Dj (aj). However, this is no limitation of generality since

dependent random variables can always be modeled by independent ones, see appendix A.1.2.

Component-wise Metropolis-Hastings algorithm for generation of samples from ar-

bitrary distributions

1. Generate a candidate uncertain parameter vector θ∗(i+1) from a proposal density

P ∗
(

·; θ(i)
)

, where P ∗
(

·; θ(i)
)

is an arbitrary distribution centered at the current

chain state θ(i).

2. For each uncertain parameter θj , j = 1 . . . k:

• Calculate the acceptance ratio rj with the desired distribution D:

rj = min





Dj

(

θ∗
j

(i+1)
)

Dj

(

θj
(i)
)

P ∗
j

(

θj
(i); θ∗

j
(i+1)

)

P ∗
j

(

θ∗
j

(i+1); θj
(i)
) , 1



 (2.75)

• Set the j-th element of the new chain state: Generate a random number p

from a uniform distribution in the range from 0 to 1.

θj
(i+1) =







θ∗
j

(i+1) if p < r

θj
(i) otherwise

(2.76)
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The first step is similar to the original Metropolis-Hastings algorithm. However, the component-

wise acceptance/rejection in step 2 ensures with a very high probability that at least some

elements θ∗
j of the candidate uncertain parameter vector θ∗ are accepted and hence no repeti-

tion of the seed occurs. This algorithm generates adequate Markov chains also in high dimen-

sions. The component-wise Metropolis-Hastings algorithm also fulfills the detailed balance

condition, which can be proven as follows: Due to independence of the uncertain parameters,

the transition probability is given by

Pθ(n+1)|θ(n) (b|a) =
k
∏

j=1

Pθj
(n+1)|θj

(n) (bj |aj) (2.77)

Each single uncertain parameter is generated using the standard Metropolis-Hastings algo-

rithm. Hence at least component-wise the detailed balance condition is fulfilled:

Pθj
(n+1)|θj

(n) (bj |aj) Dj (aj) = Pθj
(n+1)|θj

(n) (aj |bj) Dj (bj) (2.78)

Multiplying equation (2.77) by the desired density D (a) =
∏k

j=1 Dj (aj) gives

Pθ(n+1)|θ(n) (b|a) D (a) =
k
∏

j=1

Pθj
(n+1)|θj

(n) (bj |aj) Dj (aj)

=
k
∏

j=1

Pθj
(n+1)|θj

(n) (aj|bj) Dj (bj)

= Pθ(n+1)|θ(n) (a|b) D (b)

(2.79)

where equation (2.78) is used in the second line. This proves detailed balance of the whole

k-dimensional Markov chain.

Generation of Conditional Failure Samples

The component-wise Metropolis-Hastings algorithm can be used to generate samples from an

arbitrary high-dimensional distribution. For the case of generating conditional failure samples,

i.e. samples of a known distribution conditional on the failure region F , the desired distribution

D (θ) of the uncertain parameter vector θ is given by the original distribution of the uncertain

parameter vector Q (θ) conditional on the failure event F according to Bayes’ theorem:

D (θ) = Q (θ|F ) =
P (F |θ) Q (θ)

P (F )
(2.80)

P (F |θ) corresponds to the indicator function IF (θ), i.e. it is 1 if θ lies in the failure region,

zero otherwise. Samples from this distribution cannot be drawn directly since the failure

probability P (F ) is the unknown to be determined later. However, when using the Metropolis-

Hastings algorithm, only the shape of the probability distribution must be known, i.e. the

desired distribution D (θ) must only be known up to a constant scaling factor, which is P (F ) in
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this case. This can be inferred from the acceptance ratio of the Metropolis-Hastings algorithm

in equation (2.58) where only the ratio of the desired distribution is required. Plugging in of

the desired distribution equation (2.80) into the acceptance ratio for the Metropolis-Hastings

algorithm shows that the unknown failure probability P (F ) cancels out:

r = min





IF

(

θ∗(i+1)
)

Q
(

θ∗(i+1)
)

IF

(

θ(i)
)

Q
(

θ(i)
)

P ∗
(

θ(i); θ∗(i+1)
)

P ∗
(

θ∗(i+1); θ(i)
) , 1



 (2.81)

The component-wise Metropolis-Hastings algorithm cannot be directly applied, since the in-

dicator function is only defined for the whole uncertain parameter vector, while the modified

Metropolis-Hastings algorithm would require a component-wise evaluation. However, since

the value of the indicator function is either 0 or 1, equation (2.81) can be reformulated to

r = min





IF

(

θ∗(i+1)
)

IF

(

θ(i)
) , 1



min





Q
(

θ∗(i+1)
)

Q
(

θ(i)
)

P ∗
(

θ(i); θ∗(i+1)
)

P ∗
(

θ∗(i+1); θ(i)
) , 1



 (2.82)

This equation can be further simplified: Since the first term has an upper bound of one,

the result of this term is always similar to IF

(

θ∗(i+1)
)

no matter if the seed θ(i) lies in

the failure region or not. Anyway, for the application of the component-wise Metropolis-

Hastings algorithm for generation of samples distributed according to (2.80) the seed must lie

in the failure domain and hence be a failure sample itself since otherwise the newly generated

sample would not be a failure sample in the rejection case. This finally leads to the modified

Metropolis-Hastings algorithm for generation of conditional failure samples:

Component-wise Metropolis-Hastings algorithm for generation of conditional failure

samples

1. Generate a candidate uncertain parameter vector θ∗(i+1) from a proposal density

P ∗
j

(

·; θ(i)
)

, where P ∗
j

(

·; θ(i)
)

is an arbitrary distribution centered at the current

chain state θ(i).

2. For each uncertain parameter θj , j = 1 . . . k:

• Calculate the acceptance ratio rj with the distribution of the j-th uncertain

parameter Qj:

rj = min





Qj

(

θ∗
j

(i+1)
)

Qj

(

θj
(i)
)

P ∗
j

(

θj
(i); θ∗

j
(i+1)

)

P ∗
j

(

θ∗
j

(i+1); θj
(i)
) , 1



 (2.83)
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• Correct the j-th element of the candidate uncertain parameter vector: Gener-

ate a random number p from a uniform distribution in the range from 0 to 1.

θ∗
j

(i+1) =







θ∗
j

(i+1) if p < rj

θj
(i) otherwise

(2.84)

3. Accept the updated candidate vector θ∗(i+1) if it lies in the failure region, otherwise

use seed, i.e.

θ(i+1) =







θ∗(i+1) if IF

(

θ∗(i+1)
)

= 1

θ(i) otherwise
(2.85)

Usually, either a uniform or Gaussian distribution is chosen for the proposal distribution. Still,

the width of this distribution must be adequately selected. Since a-priori knowledge about

the optimal scaling is usually not available, the width can only be adjusted during evaluation

based on already obtained samples. Zuev et al. found an overall acceptance ratio between 30%

and 50% as optimal range to minimize the variance of the estimated probability [Zue+12].

This enables the following adaption rule for the proposal distribution width: If the acceptance

ratio lies above 50%, the width of the proposal distribution is increased, while in the case

for acceptance ratios below 30%, the width of the proposal distribution is decreased. This

tuning task increases the efforts required for parallelization of the modified Metropolis-Hastings

algorithm. Pellissetti suggested chain-wise parallelization as well as speculative computing

[Pel09], where in many cases a linear speedup growth with number of processors can be

achieved.

Infinity Sampling

Infinity sampling is a novel advancement for generation of conditional failure samples recently

developed independently by different researchers [Pap+15, PA15, AP16]. The idea is based on

the observation that the performance of the component-wise Metropolis-Hastings algorithm is

independent of the number of uncertain parameters, where numerical experience even reveals

better performance with higher number of uncertainties. This is mainly caused by a higher

variation of θ for higher number of uncertain parameters [AB01].

To artificially increase the number of uncertain parameters, each parameter θj is theoretically

described by a combination of k′ independent uncertain parameters θjh, h = 1 . . . k′. These

additional parameters are referred to as hidden parameters since they are not directly visible

in θ = [θ1, θ2, . . .]. For that, assume that the uncertain parameters θj are independent from

each other and the distribution Qj (·) is standard Gaussian, i.e. Gaussian distributed with zero

mean and unit variance. This is no limitation of generality since correlated random variables

with arbitrary distributions can usually be constructed from independent standard Gaussian

variables, see A.1. Under these assumptions, θj can be described by a linear combination of
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k′ standard Gaussian variables θjh:

θj =
1√
k′

k′

∑

h=1

θjh (2.86)

where the scaling by the square root k′ ensures unit variance. Inserting this extension into the

modified Metropolis-Hastings algorithm results in the following theoretical algorithm:

Component-wise Metropolis-Hastings algorithm with hidden parameters for gen-

eration of conditional failure samples

1. For each uncertain parameter θj , j = 1 . . . k:

For each hidden variable θjh, h = 1 . . . k′ :

• Calculate a candidate uncertain parameter θjh from a Gaussian proposal density

P ∗
(

θ∗
jh

(i+1); θjh
(i)
)

, which is centered at θjh
(i) with unit variance.

• Calculate the acceptance ratio rjh:

rjh = min





Qj

(

θ∗
jh

(i+1)
)

Qj

(

θjh
(i)
)

P ∗
j

(

θjh
(i); θ∗

jh
(i+1)

)

P ∗
j

(

θ∗
jh

(i+1); θjh
(i)
) , 1



 (2.87)

• Generate a random number p from a uniform distribution in the range from 0

to 1.

θ∗
jh

(i+1) =







θ∗
jh

(i+1) if p < rjh

θjh
(i) otherwise

(2.88)

Set the j-th uncertain parameter θj :

θ∗
j

(i+1) =
1√
k′

k′

∑

h=1

θ∗
jh

(i+1) (2.89)

2. Accept the updated candidate vector θ∗(i+1) if it lies in the failure region, otherwise

use seed, i.e.

θ(i+1) =







θ∗(i+1) if IF

(

θ∗(i+1)
)

= 1

θ(i) otherwise
(2.90)

In [AP16] it is shown that for k′ →∞, the transition probability of step 1 becomes

Pθ∗

j
(i+1)|θj

(i) (bj |aj) =
1√

2πσj

exp

[

− 1

2σ2
j

(bj − ciaj)
2

]

(2.91)

i.e. it is normally distributed with variance σ2
j and mean cjaj . Note that this transition

probability does not directly depend on the hidden uncertain parameters θjh. The overall
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algorithm must still fulfill the detailed balance criterion (2.43). Since step 2 ensures that all

samples lie in the failure region, it suffices to only check detailed balance for failure samples,

i.e. where the desired distribution D (θ) = Q (θ|F ) = Q (θ) with θ ∈ F . Furthermore,

since the individual components Di are independent and identically distributed, it suffices to

evaluate detailed balance only in one dimension. It must be proven that

Pθj
(n+1)|θj

(n) (bj |aj) Dj (aj)
!

= Pθj
(n+1)|θj

(n) (aj |bj) Dj (bj) (2.92)

Since only failure samples are considered, the transition probability of the first step (2.91) is

equal to the transition probability of the overall algorithm Pθj
(n+1)|θj

(n) (bj |aj). All uncertain

parameters θj are standard Gaussian distributed, the desired distribution D (θj) is a Gaussian

distribution with zero mean and unit variance φ(·, 0, 1):

Daj
= φ (aj , 0, 1) =

1√
2π

exp
[

−1

2
a2

j

]

(2.93)

Inserting equations (2.91) and (2.93) into (2.92) gives the following expression:

1

2πσj

exp

[

− 1

2σ2
j

(bj − ciaj)
2

]

exp
[

−1

2
a2

j

]

!
=

1

2πσj

exp

[

− 1

2σ2
j

(aj − cjbj)
2

]

exp
[

−1

2
b2

j

]

− 1

2σ2
j

(

b2
j − 2ajbjcj + c2

i a
2
i

)

− 1

2
a2

j
!

= − 1

2σ2
j

(

a2
j − 2ajbjcj + c2

jb
2
j

)

− 1

2
b2

j

(2.94)

This equation is true for cj =
√

1− σ2
j . This results in the Infinity Sampling algorithm, where

“infinity” refers to the concept that each uncertain parameter is theoretically modeled by an

infinite number of hidden uncertain parameters [AP16]:

Infinity Sampling algorithm for generation of conditional failure samples

1. Generate a candidate uncertain parameter vector θ∗(i+1) as a Gaussian vector with

independent components, mean vector
[

c1θ
(i)
1 , . . . , ckθ

(i)
k

]

and variances [σ2
1 , . . . , σ2

k],

where cj =
√

1− σ2
j and σ2

j ≤ 1, j = 1 . . . k.

2. Accept the updated candidate vector θ∗(i+1) if it lies in the failure region, otherwise

use seed, i.e.

θ(i+1) =







θ∗(i+1) if IF

(

θ∗(i+1)
)

= 1

θ(i) otherwise
(2.95)

Clearly, this algorithm is simpler than the modified Metropolis-Hasting algorithm since now

only one tuning parameter exists which is the variance of the candidate samples. σ2
j ≤ 1

results in 0 ≤ aj ≤ 1. The larger the variance σ2
j , the closer the proposal mean is to the

origin. The smaller the variance, the closer the proposal mean is to the seed θ
(i)
j . Figure 2.31
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shows the candidate distributions for a one-dimensional example for different variance values

σ2, where the seed lies at θ(i) = 1, indicated by the black dotted line. The black line shows

the distribution of the uncertain parameter, however not conditional on the failure domain,

since the failure criteria is only evaluated in the second step. The blue line gives the resulting

candidate distributions. In the upper left plot, a variance of σ2 = 1 leads to c = 0, i.e.

uncertain parameter distribution
Candidate distribution
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Figure 2.31: Probability distribution of proposal θ(i+1) of infinity sampling for different pro-
posal variances σ2; seed at θ(i) = 1

the candidate distribution has zero mean with unit variance and hence is equal to the actual

parameter distribution. In this case, the Infinity Sampling algorithm becomes equal to the

generation of failure samples by conventional Monte Carlo simulation, also known as rejection

method [Dev86, p. 40]. However, this choice of σ is very unfavorable since the acceptance

ratio would be very small for small failure probabilities. The other extreme is shown in the

lower right plot with σ = 0 and therefore c = 1. This means that the new sample is exactly

the same as the seed, since it is generated from a Gaussian distribution with the mean being

equal to the seed and zero standard deviation. This case is similar to the modified Metropolis-

Hastings algorithm with zero proposal width. The Markov chain would be immobile, since

the step width of the random walk would be zero. Eventually, the remaining plots show the

cases with standard deviations between zero and one where it can be seen that the lower the

variation of the candidate, the closer it is to the seed. Numerical experience suggests that

a variance 0.4 < σ2
j < 0.6 provides best results for generation of conditional failure samples
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[PA15].

In contrast to the modified Metropolis-Hastings algorithms, Infinity Sampling does not require

any dynamic adjustment of tuning parameters based on already generated samples. Although

additional effort is required to transform uncertainties into standard Gaussian form, this still

makes the Infinity Sampling algorithm the first choice for generation of conditional failure

samples, especially if scalability on parallel machines is desired [PA15].

2.6.3 Subset Simulation Algorithm

In the previous section, methods are described that can be used for generation of conditional

failure samples. Applying this to the idea of Subset simulation described in section 2.6.1, leads

to the following Subset simulation algorithm. Details on the individual steps are given below

the algorithm.

Subset simulation algorithm

1. Subset level j = 0: Pure Monte Carlo

(a) Generate N samples θ
(i)
(0), i = 1 . . . N distributed according to Q(θ)

(b) Calculate corresponding values of response variable r
(

θ
(i)
(0)

)

(c) Determine the first conditional failure threshold r(1),limit as the P0N -th largest

value of r
(

θ
(i)
(0)

)

(d) Determine number of samples in final failure domain NF , i.e. count of samples

with r
(

θ
(i)
(0)

)

> rlimit

2. While NF < P0N , i.e. as long as there are not enough samples in the final failure

domain

(a) Increase subset level: j = j + 1

(b) Generate N conditional samples θ
(i)
(j), i = 1 . . . N distributed according to

Q(θ | Fj) where Fj = {r|r > r(j),limit}
(c) Calculate corresponding values of response variable r

(

θ
(i)
(j)

)

(d) Determine the (j + 1)-th conditional failure threshold r(j+1),limit as the P0N -th

largest value of r
(

θ
(i)
(j)

)

(e) Determine number of samples in final failure domain NF , i.e. count of samples

with r > rlimit

3. Calculate failure probability:

PF = P j
0

NF

N
(2.96)

The first step is similar to pure Monte Carlo simulation, i.e. N samples for the uncertain param-
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eter vector are generated according to a known distribution Q(θ), followed by the evaluation

of the response variable r
(

θ
(i)
(0)

)

using the generated uncertain parameter vectors. While the

subscript denotes the subset level j, which is zero here, the upper index denotes the sample

i = 1 . . . N . The intermediate failure thresholds are not a priori known. Instead, they are

adaptively determined for a desired conditional failure probability PF(1)
= P (F1 |F0 ) = P0.

In step 1.(c), the first conditional failure threshold r(1),limit is calculated. First, the values

of the response variables r
(

θ
(i)
(1)

)

, i = 1 . . . N are sorted in descending order. To obtain a

conditional failure probability PF(1)
= P0, the threshold is selected as the mean of the P0N -th

and the (P0N + 1)-th largest value of the response variable, see also figure 2.32 a). Hence,

the P0N -th largest sample lies in the failure domain while the sample with the (P0N + 1)-th

largest response value does not, i.e. there are NC = P0N samples in the newly defined con-

ditional failure domain F1 = {r|r > r(1),limit}. This results in a conditional failure probability

of PF(1)
= P0N/N = P0 which fulfills the required condition. Note that P0 and N must be

selected so that the product NC = P0N is integer. Finally for the first step, the number of

samples NF in the actual failure domain F1 = {r|r > rlimit} is determined.

F = {r|r > rlimit}F = {r|r > rlimit}
F1 = {r|r > r(1),limit} F1 = {r|r > r(1),limit}

NS samples per seed

NC = P0N seedsP0N -th largest r

(P0N + 1)-th largest r

a) b)

Figure 2.32: Determination of the conditional failure domain and generation of new samples

In step 2, conditional failure samples are generated, i.e. samples that lie in the conditional

failure domain Fj = {r|r > r(j),limit}. For that, each of the NC = P0N conditional failure

samples from the previous level is used as seed for generation of NS = 1/P0 samples using

Markov chains, see figure 2.32 b). NC stands for the number of chains per subset level,

while NS is the number of samples per chain. For example, a conditional failure probability

P0 = 0.2 and a total number of samples N = 1000 results in NC = P0N = 200 chains with

NS = N/NC = 1/P0 = 5 samples per chain. Although this selection restricts the possible

conditional probabilities P0 to those for which 1/P0 is integer, this choice ensures that the

number of samples N = NCNS remains constant with increasing subset level. For each

seed, a Markov chain is constructed using either the modified Metropolis-Hastings algorithm

or Infinity Sampling (see section 2.6.2). The indicator function IF

(

θ∗(i+1)
)

required for the
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construction of the Markov chain for the j-th subset level is defined by

IF

(

θ∗(i+1)
)

=







1 if r
(

θ∗(i+1)
)

> r(j),limit

0 else
(2.97)

Note that the samples used as seeds are by construction distributed according to the stationary

distribution Q(θ | Fj) and hence no burn in of the Markov chain is required and samples

generated from these seeds are distributed according to the target distribution. Furthermore,

for reasonable number of samples N , ergodicity is almost sure as shown in the previous section.

Steps 2.(c) - 2.(e) are similar to 1.(b)-1.(d). Step 2 is repeated until there are sufficient

samples in the actual failure domain F . Common criterion for sufficiency is that the number

of samples in the failure domain is larger than P0N . This is similar to the condition that the

last conditional failure threshold rk,limit is higher than the actual failure threshold rlimit.

Finally, in step 3 the failure probability PF = P (r > rlimit) is calculated. According to con-

struction, the failure probability is defined as the product of the conditional failure probabilities:

PF (θ) =
m
∏

j=1

P (Fj|Fj−1) (2.98)

For all subset levels except of the last, the conditional failure probability is given by PF (j) =

P (Fj |Fj−1 ) = P0. For the last subset m, the conditional failure probability is given by

P (Fm |Fm−1 ) = NF /N where NF is the number of samples from the last subset that lie in

the failure region. Substituting this into equation (2.98) leads to the failure probability for the

described Subset algorithm, which is given by (2.96).

For illustration of the Subset simulation algorithm, the same example is used as in section

2.5.3, where a problem is described with two uncertain parameters θ1 and θ2. Both follow a

standard Gaussian distribution, i.e. a normal distribution with zero mean and unit variance.

The failure domain is described by hyperbolas that fulfill the following equation:

θ2
1 − θ2

2 > 32 (2.99)

A reasonable choice for the response variable for this example is r = θ2
1 − θ2

2, which results

in rlimit = 32 = 9. Figure 2.33 shows in detail the individual steps of the Subset simulation

algorithm applied to this example.

First, samples are distributed according to Q(θ) which in this case is a two-dimensional Gaus-

sian distribution with zero mean and unit variance. In subfigure a), the failure region is

indicated by black solid lines. The first conditional failure region is calculated according to

step 1.c) of the Subset algorithm. This is shown in subfigure b). The samples, which lie in the

first subset, are the seeds for generating samples distributed according to Q(θ |F1 ), which are

depicted in subfigure c). There are already a few samples in the failure region, however, not

sufficient to fulfill the termination criteria, less than P0 percent of all samples of this subset are

failure samples with respect to the final failure region F . Hence, step 2 of the Subset algorithm
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Figure 2.33: Subset simulation example: Different steps; Algorithm: Subset simulation with
P0 = 0.1, N = 4000 using Infinity sampling with σ2 = 0.4

is repeated. The resulting conditional failure domain and samples are shown in subfigures d)

and e). Finally, there are sufficient samples in the failure region, which is shown in f). Figure

2.34 shows all samples together with the conditional failure bounds. Comparing this with the

results for the same example using Importance Sampling shown in figure 2.11, it can be seen

that using Subset simulation, a lot of samples in and close to the failure region are generated
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Figure 2.34: Samples and intermediate failure thresholds for Subset simulation

similar to Importance Sampling, however without the need of applying preknowledge about

the failure region.

Figure 2.35 shows the histogram of the values of the response variable for different subsets. The

black dashed lines indicate the conditional failure thresholds. It can be seen that no samples

are generated that have a response value lower than the respective conditional threshold.

Comparing the histograms of individual subsets, it can be seen that the distributions of the

samples for one subset can be interpreted as more frequent sampling of the distribution tail

of the previous subset, i.e. the less probable regions are sampled more accurately, which is

exactly what is required for analysis of unlikely events. Finally, figure 2.36 shows the resulting

probability distributions of the two uncertain parameters for the different subsets. While the

distribution of the second parameter θ2 shown in the lower plot does not change much with

increasing subset level, the distribution of the first parameter θ1 shown in the upper plot
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Figure 2.35: Samples and intermediate failure thresholds for Subset simulation
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Figure 2.36: Probability distributions of sample uncertain parameters

changes significantly. From equation (2.99) it follows that θ1 must always be larger than

θ2
1 > r(j),limit + θ2

2 > r(j),limit → |θ1| >
∣

∣

∣

√
r(j),limit

∣

∣

∣ (2.100)

For the given example, the first and second conditional failure threshold are given by r(1),limit =

1.462 and r(2),limit = 2.442 which matches well the distribution of θ1 with increasing subset

level.

The selection of the desired conditional failure probability P0 is a trade-off between sample

correlation and number of subsets. While smaller P0 enables quicker evaluation of small

failure probabilities, the correlation between the samples increases since for each subset a

higher number of 1/P0 samples are generated from one sample. Much research has been done

on the optimal selection of the conditional failure probability P0. Au suggests P0 to be 0.1

for good efficiency [AB01]. Zuev et al. made an exhaustive analysis of Subset simulation and

figured out that choosing 0.1 ≤ P0 ≤ 0.3 practically leads to similar efficiency and hence fine

tuning of the conditional probability for performance enhancement is not necessary [Zue+12].

To prove that Subset simulation is superior to conventional Monte Carlo simulation for small

failure probabilities, performance of the Subset algorithm is evaluated in the next section.
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2.6.4 Variance Estimation

Subsequent explanations are valid for both introduced algorithms for generation of conditional

failure samples using Markov chains, i.e. the Metropolis-Hastings algorithm as well as Infinity

Sampling. For the zeroth subset level, samples are independent and identically distributed

equal to Monte Carlo simulation, hence also the variance is similar (see chapter 2.3.2):

var
[

P̂F (0)

]

=
1

N2
·

N
∑

k=1

var
[

IF (0) (θk)
]

=
PF (0)

(

1− PF (0)

)

N
(2.101)

For the other subset levels, the generated samples are no longer statistically independent. The

variance of these samples is derived based on the variance of correlated samples of a single

Markov chain. The variance of the k = 1 . . . NS samples of the j-th chain in the i-th subset

is obtained by [Gey05, p. 8ff]

var





NS
∑

k=1

IF (i),jk



 =
NS
∑

k=1

NS
∑

m=1

cov
[

IF (i),jk, IF (i),jm

]

=
NS
∑

k=1

var
[

IF (i),jk

]

+ 2
NS−1
∑

k=1

NS
∑

m=k+1

cov
[

IF (i),jk, IF (i),jm

]

(2.102)

where IF (i),jk = I(i) (θjk) denotes the indicator function of the i-th subset level, evaluated

for the k-th element of the j-th chain, NS the number of samples per chain and cov [·, ·] the

covariance of two arguments. The second line results from the symmetry of the covariance

matrix. Since Markov chains used for Subset simulation are already in a stationary state, the

equation can be simplified:

var





NS
∑

k=1

IF (i),jk



 = NSvar
[

IF (i),jn

]

+ 2
NS−1
∑

k=1

(NS − k) cov
[

IF (i),jn, IF (i),j,n+k

]

(2.103)

where the right-hand side does not change with the chain index n due to stationarity, i.e. n

is an arbitrary element of the considered Markov chain. A visual representation of the right

side of equation (2.103) is given in figure 2.37. Since the covariance matrix is symmetric, only

the upper triangular matrix is considered. The pairs with similar color combination have the

same variance since the Markov chain is stationary. The multiplier (NS − k) emerges from the

finite length of the considered Markov chain. In the shown four dimensional example, the sum

of all different covariance combinations results in three times the covariance with lag k = 1

(orange) plus two times with k = 2 (cyan) and only one time with k = 3 (red), where lag k

means the distance along the chain. The left side of the equation can be further refined using

the estimated failure probability of the j-th chain in the i-th subset level, i.e.

P̂F (i),j =
1

NS

NS
∑

k=1

IF (i),jk (2.104)

60



Chapter 2: Fundamentals of Stochastic Analysis

cov [IF,1, IF,1] = var [IF,1]

cov [IF,1, IF,2]

cov [IF,1, IF,3]

cov [IF,1, IF,4]

Chain index

covariance matrix

Figure 2.37: Covariance matrix of stationary Markov chain, Subset and chain index skipped
for the sake of clarity

and using the following identity for the variance

var
[

NSP̂F (i),j

]

= E
[

(

NSP̂F (i),j −NSP(i),j

)2
]

= N2
SE

[

(

P̂F (i),j − P(i),j

)2
]

= N2
Svar

[

P̂F (i),j

]

(2.105)

Inserting equation (2.105) in (2.103) and division by N2
S leads to

var
[

P̂F (i),j

]

=
1

NS



var
(

IF (i),jn

)

+ 2
NS−1
∑

k=1

(

1− k

NS

)

cov
[

IF (i),jn, IF (i),j,n+k

]



 (2.106)

For simplified notation, the autocovariance with lag k for the stationary Markov chain is defined

by γ(i),k = cov
[

IF (i),jn, IF (i),j,n+k

]

which again is independent of n due to stationarity. This

leads to the variance of the estimated conditional failure probability of a single chain:

var
[

P̂F (i),j

]

=
1

NS



γ(i),0 + 2
NS−1
∑

k=1

(

1− k

NS

)

γ(i),k



 (2.107)

For analysis it can be assumed that the samples of different chains from a single subset are

uncorrelated [AB01], i.e.

var





NC
∑

j=1

P̂F (i),j



 = NCvar
[

P̂F (i),j

]

(2.108)

where the index j on the right hand side can be an arbitrary chain index since the different

chains are generated using the same algorithm and hence have the same variance. The overall

estimated failure probability for the i-th subset is obtained by

P̂F (i) =
1

NC

NC
∑

j=1

P̂F (i),j (2.109)

which is the average failure probability over all NC chains of the (i)-th subset. Inserting the

unity for the variance var
[

NC P̂F (i)

]

= N2
Cvar

[

P̂F (i)

]

and the relation
∑NC

j=1 P̂F (i),j = NC P̂F (i)
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2.6 Subset Simulation

from equation (2.109) as well as the variance of a single chain (2.107) into (2.108), the

following expression for the variance of the estimated conditional failure probability of the i-th

subset level results:

N2
Cvar

[

P̂F (i)

]

= NCvar
[

P̂F (i),j

]

= NC
1

NS



γ(i),0 + 2
NS−1
∑

k=1

(

1− k

NS

)

γ(i),k





→ var
[

P̂F (i)

]

=
1

N



γ(i),0 + 2
NS−1
∑

k=1

(

1− k

NS

)

γ(i),k





(2.110)

using N = NCNS in the second line. The autocovariance with zero lag k = 0 is the variance

of a single Bernoulli trial (compare chapter 2.3.2):

γ(i),0 = PF (i)

(

1− PF (i)

)

(2.111)

where PF (i) = P
(

F(i) | F(i−1)

)

is the conditional failure probability of the i-th subset. Al-

though the conditional probability is not exactly known, the autocovariance with zero lag can

be approximated by γ(i),0 ≈ γ̂(i),0 = P̂F (i)

(

1− P̂F (i)

)

where P̂F (i) is similar to the desired

conditional probability P0 for all subset levels except of the last. For the last subset level, the

conditional failure probability is equal to NF /N (compare equation (2.96)). The autocorrela-

tion with lags k = 1 . . . NS−1, i.e. the covariance between different samples of a single chain,

can be obtained by averaging over all chains [AB01]:

γ(i),k ≈ γ̂(i),k =





1

N − kNC

NC
∑

j=1

NS−k
∑

m=1

IF (i),jmIF (i),j,m+k



− P̂ 2
F (i) (2.112)

To simplify further analysis, the influence of correlated samples is condensed using a scaled

autocorrelation function R(i):

R(i) = 2
NS−1
∑

k=1

(

1− k

NS

)

γ(i),k

γ(i),0

(2.113)

Substituting equation (2.113) into (2.110) yields:

var
[

P̂F (i)

]

=
γ(i),0

N

(

1 + R(i)

)

(2.114)

If the samples are not correlated, which results in the autocorrelation R(i) = 0, the variance

of the estimated probability of the i-th subset var
[

P̂F (i)

]

becomes the variance of pure Monte

Carlo simulation (given in (2.13)). For correlated samples of a Markov chain, usually R(i) > 0,

i.e. there is a positive correlation between the samples which leads to an increased estimation

variance. There exists the possibility that the autocorrelation is negative, which means that if

one sample lies in the failure region, the next sample more likely lies out of the failure region.

However, usually γ(i),k only becomes negative for some k and especially only for longer chains,
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Chapter 2: Fundamentals of Stochastic Analysis

i.e. higher values of k and the effect is averaged out by the sum in equation (2.113). Hence,

a negative autocorrelation is a theoretic case in this context.

The coefficient of variation of a single subset, which gives the relative uncertainty of the

estimated conditional failure probability, can be defined similarly to the Monte Carlo estimator

(2.17), which results in:

CoV
[

P̂F (i)

]

=

√

√

√

√

1− PF (i)

NPF (i)

(

1 + R(i)

)

(2.115)

According to the strong law of large numbers, which is applicable to independent and identically

distributed stochastic variables, P̂F (0) → PF (0) for N → ∞. The same holds for ergodic

Markov chains [Gey05, p. 7], hence P̂F (i) → PF (i) for N → ∞. This results in P̂F → PF =
∏m

i=1 P(i) for N →∞, i.e. P̂F is asymptotically unbiased. Au [AB01] derived an upper bound

for the overall coefficient of variation for the estimated failure probability P̂F as follows:

CoV
[

P̂F

]2
= E

[

P̂F − PF

PF

]2

≤
m
∑

i,j=1

CoV
[

P̂F (i)

]

CoV
[

P̂F (j)

]

+ o (1/N) (2.116)

o (1/N) is the “small-o” notation also known as small Landau symbol, which means that the

error is asymptotically negligible, since it grows slower than 1/N . For the ideal case that

samples of different subsets are not correlated, the lower bound for the overall coefficient of

variation results:

CoV
[

P̂F

]2
= E

[

P̂F − PF

PF

]2

=
m
∑

i=1

CoV
[

P̂F (i)

]2
(2.117)

For evaluation of the derived variation bounds, again the example given in the previous section

is used. 1000 independent Subset simulation runs using Infinity Sampling are conducted to

calculate the actual variance of the estimated quantities, which are compared to the analytic

bounds. The resulting individual CCDF curves are shown in figure 2.38a), where compared to

the original example, the final failure response rlimit is increased to also evaluate smaller failure

probabilities. The distinct colors indicate different subset levels. Subfigure b) gives the mean

and variance of the family of curves together with the analytic variance bounds. The dashed

and dotted lines depict the upper and lower estimated covariance bounds respectively, i.e. for

the case of full correlation between the samples of different subsets according to equation

(2.116) and no correlation according to (2.117). The variance bounds are evaluated for

the failure probabilities PF = [10−1, 10−2, 10−3, 10−4, 10−5], which for the selected algorithm

parameters correlates to a total number of samples N = [1000, 2000, 3000, 4000, 5000].

Figure 2.39 gives the coefficient of variation for this example, again with the estimated lower

and upper variation bounds. It can be seen that for lower Subset levels, i.e. higher probabilities,

the actual variation of the results is closer to the lower, uncorrelated variation bound while with

decreasing probability, the actual variation lies somewhere between the two bounds. This can

be explained by the increasing dependence and hence correlation of samples with increasing
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Figure 2.38: Variance of Subset simulation; a): Complementary cumulative distribution
functions for 1000 independent Subset simulation runs, b): Comparison of sample variance
and estimated variance

subset level. In the figure, also the resulting variance using Monte Carlo simulation is given

where it is assumed that for PF = [10−1, 10−2, 10−3, 10−4, 10−5] the same number of samples

as for Subset simulation N = [1000, 2000, 3000, 4000, 5000] is used. For the probability

PF = 10−1, variance of Subset and Monte Carlo simulation is similar. This is expectable

since in the zeroth level of Subset simulation, the samples are generated using independent

and identically distributed samples similar to Monte Carlo simulation, i.e. the coefficient of

variation for both is given by equation (2.18). With decreasing probability, the coefficient of

variation for Monte Carlo simulation increases exponentially, while it only increases linearly for

Subset simulation.
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Figure 2.39: Variance of Subset simulation compared to Monte Carlo simulation

Figure 2.40 gives the number of samples for Subset simulation and the number of samples that

would be required for pure Monte Carlo simulation to obtain the same coefficient of variation

as achieved in the given example by Subset simulation. For PF = 10−5, almost 50 times more

samples would be required for Monte Carlo simulation to achieve the same accuracy.

The number of samples required to achieve a certain estimation accuracy cannot be determined

a priori since it depends on the correlation between the samples which itself depends on the

tuning of the algorithm and the specific application. However, a rough estimation can be

obtained. Consider same conditional probabilities PF (i) = P0 for all subset levels i = 1 . . . m,

as well as same autocorrelation and hence coefficient of variation CoV
[

PF (i)

]

= CoV
[

PF (1)

]

.

Using PF =
∏m

i=1 PF (i) = P m
0 , the required number of subsets for a given failure probability

PF and conditional probability PF (1) is given by

m = log(PF )/ log(P0) (2.118)

The admissible variance for individual subset levels is obtained by substituting the assumptions

into equation (2.117) which results in

CoV
[

P̂F

]2
=

m
∑

i=1

CoV
[

P̂(i)

]2
= mCoV [P0] (2.119)
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Figure 2.40: Comparison of number of samples for Subset and Monte Carlo simulation

Inserting equations (2.118) and (2.119) into (2.115) and reformulation yields

N ≈ log (PF )

log (P0) CoVdes

[

P̂F

]2

1− P0

NP0

(

1 + R(1)

)

(2.120)

where CoVdes denotes the desired overall coefficient of variation for the estimated failure

probability PF . A target CoVdes ≈ 0.3 has been derived in section 2.3.2. This means that –

given that there is no correlation between the samples of different subsets – the number of

samples required grows only with the logarithm of the failure probability, i.e. N ∝ |log (PF )|.
Opposed to conventional Monte Carlo simulation, where the number of samples N ∝ 1/PF

(see equation (2.18)), this is a significant enhancement, especially for very small probabilities.

Au [AB01] suggested an enhanced metric that takes into account the correlation between the

samples of different subset levels by a scalar scaling factor r ≤ 3, where higher values stands

for higher correlation:

N ≈ |log (PF )|r
∣

∣

∣log
(

P(1)

)∣

∣

∣

r
CoV

[

P̂F

]2

1− P(1)

NP(1)

(

1 + R(1)

)

(2.121)

This results in N ∝ |log (PF )|r, which still surpasses the performance of conventional Monte

Carlo simulation.
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2.6.5 Conclusions on Subset Simulation

Subset simulation has been found as powerful tool for stochastic evaluation of complex func-

tions. Opposed to specialized algorithms like importance sampling, no knowledge about the

function must be input to the algorithm. This black box behavior is beneficial for the ease of

application for engineers. Although the underlying theory of Markov Chains is complex and

hard to understand, no detailed knowledge is required for a successful application of the Subset

simulation method.

The samples of Subset simulation obtained by both presented algorithms, Markov Chain Monte

Carlo and Importance Sampling, are correlated in contrast to the uncorrelated samples of basic

Monte Carlo simulation. This usually comes along with lower estimation accuracy. However,

since Subset simulation generates more samples in the failure region, this algorithm is superior

to any other black box stochastic evaluation algorithm, especially for low probabilities.

The samples of Subset simulation are generated gradually by random walks towards more crit-

ical regions. This leads to the theoretical drawback that the solution space must be connected

or not too far separated either with respect to the probability space or the parameter space.

In this context, not connected means that there is a region between two solution subspaces,

where the probability that the value of an uncertain parameter lies there is close to zero. This

is shown in figure 2.41, where the contours of the probability distribution of a single uncertain

parameter θ versus a decreasing failure probability is shown. In subplot a), the parameter

space is separated with respect to the parameter θ, however it is connected with respect to

the probability leading to a valid parameter distribution for Subset simulation. In the first step

of Subset simulation, samples are generated according to the original parameter distribution,

which is similar to the probability distribution for a failure probability of PF = 1 shown on the

upper end of the plots. Hence, samples in both separated spaces are generated with decreasing

probability by the random walk of the Subset samples. Subplot b) shows the case that al-

though the space is separated with respect to the uncertain parameter for higher probabilities,

this is not the case for lower probabilities, which results in a legitimate distribution. Only for

the third case shown in subplot c), there is neither a connection in probability nor parameter

space: Only at very low probabilities, a region occurs that significantly contributes to the fail-

ure probability. Since there is no connection to the other parameter subspace, no samples are

generated in this region by Subset simulation and hence its contribution to the overall failure

probability is neglected. However, to the best knowledge of the author, for physical systems

this is only possible for discrete failure events, which suddenly occurs at lower probabilities.

Since discrete events can be well covered by established methods like fault trees, this is no

severe limitation of the introduced method and hence Subset simulation is the first choice for

reliability analysis in the context of this work.
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Figure 2.41: Interpretation of connected spaces for Subset simulation
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3

Total Capability Approach

3.1 Introduction

In this chapter, a novel development approach for safety-critical functions is introduced, which

particularly addresses the challenge of developing systems in a way that quantitative safety

guarantees can be given. For that, first terms and definitions are given that are essential to

understand the description of the common aircraft and systems development process, which

is explained afterwards. Eventually, the concept of the Total Capability Approach (TCA)

is introduced, the benefits are highlighted, and arising challenges for application of the new

development approach are discussed. The principle idea of the TCA was first presented and

published by the author of this dissertation on the 13th International Conference on Probabilis-

tic Safety Assessment and Management in October 2016 [LMH16b]. However, the descriptions

given in this chapter are much more thorough and detailed.

3.1.1 Terms and Definitions

In chapter 1, specific terms of a development process were used without preceding definition,

e.g. function, validation and verification. The definitions are common for the aircraft and

systems development process. However, they are given here to ensure an equal understanding.

The explanations given below follow the definitions used in the Aerospace Recommended

Practice (ARP) for development of civil aircraft and systems ARP4754A [SAE10].

• Safety: “Safety is the state in which risk is acceptable.” [SAE10, p. 13]

• Risk: Risk is the combination of severity of an event and its probability of occurrence.

• System: A system is the combination of interrelated items required for and used to

perform specific functions. On top level, the system is the aircraft itself, while lower-levels

refer to specific systems of the aircraft, e.g. the flight control system. For Unmanned

Aerial Systems (UASs), the top level also includes the ground segment and data link.
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3.2 Aircraft Development Process

• Function: A function is the desired behavior of a product. It is specified regardless of

the implementation. A function must be completely specified by a set of requirements.

• Requirement: A requirement is “an identifiable element of a function specification that

can be validated and against which an implementation can be verified” [SAE10, p. 13].

• Validation: Validation is the process of ensuring correctness and completeness of re-

quirements for a product. It is to answer the question whether we are building the

right aircraft/system/function/item. Hence, validation ensures that the requirements

are sufficient and suitable to describe the intended functionality. In a broader sense,

validation can be understood as the assurance that a specified functionality meets the

needs defined by customers and stakeholders.

• Verification: Verification is the assurance that the implemented functionality meets all

requirements. It is to answer the question whether we build the aircraft/system/func-

tion/item right.

• Item: An item is “a hardware or software element having bounded and well-defined

interfaces” [SAE10, p. 12].

• Model; A model is “an abstract representation of a given set of aspects of a system/

function/item that is used for analysis, simulation and/or code generation and that has

an unambiguous, well defined syntax and semantics” [SAE10, p. 12].

Eventually, a safety-critical function is a function that potentially has an influence on safety

of the considered system and operation and hence sufficient performance of the function is

required to achieve an acceptable level of safety.

3.2 Aircraft Development Process

Many requirements are put on aircraft and systems to be developed. Requirements are mainly

motivated by two stakeholders: customer and certification authorities. The first ensures that

the developed product is useful for the customer and the envisaged operation. The second

ensures that the final product is considered as safe and hence certifiable for the intended

application. In this research, especially requirements arising from the second aspect are of

relevance.

According to article 31 and 33 of the convention on international civil aviation, “every aircraft

engaged in international navigation shall be provided with a certificate of airworthiness issued

or rendered valid by the State in which it is registered” [Int06, p. 14] and this certificate

“shall be recognized as valid by the other contracting States” [Int06, p. 15]. Already in the

introduction, sources for technical requirements, which must be fulfilled to obtain a certificate

of airworthiness, were listed, e.g. the certification specifications for small and large aircraft

CS23/25 published by the EASA [Eur17d, Eur17b] for the European area as well as the
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Chapter 3: Total Capability Approach

Table 3.1: Relationship between severity of the effects and classification of failure conditions
[Eur17b, p. 2-F-46]

S
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e

E
ff
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ts

Effect on

Aeroplane

No effect on

operational

capabilities or

safety

Slight
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functional

capabilities or

safety

margins

Significant

reduction in

functional

capabilities or

safety

margins

Large

reduction in

functional

capabilities or

safety

margins

Normally

with hull loss

Effect on

Occupants

excluding

Flight Crew

Inconvenience Physical

discomfort

Physical

distress,

possibly

including

injuries

Serious or

fatal injury to

a small

number of

passengers or

cabin crew

Multiple

fatalities

Effect on

Flight Crew

No effect on

flight crew

Slight

increase in

workload

Physical

discomfort or

a significant

increase in

workload

Physical

distress or

excessive

workload

impairs

ability to

perform tasks

Fatalities or

incapacita-

tion

Classification of

Failure Conditions

No Safety

Effect

Minor Major Hazardous Catastrophic

counterpart for the United States 14 CFR Part 23/25 published by the FAA [Fed67, Fed64].

Those standards are well harmonized and also many other countries outside Europe and the US

rely on them for the certification of civil aircraft. The requirements given in these specifications

cover all technical aspects that must be taken into account for a system to be considered

as safe and certifiable. Almost all of the given safety-driven functional, performance and

implementation requirements are deterministic and prescribe specific design solutions to ensure

safety. For example, CS25.145 gives requirements for longitudinal control of aircraft for various

specific configurations, e.g. with landing gear or wing-flaps retracted or extended. The only

exception is paragraph CS 25.1309 - Equipment, systems and installations. This specification

and the corresponding Acceptable Means of Compliance (AMC) give specific admissible risk

levels for according levels of criticality. As an example, if a failure condition can cause a

catastrophic event, which is normally characterized by a hull loss and multiple fatalities, the

admissible failure probability, i.e the maximum probability that this condition occurs, is Plimit =

10−9. Tables 3.1 and 3.2 gives in detail the classifications for criticality and related admissible

failure probabilities according to AMC CS 25.1309 [Eur17b, Appendix F]. Certainly, the

more severe the effect of a failure condition, the lower the acceptable probability for this

failure condition must be. This requirement must not be understood as replacement for the

prescriptive design requirements given in the certification specifications to ensure safety. It is

written in CS25.1309 that “the requirements of this paragraph (. . . ) are applicable, in addition

to specific design requirements of CS-25, to any equipment or systems as installed in the

aeroplane. Although this paragraph does not apply to the performance and flight characteristic

requirements of Subpart B (. . . ), it does apply to any system on which compliance with any
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Table 3.2: Relationship between classification of failure conditions and probabilities [Eur17b,
p. 2-F-47]

Classification

of Failure

Conditions

No Safety

Effect

Minor Major Hazardous Catastrophic

Allowable

Qualitative

Probability

No Probability

Requirement

Probable Remote Extremely

Remote

Extremely

Improbable

Allowable

Quantitative

Probability:

Average

Probability per

Flight Hour on

the Order of:

No Probability

Requirement

< 10−3 < 10−5 < 10−7 < 10−9

of those requirements is dependent” [Eur17b, p. 1-F-4]. Hence, this “safety paragraph” only

ensures that the mostly conservative, prescriptive design requirements are implemented in a

manner that ensures a high level of availability and integrity of the implemented functions.

For example, a flight control system used to fulfill conservative requirements put on aircraft

control must be designed in a manner that failures of components of the flight control system

leading to non-compliance with those requirements do not happen with a probability higher

than the threshold value.

A different classification of criticality is found in some military specifications. For example, in

the SAE standard AS94900 [SAE07], which is a general specification for design, installation

and test of Flight Control System (FCS) of piloted military aircraft, different levels of FCS

performance degradation are classified by “Operational State I (Normal Operation)” to “Op-

erational State V (Controllable to an Evacuable Flight Condition)”. Standards that use these

classifications usually impose different performance requirements dependent on the operational

state. Using this approach, the criticality of functions is already considered to a certain extend

in the function description. Common to both approaches is the classification of functions

dependent on their criticality, which is important for development of safety-critical functions.

3.2.1 Current Aircraft and Systems Development Process

During the last two decades, several guidelines were developed to provide standardized pro-

cesses for the development of aircraft, systems, and components. Figure 3.1 gives an overview

of most common standards and their focus.

These guidelines cover top-level aspects like the aircraft and system development process and

related safety processes as well as lower-level aspects like electronics and software development.

Especially of relevance for this this research is the ARP4754A. The guidelines given in there

were developed in context of development of large transport aircraft (14CFR Part 25 and

CS-25), but may also be applicable to other regulations for development of different aircraft

categories and helicopters (CS-23, CS-27, CS-29). It describes how aircraft and systems can
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Safety Assessment Process
Guidelines & Methods

(ARP 4761)

Aircraft & System
Development Process

(ARP 4754A/ED-79A)

Guidelines for Integrated
Modular Avionics

(DO-297/ED-124)

Electronic Hardware
Development Life-Cycle

(DO-254/ED-80)

Software Development
Life-Cycle

(DO-178C/ED-12C)

Safety Assessment of Aircraft in
Commercial Service
(ARP5150/5151)

Operation

Function, Failure
& Safety
Information

System
Design

Information

Intended
Aircraft
Function

Functional
Safety

Development Phase In-Service/Operational Phase

Figure 3.1: Guideline documents covering development and in-service/operational phases
[SAE10, p. 6]

be developed especially to fulfill the probabilistic requirements put on the implementation

of safety-critical functions by taking into account the aircraft operating environment and all

functions contributing to the intended operation. An overview of the aircraft and system

develop process is given in figure 3.2. It spans the whole development from the initial concept

and definition of aircraft functions to the implementation and documentation. Two main

processes can be divided:

• Aircraft/system development process: This process comprises the engineering tasks,

i.e. the actual development of functions and its implementation. Top level functions are

derived from a concept, followed by a break-down of aircraft functions, their allocation

to systems and items, and eventually their implementation.

• Integral processes: The integral processes influence all steps of the development pro-

cess. The focus lies on ensuring safety by a transparent, well documented, and consistent

process. The integral processes are not absolutely necessary to obtain a working imple-

mentation but cause a big share of the overall development time and hence costs. Still,

they are essential to ensure safety of the resulting product and to obtain certification.

The intended aircraft and system functions are captured by requirements. In the safety as-

sessment according to ARP4761 [SAE96], these functions are evaluated with their associated

failure modes and effects on the aircraft.
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Requirements and related hazards are essential and form the basis for the integral processes.

For the novel development approach for safety-critical functions presented in this theses, par-

ticularly the way how requirements are derived, validated and verified is of importance. There

are many types of requirements, e.g. safety, functional, performance, customer, installation,

and interface requirements. Especially the first three types are essential for this research:

• Functional requirements: Every function to be implemented is captured in a functional

requirement, which describes in detail the intended functionality. There are several

sources for functional requirements, for example, from customer desires, operational

limitations, implementation restrictions and regulatory authorities.

• Safety requirements: Safety requirements give minimum performance constraints for

the availability and integrity of functions. The basis for those requirements are safety

assessments of the related functions. Dependent on the criticality of each function, the

admissible failure probabilities can be very low, see table 3.2. Safety requirements should

be uniquely identified and traceable to the according functions.

• Performance requirements: Performance requirements specify the attributes of air-

craft and system functions. Again, there are several sources for performance require-

ments, e.g. from customer and safety considerations.

Note that different sources of requirements could also lead to inconsistent requirements, for

example, if the customer intentionally wishes to have a function or a certain performance

range that violates safety requirements. In the following, the process of capturing safety-

related functional and performance requirements is further analyzed. To indicate the origin of

such requirements and to clearly distinguish them from requirements from other sources, they

are hereinafter referred to as “safety-driven” functional and performance requirements.

3.2.2 Safety of Current Approach

The aircraft and systems development process is usually strictly top-down: From the definition

of aircraft functions down to item level. This fulfills the regulatory demand that functions must

be traceable through all levels of development, i.e. the function of every item is associated to

a system and therefore also to an aircraft level function. This should also be true for safety

requirements: Classification of top-level failure conditions lead to safety requirements for top-

level functions. Lower-level requirements that are defined to prevent these failure conditions

and to provide safety-related functions are derived from these top-level safety functions and

are therefore traceable to the top-level safety functions. However, when using today’s regu-

latory standards like the afore mentioned EASA CS25, the process is rather bottom up: The

prescriptive safety-driven design requirements given in those specifications already describe

certain functions and their performance on a very detailed, i.e. low level. It is supposed that

the experience-based collection of safety-driven design requirements are sufficient to ensure

safety on aircraft level. Unfortunately, this is a very qualitative trace, since there is no real
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link between the different levels of requirements except of the experience gained during one

century of aircraft development. Furthermore, safety is only ensured on a qualitative level,

with no quantification of the actual risk.

Safety assessment outputs the criticality of each function and their associated critical events.

Unfortunately today this information of criticality is only used to make sure that the imple-

mentation of these functions has a high availability and integrity, which actually only ensures

that functions do not fail due to implementation issues, like unreliable hardware or software.

This does not consider other sources influencing the performance and hence safety of the func-

tion, like for example uncertainties and disturbances. Today’s safety approach applied to the

prescriptive safety-driven design requirements given in current certification specifications only

ensures that the mostly conservative lower-level functions are implemented in a safe manner,

so that the related failure conditions do not occur with a probability higher than accepted.

The current approach does not guarantee that the overall risk for a failure condition is smaller

than the established maximum admissible failure probability. The difference between the

overall risk and the failure probability obtained by today’s approach is the risk that a function

is inadequately specified or that disturbances and uncertainties are not adequately covered

by functional and performance requirements. If the function and its performance lead to an

unsafe behavior under certain conditions neglected during specification, an implementation of

this function with highest availability and integrity would not increase safety. For example, if

wind shears would not be adequately covered in the safety-driven requirements for an autopilot

for automatic landing, this could lead to a crash, although established development and safety

assessment processes were used to develop a “safe” autopilot. Fortunately, today’s safety-

driven prescriptive design requirements given in certification specifications are conservative

enough that the major influence on safety arises from implementation. Since implementation

is well covered by established development and safety assessment processes, today’s approach

is still a practicable way for developing safety-critical functions for conservative applications

for which many decades of experience is available.

3.2.3 Drawbacks of Current Approach

Although the current approach with prescriptive design requirements is well established and

usable for conventional aircraft, it comes along with several drawbacks, that impede its appli-

cation for novel aviation applications:

• Top-level safety requirements are linked to admissible probabilities of failure for related

top-level functions, while safety-driven lower-level requirements from certification spec-

ifications are deterministic. There is no physically motivated or quantitative relation

between safety requirements of different levels. Today, this is compensated by conserva-

tive certification specifications, which come along with sacrifice of possible total system

performance.
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• Today’s certification specifications usually follow the principle “one system for one func-

tion” and split up performance budges to subfunctions, for example the total performance

of a flight control system into admissible control and navigation errors. Furthermore,

current specifications often prescribe certain design solutions, which prevents usage of

novel state-of-the-art solutions.

• Current safety-driven performance requirements are usually only formulated for specific,

deterministic conditions. Although the implemented function pretends to be safe, it is

only as safe as the function specification and the completeness of expected conditions.

Hence, the current approach does not guarantee safety of the overall system.

• Safety-driven requirements from certification specifications are based on past experience.

Using those requirements based on conventional concepts for novel aviation applications

can be inappropriate or even adverse for ensuring safety. Hence, the classical approach

cannot be applied for systems with modern or disruptive technologies like electric propul-

sion and the wide variety of configurations of UAV resulting thereof.

A shift in paradigm must take place to enable development of aircraft with non-conventional

topologies or operations.

3.3 Shift in Paradigm

Today, major mitigation means to reduce risk of safety-critical functions are to deactivate a

non-compliant function and shift the responsibility to the pilots (e.g. in case of a non-compliant

autopilot behavior during cruise flight) or to initiate an automatic abort function that ensures

a safe transition to less critical states (e.g. for abort of an automatic approach). These

mitigation means reduce the availability of functions but are acceptable for conventional aircraft

operations. Future applications will probably rely on highly automated systems where no

pilots will be available as fallback option and availability must be very high to allow for reliable

operations. Furthermore, today criticality of failure conditions is mainly driven by aircraft safety

and the influence of incidents on crew and passengers. However, separation between aircraft

safety and operation becomes increasingly difficult. For example, it is less critical if a heavy

UAV crashes on an empty filed compared to into a crowd of people. While at the beginning

of the research, this separation was not yet an issue, it became of major importance for safe

operations of systems using disruptive technologies. Therefore, conservative approaches as of

today are no viable option for future applications, where it will be important to consider the

influence of aircraft and operation on safety in an integrated manner.

The current development process for aircraft and system described in the previous section

will also be essential in future since it gives a standardized framework for the development

of safety-critical applications, as it is well established and yielded good and safe systems in

past. Anyway, especially the capture and derivation process of safety-driven requirements does
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not meet future needs for the development of novel aircraft topologies and operations with

complex functions and tightly coupled components. The TCA introduced in this thesis supports

a shift towards an integral, probabilistic consideration of the overall system performance during

system specification to reduce conservativeness but still ensuring a high level of safety. One

attempt of an integrated, performance-based approach is the Performance Based Navigation

(PBN), where a Total System Error (TSE) is defined as the sum of the Flight Technical Error

(FTE), the Navigation System Error (NSE), and the Path Definition Error (PDE) [Int13].

PBN prescribes monitoring algorithms that ensure that the total error does not exceed certain

limits during operation. However, while this approach only focuses on the operational aspect,

the TCA aims at the overall development and operation of safety-critical functions and already

starts with integrated considerations during requirements derivation.

3.3.1 Concept of the Total Capability Approach

The idea of the TCA rest on two pillars: First, the capability of each item and the resulting

performance of each function contribute to the performance and hence also to the safety of

the overall system. Instead of separately considering each component during development

and especially specification, its effect on the total system performance in combination with

all other components and its influence on safety is considered. A simple example for this idea

is the special case that only two functions contribute to the overall performance of a system.

Following conventional, conservative approaches, each function is specified and designed inde-

pendently and hence deteriorating performance of one function, which is non-compliant with

conventional requirements put on this function, cannot be compensated by better performance

of the other function. Following the idea of the TCA, the total performance of the resulting

system is decisive for successful and safe operation and hence degraded performance of one

function can be compensated by better performance of another function, see figure 3.3. This

could be for example the total performance of a flight controller, which is composed by the

control and the navigation performance. Following this total performance idea, it is possible to

achieve higher availability without the necessity of using components with better performance,

which are usually more expensive.
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static limits
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Figure 3.3: Independent (conventional) versus joint performance limits (TCA)
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The second pillar is the consideration of the performance of each function in a probabilistic

framework: Today, hard requirements are specified that must be met under certain specific,

deterministic conditions. These conditions include for example specific test configurations

(e.g. flap and gear position, airspeed) but also specific disturbances like wind. However, in

reality disturbances do only occur with a certain probability. Furthermore even less favorable

disturbances can occur, although with a lower probability, but are still possible. While this

case is not covered by today’s approach, the TCA allows for consideration of uncertainties,

disturbances, and failures in a probabilistic way, that means by taking their intensity with

related probability of occurrence into account during determination of the overall risk, which

eventually results in a development approach for which risk and hence the level of safety can

be quantified.

The term “Total Capability Approach” is motivated by those pillars: The performance-based

approach with probabilistic requirements and integrated consideration of all contributing com-

ponents is able to fill the gap between top-level probabilistic requirements and specific safety-

driven design requirements by taking the total capability of each component and consequen-

tially system and aircraft into account during the safety-driven development process. This

novel approach is enabled by a physically driven, model-based development process.

3.3.2 Field of Application

The novel development approach presented in this thesis is directed toward systems that

have aircraft-level functions with failure modes that potentially affect safety of the aircraft.

Furthermore, it must be possible to adequately describe the items, functions, and resulting sys-

tems together with their uncertainties, disturbances, and failures that contribute to the failure

modes by models. However, this is not a severe limitation compared to today’s development

approach: Models and simulations are often used during the design process. The novelty of

the TCA is the application of models throughout the whole development process from require-

ments formalization to verification to enable the integral and probabilistic consideration of the

performance of all components.

Models are used to evaluate and quantify the influences of uncertainties, disturbances, and

failures of components on risk and hence on safety. The idea of the TCA is to derive safety-

driven performance requirements based on this knowledge. There is often a high influence

of uncertainties on the performance of a function and, therefore, on safety: Whenever a risk

results from an underperforming function, safety-driven performance requirements must be

established that provide admissible performance ranges.

The TCA is especially useful if there are many disturbances and uncertainties influencing the

performance of each component and consequentially of the whole system. Although discrete

failures can be well modeled and simulated, it is recommended to stick to well established

methods like fault tree analysis for such failures. Further descriptions will therefore not explic-

itly discuss the failure case. Nevertheless, since failures are nothing but discrete disturbances,

the presented methods are theoretically also applicable for the evaluation of failure cases.
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3.4 Steps of the Total Capability Approach

Although the TCA is motivated by the need for a more reasonable derivation of safety-driven

requirements, the shift in paradigm also impacts other steps of the aircraft and systems devel-

opment process. An overview of the different steps of the TCA is given in figure 3.4, detailed

descriptions follow in the next subsections.
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Mission-driven derivation and model-based
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Figure 3.4: Steps influenced by and main contribution of the TCA

3.4.1 Requirements Derivation

The derivation of more reasonable safety-driven requirements compared to today’s conser-

vative, experience-based specifications is the main motivation for the TCA. Requirements

derivation in this context is to answer the question “How good must a function perform to

result in a safe system?”. For that, top-level safety requirements are obtained by analysis of

top-level functions and their criticality in a safety assessment. A model-based breakdown of

these safety requirements to lower-levels results in safety-driven functional and performance

requirements, which ensure that the specified function does not lead to a failure condition

with a probability higher than acceptable.

The break-down process is based on models that use knowledge available at this early develop-

ment stage, e.g. about the environment and already developed components. Note that during
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this phase, usually no implementation of the intended function is available and no implemen-

tation must be assumed or anticipated since this would limit possible design solutions to those

which use the assumed implementation. Instead, specification models are expected to model

the behavior of the intended functions. For example, for development of a flight controller,

instead of assuming a control method or architecture, only the desired behavior of the closed

loop system is modeled. The process of deriving requirements in this framework is discussed

in chapter 4.

3.4.2 Requirements Validation

Validation is ideally conducted before design and implementation of functions to prevent possi-

ble useless development efforts due to wrongly specified functions. Wrong specifications could

for example arise from unnoticed inconsistent, missing or wrong requirements.

Today, validation is often only possible in a qualitative manner: A group of experts evaluate

a catalog of requirements and try to figure out to their best knowledge and belief whether

the given requirements are correct, non-contradicting and sufficient to completely specify the

intended functionality and also eliminates the room for unintended functionality. The behavior

models used for requirements derivation can facilitate the validation process since it allows to

simulate the intended function before implementation. Conflicts like missing or inconsistent

requirements can be easily determined, which can greatly ease the validation process for the

experts and increase confidence in the function specification.

Note that this model-based validation is not only possible for derived safety-driven requirements

but for all requirements which can be simulated, e.g. also customer requirements. Having

simulations of the intended functionality before implementation also gives the customers more

confidence in what they can expect from the resulting system and can initiate changes or

additions at an early project phase, if necessary. This can save total development time and

hence costs. More details on validation are given in section 4.4.

3.4.3 Design and Implementation

The design and implementation process for specified functions is very similar to today’s ap-

proach: Requirements still uses classical metrics, only additionally linked to probabilities. This

similarity is important to facilitate the implementation of the TCA. However, since safety

for certification is no longer established by prescriptive design requirements but instead by a

quantitative proof of safety of own design solutions, the increased design freedom also allows

for application of novel, disruptive technologies and state-of-the-art solutions.

Furthermore, the simulation framework used for requirements derivation and validation allows

for automatic testing of implementations against requirements. By that, a function can be

designed and implemented in a way that it does not perform best under ideal and usually

rather safe conditions but instead to result in highest safety or availability.
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Methods and benefits of design an implementation in the context of the TCA are presented

in chapter 5.

3.4.4 Verification

Verification is the step of ensuring that the implementation complies with the established

requirements. This is especially of importance for the proof of safety, which is essential

for certification. During this last phase of development, usually very detailed models are

available that are also well verified against already available prototypes. Proof of safety is even

more important for the TCA, since the less conservative requirements also reduce the natural

buffer inherent to the current approach to mitigate effects of uncertainties and universality of

certification specifications.

Today, it suffices to verify a new design only once to obtain certification of a system or aircraft.

Following the TCA, offline verification is conducted similar to the classical approach, however,

enhanced stochastic methods must be applied for model-based verification to efficiently prove

the top-level safety requirements, which are usually linked to very low probabilities, especially

for critical failure conditions.

Verification results are only as good as the uncertainties and disturbances assumed during the

certification. Since this knowledge is certainly not perfect, it could happen in reality that some

important sources of uncertainties were not considered in an adequate manner. Since there is

less conservatism in the TCA, it is advisable to ensure compliance with requirements also in

service. This is usually referred to as runtime verification. Although this is not a part of the

development process, it can be used as one means to increase confidence in the estimated safety

and hence might be essential to obtain certification using this novel probabilistic development

approach. This is especially true if operation is tightly coupled to safety like for UAV, where

the area of application strongly influences criticality and hence the required level of safety

and availability. Furthermore, uncertainties assumed for development and verification can be

updated using measurements from in-service operation. Although not further discussed in this

thesis, this a-posteriori analysis can additionally increase the confidence in the estimated safety

margins [Wan+14, Dre17].

The different steps of the TCA rely on similar models, however with increasing level of detail

with development progress. Since adequate models are essential for the TCA, special attention

is given to them in the chapters describing the individual steps.

3.5 Influence on Today’s Development Process

Important for the correct interpretation of the TCA is the fact that the well established top-

down development process accoring to ARP-4754A is kept. This also includes all the related

standards, especially the safety assessment process (ARP-4761 [SAE96]) as well as the detailed

guidelines on development assurance and considerations for electronic hardware, software, and
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avionics design (DO-254 [RTC00], DO-178 [RTC11a], DO-297 [RTC05]). Following these

standards in the future is highly recommended since they are the foundation for successful

certification.

Hence, the TCA must be seen as addition to the current processes, where a more reasonable,

physically motivated approach is used to obtain safety-driven lower-level requirements opposed

to today’s rather conservative, experience-based requirements catalogs issued by certification

authorities. The shift towards probabilistic requirements comes along with some more com-

plex verification routines, which however does not change the process itself but only requires

additional means for verification.

To highlight the major differences, development using the conventional approach and the TCA

are compared next.

3.5.1 Comparison with Total Capability Approach

Major similarities and differences during the different development phases are shown in figure

3.5. At some points of the comparison, the example of developing a flight control system for

a fixed wing aircraft is used to enrich explanations with practical examples.

The development starts with the identification of aircraft functions. Safety assessment of

these functions results in related top-level safety requirements. These steps are similar for

both approaches and lie the foundation for the subsequent development. The main difference

arises in the way how lower-level safety-driven functional and performance requirements are

derived, to answer the question “how to specify systems and functions to fulfill top-level

safety requirements”. For the conventional approach, there are several paragraphs in the

certification specifications for large transport aircraft CS-25 [Eur17b] that influences the design

of a flight control system. Requirements on controllability, maneuverability and stability as

well as on hardware are given in this standard. Although the requirements are quite specific

regarding to “how a function must look like”, not many performance requirements are given

to answer the question “how well must a function perform”. Due to missing additional civil

guidance material, one often fall back to military standards, like – for the given example –

the SAE standard AS94900 [SAE07]. It gives requirements on nominal closed-loop behavior

for commands and certain disturbances. Although this is a military standard, it is considered

to result in a safe flight behavior. In comparison, the TCA might also partly rely on today’s

certification specifications where reasonable. This is for example the case for standardization

of the interaction between the flight control system and the pilots, which is essential to

ensure a safe operation. However, instead of using conservative, experience-based performance

requirements from military standards, a direct link between the top-level safety requirements

and safety-driven lower-level requirements is established by a physically motivated, model-

based requirements breakdown, taking into account all kind of uncertainties, disturbances and

failures. By that, no explicit requirements for disturbance behavior are required since they

are implicitly covered by the integrated consideration of all uncertainties. Furthermore, while

standardized requirements follow the “one system for one function” idea, the TCA allows
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Figure 3.5: Comparison of conventional approach and TCA using the example of developing
a flight control system (simplified)
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an integrated consideration of the total flight control system performance, composed in this

example by the control and navigation error.

The availability of models during that early development phase also allows to validate the

set of requirements by simulation (e.g. by flight simulator experiments), to ensure that the

specified flight control system behaves as desired. This is a major benefit of the TCA.

The design process is similar between the two methods – a flight control system is designed

according to specifications, so that the imposed requirements are fulfilled. However, since

for the TCA the requirements do not prescribe design solutions as it is often the case for

conventional certification specifications, this allows for application of novel control methods

like adaptive control. Furthermore, the integrated consideration of all components allows for

a dynamic trade-off between the control and navigation performance, which usually results

in a system with higher availability compared to the individual specification and design of

components. Additionally, the physical link between implementation and top-level safety re-

quirements allows for optimization of safety and availability in the presence of uncertainties

and disturbances.

Eventually, the implemented system is verified against the requirements. While the task is

the same for both approaches, the result is different: While for the conventional approach,

the compliance with requirements only qualitatively ensure safety of the implemented flight

control system, the application of enhanced stochastic methods in the scope of the TCA

results in statements for the actual risk of failure conditions and hence gives a quantitative

feedback about safety of the implemented function. Since this statement heavily relies on the

assumptions made for uncertainties and disturbances, it is recommended to evaluate conform

behavior of the flight control system also during daily operation, e.g. by online monitoring.

Note that the given comparison is very simplified and many steps that are essential for certifi-

cation were omitted, since they are mostly similar between the two approaches. Furthermore,

for the specific example of developing a flight control system for conventional applications,

the experience-based requirements from certification specifications usually serve well for this

purpose. Quantitative safety is often not required, since safety is established by adequate,

prescribed fallback solutions provided to the pilots. However, for future applications, pilots

might not be available as fall-back, which results in higher demands put on the (automatic)

flight control system, where the TCA can act out its full potential.

The TCA shift the responsibility for safety from the certification authorities to the design orga-

nizations, since safety is no longer established by design solutions prescribed by the authority

and is supposed to be safe, but by design solutions developed by the design organization, which

then must also provide evidence that the suggested design is safe. However, this must not

count against the TCA, since already today there are efforts of the certification authorities to

shift the responsibility to the design organizations, see for example the latest revision of the

certification specifications for small aircraft CS-23 [Eur17d]. Hence, the TCA must be seen

as pioneering solution to tackle future challenges in aircraft development and certification.
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3.6 Main Challenges

The TCA promises many benefits. However, several challenges must be met to enable suc-

cessful implementation. The main challenges are presented below. Detailed discussions and

possible solutions are presented in the referred chapters.

• Model-based approach: The success of the TCA stands and falls with the availability

and quality of the used models. This does not only include models for the dynamics of

the involved components, but also for the environment, disturbances, and uncertainties

of all contributing components. The quality and extend of the models certainly increase

with development progress: At the beginning, usually fewer uncertainties are known, no

implementations of the envisaged functions are available and also the environment might

not yet be known in detail. However, at the latest for verification, sophisticated models

are available that are well verified against reality. Required properties of the models

usable for the individual development phases are given in the chapters on requirements

derivation and verification.

• Requirements breakdown: The model-based derivation of safety-driven requirements

is a big challenge: Although no implementation is available at early development phases

and also no assumptions must be made thereon, the behavior must be simulated to an

extend that allows to make statements on the performance required to fulfill probabilistic

top-level requirements. Usually, the design space is large and there are many degrees of

freedom, while the probabilities related to critical failure conditions are very low. Both

circumstances usually increase the computational effort. The challenges related to the

requirements breakdown in the context of the TCA are addressed in chapter 4, where

also one possible solution is presented.

• Confidence in novel method: The requirements, functions and implementations de-

veloped following the TCA are only as good as the models used for and assumptions

made during development. Runtime verification is a powerful mean to increase confi-

dence in the developed system and to ensure that models and assumptions were correct

and operation is safe. Chapter 6 highlights the benefits of runtime monitoring and pro-

vides a model-based online monitoring algorithm to prove compliance for one common

type of requirements.

• Stochastic analysis: Safety requirements are related to admissible probabilities for

occurrence of individual failure conditions. Dependent on criticality, the probability can

be very low, see table 3.2. The computational challenge can be encountered by enhanced

stochastic methods described in chapter 2. However, the adequate application of these

methods and the interpretation of results is often not trivial. Furthermore, it is important

for any analysis of uncertain quantities that each estimation is supported by an according

accuracy measure that gives the level of confidence one can have in the estimation. This

is why the correct application and interpretation of the results is discussed for each step
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of the TCA where these methods are applied, especially for requirements derivation and

verification.
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Requirements Derivation and Validation

The core of this chapter is the introduction of a novel method for derivation of safety-driven

lower-level requirements based on probabilistic top-level requirements. The foundation for this

is model-based requirements engineering, which is described first, together with a literature

study on past and current efforts in this field. The two subsequent sections evaluate the

challenges of model-based break down of probabilistic top level requirements and describe

a method, which is developed taking into account the usually very low probabilities of top

level safety requirements. Finally, it is shown how the proposed model-based approach can be

utilized to enhance the validation of requirements.

4.1 Model-Based Requirements Engineering

4.1.1 Introduction

Today, using models and simulations is common in many disciplines, e.g. in engineering,

physics, biology and medicine. The triumph of models already started with the development of

the first high-level programming language FORTRAN in 1956 [IBM56, Ste12]. With increasing

computational performance, the problems to be solved by models also became more complex.

In the early nineties, efforts began to use models to enhance the whole life cycle of a product,

from specification to disposal [Wym93]. One aspect thereof, which is especially treated in this

chapter, is the model-based requirements engineering, which became more prominent in the

last few years, also boosted by the introduction of the standardized general-purpose modeling

language SysML in 2006 [OMG07].

In general, model-based requirements engineering follows the idea that models are used to

support specification, validation, analysis, design and verification of systems. This is motivated

by moving from a document-centric towards a model-centric approach, where artifacts required

to prove correct development of a product are mainly generated automatically based on models

instead of manually. This shift from informal documents to digital models comes along with

the advantage that one is able to better understand the impact of design changes on the overall

system and can, therefore, also identify shortcomings in a specified product earlier. This is
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enabled by the availability of executable models during early development phases, which usually

leads to lower costs for corrections.

The main driver of model-based requirements engineering is the software development branch,

where formalization of the former informal development process is simpler due to the high level

of standardization available in software engineering. Only during recent years, the benefits of

model-based software development were recognized by the aviation industry and standard-

ization bodies. Model-based software development for aerospace applications is enabled by

the latest revision of the guidelines for “Software Considerations in Airborne Systems and

Equipment Certification” DO-178C [RTC11a]. The RTCA standard DO-331 is a model-based

development and verification supplement to DO-178C and DO-278A, which describes in detail

how models can be used for development of airborne software [RTC11b].

Although the TCA focuses on system development, the standards given for model-based soft-

ware development provide a comprehensive framework for a general model-based development

process. The foundation for consistent model-based requirements engineering is requirements

capture and formalization.

Collection of
informal

requirements

Formalized
(implemented)
requirements

Specification
models

Requirements
capture

Requirements
formalization

Requirements
modeling

Figure 4.1: Model-based requirements engineering – capture and formalization

Figure 4.1 shows the initial steps of model-based requirements engineering. The output of

requirements capture is a collection of informal, usually textual requirements. Subsequent

formalization and modeling leads to a machine-processable, formal requirement with corre-

sponding behavior model. These essential steps for consistent requirements engineering are

addressed subsequently.

4.1.2 Requirements Capture

Requirements capture is the process of collecting all requirements that are necessary to fully

describe the intended functionality of a product. The capture process usually starts with the

identification of stakeholders and their requirements. In principle, stakeholder is “anyone who

has significant power over, influence of, or interest in our system” [Lop15, p. 259]. While

the most decisive stakeholder groups are customers and certification authorities, further stake-

holder can arise by considering the whole product life cycle from development via operation

up to disposal. This could, for example, lead to further top-level requirements by users and

operators. The process of capturing top-level requirements is usually manual work, while cer-

tainly experience from past projects and standards facilitate this task. Referring to the aircraft

development process in figure 3.2, the capture of top-level requirements match with the iden-

tification of aircraft functions, according functional interfaces and safety requirements. With
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increasing development progress, further decisions are made, like the selection of an architec-

ture and allocation of aircraft functions to systems and items. This comes along with further

requirements that must be captured.

Requirements can be captured in different formats, e.g. in text or graphics format. Regardless

of the format, the captured set of requirements must be consistent and lower-level require-

ments must be traceable to top-level requirements or be allocated to decisions made during

the development process (denoted as derived requirements). To capture and organize require-

ments and ease traceability, usually requirements management tools are used, e.g. Polarion R©

Requirements
TM

[Sie17] or IBM R© Rational R© DOORS R© [IBM17].

The TCA especially focuses on safety-driven performance requirements, which are a subset of

lower-level requirements. Today, such requirements are often taken from guidance material

provided by legal entities or standardization bodies. Traceability to top-level safety require-

ments is then ensured by the use of these accepted standards, which are expected to provide

an adequate level of safety for the developed product. There are two major differences during

the capture process when applying the TCA:

• Probabilistic requirements: Top-level requirements are still defined by classical met-

rics, however, they are linked to probabilities: Today, aircraft functions are defined in a

deterministic manner. Although safety requirements are derived from a safety assessment

of top-level functions, which results in admissible probabilities of failures corresponding

to the criticality of the possible failure conditions, this classification is only used to deter-

mine the reliability the implementation must have (see chapter 3.2). When applying the

TCA, the level of criticality is also applied to the function itself and resulting lower-level

requirements, i.e. the respective function must not cause the failure conditions deter-

mined in the safety assessment with a probability higher than acceptable. Although this

change seems to be subtle, it enables the physically motivated derivation and especially

quantification of lower level requirements.

• Quantification of lower-level requirements: Metrics for lower-level requirements

are still conventional, however their quantification is no longer obtained from accepted

standards but derived from top-level functions and their criticality. This leads to safety-

driven performance requirements that are tailored to the actual product and operation.

Hence, the resulting requirements are usually less restrictive than the quantification from

standards which have to take into account a wide variety of different aircraft topologies

and operations.

An addition to the quantification step is the introduction of different performance levels:

• Adequate Performance provides quantified metrics for acceptable behavior at veri-

fication and hence describes the minimum performance required to ensure safety. If

the integrated system meets the “adequate performance limits” during verification, the

design is acceptable.
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• Desired Performance provides quantified metrics for the design objectives, i.e. every

time direct design goals are required, the “desired performance limits” are to be taken.

To result in consistent specifications according to these definitions, desired performance must

always be a subset of adequate performance and hence be more strict or equal. The distinction

is motivated by the fact that during design, clear design objectives are required. However, it

is clear that due to “reality effects”, e.g. implementation, tolerances, and uncertainties, these

objectives cannot be achieved perfectly. Hence, the adequate performance describes the region,

in which the resulting design is still acceptable. Specifically for safety-driven performance

requirements considered in this work, this means that although a function must only comply

with wide performance limits to ensure safety and hence obtain certification, tighter limits can

arise from further stakeholders. This could include technical aspects (e.g. “What would be the

best or most desirable performance?”), but also non-technical issues (e.g. “Which performance

range could be achieved with limited system cost?”). Consider for example a requirement on

the deceleration performance of an aircraft after landing. If safety in this example would only

be motivated by the stop distance of the aircraft, there is only a lower limit for the deceleration

capabilities while any higher deceleration would be acceptable from a safety point of view. Due

to the lack of specific design targets, the technical solution could be anything between a simple

breaking system that exactly satisfies the adequate performance requirement and an extreme

solution using drag parachutes and brake rockets. In this case, the desired requirement would

also provide an upper limit, motivated by further considerations of adequacy, cost, passenger

comfort, etc.

4.1.3 Requirements Formalization

Requirements formalization is the transfer from an informal to a formal requirement. It es-

tablishes a link between text or diagram based requirements and the corresponding models,

which can be automatically evaluated. Formalized specifications are formal in the sense that

they have a syntax and they can be used to obtain information about the compliance of

requirements.

In the first place, the formalized requirement can only be used to check whether a designed

system represented by models complies with requirements, i.e. it is a function, that is applied to

models and which results in a statement about compliance with or violation of the associated

requirement.

In the context of formalization, the model-based development and verification supplement for

software DO-331 introduces “specification models”, which are defined as follows: “A Spec-

ification Model represents high-level requirements that provide an abstract representation of

functional, performance, interface, or safety characteristics of software components. The

Specification Model should express these characteristics unambiguously to support an under-

standing of the software functionality. It should only contain details that contributes to this

understanding and does not prescribe a specific software implementation or architecture except
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for exceptional cases of justified design constraints.”. This concept can also be extended to

systems and function design: The desired behavior of a system or function given by require-

ments can be modeled leading to behavior models without applying knowledge about actual

implementations. Note that this must not be confused with the formalized requirement: While

specification models reproduce the function specified by requirements, formalized requirements

only result in a statement about compliance. Still, specification models can be utilized for re-

quirements formalization by comparing the actual implementation with the reference behavior

given by specification models and thereof derive a statement about compliance.

The concept of formalized requirements and specification models can be applied to different

levels of the development process from aircraft to item level. In this case, the specification

model of one level represents the requirement for the lower level. For example, suppose that

the higher-level requirement specifies that an aircraft has to be able to maintain altitude with a

certain accuracy in the presence of uncertainties and disturbances. The formalized requirement

would be, in this example, a simple comparison of compliance with predefined altitude bounds.

The specification model would reproduce the desired behavior in the presence of uncertainties

and disturbances that just fulfills the requirement. Eventually, this specification model becomes

the requirement for the (lower level) actual control design, where then the objective is that

the closed-loop behavior with a controller must not be worse than the limit behavior given by

the specification model of the higher level.

The actual process of formalization highly depends on the content of the requirement. For

common requirement types, e.g. which only prescribe thresholds or admissible intervals of

observable values, formalized requirement templates can be used. For more complex require-

ments, usually manual programming is required. This also holds for specification models,

which – in contrast to usually simple comparisons done by formalized requirements – highly

depend on the target system and environment. Current research in this field try to auto-

mate the formalization process by identification of catchwords in informal requirements and

then selecting an appropriate template from a library [PH12, WL13, ASA17]. However, these

approaches are still limited to specific types of requirements.

Specification models describe the behavior of functions and usually depend on other functions,

the environment and inherent uncertainties and disturbances, which is discussed next.

4.1.4 Models and Environment

In the context of model-based requirements derivation and validation, a model is an abstract

representation of relevant aspects of a system or function that is used for analysis and sim-

ulation, to obtain insight and understanding of the specified functions and their interactions

among themselves and with the environment. With respect to the system or function to be

developed, the model must not include any information about the actual (planned) imple-

mentation except for justified design constraints. However, the models used for requirements

derivation and validation do not only include the specification models, but also models for the

environment and its interfaces. For example, when the objective is to develop a flight control
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system, usually models of the used aircraft, environment and off-the-shelf components to be

used are readily available and their influence on the system and functions to be specified must

be taken into account. In the subsequent descriptions, all components, which could have an

influence on the system to be developed but which cannot be influenced or modified by the

actual development, are summarized as “system environment”. Figure 4.2 shows the scheme

of the developed simulation environment for requirements derivation.

Simulation Environment

System
Environment

System & Environment
Models

Specification
Models

Formalized
Requirements

Requirement 2

Requirement 1

Statement
Probability
Scenario
Environment/
Conditions

Compliance
Flags

Figure 4.2: Simulation environment for model-based requirements derivation

According to definition, specification models should be as simple as possible and only as

complex as necessary. On the other hand, the system environment should be modeled as

accurately as possible using all knowledge available at the early development stage. That

applies all the more to requirements derivation in the context of the TCA, where this simulation

environment is used to derive safety-driven lower level requirements based on probabilistic top-

level requirements.

Adequate simulation models are required to allow for reasonable derivation of safety-driven

requirements based on probabilistic top-level requirements. Models suitable for that task must

provide the following properties and functionalities:

• Representation of environment: The models must correctly represent the system

environment that cannot be influenced or modified. Certain dynamics are inherent to

the principal system and cannot be altered by any inputs and hence cannot be influenced

by any function to be specified. This is for example the case for system kinematics

and external disturbances. Also dynamics of subsystems that are not in the reach of

the envisaged development, e.g. off-the-shelf components, must be correctly modeled,

including uncertainties.

• Tunable specification models: The models must provide means to adjust the relevant

dynamics part of the model that can be influenced. This is usually ensured by adequate

specification models.
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• Effects of uncertainties and disturbances: The models must reproduce the effects

of disturbances and uncertainties in a manner that allows for a stochastic evaluation

of their influences on the system response. Often, adequate disturbance models and

admissible system responses are defined by certification authorities or can be obtained

from experiments.

• Interfaces: The models must provide interfaces for relevant inputs, outputs and for

variation of uncertain parameters. Relevant signals in this context are signals that are

required for requirements evaluation, i.e. for execution of formalized requirements.

It is necessary to take all kinds of uncertainties and disturbances into account to result in valid

lower-level requirements. Major sources of uncertainties are:

• Model uncertainties: For model uncertainties due to simplifications or lack of knowl-

edge, often an upper threshold can be specified. The effects of model uncertainties must

be adequately represented using a sufficient number of uncertain parameters.

• Initial assumptions: When there is initially only the knowledge that a parameter is un-

certain but no quantification is available, assumptions based on experience, specification

sheets, etc. must be made.

• Parameter identification: Models are verified using experiments. The model param-

eters are tuned so that the errors between model and experiment are minimized. The

initially guessed uncertainties are refined using e.g. Bayesian inference, leading to realistic

probability density functions for uncertain parameters (see e.g. [Che+13]).

• Stochastic uncertainties: Stochastic processes are used for modeling of time-dependent

random phenomena. Such processes describe the sequence of mostly correlated uncer-

tain parameters. Stochastic models are either given by standards or must be established

by experiments.

Although models are usually problem-dependent and require considerable development effort,

this additional effort must not be accounted to the TCA, since models of the system envi-

ronment are usually already used today during system and function design and optimization.

Hence, the effort is only shifted to an earlier development stage.

4.2 Determination of Design Parameter Boundaries

Model-based break-down of requirements in the scope of the TCA goes beyond what has

been done with model-based requirements engineering up to now. Today, formalized require-

ments and specification models are used to support understanding of the specified system and

functions, while safety-driven performance requirements usually do not have a physical link

to the top-level safety objectives. Although high-level safety requirements can be formalized,

this knowledge is not further used, mainly due to two reasons: First, probabilities related to
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top-level safety requirements are usually very low and therefore evaluation is computationally

expensive. Second, since this complexity inhibited physically motivated evaluations in the past,

prescriptive certification specifications were derived during the last seven decades, which are

applicable to conventional aircraft topologies and operations. Since these led to safe aircraft,

there was no necessity in the past to change this established procedure. However, in the third

chapter the overdue shift in paradigm was motivated.

One major enabler of this shift is a physically motivated derivation of safety-driven lower-level

requirements, where compliance with top-level safety requirements is established by a hard

link instead of the weak compliance with top-level safety requirements by prescriptive and ex-

perience based certification specifications. Following this approach, the result of requirements

derivation and validation is no longer limited to the statement that a set of requirements is

reasonable to result in a safe system, but it leads to the “best possible“ solution, where best is

defined concerning safety and availability of the prescribed function under certain conditions.

In the following subsections, the challenges of model-based determination of safety-driven

performance requirements is discussed and a new method is described, which can be used to

break down top-level probabilistic safety requirements. This novel approach was only enabled

during the last years by development of enhanced stochastic algorithms (see chapter 2). The

knowledge about the admissible design parameter bounds obtained by the proposed algorithm

is the prerequisite for selection of reasonable design parameter intervals, which is discussed in

section 4.3.

The algorithm described in this section was first presented and published by the author of this

thesis on the EURO GNC 2017 - 4th CEAS Specialist Conference on Guidance, Navigation &

Control in April 2017 [LH17].

4.2.1 Problem Description

The idea of model-based break-down of requirements is to use specification models, i.e. models

that reproduce the desired closed-loop behavior of a system when no implementation is avail-

able yet. A common design task is the determination of an optimal design that minimizes the

weighted effects of all requirements. For that, adequate methods exist, e.g. [BS07] for general

design optimization and [Kou16] for high-dimensional, stochastic design problems. Opposed

to design optimization, here the implementation-independent models should be used to find

the complete range of acceptable ranges of lower-level functional behavior for the safety-driven

performance requirements that fulfill the probabilistic top-level requirements. For determin-

istic requirements or when only considering nominal conditions, this break down could be

approached with common engineering knowledge, since the deterministic behavior in the ab-

sence of uncertainties gives a clear bound between acceptable and unacceptable behavior, i.e.

there is no chance that the top-level requirements are violated if the lower-level requirements

are specified correctly.

In the presence of uncertainties and disturbances, the break down is no longer trivial, since it

requires the additional simultaneous consideration of possible uncertainties and disturbances
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that could lead to violation of top-level safety requirements. In reality, there are always uncer-

tainties, e.g. arising from unknown system dynamics, inaccurately known model parameters,

and environment. All these uncertainties contribute to the overall system performance and

could lead to an – although unlikely, but still possible – violation of top-level requirements.

This implies that for a single specified behavior and the according specification model, which is

used to simulate the desired lower-level behavior, a very high number of simulations is already

required to estimate the failure probability with a sufficiently high accuracy and hence high level

of confidence. Consequently, the estimation of admissible bounds for specified behavior within

which it is ensured that the top-level safety requirements are not exceeded with a probability

higher than a usually very small threshold in the presence of uncertainties, adds an additional

layer of computational complexity. This makes the probabilistic model-based derivation vir-

tually impossible when using conventional stochastic algorithms already for a low number of

design degrees of freedom, i.e. a low number of tuning parameters of the specification model

for which admissible intervals must be found.

An additional challenge arises from the fact that the design bounds cannot be exactly de-

termined due to the stochastic nature of the uncertainties, since the bounds can usually not

be determined analytically but only by stochastic algorithms. The results of such stochastic

approximations change from one to another simulation even if the model is not changed at all.

This requires determination of confidence intervals for the estimated quantity within which

the true solution is supposed to lie with a certain probability. This must be taken into account

during derivation of admissible design bounds to prevent misinterpretations of the resulting

acceptable design domains.

Recall that the objective is not to find “new” metrics for lower-level requirements, but to

find physically motivated and hence more reasonable quantifications of common metrics. In

subsequent explanations, the modifiable parameters, which can be influenced by the designer

to fulfill the top-level safety requirements, are denoted as design parameters. With increasing

complexity of the requirement and hence of the specification model, the degrees of freedom

and hence number of design parameters increase.

4.2.2 Intuitive Approach using Rastering

The probability of violating a requirement for a given design parameter combination can be

determined by stochastic simulations for an environment subject to uncertainties and distur-

bances. However, for determination of acceptable ranges of design parameter combinations

during requirements derivation, it is required to find all combinations of design parameters for

which the top-level safety requirements are fulfilled. More specific, the objective is to find

the design parameter bounds usually in the form of hypersurfaces, which divide the design

parameter space into acceptable and unacceptable designs. At each bound, for at least one

requirement, the actual probability of exceedance is equal to the allowed failure probability,

while the probabilities of exceeding the other requirements are smaller than the admissible

threshold.
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Figure 4.3: Determination of design parameter bounds using grid samples

Figure 4.3 gives a generic example for the case with two design parameters. A requirement is

quantified by a scalar response variable (see chapter 2.2). For a fixed combination of design

parameters, the threshold for the response variable is determined that is not exceeded with a

probability higher than acceptable. This is shown in the upper plot with a failure probability

of PF = 10−5 in the considered example. The CCDF required for this evaluation is obtained

by (enhanced) stochastic analysis. This determination is repeated for all combinations of de-

sign parameters obtained by rastering over the whole design parameter space. The result is a

response variable surface with constant failure probability, where response values lying above

this surface are less likely to happen than the admissible failure probability. This surface is
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shown in the lower plot. A probabilistic requirement prescribes the admissible probability that

a specific value of the response variable is exceeded. The definition and corresponding critical

value of the response variable depends on the respective failure condition. For the example

shown, the value of the system response must not exceed 0.6 with a probability higher than

10−5. Samples which comply with this requirement are drawn in blue, violations in orange.

By interpolation between design parameter combinations with acceptable and non-acceptable

response, i.e. by intersection of the response surface for constant failure probability with a

plane of constant response variable, an approximation of the design parameter boundary for

this requirement is obtained, which is a circle in the example. Unfortunately, this is the most

inefficient way to obtain the design parameter bounds, since the number of samples required

grows exponentially with the number of design parameters. Hence, rastering only makes sense

if the boundary must only be evaluated once and sufficient computational power and time

is available. Furthermore, the CCDF is actually not exactly known since it is obtained by

stochastic simulations (see section 2.6.4). This is shown in figure 4.4. The uncertainty of

the CCDF results in an uncertain estimate of the response variable that is not exceeded with

a specific probability. Hence, also the response surface that is not exceeded with a certain

probability, which is actually a deterministic surface, is not exactly known. This approximation

error results in an uncertain design parameter boundary. Zero variability of the design param-

eter boundary can only be obtained for the theoretical case of an infinitely large sample size

used for stochastic analysis.

4.2.3 Efficient Determination of Uncertain Boundaries

The idea of the proposed algorithm is to use a pseudo-inverse algorithm where – starting

from a single point on the design parameter boundary – the whole boundary is evaluated in a

more efficient way by walking along this boundary using a gradient method. This promises to

require a lower number of samples, see figure 4.5. Although the general idea of walking along

the boundary is simple, there are several challenges related to the application of this idea to

the estimation of design boundaries, which can only be approximated. Major challenges when

using gradient-based methods in this context are

• Finding an adequate initial point on the parameter boundary

• Calculation of the gradient, when the functional value is not accurately known due to

estimation errors

• Efficient generation of samples along the uncertain design boundary

These points are discussed in detail in the following paragraphs.

Finding a Single Point on the Design Parameter Boundary

Without initial knowledge about the design parameter boundary, it can be challenging to

efficiently find a starting point on this boundary. There are two principle methods that can
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Figure 4.4: Determination of uncertain design parameter bounds using grid samples

be used to identify a starting point for the gradient-based algorithm, if no foreknowledge is

available.

The first method starts from a design parameter combination in the midst of the parameter

domain. Then, additional samples are generated from the center point by only varying a single

design parameter from its minimum to maximum value. If all or no samples comply with

the considered requirement, the procedure is repeated with another design parameter until

a dimension is found where the variation of a single design parameter leads to a transition

between accepted and non-accepted samples. By interpolation between the samples closest to
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Figure 4.5: Determination of design parameter bounds using stochastic gradients

the boundary, an approximation of a single point of the design parameter boundary is obtained.

By fixing the other parameters in the midst of the parameter domain, the resulting initial point

is still very much in the middle of the parameter domain and hence is a good starting point

for the gradient based method.

The second method relies on gradient calculations (see next subsection) and is hence very

similar to optimization algorithms that tries to find the fastest way to an extreme value. First,

the multi-dimensional gradient of the system response with respect to the design parameters is

calculated for an initial design parameter combination in the midst of the parameter domain.

Using the difference between the estimated system response value and the target value specified

in the requirement, an iterative approximation towards the design parameter boundary can be

conducted similar to the Newton–Raphson method [Kel03]. Note that this method could

converge to local solutions and hence prevent a transition to the design parameter boundary.

Both methods lead to a single point on the design parameter boundary that can be used as

seed for the gradient based evaluation of the boundary.

Estimation of the Uncertain Gradient

Calculation of the gradient is a trivial task for a deterministic response. However, since an

analytical solution of the probabilistic design problem is in general not available, the system

response is only inaccurately known. Depending on the required accuracy of the gradient,

usually either a single sided or a double-sided difference quotient is used for approximation

of the local derivative. The first only requires one additional function evaluation in addition

to the center point and the approximation has an order of O (∆λ), where ∆λ denotes the

step width. The second requires two function evaluations per dimension but has therefore
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4.2 Determination of Design Parameter Boundaries

an approximation order of O (∆λ2) [Bec13]. The challenge here is the uncertain system

response, which is usually obtained by stochastic simulations. Figure 4.6 gives the example for

the double-sided difference quotient with uncertain system responses, where λi denotes the

i-th design parameter and y and ŷ the actual but unknown and the estimated system response

respectively. The vertical bars represent variance bounds for the individual estimations, which

result from stochastic simulations, and the dotted lines indicate upper and lower variance

bounds for the estimated difference quotient.
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response estimation

True difference quotient

λi,0 −∆λi

λi,0 + ∆λi

λi,0
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y
,ŷ
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Figure 4.6: Difference quotient of uncertain functions

The double-sided difference quotient for the i-th design parameter is estimated by

ĝi (λi,0) =
ŷ (λi,0 + ∆λ)− ŷ (λi,0 −∆λi)

2∆λi
(4.1)

for any positive, non-zero step width ∆λi, where the linear calculation rules for variances are

used. The index i is skipped in the following for the convenience of reading. The variance of

this quotient, calculated based on the variance of the individual response estimates ŷ, is

var [ĝ (λ0)] =
var [ŷ (λ0 + ∆λ)]− var [ŷ (λ0 −∆λ)]

2∆λ
(4.2)

where it is assumed that there is no correlation between var [ŷ (λ0 + ∆λ)] and

var [ŷ (λ0 −∆λ)], which is usually the case since the random samples for estimation of

ŷ (λ0 + ∆λ) are always independently generated from the samples for estimation of

ŷ (λ0 −∆λ). Opposed to the difference quotient for the deterministic case, which converges

towards the gradient of y (λ) for infinitesimal step widths ∆λ, this is not true for the difference

quotient of uncertain responses ŷ. According to equation (4.2), the variance of the gradient

becomes infinite for non-zero variances of the estimations ŷ. A trade-off is required between

small step sizes for better approximation of the local response y and larger step sizes for lower

impact of estimation errors. Since the step size cannot be arbitrarily increased to reduce the

variance of the estimated gradient, the estimates of the response ŷ must have an adequate

accuracy, i.e. a relatively low variance var [ŷ (λ0 ±∆λ)]. There exists an optimum step width

for this trade-off. Two factors influence the accuracy of the estimated gradient: The stochastic
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estimation error and the approximation error due to non-infinitesimally small step widths. The

first error can be described by

var [ĝ (λ0)] = E
[

(ĝ (λ0)− g (λ0))
2
]

= E
[

(ĝ (λ0)− y′ (λ0))
2
]

(4.3)

where y′ (λ0) is the first derivative of y (λ) with respect to λ evaluated at λ = λ0, which

exactly corresponds to the gradient g (λ0). Equalizing (4.2) with (4.3), rearrangement and

application of the norm gives the following description for the single standard deviation bound

of the estimated gradient as a function of the step width ∆λ:

|ĝ (λ0)− y′ (λ0)| =
√

var [ŷ (λ0 + ∆λ)]− var [ŷ (λ0 −∆λ)]

2
∆λ−0.5 = c1∆λ−0.5 (4.4)

c1 is a positive constant that only depends on the variance of the response estimator ŷ. Using

stochastic simulations, the estimation ŷ, the corresponding estimated probability of exceedance

P̂ (ŷ) and the variance of this expected probability var
[

P̂ (ŷ)
]

are obtained (e.g. by (2.13)

for conventional Monte Carlo simulation or (2.114) for Subset simulation). Unfortunately, the

required variance of the response for the considered failure probability var
[

ŷ
(

P̂F

)]

does not

directly result from simulation, but only the variance of the estimated failure probability for the

determined threshold var
[

P̂F (ŷ)
]

. To approximate the variance of ŷ, the CCDF is used (see

2.6.1). By using the CCDF as a mapping from ∆P̂F to ∆ŷ, the variance of ŷ can be estimated

from the known variance of P̂F , see figure 4.7. This is only an approximative mapping, since

the CCDF is an approximation itself obtained by stochastic simulations. However, the results

are still useful for approximation of c1 and hence for quantification of the stochastic estimation

error of the gradient g (λ0).

√

var [ŷ] (required)√

var
[

P̂F

]

(known)

ŷ

CCDF

P̂F

y

Figure 4.7: Mapping from variance of estimated probability to variance of response

For the derivation of the approximation error due to non-infinitesimal step widths, consider

the third order Taylor approximation of the exact response value (neglecting approximation

103



4.2 Determination of Design Parameter Boundaries

errors) for the design parameter variation λ0 ±∆λ, which is

y (λ0 ±∆λ) = y (λ0)± y′ (λ0) ∆λ + y′′ (λ0)
∆λ2

2
± y′′′ (ξ)

∆λ3

6
(4.5)

According to the mean value theorem, this equation is exactly true for at least one value of

ξ ∈ [λ0 −∆λ, λ0 + ∆λ] [Bro06, p. 405]. The commas in superscript denote the order of

derivation with respect to σ. Inserting this into the equation for the double-sided difference

quotient gives

g (λ0) =
ŷ (λ0 + ∆λ)− ŷ (λ0 −∆λ)

2∆λ
= y′ (λ0) +

y′′′ (ξ1) + y′′′ (ξ2)

6
∆λ2 (4.6)

Hence, the gradient equals to the true derivative plus an additive error proportional to ∆λ2,

which also proves the afore made statement that the double-sided difference quotient has

an approximation order of O (∆λ2). Rearrangement and application of the norm gives the

following expression for the estimation error as function of the step width:

|ĝ (λ0)− y′ (λ0)| =
∣

∣

∣

∣

∣

y′′′ (ξ1) + y′′′ (ξ2)

6

∣

∣

∣

∣

∣

∆λ2 = c2∆λ2 (4.7)

where c2 is a positive constant that depends only on the curvature of the response function.

Figure 4.8 shows the error of the gradient due to the stochastic estimation error (4.4) and the

approximation error (4.7) for exemplary c1 and c2, both as function of the step width. The in-

fluence of the stochastic error can be well quantified from the results of stochastic simulations.
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Figure 4.8: Dependencies of different gradient errors on absolute step width for exemplary
values of c1 and c2
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With increasing stochastic error, i.e. increasing c1, the optimal step width increases. However,

the optimal step width cannot be calculated in advance, since the shape of the system response

y(λ) and hence also the third derivative y′′′(λ), which directly influences the coefficient c2,

is not a priory known, since it is actually the information looked for. Nevertheless, a general

statement can be derived from (4.7): The less the curvature of the system response y(λ)

changes with λ, the bigger is the optimal step width. In the special case that the curvature of

the bound is constant, c2 becomes zero and hence step width can be maximized to the limits

of the considered design parameter λ to obtain the best approximation of the local gradient.

Generation of Samples along the Parameter Boundary

In the previous section it was shown how the gradient of an uncertain response value ŷ (λ)

with respect to a p-dimensional parameter vector λ can be estimated. The response surface

for constant probability of exceedance can be estimated by a first order approximation of

the hypersurface using the stochastic gradient vector g (λ) derived in the previous section.

Neglecting stochastic uncertainties in a first step, the Taylor approximation is given by

y (λ0 ±∆λS) = y (λ0)± dy

dλ
(λ0) ∆λS +

p
∑

i=1

p
∑

j=1

d2y

dλidλj

(ζ) ∆λS,i∆λS,j (4.8)

where the last term approximates the curvature of the hypersurface by a Jacobi matrix and

the approximation is exact for at least one ζ ∈ [−∆λS, ∆λS] according to the mean value

theorem. Note that ∆λS is the step width used for generation of new samples along the

hypersurface, which is usually different to the step width ∆λ used for estimation of the

stochastic gradient. Estimating the Jacobi matrix for the p-dimensional parameter vector

using symmetric finite differences requires 2p2 evaluations of the response function y which

is computationally very expensive. Furthermore, due to the product of two small numbers

in the denominator of the Jacobi matrix, the negative influence of stochastic uncertainties

highly outweighs the benefits obtained by the higher-order approximation. Hence, only a first

order approximation of the hypersurface is considered for generation of new samples along the

surface, which has an approximation order of O
(

∆λ2
i,S

)

:

ŷ∗ (λ0 ±∆λS) = ŷ (λ0)± ĝT (λ0) ∆λS (4.9)

where ŷ∗ denotes the linearly extrapolated value of ŷ based on the estimated gradient ĝ.

Inserting ∆λS = λ − λ0 into (4.9) and rearranging leads to the point normal form of a

hyperplane which ensures ŷ∗ (λ)− ŷ∗ (λ0) = 0, where λ0 represents the parameter vector at

the initial support point:

(λ− λ0)T
ĝ (λ0) = 0 (4.10)

Equation (4.10) is used to generate new sample points on the hyperplane for ŷ∗ (λ) = ylimit =

const., which is a local approximation to the actual parameter boundary. If there are p
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parameters λi, i = 1 . . . p, the hyperplane has an order of p − 1, i.e. all but one of the p

design parameters can be freely modified (in theory) and the remaining parameter can be

calculated as function of the others. Very high variations of the sample point position on the

surface could arise from steep gradients even in combination with relatively low step widths of

individual design parameters. To prevent the associated numerical problems, it is essential to

limit the absolute step width, which is possible by scaling the individual parameter step widths

by the respective component of the gradient.

For each newly generated sample point λ(j), j = 1 . . . m, the value of the response ŷ
(

λ(j)
)

is estimated and compared to the approximation ŷ∗
(

λ(j)
)

. If at the m-th step the estimated

system response deviates too far from the desired value y (λ0) = ylimit, i.e. if ŷ∗
(

λ(m)
)

−y (λ0)

becomes too large, an updated gradient vector is calculated at the point λ = λ(m). Afterwards,

new samples are generated that fulfills the following equation:

(

λ(m+1) − λ0
(m)
)T

ĝ
(

λ(m)
)

= ŷ
(

λ(m)
)

− ylimit (4.11)

The value on the right side of the equation in contrast to the null in (4.10) compensates the

offset of the m-th point from the considered hypersurface with y (λ) = ylimit.

The optimal step width ∆λS for the steps λ(j+1) = λ(j) + ∆λS for any arbitrary step j is not

known at this stage. A reasonable initial step width must be chosen. For physical problems,

an initial step width of approximately 10% of the overall parameter width has been found as

suitable. To find a rule to dynamically adjust the step width to be close to an optimum, the

error components contributing to the overall error are looked at. Inserting equations (4.4) and

(4.7) into (4.8) gives

ŷ (λ0 ±∆λS) = ŷ (λ0) + ĝ (λ0) ∆λS + c1∆λ−0.5∆λS + c2∆λ2∆λS + c3∆λS
2 (4.12)

where c3∆λS
2 represents the error arising from neglecting the curvature of the hypersurface.

Inserting (4.9) and rearrangement gives the following error estimation for ŷ∗ (λ)− ŷ (λ), where

λ = λ0 + ∆λS:

|ŷ∗ (λ)− ŷ (λ)| ≤
∣

∣

∣c1∆λ−0.5∆λS

∣

∣

∣+
∣

∣

∣c2∆λ2∆λS

∣

∣

∣+
∣

∣

∣c3∆λS
2
∣

∣

∣ (4.13)

Figure 4.9 depicts the effects of c1 and c2, i.e. stochastic estimation error and approximation

error, on the response error |ŷ∗ (λ)− ŷ (λ)|, exemplarily for the scalar case with same step

width for gradient calculation and hypersurface approximation ∆λ = ∆λS. For the general

case where ∆λ = k∆λS, the shapes of the curves are similar, only the scaling coefficients

c1, c2, and c3 becomes kc1, kc2, and k2c3 respectively. It can be seen that there is no

optimal step with that minimizes the estimated response error. This is obvious since for very

small step widths also the estimation error is very low and for the limit case that λ = λ0

and hence ∆λ = 0, the error is zero since the new value is similar to the value of the

support point of the approximation. However, still for small step width the stochastic error
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Figure 4.9: Dependencies of estimation error of the response value on step width (depicted
for the scalar case)

is the major contributor to the approximation error of the response plane while for large step

widths the effect of planar approximation is determining. The error arising from the first

order approximation of the hypersurface k2c3∆λ2 behaves very similarly to the approximation

error of the gradient kc2∆λ3, i.e. it starts at zero and only slowly grows with increasing step

width while the estimation error kc1∆λ−0.5 grows faster for smaller step width and slower for

higher step width. This knowledge can be utilized to dynamically adapt the step width during

generation of new parameter samples along the parameter boundary. For further description,

the step width for which the stochastic error is equal to the approximation error is referred to

as equilibrium width (see figure 4.9). Up until now, only a qualitative criterion was given for

the necessity of calculating a new gradient vector if the response error becomes too high. Now,

a quantitative statement is derived: Step widths up to the equilibrium width are considered

to be acceptable for the approximation of the hypersurface since this error size would also

occur for any other non-gradient method due to the stochastic nature of ŷ. The equilibrium

width cannot be determined a-priori since the influence of the approximation errors (c2 and

c3) cannot be quantified. However, from figure 4.9 it can be seen that for step widths below

the equilibrium width mainly the estimation error contributes to the overall estimation error.

The single standard deviation bound of the estimation error can be obtained using (4.4). The

error arising from linear extrapolation |ŷ∗ (λ)− ŷ (λ)| is calculated for each step. If the actual

error is lower than two times the estimation error, it is very likely that the current step width is

below the equilibrium width or that the approximation error compensates the stochastic error

due to different signs, which is also acceptable. On the other hand, if the true error is much

bigger than the estimation error, the current step width is probably above the equilibrium
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width. While in the first case the step width can be increased to enable faster evaluation of

the hypersurface, in the second case the step width must be reduced to ensure an adequate

estimation of the hypersurface. Note that the stochastic error is Gaussian distributed (see

section 2.3.3) and nc1∆λ2 is a single standard deviation bound, i.e. if only this error would

be decisive, approximately 68% of all samples would lie within this bound while still 32%

of all samples would lie outside. To prevent premature reduction of the step width due to

exceedance, either double standard deviation bounds 2nc1∆λ2 can be used as reference, or

the average of multiple independent samples can be considered.

To allow quantification of the performance increase by walking along the boundary using

gradients, it is assumed that in average each parameter direction is evaluated by N1dim samples.

At worst, a new gradient vector must be calculated for each evaluated point on the design

parameter boundary, leading to a required number of function evaluations of

N = 2pNp−1
1dim + Np−1

1dim = (2p + 1) Np−1
1dim (4.14)

where N1dim is the number of samples per uncertain parameter direction and p is the number

of design parameters. The factor 2p account for the double sided gradient calculation, i.e. two

evaluations are required for each of the N1dim sample points. The factor one account for the

evaluation of the response ŷ at each point on the approximated hypersurface. Dependent on

the number of samples per uncertain parameter direction, there is a maximum of one order gain

in performance compared to simple rastering of the whole parameter space, which is intuitive

since by using the described algorithm samples are generated along a grid on a (p− 1)-

dimensional hypersurface while in the reference method a grid over the whole p-dimensional

space is evaluated. Higher increase in performance can be obtained if the effects of different

design parameters on the response are (almost) not correlated. This enables a sparse grid of

samples. Figure 4.10 shows exemplarily how a sparse grid of samples is generated for the case

of three design parameters, which corresponds to two parameters λ1 and λ2 that can be freely

chosen and one that depends on the other two parameters λ3 = fctn (λ1, λ2) to fulfill (4.9).

Evaluation of ŷ for
validation of ŷ∗

Gradient evaluation

No gradient evaluation
if parameters not correlated

(−5, 0)

(0, 0)

(6, 0)

Design parameter λ1

Boundary of design space

(0,−3)

(0, 3)

Step 1
Step 2

Design parameter λ2

Figure 4.10: Distribution of sample points for validation and gradient calculation
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Circles denote evaluations of ŷ (λ) for validation of ŷ∗ (λ), crosses denote points where the

gradient vector with respect to design parameters is recalculated to correct too high errors of

the response value ŷ∗ (λ)− ŷ (λ). First, the design parameter boundary is evaluated along one

parameter dimension, in the shown example in direction of design parameter 1, where the step

width is not necessarily constant but depends on the gradient, to ensure a constant step width

on the design parameter plane, i.e. if the design parameter λ3 would change much with change

in λ1, the step width in λ1 would be lower and vice versa. Second, the next parameter direction

is evaluated. If it is detected that the gradient in direction of the first parameter is similar to

or only changes uniformly for different values of parameter 2, fewer samples can be used for

validation of the approximation plane. In the case that certain parameter dimensions are not

or only slightly correlated, gradients in direction of the non-correlated design parameters can

be extrapolated based on adjacent sample points. Figure 4.11 shows exemplarily two different

hypersurfaces, in the upper plot for the case without any correlation between design parameter

1 and 2, and with full correlation between the parameters in the lower plot. It is apparent that

in case of no correlation, considerably less samples are required for evaluation of the gradient,

but also for validation of the approximation surface.

For detection of only slight correlation, assume that two freely selectable design parameters

are not or only slightly correlated with respect to the response ŷ, i.e. if a is a realization of

the first parameter λ1, then

dŷ

dλ1

∣

∣

∣

∣

∣

λ1=a,λ2=b

≈ dŷ

dλ1

∣

∣

∣

∣

∣

λ1=a,λ2=c

≈ const.∀b, c ∈ [λ2,min, λ2,max] (4.15)

This means that the change of system response ŷ with design parameter λ1 does only depend

on the value of λ1 and not on the value of λ2. A similar criterion is the derivative of ŷ with

respect to the design parameter λ2: If it is zero or constant over the whole parameter range

λ1, this corresponds to no correlation. In this case, it is theoretically sufficient to evaluate

the gradient only for one specific value of λ2. This is highlighted in figure 4.10 by points in

brackets – for those points no gradient needs to be calculated in case of no correlation, which

reduces the number of samples required to

N = 2 (p− 1) Np−1
1dim + Np−1

1dim = (2p− 1) Np−1
1dim (4.16)

Compared to (4.14), only the first term changes and not the second, since only the evaluation

of the gradient is not needed while still it is required to evaluate the values at all points to

ensure that the approximation is valid. Also the number of validation points can be reduced

in case of no correlation, however no quantification can be given since the reduction highly

depends on the level of confidence one requires in the approximation. Although this does

not reduce the order of number of samples required, there is still a certain reduction, e.g. in

the example with three parameters where two are not correlated, the number of samples can

be reduced by approximately 29% compared to the case that a gradient is calculated at each
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Figure 4.11: Influence of design parameter correlation on sample points

evaluation point, for the case where two parameters out of four are not correlated, the required

number of samples is still reduced by 22%. To detect the case that two directions are not

or only slightly correlated, equation (4.15) together with the findings in the previous section

can be used: After the gradient in one parameter direction is evaluated, gradients along the

second parameter are generated for one fixed value of the first parameter. In the example

given in figure 4.10, starting from the initial point (0, 0), first the hypersurface is evaluated

along parameter λ1, i.e. the points (−5, 0) to (6, 0) are evaluated. In the second step, the

points along the second dimension are looked at, i.e. (0,−3) to (0, 3). Next, the gradients
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with respect to the first parameter generated for different values of the second parameter are

compared to the gradient value at the initial point (0, 0). If the deviations are in the range

of the stochastic gradient error (4.4), it can be inferred that the gradient in direction of one

parameter does not change with the second parameter. This is certainly not guaranteed for

the whole range of the first parameter, hence still the complete surface must be evaluated,

however it is no longer necessary to evaluate the gradient for every point on the surface, which

saves a lot of evaluations. Note that further considerable reduction of number of samples could

arise from the limited design parameter space. For example, if the hypersurface only cuts a

small corner of a cubic design space, the resulting area is relatively small. Figure 4.12 shows

an example for a more complex design parameter surface for the case that only designs above

the indicated surface are admissible and design parameter 3 is limited above by λ3,max = 5.
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Figure 4.12: Reduced number of samples due to limited design parameter space

A regular grid of points ease the approximation of the actual design parameter boundary using

a cubic interpolation. For the scalar case, i.e. by treating the design parameters independently,

the approximation can be described by:

ŷ (λ) = a + b (λ− λlow) +
1

2
c (λ− λlow)2 +

1

6
d (λ− λlow)3 (4.17)

where ŷ (λ) is the approximated design parameter boundary for a given λ, λlow the closest grid

point with λlow < λ and a,b,c and d are coefficients calculated using the following boundary

conditions:

ŷ (λlow) = ŷlow

ŷ (λup) = ŷup

dŷ

dλ

∣

∣

∣

∣

∣

λ=λlow

= ĝ (ŷlow)

dŷ

dλ

∣

∣

∣

∣

∣

λ=λup

= ĝ (ŷup)

(4.18)
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which leads to

a =ŷlow

b =ĝ (ŷlow)

c =
6

(λup − λlow)2

(

ŷup − ŷlow − ĝ (λup − λlow)−

1

3
(λup − λlow) (ĝ (ŷup)− ĝ (ŷlow))

)

d =
2

(λup − λlow)2 (ĝ (ŷup)− ĝ (ŷlow)− c (λup − λlow))

(4.19)

In case that sample points are generated in a non-uniform grid, alternative interpolation meth-

ods can be used, e.g. Shepard interpolation [She68]. This case is not further discussed.

Note that the descriptions given in this chapter shall highlight the challenges related to the

use of uncertain gradients for determination and approximation of hypersurfaces. The given

equations facilitate a proof of principle, which is given for the example of determination of

design parameter bounds in section 7.3.1, while a universal routine and implementation of this

method still requires further research.

4.3 Selection of Adequate Design Parameter Intervals

4.3.1 Objectives

The previous section introduced high-dimensional design parameter boundaries and one pos-

sible method for the challenging task of identification of these bounds for stochastic top-level

requirements. Usually, design parameters are not only limited by one requirement, but by

several, which leads to intersections of different boundaries that determine the actual feasible

design parameter space, i.e. the regions of design parameter combinations that satisfy all re-

quirements. This section answers the question how adequate design parameter ranges within

this typically complex solution space can be found.

4.3.2 Available Methods

During early development phases, many design degrees of freedom exist, from which adequate

design ranges must be selected. This is a common problem, which is why several approaches

for identification of possible designs are readily available. Note that the major objective is not

to identify the “best possible” solution, but instead to find a wide range of possible designs

that all satisfy the imposed requirements to provide the designers a function with as much

freedom as possible.

The challenging task in this context is to describe the feasible design space in a suitable

manner, so that it is usable for specification and design. For that, set-based approaches were

developed in the past (e.g. [SWL99, AlA+09]), where the solution space is approximated

112



Chapter 4: Requirements Derivation and Validation

by sets of feasible design parameter combinations. The state-of-the-art for the description

of sets is a box-shaped solution space, where the biggest-possible box is identified within

the overall solution space. Each edge of the box represents a feasible and hence acceptable

interval for one design parameter. This method is well researched and also applied in industry

([Gra13, Fen+14, GHZ16]). The fitting of the box into the entire solution space is often done

using stochastic methods. This is no limitation for its application in the scope of the TCA,

since for this step, the design bounds are readily available in a mathematical formulation or

numerical description, which allows an efficient evaluation of the boundaries and therefore the

identification of good and bad design combinations.

The box-shaped solution space has the advantage that well established algorithms are available

for the identification of feasible design parameter ranges. Since the interval for each param-

eter is decoupled and hence independent from the other parameters when using a box, the

specification of a system or function is simple and also the function designer does not have to

take into account the parameters possibly selected by other designers. However, this comes

along with the big disadvantage that usually a high fraction of the possible design space is

neglected, since a box usually only represent a small subspace of the feasible design space,

even more for high dimensions, see figure 4.13.
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Figure 4.13: Box-shaped versus complete solution space for two design variables (based on
[Ers+17])

For many design problems, the dependency of two design parameters can be well handled,

e.g. if the design of the function, which determines a pair of parameters, is under supervision

of one designer or development team. This was the motivation for beyond state-of-the-art

research currently conducted by Erschen et al. [Ers+17, Ers18], where the solution space

is described by two-dimensional solution regions (referred to as 2D-spaces). A comparison

between box-shaped and 2D spaces is shown in figure 4.14 for a simple example with only

one boundary that fulfills λ2
1 + λ2

2 + λ2
3 < 1.5. Although still only a subset of the complete

solution space is covered, this approach results in an exponential growth of size of the solution

space with increasing number of design parameters compared to the box approach [Ers+17].

However, the required computational effort is much higher, even with the assumption of linear

or almost linear dependencies of individual boundaries on design parameters made in the
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Figure 4.14: Box-shaped vs. 2D solution space for three design variables (example from
[Ers+17])

procedure described by Erschen. Furthermore, no method exist yet for nonlinear boundaries.

2D solution spaces are still object of ongoing research. Nevertheless, already box approaches

result in physically more reasonable and less conservative design parameter intervals compared

to conventional parameter intervals prescribed by today’s certification standards and hence the

referred methods can be applied in the scope of the TCA, where, however, future research can

lead to even more performance.

4.3.3 Specification Trade-Off

No matter if box-shaped or 2D solution spaces are used for approximation, in both cases

the best solution space under the given constraints is looked for. However, the meaning of

“best” has not yet been defined. One option would be to choose the box or combination

of 2D spaces that has the biggest volume, certainly given that each design parameter is

normalized to allow a reasonable comparison. Although this is one common way, it does not

take into account how hard it might be to achieve specific design parameters or combinations.

Recall that design parameters in the current context are not parameters used for actual design

but instead prescribe admissible ranges for designs established in corresponding requirements.

Hence, the specific selection of design parameter ranges can have a significant influence on

the complexity and effort that is required during later development to achieve designs which

comply with these requirements. Consider the example given in figure 4.15. Although the

volume of the solution space obtained using the 2D method is less than the optimal volume

indicated in figure 4.14, an increased interval for design parameter λ3 = 0 . . . 0.7 might ease

design and implementation much more than the consequences of reduced intervals for λ1 and

λ2. A weighting of the individual dimensions as a function of the parameter value can be used

to account for parameter-dependent effort, whether it be cost, time, or further influences. By

that, a trade-off can be made between the efforts resulting from specific design parameter

interval selections.
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Figure 4.15: Trade-off for the size of the solution space

Any solution resulting from the aforementioned algorithms leads to a safe system since in no

case any bound is violated and hence any design within the specified solution spaces complies

with all requirements. Referring to the different performance levels introduced in section 4.1.2

– adequate and desired performance – the obtained solution spaces correspond to adequate

performance, i.e. the performance range which must be fulfilled to achieve a safe system.

For the desired performance, which gives specific design goals required during development,

further considerations can be added. For example, instead of only considering the boundary

which divides the solution space in acceptable and unacceptable designs, the combination of

design parameters could be looked for that leads to the theoretically safest system. Further-

more, sensitivity of the design objective with respect to the individual design parameters can

be taken into account. Using sensitivities, the range of design parameters could be identified

where a design objective does not change much within the intervals and hence the resulting

system behavior is more predictable during early development phases. Additionally, a low sensi-

tivity with respect to design parameter changes makes the resulting system more robust against

uncertainties of parameters, which helps to achieve a more consistent system behavior in the

presence of uncertainties. While set-based approaches are well suitable for the specification

of the adequate performance, for the determination of the desired performance also (robust)

design optimization methods can be used, see e.g. [BS07] for general design optimization and

[Kou16] for optimization of high-dimensional, stochastic design problems. Certainly, also other

aspects besides safety could be decisive for selection of the desired performance. For example,

an aggressive autopilot for a passenger aircraft could result in higher safety of the aircraft,

however, passenger comfort would be drastically reduced which might no be desired. Note that

robust design optimization is not suitable for determination of adequate performance ranges,

since it usually only results in one optimal solution with respect to the assumed uncertainties

of the individual design parameters, while for the determination of the feasible design space,

the design parameters are not uncertain but instead the widest possible range of parameter

combinations is looked for that satisfies all requirements. Furthermore, a weighting used during
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design optimization does usually not ensure compliance with all requirements.

4.4 Validation of Requirements

4.4.1 Task Description

Validation is the assurance that the requirements for a product are correct as well as complete

and hence answers the question whether “we build the right aircraft, system and function”.

It can be also understood as the assurance that specifications meet the needs defined by

stakeholders, which are, for example, customers, operators, users and certification authorities.

Different stakeholders have different intentions and hence objectives during validation: Cer-

tification authorities focus on safety and, therefore, constrain undesired and hence unsafe

behavior. Customers want to ensure that the specified product meets the objectives driven by

its application and hence can be used for the intended operation. Operators and users may

focus on implications of specified functionalities on the actual (daily) use and operation of a

product, where especially high availability is a major concern.

Independent of the motivation for validation, the common objective is to ensure that require-

ments are correct and complete. Correctness is “the degree to which an individual requirement

is unambiguous, verifiable, consistent with other requirements and necessary for the require-

ment set” [SAE10, p. 57]. Completeness is defined as “the degree to which a set of correct

requirements, when met by a system, satisfy the interests of customers, users, maintainers,

certification authorities as well as aircraft, system and item developers under all modes of

operation and lifecycle phases for the defined operating environment” [SAE10, p. 57].

If validation is conducted correctly, it reduces risk for unintended functionality. It is possible to

identify errors or omissions already early during development, which reduces risk for subsequent

redesign or inappropriate system behavior. Since redesign is usually related to additional

development effort and cost, validation highly contributes to keeping development costs down

and hence is not only motivated by the function but also by economy.

Driven by the importance of validation, usually a validation plan is required that describes

methods used for validation, collected data, and schedule. Adequate guidelines exist for

validation planning (e.g. [SAE10, chapt. 5.4] for aerospace applications). Therefore, the

remaining section focuses on methods for validation and how the TCA with the model-based

approach can enhance the validation process. Note that validation must be conducted at each

level of development, i.e. starting from aircraft functions down to item specifications. The

explanations given below are applicable to any phase of development.

4.4.2 State of the Art

The validation effort is left to the developer. Certification authorities usually only require

a structured process that should be captured in a validation plan. The question how to
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actually conduct validation of specific as well as sets of requirements to ensure correctness

and completeness is up to the design organization.

Validation is conducted with respect to “own” requirements, i.e. those that are captured for the

actual development and which are in the scope of the developed system, but also with respect

to other systems. This is covered by a thorough analysis of the interfaces to other functions

and systems. It is inevitable to make assumptions, especially during early development phases.

These assumptions are usually challenged by independent reviewers, together with related

justifications and interpretations.

Today, usually a collection of questions, templates and checklists are used for validation.

Those means are mainly based on knowledge and lessons learned and are used by experts

and stakeholders to assess correctness and prevent incompleteness. However, these means are

usually either very specific but only applicable to particular functions and systems or rather

general and hence less powerful but, therefore, applicable to more general products.

Ideally, requirements should be validated before actual design and implementation of a system,

function and item. In practice however, this is usually not possible, especially for complex and

integrated systems, where understanding of the specified functionality only emerges during

implementation. Hence, validation is often only possible parallel to design and implementation,

which results in a staged validation throughout the development cycle. Only with increasing

design progress, confidence in the correctness and completeness of requirements grows. This

could even lead to the case that testing of the implemented function serves both, validation

and verification.

For development of aerospace functions, ARP4754A lists the following validation methods

[SAE10, chapt. 5.4.6]: Traceability, analysis, modeling and test and experience. At early

development phases, mainly traceability, experience and qualitative analysis can be used and

it hence heavily relies on expert knowledge. With design progress and implementation, more

quantitative validation methods like modeling and test can be used.

4.4.3 Model-Based Support of Validation

Especially completeness of a set of requirements is, by its nature, usually difficult to prove

before design and implementation. The model-based approach of the TCA allows to close the

gap between early qualitative and late quantitative validation. This is possible by using models

and simulations already during early development phases and particularly before design and

implementation.

In section 4.1.4, specification models are introduced, which reflect the behavior of a require-

ment without using knowledge about any possible implementation. For requirements deriva-

tion, the specification models are tuned to identify the possible range of behavior that fulfills

top-level safety requirements. Now, the identified acceptable and desired behavior is assumed

to be fixed and simulations can be used to support experts and stakeholders to check cor-

rectness and identify incompleteness of requirements. Although simulations have already been

used in the past for validation, the important difference is that the specification models are
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readily available prior to design and implementation and hence allow a very early validation

with the associated benefits of early identification of incorrect or incomplete requirements.

Certainly, correct representation of the specified behavior and the environment are essential.

This is also true for models used for derivation of requirements and hence there is no additional

burden for model-based validation. The simulation environment developed for requirements

derivation can be directly used for validation. While the system and environment models

remain the same and can be used without additional effort, adequate validation methods must

be applied to evaluate the results obtained from analysis and simulation using the system

models, see figure 4.16.
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System
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System & Environment
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• Analysis

• Simulation

• Human-in-the-Loop

• ...

Figure 4.16: Simulation environment for model-based requirements validation

Note that this procedure is not limited to safety-driven performance requirements for which

already specification models exist from requirements derivation. Further requirements can also

be evaluated, e.g. customer functional or performance requirements. For any requirement that

can be represented by a specification model, model-based validation during early development

phases is possible. The advantages can be concluded as follows:

• Early quantitative validation: Simulations and analysis are already used today for val-

idation and verification, however this usually requires an (initial) implementation. Using

specification models allows for an early quantitative validation, which significantly helps

to assess correctness and completeness and prevent later design changes or undesired

behavior.

• Confidence in specified functionality: Simulations usually provide a vivid represen-

tation of the specified functionality, which increases confidence. Furthermore, since sim-

ulation results do not necessarily require deep knowledge about technical aspects, they

are also useful for decision makers to determine whether the specified system matches

the envisaged product.
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• No additional effort: If following the TCA, virtually no additional effort is required

to utilize the specification models already developed and implemented for requirements

derivation. No novel or special methods are required for model-based validation.

Certainly, care should be taken to obtain correct validation results. The specification models

usually rely on assumptions and still require thorough analysis of these and also of the interfaces

and non-technical aspects. Hence, model-based validation methods can only be one additional,

even though powerful tool for determining correctness and completeness of requirements.

4.5 Open Challenges

Model-based requirements derivation and validation highly rely on the availability of formalized

requirements and corresponding specification models for simulation of the specified behavior

before actual design and implementation. This chapter discusses, how models can be used for

derivation and validation especially of safety-driven performance requirements. Furthermore,

a method is proposed for derivation of design parameter boundaries based on probabilistic

top-level requirements. Although the given descriptions and methods suffice for an initial

application and proof of principle, the TCA has even more potential that can be achieved if

the following main challenges are solved:

• Formalization and modeling efforts: Although templates can be used for formal-

ization of requirements and implementation of according specification models, those

are only available for standard requirements. More complex specifications still require

additional effort for that task.

• Size of design problem: Although the proposed methods reduce the computational

effort for requirements derivation, they are still limited to smaller design problems, with

a maximum of 5-6 design parameters based on experience. This is no show-stopper since

for many physical problems, the overall design problem can be split up into independent

subproblems with lower numbers of design parameters. However, more efficient algo-

rithms would allow for a more integrated consideration of all contributing parameters or

quicker evaluation, which both would increase practicability of the proposed approach.

• Multidisciplinary considerations: The descriptions given in this chapter mainly focus

on safety-driven performance requirements and technical aspects. For determination of

the optimal design, further influences might be decisive, e.g. motivated by operation and

economics. Using multidisciplinary models would further automate the task of identifying

a range for ideal behavior, which would be highly beneficial.

The model-based derivation approach for safety-driven lower level requirements requires a

different thinking: Requirements derivation is no longer about ensuring that specifications

taken from traditional, established standards make sense and trace well bottom-up to top-level
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safety requirements but instead it is the opposite approach to look for specifications that results

in a safe system in a top-down fashion. The posed open challenges can be mainly approached

by applying the proposed ideas to the development of a real product. This is currently subject

of research conducted by another researcher at the FSD of the TUM [Mum18].

Exemplary applications of the described ideas and introduced algorithms are given in chapter

7.3.1 for an example in the context of developing an Automatic Flight Control System (AFCS)

for close formation flight of fixed-wing aircraft.
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Design and Verification

In the previous chapter, the top-down requirements derivation and validation processes were

discussed. The subsequent steps in the development process are design, implementation, and

verification, which are conducted bottom up from item to aircraft level. This process model

is well known as “V-Model”, shown in figure 5.1. The bottom up steps and especially the

influences and enhancements of the TCA on the design and verification phase are discussed in

this chapter. Although these steps are different in principle, the impacts of the TCA and also

the applied methods are similar, which is why design and verification are considered together

in this chapter.

The development process is a highly parallel and iterative process. At lower levels, system de-

velopment is usually split up into several subsystem development processes in parallel. Integral

processes are applied to every subsystem development. Typical aircraft (sub)systems are for

example flight and ground controls, engine control, guidance and navigation. Furthermore,

although ideally the development is straight forward, design and verification go hand in hand,

where a non-compliance with requirements identified during verification on item, subsystem

and system level necessitates a redesign. This leads to the common iterative design and

verification process.
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5.1 Design Process

5.1.1 Introduction

This section addresses design and implementation of functions specified using the methods

described in the previous chapter and especially answers the question how stochastic methods

can enhance the design and implementation of systems and functions.

The objective of design and implementation in the considered context is to realize safety-

critical functions and systems according to specifications to yield a safe product. Besides the

functions, also the items that realize the higher level functions certainly have a high impact on

the safety of the resulting product and hence admissible failure probabilities must be considered

during the design on item level and appropriate rigor must be applied to the process of selecting

or designing items. The TCA aims at ensuring safe functions and systems, hence there is no

direct impact of the TCA on item design. Therefore only minor attention is given to the actual

implementation of functions to real hard- and software since for that, already well established

processes and standards are available, which establish safety on item level by ensuring high

levels of reliability. For an overview of related aerospace standards, see figure 3.1.

5.1.2 State of the Art

Similar to the specification of safety critical functions, also their design is heavily driven by

past experience. Changes of classical design principles are usually only motivated by insights

obtained from incidents and accidents. Still today, uncertainties and disturbances are treated

very conservatively. To understand the reasons, it is necessary to consider developments during

the past century. This in done in this section exemplarily for the development of flight control

functions. However, the principle of how uncertainties are considered during development of

arbitrary safety-critical functions is similar for many disciplines.

Flight controllers, which represent the implementation of specified and designed flight control

functions, are usually based on linear control theory. The first autopilot developed back in

1912 was a gyroscopic autopilot (also known as Sperry autopilot), which used mechanical links

between gyroscopes and aircraft control surfaces [Wil06]. These links can be considered as

linear feedbacks of attitude errors to control surfaces and hence represent the beginning of

using linear flight control laws. Different technologies have been used for implementation of

flight control functions since then, starting from mechanical and hydraulic, via electric and

electronic systems, up to today’s common digital autopilots. However, still today, mainly linear

control functions are used, also driven by the usually low level of complexity of automation

tasks, e.g. wings leveler and altitude hold functions.

The experience gained during one century of application of linear control design and evaluation

almost only led to requirements based on linear control theory that must be fulfilled for certifi-

cation. If requirements are already formulated using linear theory, it is natural to also develop

linear controllers to satisfy those requirements. Note that this is not necessarily a drawback –
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for conventional autopilot functions, such prescriptive design requirements adequately answer

the purpose of ensuring safe designs. Even if today non-linear control theory is used, the capa-

bility of non-linear controllers is approximated by linear controllers for which linear verification

procedures are available assuming that in each approximation region, the nonlinear controller

behaves similar to the linear approximative controller. For that, well-known tools are available

for linear robust multi-input multi-output control, which allows analysis of steady-state and

transient performance and which also provide robustness margins for the case of uncertainties

and disturbances[FYN17].

While the level of conservatism arising from applying conventional linear control theory is ac-

ceptable for common flight control functions, it is no longer reasonable for highly-automated or

autonomous vehicles, for which a high level of safety and availability must be achieved. Another

source of conservatism of the state-of-the-art approach for design of flight control functions is

the way how uncertainties are treated. Conventional design of control functions means design

for best performance under nominal conditions and acceptable disturbance behavior for certain

known disturbances specified in today’s requirements. Uncertainties are usually treated by ro-

bust control design methods, where uncertain parameters are represented by parameters with

bounded magnitude [Mac04, chapt. 12], i.e. with hard deterministic bounds, which however is

usually only a weak representation of the reality. The outcome of robust control and analysis

methods is the guarantee that no combination of bounded parameters violate requirements

imposed on the respective functions.

The modeling of uncertainties with interval bounds comes along with two major disadvantages.

First, uncertainties from physical processes usually follow a distribution with a high probability

close to an expected mean value with decreasing probability the further the actual value lies

afar from the assumed mean. Hence, for any selection of hard interval bounds, there is a

certain probability that a value lies out of the bounds. Depending on the selected width of

the bounds, two extreme cases can be identified, see also figure 5.2. On the one hand, wide

bounds can be chosen that include almost all possible realizations of the uncertain parameter,

with only a very small probability that the actual value lies out of the specified interval. This

selection is very conservative, since also very unlikely values are considered without using the

possibly available information about the likelihood of such values. On the other hand, tight

bounds would ease design of a function according to requirements due to a smaller variation

of uncertainties. However, such relaxed bounds are closely related to a high probability of

exceedance in reality and hence guaranteed compliance with requirements under such tight

bounds could cause deceptive confidence in actual system performance.

The second principal disadvantage of hard interval bounds is the loss of information due to

modeling of uncertainties by deterministic intervals, which is especially of relevance for the

combination of many uncertain parameters. While it is obvious that, when considering multiple

uncertain parameters, a combination of improbable parameter values is even less probable,

this accumulation effect is not considered for robust control approaches. This could lead to

overestimation of the criticality of very unlikely combinations of uncertain parameters, even if
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Figure 5.2: Hard interval bounds for approximation of uncertainties

those parameters would be modeled by relaxed bounds.

All these disadvantages can be addressed using a physically driven approach, which matches

the reality much better. This is enabled by modeling uncertainties using the whole available

knowledge, e.g. about the distribution of individual uncertainties. In this case, there is no

longer a 100% guarantee of complying with conventional (deterministic) requirements, since

there is always a very small probability of violation. However, formal compliance is enabled by

the shift from deterministic to probabilistic requirements in the scope of the TCA.

5.1.3 Model-Based Support of Design

There is a high potential when using the whole knowledge about uncertainties and disturbances

also during system design in order to exploit the total capabilities of a given system or setup.

No new method for this task is given in this section, since such methods usually depend much

on the design objective. Instead, the consideration of uncertainties in the development phase

is motivated and current efforts as well as challenges are worked out.

Robustness analysis of complex systems started in the eighties, where deterministic descrip-

tions of uncertainties were used to analyze the effect especially of parametric uncertainties on

controlled systems [Bar94]. Only during the last decade, research started on probabilistic and

randomized methods, where uncertainties affecting the system are considered during control

design with their probabilistic nature. The objective is to obtain probabilistic robustness mar-

gins, usually using randomized algorithms like Monte Carlo simulation. For a detailed literature

study and evaluation of the state-of-the-art, refer [CDT11] and [TCD13]. The motivation for

past research on probabilistic methods is the desire to break the computation complexity barrier
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suffered by deterministic worst case approaches [CD06, pp 381-414]. In the referred literature,

stochastic approaches are proposed that minimize the likelihood of violating requirements for

the important case of uncertain plant parameters, where the full probabilistic knowledge of

these uncertainties is used. These approaches already reduce conservatism, however, they

focus on relatively high admissible failure probabilities, opposed to the usually very small fail-

ure probabilities inherent to probabilistic safety requirements. Still, these methods can be a

valuable starting point for future research.

Much effort is currently also put in researching on novel control methods and development

of related performance guarantees. Certification of adaptive controllers is one example for

that [Jac08, LCK10]. Especially approaches that ensure performance of an uncertain plant

and that provides probabilistic performance bounds, i.e. bounds that are only exceeded with a

certain probability, must be mentioned in this context (see e.g. [MCJ12, CH13a, Müh18]).

The TCA provides the perfect foundation for any new method that is able to provide guar-

anteed probabilistic performance bounds for uncertain plants, mainly due to the probabilistic

requirements inherent to the TCA. Worst case considerations with estimation of the related

failure probabilities is essential to ensure a safe implementation, however, this is usually compu-

tationally very expensive. While dedicated methods for specific problems and control methods

can provide even higher gains for evaluation performance, the universal approach given by the

application of enhanced stochastic methods (described in chapter 2) already enables efficient

stochastic worst case analysis for arbitrary implementations thanks to the black box principle

of the introduced methods. Using worst case analysis, the designed and implemented func-

tions do not only work well in average or with bounded uncertainties, but also under unlikely

conditions, however, where the probability of exceedance is known opposed to worst case sce-

narios obtained by robust methods. If enhanced stochastic methods are used, the simulation

environment introduced for requirements derivation and already utilized for validation, can also

be used to support design, see figure 5.3. The major extension to the simulation environment
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Figure 5.3: Simulation environment for model-based support of design and implementation
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is the replacement of the specification models by models of the actual implementation. With

advances in development, also system environment models are usually updated with better

models for uncertainties, while the formalized requirements remains the same to enable con-

tinuous analysis of compliance parallel to function design and implementation. Using enhanced

stochastic methods, available degrees of freedom of an implementation (denoted as “tunable

parameters” of the implementation) can be chosen in a way that all requirements are fulfilled.

Note that although the consideration of all different kinds of uncertainties and worst case

analysis during design and implementation imply a shift in paradigm, the required system per-

formance is still defined by classical metrics. This is vital, since it ensures easy understanding

and hence a high level of acceptance of the probabilistic approach for today’s design engi-

neers. By also following the TCA during the design phase, it is ensured that a system is

developed that complies with requirements under all admissible conditions. For example, a

flight controller solely optimized for ideal conditions can use very high feedback gains to obtain

a good performance under ideal conditions, while it probably leads to very poor performance

in disturbed and uncertain environments. Using an integrated approach with consideration of

all possible uncertainties, disturbances, and failures during system design leads to the safest

system, which does not necessarily show the best performance under ideal conditions.

The possibility of continuous evaluation of requirements during design and implementation by

efficient simulation methods allows an early identification and evaluation of scenarios that could

lead to unsafe conditions. This enables the derivation of mitigation means for safety-critical

behavior and a design that ensures an acceptable level of safety early during development,

which can reduce time and cost compared to the case that unsafe behavior is only identi-

fied during (final) verification. This task is especially supported if using enhanced stochastic

methods, where usually many failure samples are obtained by simulation and each sample is

related to an individual failure scenario. This is exemplarily shown in section 7.3.3 for an

example in the context of development of an automatic flight control system for an aircraft

formation flight. Another important benefit of parallel verification is the possibility to optimize

a function design to find the best possible implementation. “Best” in this context could be for

example the design that leads to the highest level of availability of a function for a given level

of safety. This is very similar to the definition of adequate and desired performance in section

4.1.2, where the first constitutes the acceptable range of designs which fulfills all requirements

(and hence leads to a safe product) and the second also takes into account non-safety driven

aspects like economy and optimality. The challenges arising in the context of finding the opti-

mal design are similar to identification of the desired performance range, where especially the

number of degrees of freedom of the design are limited by available computational resources.

In summary, it can be said that the TCA, characterized by the usage of probabilistic require-

ments and the integrated consideration of uncertainties and disturbances, also provides benefits

for the design phase. Robust design methods, which are usually used to take uncertainties

into account during design, can lead to deceptive deterministic performance guarantees. By

using probabilistic bounds instead, the level of confidence in the designed and implemented

127



5.2 Verification

function can be quantified. This usually requires either dedicated design and analysis methods

for specific control algorithms or application of enhanced stochastic methods to reduce com-

putational effort usually related to evaluation of stochastic worst case scenarios. However, this

is a solvable task, either by using novel methods currently researched at or developed in near

future or by application of enhanced stochastic methods described in chapter 2. The TCA

highly benefits from using the whole knowledge about uncertainties and disturbances through-

out the development process, also during the design step. This is exemplarily demonstrated

in section 7.3.3. Note that the argumentation in this section uses thinking in black and white

terms to highlight the major differences. Certainly, there are attempts already today to a more

realistic consideration of uncertainties during system design, however, the application lack in

the availability of a direct link to probabilistic safety-driven requirements, which is one major

novelty and advantage of the TCA.

5.2 Verification

5.2.1 Introduction

Already parallel to the design and implementation phase, verification-like tests are used to

check whether the product at its current state is likely to fulfill all requirements put on it.

Actual verification takes place as soon as an item, function, system, or overall product reaches

its final state to ensure that the implemented functions meet all requirements, i.e. it is the

proof that the specifications are correctly and completely translated into a real product.

Assumptions are made throughout the whole development. At latest during verification, it

must be proven that they are valid and hence the requirements derived under these assump-

tions are valid and appropriate to ensure safety. Although this is already of relevance following

conventional certification approaches with prescriptive design requirements, it is essential to

ensure safety using the TCA with its model-based break down of probabilistic top-level require-

ments. During the requirements derivation step, necessarily assumptions and simplifications

must be made due to the lack of information and implementation during early development.

Although the safety-driven requirements derived using the model-based approach ensure safety

under the assumptions and simplifications made, this is not guaranteed for the actual imple-

mentation. Hence, during verification safety of the actual implementation must be proven,

using the whole knowledge about uncertainties, disturbances, and failures of the developed

product. This is necessary at all levels of verification, starting from item level, where, for

example, a selected sensor comes along with additional uncertainties and failure modes up to

aircraft level, where the total performance is driven by the performance and uncertainties of

all items, functions, and subsystems. While it is required also for the common development

approach to verify that the assumptions made earlier during development are still valid, the

reconsideration of safety of the overall product after replacing assumptions by actual solutions

reduces the level of conservatism, which is one objective of the TCA.
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In the subsequent sections, first it is discussed how verification especially of aerospace systems

is conducted today and what the results are, followed by the motivation for a stochastic,

model-based verification approach and the challenges inherent to that.

5.2.2 State of the Art

The verification of aircraft systems is well documented in ARP4754 [SAE10, chapt. 5.5]. This

practice describes recommended steps, tools, and procedures for verification and certification.

For example, it is described in detail, which documents must be generated to prove compliance

with requirements, it describes a verification plan and matrix that specifies the means of

compliance for each requirement and also the expected outcome. Furthermore, based on

the criticality of each item, function, and system identified in the safety assessment and

the resulting function and item development assurance level (FDAL and IDAL), the required

verification rigor is specified, i.e. how “good” compliance with a requirement must be shown.

This is a well documented, practice-proven process, which should also be maintained for the

verification in the scope of the TCA. Therefore, the focus of the remainder of this section lies

on the means used for verification, where a major contribution of the TCA can be identified,

while the principle process of verification is unchanged and hence not further discussed.

According to the referred recommended practice, means for verification can be classified into

four principal categories:

• Inspections and reviews: Experts check the resulting product, documents and draw-

ings to ensure design and implementation according to specification. Such evaluations

are especially applicable for requirements, where compliance can be easily identified by

inspection of the product and its documentation. This is, for example, the case for

requirements that prescribe certain properties (e.g. “The warning light must be red”) or

the presence of items (e.g. ”There must be an indication for battery voltage”).

• Analysis: For analysis, models are used to check the compliance of items, functions,

and systems in normal and abnormal conditions. This could be, for example, mechanical

models for Finite Element Method (FEM) analysis or flight dynamics models for perfor-

mance and stability analysis. For that, models are required that correctly represent the

actual product. This is usually ensured by verifying models against the real product by

tests (see next bullet point). This type of verification is usually used for requirements

that cannot or only partially be checked by tests due to too high risk or cost.

• Tests and demonstration: In this category, the actual product is tested, its functions

are evaluated and it is checked whether it behaves according to requirements and does

not show any unintended behavior. Verification by tests and demonstration requires

a thorough identification and description of test cases to ensure that all requirements

are adequately checked. The description of test cases must, for example, include the
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function to be tested, required inputs, measured outputs, and admissible responses.

Tests are also used to verify models required for analysis.

• Similarity / service experience: If a similar item, function, or system has already

been developed and implemented before, service experience can be used to prove that

the chosen solutions adequately fulfill requirements put on the current development.

5.2.3 Model-Based Support of Verification

The power and potential of the TCA rely on the integrated consideration of all known uncer-

tainties and disturbances and the use of probabilistic requirements. This also necessitates new

or enhanced means for verification to show compliance with probabilistic requirements.

Similar to the other steps of the development process, also verification in the scope of the TCA

is based on models. Evaluation methods for stochastic assessment can be seen as additions to

and enhancements of the methods already used today for analysis. Probabilistic requirements

are linked to low acceptable violation probabilities. Compliance with safety-driven requirements

can often not be shown by tests and demonstration, since safety-critical events must only occur

with very low probabilities and are hence hard or even impossible to test. Furthermore, tests

of such requirements could cause severe damage to the product and the environment. Hence,

analysis is the only reasonable way to prove compliance with such safety-driven probabilistic

requirements.

Analysis of requirements with low failure probabilities is already a challenge during requirements

derivation. For verification, this is even more challenging since the models used for verification

are usually very sophisticated and contain – in contrast to the specification models used for

requirements derivation – detailed models of items, functions, and subsystems of the final

product with many additional uncertainties arising from these components. Although models

are already used today, their usage is extended by the application of enhanced stochastic

methods, which enable an efficient evaluation of small failure probabilities, even for complex

models with many uncertainties. The simulation environment used throughout the whole

development can also be used for verification. If models are consistently used also during design

from item to system level, detailed models for all implemented functions are readily available

for verification, see figure 5.4. The formalized requirements are available from requirements

derivation. Models of the implemented functions for the final design result from the design

phase, where also uncertainties of all components and the environment are modeled with an

adequate level of detail. Latest for verification, all models of the environment and the product

itself, must be verified, e.g. by using tests of the real product in the real environment, to obtain

valid results of model-based analysis for verification. Due to the consistency of the simulation

environment throughout all development steps, enhanced stochastic algorithms can be easily

applied to prove compliance with safety-driven probabilistic requirements. Even discrete failures

could be included in the stochastic evaluation by the probability of exceeding nominal ranges

of uncertainties. However, it is recommended to use established methods like Fault Tree
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Figure 5.4: Simulation environment for model-based requirements verification by analysis

Analysis (FTA) for explicit consideration of failures instead of the implicit consideration by

inclusion into the modeling of uncertainties, since this provides more efficiency and reduces

the risk that related failure conditions are not identified due to the way how samples from

stochastic simulation are generated (e.g. by a random walk process for Subset simulation).

This is especially the case, if the failure conditions triggered by failure events are very different

to the behavior for the non-failure case.

Up to now, the description focused on verification using models of the real product and the

environment, which is usually referred to as model-in-the-loop simulation. Nevertheless, the

simulation environment can also be used in conjunction with coded software or even the actual

hardware using Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL) simulations. Still

enhanced stochastic methods can be used to vary uncertainties of the environment and by that

excite the software or hardware embedded in the closed-loop in a way that failure conditions

occur. Referring to figure 5.4, in his case the “system environment” is enhanced by SIL or HIL

setups with adequate interfaces to the uncertainties of the models used to evaluate software

and hardware.

Confidence in Results of Enhanced Stochastic Analysis

When proving small failure probabilities by simulation, the accuracy of the analysis and hence

the level of confidence one can have in the results certainly rely on the models used to describe

the various types of uncertainties (see 4.1.4). However, this is no exclusive problem of the

probabilistic approach inherent to the TCA, but can also be found today for the well established

and accepted FTA. The failure probability of functions and systems analyzed using a fault tree

solely relies on failure probabilities of individual items and functions and their interaction.

Hence, the assessment is only as good as the assumptions made for the failure probabilities

of individual items (for FTA) and for uncertainties (for model-based analysis in the scope of
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the TCA). Fortunately, uncertainties that can have a significant influence on safety are usually

well known which is why FTA is accepted today and which is therefore also a legitimate

argumentation for the use of enhanced stochastic methods for verification. Furthermore,

similar to documentation and analysis that must be made for FTA to prove the correctness of

the failure probabilities of individual items, the confidence in the correctness of results obtained

by enhanced stochastic simulations is increased by using well verified and justified models of

the product and the environment.

Apart from the definition of uncertainties, another source for lack in confidence, which is

unique to the proposed approach, is the confidence one can put in the accuracy of the results

of stochastic simulations. By nature, the results of stochastic analysis are uncertain, i.e.

they are not deterministic but vary from one evaluation to another. When estimating a

failure probability by stochastic simulation, this probability is an uncertain quantity itself.

Dependent on the selected parameters of the stochastic algorithm, e.g. the number of samples

used, the accuracy of the estimation varies. As shown in chapter 2 and already extensively

used for quantification of uncertainties during requirements derivation, for every estimation

also confidence intervals results. Given that a failure probability PF,req must be ensured by

stochastic simulations and that a certain level of confidence must be achieved, the probability

that must be shown by simulation can be determined, see figure 5.5.
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Figure 5.5: Consideration of confidence intervals for probabilistic verification

Recall that the CoV is by definition normalized by the actual failure probability PF and not

the estimated quantity P̂F :

CoV
[

P̂F

]

= E

[

P̂F − PF

PF

]

(5.1)

Input PF = PF,req and using the value of CoV
[

P̂F

]

from the actual estimation, which can

be calculated based on the Subset simulation results (2.112)-(2.117), the estimated failure

probability to be proven by stochastic simulation for a desired (1− α) quantile is

P̂F = PF,req

(

1− z1−αCoV
[

P̂F

])

(5.2)
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where the (1− α)-quantile according to the definitions given in section 2.3.3 is used, with

values for z1−α given in appendix A.2. For example, consider that the acceptable probability

for the case that the actual failure probability PF is larger than the probability to be proven

PF,req = 10−6 is 2%, i.e. α = 0.02, which corresponds to z1−α = 2.05, see table A.1. If in

the example the coefficient of variation obtained by Subset simulation is CoV = 0.3, then the

estimated probability must be smaller than PF,req

(

1− z1−αCoV
[

P̂F

])

= 3.85 · 10−7.

A big advantage of enhanced stochastic analysis is the high number of samples which lie

close to the failure domain. Each sample is linked to a specific combination of realizations of

uncertain parameters. Due to the high number of critical samples it is possible to determine

the sensitivity of the estimated failure probability with respect to each uncertain parameter and

by that the influence of each uncertain parameter on specific failure conditions. For example,

if the distribution of realizations of a specific uncertain parameter close to the failure domain,

i.e. at higher subset levels, is similar to the original parameter distribution, it can be concluded

that its influence on the considered failure condition is small. On the other hand, a significantly

different distribution than the original distribution of the uncertain parameter indicate a high

influence of the specific parameter and hence reduction of this uncertainty could reduce the

failure probability.

Enhanced stochastic simulations are a powerful tool to test safety-critical functions by analysis

and hence are a useful addition to the means of compliance for verification alongside many

different other methods that are required to check the various different kinds of requirements.

Certification requires an agreement with authorities on proposed means of compliance for each

requirement, where the application of enhanced stochastic methods for analysis of small failure

probabilities promises a high potential.

Verification of safety-critical functions using stochastic methods relies on the conformation

of the conditions considered during verification and those met in reality. For conventional

certification of aircraft as it is done today, a product is considered to be safe if certified, and

this is only reconsidered if the opposite is shown by recorded incidences or accidents from daily

operation. This is possible due to the high level of conservatism of today’s approach, which

usually provides a large buffer for uncertainties and disturbances. However, solely trusting on

one-time verification for certification is not reasonable when applying a probabilistic develop-

ment approach on novel aircraft topologies and operations due to several reasons. This will be

discussed in the next chapter, where it is shown how runtime verification can facilitate even

higher levels of safety and availability when following the TCA.
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Runtime Verification

6.1 Introduction

Following a conventional development process, the development ends with demonstration of

compliance with all requirements during verification phase. For the development of safety-

critical functions of the aircraft, this also includes the compliance with the certification speci-

fications and hence proves safety. Only after verification, the resulting system can be used for

regular operation.

As opposed to this, runtime verification extends the verification efforts beyond the conven-

tional development process towards regular operation, i.e. the correct functioning of a product

according to requirements is (also) checked during its use. In general, runtime verification

is defined as “the discipline (. . . ) that deals with the study, development and application of

those verification techniques that allow checking whether a run of a system under scrutiny

satisfies or violates a given correctness property”[LS09]. For safety-critical aircraft functions,

correctness properties refer to safety requirements, which ensure safe operation of the con-

sidered function. For conventional offline verification, theoretically all possible combinations

of system and function states, uncertainties, disturbances and failures must be evaluated to

ensure compliance with the established requirements for any possible condition that could

be encountered in reality. Opposed to this, for runtime verification, only compliance of the

system under the prevailing conditions is evaluated, which includes the current system states,

environment and uncertainties.

One important difference between offline and runtime verification are the means used for

verification. For many requirements, especially for the development of flight control systems,

analysis is the preferred method for offline verification (see 5.2.2). Analysis heavily relies on

the models of the implemented function, uncertainties, disturbances and failures. When using

models, perfect information is available. Opposed to this, runtime verification can only utilize

limited information to yield a certain verdict about compliance. While theoretically infinite

measurements could be used for runtime verification, in practice only a finite number of

uncertain measurements is available. Furthermore, limitations in computational performance

restrict the range of usable algorithms to ensure real-time capability of runtime verification.
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In a wider context, runtime verification does not only include monitoring of compliance, but it

also deals with making the right decisions based on monitored results and triggering the right

countermeasures to mitigate the effects of non-compliant and possibly unsafe system behavior.

Figure 6.1 shows the chain of tasks for runtime verification. First, system states are captured by

measurements. An online monitor uses this data to extract relevant system information, which

could be, for example, calculated based on a series of measurements using operations in time

or frequency domain. The objective of this task is to detect non-compliant behavior. System,

components and the resulting behavior are diagnosed in case of abnormalities to determine the

reason of the violation, e.g. specific failures, disturbances, or uncertainties. Finally, adequate

countermeasures are identified and initiated by the mitigation task. This could be for example

a change to another control mode or operation, which is specifically designed to cope with

the identified problem.

Mitigation Diagnosis Online Monitor Sensing

Product/
System

Initiate countermeasures System states

Uncertainties, Disturbances & Failures

Runtime Verification

Figure 6.1: Tasks of runtime verification

Runtime verification is certainly only applicable to non-essential functions, i.e. for functions,

which are not vital for operation and where adequate mitigation means or operations like

alternative control modes are available. For fail-operative functions, which must still be able

to operate adequately in case of failures, a detection of non-compliance would not be usable

to prevent critical conditions due to the lack of adequate mitigation means. Hence, safety of

essential functions cannot be ensured by runtime verification.

In this chapter, first runtime verification is motivated, followed by the introduction of objectives

of online monitoring and a literature review of the state-of-the-art for runtime verification and

online monitoring. Eventually a high level online monitoring algorithm is proposed that can be

used to verify dynamic behavior of systems in the presence of uncertainties and disturbances,

which is especially of relevance for detecting non-compliant behavior of controlled (aerial)

systems.
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6.2 Motivation

Although the concept of runtime verification sounds reasonable, it has not been used much

in the past, mainly since conventional offline verification was the only admissible mean to

prove safety and achieve adequate levels of availability of considered functions and operations.

The achieved levels of safety using the conventional approach are quite qualitative and the

conventional approach is limited to standard operations, which, however, is a showstopper for

future applications. Three main motivators for runtime verification can be identified:

1. Novel control methods: Runtime verification is essential for novel control methods, which

cannot be fully evaluated offline, e.g. for adaptive controllers, where the controller adapt to the

real plant, environment, uncertainties and failures. For certain conditions, adaptation might

fail, which could cause uncontrollability. For runtime verification, it is often sufficient to prove

the correct system behavior only for the current aircraft state, uncertainties and disturbances.

Hence, it is one promising mean to ensure a safe behavior of a controller using such novel

control methods.

2. Novel operations with varying safety goals: Safety goals for conventional aircraft

operations are invariant. Depending on the effects of failures of safety critical functions, a

safety assessment results in a constant admissible failure probability and required availability of

these functions. Hence, safety is mainly driven by the effects on aircraft, crew and passengers.

For novel operations, the required level of safety could also be linked to operations. For

example, it is less critical if an unmanned aerial vehicle crashes in an uninhabited region,

which only causes an aircraft and hence financial loss, compared to a crash into a crowd of

people, which could cause fatalities. While certain disturbances, uncertainties and failures

might be still acceptable in one case, they might not be in other cases. Hence, it would be

beneficial if everything is not only verified once during (offline) verification to prove static safety

goals, but instead also during operation by runtime verification. This allows to dynamically

adapt the actual required level of safety to operation and hence can significantly contribute to

increased availability of a product, which would not be the case under worst-case assumptions

for the required level of safety applied during offline verification.

3. System degradation: The performance of a system can degrade over time, e.g. due to

wear or undetected defects. Continuous monitoring by runtime verification can detect non-

compliant behavior before failures occur and hence can contribute to higher reliability of the

monitored system. To some extend, this is already done today by condition-based mainte-

nance, where measured data is used to schedule maintenance tasks. For Flight Operational

Quality Assurance (FOQA), data of individual flights collected by a Quick Access Recorder

(QAR) is analyzed, however, usually only offline after a flight is finished. Early work for online

monitoring especially focused on health monitoring in rotorcraft industry, where Health and

Usage Monitoring System (HUMS) are used to improve safety, mainly by monitoring caution

and warning information together with vibration data from rotor and drivetrain components

[Hes05]. Runtime verification can facilitate a sophisticated monitoring of system health, es-
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pecially when using a model-based approach to identify non-compliant conditions.

6.3 Challenges and Objectives

In the previous sections, the limitations of offline verification are highlighted, which is especially

the inability to test every possible combination of system states, uncertainties, disturbances

and failures for complex systems. At first glance, runtime verification seems to be simpler,

since safety must only be determined for the current condition. However, there are several

challenges that must be addressed when implementing runtime verification. Certainly, runtime

verification is only useful, if the level of confidence in the specific monitor implementation

is high. The challenges of high-assurance runtime verification were evaluated in detail by

Goodloe [Goo16]. The identified challenges can be grouped into the following categories:

• Source of specification: Safety can only be achieved, if the monitor is specified

correctly and hence can detect undesired or unintended behavior. Furthermore, the

right actions must be specified and performed in case of non-compliance.

• Observability: Ideally, monitor specifications can be directly derived from system re-

quirements. However, usually the signals required to yield a verdict can only be inac-

curately measured or are not even observable. Furthermore, there is a high number of

uncertainties that can impede detection of non-compliant behavior. Formalized require-

ments used during function design and verification cannot be used directly for online

monitoring, since there is no perfect information about all system states, which is the

case during model-based development.

• Traceability: If runtime verification is used as a verification mean to prove compli-

ance with (safety) requirements, it is inevitable that specifications of online monitoring

algorithms are traceable to safety requirements. According to [Goo16], monitor speci-

fications should derive from system level requirements and assumptions that have been

validated by experts.

• Fault-tolerant runtime verification: An online monitor for runtime verification is

useless, if there is only a low confidence in the correctness of the monitoring result.

According to [But08], runtime verification should be fault-tolerant, i.e. it must be able

to work even if there is a single failure. Furthermore, monitor and monitored function

should not have common failure modes, like overflows of measurements.

• No harm: In no case, runtime verification should do harm to the system due to wrong

verdicts.

• Correct monitors: The specified monitors must be implemented in a correct and robust

way.
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The trade-off between level of conservatism and level of confidence and hence safety can be de-

picted by the decision matrix shown in figure 6.2. Ideally, non-compliance is correctly detected

by the monitor (“true positive”) and it does not lead to a wrong verdict about violation (“true

negative”). However, it is also possible that the system complies with requirements while the

monitor detects a violation (“false positive”) as well as the opposite that the system does not

behave as intended but this non-compliance is not detected (“false negative”). Wrong verdict

of a compliant system reduces availability of the considered function since mitigations, which

usually influences performance, would be triggered that are not necessary. However, the most

critical case is the missed detection, since this can heavily influence safety. Hence, the proba-

bility for “false negative” must be very low to obtain an adequate confidence in the monitor,

while the probability for “false positive” should be low to achieve high availability. Unfortu-

nately, these requirements are usually contradictory – decreasing the level of conservatism by

reducing the probability for “false positive” often leads to an increase of non-detected adverse

behavior. Hence, the challenge is to achieve a certain desired level of safety, while maximizing

the level of availability.
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Figure 6.2: Decision matrix of an online monitor

Despite the high number of challenges, [Goo16] concluded that the advantages of high-

assurance runtime verification outweigh the efforts required to tackle these challenges.

In the context of developing safety-critical functions according to the TCA, especially the

following objectives can be identified:

• Detection of non-compliant behavior: The principle objective of runtime verification

is to detect deviations between the observed behavior and the specified and admissible

behavior. The non-compliance could be caused by software or hardware failures, uncer-

tainties and disturbances. Depending on the source of non-compliant behavior, different

mitigation strategies are required. The identification of non-compliant behavior is linked
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to the monitoring task of runtime verification, identification of reasons and adequate

countermeasures is related to diagnosis and mitigation.

• Justification of assumptions: Throughout the whole development process, assump-

tions are used to specify, design, implement and verify safety-critical functions. Runtime

verification should prove that the assumptions made during the development were cor-

rect and, therefore, the system behaves as intended. A byproduct of this task is the

extensive collection of data, which could be used to derive more accurate uncertainty

models for future developments.

• Determination of the current level of safety: Online estimation of the current

safety level enables variable safety goals driven by different operational needs. This can

significantly increase the availability of the system under observation.

• Predictive monitoring: the applied monitor must have an adequate prediction horizon

to be able to detect non-compliant behavior before a dangerous situation occurs and,

therefore, be able to initiate adequate countermeasures and prevent critical situations.

If the listed challenges and objectives are considered during development of runtime verification

means, safety also of novel aerial applications and operations can be guaranteed. Furthermore,

the higher level of confidence in the system function and performance together with the

lower level of conservatism of this approach promises a higher level of availability compared

to conventional development approaches with only offline verification of the implemented

functions.

The focus of the remainder of this chapter lies on monitoring algorithms, since all other tasks,

especially sensing and mitigation, highly depend on the actual function and can, therefore, not

be discussed in general.

6.4 Monitoring Algorithms

6.4.1 State of the Art

In the beginnings of online monitoring, simple comparisons of measurements with thresholds

were made, e.g. for early HUMS [Hes05], which resulted in warning or alert annunciations.

The application of such monitoring approaches are limited to very specific types of criteria.

Since the early 1990s, model-based monitoring approaches [DK89, HCK92] are widely applied

in Diagnosis (DX) and Fault Detection and Isolation (FDI) in many technical applications,

also in aviation [Kar+93, PCN11]. Model-based approaches for online monitoring significantly

increase the range of non-compliant behavior that can be detected, since the description of

such behavior is no longer limited to simple comparisons of measurements. This opens a

wide field of applications. Bateman et. al. [Bat+05] split up high risk components of the

control system of a UAS, where the high risk components include functions that cannot be
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verified offline, which in, the specific example, is an adaptive controller. A big increase in

success rate for simulated shipboard landings could be achieved by using a run-time safety

monitor that compares a priori estimates of expected aircraft response with the actual aircraft

behavior. If required by the monitor, a switching is made to a less-sophisticated but fail safe

controller, which is fully verified and validated at design time. Bak et. al. [Bak+14] researched

on a verified simplex design, which again uses an adaptive controller with high performance

and low level of conservatism together with a back-up controller that is fully verified during

design time. Instead of monitoring the behavior of the sophisticated controller and switch

to the fail-safe controller in case of non-compliant behavior, the referred approach monitors

the current aircraft state and compares it to the envelope of the fail-safe controller, within

which this controller is able to control the aircraft back to a safe condition. Only right before

the boundary of this envelope is reached, the switching is conducted from the sophisticated

controller to the fail-safe controller. For determination of the envelope, a mixture of offline

analysis using linear matrix inequalities [SS99] and real-time reachability analysis [DM98] is

used.

Monitoring can be applied to different levels, from item level to system level. While it is most

important for safety to monitor the performance on system level, monitoring on function and

item level can significantly ease diagnosis and decision making for adequate mitigation actions.

An example for item level monitoring are redundant items with appropriate architectures and

voting algorithms. Using such an approach can prevent non-compliant behavior already on

item level before non-compliance is detected on system level. Goodloe [GPC10] researched

on different architectures for monitoring of distributed real-time systems. Although this is

beyond the scope of this thesis, such architectural considerations must be included during

implementation of monitors, to prevent, for example, unintended common cause failures.

In the following, a new monitoring algorithm for system level requirements of controlled systems

is proposed that can be used to monitor imprecise plants in the presence of uncertainties and

disturbances. This is one important case in the context of developing safety-critical functions

following the TCA.

6.4.2 Proposed Monitor Using Incremental Predictions

Models are suitable to monitor behavior that cannot be directly measured. They are used to

simulate the admissible behavior of a system during runtime and the simulation results are

continuously compared to the actual response. The algorithm proposed in this section is useful

for reactive systems, i.e. systems where the input and error behavior can be quantified. Aircraft

using an (automatic) flight control system are one example for reactive systems, where the

desired input and error response are even specified in respective requirements. By comparing

the actual response with the admissible range of specified response, non-compliant and hence

possibly unsafe behavior can be detected.

If the system is developed following the TCA, models for description of the admissible system

behavior are readily available from system specification, design and verification, which also
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includes uncertainties, disturbances, etc. However, these models cannot be directly used, since

for online monitoring there is no perfect information available, but instead only measurements

of a limited number of signals, which are furthermore distorted by measurement uncertainties.

The main objective of the algorithm proposed in this section is to monitor the high-level

response of a system in order to detect non-compliant behavior that can have significant influ-

ence on safety. Although the reasons for high-level violations might emerge from component

or function errors, these cases can be well covered by conventional architectural decisions and

according monitoring solutions, e.g. redundancy (duplex, triplex or dual-duplex) and respective

voting concepts.

One major type of top-level requirements describes the admissible dynamic behavior of a sys-

tem, i.e. the response to inputs and disturbances. The developed algorithm described in this

section is applicable to this type of requirements, where a monitoring approach is used that

utilizes the known admissible range of system behavior, specified in related requirements, and

measurements from the partially observable plant dynamics as well as the knowledge about

system uncertainties and stochastic processes. The approach is based on research by Rinner

and Weiss [RW02, RW04] that combines FDI and DX methods for systems where the struc-

ture is known and the admissible dynamic range is defined within bounded, numerical intervals.

Compared to the original approach, the derived algorithm described in this section allows con-

tinuous online monitoring of the compliance of a system with safety relevant requirements also

in the presence of uncertainties and stochastic disturbances that cannot be adequately de-

scribed by bounded intervals used solely in the underlying approach. The detailed descriptions

given in this subsection focuses on the algorithms for monitoring and uncertainty propagation.

Further activities related to uncertainty prognostics [SG14] like uncertainty representation,

interpretation and quantification is beyond the scope.

First the monitoring algorithm is derived, uncertainty propagation is discussed as well as the

update of propagated uncertainties by measurements. Subsequently, the principle function of

the algorithm is explained using a simple generic system, while the application for a realistic

plant is shown in 7.3.4. The algorithm described in this section was first presented and

published by the author of this thesis on the AIAA Atmospheric Flight Mechanics Conference

2016 [LMH16a].

Imprecise Modeling

First, the principle idea of online monitoring using imprecise models based on the algorithms

of Rinner and Weiss [RW02, RW04] is described, followed by the transition from bounded

intervals to a probabilistic formulation that then also allows the incorporation of stochastic

processes.

Imprecise models can be used to describe systems where the architecture is known but certain
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parameters are not or not exactly known. Such models can be written as

.
x (t) = f (x (t) , u (t) , p)

y (t) = g (x (t) , u (t) , p)
(6.1)

where x (t), u (t), y (t) and p denote the state, input, output and uncertain parameter vector,

respectively, and f and g are vector functions. For imprecise modeling, it is assumed that

the exact value of the uncertain parameter vector is unknown and only bounds are known.

Therefore, p is replaced by an uncertain parameter interval vector

p̃ = [(p1,low, p1,up) , (p2,low, p2,up) , . . . , (pk,low, pk,up)]
T (6.2)

where the indices “low” and “up” denote the lower and upper interval bounds for a k-

dimensional uncertain parameter space. For this type of model, it is sufficient to only in-

vestigate the external surface of the uncertain parameter space [BB94]. However, this would

still require an infinite amount of trajectories to be evaluated. Under certain conditions, which

are discussed soon, it suffices to propagate the system trajectories only at the 2k corner points

of the parameter space since all other trajectories are guaranteed to lie between these bounding

trajectories. This leads to the following system description, where i = 1, 2. . . 2k.

X (t) = {xi (t) :
.
xi (t) = f (xi (t) , u (t) , pi)}

Y (t) = {yi (t) : yi (t) = g (xi (t) , u (t) , pi)}
(6.3)

In the original approach presented in [RW04], it is assumed that the initial state x (0) is

precisely known. In case only imprecise initial states are available, which is usually the case due

to measurement uncertainties, those can be described as additional uncertain parameters. The

evaluation only at corner points is valid as long as the states are monotonic with respect to the

uncertain parameters p. For determination of monotonicity, the gradient matrix W (t, x, p)

with the elements wij (t, x, p) is required:

wij (t, x, p) =
∂xi (t, x, p)

∂pj
(6.4)

wij represents the change of the i-th state with respect to the j-th uncertain parameter pj.

Monotonicity is only given if all wij have the same sign. For non-trivial cases, monotonicity

can be calculated using the derivative of
.
xi with respect to p:

d
.
x (t, x, p)

dp
=

∂
.
x (t, x, p)

∂x

∂x (t, x, p)

∂p
+

∂
.
x (t, x, p)

∂u

∂u

∂p
+

∂
.
x (t, x, p)

∂p

= A (t, x, p) W (t, x, p) + V (t, x, p)

(6.5)

where in the second line independence of u from p and the Hessian matrix A (t, x, p) as well
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as the parameter sensitivity matrix V (t, x, p) are used, which have the following components:

aij (t, x, p) =
∂

.
xi (t, x, p)

∂xj

vij (t, x, p) =
∂

.
xi (t, x, p)

∂pj

(6.6)

Given that the partial derivatives
.
x themselves are differentiable, which is usually the case

for dynamic systems, then d
.
x (t, x, p)/dp equals dW (t, x, p)/dt with wij from (6.4). The

interchange of the order of derivatives is usually only possible for partial differential equations

according to the Schwarz integrability condition [Wes15, p. 406]. However, according to

demonstrations of Moore indicated in [BB94], under the given conditions, this is also true for

the total differential in (6.5). This yields a differential equation, which can be integrated over

time during monitoring to determine the signs of wij (t, x, p) and hence monotonicity. For the

differential equation, the initial condition W (0, x (0) , p) = 0 is used, which indicates that

there is no possible variation at t = 0.

For obvious reasons, monotonicity is generally not given for arbitrary systems and integra-

tion intervals, e.g. for systems with complex conjugate eigenvalues. However, for not too

large parameter intervals and small integration periods, i.e. higher measurement update rates,

monotonicity is given for many relevant cases. This is demonstrated later using a simple

generic example.

Intersection of Propagation and Measurements

The state vector trajectory for each corner point can be propagated using equation (6.3). The

trajectories would diverge quickly if no update of the propagated uncertain state and output

space is done. Therefore and to maintain monotonicity, a new initial state interval is set

during each measurement update, hence limiting prediction time by the period between two

measurements.

Figure 6.3 shows the principle process of the measurement update for a two-dimensional

system. The box A depicts the initial state intervals for x1 and x2 at time t−∆t, where it is

only known that the true state x (t−∆t) lies within the intervals. Each corner of the initial

state space is predicted 2k times, i.e. for each parameter limit combination. In the example

shown in figure 6.3, there is only one uncertain plant parameter, i.e. k = 1. Hence, each

corner point of box A is propagated for the lower and upper uncertainty parameter bound.

This results in separate trajectory spaces for the individual corner points of the uncertain

parameter space at time t. Box C represents an approximation of the overall trajectory space

envelope, which includes all subspaces B. If the system response is monotonous with respect

to the parameter, the response using any parameter between the limits lies inside box C. The

updated initial state value interval for time t, which is the basis for the next prediction step, is

given by box E, which results from the intersection of the measurement uncertain space D and

the predicted state space C. When there is no overlapping between the predicted state space
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Figure 6.3: Generating new initial state intervals (based on [RW04])

and the measurement space and the predictions are monotonic with respect to the uncertain

parameters at time t, non-compliant system behavior is detected. For the case that xi is not

monotonic with respect to an uncertain parameter, e.g. due to too long propagation times, no

statement about the validity of the predicted bounds can be made. Hence the measurement

space D must be used as new initial state space. In this case, no verdict about compliance

can be made.

Uncertainty Propagation

With the algorithm described so far, only uncertain parameters of the plant dynamics with

bounded intervals can be examined and neither realistic distributions of uncertainties nor

disturbances can be taken into account. This does not represent many physical systems

where uncertain parameters are defined by distributions and stochastic processes affect the

overall system dynamics. Hence, the original approach is extended so that it also allows for

consideration of stochastic uncertainties.

Usually uncertain parameters are not uniformly distributed as supposed by the above-described

algorithm but they are rather distributed about a mean with decreasing probabilities for higher

deviations from the mean. Hence, by only propagating corner points, unlikely combinations

are overestimated. To overcome this disadvantage, this modification propagates the mean

of the state vector together with the corresponding covariances. While the original concept

of imprecise modeling is kept for design parameters, where the admissible interval is usually

specified in requirements, only the mean of the state vector instead of the boundaries of state

errors is propagated:

X (t) = {xi (t) :
.
xi (t) = f (xi (t) , u (t) , pi, v (t))}

Y (t) = {yi (t) : yi (t) = g (xi (t) , u (t) , pi, v (t))}
(6.7)

where xi is the mean state vector for the i-th uncertain parameter corner. In contrast to
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equation (6.3), there is an additional Gaussian process noise vector v (t) ∈ R
nv , which allows

incorporation of uncertain stochastic processes.

Uncertainty propagation of nonlinear equations require the solution of the Fokker-Planck equa-

tion, which is a partial differential equation that can only be solved analytically for special cases

[Ris96]. Approximation schemes for all other cases often require high computational effort (e.g.

for stochastic simulations) or are limited to the determination of the steady state uncertain-

ties. Both are no option here. However, for small integration times, consideration of linearized

dynamics at least for uncertainty propagation is usually acceptable. The admissible dynamics

is even often already specified using linear dynamics, in which case the Fokker-Planck equa-

tion degrades to a linear optimization problem that can be solved using linear filtering and

prediction commonly applied for Kalman filters [Kal60]. Reducing (6.7) to linear state space

models yields the following expression:

δ
.
xi (t) = Ai (t) δxi (t) + Bi (t) δu (t) + Gi (t) δv (t) (6.8)

where the state, input, and disturbances matrix Ai (t), Bi (t) and Gi (t) are obtained by lin-

earization at each time step, with δxi being the offset from xi obtained by nonlinear simulation

using (6.7) [SC08, p. 244]. For the numerical implementation, (6.8) is discretized:

δxi,k+1 = Φi,kδxi,k + Γi,kδuk + Υi,kδvk (6.9)

where Φi,k, Γi,k, Υi,k are the discrete state, input and disturbance transition matrix at time

step k for the i-th uncertain parameter corner, which can be calculated by [ETP90, p. 8.196]

Φi,k = eAi∆t ≈ I + Ai∆t + A2
i

∆t2

2

Γi,k =
∫ ∆t

0
eAisdsBi ≈

(

I∆t + Ai
∆t2

2

)

Bi

Υi,k =
∫ ∆t

0
eAisdsGi ≈

(

I∆t + Ai
∆t2

2

)

Gi

(6.10)

Note that equation (6.9) is only used for (linear) uncertainty propagation. For actual state

propagation, the possibly nonlinear equations (6.7) can be directly used. The state covariance

matrix Pi, describing the uncertainties of the predicted state for the i-th parameter corner, is

propagated using the equations for linear filtering and prediction of a Kalman filter [Kal60].

Pi,k+1 = Φi,kPi,kΦT
i,k + Υi,kQkΥT

i,k (6.11)

Qk describes the covariance of stochastic uncertainties at the k-th time step and is usually

referred to as process noise. After each measurement, the state covariance Pi,0 is reset to

the intersection between the predicted uncertain state space and the measurement covariance,

see area E as intersection of C and D in figure 6.4. The measurement update is not done
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Figure 6.4: Generating new initial state covariances

in the fashion of a conventional Kalman filter, where the most likely intersection is selected

based on the prediction and measurement states and uncertainties, since this would only give

the most probable state, while for online monitoring, the objective is to identify the overall

possible range of states where measurements and predictions coincide.

Figure 6.5 eventually gives a schematic flow chart of the monitoring algorithm. Although
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from first measurement
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Figure 6.5: Flowchart of monitoring algorithm
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the stated algorithm relies on linear optimal prediction, this is no severe limitation, since

requirements on system dynamics are often formulated using linear models. Furthermore,

uncertainties and stochastic processes with non-Gaussian distributions can be modeled by

Gaussian mixture models [Rey09]. This is not further discussed in this thesis.

Explanation of Principle Using a Generic Example

The objective of the evaluation in this subsection is to explain the proposed monitoring algo-

rithm and show the performance during stochastic excitation. A linear second-order system is

used as generic example. System dynamics can be described by the following equations:





.
x1
.
x2



 =





0 1

−ω2
0 −2ζω0
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1 0

0 1









x1

x2





(6.12)

with the natural frequency ω0 and relative damping ζ being uncertain parameters that are

bounded by intervals. Furthermore, white noise v acts on .
x2. For analytical analysis of

monotonicity, the differential equation (6.12) can be solved exemplarily for constant inputs

u, resulting in an expression for the state error ∆x1 = x1 − u using ω = ω0

√
1− ζ2 and

σ = −ζω0 for the frequency and absolute damping of the oscillation:

∆x1 = eσt (c1 sin ωt + c2 cos ωt) for ζ < 1 (6.13)

For x0 = 0 and .
x0 = 0, the relative error of ∆x1/u results:

∆x1

u
= eσt

(

σ

ω
sin ωt− cos ωt

)

(6.14)

Monotonicity is exemplarily analyzed for the parameter ω0. The derivative of ∆x1 with respect

to ω0 yields

d∆x1/u

dω0
= ζteσt

(

ζ√
1− ζ2

sin ωt− cos ωt

)

+ eσt

(

ζ√
1− ζ2

√

1− ζ2 t cos ωt +
√

1− ζ2 t sin ωt

) (6.15)

Figure 6.6 depicts the derivative of ∆x1 over the parameter ω0 for different integration times

and for a constant damping ζ = 0.71. It can be seen that for integration times up to

t = 0.89s, x1(ω0, t) is monotonic for ω0 between 0.5 and 2.5s−1, since the values of the

gradients d∆x1/dω0 are all positive within this range. From a different perspective, for an

update interval of 0.1s and for ζ = 0.71, the natural frequency interval can range up to 22s−1

without a negative effect on the monotonicity criterion. A more intuitive interpretation of

monotonicity in this context is shown in figure 6.7, where state histories of x1 for different
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Figure 6.6: Gradient of x1 versus frequencies ω0 for different integration times
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Figure 6.7: Histories for x1 versus time for different frequencies ω0

values of ω0 are plotted.

The shaded area indicates the range of all possible trajectories for ω0 = 0.5 . . . 2.5s−1. For

integration times up to 0.89 seconds, it is guaranteed by the monotonicity property, that for

any frequency value within the lower and upper parameter bound, the response lies within the

trajectories associated to these limits, while for higher integration times this is no longer the

case, which can be derived from the history of ω0 = 2.5s−1 that no longer forms the upper

boundary of the shaded area for t > 0.89 seconds.

To demonstrate the principle of the proposed monitoring algorithm, several scenarios are

simulated using the generic model (6.12) with two uncertain parameters ω0 and ζ , limited
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Table 6.1: Simulation scenarios for generic example

Case Noise Desired

dynamics ω0

range

Desired

dynamics ζ

range

Simulated ω0 Simulated ζ

1a No [1 . . . 2] [0.3 . . . 1] 1.5 0.7
1b No [1 . . . 2] [0.3 . . . 1] 2.5 0.7
1c No [1 . . . 2] [0.3 . . . 1] 0.2 0.7
1d No [1 . . . 2] [0.3 . . . 1] 1.5 1.1
2 Yes [1 . . . 2] [0.3 . . . 1] 1.5 0.7

by discrete bounds together with white noise v representing stochastic disturbances. Table

6.1 shows the simulated scenarios.

Figure 6.8 shows the simulation results for cases 1a - 1d. For each case, the states x1 and

x2 are plotted for an arbitrary chosen control input (indicated by the black dashed line) and

uniformly distributed, bounded measurement uncertainties [−0.05, 0.05]. Bounded measure-

ment uncertainties are chosen to enable a separate analysis of the effects of non-compliant

behavior due to exceedance of admissible plant parameters. These effects would be otherwise

partly hidden by exceedance of single standard deviation bounds arising from measurement

uncertainties. Plot a) corresponds to case 1a, where the plant dynamics lie within the desired

dynamics range. Plots b) to d) show the results for the cases where either the natural fre-

quency of the plant exceeds desired limits or relative damping is too high. All non-compliant

cases are successfully detected, where specific exceedances of the boundaries are marked by

orange circles. Furthermore, figure 6.9 shows case 1a in combination with a steadily increas-

ing measurement error for state x1 triggered at 5 seconds, representing a faulty sensor. The

closed-loop system follows the wrong measurement, which is why the measured response in x1

still looks acceptable, while the actual trajectory diverges. However, since the measurements

for x2 do not correlate with the measured behavior of x1, violation is detected quickly after

error injection.

Figure 6.10 shows results for case 2, where the system is excited by white noise with zero

mean and unit variance. To allow a separate consideration of the effects of stochastic uncer-

tainties, perfect information, i.e. zero measurement errors are assumed. In contrast to online

monitoring using only uncertainties with bounded intervals, there is always a certain probabil-

ity of exceeding limits in the presence of stochastic uncertainties even if the plant dynamics

complies with requirements. For plot a), single variance for the uncertainty propagation of

the process noise, i.e. for the system uncertainty matrix Q, is chosen. Since samples of white

noise follow a Gaussian distribution, it is expected that approximately 32% of the monitored

samples violate the single variance bounds. In the example, a slightly lower number of 27% of

monitored samples exceed the estimated single variance limits, which can be explained by the

additional buffer arising from the admissible range of plant parameters: Referring to figure 6.7,

if ω0 = 1.0, there is a large buffer to the lower and upper boundary. Although disturbances

force the trajectory towards the limits, the buffer leads to a delayed detection of exceedance,
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Figure 6.8: Monitoring simulation results for cases 1a - 1d

especially for larger propagation times, when bounds become wider. Plots b) and c) show

the same scenario but with double and triple standard deviation bounds used for the process

noise Q during uncertainty propagation. This leads to detected exceedance rates of 4.5% and

0.4% respectively, which correlate well with the expected probability of exceeding 2σ and 3σ

thresholds for a Gaussian distribution.

The proposed monitoring algorithm requires a responsive system, i.e. only in the case of control
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Figure 6.9: Monitoring simulation results for case 1a with sensor failure

inputs, disturbances, or failures that have an effect on measured aircraft states, non-compliant

behavior can be detected. This becomes apparent in figure 6.8, where non-compliance is

mainly detected during transient phases, while no violation is detected in case of constant

control inputs. The higher the range of admissible design parameters and uncertainties are,

the less accurate is the detection of non-compliant behavior. For example, if there are high

measurement uncertainties, a temporary non-compliant behavior is hidden by uncertain mea-

surements. However, since the propagation of uncertainties (6.11) also takes into account

the dynamic relations between states and hence different measurements as well properties

of the stochastic excitation, non-compliant behavior will still be detected, if it persists for a

sufficiently long time.

Further Improvements of Monitoring and Prediction Performance

In the presented form, the monitoring algorithm can be used to ensure that a system complies

with a range of admissible dynamics in the presence of uncertainties and disturbances, which

is one common type of requirements. Certainly it is not possible to prove safety requirements

with a very low acceptable violation probability online. However, the proposed algorithm

provides measures for the performance of the plant at current uncertainties and disturbances.

Comparing this performance to operation-dependent thresholds, which can be obtained offline

to fulfill the probabilistic top-level safety requirements, it is possible to decide whether an

operation is acceptable under the current conditions. For example, for an automatic landing,

higher control performance is required close to ground. While off-line verification is used to

evaluate the usually very low probabilities of critical events like runway excursions, related
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Figure 6.10: Monitoring simulation results for case 2

single or double standard deviation bounds can be extracted from these results, which then

can be compared online with the monitored system performance. Furthermore, using the

simulation environment with the implemented monitor, enhanced stochastic simulations can

be conducted offline to prove that the actual probability for a critical event of the system with

the monitor is lower than admissible.

One option to further reduce the level of conservatism of monitoring and prediction is the
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detection of current levels of uncertainties. Instead of proving compliance for fixed acceptable

ranges of uncertainties, the actual uncertainty range is identified during runtime. Using the

proposed algorithm, this is possible by splitting up the ranges of individual uncertainties (e.g.

the admissible plant parameter range) into smaller intervals. By only accepting those intervals

during the update step, where the prediction intersects with the measurement, the level of

conservatism of the prediction can be reduced. This is exemplarily shown in figure 6.11,

where the single uncertain parameter p1 ∈ [p1,low . . . p1,up] is split up into two parameter

intervals. Since the measurement only intersects with the box for p1 ∈ [p1,low . . . p1,mid], only

this parameter range is used for the next prediction step. The same split up is possible for

the intensity of stochastic disturbances. By that, the conservatism of the predicted bounds

can be further reduced. Using the reduced range for uncertain parameters and the current

level of disturbances, a prediction with longer time period (up to several seconds dependent on

application and system dynamics) can be made to determine whether the current performance

is sufficient to fulfill the desired operation and adequate measures can be triggered if emerging

non-compliance is detected. Hence the proposed algorithm can be used to fulfill all objectives

for online monitoring formulated in 6.3. A practical application of this monitor is shown in

section 7.3.4.

x1

x2

p1,low

p1,up

p1,mid

Prediction for p1 ∈ [p1,mid . . . p1,up]

Prediction for p1 ∈ [p1,low . . . p1,mid]

Measurement

Figure 6.11: Generating new initial state covariances with identification of reduced range of
uncertain parameters
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7

Applications

In this chapter, the basic ideas of and algorithms for the development of safety-critical func-

tions following the TCA are demonstrated for selected examples from the development of an

autopilot for civil close formation flight. First, the operational concept is introduced, followed

by descriptions of the models and simulation environment used during the different steps of

the development process. Eventually, the algorithms described in this thesis are applied and

results are evaluated to highlight the potential of the probabilistic top-down development

process. Note that the used examples are only described to an extent that is required to un-

derstand the application of proposed algorithms and the evaluation of results. The objective

is to provide easy understandable examples of a realistic application to facilitate clarity and

comprehensibility. The application of the TCA to a real development project is subject of

further research at the Institute of Flight System Dynamics [Mum18].

Some of the explanations and results given in this chapter were already presented, published

and discussed in public by the author of this thesis in [LH13, LH14a, LH14b, LH15, LMH16a,

LMH16b, LH17, Löb+17]. However, this chapter provides a cohesive evaluation of the different

steps of the TCA for the first time, also taking into account latest findings and the obtained

feedback.

7.1 Aircraft Formation Flight

Close formation flight is well established in military aviation. One important field of application

is aerial refueling to extend range and endurance. With increasing fuel costs and tightening

emission limits, there is a growing interest in close formation flight for civil aviation. It can be

used to exploit the aerodynamic benefits of wing-tip vortices [Ban+06, Kle+13, ODB15] but

also to enable aerial refueling of civil commercial aircraft, where studies promise a two-digit

percentage fuel burn, and thus CO2 emission reduction, even when taking fuel consumed by the

tanker into account [Nan06, BV05, McR+15]. For civil aerial refueling, it has been found that

the conventional military refueling operation, where the receiver aircraft approaches a tanker, is

not desirable from an operational and also passenger-comfort point of view. Therefore, further

research on novel cooperative guidance and control methods for a more desirable refueling
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7.1 Aircraft Formation Flight

configuration was initiated where the tanker approaches the receiver. Another outcome of

the afore mentioned research on the feasibility of civil aerial refueling is that such a refueling

maneuver must be conducted fully automatically to ensure safety and consistent performance

under various conditions without demanding piloting skills too much from civil airliner flight

crews.

In the considered context, only the boom refueling method is reasonable due to much higher

fuel flow rates and the lower control dynamics required for the tanker compared to the second

very common refueling method using a probe and a drogue.

7.1.1 Problem Formulation

The task considered in this chapter is the development of an automatic flight control system

(autopilot) for a tanker aircraft in close formation flight. According to the defined refueling

operation, the taker is designated to conduct the relative maneuvering with respect to the

receiver, while the receiver is considered to use its conventional autopilot for the sake of

simplicity of the considered example, i.e. there is no cooperative control of the two aircraft.

Figure 7.1 shows the arrangement of aircraft during close formation flight.

Receiver

Tanker

Center of gravity GT

Center of gravity GR

Receptacle C

Boom hinge H

Figure 7.1: Aircraft in close formation flight

Since a conventional refueling boom is considered the tanker must be positioned ahead and

above the receiver after an approach from in front and above. For this example, the aircraft

designated for formation flight already exist, which also includes adequate models for aerody-

namics, control surfaces, etc. The closed-loop receiver dynamics, using its baseline autopilot,

with all its uncertainties must be assumed as part of the environment, since it cannot be

changed during the development.

The tanker is designated to approach the receiver, hold the position during station-keeping

to enable boom connect, fuel transfer, boom disconnect and to finally depart again. The

example considered in this chapter is limited to the following aspects, which are sufficient for

the demonstration of the different steps of the TCA:

• Station keeping phase: Only the control functions required for close formation flight

are considered, which is also referred to as station-keeping phase. The approach and

departure phases are not considered.
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• Longitudinal dynamics: Only longitudinal control functions are considered. Decou-

pling of longitudinal and lateral dynamics is admissible for conventional fixed wing aircraft

for straight flight and only small deviations from the trim point, which is the case here

[BAL11, p. 261].

These limitations do not reduce the generality of the example and are not owed to the appli-

cability of the TCA, but to comprehensibility, which can be best achieved by reduced example.

The reduced set of functions is sufficient to explain the different algorithms presented in this

thesis. Similar assumptions and splitting up of tasks is also common for conventional devel-

opments, hence the given descriptions are not on an academic level but still close to reality,

which is the intention to also show the applicability and high potential of the TCA for real

world problems.

7.1.2 Top-Level Requirements

There has been no civil commercial aerial refueling or formation flight up until now. Hence,

there are also no requirements specifically for such operation. Requirements for military for-

mation flight are usually only driven by the function and not by safety and therefore are

not applicable for this case. However, top level requirements can be derived from current

certification specifications, specifically from CS25.1309 [Eur17b], which specifies the level of

confidence of equipment, systems and installations based on a safety assessment, where the

safety impact of each function and related malfunctions added by the components are assessed.

This has been conducted in the scope of the European research project RECREATE, where

mainly the following top-level failure conditions and corresponding criticality were derived for

close formation flight and aerial refueling of civil airliners [van15]:

• Mid-air collision: Collision between the tanker and the receiver is the most obvious

safety risk. For the sake of simplicity, any contact between the aircraft, no matter which

parts collide and with which intensity, is considered to be a catastrophic event, which is

related to a failure probability of 10−9 per flight hour (see table 3.2). In other words,

no failure of the automatic flight control system, be it hardware or software, or adverse

behavior driven by uncertainties, disturbances and faults may cause a relative position

change between the aircraft that leads to a mid-air collision with a probability higher

than 10−9 per flight hour.

• Hard boom impact: If the boom would hit and break a cockpit window during a

docking attempt, this could lead to fatal injuries to the pilots and in worst case full

loss of the receiver aircraft, which is associated to an admissible probability of 10−9 per

flight hour. However, using adequate mitigation means, e.g. reinforced airframe structure

around the receptacle and additional protective measures for the cockpit windshield, the

classification of criticality could be reduced to hazardous or even only major, which is

related to a failure probability of 10−7 and 10−5 per flight hour for commercial civil

operations.

157



7.2 Simulation Environment

• Ignition of fuel spray: Destruction of refueling equipment, e.g. due to excessive forces

on the boom, could lead to fuel spray that is sucked into the engines leading to engine

flame-outs. If there is a possibility that all engines are influenced, leading to a damage

that prevent engine restart, this failure condition must be classified as catastrophic.

For the development of the automatic flight control system for close formation flight, mainly the

first requirement is of relevance. Although too high maneuvering during station-keeping might

cause mechanical damage and hence the destruction of the refueling boom, fuel spray could

be reduced to a reasonable amount by emergency fuel cut equipment specifically designed as

mitigation mean. Hence, the subsequent explanations focus on function specification, design,

verification and monitoring, to prevent collision between the aircraft.

7.2 Simulation Environment

Models are used throughout the whole development process. In this section, models for the

environment are introduced, which are valid for all development phases, although not the

full level of detail is used for every phase. The environment models also include the receiver

with its autopilot, since it is out of scope of this development task. In accordance with

the simulation environment repeatedly described throughout this thesis, figure 7.2 shows the

implementation-dependent portion of this environment, which are the system and environment

models. The individual components and related uncertainties of the environment are discussed

in this section, since they are independent of the specific development phase, while the models

Development objective:
Tanker

Autopilot

Receiver
with baseline

autopilot

Environment

System and environment models

Turbulence
and
wake

interaction

Figure 7.2: System and environment models for the considered example
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for the development objective, i.e. the tanker with its autopilot, are enhanced throughout

development and are discussed in 7.3, where the individual steps of the TCA are discussed.

7.2.1 Aircraft Models

For the research on close formation flight and aerial refueling, a simulation environment was

developed and refined in Matlab Simulink. It consists of detailed nonlinear aircraft simulation

models of a four-engined civil transport aircraft with a wingspan of almost 60m and a maximum

take-off weight of 330t, which are used for both tanker and the receiver. It includes engine

and actuator dynamics and nonlinear aerodynamic models, based on exhaustive lookup tables

that are scheduled over the angle of attack, angle of sideslip and the Mach number, just to

mention the most significant dependencies [HN70]. Furthermore, the change of the center of

gravity, the mass and the moment of inertia during refueling is simulated to allow a reasonable

evaluation of the fuel transfer during station-keeping.

7.2.2 Wake Interaction

The simulation environment also includes a model for the wake interaction between the air-

craft, which is essential for close formation flight [Löb+12]. Many available studies on wake

interaction focus on the effect of larger leading on smaller trailing aircraft. To obtain rea-

sonable numbers for the interaction between two similarly large aircraft, estimations by vortex

lattice method and an extended lifting line theory by Philips and Snyder [PS00] are used. The

latter constitutes an adaption of the classical lifting line theory applying a three-dimensional

vortex lifting law instead of the two-dimensional Kutta-Joukowski law usually used in clas-

sical theory. This allowed for the estimation of force and moment increments due to wake

interaction as a function of the relative position between the aircraft and the angle of attack

of the leading aircraft. The interaction proved to be qualitatively correct and quantitatively

reasonable when comparing to exemplary CFD analysis [Hep+12] and the results of previous

modeling and flight test efforts [DVB05, DLB08], especially for close formation flight, where

wake dissipation has only a minor effect. Although being relatively small, the aerodynamic

influence of the trailing on the leading aircraft is also estimated using above described method,

with the results being comparable to previous studies [DBH13]. A more detailed description

of the wake model can be found in appendix B.1.

7.2.3 Uncertainties

During all offline steps of the TCA, enhanced stochastic algorithms (section 2.6) are extensively

used. For the exemplary results shown in this chapter, only a few important uncertainties are

considered, which are introduced in this subsection. The reduced number of uncertainties

is not attributed to the limited capabilities of the applied stochastic algorithms – these are
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insensitive to the number of uncertain parameters – but to the clarity of results and their

discussion.

Plant Uncertainties

Plant uncertainties refer to the uncertainties of the aircraft models used for the receiver and

the tanker. Two major sources of uncertainties can be identified: aerodynamics and inertia.

Aerodynamic forces and moments are described by sophisticated nonlinear models. However,

the underlying data is usually obtained by simulations or identified from flight test results and is

hence not exactly known. The same is true for the wake interaction between the aircraft. The

uncertainties are usually described by distributions, often Gaussian or uniformly distributed.

Table 7.1 provides the major aerodynamic derivatives relevant for the motion in the longitudinal

plane and their uncertainties considered in this example. While the mean values are obtained

from the detailed aerodynamic models, the variation is added on top, where the uncertainty

is assumed to be Gaussian distributed with a constant variance σ2 given in the table.

Table 7.1: Aerodynamic uncertainties of tanker and receiver (left) and wake model (right)

Parameter Uncertainty σ Parameter Uncertainty σ

CLα 5% ∆CL,wake 15%
CMα 5% ∆CD,wake 15%
CMq 5% ∆Cm,wake 15%
CMη 5%

The mass, the moment of inertia and the center of gravity can significantly change during

station-keeping and refueling in the considered operation. During fuel transfer, the tanker

becomes lighter, while the receiver becomes heavier. This also changes the reaction of the

aircraft on control inputs and disturbances. Hence, the variation must be considered. Similar

aircraft are used for tanker and receiver, with a mass variation between m = 200 . . . 250t and

a center of gravity positions between 15 . . . 35% of the mean aerodynamic chord (MAC). The

inertia tensor changes automatically based on the weight, assuming that fuel is first transfered

from the center tanks, followed by the wing tanks.

The receiver uses a conventional fixed-gain PID autopilot to maintain altitude. Although this

is not favorable for close formation flight, it is used for the sake of simplicity of the example.

Atmospheric Disturbances

Continuous atmospheric disturbances are considered, which are also referred to as wind turbu-

lences. The Dryden turbulence model is well accepted for use in development of flight control

systems and is specified in MIL-HDBK-1797 [US 97]. It is a linear filter that takes white noise

as input and outputs wind velocities and rates in a body-fixed frame acting on an aircraft.
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The power spectral densities of the vertical wind velocity and wind pitch rate are given by

Φw (ω) = σ2
w

Lw

π

1 + 3 (Lwω/V )2

(

1 + (Lwω/V )2
)2

Φq (ω) =
(ω/V )2

1 +
(

4bω
πV

)2 Φw (ω)

(7.1)

with σw, Lw and V being the altitude and intensity-dependent root mean square turbulence

amplitude according to MIL-HDBK-1797, the scale length with Lw = 1750ft/2 and the

true airspeed, respectively. By spectral factorization, transfer functions can be obtained for

implementation and simulation of the vertical velocity and pitch rate component of the tur-

bulence field. The derivation of the related linear state space model, which will be required

for monitoring, is given in appendix B.2.

Due to spacial correlation, turbulences acting on the tanker and the receiver are very similar.

For evaluation, it is assumed that turbulence velocities and rates are the same for both aircraft,

however, with a time delay similar to the longitudinal separation between the aircraft divided

by the aircraft forward velocity. This assumption is legitimate especially for the lower frequent

portion of turbulences, which is essential for aircraft flight dynamics.

Sensor Noise

For the evaluation of control performance especially during verification, adequate models of

sensors are required. For the considered application, this especially includes measurements of

aircraft rates, attitudes, the relative position and the velocity between the aircraft. Adequate

sensor models are used for inertial measurements and to obtain relative state information, where

for the latter an extensive sensor suite is used, where a sophisticated filter merges measurements

from optical, ranging and Global Positioning System (GPS) measurements. Since the specific

models and implementations are not essential for evaluation and understanding of the example

in this chapter, sensor models are not further discussed. A detailed description can be found

in [LH14b].

7.3 Application of the Total Capability Approach

7.3.1 Derivation of Requirements

Example Description

The objective of this section is to break down the top-level safety requirements to requirements

on adequate tanker closed-loop dynamics. The top-level safety requirement, which is evaluated

here, quotes that the probability of a collision between the aircraft must be smaller than 10−9

per flight hour. This requirement can be broken down to subfunctions, e.g. lateral control,
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7.3 Application of the Total Capability Approach

longitudinal control and thrust control. For the demonstration of the introduced requirements

derivation approach, the top level requirement is quantified:

The probability for a vertical position error of more than 7m from station-keeping reference

position towards the receiver aircraft must be less than 10−9 per flight hour.

Here, a position error from station-keeping reference position of more than 7m is defined as

crash, see figure 7.3.

Receiver

Tanker

7m

Figure 7.3: Aircraft in close formation flight – definition of crash

For this example, turbulences with moderate intensity according to the Dryden wind turbulence

model are considered, which have an occurrence probability of 10−3 according to [US 97],

leading to the requirement that the given threshold of 7m must not be exceeded with a

conditional probability higher than 10−6 in the presence of moderate turbulences, using Bayes’

theorem [Bro06, p. 773]. This requirement can be further broken down to a level that allows

the direct use for system design, specifically to requirements for adequate closed loop dynamics

of the tanker during formation flight. When only taking a look at the vertical motion and

neglecting the actuator dynamics, the transfer function from control input (elevator) to vertical

position change is of forth order. A physical interpretation of this is the second-order rotation

dynamics from elevator input to angle of attack, causing a vertical acceleration, which then

leads to vertical velocity and position after one and two integrations, respectively. Hence, the

dynamics range of a fourth-order system is looked for, for which the above stated requirement

is fulfilled. For that, the forth order dynamics is described by two second order dynamics for

the rotational and translation motion respectively. For each, damping and frequency are varied

independently. In accordance with the notation defined in 4.2.3, these are denoted as design

parameters comprised in the design parameter vector λ. Figure 7.4 shows the specification

model used for the evaluation of the relative position response. It contains the known tanker

open loop dynamics and an actuator model for the control input. To adjust the desired

design parameter combination for the closed loop behavior of the tanker, a full state feedback

with pole placement is used. For that, the tanker open-loop dynamics is linearized, which is

acceptable for small deviations from the trim point. Sources of uncertainty in this setup are

atmospheric disturbances using the Dryden turbulence model, which act on the tanker and

are hence referred to as plant disturbances, as well as the receiver motion, which changes

the relative position between the aircraft. Since the objective of the tanker closed loop is to
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Figure 7.4: Specification model for requirements derivation

maintain a certain relative position with respect to the receiver, the receiver motion can be

interpreted as output disturbance, since it influences the relative position and velocity between

the aircraft. For assessment of the relative position control performance, the output is used

to calculate the response variable r, which, in this case, is the relative approximation between

the aircraft, which must not exceed r = 7m with a probability higher than PF = 10−6.

The objective is to determine all acceptable combinations of the four design parameters. For

that, the algorithm described in section 4.2.3 is used: First, for each contemplable parameter

combination, the threshold is evaluated that is not exceeded with a probability higher than

10−6 in the presence of disturbances and uncertainties using Subset simulation described in

2.6. Second, the boundary parameter surface is looked for where the threshold of 7m is

theoretically exceeded with a probability of exactly 1E − 6. For the purpose of comparison,

the design parameter boundary is also estimated using an equal spaced grid for the four design

parameters.

Determination of the Design Parameter Boundary using Grid Samples

First, grid sampling is considered to obtain a reference. For that, each of the four design

parameters is discretized using the grid defined in table 7.2. Figure 7.5 presents the procedure

Table 7.2: Limits and discretization of design parameters

Parameter name Symbol Values Unit

Frequency of rotational motion ωrot 1, 1.2, 1.4, . . . , 2.0 s−1

Damping of rotational motion ζrot 0.3, 0.5, 0.7, 0.9 −
Frequency of translational motion ωtrans 0.2, 0.4, 0.6, . . .1.4 s−1

Damping of translational motion ζtrans 0.5, 0.7, 0.9 −
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Figure 7.5: Determination of design parameter bounds using grid method

of determination of the design parameter boundary using grid samples. Each 3D surface

displayed in a) gives the relative position error that is not exceeded with a probability higher

than 10−6 for different combinations of frequency and damping of the translational motion.

The individual surfaces stand for different damping ratios of the rotational motion. The plot is

drawn for a single frequency of rotational motion. The black dashed line indicates the vertical

position limit that must not be exceeded with the specified probability. The intersections

between the 3D surfaces and the requirement limit y = 7m lead to boundaries that separate the

parameter combinations into acceptable and non-acceptable regions. Subfigure b) gives these

limit lines for different frequencies of the rotational motion. Figure 7.6 visualizes the design

parameter boundary in 3D. Note that the different lines and surfaces for different damping

ratios of rotational motion are only a mean to visualize the higher-dimensional solution plane.

Evaluation at 672 grid points are required to obtain the displayed design parameter boundary.

Determination of the Design Parameter Boundary using Gradient Method

This section shows the application of the stochastic gradient method described in section

4.2.3. The starting point of the evaluation of the design parameter boundary is ωrot = 1.8s−1,

ζrot = 0.5, ζtrans = 0.7 and ωtrans = 0.495s−1. While the first three are chosen as freely

modifiable parameter, the value for the forth parameter is determined so that it lies on the

design parameter surface for r = 7m with PF = 10−6. The step size for the gradient estimation

is set to ∆λ = 0.1, while the step size for generation of new samples along the hypersurface is
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Figure 7.6: Resulting design parameter boundary using a parameter grid and interpolation
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Figure 7.7: Resulting design parameter boundary using the gradient method and interpolation

set to ∆λS = 0.2. Figure 7.7 shows the resulting design parameter boundary using the cubic

interpolation given in (4.17). For this example, it was only required to calculate the gradient

at seven points, marked by crosses in figure 7.7. The encircled crosses mark points where only

a minor correlation is detected using equation (4.15). The black dashed lines represent the

support planes for the design parameter boundaries which are connected using cubic spline

interpolation. Evaluation of a total of 152 points with specific parameter combinations are

required, composed by 56 evaluations for the estimation of the gradients at seven support

points and 96 points for the verification of the approximation. For the verification points, a

similar grid compared to the reference as defined in table 7.2 is used. This already gives a

considerable reduction in computational time. The chosen step width for generation of new
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samples is chosen conservatively – increasing the step width would lead to additional reduction.

Further reduction would only be possible by using knowledge about the possible shape of the

hypersurface. Since by that the algorithm would lose its generality, this case is not further

discussed here.

Comparing the parameter boundaries from simple grid interpolation and the results from the

gradient based method, it can be recognized that the developed gradient method has an

averaging effect. The unevenness recognizable in figure 7.6 mainly arises from the uncertainties

during estimation of the system responses, i.e. are a non-desirable result inherent to the grid-

based method for determination of uncertain boundaries. The developed algorithm based

on uncertain gradients provides superior performance compared to the grid-based approach.

Not only that the number of samples required can be reduced, but also smoother boundaries

are obtained. However, although the presented algorithm can reduce the required number of

samples by 1 to 2 orders, still the determination of uncertain hypersurfaces in higher dimensions

is a challenging task.

Selection of Adequate Design Parameter Ranges

The description of the three-dimensional design parameter boundary derived previously might

not be reasonable for further use due to the high correlation between different design pa-

rameters. For example, if admissible parameter intervals must be independent to allow for a

separate design of different functions by different groups or also for online monitoring.

The ideas applied in this section refer to section 4.3. There, it is discussed that the best

possible subspace for a simpler description of adequate design ranges is often not the one

with the biggest overall volume, but it is also subject to the dependency structures between

the parameters and the complexity and effort required to obtain certain parameter ranges

during later design. Recall that the adequate performance range for the design parameters

specifies the function to be designed and implemented during later development phases. For

the autopilot example considered in this chapter, the flight controller designed later must result

in a closed loop dynamics that lies within the derived rotational and translational dynamics

range.

Figure 7.8 shows the most common way for a simplified description using a box-shaped solution

space. An infinite number of solutions for such a box is available, with different choices

coming along with different advantages and disadvantages. The task of identification of

adequate design parameter ranges requires the analysis of solution properties to identify the

most useful trade-off. Figure 7.8a shows the effect of only slightly correlated parameters

ωtrans and ζtrans, where the resulting performance does not much depend on the specific

value of the damping of the translational motion. For this subfigure, ζrot,min = 0.3 and

ωrot,min = 1.2s−1 are assumed. The blue box depicts the solution, for which a medium

sized interval for ζtrans is used. However, due to the low correlation, when accepting an only

slightly increased value for ωtrans,min, a much higher range for ζtrans is obtained. Hence,

the sensitivity of the resulting design volume with respect to the specific parameter selection
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Figure 7.8: Selection of adequate design parameter intervals

should be considered during the selection of adequate design parameter ranges. This is a

trivial task for lower dimensional parameter spaces (for up to four to five parameters), where

a graphic representation of the parameter bounds is possible. Subfigure b adds another two

dimensions to the discussion, by varying admissible ranges for ωrot and ωtrans. A reduction

of the admissible range of ωrot leads to an increased range of ωtrans. A further increase of

the admissible range of ωtrans can be achieved by increasing the minimal damping of the

rotational motion ζrot. Both trade-offs can be directly attributed to aircraft flight dynamics:

When increasing the rotational dynamics, the translational dynamics can be slower since the

rotational dynamics required to follow translational commands is faster and hence better

tracking of translational commands is possible. Furthermore, an increased minimum damping

ζrot leads to lower overshoots of rotational motion, which results in lower required minimum
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translational, but even more rotational frequencies, which can be seen by fixing ωtrans and

varying ζrot in figure 7.8b. A correct answer for the best solution space cannot be given here,

also since only one requirement is considered in this example, while other requirements can

further limit the solution space. However, it can be derived that parameters, where a high

correlation of design parameters exists with respect to the resulting design parameter boundary,

these parameters should be considered in an integrated manner especially during later function

design. This enables best possible exploitation of the available system performance.

One option to reduce conservativeness of the box-shaped solution spaces is the use of 2D

solution spaces, as introduced in 4.3.3. This enables a better exploitation of the solution

space by allowing correlation between two parameters. For figure 7.9, the correlated parameter

couple is ωtrans and ωrot. Alternatively, also ωrot and ζrot could be chosen. While the orange

box depicts the classical box-shaped solution, the blue shape represents the 2D solution space.

By using this additional degree of freedom, the volume can be considerably increased by

only requiring a slightly more complex formulation of the solution space. Unfortunately, even

the latest algorithms in this field presented in this thesis assumes linear bounds, which is

approximately the case in figure 7.9. However, if the bounds would be concave instead of

convex, the 2D solution space would no longer result in a valid solution subspace, since it

would violate the actual bounds.

ζ
rot

 = 0.3

ζ
rot

 = 0.5

ζ
rot

 = 0.7

ζ
rot

 = 0.9

ω
r
o
t,

1/
s

ζtrans,−ωtrans, 1/s
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.6

0.81.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 7.9: Description of the adequate parameter combinations using 2D solution spaces

Conclusions on Model-Based Requirements Derivation

The results obtained for requirements derivation and determination of adequate design param-

eter ranges for this application-related example allow to draw the following conclusion: The

model-based derivation of requirements can lead to significantly increased design parameter

ranges compared to conventional, conservative and experience-based intervals. However, due

to the high computational effort and lack in availability of adequate methods for approxima-

tion of complex, high dimensional solution spaces, application is only considered useful for
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a lower number of design parameters (four to five based on experience). Nevertheless, if

the design problem can be split up into independent design sub-problems, this should be no

showstopper for future applications of the model-based derivation of safety driven performance

requirements.

7.3.2 Validation

Completeness and correctness is, by its nature, usually difficult to prove before design and im-

plementation. As described in section 4.4, the validation process can be significantly improved

using the specification models implemented for requirements derivation.

Specifically for the formation flight example, the formalized requirements and models describ-

ing the behavior of the closed loop can be readily used to support validation. The model-based

approach can be exploit to different extends for validation, from checking compliance of con-

ventionally selected lower level requirements with probabilistic top-level requirements to the

validation of the whole operational concept. This subsection describes possible applications

of model based validation in accordance with the findings in 4.4.3.

Correctness of Conventional Requirements

The implementation of all steps of the TCA leads to the highest benefits achievable using

a model-based development approach. However, due to certain reasons, e.g. due to too

high complexity or limited computational resources, this might not always be possible. In

this case, the quantification of lower level safety-driven performance requirements is done in

a conventional manner based on experience and rules of thumb. Furthermore, theoretically

the lower level requirements derived using the model-based approach described in this thesis

automatically comply with all top-level requirements. However, if independence of subproblems

is assumed during requirements derivation, this independence must be proven.

For the example considered in this section, adequate dynamics for the translational and rota-

tional motion could also be derived based on engineering judgment and available standards for

similar (possibly military) applications. To prove compliance with the specific top-level safety

requirement for civil formation flight, the system and environment models (figures 7.2 and

7.4) can be used. Instead of utilizing the simulation environment for the determination of all

admissible designs, it is only used to prove that the selected range for the dynamic behavior

complies with the probabilistic top-level requirement.

In a similar manner, the assumption of separated longitudinal and lateral dynamics for spec-

ification and design can be proven by integrated simulation. This proof does not suffer the

curse of dimensionality, since for verification, the admissible design parameter intervals can be

treated as uncertain parameters themselves. By stochastic simulation, the most probable crit-

ical scenario within the admissible design parameter space and related failure probabilities can

be efficiently estimated. Certainly, the resulting failure probability should be less or equal to

the admissible failure probability (within confidence bounds) – violation would imply invalidity
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of the assumption on independence of longitudinal and lateral dynamics.

For both, validation of conventional requirements and proof of correctness of assumptions,

validation by simulation is very similar to verification using enhanced stochastic simulations (see

section 7.3.3). However, using the specification models instead of the actual implementation.

Since this is discussed more in detail later for verification of the implemented function, an

additional discussion does not provide any further information, which is why no specific results

for validation are presented here.

Validation of Derived Requirements against Environment

The environment is defined as everything that cannot be directly influenced during the current

development. The specified system might be integrated together with different other systems,

which are developed independently and in parallel. The functions of different systems must

not contradict each other. For the specific example, the flight control system is integrated

into the overall aircraft and can, therefore, have adverse impacts on other systems like aircraft

structure. If eigenmodes of the aircraft are not adequately addressed in the specification

of the flight control functions (e.g. by using notch filters to prevent excitation with critical

frequencies [NAT00, p. 4-1]), this can be detected by simulations taking into account models

for the aircraft structure. Since such models are often not available at the development start

or are too complex, the direct incorporation into the environment for requirements derivation

is not possible or not recommended.

Completeness of Requirements

The set of specification models for functions of possibly different flight phases enables sim-

ulation of the whole operations to determine absence of relevant requirements in addition

to correctness. For the example of civil aerial refueling, such an operation starts with the

initial approach of the tanker towards the receiver, followed by station-keeping, boom con-

nection, fuel transfer, boom disconnect and departure. In the research project RECREATE

[Zaj15], where the author of this thesis participated in, the entire operation was specified and

the resulting scenario simulated using (full) flight simulators for the tanker and the receiver

[HLG15]. Several airliner pilots were asked to evaluate the overall refueling operation and

the interaction with the specified system to determine if everything behaves as intended by

user and customer. By that, missing or undesired functions could be identified and corrected,

increasing the confidence in the completeness of the specified system and enabling continuous

detailed function development. While some of the missing or unfavorable functions could have

also been identified by thorough analysis, validation by simulation added additional insight

into the specified system, which might have otherwise only be obtained during later stages of

development, where corrections would have been more expensive.
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7.3.3 Function Design and Verification

Control System Design

The application of the TCA for design and verification is discussed together for the same

reasons as in chapter 5: The methods and their application are the same, only the use of

results is different. While during design, simulations are conducted to identify weak spots of

the designed functions and derive improvements, for verification, the compliance of the final

system with the probabilistic top-level requirements is demonstrated.

For the considered example of close formation flight, nonlinear dynamic inversion is performed

to design a relative position controller for the tanker aircraft. The idea has been originally

presented for the control of the receiver aircraft and steady tanker in [Wan+15] with the

author of this thesis as coauthor. The resulting control laws are only summarized since they

are neither essential for the TCA nor for the understanding of the presented results. Figure

7.10 shows the outer loop control structure.
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Figure 7.10: Model for design and verification (simplified)

First, the kinematic inversion controller is derived, followed by the description of the inner-loop

and error controller. The comparison of the derivation of relative kinematics in different frames

in [Wan+15] resulted in the decision for the O-frame, which results in the lowest complexity

of the kinematic equations. Starting from the relative position between the boom hinge point

H and receptacle C

(
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)

O
=
(

~rHGT

)

O
+
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O
+
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(7.2)
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a term for the acceleration is obtained by calculating the second time derivative in the NED-

frame:
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where BT and BR are the body-fixed frame of tanker and receiver. It is assumed that the NED

frame is the same for both aircraft, which is approximately true for small relative distances. By

inverting the relative dynamics given in (7.3), the absolute acceleration of the tanker center

of gravity in the NED frame is obtained:
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(

~aGT

)OO

O
can be expressed by the load vector in the kinematic frame of the tanker KT , where

MOKT
is the transformation matrix from the KT to the O-frame.
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(

~gGT

)OO

O
= [0, 0, g]T is the gravitational vector with g being the gravitational acceleration.

(

~fG
T

)OO

KT

is the specific force vector in the kinematic frame, i.e. the non-gravitational force

normalized by mass. The load factor vector is defined by the specific force vector normalized

by the gravitational acceleration g, which results in
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The load factor in the kinematic frame is allocated to the inner loop commands

Tcmd ≈ mgnx

Φcmd ≈ arctan ny

nz,cmd ≈ nz

(7.7)

where Tcmd, Φcmd and nz,cmd denote the commanded thrust, bank angle and load factor.

Classical linear controllers are implemented for the inner loop.

A PD controller is used for error control, which results in the following control law (assuming

a constant desired relative position):

ν =
(

~aHC
des

)OO

O
= −Kd

(

~vHC
)O

O
−Kp

[(

~rHC
)

O
−
(

~rdes
HC
)

O

]

(7.8)

The parameters of the inner loop as well as of the error controller are tuned to yield a closed-

loop dynamics within the acceptable dynamics range for translational and rotational motion

identified in 7.3.1.

Evaluation

Subset simulation is used to evaluate the performance of the implemented (longitudinal) con-

trol functions, to identify possible reasons for critical behavior and to prove compliance with

the probabilistic top-level safety requirement in the presence of uncertainties and disturbances

specified in 7.2.3. The evaluation is conducted for 30s. This time range is sufficient for the

evaluation of the failure probability, since after this time, there is no longer a correlation be-

tween the current and initial aircraft states. This can be proven, for example, by the evaluation

of the autocorrelation function of the aircraft response during turbulence excitation.

If the flight controller is tuned according to the adequate limits obtained from requirements

derivation, it should satisfy the top-level safety requirement. However, during requirements

derivation, only limited knowledge is available about possible uncertainties and further sources

of uncertainty usually arise during design and implementation. Due to the reduced level of

conservatism, it is necessary to evaluate the top-level safety requirement also explicitly with

the implemented system, since compliance is usually no longer guaranteed by pure compliance

with lower level requirements.

For this evaluation, decreasing distance between the aircraft is defined more thoroughly by

considering the relative motion in the vertical plane, i.e. also the longitudinal (thrust) control

is taken into account. The response variable r is then defined as proximity of the tanker and

the receiver, see figure 7.11. Note that the lines for increasing values of the response variable

are fixed with respect to the tanker and the relative motion is defined as the movement of the

receptacle with respect to the tanker, where it does not matter whether the motion is caused

by the tanker or receiver movement.

The Subset Infinity algorithm described in 2.6.3 is used, with a conditional failure probability
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Receiver

Tanker

r

Figure 7.11: Aircraft in close formation flight – definition of response variable r for verification

of P0 = 10% and N = 1000 samples per subset. To prove a failure probability of PF ≤ 10−6,

five subset levels are used, which yield a total of 6000 samples for estimation of the value of

the response variable r that is not exceeded with a probability higher than admissible.

To show the big performance advantage of enhanced stochastic analysis, results from Subset

simulation are compared to those of pure Monte Carlo simulation using the same total number

of samples. First, figure 7.12 shows the histogram of the response variable, i.e. the proximity

of the aircraft, for increasing subset levels. The height of each bar represents the number of

samples within the interval of the bin. The vertical lines give the conditional failure thresholds.

For comparison, figure 7.13 shows the same information using Monte Carlo simulation. It is

obvious that for Monte Carlo simulation samples are mainly generated close to the most likely

system response. Opposed to this, samples obtained by Subset simulation are generated at

the tail of the distribution, which is, in this example, closer distance between the two aircraft.
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Pure Monte Carlo
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Figure 7.13: Histogram for the response variable using Monte Carlo simulation, Ntotal = 6000
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Pure Monte Carlo
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Figure 7.15: CCDF of the response variable using Monte Carlo simulation, Ntotal = 6000

Figures 7.14 and 7.15 show the Complementary Cumulative Distribution Function (CCDF) of

the response variable, which gives the probability of exceedance (y-axis) of a certain response

value (x-axis). Upper and lower plots show the same information, where the lower plots use a

logarithmic scale for the failure probability. With the same number of samples, the estimable

failure probability for Subset simulation is in the range of P̂F = 10−6, while for Monte Carlo

simulation it is P̂F = 10−3. Subset simulation results in a response value of 3.25m with a

probability of P̂F = 7.7 · 10−7. The according lower and upper CoV (see section 2.6.4) are

0.5 and 1.1. To obtain an equal estimation accuracy by conventional Monte Carlo simulation,

this would require 1− 5 million samples (see equation (2.18)), which is 500 times more than

for Subset simulation.

To further explain the functioning of Subset simulation especially for the case of stochastic

excitation, figure 7.16 shows exemplary trajectories of the relative position in the vertical plane.

The dashed lines indicate the conditional failure threshold for the related subset. Sample

trajectories of a single Markov chain are used, i.e. the plotted lines relate to each other and

the change between different subsets can be interpreted as random walks towards more critical

regions. Figure 7.17 shows the according vertical wind component and response history. Note

that the intensity of the excitation does not change – the model parameters as well as the

intensity of the Gaussian noise, used as input for the Dryden filter, are constant. Only the

shape of the excitation is changed, which can be interpreted as a change in sequence and timing
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Figure 7.18: Distribution of maximum response variable in vertical plane, Ntotal = 6000 for
both methods

of gusts in a way that the closed loop system is excited in the most critical manner. Despite

this change, the stochastic uncertain parameters for higher subsets are still uncorrelated and

Gaussian distributed, i.e. form a Gaussian (white) noise.

Eventually, figure 7.18 shows the point of maximum proximity for each generated trajectory.

While for Monte Carlo simulation, the result is a dense cloud around the most probable

maximum position error, samples from Subset simulation are gradually generated towards

higher responses. Recall that the samples of the k-th subset does only occur with a probability

smaller than 0.1k, i.e. the samples of the 5-th subset have an estimated probability smaller

than 10−5.

The results prove that Subset simulation is very useful for the evaluation of critical system

behavior, identification of main contributing uncertainties and for prove of compliance with

probabilistic top-level safety requirement. It can be concluded that the proposed approach

with enhanced stochastic methods is one powerful mean for optimization and evaluation during

development and verification of safety-critical functions. However, note that this mainly aims

at the evaluation of functions in the presence of uncertainties and disturbances, while still

classical methods for safety assessment must be used to evaluate the effect of component

failures (e.g. by Fault Tree Analysis), common failure modes (by Common Cause Analysis),

etc.
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7.3.4 Online Monitoring

Recall the objectives of online monitoring for runtime verification, which are especially the

detection of non-compliant behavior with respect to the specified, admissible behavior, the

justification of assumptions and the determination of the current level of safety. All objectives

should contribute to the assurance of safety in case that no offline verification is possible

or when the safety objective depends on operation and hence considerably higher availability

could be achieved by runtime verification.

For the example considered in this chapter, the formation flight autopilot is monitored to

justify the assumptions made during development and to identify non-compliant behavior.

The application of monitoring to ensure continuous safety is possible here, since the formation

flight function is not essential – in case that non-compliant behavior is detected, an abort

maneuver can be immediately initiated that ensures a quick separation between the aircraft.

Monitoring of the automatic flight control system can be established on different levels, from

individual components, e.g. actuators and flight control computers, to the overall system. In

this section, the application of the model-based system monitoring approach introduced in

6.4.2 is shown. Specifically, the vertical relative position control performance is monitored.

During requirements derivation, adequate intervals for the tanker translational and rotational

motion are identified (7.3.1). For the basic version of the proposed monitoring algorithm,

independence of the admissible parameter ranges is required, hence the admissible solution

space is approximated by a box-shaped space.

The proposed monitoring algorithm uses linear models for the propagation of uncertainties and

disturbances. Although these models can be obtained by (numerical) linearization during run-

time, for this example, the linear models are derived manually to better explain the monitoring

algorithm. Relative dynamics between the aircraft is compiled by rotational and translational

dynamics of both aircraft, which can be considered as linear in proximity of the trim point:
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where the angle of attack, the pitch rate, the pitch angle and the altitude are used as receiver

states. The system matrix AR,closedloop reflects the dynamics of the closed loop system of the

receiver with its autopilot for altitude hold. The disturbance input matrix BR,wind maps the

wind vertical velocity and pitch rate to the aircraft state derivatives,
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(7.10)
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with ZW , ZQ, MW and MQ denoting the aerodynamic force and moment derivatives for

vertical velocity and pitch rate disturbances. Similar dynamics can be formulated for the

tanker
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In contrast to the receiver dynamics, not the actual autopilot is linearized but instead models

are used which describes the admissible behavior of the tanker using a full state feedback and

pole placement (similar to 7.3.1). This system matrix is a function of the design parameters

p, which are modified by the monitoring algorithm to propagate the whole parameter space by

using the corner points of the admissible design parameter space. Recall that this is admissible

as long as the states are monotonous with respect to the design parameters, which is the case

here for the high update rates considered in this example.

While the admissible aircraft closed loop dynamics are inherently linear, there is one major

nonlinearity, which is the delayed action of the wind velocity on the receiver. The delay is

similar to the longitudinal distance divided by the forward velocity of the aircraft. Due to the

usually low resulting delays τ (approximately τ = 0.25s), a first order Padé approximation can

be made, which can be written in time domain as

.
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τ
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wind,R + wwind,T

wwind,R =
4

τ
w∗
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(7.12)

and likewise for the wind pitch rate. The derivation of the Padé approximation is given in

appendix B.3. Using the state space representation of the Dryden turbulence model given in

appendix B.2, all submodels can be compiled to one linear model for propagation of uncer-

tainties during online monitoring:

.
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xdyn =
[

αR qR θR hR αT qT θT hT

]T

xdist =
[

wwind,T qwind,T w∗
wind,T q∗

wind,T w∗
wind,R q∗

wind,R

]T
(7.14)

The aircraft dynamics matrices are defined with respect to the boom hinge point H for

the tanker and the receptacle C for the receiver, respectively. The inputs to the model are

the relative vertical position command zHC
cmd and the Gaussian noise input η for the turbulence

model. Although the former is actually not required for station-keeping, where the commanded

relative position is constant, this input is used to simulate the behavior during trajectory

tracking required for approach and departure.

For this example, it is assumed that only the vertical relative displacement and velocity is

measured. Hence, the output matrix can be obtained using the relations for straight flight

γ = θ − α and
.
h ≈ V γ:

C =
[

−CR CT O2x4 O2x2

]

CR/T =





0 0 0 1

−V 0 V 0





y = Cx =
[

∆h ∆
.
h
]T

(7.15)

where V and ∆h = hT − hR denote the aircraft’s velocity and the height difference, respec-

tively.

The initial covariance matrix is set to zero except for the translational states for which the

initial uncertainty is set to the measurement covariance of the sensor system. While the

covariances of the translational states, i.e. relative position and velocity, are updated with

each measurement according to the scheme presented in 6.4.2, the covariances of the other

states are continuously propagated, leading to steady values after a certain settling time,

provided that the time delay τ , the turbulence intensity and the airspeed do not change.

Five different scenarios are looked at, which are listed in table 7.3. To increase the com-

prehensibility of the results, only the tanker translational dynamics is considered as design

parameter, while the rotational dynamics is considered as constant in this example. Figure

7.19 shows the resulting relative vertical position and velocity between the boom hinge H

and the receptacle C from the sophisticated nonlinear simulation model, together with the

Table 7.3: Limits and discretization of design parameters

Case
Turbulence

Intensity

Adequate dynamics

ωtrans range

Adequate dynamics

ζtrans range
Remarks

1a No [0.3 . . . 2] [0.5 . . . 1.5] Normal operation

1b No [1.5 . . . 2] [0.5 . . . 1.5] Closed loop too slow

2a Light [0.3 . . . 2] [0.5 . . . 1.5] Turbulence excitation

2b Light [1.5 . . . 2] [0.5 . . . 1.5] Turbulence excitation with too

slow closed loop

3 No [0.3 . . . 2] [0.5 . . . 1.5] Autopilot failure at 25s
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Figure 7.19: Monitoring results for case 1

calculated single covariance monitoring bounds propagated using the linear dynamics (7.13).

Arbitrary control inputs are chosen to show monitoring of trajectory tracking performance.

The larger variance bounds during the first seconds are caused by the higher measurement

uncertainty during sensor data fusion settling. In case 1a, where the aircraft dynamics lie well

within the adequate dynamics intervals, neither position nor velocity boundaries are exceeded,

i.e. the actual system behaves according to the specifications (figure 7.19a). Figure 7.19b

shows results for the case that the aircraft dynamics is too slow compared to the desired

dynamics. For the sake of simplicity, the lower limit for the requirement is increased for this

case instead of retuning the controller to result in too low dynamics. It can be seen that for

both relative position and velocity, exceedances of the lower dynamic boundaries are detected

multiple times, which is indicated by orange circles. Certainly, non-conformal behavior can

only be detected as long as there are control or disturbance inputs that cause state variations.

In cases 2a and 2b, boundary propagation in the presence of stochastic turbulence excitation

is examined. Similar to the generic example used in 6.4.2, there is a certain probability that

boundaries are exceeded when stochastic disturbances are present. Figure 7.20 shows results for

case 2, where double standard deviation bounds were chosen for the uncertainty propagation

of the turbulence excitation, i.e. a maximum of 5% of samples is expected to violate the

boundaries. In case 2a, which represents an admissible system at acceptable turbulence levels,

there are only a few boundary exceedances caused by the stochastic nature of the turbulence

excitation. The results for case 2b in figure 7.20b show that the detection capabilities for

non-admissible dynamic behavior also works well with stochastic disturbances acting on the

plant. Finally, case 3 depicted in figure 7.21 shows the results when the autopilot is switched

off after 25s, simulating a non-detected autopilot failure. Although the plant behaves within
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Figure 7.20: Monitoring results for case 2 (with turbulences)
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Figure 7.21: Monitoring results for case 3 (autopilot failure)

desired dynamic bounds for a couple of seconds, abnormal behavior is detected soon after both

adequate velocity and position bounds are persistently exceeded.

Using the proposed algorithm, it is possible to monitor the behavior of a plant in the presence

of disturbances and uncertainties. By using models for the admissible behavior, failures can

be detected more effectively and fault detection rates are lower than for simple monitoring

approaches using only comparisons of measurements with predefined limits. However, although

models are used, the emphasis lies on using models that are only as complicated as necessary,
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but as simple as possible. This is motivated by the demand for efficiency, which ensures real-

time capabilities required for online application. If requirements are nonlinear or non-Gaussian

stochastic processes act on the plant, piecewise linearization and Gaussian mixture models can

be used. These aspects are investigated by another researcher at the Institute of Flight System

Dynamics ([Müh18]). While there might be more sophisticated monitoring approaches, the

proposed method captivates due to the simplicity and still high performance for monitoring

of dynamic systems, especially if the acceptable dynamics is specified by linear models with

admissible dynamic intervals.
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8

Conclusions and Perspectives

8.1 Conclusions and Recommendations

The research presented in this work is driven by the desire to lay the foundation for a new

development approach for safety-critical functions that replaces the current experience driven,

conservative bottom-up process. This novel approach is named Total Capability Approach

(TCA), since the total capabilities of a system in the presence of uncertainties, disturbances,

and failures are utilized throughout the whole development process, from specification, design,

implementation, to verification. This is enabled by the increased computational power of

today’s computers and the availability of adequate models for the simulation of the behavior of

a function and system in its environment. In the following, the main contributions and related

findings are recapitulated and extended by recommendations for application and enhancement

of developed methods.

Efficient stochastic analysis is essential for the proposed model-based approach to estimate

small failure probabilities. Chapter 2 introduces methods that have found to be useful for the

intended applications during requirements derivation, function design and verification. Em-

phasis is laid on methods that are easy to apply and preferably follow the black box principle,

which significantly reduces the effort and complexity during daily application. The methods

are described in a vivid way, with the focus not on theoretic proofs but on understanding and

implementation, to close the gap between theoretic text books and the intended application.

This is a valuable contribution in this field. Especially Subset simulation based on Markov

Chain Monte Carlo is discussed in detail, because this method has been found as versatile

and powerful for efficient evaluation of small failure probabilities, which are inherent to the

development of safety-critical functions. Subset simulation is considered to be one of the most

efficient black box methods for such analyses. Although methods adapted to specific applica-

tions can be more efficient, they require considerably more awareness and expert knowledge to

yield valid estimation results. This impedes the application in practice due to the additional

effort and the loss of generality. For these reasons, it is recommended to stick to the black

box methods, which allow engineers to efficiently evaluate small failure probabilities without

the need for long training and adaption periods.
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The core contribution of this research is the development of the overall concept of the

TCA, which is introduced in chapter 3. After an introduction of the currently established

development process, drawbacks are identified and a shift in paradigm is introduced, which

constitutes a transition from the conventional bottom-up requirements derivation process to-

wards a top-down approach, where high level safety objectives are broken down in a physically

motivated manner. The motivation for that is the anticipated gain in design freedom due to

the lower level of conservatism, but even more the lack in specific lower level design specifica-

tions for novel applications and operations. The latter inhibits application of the conventional

certification approach, which highly depends on past experience. Although the TCA mainly

aims at revolutionizing the way how requirements of safety-critical functions are derived, the

proposed shift also has an influence on or provides additional useful means for the subsequent

development steps, i.e. validation, design, implementation, verification and operation. Chapter

3 motivates the research presented in the remaining work, where later the different steps of

the development process are discussed in detail to identify means to put the TCA into practice

and overcome the top challenges identified in section 3.6. During beginning of the underlying

research, certification authorities almost entirely relied on the conventional approach with pre-

scriptive design requirements. Only during the recent months, they released novel certification

specifications for normal, utility, aerobatic and commuter aeroplanes (CS-23/Amendment 5

[Eur17d]). This enables a shift to a probabilistic approach for certification of safety-critical

functions, where it must only be proven that the implemented function ensures safety during

operation. This strongly underlines the practical significance of the conducted research and

hence the author highly recommends to continue research on this important topic.

Chapter 4 is dedicated to requirements derivation and validation. Efforts related to the

model-based approach are discussed in section 4.1, which are especially the formalization of

requirements, the definition of adequate specification models for simulation of the required

behavior before the availability of actual implementations, as well as the modeling of the en-

vironment with all relevant uncertainties, disturbances and failures. The latter is essential for

a probabilistic assessment of the specified functions and systems. Another major contribution

is a standardized simulation framework, which is introduced in section 4.1. It enables the

efficient utilization of formalized requirements, specification models and environment models

throughout the whole development process. With development progress, individual compo-

nents are enhanced (e.g. environment models) or replaced (e.g. specification by actual design

models), while the interfaces required for evaluation and analysis are kept. The shift towards

a top-down approach leads to the question on how to break down safety-related top level re-

quirements with only very low acceptable violation probabilities to specific design requirements.

The challenges related to this break down are discussed in 4.2 and, beyond the state-of-the-art,

a method is developed and presented that can be used to identify high-dimensional admissible

specification intervals of lower-level requirements that ensures compliance with the probabilis-

tic top-level requirements. This proposed approach can lead to significantly increased design

parameter intervals compared to conventional, conservative certification standards, which stip-
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ulate experience-based intervals for the lower-level requirements. The results for an exemplary

application of the developed method shown in 7.3.1 prove the usability of the algorithms.

However, due to the high computational effort and the difficulty for the selection of adequate

design parameter intervals based on the possibly complex and high-dimensional solution space,

application is currently only considered useful for lower numbers of design parameters (four

to five based on experience). Nevertheless, if the design problem can be split up into inde-

pendent design sub-problems, this should be no showstopper for imminent applications of the

proposed ideas and methods for model-based requirements derivation. Still, future research

in this area should focus on increased efficiency and automation, since this is the key for

acceptance outside of academia.

Validation of specified functions can benefit from the model-based approach. This is discussed

in 4.4. Due to the early availability of models, which describe the specified system behavior,

it is possible to easily evaluate a set of specifications. This is a useful means for proving

completeness and correctness of requirements. This additional usage is not essential for the

TCA, but can be seen as very helpful by-product of the model-based derivation process. Since it

comes with almost no additional effort, the author recommends to utilize this additional means

for validation. The high potential of model-based support of validation is also discussed for

the exemplary application in 7.3.2.

The design specifications resulting from the model-based derivation still uses conventional

metrics, with only the range of these metrics being determined in a significantly less conser-

vative, physically driven manner. This is important to ensure ease of application, since design

engineers do not have to get used to unfamiliar metrics. Hence, the TCA does not require

changes to possibly well established design processes. However, similar to validation, the de-

sign process can benefit from the formalized requirements and enhanced stochastic methods

described in this work, since they allow an easy evaluation and optimization of preliminary

designs to obtain the function with the highest availability at any given level of safety. This is

discussed in section 5.1.

The proposed development approach requires a change of thinking for verification, which is

discussed in 5.2 and demonstrated in 7.3.3. Verification by analysis using models is an accepted

means of compliance already today. However, it becomes even more important if requirements

are derived using the model-based approach proposed in this work. During requirements break

down, it is inevitable that assumptions are made on certain aspects that are unknown during

specification. Furthermore, additional sources of uncertainties usually arise during design and

implementation, which are not considered during the probabilistic break down of requirements.

Therefore, it is no longer sufficient to prove compliance with probabilistic top-level require-

ments by just fulfilling lower-level requirements. Although assumptions are also required for

today’s development approaches, compliance with highly conservative prescriptive design spec-

ifications ensures safety of the overall system. For the TCA, compliance of the implemented

functions must therefore also be shown for the probabilistic top-level requirements. Here, the

application of enhanced stochastic algorithms described in chapter 2, and especially Subset
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simulation, has proven as very powerful for evaluation of small failure probabilities, even for

complex simulation models, which require high computational effort. The main contribution

for verification is the simulation environment used throughout this work that allows easy ap-

plication of enhanced stochastic methods thanks to the fixed interfaces between implemented

functions and evaluation routines. Furthermore, for the first time the application of enhanced

stochastic methods and the implications on verification or safety-critical functions are captured.

The development of the TCA is motivated by emerging novel (e.g. unmanned) aircraft oper-

ations. For conventional aircraft, safety is mainly driven by the effects on crew, passengers

and airframe. For unmanned operation, safety is especially driven by the actual mission, e.g.

flight above a crowd of people versus over an uninhabited desert. Hence, it is desirable to

adapt the safety goals to the current application. Runtime verification is considered as one

major mean to allow time-varying safety goals. Following a detailed motivation, evaluation and

derivation of related challenges and objectives in sections 6.1-6.3, a beyond state-of-the-art

online monitoring algorithm is derived in 6.4.2 and exemplarily applied in 7.3.4. The proposed

algorithm allows for monitoring of one important type of system requirements in the presence

of uncertainties and stochastic disturbances. Good violation detection capabilities could be

demonstrated by simulation. To further enhance the algorithm and its robustness, the author

proposes the evaluation during real flight tests.

The application of the TCA for selected aspects of development of a formation flight autopilot

in chapter 7 proves the potential of the principle idea as well as of the methods developed and

described in this work. This proof of principle of the TCA is important, since it underlines

the validity of the contributed ideas, methods and especially the established path towards

implementation of a performance-based certification approach.

8.2 Outlook

Especially during the recent months, the European and US certification authorities started the

transition from exhaustive requirements catalogs towards a much more flexible performance

based approach that is perfectly in line with the conducted research. Although the results

presented in this thesis, and especially the concept of the TCA, constitute a promising approach

to tackle the challenges related to this shift, it can only lay the foundation. Ongoing research

is conducted by another researcher at the Institute of Flight System Dynamics of TUM, who

currently works on a proof of concept by applying the ideas of the TCA to the development

of an automatic landing system for a twin engine, optionally piloted vehicle [Mum18].

During the conduction of research, several further interesting aspects came up, which could not

all be considered in this research. Besides the short term recommendations already mentioned

in the previous section to further enhance the proposed methods, the following challenges

should be addressed in future:

• Formalization of requirements: The availability of formalized requirements and re-

lated specification models is essential for model-based requirements derivation. While
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currently formalization and development of models is mainly done manually, a high level

of automation is the key to acceptance of the TCA and its future implementation in

industrial projects.

• Adequate modeling of uncertainties: The accuracy of the results heavily depends

on the availability of adequate models for uncertainties and disturbances. While their

availability is assumed in this thesis, determination of these models is usually related to

high efforts. To account for poor uncertainty models and assumptions, a certain level

of conservatism should be kept in the TCA. Therefore, further research should evaluate

the influence of poor models, their implications on safety of the resulting functions and

find ways to ensure an adequate level of robustness.

• Increased efficiency of model-based requirements derivation: The computational

complexity of the proposed approach explodes with the size of the design problem.

This research presented in this dissertation approaches this challenge from two sides:

enhanced stochastic algorithms and more efficient methods for determination of design

bounds. The combination leads to a reasonable performance for up to 4 − 6 design

parameters. This is an already usable number, especially if design problems can be

divided into several subproblems. Still, an integrated consideration of complex functions

would further utilize the potential of the TCA.

• Operation-dependent adaption of safety goals: The potential of time-variant safety

goals dependent on the current operation is already introduced in this work and the

proposed online monitoring algorithm can be utilized to monitor the system performance

in the presence of uncertainties and disturbances. Still, the practical implementation

raises issues, which must be addressed in future, especially to ensure a high level of

confidence in the monitor (low rate of missed detection) as well as high availability

(low rate of false alarms). Furthermore, the legal basis for such an adaption must be

developed or identified, which cannot be foreseen at the current time.

In summary, it can be said that the model-based development approach introduced in this

work is very promising for tackling future challenges arising from the development of safety-

critical functions of unconventional aircraft topologies and novel operations. Therefore, the

author highly recommends and promotes continuation of research in this field, to enable a

quick transition from research to industry.
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Appendix A

Stochastics

A.1 Gauss Standardization

A.1.1 Generation of Samples with Arbitrary Distributions

Many non-Gaussian random variables can be constructed from standard Gaussian variables

by transformation. The method originally used for inversion sampling can be used to trans-

form a standard Gaussian variable to any distribution where the CDF is strictly monotonically

increasing [Dev86, p. 27ff.].

Assume that a sample θT must be generated from the target probability density function φT (·)
and according CDF ΦT (·) based on standard Gaussian random variables θN , i.e. with zero

mean and unit standard deviation. Using the CDF of the standard Gaussian distribution ΦN(·),
samples distributed according to the target distribution are obtained by

θT = Φ−1
T (ΦN (θN)) (A.1)

Note that the result of ΦN (θN ) is a random variable with a uniform distribution. The second

step, i.e. the transformation of a uniformly distributed random variable using the inverse

of the target CDF is usually referred to as inverse principle. In many cases, no analytical

expression of the inverse CDF is available. Although this is a common exclusion reason for

the efficient generation of random variables distributed according to φT , for the application of

Gauss standardization, performance losses due to less efficient inversion algorithms to obtain

Φ−1
T (·) (e.g. by look-up tables or gradient methods) are usually outweighed by the performance

gains when only working with standard Gaussian random variables. This is for example the

case when using Infinity Sampling (see section 2.6.2).

Figure A.1 gives an example of transforming a standard Gaussian random variable to a Weibull

distribution. The left upper plot shows the PDF of the standard Gaussian distribution φN (·)
from which a sample θN is generated. The lower left figure shows the CDF ΦN (·). The

mapping of θN using ΦN (θN ) leads to a uniformly distributed random number. In the next

step, this number is mapped using the inverse of the target CDF ΦT (·) (arrow to the right)
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which directly results in a random number that is distributed according to the target density

φT (·).
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Figure A.1: Exemplary transformation from a standard Gaussian random variable to a Weibull
distribution

A.1.2 Generation of Correlated Samples

Correlated samples can be obtained from uncorrelated samples. The most common description

of correlation is using a covariance matrix Σ which is defined by [Dev86, p. 564]:

Σij = cov(yi, yj) = E (yi − µi, yj − µj) (A.2)

The matrix Σ is symmetric and usually positive definite, which means that there exist a matrix

G so that

GGT = Σ (A.3)

For the given conditions, a matrix G can always be found that has a lower triangular form.

This can be done by Cholesky decomposition [HJ13, chapter 7.2]. If G is a lower triangular

matrix, a vector y of Gaussian distributed random variables with covariance matrix Σ and

mean µ can be obtained by

y = Gx + µ (A.4)
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where x is a vector of independent zero mean unit variance random numbers.

A.2 Inverse Gaussian Distribution

Φ (z) =
1√
2π

∫ z

−∞
e−t2/2dt (A.5)

φ(z; 0; 1)

1− α

α/2

z

α/2

−z1−α/2 z1−α/2

Figure A.2: 1− α/2 quantile for standard Gaussian distribution

Table A.1: 1− α and 1− α/2 quantiles for the standard Gaussian distribution

α z1−α/2 z1−α α z1−α/2 z1−α

0.0010 3.2905 3.0902 0.0600 1.8808 1.5548
0.0020 3.0902 2.8782 0.0700 1.8119 1.4758
0.0027 3.0000 2.7822 0.0800 1.7507 1.4051
0.0030 2.9677 2.7478 0.0900 1.6954 1.3408
0.0040 2.8782 2.6521 0.1000 1.6449 1.2816
0.0050 2.8070 2.5758 0.1100 1.5982 1.2265
0.0060 2.7478 2.5121 0.1200 1.5548 1.1750
0.0070 2.6968 2.4573 0.1300 1.5141 1.1264
0.0080 2.6521 2.4089 0.1400 1.4758 1.0803
0.0090 2.6121 2.3656 0.1500 1.4395 1.0364
0.0100 2.5758 2.3263 0.1600 1.4051 0.9945
0.0200 2.3263 2.0537 0.1700 1.3722 0.9542
0.0300 2.1701 1.8808 0.1800 1.3408 0.9154
0.0400 2.0537 1.7507 0.1900 1.3106 0.8779
0.0455 2.0000 1.6901 0.2000 1.2816 0.8416
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Appendix B

Simulation Environment

B.1 Model of Wake Interaction

This section introduces the method used for calculation of the wake interaction between the

aircraft. It is based on a project report written by the author of this thesis [Löb+12]. Only

main points are outlined here, while a detailed evaluation of the wake interaction model can

be found in the referred report.

The most important influence between the aircraft in close formation flight are by far the

aerodynamic interactions. The receiver flies close behind the tanker and is therefore directly

within the downwash of the tanker. This influences on the one hand the performance of the

receiver, since it will have to fly with a higher angle of attack, causing more drag and thus

requiring more thrust. Thrust is limited, especially at higher altitudes where the maximum

available power of the engines decreases. On the other hand, the non-uniform downwash causes

additional moments (i.e. roll, pitch and yaw moments) on the receiver, which complicates the

control task during the formation flight.

The provided simulation model does certainly not comprise aerodynamic effects due to forma-

tion flight. Thus, the aerodynamic influences have to be modeled. To do this, a preliminary

design tool for propeller-wing aerodynamics (by Hans-Jörg Steiner, [Ste10, Ste11]) is utilized

which is generally used for generation of aerodynamic data for conceptual aircraft designs.

This tool is based on lifting line method for calculation of steady state aerodynamics. Ac-

cording to the manual of the tool [Ste10, p. 21], it “is based on the method described by

Phillips and Snyder and constitutes an adaption of the classical lifting line theory applying a

three-dimensional vortex lifting law instead of the two-dimensional Kutta-Joukowski law used

in classical theory. This enables the method to be used for systems of lifting surfaces with

arbitrary camber, sweep and dihedral”.

For calculation, all lifting surfaces are divided into (an arbitrary count of) segments. The

tool first calculates the induced velocity at each segment. Afterwards the aerodynamic forces

and moments arising from the resulting air stream – i.e. the sum of free stream and induced

velocities – are calculated. These reactions are then totalized and converted to aerodynamic

coefficients according to the following definition:
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Force and moments are calculated relative to a user defined reference point R and with respect

to the aerodynamic A and body-fixed B frame for aerodynamic forces
(

~F R
A

)

A
and moments

(

~MR
A

)

B
respectively. q̄Ref , SRef , bref , and cref are dynamic pressure, reference wing area,

wing span, and chord length respectively.

To be able to calculate the aerodynamic interactions between two aircraft, first a single model

of the respective aircraft is implemented in the aforementioned aero-tool (see figure B.1). The

geometry of the aircraft is used as input. An average center of gravity is used as reference

point (i.e. 25% mean aerodynamic chord). The fuselage is modeled as a rotationally symmetric

tube using slender body theory for calculation. Since the calculated interactions shall be

implemented into the underlying simulation model, the aim is to match the aerodynamic

properties of the calculated data of a single aircraft to these of the simulation model. Thus,

the aerodynamic model used for calculation is validated against the aerodynamic data of the

aircraft simulation model. To achieve this, a lift coefficient CL versus angle of attack α curve

is extracted from the provided aircraft simulation model. The same curve is calculated for

the given configuration with the mentioned aero-tool. By modifying adjustable parameters

(e.g. incidence angle of wings and horizontal stabilizer), a good match between these two

curves can be achieved (see figure B.2). Being able to calculate the aerodynamics of a

single aircraft, a second aircraft is modeled behind the first aircraft to calculate the influence

of wake of the leader aircraft on the follower aircraft, see figure B.3. Since the resulting,

absolute aerodynamic coefficients would be too inaccurate for an implementation in the existing

simulation model, differences between the influenced coefficients and the ones resulting from

free flow are calculated. These differences can be added as increment to the already existing,
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Chapter B: Simulation Environment

Figure B.1: 3-side view of the aerodynamic model of the tanker

Figure B.2: CL versus α curve for a single aircraft

sophisticated aerodynamic model of the provided simulation model.
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The incremental derivatives are calculated dependent on the relative position between the
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B.1 Model of Wake Interaction

Figure B.3: Definition of relative position for determination of aerodynamic interference

aircraft and on the angle of attack of the forward aircraft. The relative position is defined as

the distance between the reference points of the involved aircraft, given in the aerodynamic

frame of the Tanker. The aerodynamic frame is used, since vortices approximately leave in

direction of the free flow. This gives the best approximation of downwash for close distances.

Eventually, figure B.4 shows the downwash velocity right behind the tanker aircraft.
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Chapter B: Simulation Environment

Figure B.4: Downwash velocity of the tanker

B.2 State Space Representation of the Dryden Turbu-

lence Model

According to MIL-HDBK 1797, the spectrum of the vertical wind velocity is given by [US 97]:

Φw (ω) = σ2
w

Lw

π

1 + 3 (Lwω/V )2

(

1 + (Lwω/V )2
)2 (B.3)

with σw, Lw, and V being the altitude- and turbulence-dependent root mean square turbulence

amplitude according to MIL-HDBK-1797, the scale length with Lw = 1750ft/2, and the

aircraft velocity respectively. By spectral factorization, the transfer function Gw is obtained,

which gives the vertical gust velocity for a white noise input:

Gw = σw

√

Lw

V

1 +
√

3Lw

V
s

(

1 + Lw

V
s
)2 (B.4)

Conversion to time domain gives the following equation:

(
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..
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V
.
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√

Lw

V
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√

3
(
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.
η (B.5)

with η being the white noise input. To eliminate the time derivative of η, a substitution is

made for .
w:

w∗ =
.

w −
√

3Lw

V
η →

.
w∗ =

..
w −

√

3Lw

V
.
η (B.6)

Equation (B.5) can be rearranged and plugged into (B.6):

..
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→ .
w∗ = −2V
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Finally, by substituting .
w by a function of .

w∗ and η, the state space model can be written as:
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The same derivation can be done for the wind pitch rate component, which has the same

structure as (B.3).

B.3 State Space Representation of a First Order Padé

Approximation

The transfer function for a first order Padé approximation is given by (B.10), where τ denotes

the time delay [Pad92].

GP ade =
1− τ

2
s

1 + τ
2
s

(B.10)

When v1 and v2 denote the original and delayed signal respectively, the transfer function can

be converted to time domain:

v2 +
τ

2
.
v2 = v1 −

τ

2
.
v1 (B.11)

The derivative of v1 is eliminated by substitution of v2 by v∗
2, which is defined by

v∗
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τ

4
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4

τ
v∗
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Equation (B.11) can be rearranged and plugged into (B.12):
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Finally, substituting v2 by a function of v∗
2 and v1, the state space model can be written as

.
v∗

2 = −2

τ
v∗

2 + v1

v2 =
4

τ
v∗

2 − v1

(B.14)
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