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To optimize plant architecture (e.g., photosynthetic active leaf area, leaf-stem ratio), plant

physiologists and plant breeders rely on destructively and tediously harvested biomass

samples. A fast and non-destructive method for obtaining information about different

plant organs could be vehicle-based spectral proximal sensing. In this 3-year study, the

mobile phenotyping platform PhenoTrac 4 was used to compare the measurements

from active and passive spectral proximal sensors of leaves, leaf sheaths, culms and

ears of 34 spring barley cultivars at anthesis and dough ripeness. Published vegetation

indices (VI), partial least square regression (PLSR) models and contour map analysis were

compared to assess these traits. Contour maps are matrices consisting of coefficients

of determination for all of the binary combinations of wavelengths and the biomass

parameters. The PLSR models of leaves, leaf sheaths and culms showed strong

correlations (R2 = 0.61–0.76). Published vegetation indices depicted similar coefficients

of determination; however, their RMSEs were higher. No wavelength combination could

be found by the contour map analysis to improve the results of the PLSR or published

VIs. The best results were obtained for the dry weight and N uptake of leaves and

culms. The PLSR models yielded satisfactory relationships for leaf sheaths at anthesis

(R2 = 0.69), whereas only a low performance for all of sensors and methods was

observed at dough ripeness. No relationships with ears were observed. Active and

passive sensors performed comparably, with slight advantages observed for the passive

spectrometer. The results indicate that tractor-based proximal sensing in combination

with optimized spectral indices or PLSR models may represent a suitable tool for plant

breeders to assess relevant morphological traits, allowing for a better understanding

of plant architecture, which is closely linked to the physiological performance. Further

validation of PLSRmodels is required in independent studies. Organ specific phenotyping

represents a first step toward breeding by design.

Keywords: deep phenotyping,morphological traits, passive sensor, phenomics, phenotyping, plant breeding, plant

organs, proximal sensing
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INTRODUCTION

Plant breeders, physiologists, and agronomists face a bottleneck
in phenotyping (Winterhalter et al., 2011; White et al., 2012) due
to a lack of efficient high-throughput field phenotyping methods.
The result is a missing linkage between the genotype and
phenotype (Furbank and Tester, 2011; Araus and Cairns, 2014).
Current practices in field phenotyping, such as visual scoring or
weighing biomass samples, are time consuming, labor intensive,
costly and biased due to the experience of the researcher (Erdle
et al., 2013; Kipp et al., 2014).

A fast and non-invasive method to obtain information about
the characteristics of cultivars could be spectral proximal sensing
(White et al., 2012; Erdle et al., 2013; Kipp et al., 2013). Vehicles
(e.g., tractors, buggies) are particularly advantageous when a high
number of genotypes and/or large plots of field trials need to
be measured in the field. A further benefit of vehicles is the
possibility of combining several sensors on a carrier vehicle to
take measurements simultaneously (Winterhalter et al., 2011;
Deery et al., 2014).

Studies have been performed for the spectral proximal
sensing of cereal plant traits, such as the estimation of aerial
biomass or the nitrogen status of spring and winter wheat
(Erdle et al., 2013; Li et al., 2013a; Øvergaard et al., 2013;
Xiu-liang et al., 2014; Bai et al., 2016), durum wheat (Ferrio
et al., 2005), winter barley and rye, corn (Haboudane et al.,
2004; Winterhalter et al., 2013) and spring barley (Yu et al.,
2012; Bendig et al., 2014, 2015; Xu et al., 2014; Elsayed et al.,
2015; Lausch et al., 2015; Tilly et al., 2015; Barmeier and
Schmidhalter, 2016; Rischbeck et al., 2016). Still data analysis
remains a major challenge. While many authors rely on various
vegetation indices (VI) (such as the: NDVI, REIP, PRI, WI,
SAVI, TCARI) (Behrens et al., 2006; Yu et al., 2012; Erdle et al.,
2013; Li et al., 2013a; Bendig et al., 2015; Elsayed et al., 2015;
Tilly et al., 2015), additional methods, such as “contour map
analysis” and “partial least squares regression” (PLSR), have been
highlighted as particularly interesting to optimize data analysis.
These methods were used by Hansen and Schjoerring (2003) to
detect the biomass and nitrogen status, by Li et al. (2013a) to
estimate the nitrogen content, and by Elsayed et al. (2015) and
Rischbeck et al. (2016) to predict drought stress and grain yield
in barley.

Previously, most authors have investigated biomass
parameters such as fresh and dry weight or aboveground
nitrogen uptake that was subjected to varying management
actions or reflecting combined growth stages. By contrast, in
plant breeding nurseries, uniform management is conducted,
thus lowering the variance due to agronomic treatments. Hence,
breeders require spectral sensors and algorithms that allow to
detect more subtle differences among cultivars independent
of agronomic management practices or dependent on specific
growth stages.

Acquaah (2012) has reported on the various points of
view of plant breeders regarding the importance of different
plant organs. In addition to grains, there are other important
plant organs, such as culms for the production of straw.
Furthermore, culms are the most important storage organs of

assimilates for translocation processes after anthesis (Bidinger
et al., 1977; Mirosavljevic et al., 2015). Unadapted or stressed
cultivars particularly rely on the dry matter and nitrogen
reserves of culms (Przulj and Momcilovic, 2001a,b). Knowledge
regarding the characteristics of the leaves of a cultivar or
variety is important for plant breeders when optimization of
the photosynthetic active area is intended (Haboudane et al.,
2004). Zhu et al. (2010) mentioned that an improvement of
the leaf area and architecture may avoid saturation effects of
individual leaves and support higher grain yields. Additionally,
leaves act as a sink for nutrients as well as a source of
proteins and are therefore important for grain yield formation
(Acquaah, 2012). The role of leaf sheaths as a vertical part of
leaves has not been widely reported in the literature. Schnyder
(1993) characterized leaf sheaths as long-term storage for
carbohydrates that are influenced by environmental conditions.
In this study were cultivars evaluated that accumulated up
to 20 kg N ha−1 in leaf sheaths at anthesis (Supplementary
Tables 1, 2).

The question is, how precisely can these plant organs be
detected by spectral sensors?

Active and passive spectrometers were evaluated in this study.
While passive spectrometers depend on sunlight as its source of
light, active sensors use independent light sources, such as LED or
Xenon lamps (Erdle et al., 2011). The advantage of active sensors
is that they can be applied during changing light conditions or at
night without any effect on their readings (Hatfield et al., 2008;
Kim et al., 2012; Kipp et al., 2014). However, the bidirectional
passive spectrometer used in this study is equipped with two
detectors, one measures global radiation as a reference signal,
and the second one measures the reflectance of the plant canopy
to avoid effects due to changing light conditions (Mistele and
Schmidhalter, 2010).

Technical comparisons among different sensor systems for the
prediction of specific plant traits have been performed multiple
times. Erdle et al. (2011), Winterhalter et al. (2013), Elsayed
et al. (2015) and Becker and Schmidhalter (2017) evaluated active
and passive sensors in winter wheat, corn, and spring barley,
respectively. The performance of active sensors under changing
environmental conditions was evaluated by Kim et al. (2012)
for the GreenSeeker and Kipp et al. (2014) for the GreenSeeker,
CropCircle, and AFS N-Sensor.

The potential of spectral proximal sensors to detect, in
addition to the total aerial biomass and nitrogen content, the
characteristics of different plant organs was first shown by Erdle
et al. (2013). In contrast to Erdle et al., who considered later
growth stages in winter wheat, this study focuses on spring barley
during anthesis and dough ripeness. These stages revealed to be
particularly interesting to predict yield and yield parameters in
our previous work. A set of 30–34 spring barley cultivars was
separated into leaves, leaf sheaths, culms and ears at anthesis and
dough ripeness. Sensor measurements were made by using two
commercially available and two custom built spectral sensors.
The aims of this study were to perform (i) a comparison of
different spectral proximal sensors and (ii) a comparison of
published vegetation indices, contour maps and PLSR to assess
leaves, leaf sheaths, culms and ears in spring barley.
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MATERIALS AND METHODS

Field Experiments
Field experiments were conducted at the Dürnast research station
of the Technical University of Munich in Germany (11◦41′60′′E,
48◦23′60′′N) from 2013 to 2015. The soil is characterized
as a mostly homogeneous cambisol of silty clay loam. The
annual precipitation is ∼800mm, and the average temperature
is 7.8◦C. This 3-year study encompassed 30–34 spring barley
(Hordeum vulgare L.) in a randomized block design with four
replicates (Table 1). The plots consisted of 12 rows, 10.9m in
length. The fungicide and fertilization treatments followed local
recommendations.

Biomass Sampling
Biomass sampling was performed at anthesis (ZS 65) and at
soft dough ripeness (ZS85) (Zadoks et al., 1974) by harvesting
30 plants from each plot randomly. The plants were separated
into ears, leaves, leaf sheaths (in 2014 and 2015) and culms.
The biomass samples were oven dried at 60◦C for 2 days to
achieve a constant moisture content and then weighed. The N
content was detected by mass spectrometry using an Isotope
Radio Mass Spectrometer with an ANCA SL 20–20 preparation
unit (Europe Scientific, Crewe, UK), and N uptake was calculated
by multiplying the plant dry weight by the total N content.

Spectral Measurements
The sensor system consisted of three active spectral sensors
and a passive hyperspectral sensor that were mounted aligned
in a row on a frame on the mobile phenotyping vehicle
PhenoTrac 4 from the Chair of Plant Nutrition at the Technical
University of Munich (Figure 1). This phenotyping platform
is a small and lightweight diesel-powered tractor (850 kg) with
a ground clearance of 1m and a speed of 6 km h−1. The
sensor carrier was positioned 1m above the plant canopy,
and measurements were taken under clear sky conditions at
noon. While collecting information in the field, the sensor
outputs were co-recorded along with GPS coordinates from
the TRIMBLE RTK-GPS (Trimble, Sunnyvale, CA, USA). The
passive hyperspectral bidirectional reflectance sensor contains
two ZeissMMS1 silicon diode array spectrometers with a spectral
detection range from 300 to 1,700 nm and has a bandwidth of
3.3 nm (Mistele and Schmidhalter, 2008), but was restricted in
this study to 1,000 nm. One spectrometer was linked to a diffuser
that detected solar radiation as a reference signal. The second
spectrometer measured the canopy reflectance with a field of
view (FOV) of 12◦ that was circular in shape, resulting in a
scanned area of 0.28 m2 and covering an area of 5.45 m2 along
the plot. The passive spectrometer was calibrated before each
measurement using a gray standard. The active spectral sensor
GreenSeeker RT100 (NTech Industries, Ukiah, CA, USA) uses
two LEDs as a light source and detects the reflection of both in
the VIS (656 nm,∼25 nmbandwidth) andNIR (774 nm,∼25 nm
band width) spectral regions. As a second active spectral sensor,
an active flash sensor (AFS) was used that was similar to the N-
Sensor ALS R© (YARA International, ASA) with a flashing xenon
light as a light source, producing a spectral range of 650–1,100 nm

TABLE 1 | Overview of spring barley cultivars grown in different years.

Cultivar Usage 2013 2014 2015

Aspen Malting X X X

Barke Malting X X X

Baronesse Malting X X X

Br8993a3 – X

Braemar Malting X X X

Calcule Fodder X X X

Carina Malting X X X

Djamila Fodder X X X

Eunova Fodder X X X

Grace Malting X X X

Hora* Human food X

IPZ 24727 Malting X X X

Irina Malting X X X

Lawina* Human food X

Mackay [AUS] Malting X X X

Marthe Malting X X X

Melius Malting X X X

Paradiesgerste* Human food X

Pirona* Human food X X

Power Malting X X X

Quench Malting X X X

Salome Malting X X X

Scarlett Malting X X X

Shakira Malting X X X

Sissy Malting X X X

Solist Malting X X X

Streif Fodder X X X

Trumpf/Triumph Malting X X X

Union Malting X X X

Ursa Malting X X X

UTA Malting X

Vespa Fodder X X X

Volla Malting X X X

Wiebke Malting X X X

*Hull-less barley.

with 10 flashes per second. In this experiment, filters similar to
those of the YARA ALS R© system were chosen: 730, 760, 900, and
970 nm (Erdle et al., 2011). The third active spectral sensor was
a CropCircle ACS-470 R© (Holland Scientific, Inc., Lincoln, NE),
which emits white light (light source: ∼400 to 800 nm), with a
selection of filters for wavelengths of 670, 730, and 760 nm. The
CropCircle was only used in 2013 and 2015.With reference to the
manufacturers’ information, the active sensors were calibrated
before delivery and no additional calibration was required.

Table 2 shows the vegetation indices selected for this
experiment.

Statistical Analysis
The main effects and interactions between cultivars and years
were tested using a two-way analysis of variance (ANOVA) by
using the model: yija = yi + (yr)ia + gj + (gy)jj + εija.
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FIGURE 1 | Phenotyping platform PhenoTrac 4 of the Chair of Plant Nutrition from the Technical University of Munich.

TABLE 2 | Selected vegetation indices of the four sensor systems used.

Device Vegetation index References

GreenSeeker R774/R656

NDVI Rouse et al., 1974

CropCircle R730/R670

R760/R730 Mistele and Schmidhalter, 2010

R760/R670 Mistele and Schmidhalter, 2008

NDVI Rouse et al., 1974

AFS R760/R730 Mistele and Schmidhalter, 2010

R900/R970 Peñuelas et al., 1993

Passive spectrometer R780/R550 Mistele and Schmidhalter, 2008

R780/R670 Pearson et al., 1972

R780/R700 Guyot et al., 1988

R760/R670 Erdle et al., 2011

R760/R730 Mistele and Schmidhalter, 2010

R780/R740 Mistele and Schmidhalter, 2010

R900/R970 Peñuelas et al., 1993

REIP Guyot et al., 1988

NDVI Rouse et al., 1974

Where yija is the observation in the year i, of the genotypes
j in the replicate a, and yi the effect of the year i, and (yr)ia the
interaction between the year i and the replicate a, and gj the effect
of genotype j, and the interaction between the i-th year and the j-
th genotype. We consider all factors as fixed. In the ANOVA, the
effect of the year was tested against the year∗replication effect,
while the genotype and the genotype∗year interaction was tested
against the overall residual (McIntosh, 1983).

Linear regression between the data obtained from the sensors
and destructive measurements were calculated by using R version
3.1.2. (R Core Team, 2016).

In order to find new wavelength combinations for an
optimized vegetation index the R package “lattice” (http://
lattice.r-forge.r-project.org/) (R version 3.0.2, R Core Team,
2016) was used to calculate contour maps. Contour maps are
matrices consisting of coefficients of determination for all binary
combinations of wavelengths and the biomass parameters.

PLSR was calculated to find improved relationships between
canopy reflectance and the biomass parameters by using The
Unscrambler R© X 10.3 (Camo Software AS, Oslo, Norway).
PLSR is a multivariate statistical method used to find “latent”
structures in the wavelength spectra (X) that best predict the
measured parameter (Y). This method is advantageous when
dependent (response) variables need to be predicted from
large datasets of predictor variables. The dataset is reduced
to a few “principal components” (PC) or “factors” that are
used for prospective predictions of the response variables. A
detailed description of PLSR can be found in Esbensen et al.
(2002).

In this study, PLSR was used to model the correlation
with individual replicate means (n = 34 × 4) as well as
well as with genotypic means (n = 34) between the full
canopy reflectance spectrum (predictor variables) from the
passive spectrometer in a waveband region between 400 and
1000 nm and the biomass parameters (response variables). We
highlight in this work particularly the performance of non-
destructive sensing to detect the plotwise differentiation of
specific plant organs. Averaging genotypic differences will be
particularly useful with an increased panel of genotypes being
required for an enhanced PLS analysis, but is presented as
well.

All of the spectral data used to calculate the PLSR models
were corrected for light scattering using Standard Normal Variate
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Transformation (SNV). The dataset was randomly separated into
subsets, with 2/3 of the observations for calibration and 1/3 for
validation of the models combining the three-year data. The
optimum number of PC selected in the PLS analyses were based
on the first clear V-minimum or a break from monotonically
decreasing variance, i.e., where the prediction error is minimized.

To assess the quality of the PLSR models, the vegetation
indices and the optimized vegetation indices obtained from the
contour maps, root mean square errors (RMSE) and the Pearson
coefficients of determination (R2) were compared. Finding
models with a combination of a low RMSE and a high R2 was
the target objective.

To further test the predictive performance of the PLSR
models an independent data set of 13 wheat cultivars was used
which were grown at 160 and 220 kg N ha−1 in 2015 and
at 100, 160, and 220 kg N ha−1 in 2016, encompassing the
same organ assessments. This data set was chosen, since no
independent data set providing this information from barley
cultivars was available. The barley PLSR models were therefore
used to predict plant biomass, leaf, and culm biomass as well
as the organ-specific nitrogen uptake of wheat cultivars at
anthesis. The model performance was tested for individual years,
since their information differed statistically. This allows for
the classification of the best performing cultivars, independent
of the year, since only a relative comparison is strived
for.

RESULTS

Agronomic Parameters and Weather
Conditions
The year 2014 was the most favorable for spring barley
due to an average temperature of ∼18.3◦C during anthesis
and evenly distributed precipitation. By contrast, unfavorable
weather conditions between germination and anthesis led to a dry
weight that was reduced by ∼42% in 2013. The number of ears
per square meter was comparable in all 3 years, with ∼635 ears
sqm−1. With regard to the total dry weight and total N uptake,
significantly lower values were observed in cultivars processed
for human nutrition in all years. An exception to this result
was the cultivar Pirona, which accumulated the highest total dry
weight of all cultivars while having the lowest ear dry weight
in 2014.

Correlations between Traits
Correlations between plant organs and the final grain yield are
given in Table 3. The highest coefficients of determination were
found for the number of “ears sqm−1” in all 3 years. While
the individual plant organs showed low or medium correlation
to grain yield, the total plant dry weight indicated consistently
higher coefficients of determination up to R2 = 0.62. The lowest
values were obtained for leaf sheaths.

A weak significant relationship (R2 = 0.27) was observed
between leaf dry weight and culm dry weight at anthesis,
increasing to R2 = 0.75 at dough ripeness. No relationships
were observed between leaf dry weight and dry weights of
leaf sheaths and ears either at both growth stages or at dough

ripeness, respectively. Culm dry weight was not related to
ear dry weight and only weakly related to leaf sheath dry
weight.

No relationship was observed between leaf N uptake and the N
uptake of leaf sheaths and ears, whereas leaf N uptake was related
to the culm N uptake with R2 = 0.42 and 0.67 at anthesis and
dough ripeness, respectively. The N uptake of ears was related to
the N uptake of leaf sheaths and culms with R2 = 0.38 and 0.51,
respectively, at dough ripeness.

Anova of the Organ Specific Dry Weights
and N Uptake, and Sensor Measurements
at Anthesis and Dough Ripeness
Cultivars differed significantly in the organ-specific dry weights
and N-uptake of leaves, culms, and leaf sheaths as well as the total
biomass dry weight at anthesis (Table 4).

Significant differences among cultivars were also observed at
dough ripeness for the dry weights of ears, leaves and culms,
except for the total plant dry weight. N uptake of leaves and culms
differed as well, whereas ear N uptake and total N uptake did not
differ at dough ripeness (Table 5).

All sensors differentiated cultivars at anthesis (Table 4).
Spectral differentiation at dough ripeness was enabled by the ALS
sensor, the CropCircle and five of the tested indices from the
hyperspectral sensor (Table 5), whereas no differentiation was
obtained for the GreenSeeker.

Detection of the Dry Weight and N Uptake
of Leaves
An overview of the descriptive statistics of the dry weight and
N uptake of leaves is given in the Supplementary Table 1. Low
dry weight and N uptake were observed due to unfavorable
weather conditions in 2013. The highest leaf biomass values were
observed for Pirona and the lowest for Hora. Both cultivars have
hull-less grains and are processed for human nutrition; however,
Pirona was the tallest cultivar, whereas Hora was one of the
smallest. A comparable tendency was observed for culms.

Table 6 shows the results of the plotwise PLSR, and Table 7

shows the linear regressions of the vegetation indices obtained
for each sensor. Additional information depicting the genotype-
wise differentiation by PLSR is shown in Supplementary
Tables 5, 6.

Fair relationships were found for the leaf dry weight,
whereas for the leaf N uptake, slightly better results were
found. Compared to the PLSR, the vegetation indices showed
much higher RMSEs together with lower coefficients of
determination. For the detection of the dry weight and
N uptake of leaves, the R780/R670 vegetation index was
found to be most promising, no further improvement
was obtained from the Contour Map analysis evaluating
all binary combinations of wavelengths (data not shown).
Slight advantages for the passive spectrometer for detecting
leaf dry weight at anthesis were observed; however, the
CropCircle performed comparably well for measuring leaf N
uptake.
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TABLE 3 | Coefficients of determination (R2) between plant organs and grain yield (p ≤ 0.01) with individual replicate means (n 34 × 4).

Year 2013 2014 2015

Ears/m2 0.65** 0.62** 0.70**

Anthesis DW leaves kg/ha 0.22** 0.21** 0.51**

DW leaf sheaths kg/ha 0.09 0.27**

DW culms kg/ha 0.34** 0.43** 0.55**

DW total 0.34** 0.42** 0.58**

DW leaves + leaf sheaths kg/ha 0.3** 0.52**

DW leaves + culms 0.34** 0.40** 0.57**

DW leaf sheaths + culms kg/ha 0.45** 0.56**

N uptake leaves kg/ha 0.17 0.32** 0.54**

N uptake leaf sheaths kg/ha 0.13** 0.29**

N uptake culms kg/ha 0.31** 0.45** 0.55**

N uptake total kg/ha 0.33** 0.45** 0.61**

N uptake leaves + leaf sheaths kg/ha 0.38** 0.58**

N uptake leaves + culms kg/ha 0.33** 0.43** 0.61**

N uptake leaf sheaths + culms kg/ha 0.46** 0.56**

Dough ripeness DW ears kg/ha 0.54** 0.42** 0.56**

DW leaves kg/ha 0.31** 0.25** 0.54**

DW leaf sheaths kg/ha 0.21** 0.15**

DW culms kg/ha 0.25** 0.19** 0.4**

DW total 0.51** 0.43** 0.62**

DW ears + leaves kg/ha 0.54** 0.47** 0.61**

DW ears + leaf sheaths kg/ha 0.43** 0.56**

DW ears + culms kg/ha 0.51** 0.42** 0.6**

DW ears + leaves + leaf sheaths kg/ha 0.47** 0.6**

DW ears + leaves + culms kg/ha 0.42** 0.62**

DW ears + leaf sheaths + culms kg/ha 0.43** 0.61**

DW leaves + leaf sheaths kg/ha 0.33** 0.41**

DW leaves + culms kg/ha 0.28** 0.21** 0.44**

DW leaves + leaf sheaths + culms kg/ha 0.24** 0.49**

DW leaf sheaths + culms kg/ha 0.22** 0.46**

N uptake ears kg/ha 0.45** 0.44** 0.36**

N uptake leaves kg/ha 0.16 0.27** 0.49**

N uptake leaf sheaths kg/ha 0.29** 0.28**

N uptake culms kg/ha 0.24** 0.07 0.25**

N uptake total kg/ha 0.49** 0.39** 0.52**

N uptake ears + leaves kg/ha 0.45** 0.48** 0.46**

N uptake ears + leaf sheaths kg/ha 0.46** 0.39**

N uptake ears + culms kg/ha 0.50** 0.07** 0.41**

N uptake ears + leaves + leaf sheaths kg/ha 0.49** 0.48**

N uptake ears + leaves + culms kg/ha 0.38** 0.49**

N uptake ears + leaf sheaths + culms kg/ha 0.38** 0.44**

N uptake leaves + leaf sheaths kg/ha 0.32** 0.54**

N uptake leaves + culms kg/ha 0.27** 0.15 0.47**

N uptake leaves + leaf sheaths + culms kg/ha 0.18 0.56**

N uptake leaf sheaths + culms kg/ha 0.12 0.47**

Units of organs are expressed as kg ha−1.

**Denotes significance at the 0.01 level.

Detection of the Dry Weight and N Uptake
of Leaf Sheaths
The descriptive statistics of the leaf sheaths can be found in the
Supplementary Table 2. In 2015, an∼35% higher dry weight and

66% higher N uptake at anthesis was found compared to that in

2014. The cultivars Shakira and Pirona showed the lowest dry

weight and N uptake in both years, and IPZ 24727 showed the

highest values.
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TABLE 4 | F-values of the ANOVA of the organ specific dry weight and N uptake,

and sensor measurements at anthesis (p ≤ 0.01).

F-values Traits Cultivars Year CxY

df 33 2 55

DWleaves 4.08** 16.3** 1.87**

DWculms 2.6** 5.08** 1.47*

DWtotal 2.41** 8.99** 1.34

NupLeaves 2.53** 30.99** 1.58*

NupCulms 1.94** 25.45** 1.30

NupTotal 1.71* 2.23** 1.27

GS774_656 2.35** 143.46** 1.49*

GSNDVI 2.23** 165.3** 1.01

ALS760_730 2.67** 195.25** 1.22

ALS900_970 3.05** 150.72** 1.7**

PS780_550 2.11** 41.04** 0.97

PS780_670 1.59* 174.32** 0.88

PS780_700 1.98** 78.46** 0.87

PS760_730 2.15** 35.36** 0.96

PS780_740 2.11** 3.5** 1.15

PS900_970 2.37** 20.64** 1.38*

PSREIP 2.47** 15.67** 1.24

PSNDVI 2.65** 117.58** 1.22

df 33 1 27

CC730_670 1.63* 2.38** 0.91

CC760_730 2.28** 16.93** 0.84

CC760_670 1.58* 37.53** 0.82

CCNDVI 2.2** 7.78** 0.8

df 31 1 28

DWsheaths 2.26** 16.64** 1.17

NupSheaths 2.12** 42.42** 1.3

*p ≤ 0.05 and **p ≤ 0.01.

The results of the plotwise PLSR are presented in Table 8

and the results for the genotype-wise differentiation by PLSR are
contained in Supplementary Tables 5, 6. Good relationships were
found for the N uptake of leaf sheaths; however, the dry weight
of this plant organ was barely detectable by sensing at dough
ripeness.

Linear regressions between the leaf sheaths and vegetation
indices are shown in Table 9. For the vegetation indices, only
weak relationships with high RMSEs were observed. The highest
coefficient of determination (R2 = 0.38) was delivered by the AFS
sensor for N uptake at anthesis, with no further improvement
delivered by the the Contour Map analysis (data not shown).

Detection of the Dry Weight and N Uptake
of Culms
The descriptive statistics of the culms are given in Supplementary
Table 3. The culm N uptake in 2013 and 2015 was on a
comparable level; however, in 2014, 38% less nitrogen was
accumulated at anthesis. In contrast to 2013 and 2015, in 2014,
the culms reached the highest dry weight at dough ripeness.
In the other years, decreasing dry weight in later growth
stages was observed. For the plotwise PLSR (Table 10), good
relationships with R2 = 0.53–0.66 were found for both the

TABLE 5 | F-values of the ANOVA of the organ specific dry weight and N uptake,

and sensor measurements at dough ripeness (p ≤ 0.01).

F-values Traits Cultivars Year CxY

df 34 2 54

DWears 2.66** 11.44** 1.58*

DWleaves 2.67** 6.12** 1.9**

DWculms 2.97** 24.65** 1.9**

DWtotal 1.37 1.7** 1.45*

NupEars 1.25 9.35** 1.19

NupLeaves 2.27** 10.31** 2.08**

NupCulms 3.6** 28.7** 2.18**

NupTotal 1.07 0.52** 1.22

GS774_656 1.55* 36.42** 2.12**

GSNDVI 1.43 70.86** 1.79**

ALS760_730 2.3** 64.42** 1.64**

ALS900_970 1.75** 289.79** 2.05**

PS780_550 2.32** 67.09** 1.38*

PS780_670 1.19 54.59** 1.25

PS780_700 1.52* 69.55** 1.23

PS760_730 1.63* 53.23** 1.31

PS780_740 2.04** 7.62** 1.77**

PS900_970 2.17** 91.67** 1.35

PSREIP 2.56** 70.38** 1.95**

PSNDVI 1.67* 120.17** 1.2

df 34 1 26

CC730_670 2.05** 16.46** 1.89**

CC760_730 2.1** 46.25** 0.87

CC760_670 1.64* 67.45** 1.39

CCNDVI 1.86** 41.97** 1.11

df 31 1 28

DWsheaths 1.17 2.48** 0.84

NupSheaths 1.4 3.52** 1.11

*p ≤ 0.05 and **p ≤ 0.01.

dry weight and N uptake of culms. However, the N uptake at
anthesis showed a high number of PC and a marked difference
between the calibration and validation results. The genotype-wise
differentiation delivered comparable results.

The results of the linear regressions are shown in Table 11.
The passive spectrometer showed an improved performance
with regard to the R900/R970 and R780/R670 indices, whereas
no further improvement was obtained from the Contour Map
analysis. The coefficients of determination of the VIs and
PLSR were comparable; however, the RMSEs for the VIs were
almost four times higher. The best performance of the passive
spectrometer was obtained at dough ripeness, whereas the
CropCircle showed enhanced performance at anthesis.

Detection of the Dry Weight and N Uptake
of Ears
The lowest dry weights and N uptake were observed in
2014 (Supplementary Table 4). The results of the plotwise
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TABLE 6 | Results of the plotwise PLSR analysis of the dry weight and N uptake of leaves used for calibration and validation, the genotype-wise differentiation is

contained in the Supplementary Tables 5, 6.

PC Calibration Validation

Slope Offset RMSE R2 Slope Offset RMSE R2

Anthesis DW leaves (kg/ha) 4 0.62 383.9 160.36 0.62 0.60 373.6 181.29 0.65

N uptake leaves (kg/ha) 4 0.74 5.61 5.20 0.74 0.76 4.71 5.23 0.76

Dough ripeness DW leaves (kg/ha) 4 0.56 384 168.04 0.56 0.52 426 181.97 0.52

N uptake leaves (kg/ha) 5 0.66 3.8 2.85 0.66 0.58 4.4 3.52 0.62

PLSR analysis are shown in Table 12. Comparable results were
provided by the genotype-wise differentiation as shown in the
Supplementary Tables 5, 6. Medium correlations between the
biomass parameters and wavelengths were found. Additionally,
a high number of PC was found to be optimal.

Considering the linear regressions of the vegetation indices
shown in Table 13, no correlations were observed. The RMSEs
were as high as the mean values observed for the biomass
parameters. The Contour Map analysis did not lead to improved
results (data not shown).

Detection of the Number of Ears Per
Square Meter
Low coefficients of determination were found by the plotwise
PLSR analysis (Table 14). The lowest number of ears per area was
consistently found for the hull-less barley cultivars with 200–300
ears per square meter in 2013 and 2015. Furthermore, the linear
regressions between the ears per square meter and the vegetation
indices indicated much lower relationships (Table 15) than the
PLSR while showing very large RMSEs.

Predictive Performance of Organ-Specific
Barley PLSR Models
The barley PLSR models were used to predict the organ-specific
assessment of an independent set of 13 wheat cultivars grown
in the years 2015 and 2016. Dry weights of wheat leaves were
predicted with Pearson correlation coefficients (R2-values) of
0.73 and 0.52 in 2015 and 2016, respectively, total plant dry
weight withR2-values of 0.45 and 0.52, and culm dry weights with
R2-values of 0.23 and 0.32 (Lukas Prey, personal communication
2017). N uptake of the total biomass was predicted with R2-values
of 0.70 and 0.57 in 2015 and 2016, respectively, N uptake of leaves
with R2 = 0.64 and 0.70, and N uptake of culms with R2 = 0.70
and 0.44, for 2015 and 2016, respectively.

DISCUSSION

The performance of three active spectrometers and one passive
spectrometer was evaluated to detect differences in the measured
dry weight and nitrogen uptake of leaves, leaf sheaths, culms, and
ears of a set of 30–34 spring barley cultivars at anthesis and dough
ripeness. Furthermore, contour maps and PLSR were compared
with various published vegetation indices.

Published Vegetation Indices
Considering the performance of the published VIs, the index
R780/R670 was found to be most closely related to the biomass
parameters of leaves and culms. Saturation effects of the NDVI
were observed, especially for the passive spectrometer and the
GreenSeeker at anthesis. The same problem was reported by
Haboudane et al. (2004). In general, moderate coefficients of
determination were observed between the published VIs and
the dry weight and nitrogen uptake of culms and leaves. Other
studies on spring barley (e.g., Behrens et al., 2006; Bendig et al.,
2015; Elsayed et al., 2015; Tilly et al., 2015) presented better or at
least similar results; however, those previous findings were based
on different fertilizer levels or varying levels of drought and heat
stress.

Although Erdle et al. (2013) reported that the R760/R730
index is suitable for the detection of the dry weight of ears in
winter wheat, neither a published VI nor the PLSR was able to
provide satisfactory relationships for spring barley. The Nadir
positioning of the sensors could be a possible reason. Since the
ears were still in a vertical posture at dough ripeness, the sensors
may not have been able to detect these organs.

Contour Map Analysis
The contour map analysis, testing all possible dual indices, did
not provide improved results compared to the selected indices.
While Li et al. (2013a,b), Elsayed et al. (2015), Rischbeck et al.
(2016) and Yu et al. (2012) indicated improvements of contour
map based vegetation indices compared to published VIs, no
improved wavelength combination was found in this study.
Although Elsayed et al. (2015) and Rischbeck et al. (2016) used
a similar set of cultivars and the same sensors, their results differ
from those found in this study. This discrepancy might be due
to the increased variance in their studies induced by different
nitrogen fertilizer levels or drought stress levels.

PLSR
In general, the plotwise and the genotype-wise PLSR analysis
of the dry weight and N uptake of the different organs (ears,
leaves, culms) as well as of the total biomass delivered comparable
results at anthesis (Tables 6, 8, 10, 12, 14 and Supplementary
Tables 5, 6, respectively). Partly the genotype-wise calibration
models delivered even slightly improved relationships compared
to the plotwise calibration models, whereas this was less manifest
for the validation models. No satisfactory results were achieved
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TABLE 7 | Results of linear regression of the dry weight and N uptake of leaves showing the tested vegetation indices from three active and one passive spectral sensor

at anthesis and dough ripeness.

Leaves (kg/ha) CropCircle GreenSeeker AFS

R730/R670 R760/R730 R760/R670 NDVI R774/R656 NDVI R760/R730 R900/R970

Dry weight Anthesis Slope 0.0007 0.0005 0.0024 0.0003 0.0023 0.0003 0.0003 0.0000

Offset 0.81 1.22 −0.26 0.11 0.93 0.22 1.20 0.97

RMSE 1,125.63 1,125.24 1,126.65 1,126.30 1,049.48 1,050.16 1,049.23 1,049.45

R2 0.39** 0.26** 0.26** 0.36** 0.49** 0.44** 0.44** 0.14**

Dough ripeness Slope 0.0008 0.0003 0.0021 0.0003 0.0015 0.0002 0.0003 0.0000

Offset 0.74 1.26 −0.01 0.08 1.40 0.22 1.21 1.00

RMSE 907.84 907.34 908.55 908.46 914.19 915.33 914.37 914.58

R2 0.19** 0.08 0.10 0.13* 0.19** 0.16* 0.31** 0.01

N uptake Anthesis Slope 0.0175 0.0188 0.1002 0.0095 0.0762 0.0090 0.0097 0.0026

Offset 1.07 1.32 0.07 0.21 1.56 0.28 1.32 0.96

RMSE 27.22 26.99 28.06 28.05 22.78 24.17 23.23 23.56

R2 0.47** 0.66** 0.76** 0.6** 0.63** 0.63** 0.43** 0.50**

Dough ripeness Slope 0.0563 0.0362 0.2065 0.0266 0.1027 0.0162 0.0145 0.0034

Offset 0.78 1.18 −0.39 0.06 1.48 0.22 1.27 0.98

RMSE 27.22 26.99 28.06 28.05 22.78 24.17 23.23 23.56

R2 0.59** 0.52** 0.54** 0.56** 0.45** 0.43** 0.48** 0.14*

Leaves (kg/ha) Passive spectrometer

R780/R550 R780/R670 R780/R700 R760/R730 R780/R740 R900/R970 REIP NDVI

Dry weight Anthesis Slope 0.0028 0.0186 0.0029 0.0002 0.0001 0.0001 0.0037 0.0002

Offset 2.51 −5.75 1.04 1.13 1.13 1.12 715.69 0.57

RMSE 1,047.97 1,055.61 1,049.37 1,049.30 1,049.30 1,049.31 420.36 1,049.83

R2 0.52** 0.56** 0.55** 0.54** 0.28** 0.47** 0.4** 0.49**

Dough ripeness Slope 0.0025 0.0113 0.0023 0.0002 0.0001 0.0002 0.0045 0.0003

Offset 2.30 −1.68 1.09 1.10 1.12 1.06 713.79 0.42

RMSE 913.32 917.05 914.48 914.49 914.46 914.52 305.32 915.13

R2 0.33** 0.4** 0.33** 0.32** 0.25** 0.37** 0.17* 0.29**

N uptake Anthesis Slope 0.0844 0.5583 0.0927 0.0077 0.0013 0.0027 0.1131 0.0076

Offset 3.49 0.65 1.88 1.20 1.16 1.15 716.90 0.64

RMSE 20.90 16.15 22.38 23.34 23.38 23.39 776.29 23.85

R2 0.53** 0.59** 0.67** 0.63** 0.16* 0.46** 0.44** 0.6**

Dough ripeness Slope 0.1467 0.6337 0.1390 0.0151 0.0036 0.0093 0.3164 0.0191

Offset 2.76 0.88 1.50 1.13 1.13 1.10 714.06 0.48

RMSE 20.90 16.15 22.38 23.34 23.38 23.39 776.29 23.85

R2 0.54** 0.6** 0.58** 0.58** 0.4** 0.51** 0.4** 0.51**

Significant R2-values are indicated at *p ≤ 0.05 and **p ≤ 0.01.

for the genotype-wise calibration and validation models for the
N-uptake of leaf sheaths.

At dough ripeness quite comparable results were observed for
the organ-specific differentiation of the plot-wise and genotype-
wise PLSR analysis for the calibration models, whereas the
plotwise validation models were less good. No satisfactory results
were obtained for the N uptake of leaf sheaths.

Without exception, PLSR analysis outperformed the simple
vegetation indices as well as the indices derived from contour
map analysis. Markedly reduced RMSEs and higher coefficients

of determination were achieved by PLSR, in agreement with
the results from other studies on winter wheat (Hansen and
Schjoerring, 2003; Li et al., 2013a), spring wheat (Øvergaard
et al., 2013), durum wheat (Ferrio et al., 2005) and spring barley
(Elsayed et al., 2015). Øvergaard et al. (2013) reported that at least
2 years of data are necessary to obtain stable PLSR models. The
results from this study are in line with this recommendation since
the PLSR models showed increased precision when further data
were added (results not shown). The best results were obtained
for leaves, culms and leaf sheaths at anthesis. However, for culms
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TABLE 8 | Results of the plotwise PLSR analysis of the dry weight and N uptake of leaf sheaths used for calibration and validation, the genotype-wise differentiation is

contained in the Tables 5, 6.

PC Cal Val

Slope Offset RMSE R2 Slope Offset RMSE R2

Anthesis DW leaf sheaths (kg/ha) 2 0.46 298.6 144.59 0.46 0.40 321.4 166.38 0.42

N uptake leaf sheaths (kg/ha) 4 0.76 1.97 2.32 0.76 0.79 1.30 2.64 0.69

Dough ripeness DW leaf sheaths (kg/ha) 3 0.25 562 182.71 0.25 0.20 617 218.22 0.21

N uptake leaf sheaths (kg/ha) 5 0.49 4.3 2.42 0.49 0.54 4.0 2.16 0.50

at anthesis and ears, a marked difference between the calibration
and validation models was obtained. A large number of principle
components points to a rather unstable model.

At anthesis the main spectral wavelengths, disregarding
the signs of the correlation coefficients, contributing to the
assessment of the dry weights of culms and the total dry weight
were found in the waveband regions of 930–999 and 529–558 nm,
whereas the leaf dry weight was more specifically related to
wavebands at 996–999, 948, and 961, 890–929, and 725–738 nm
(Supplementary Table 7). N uptake of culms and leaves was most
closely related to spectral information found between 526 and
591 nm, with the N uptake of culms being further related to the
spectral regions at 930–998 nm and at 865–890 nm.

At dough ripeness partly comparable regions were identified
being related to the dry weights of culms and the total plant,
however being more specifically located at 996–999 nm for the
culms and at 935–948 nm for the total dry weight (Supplementary
Table 8). In accordance with anthesis spectral information at
529–568 nm was related to the dry weights of culms and the
total plant at dough ripeness and further useful information was
found at 653–686 nm and at 715–725 nm. A close agreement
regarding the spectral regions related to the leaf dry weight was
evident at dough ripeness compared to anthesis. N uptake of
culms was most closely related to information found at 699–
722 nm, but was also related to information found at 530–568
and 660–683 nm. N uptake of leaves was most closely related
to information found at 702–722 nm as well to 401–509 nm.
N uptake of the total aboveground biomass was best related
to information found in the 894–929 nm region, as well to
wavebands at 932, 958, 974 nm, and additionally to information
found in the spectral regions between 575–598 nm and at
532–545 nm. Ear dry weights were best reflected by spectral
information found at 709–732 nm and at 929–948 nm as well as
at 999 nm, whereas the N uptake of the ears was best related
to the spectral information found at 663–686, 706–732, and
929–948 nm.

Comparison of Sensors
Several comparisons between spectral proximal sensors have
been previously performed. Erdle et al. (2011), Winterhalter et al.
(2013), and Elsayed et al. (2015) found a slight advantage of the
passive spectrometer, in particular, when nitrogen parameters
were detected. These findings were confirmed by this study.
The R780/R670 index and NDVI were revealed to be more

precise when measured with the passive spectrometer. The
performance of the active sensors depends on their light source,
which is weaker than sunlight (Winterhalter et al., 2013).
Furthermore, their performance depends on the target distance.
The emitted light follows the inverse square law. A doubled
measuring distance leads to a four times lower light intensity
(Kipp et al., 2014). Since the sensor carrier was positioned 1m
above the plant canopy (in line with the recommendations of
the manufacturers), differences in the canopy density, plant
architecture and penetration depth may contribute to the slightly
decreased performance of the active sensors (Winterhalter et al.,
2013; Kipp et al., 2014).

Biomass Parameters
The year 2013 was characterized by remarkably low heritability
of all plant organs (h2 = 0.18–0.49) due to severe weather
conditions and a flood in certain areas of the field trial. This also
led to an inconsistent dry weight and N uptake of the cultivars.
The highest and most consistent heritability was observed for
leaves (h2 = 0.75–0.85), whereas culms showed a low heritability
(h2 = 0.31–0.38), particularly at dough ripeness.

The dry weight and N uptake of leaves are important factors
that plant breeders use to assess the photosynthetic potential
of a plant (Zhu et al., 2010; Acquaah, 2012). In this study, the
dry weight of leaves amounted to 25% of the total aboveground
biomass and accumulated up to 30% of the total N uptake at
anthesis.

The dry weight of culms was ∼75% of the total aboveground
biomass and stored ∼70 kg N ha−1 at anthesis. At dough
ripeness, only 16 kg N ha−1 remained within the culm biomass.
These findings are in line with the studies of Bidinger et al. (1977)
and Mirosavljevic et al. (2015), which described the culm as the
most important storage organ.

The leaf sheaths showed inconsistent behavior. While culms
and leaves translocated dry weight and nitrogen during grain
filling, leaf sheaths accumulated dry weight and nitrogen. The
assumption of Schnyder (1993), who identified wheat leaf sheaths
as a type of storage organ, were supported in this study for barley.
Furthermore, the spectral sensors showed limitations considering
the detection of leaf sheaths, especially at dough ripeness. In this
growth stage, only a weak relationship (R2 = 0.27) between the
total aboveground biomass and leaf sheaths was found, and no
relationships were observed between the biomass parameters of
leaf sheaths and leaves or culms.
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TABLE 9 | Results of linear regression analysis of the dry weight and N uptake of leaf sheaths, showing the tested vegetation indices from three active and one passive

spectral sensor at anthesis and dough ripeness.

Leaf sheaths (kg/ha) CropCircle GreenSeeker AFS

R730/R670 R760/R730 R760/R670 NDVI R774/R656 NDVI R760/R730 R900/R970

Dry weight Anthesis Slope 0.0006 0.0005 0.0018 0.0003 −0.0013 −0.0001 −0.0003 0.0000

Offset 1.04 1.48 1.41 0.25 4.45 0.61 1.75 1.02

RMSE 576.57 576.16 576.22 577.29 424.44 427.04 426.27 426.76

R2 0.17* 0.25** 0.20** 0.22** 0.11 0.11 0.16* 0.23**

Dough ripeness Slope 0.0382 0.0108 0.0812 0.0125 0.0941 0.0121 −0.0033 0.0071

Offset 1.28 1.64 2.12 0.35 2.48 0.41 1.50 0.99

RMSE 547.36 547.06 546.68 548.10 474.97 476.42 475.65 476.01

R2 0.16* 0.07 0.14* 0.16* 0.14* 0.16* 0.00 0.24**

N uptake Anthesis Slope 0.0345 0.0245 0.1003 0.0144 −0.0879 −0.0087 −0.0201 0.0017

Offset 1.06 1.50 1.49 0.27 4.44 0.61 1.75 1.03

RMSE 7.33 6.99 6.88 8.00 4.84 5.73 5.20 5.51

R2 0.16* 0.23** 0.18* 0.20** 0.24** 0.27** 0.37** 0.29**

Dough ripeness Slope 0.0004 0.0001 0.0008 0.0001 0.0009 0.0001 0.0000 0.0001

Offset 1.20 1.62 1.95 0.33 2.34 0.39 1.53 0.98

RMSE 5.00 4.71 4.48 5.66 3.76 4.86 4.22 4.50

R2 0.23** 0.12 0.20** 0.25** 0.25** 0.28** 0.01 0.41**

Leaf sheaths (kg/ha) Passive spectrometer

R780/R550 R780/R670 R780/R700 R760/R730 R780/R740 R900/R970 REIP NDVI

Dry weight Anthesis Slope −0.0010 −0.0132 −0.0010 0.0000 0.0000 0.0000 0.0002 −0.0001

Offset 6.31 23.55 5.03 1.44 1.19 1.25 719.72 0.91

RMSE 423.19 411.94 424.05 426.48 426.65 426.61 531.00 426.84

R2 0.03 0.15 0.05 0.01 0.00 0.05 0.00 0.08

Dough ripeness Slope 0.0003 −0.0610 0.0010 0.0025 0.0027 −0.0036 0.0855 −0.0004

Offset 4.97 10.83 3.63 1.35 1.16 1.26 718.57 0.78

RMSE 473.25 469.23 474.18 475.76 475.89 475.82 516.79 476.16

R2 0.00 0.00 0.00 0.02 0.07 0.01 0.04 0.00

N uptake Anthesis Slope −0.0928 −0.9203 −0.0913 −0.0059 −0.0012 −0.0031 −0.0447 −0.0079

Offset 6.51 23.60 5.19 1.46 1.20 1.25 720.21 0.92

RMSE 5.32 12.67 4.95 5.31 5.43 5.41 684.30 5.57

R2 0.13* 0.35** 0.16* 0.09 0.02 0.15* 0.02 0.23**

Dough ripeness Slope 0.0001 −0.0002 0.0001 0.0000 0.0000 0.0000 0.0010 0.0000

Offset 5.10 11.26 3.71 1.35 1.16 1.28 718.58 0.80

RMSE 4.00 8.24 3.69 4.30 4.40 4.34 776.37 4.61

R2 0.00 0.00 0.00 0.02 0.11 0.05 0.05 0.00

Significant R2-values are indicated at *p ≤ 0.05 and **p ≤ 0.01.

TABLE 10 | Results of the plotwise PLSR analysis of the dry weight and N uptake of culms used for calibration and validation; the genotype-wise differentiation is

contained in Supplementary Tables 5, 6.

PC Cal Val

Slope Offset RMSE R2 Slope Offset RMSE R2

Anthesis DW culms (kg/ha) 5 0.59 1627 721.76 0.59 0.63 1470 728.36 0.54

N uptake culms (kg/ha) 7 0.66 23.64 12.41 0.66 0.73 19.77 12.31 0.53

Dough ripeness DW culms (kg/ha) 4 0.65 1317 606.73 0.65 0.54 1635 763.03 0.61

N uptake culms (kg/ha) 6 0.61 6.1 4.45 0.61 0.55 7.0 4.72 0.60

Frontiers in Plant Science | www.frontiersin.org 11 November 2017 | Volume 8 | Article 1920

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Barmeier and Schmidhalter Deep Phenotyping of Spring Barley

TABLE 11 | Results of linear regression analysis of the dry weight and N uptake of culms, showing the tested vegetation indices from three active and one passive

spectral sensor at anthesis and dough ripeness.

Culms in (kg/ha) CropCircle GreenSeeker AFS

R730/R670 R760/R730 R760/R670 NDVI R774/R656 NDVI R760/R730 R900/R970

Dry weight Anthesis Slope 0.0001 0.0001 0.0007 0.0001 0.0003 0.0000 0.0000 0.0000

Offset 0.83 1.12 −0.98 0.09 1.99 0.32 1.45 0.94

RMSE 4,476.54 4,476.26 4,478.30 4,477.26 4,179.85 4,181.47 4,180.37 4,180.87

R2 0.49** 0.56** 0.64** 0.59** 0.11 0.14* 0.02 0.33**

Dough ripeness Slope 0.0003 0.0001 0.0009 0.0001 0.0004 0.0001 0.0001 0.0000

Offset 0.50 1.08 −1.23 −0.06 1.08 0.15 1.19 0.97

RMSE 3,953.33 3,952.78 3,954.98 3,953.86 3,872.40 3,873.29 3,872.30 3,872.51

R2 0.46** 0.29** 0.37** 0.39** 0.34** 0.34** 0.43** 0.08

N uptake Anthesis Slope 0.0051 0.0023 0.0092 0.0019 −0.0196 −0.0023 −0.0033 −0.0003

Offset 0.99 1.47 1.14 0.23 4.59 0.64 1.76 1.04

RMSE 66.23 65.77 66.07 66.95 68.07 71.78 70.72 71.40

R2 0.13 0.03 0.02 0.08 0.15* 0.16* 0.18* 0.03

Dough ripeness Slope 0.0531 0.0294 0.1783 0.0244 0.0579 0.0094 0.0099 0.0009

Offset 0.66 1.16 −0.64 0.01 1.75 0.26 1.28 1.00

RMSE 17.74 17.76 17.57 17.78 17.47 17.62 17.61 17.62

R2 0.37** 0.25** 0.29** 0.34** 0.24** 0.24** 0.38** 0.02

Culms (kg/ha) Passive spectrometer

R780/R550 R780/R670 R780/R700 R760/R730 R780/R740 R900/R970 REIP NDVI

Dry weight Anthesis Slope 0.0004 0.0016 0.0004 0.0000 0.0000 0.0000 0.0006 0.0000

Offset 3.92 6.59 2.31 1.22 1.16 1.16 716.82 0.67

RMSE 4,177.99 4,175.40 4,179.54 4,180.60 4,180.66 4,180.66 3,495.44 4,181.13

R2 0.10 0.05 0.14 0.16* 0.05 0.13 0.15* 0.14

Dough ripeness Slope 0.0006 0.0029 0.0006 0.0001 0.0000 0.0000 0.0012 0.0001

Offset 2.07 −2.56 0.81 1.07 1.13 1.04 713.18 0.37

RMSE 3,871.46 3,875.85 3,872.66 3,872.41 3,872.36 3,872.44 3,200.45 3,873.08

R2 0.46** 0.56** 0.50** 0.47** 0.21** 0.56** 0.27** 0.49**

N uptake Anthesis Slope −0.0126 −0.1624 −0.0179 −0.0009 0.0003 −0.0004 −0.0006 −0.0016

Offset 6.21 24.14 5.15 1.43 1.17 1.23 719.41 0.91

RMSE 66.53 51.47 67.54 71.03 71.28 71.22 649.93 71.52

R2 0.04 0.18* 0.09 0.03 0.03 0.03 0.00 0.10

Dough ripeness Slope 0.0940 0.4410 0.0923 0.0095 0.0017 0.0070 0.1788 0.0132

Offset 2.96 1.16 1.63 1.16 1.14 1.10 714.86 0.49

RMSE 17.22 13.82 17.34 17.61 17.62 17.62 112.55 17.61

R2 0.38** 0.49** 0.43** 0.39** 0.16* 0.50** 0.22** 0.42**

Significant R2-values are indicated at *p ≤ 0.05 and **p ≤ 0.01.

TABLE 12 | Results of the plotwise PLSR analysis of the dry weight and N uptake of ears used for calibration and validation; the genotype-wise differentiation is contained

in Supplementary Tables 5, 6.

PC Cal Val

Slope Offset RMSE R2 Slope Offset RMSE R2

Dough ripeness DW ears (kg/ha) 7 0.57 2,299 924.41 0.57 0.64 2,158 951.59 0.49

N uptake ears (kg/ha) 7 0.57 29.7 12.19 0.57 0.63 27.8 12.46 0.50
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TABLE 13 | Results of linear regression analysis of the dry weight and N uptake of ears, showing the tested vegetation indices from three active and one passive spectral

sensor at dough ripeness.

Ears (kg/ha) CropCircle GreenSeeker AFS

R730/R670 R760/R730 R760/R670 NDVI R774/R656 NDVI R760/R730 R900/R970

Dry weight Slope 0.0001 0.0001 0.0003 0.0000 0.0001 0.0000 0.0000 0.0000

Offset 0.79 1.23 0.15 0.09 2.41 0.40 1.50 0.98

RMSE 5,475.74 5,475.32 5,476.36 5,476.41 5,478.77 5,480.70 5,479.64 5,480.14

R2 0.10 0.07 0.05 0.08 0.01 0.00 0.02 0.03

N uptake Slope 0.0072 0.0034 0.0189 0.0028 0.0045 0.0002 −0.0011 0.0004

Offset 0.79 1.27 0.18 0.10 2.36 0.40 1.51 0.98

RMSE 70.58 70.13 71.14 71.24 69.19 71.09 70.02 70.53

R2 0.11 0.05 0.05 0.07 0.01 0.00 0.03 0.03

Ears (kg/ha) Passive spectrometer

R780/R550 R780/R670 R780/R700 R760/R730 R780/R740 R900/R970 REIP NDVI

Dry weight Slope 0.0000 −0.0004 −0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

Offset 4.72 10.23 3.52 1.33 1.14 1.27 717.92 0.78

RMSE 5476.54 5471.22 5477.69 5479.81 5479.99 5479.87 4791.26 5480.34

R2 0.00 0.01 0.01 0.00 0.07 0.04 0.00 0.02

N uptake Slope −0.0051 −0.0296 −0.0064 −0.0004 0.0004 −0.0009 −0.0079 −0.0013

Offset 4.81 10.26 3.55 1.33 1.14 1.27 718.26 0.79

RMSE 66.88 61.88 68.08 70.19 70.37 70.25 644.12 70.72

R2 0.01 0.01 0.01 0.00 0.06 0.05 0.00 0.03

Significant R2-values are indicated at *p ≤ 0.05 and **p ≤ 0.01.

TABLE 14 | Results of the plotwise PLSR analysis of the number of ears/sqm

used for calibration and validation; the genotype-wise differentiation is contained

in Supplementary Tables 5, 6.

Ears sqm−1 PC Cal Val

Slope Offset RMSE R2 Slope Offset RMSE R2

Dough

ripeness

5 0.38 394.2 91.5 0.38 0.35 429 91.3 0.31

The same results were obtained for the relationships of the
biomass parameters of ears with the other plant organs. However,
a highly significant relationship (R2 = 0.73) was found for
the dry weight of ears at dough ripeness and total biomass at
anthesis.

It is assumed that the detectability of different plant
organs is mainly influenced by their contribution to the
total aboveground biomass. Furthermore, a correlation analysis
revealed fair relationships between the total dry weight and
good relationships (R2 = 0.70) between the number of ears
sqm−1 and the final grain yield. However, the PLSR analysis
of the number of ears sqm−1 indicated low coefficients of
determination and it is concluded, that the detectability of
the ears and the number of ears is hardly possible by
spectral proximal sensing. The general detectability of the plant
organs can be described as leaves>culms>ears>leaf sheaths,

while anthesis>dough ripeness and N uptake>dry weight.
Considering the analysis of the data, an enhanced performance of
PLSR compared to vegetation indices was observed. The quality
of the sensors is mainly influenced by their light source and
was found as: passive bidirectional spectrometer≥ CropCircle >

GreenSeeker= AFS.
Nevertheless, spectral proximal sensing combined with

suitable PLSR models maybe a convenient method for obtaining
information about leaves and culms at anthesis and dough
ripeness. The PLS method revealed to be a rather good
postdictive method, better than any single spectral index. This
is corroborated by a recent study where yield and protein
content prediction in independent field studies was successfully
demonstrated (Barmeier et al., 2017). This method delivered
improved results compared to optimized spectral indices to
estimate the nitrogen content (Li et al., 2013b) or the yield of
wheat (Becker and Schmidhalter, 2017), and allowed by to predict
drought stress and grain yield in barley (Elsayed et al., 2015;
Rischbeck et al., 2016).

The predictive performance of the organ-specific barley
models was tested to predict organ-specific information of
a set of wheat cultivars grown in two years, which allowed
for an independent testing of the barley PLSR models.
Interestingly enough a fairly good prediction of wheat organ-
specific information was obtained at anthesis for the dry weight
of leaves, a moderate for the dry weight of the total plant,
whereas a decreased performance was obtained for the culm
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TABLE 15 | Results of linear regression analysis of the number of ears per square meter, showing the tested vegetation indices from three active and one passive spectral

sensor at dough ripeness.

Ears/sqm CropCircle GreenSeeker AFS

R730/R670 R760/R730 R760/R670 NDVI R774/R656 NDVI R760/R730 R900/R970

Dough ripeness Slope 0.0010 0.0005 0.0028 0.0004 0.0022 0.0002 0.0002 0.0000

Offset 0.69 1.19 −0.17 0.04 1.23 0.21 1.24 0.96

RMSE 655.42 654.92 656.26 656.05 655.16 656.17 655.15 655.43

R2 0.13 0.08 0.07 0.10 0.09 0.06 0.08 0.03

Ears/sqm Passive spectrometer

R780/R550 R780/R670 R780/R700 R760/R730 R780/R740 R900/R970 REIP NDVI

Dough ripeness Slope 0.0032 0.0129 0.0026 0.0003 0.0001 0.0001 0.0059 0.0003

Offset 2.37 −0.15 1.36 1.10 1.09 1.09 713.87 0.46

RMSE 654.03 656.42 655.03 655.29 655.31 655.31 136.46 655.93

R2 0.11 0.11 0.09 0.11 0.20 0.08 0.06 0.08

Significant R2-values are indicated at *p ≤ 0.05 and **p ≤ 0.01.

dry weight. Regarding the nitrogen related parameters, a good
prediction was obtained for the N uptake of leaves, as well as
rather close relationships were obtained for the N uptake of
the total biomass, and a fairly good prediction was observed
for the N uptake of culms. Seen that a model which had
been optimized for barley plants could be transferred to wheat
plants, this is an encouraging result, which should further be
substantiated. To the best of our knowledge this is the first
report showing an independent calibration and validation for
organ-specific information of barley and wheat plants and the
possible transfer of models. In view of the marked differences
in the growth habit of these two species, this represents an
interesting observation, pointing to some commonalities in the
spectral information. Different models which were obtained for
different years further indicates, that a relative classification of the
performance of cultivars seems to be possible. It has previously
been shown that also vegetation indices do not predict absolute
differences, but allow for a relative year-specific differentiation
(Hackl et al., 2013). Still, a relative differentiation or robust
sculling of better performing genotypes at given times is highly
useful, being congruent with the relative scoring adopted by
breeders.

Spectral information being more closely related to the
specific organs was identified. This seems to vary depending
on the organ, even though some commonalities could also be
observed, with interesting observation being detected in the
photosynthetic active radiation range (495–700 nm), but also
being contained in the red edge region extending to the near
infrared regions (680–780 nm) and the water index region and
slightly beyond it. Reflectance measurements in these ranges
might be of use to measure these organs and incorporate
them as novel selection criteria to optimize the architecture of
plants and for improving yield related parameters. At present
spectral indices allowing to identify organ-specific information
may lend for a quicker adoption in field experimentation

and plant breeding. There is a need for further studies to
confirm the PLSR results by testing spectral indices that have
consistently large loadings in the PC and to assess their predictive
validity.

A suitable phenotyping platform enhances the performance
of phenotyping. By driving at an average speed of ∼5.5 km
h−1, the measurement of a single plot takes ∼0.8–1.8 s, while
destructive measurements with subsequent laboratory analysis is
tedious and time consuming. Spectral sensors are non-invasive
and objective and therefore offer an enhanced tool that can keep
pace with high-throughput genotyping techniques and thereby
widen the phenotyping bottleneck (Winterhalter et al., 2011;
White et al., 2012; Kipp et al., 2014; Becker and Schmidhalter,
2017).

Our results may lead to a better understanding of the
information gained from spectral measurements of plant
canopies, thereby being of potential use for enhanced
phenotyping and architectural modeling. A better understanding
of the plant architecture may allow for a more targeted breeding
(Winterhalter et al., 2012). Organ specific phenotyping represents
a first possible step toward breeding by design.
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