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Abstract—Games are one of the most popular and at the
same time most computation intensive and energy consuming
class of applications on mobile devices like smartphones and
tablets. Dynamic voltage and frequency scaling (DVFS) is a
common technique for reducing the processing power. However,
highly variable and non-deterministic workload characteristics of
mobile games mandate sophisticated workload prediction models
to predict low-utilization phases of games during which the pro-
cessor’s frequency can be decreased to save energy. While prior
works exhibit significant improvements, one main question is left
open: How large is the gap between the developed techniques and
the theoretically optimal power manager, i.e., a power manager
which exactly knows the future workload and, hence, can select
the optimal sequence of frequencies that minimizes the power
consumption under given timing constraints. In this paper, we
discuss that estimating the savings from such an optimal power
manager is non-trivial due to the non-deterministic nature of
games and the underlying system. In order to address this, we
suggest a statistical model of the optimal power manager using
which we estimate the potential savings of popular closed-source
games. The results of our work have several implications: We
reveal a significant gap between savings obtained from recently
proposed game power managers and the theoretically optimum
savings (up to 54.4 % energy savings are possible). Our work
strongly motivates future research endeavors to minimize the
gap between the optimum and the existing power managers.

I. INTRODUCTION

Power consumption on mobile platforms is a major design

concern. Although a vast amount of work has been put into

optimizing the energy consumed by displays [2], memory [11],

or the operating system in general [7], [12], there is only

little work on application-specific power management, e.g.,

for games. On mobile devices, games account for a popular

class of applications. According to [9], users spend around

32 % of time they use tablets and smartphones on gaming.

Power management for games is a challenging task due to

the characteristics of the gaming workload. First, the gaming

workload depends on the nature of the game that is being

played. A first-person shooter exhibits a completely different

workload behavior than a puzzle game. While the background

in an endless running game might be constantly changing

and needs re-rendering, the background of a card game will

stay the same for a long period of time. Second, the gaming

workload depends on the game state. For example, recent

work [5] has shown that players spend a significant amount

of time not only on actually playing the game, but as well in

menu states or in loading states during which game content

is fetched. Third, computation workload of games is non-

deterministic and depends significantly on the interaction with

the user. Unlike video rendering, which guarantees determin-

istic workload over multiple repetitions, gaming workloads are

inherently user-interactive, and hence, difficult to reproduce.

The frame rendering workload can be drastically different

depending on the user’s decisions. Considering all this, one

of the major concerns in game power management has been

to accurately estimate the workload, and apply power man-

agement techniques accordingly.

In the past, many successful attempts based on workload

predictors have been made to reduce the CPU power consump-

tion for games. The key to successful power management is to

achieve remarkable power savings without noticeable perfor-

mance degradations. A good gaming experience and smooth

animations are provided once the frame rate is large enough,

e.g., ≥30 FPS [3], [4]. Power management techniques [5], [6],

[20], [18], based on the frame-wise prediction of workloads,

performed dynamic voltage and frequency scaling (DVFS) to

determine the minimum operating frequency at the start of

each frame that can meet the minimum frames-per-second

(FPS) constraint. These techniques have shown decent per-

formance in saving power. Nevertheless, we do not yet know

how much further reduction in power consumption could be

achieved. In this paper, we quantify the theoretical upper

bound for improvement.

There are multiple hardware components in a smartphone,

which contribute to the total power consumption. Among

them, we are interested in the power consumption of the CPU,

which is a major power consumer as shown in Table I. The

table gives the measured power consumption of a Samsung

Galaxy Nexus for different applications. The phone contains

the same processor as the PandaBoard that we used in further

experiments. It has been modified to allow detailed measure-

ments of the total and the processor’s power consumption.

While the CPU’s power consumption only amounts to 19.4 %

of the total power when running apps like Facebook, it can

constitute up to 28.9 % when complex games like Shadowgun

from Madfinger Games are played. The rest is consumed

mainly by the display, network, and GPU. However, all the

components except the CPU and GPU are irrelevant to the

frame processing time, therefore, these are out of scope of

this paper.

We propose a method to quantify the theoretical upper

bound of power savings by an optimal CPU power man-

ager. We rely on a statistical workload model rather than
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TABLE I: Power consumption for different applications run

on a Samsung Galaxy Nexus.

Application CPU
[mW]

Total
[mW]

CPU power
consumption [%]

Facebook 237.8 1226.0 19.4
Temple Run 377.3 1605.9 23.5
Jetpack Joyride 376.3 1481.6 25.4
Cut the Rope 349.2 1449.2 24.1
Shadowgun 467.9 1615.6 28.9

the workload profiles from individual game plays to tackle

the non-deterministic and non-reproducible nature of gaming

workload. The contributions of this work are: (i) We show

that the non-deterministic nature of games and the underlying

system highly complicates deriving a model that allows esti-

mating the optimal power consumption for an individual game

frame. (ii) We present a statistical model that allows estimating

the optimal savings of previous game plays using recorded

workload statistics. (iii) We, for the first time, compare the

power savings of state-of-the-art autoregressive (AR) power

managers to the savings of a theoretical, optimal power man-

ager for closed-source games. (iv) Even though the AR-based

governor outperforms Android’s default governor, we show

that there is still a significant gap to the power savings of the

optimal power manager, strongly motivating future research

towards closing this gap.

We emphasize that the purpose of the proposed statistical

approach is not to propose an actually performing power
management technique as numerous other works have pre-

sented, but to assess the theoretical upper bound of the power

management techniques, and to motivate further research in

this domain. To the best of our knowledge, this is the first

work to address the issue by adopting a statistical approach.

The remainder of this work is structured as follows: Sec-

tion II gives an overview over related work in the area of

game power management. Section III introduces existing game

power management techniques, while Section IV explains why

we chose a statistical approach over a frame-based approach

to model the optimal power manager. Section V describes

the hardware and software setup used for this study. In

Section VI, we present the experimental results and compare

the performance of existing techniques to the optimal power

manager. We conclude the work in Section VII.

II. RELATED WORK

In this section, we introduce recent work that has focused on

game power management for Android. However, none of the

works has tried to find the theoretical upper limit for DVFS by

constructing a theoretically optimal game workload predictor,

in the following referred to as oracle predictor.

Similar to videos, games are computed on a frame basis.

While recent games often target 60 FPS, it has been shown that

a good user experience can be obtained even with 30 FPS [4],

[3], [20]. Lowering the frame rate is not only beneficial in

terms of CPU but also in terms of GPU power consumption,

as was pointed out in [14], [23]. In order to apply DVFS, it is

crucial to estimate the frame workload accurately. However,

the workload fluctuates considerably from frame to frame. This

motivated to develop sophisticated workload predictors [6],

[5], [20], which enabled DVFS-based power management,

which outperforms the default Android governors. For exam-

ple, in [6], it has been shown that the workload of neigh-

boring frames correlates, which can be exploited for fine-

grained power management. Nevertheless, the frame workload

prediction accuracy is never 100%, and often under- or over-

estimated. This leads to frame drops and sub-optimal power

savings. Yet, it is difficult to analyze how close to optimal

the state-of-the-art techniques are, and therefore, it is hard

to judge whether more sophisticated techniques such as non-

linear workload predictors are worth investigating.

With the emergence of multi-core CPUs and even heteroge-

neous multi-processing platforms that combine low-power and

high-performance CPUs on a single chip, the multi-threading

potential of games has also been subject of recent work [20],

[18], [16]. The authors in [20] show that the workload of the

threads of a game exhibit different patterns. [18] presents a

detailed investigation about the actual workload distribution

among the threads. Both works have shown significant im-

provement in power consumption by performing allocation and

DVFS at the same time. However, no work has investigated

the theoretical lower bound in terms of power consumption

compared to the existing work.

Besides CPUs, GPUs have become an integral part of mod-

ern system-on-chips (SOCs), recently [13], [17], [1]. There

exists an own line of research for the non-trivial relationship

between CPU and GPU workload. The authors in [17] show

that some games are more CPU bound while others have a

performance bottleneck at the GPU side. There are also games

with hybrid CPU-GPU dependencies. However, estimating the

theoretical bound of CPU DVFS is already a difficult problem

as we will see in the following sections, let alone the effect of

GPUs. Therefore, we first focus on the theoretical bound of

CPU DVFS techniques, and leave the analysis of CPU-GPU

coordinated power management as a future work.

There has been decent work on game power management

achieving high savings for CPU and GPU power consumption.

Still, it remains unknown how much potential exists for future

research on this topic. In this paper, we assess this gap by

constructing a power model based on a multi-core platform

and evaluating the theoretical minimum power consumption

for a set of games using a statistical model of the workload.

III. GAME POWER MANAGEMENT TECHNIQUES

Before we introduce our method to accurately approximate

the oracle game workload predictor, we provide background

on existing frame-based power management techniques.

A. Frame-rate selection

The most important factor affecting the power consumption

is the frame-rate. Most recent games target 60 FPS, although

a good user experience can be already achieved at 30 FPS [3],
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[4] The larger the frame rate, the more frames have to

be rendered. To guarantee a specific frame rate, the CPU’s

frequency has to be chosen at the beginning of each frame

such that the processing of the frame finishes within 1/FPS,

where FPS is the target frame rate. For each frame i, the

minimum possible frequency f [i] should be used that just

avoids violating the deadline 1/FPS to optimize the power

consumption. Recent work shows that not only the CPU but

also the GPU power consumption can be significantly reduced

by lowering the frame rate [14], [23].

Further, each game has specific game states such as the

loading, game menu and the actual gaming state. Each of these

states has different requirements and workload characteristics,

e.g., the level selection menu can be rendered at a lower

frame rate compared to the interactive gaming state. The state

detection described in [5] is based on textures used during a

frame. Each game has specific textures to render, e.g., menu

buttons in the menu phase, a static picture during the loading

state and main character textures in the gaming state. Based

on work in [5], we not only provide power management limits

for different target frame rates, but as well for individual game

states as we show in Section VI.

B. Workload prediction

As mentioned before, the gaming workload is hard to predict

and poses a challenge for the existing power management

techniques, such as the Android default governors: Within

different game genres and even within different games of the

same genre, the workload is hardly repetitive. Moreover, the

underlying operating system does not behave deterministically

for multiple runs of the same game. Furthermore, the workload

also depends on the current game state, as depicted in [5]. All

of these factors make the prediction of the workload difficult.

We will show in Section IV-A that the workload characteristics

of games motivate the need to develop statistical models for

estimating the upper bound for power savings.

Although there are works implementing reactive power

managers, we focus on prediction-based strategies in our

paper. Prediction-based approaches exploit the correlation be-

tween closely-timed frames, which exhibit similar workloads

for neighboring frames. In [6], it has been shown that autore-

gressive models provide the sufficient accuracy that guarantees

significant power savings while maintaining a stable frame

rate. An autoregressive moving average based predictor was

derived that predicts the workload of future frames based on

a linear combination of workloads of previous frames.

While AR-model based prediction significantly outper-

formed Android’s default governor, it is not clear if more

complex workload predictors, e.g., non-linear models, would

provide a significantly better performance or not. Our results

show that there is a significant gap between power savings

obtained using our newly introduced oracle predictor for

modern closed source games, and those obtained using state-

of-the-art power management techniques from the literature.

At this point, we would again like to emphasize that the

goal of this paper is not to propose a new power manager for
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Fig. 1: Typical frame timing.

TABLE II: Average frame duration at different processing

frequencies and workloads in ratio to the average frame

processing time at the highest processing frequency (1.2 GHz).

Workload 350 MHz 700 MHz 920 MHz 1.2 GHz

Temple Run 2.25 1.31 1.08 1.00
Cut the Rope 1.77 1.26 1.14 1.00
Jetpack Joyride 2.69 1.53 1.01 1.00
CPU-bound 3.43 1.71 1.30 1.00

gaming applications. In this work, we show for three popular

games, each from a different genre, which CPU power savings

are possible for the full range of viable target frame rates.

IV. OPTIMAL POWER MANAGER MODEL

The oracle power manager is based on the power and

workload model described in this section. First, we describe

that a frame-based workload model approach is not suitable

for our power manager due to the non-deterministic nature of

the gaming workload. Then, we derive a statistical workload

model and approximate the power consumption of the CPU,

including the DVFS overhead.

A. Frame-Based Model

In the case of videos, the frame content and the corre-

sponding workload for de/encoding is deterministic. Hence,

the optimal sequence of frequencies can be determined for

all frames of the clip [19]. For games, on the contrary, the

content depends on the user actions as well as the time

it takes to process each frame: At the beginning of each

frame processing, a game typically computes the time Δt
that has passed since the last frame processing beginning. Δt
is then used to update object positions, the physics engine

and the artificial intelligence (AI). Hence, what exactly can

be computed during a frame, heavily depends on Δt. If a

game is played at different frequencies, the processing time

of individual frames, Δt and consequently the game content

will significantly differ from the previous run. This prevents a

brute-force solution that is viable in case of video de/encoding.

Starting from Android 4.1, Project Butter [8] introduced the

synchronization between the frame processing and the vertical

synchronization signal (VSYNC) of the display. As depicted in

Figure 1, the processing of the next frame i always starts with

the arrival of a VSYNC signal. Due to this synchronization, in

the ideal case, Δt always equals 1/rV SY NC , where rV SY NC

is the refresh rate of the display, typically 60 Hz. Based on

this observation, we investigated the possibility to derive the
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optimal sequence from a single, fixed frequency recording

of a game play. We instrumented the operating system (see

Section V) and recorded the number of cycles c[i] required

for each frame of a game play at the highest processing

frequency. A simplified assumption is that the processing time

linearly scales with the CPU’s processing frequency. Hence,

the optimal sequence of processing frequencies can be chosen

by selecting the smallest frequency f [i] ∈ F for each frame,

where F is the set of all available frequencies, that guarantees

c[i]

f [i]
<

1

rV SY NC
. (1)

Assuming that we never violate this deadline, it should be

possible to determine the optimal frequency for each frame.

However, the linear relationship in Equation 1 typically does

not hold true and in most cases is highly pessimistic. As

presented in [21], the frame computation time is amongst

others composed of the CPU computation time and the time

the CPU waits for GPU, memory and I/O given by the

following:

tframe[i] =
cCPU

fCPU
+

cMem

fMem
+

cIO
fIO

+
cGPU

fGPU
+ . . . ,

where cCPU , cMem, cIO and cGPU are the workload

in cycles and fCPU , fMem, fIO and fGPU are the CPU,

memory, I/O and GPU frequency respectively. Increasing the

processor’s frequency will only decrease the time it takes to

process the CPU workload, given by the term cCPU/fCPU

without affecting the times required for memory accesses,

I/O operations and GPU processing. The linear Equation 1

only holds true for purely CPU-bound workloads. The relative

performance is defined by

s =
fCPU

f ′CPU

× c′[i+ 1]

c[i+ 1]
=

t′[i+ 1]

t[i+ 1]

and describes by how much the processing time of a task is

prolonged if CPU frequency f ′ is used instead of f . As can

be seen in Table II, the relative performance of games differs

significantly from the relative performance of a purely CPU-

bound workload. While the pessimistic purely CPU-bound

model from Equation 1 would for example assume a slow-

down of 3.43 if the frequency is scaled from 1.2 GHz to

350 GHz, in average the processing is only slowed down by

a factor of 1.77 in the case of Cut the Rope which is one of

the games that we investigated in our study. Hence, a power

manager that has predicted the next frame’s workload and

has to choose among the available frequencies can scale the

frequency more aggressively if it as well considers the relative

performance. Table II only provides the average factor by

which the duration of a frame is being prolonged if a smaller

than the highest frequency is used. In reality, s will highly

vary from frame to frame, since some frames might be GPU or

memory bound, i.e., the CPU has to wait for a non-negligible

amount of time for the GPU or memory, whereas other frames

might be highly CPU-bound.
Non-deterministic nature and reproducibility of gaming

workloads: In order to correctly evaluate the relationship

between the CPU operating frequency and the workload

considering these effects, it is required to replay the same

workload at different CPU processing frequencies and measure

the CPU workload. We have developed our own gaming

benchmark, which animates a knight walking through a 3D

landscape, to derive more accurate models that include I/O

and GPU waiting times. The input events to this benchmark

are generated automatically to guarantee the reproducibility of

the workload. Figure 2 shows the frame-based workload of two

consecutive benchmark runs using a constant CPU processing

frequency. Even though the benchmark has always been started

exactly one second after Android has been booted, signif-

icant differences can be observed already after 100 frames.

Computations of the Android OS and other processes running

in Android, which are not necessarily synchronized with the

game, heavily disturb the reproducibility. Clearly, variations

to this extent do not allow us to accurately tune a model

describing the relative performance factor.

Due to these difficulties, we propose to use a statistical

model for calculating the theoretical upper bound of a power

management technique in the next section. This model does

not allow determining the exact optimal sequence of frequen-

cies, but provides an estimation of the optimal power man-

ager’s performance and hence is sufficient for our purposes.

B. Statistical Performance Model

We seek the minimum possible power consumption that

can be obtained when, for each frame, the minimum possible

frequency is used (considering the target frame rate). In

Section IV-C, we show that the power consumption can be

determined, once it is known to what percentage P (f = fx)
each processing frequency fx ∈ F has to be used for

processing a game play under frame rate constraints. In the

following, we describe how to determine these percentages

P (f = fx) based on game workload recordings.

We have recorded the frame processing times of different

game plays using fixed frequencies fx. From these recordings,

we computed probability distributions Pfx(X = t) of the

frame processing time. Even though Temple Run randomly

generates its game scenarios and hence the content signifi-

cantly differs between consecutive runs, the two histograms

depicted in Figure 3 are nearly identical. This could be

observed for all available processing frequencies and games

under test (Cut the Rope, Temple Run and Jetpack Joyride) if

the games were played long enough. Game plays of 10 minutes

turned out to be sufficient.
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Fig. 2: Workload of two identical 3D Benchmark runs.
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Fig. 3: Workload histogram of two game plays of Temple Run

at 920 MHz each.
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Fig. 4: Probability distribution of frame-based workloads for

two different processing frequencies f1 and f2.

Figure 4 shows two examples of probability distributions

Pf1(X = t) and Pf2(X = t) recorded at the frequencies f1
and f2, respectively. Here, f1 represents the smallest and f2
the next higher of all available CPU clock frequencies.

The probability P (f = f1) that a frame can be finished

within the deadline 1/FPS using frequency f1 is given by

P (f = f1) = Pf1(X < 1/FPS) =

∫ 1
FPS

0

Pf1(X = t) dX .

Further, the percentage of frames that will require a higher

frequency than f1 is given by Pf1(X ≥ 1/FPS).
Like for Pf1 , the percentage of frames that can be computed

in time using f2 is given by Pf2(X < 1/FPS). Frames that

can be completed within time using f1 will certainly finish

if f2 is used since increasing the frequency will not increase

the processing time. Hence, the area defined by Pf1(X <
1/FPS) is included in Pf2(X < 1/FPS). Consequently, the

percentage of frames that will require f2 and fail for f1 is

given by

P (f = f2) = Pf2(X < 1/FPS)− Pf1(X < 1/FPS).

The remaining percentages P (f = f3), . . . , P (f = fi) can

be computed accordingly, once the probability distributions

of all processing frequencies have been determined. Note,

that in Figure 4, the area defined by Pf1(X < 1/FPS)
is depicted as the leftmost area for visualization purposes.

The workload composition and the relative performance factor

of the frames determine how this area is distributed within

Pf2(X < 1/FPS). In the next section, we explain how these

probabilities can be used to compute the minimum possible

power consumption of the oracle power manager.

C. Power Consumption Model

The average power consumption P can be approximated

as follows: In addition to the frame processing time tx[i],
we measure the power consumption P fx [i] of each individual

frame. Based on these recordings, the average power consump-

tion of frames at frequency fx is given by

P fx =
1

N

∑
P fx [i].

The overall average power consumption can then be approxi-

mated by

P =
∑
∀fi∈F

P fi · P (f = fi), (2)

where P (f = fi) is the extent to which the frequency fi has

to be used to satisfy the processing deadline 1/FPS. The

accuracy of this approximation are evaluated in Section VI.

Typically, two metrics are used to compare the quality of

game power managers: The average power consumption P
and the percentage of frames D missing their deadline. Based

on determined probability distributions, D can be determined,

since D = Pfmax(X ≥ 1/FPS), i.e., the percentage of

frames that can not be processed in time, even though the

highest processing frequency fmax is used.

D. DVFS overhead

The overhead for dynamic voltage and frequency scaling

has to be considered in terms of the time and energy that the

voltage and frequency transition costs. As will be shown in

Section VI, the overhead highly depends on the current and the

target frequency of the processor. However, using the statistical

model presented in Section IV-B it is only possible to estimate

the percentage of frames that require a particular frequency

and not the exact order of the processing frequencies, i.e.,

the optimal frequency sequence S. Hence, it is not possible

to consider the exact scaling overhead. In the worst case,

we switch at each frame from the current frequency to the

frequency which will cause the largest overhead in terms of

switching time. This worst case can be modeled by reducing

the deadline of 1/FPS by the corresponding scaling time.

On the contrary, the best case assumes that only a minimum

number of frequency switches occur. As will be shown in

Section VI, there is only a small difference between the best

and worst case. Before above described models are verified

and applied, we will first explain the experimental setup.
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TABLE III: Workload characteristics of the tested games.

Game Workload Deviation Utilization

[ cycles
frame

] σ [ cycles
frame

] Min Max

Cut the Rope 5.87e+06 6.89e+03 13% 96%
Jetpack Joyride 6.67e+06 8.92e+03 12% 57%
Temple Run 1.07e+07 9.55e+03 24% 91%

V. EXPERIMENTAL SETUP

In the following, we describe the hardware platform used

and the required software modification in the Android OS and

the Kernel source code.

A. Hardware Setup

We used the PandaBoard ES [15] for this study running a

Linaro Android 4.3 and 3.2.0 Kernel. This board is based on

the same processor as the Samsung Galaxy Nexus, namely an

OMAP4460 processor, a dual core 1.2 GHz ARM Cortex A9

Mobile processor from Texas Instruments [22]. Attached to

the PandaBoard is a 10” multitouch LCD display. The core of

the OMAP4460 processor is the microprocessor unit (MPU)

subsystem. It consists of the two Cortex A9 cores, each with a

dedicated L1 instruction and data cache, a NEON and a VFPv3

(floating point) unit. The MPU clock domain can be configured

to run at 350, 700, 920 and 1200 MHz. The frequency of both

cores is scaled equally. We have modified the board to measure

the power consumption of the MPU unit, separately.

Although newer architectures are available on the market,

this does not impact our contribution. It is true that the

presented games will pose only a small workload on newer

architectures. However, there are many recent games that will

exploit the higher processing power of these architectures. The

methodology that we present in this paper - the power model

and the oracle predictor - can be applied to newer hardware

and software architectures with only slight modifications.

B. Software Setup

All popular Android games are closed-source. Hence, it

is not possible to instrument the games directly to acquire

information on, e.g., frame timing that is needed to estimate

the CPU energy consumption. Instead, we have modified

the Android OS to gather workload statistics and power

measurements of the closed-source games on a frame-by-

frame basis. As done in previous works [5], [20], we have

instrumented the Embedded Graphics Library (EGL) [10] and

its eglSwapBuffers() function for timing measurements.

This function is called by the game to mark the end of the

current frame. Moreover, we have developed a kernel driver

that can read the power consumption and the performance

counter values per frame.

C. Game Selection

For this study, we used three popular Android games.

Zeptolab’s Cut the Rope is a 2D puzzle game. Halfbrick’s

Jetpack Joyride and TempleRun from Imangi Studio, are end-

less runner games. Jetpack Joyride is 2D while Temple Run is

a 3D game. The workload, the standard deviation and the CPU

utilization of the three games at the frequency of 1.2 GHz are

given in Table III. Temple Run imposes the highest workload

and variation on the CPU. The large utilization range shows

that all of the games are amenable to DVFS.

VI. EXPERIMENTAL RESULTS

Before presenting the results from the statistical model, we

discuss overheads and validate the power model presented in

Section IV.

A. Frequency Scaling Overhead

As described in Section IV-D, the overhead for dynamic

voltage and frequency scaling has to be considered in terms of

the time that is spent on scaling and the energy that the voltage

frequency transition costs. To measure both, the cpufreq
Kernel driver has been instrumented to toggle general-purpose

I/O (GPIO) pins of the PandaBoard at entry and exit points of

related functions. The voltage and the logic states of the GPIO

Pins were sampled using a National Instruments PXI-6124

card and a sampling rate of 2 MS/s. The frequency transitions

were initiated using the userspace governor.

We have instrumented three functions in the OMAP-specific

frequency scaling Kernel driver to measure the overhead for

scaling the voltage, the frequency and the operating system

based overhead. The results in terms of energy and time of

the corresponding parts are shown in Figure 5. As can be

seen, the overhead highly depends on the original and the

target frequency. Especially, switching to the lowest available

processing frequency, i.e., 350 MHz is expensive in terms of

time and energy and can consume up to 873.9 us and 116.3 uJ.

The maximum observed variation of the average time and

energy overhead was 2.58 % and 4.72 %, respectively.

As discussed, the statistical model is unable to determine

the exact overhead. However, the resulting power consumption

assuming worst and best case (maximum and minimum num-

ber of voltage and frequency transitions) differed at maximum

only by 4.93 % for the game Cut the Rope. The percentage of

frames missing the deadline at maximum deviated by 0.69 %.

Hence, we consider the time and power errors by considering

exact DVFS overhead as negligible, and hence do not account

for ranges in the following, but instead only provide the worst

case results.

Instrumenting Android, performing the workload prediction,

logging data and detecting game states come with an additional

overhead. As has been shown in [5], these overheads can be

neglected compared to the workload of a game frame.

B. Power Model Validation

We have performed the following experiment to evaluate

the power model described in Section IV-C. We first played

each game using the userspace governor at every available

frequency and computed the average power consumption P fx

based on these recordings. Next, we played each of the

three games using the game state-specific governor

described in Section V and [5] and recorded the frequencies
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Fig. 5: Frequency scaling overhead in terms of time and energy measured for the TI - OMAP4460.

chosen as well as the real average power consumption of each

frame. Based on these recordings, we computed the probability

for each frequency to be used during the game play P (f = fi)
and the resulting average power consumption according to

Equation 2. The maximum deviation of the estimated power

consumption was observed for the game Cut the Rope in the

gaming state with 6.01 %. For Jetpack Joyride the maximum

deviation was observed in the menu state with 2.96 % and

for Temple Run in the gaming state with 1.26 %. We have

assumed that these estimation errors are tolerable.

C. Performance of the Optimal Power Manager

As described in Section IV, the optimal power manager

chooses for each frame the lowest possible processing fre-

quency that still guarantees the frame computations to com-

plete in time, resulting in a minimum power consumption.

The optimal power manager only exists in theory. In practice,

the future workload and required processing frequency for a

frame have to be predicted. In recent literature [6], it has

been shown that the inter-correlation between workloads of

consecutive frames can be leveraged to predict the frame

workload of future frames, as described in Section III. It was

shown that this approach works very well for multiple games

and significantly outperforms state-of-the art power managers.

To determine the gap between practice and theoretical

optimum, we played each game using the AR-based predictor

and evaluated the statistical model described in Section IV-B.

Figure 6 shows the power consumption and percentage of

frame deadline misses for the optimal power manager, using

the oracle predictor and the results obtained with the AR-

based predictor. In addition, Table IV summarizes theoretical

TABLE IV: Power consumption gap expressed as percent be-

tween the oracle and the AR-model based power management

at different frame rates.

Game State 20 30 40 50

Temple Run
Menu 15.49 25.32 47.62 54.37
Gaming 0.99 -3.32 6.35 41.74

Jetpack Joyride
Menu 6.87 6.30 24.11 33.17
Gaming 1.29 -4.23 -6.45 22.80

Cut the Rope
Menu -1.59 6.19 20.87 18.12
Gaming 2.06 4.29 22.57 25.74

possible power savings expressed as percentage compared

to the AR-based power manager. Clearly, it can be seen

that for high frame rates in particular, there is a significant

performance gap of the AR-based predictor to the theoretical

optimum. In the case of Temple Run, the power consumption

could be reduced by additional 41.8 % during the gaming

state and 54.4 % for the menu state (at 50 FPS) if the future

workload of frames was exactly known. This considerable

potential in terms of power savings points out the need for

more research directed to accurate game workload predictors.

As can be seen in Table IV, the gap between savings

obtained using the oracle power manager and the AR-based

power manager is increasing significantly for most games with

higher target frame rates. Higher target frame rates will re-

quire higher processing frequencies resulting in a significantly

higher power consumption. However, at higher processing

frequencies the average relative performance increase is less

as shown in Table II. The AR-model based predictor is not

aware but instead assumes a simple linear scaling according

to the pessimistic Equation 1. Consequently, it over-estimates

required frequencies particularly at high frame rates resulting

in the large gap at high target frame rates.

In some cases, existing techniques outperform the optimal

power manager in terms of power consumption, e.g., in the

case of Jetpack Joyride (at 40 FPS) the AR-based governor

saves 6.45 % more power in the gaming state than the optimal

power manager. However, in all of these cases the number

of frames missing their deadline is higher compared to the

optimal power manager.

Reducing the target frame rate has a considerable impact

on the power consumption for both, the AR-based and the

optimal power manager. For example, a reduction from 50 to

40 frames per second already reduces the power consumption

by 44.9 % for the AR-based predictor in the case of Temple

Run, while further reducing the frame rate to 30 frames per

second yields power savings of 23.5 %. This finding highly

motivates a user study to identify the actually required target

frame rates that satisfies the user.

VII. CONCLUSION

In this work, we have shown the potential for improvement

in power savings for mobile games compared to existing
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Fig. 6: Average power consumption and frame deadline misses for different target frame rates using the oracle predictor.

power managers. The non-deterministic nature of gaming

workload mandates us to take a stochastic approach to evaluate

the optimal power savings. Even though this work performs

a theoretical study without implementing an actual power

manager, our work clearly shows that there is significant

room for improvement in addition to what the state-of-the-art

techniques offer. In the future, we plan to verify our mod-

els for more recent architectures, for example heterogeneous

multi-processing platforms, which have become very popular,

recently. Moreover, we plan to extend our work to include

the GPU power consumption into our model. We believe that

model-based estimation studies as presented in our work will

help to understand where optimization potential is available

and will provide motivation to adopt even more sophisticated

techniques to further reduce the gaming power consumption.
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