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Abstract

The automotive industry is confronted with difficult challenges ahead. A fundamental

shift in customer attitude towards car ownership, more strict environmental regulations

for vehicles and the disruptive impact of emerging car-related technologies jeopardize

the capability of automotive manufacturers to generate satisfactory profit rates and to

fund crucial investments. Product variety mitigation strategies, such as option bundling,

can help automotive manufacturers reduce their costs. A reduction of product variety

would also improve the accuracy of the component demand forecasts communicated to

automotive suppliers.

Even though option bundling has been claimed to have a positive effect on operations

due to a reduction of product variety, a thorough analysis of the impact of option

bundling on product variety is lacking. Furthermore, none of the existing option bundling

methodologies designs bundles such that operational objectives are considered.

This thesis introduces option bundles design approaches that not only maximize rev-

enues, but also stabilize the demand for options. The results of our computational study

indicate that a pure bundling policy inherently reduces product variety, irrespective of

the car model for which bundles are designed. Option bundling can already be an ef-

fective tool for no bundle discount, if the customer base is homogeneous and the prices

of the options have a wide range. For other cases, the benefits of option bundling can

be attained if the bundle discount is selected carefully. Also, our computational study

shows that the design of option bundles results in a trade-off between revenues and op-

tion demand stability. However, we identify bundles that simultaneously improve both

measures. Bundle-specific discounts are shown to be not only an important instrument

from a marketing perspective, but that they can impact the option demand variability.
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Chapter 1.

Introduction

1.1. Current challenges of automotive manufacturers

Dark clouds are looming on the horizon for the automotive manufacturers. The auto-

motive industry has been one of the most succesful industral sectors, having produced

around 94 million cars per year (OICA, 2017a) and providing jobs for around 9 mil-

lion people (OICA, 2017b). However, automotive manufacturers are confronted with

many challenges that jeopardize their success: a fundamental shift in customer atti-

tude towards car ownership, more strict environmental regulations for vehicles and the

disruptive impact of emerging technologies in cars.

Increased environmental awareness and the high costs of car ownership have driven

many consumers to embrace shared mobility (Efthymiou and Antoniou, 2016). The

novel mobility concept enables its users to exploit the benefits of car ownership without

actually owning a car. However, the steady sales increase experienced by automotive

manufacturers so far could be reduced, should the popularity of shared mobility increase

further. According to Gao et al., 2016 the yearly sales growth rate will most likely be

reduced from 3.6% between 2012 and 2016 to 2% by 2030.

Additionally, automotive manufacturers need to cope with more strict environmental

standards. Whereas the target for CO2 emissions for vehicles imposed by the European

Union in 2016 was 118.1 grams per kilometer, the automotive manufacturers need to

ensure by 2021 that the vehicle emissions do not exceed 95 grams per kilometer (Euro-

pean Comission, 2017). To achieve these targets, automotive manufacturers must not

only invest in the development of cleaner engines, but also in new engine technologies.

However, the pace at which traditional automotive manufacturers have embraced al-

ternative drives, such as electrical or hydrogen-based, was so slow that new players, such

as Tesla, managed to gain a competitive advantage and introduce attractive cars with
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Chapter 1. Introduction

alternative drives first to the market. Furthermore, automotive manufacturers face a stiff

competition in the development of autonomous vehicles. Their biggest competitors are

companies that have stronger competences in the development of artificial intelligence,

such as Google or Apple.

Under these circumstances, the automotive manufacturers need to invest many re-

sources only to keep up with their new competitors and to adhere to the strict envi-

ronmental requirements. From 2006 to 2016, the investments of the 10 top automotive

manufacturers in capital, research, as well as mergers and acquisitions increased on av-

erage by 4% (Parkin et al., 2017). Partly as a result of such investments, the profit

margin of automotive manufacturers remained low in comparison to other industrial

sectors. Whereas the annual return rates of the S&P 500 and Dow Jones Industrial

Average companies were 14.8%, respectively 10.1% in the last five years, the automotive

manufacturers generated only a 5.5% return on investment (Parkin et al., 2017). The

higher investment requirements and the reduced revenue growth prospects jeopardize

the capability of automotive manufacturers to generate satisfactory returns on invest-

ments for their shareholders. It is therefore paramount for automotive manufacturers to

reduce their costs.

1.2. Product variety management as a cost reduction

driver

One of the main cost drivers for automotive manufacturers is the high level of product

variety they offer to their customers. When customers configure their vehicles, they

express their individual preferences by choosing from a large number of pre-defined

features, so-called options. The high levels of product variety that are induced by the

options increase the costs throughout the life cycle of their products and reduce the

responsiveness of the supply chain. Excessive product variety results in high inventory

levels of unsold products, long customer lead times (ElMaraghy et al., 2013) and can

even alienate the customers, cognitively overloading them with a plethora of choices

(Huffman and Kahn, 1998; Lancaster, 1990; Ramdas, 2003). Costs can be reduced if the

level of product variety offered to customers is lowered. According to Gertz and Haeser,

2015, a well-managed product variety could reduce service, engineering and product

costs by more than 20%.

As customization is often taken for granted nowadays, the management of the result-

2



1.3. Impact of product variety on component demand forecasts

ing product variety remains a central challenge for researchers and practitioners alike.

The seminal paper of Pil and Holweg, 2004 classifies methodologies aiming at a mitiga-

tion of the negative impact of product variety into four categories: modularity, product

platforms, late configuration, and option bundling. Late configuration is not used by

German automotive manufacturers (Staeblein and Aoki, 2015), since they cannot ensure

a high quality of the assemblies done by their dealers. Modularity and product platforms

in particular have been implemented by many manufacturers with the aim to reduce de-

sign complexity and manufacturing costs and to adapt to changing customer preferences.

However, the two techniques did not always live up to these expectations. The design of

modular products is burdened by the requirement for a deep organizational integration.

In addition, many modules are only weakly integrated, which prevents the reduction of

part numbers and thereby increases design and manufacturing costs (ElMaraghy et al.,

2013). At the Volkswagen group, platforms led to limited product differentiation and

did not achieve the desired adaptation flexibility (ElMaraghy et al., 2013). As a result,

product complexity management is still viewed by 50% of the operations executives in

the automotive industry as an important challenge, while 19% evaluate it even as the

key challenge (Hanna and Kuhnert, 2016).

1.3. Impact of product variety on component demand

forecasts

In the automotive industry, the accurate prediction of the required number of compo-

nents is particularly challenging. The installation of components in vehicles is related

to the options the customers choose for the cars they order. An analysis of the options

interdependencies for 8,592 components of a Mercedes model has shown that the in-

stallation of 82.3% of the components in a car depended on the choice of at least one

option. Under these circumstances, the accuracy of the component demand forecast is

influenced by the accuracy of the forecast for the demand of options.

Automotive manufacturers would benefit from an accurate estimation of the com-

ponent demand. The component demand forecasts are used in the annual sales and

operations planning cycle as an input for the definition of the supply contracts and com-

ponent supply plans (Jana and Grunow, 2017). Inaccuracies in the component supply

plans are propagated to other planning processes such as budget planning. The inaccu-

rate forecasts also have a detrimental impact on short-term supply process performance.

3



Chapter 1. Introduction

Last-minute component demand changes increase the cost of automotive manufacturers

by over $ 1 billion per year. The elimination of component order cancellations alone

would generate savings of up to $ 500 million (Dharmani et al., 2015).

The miscommunication of accurate component demands by the automotive manu-

facturers negatively impacts the cooperation between automotive manufacturers and

their suppliers. Suppliers receive from their customers coarse demand plans months in

advance. As more accurate customer order information is received by the automotive

manufacturers, they update the component demand plans monthly. Most often, the

component demand updates result in significant changes in the quantity of components

ordered. As a result, the suppliers simply do not trust the forecasts communicated by

their customers (Dharmani et al., 2015) and consider their relationship with automotive

manufactures as ‘adequate’ at best (Buchholz, 2016).

Automotive manufacturers attempt to improve the accuracy of the component de-

mand forecasts by deriving them from two types of separate forecasts. One type of

forecast predicts the total volume, a second type of forecast predicts the share of vehi-

cles containing individual options, also known as ‘take-rates’ (Meyr, 2004). However,

the heterogeneity of the customer preferences induces a high volatility in the option

take-rates.

1.4. The potential of option bundling

Option bundling, the sale of two or more options of a product as a package (Stremersch

and Tellis, 2002), aims to reduce product variety without altering the design of products.

It is a flexible methodology that can be used at any point during the product life cycle.

Some mining equipment manufacturers sell their machines together with spare parts.

Online shops like Amazon provide their customers with recommended bundles of prod-

ucts based on their past purchases. The computer manufacturer Dell prices complete

PC systems and notebooks at a lower price than customized systems.

Bundling has widely been claimed to have a positive effect on operations due to a

reduction of product variety (Fisher and Ittner, 1999; Pil and Holweg, 2004). How-

ever, a thorough analysis of the impact of option bundling on product variety is lacking.

Previous literature describes the effects of option bundling on product variety only qual-

itatively or based on small-scale studies of limited practical relevance. Furthermore, no

research so far has investigated the potential of option bundling to stabilize the demand

of the options and thereby improve the accuracy of the option demand forecasts.
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1.5. Requirements for the design of option bundles

1.5. Requirements for the design of option bundles

The design of bundles is often done in an ad-hoc manner, based on the opinion of a small

number of experts or, as recognized by Rickard, 2008, based on anecdotal evidence

that customers would be interested in the purchase of bundles. None of the existing

option bundling methodologies designs bundles such that the operational objectives

are also considered. However, automotive manufacturers would benefit tremendously

from a design methodology that manages to balance the marketing and the operational

perspective.

Appealing bundles can be designed based on actual insights into customer preferences.

For existing options, customer preferences can be deducted from information about

past customer purchases. In contrast to the results from consumer studies, data on

past customer purchases reflects a large number of actual customer decisions and is

readily available. The drawback of purchase data is that often it only illustrates which

option combinations were appealing to customers when they could purchase options

individually. The introduction of bundles restricts customer choices in the case of pure

bundling and extends customer choices in case of mixed bundling. The reaction to

these changes can be predicted by means of customer behavior models, such as discrete

choice models. However, in order to provide accurate reservation price estimations,

these models require data sets with multiple sales prices for each option and detailed

demographic information, which are often not available.

Option bundling methodologies that leverage the large number of past customer pur-

chases available are likely to result in stable revenue and take-rate effects, even for

customers not considered in the design phase. At the same time, bundles should not re-

sult in complex decisions for customers. As noted by Wendt, 2016, customers are more

interested in buying if the selection process is simple and does not require too much

attention.

Various option bundling policies, such as pure bundling, mixed bundling or unbundling,

can be implemented (Adams and Yellen, 1976; Pierce and Winter, 1996). When pure

bundling is implemented, options are sold only as part of bundles. Mixed bundling is

the policy of selling options both as part of bundles as well as individually. No bundles

are offered in an unbundling setting. Pure and mixed bundling can be combined with

discounts to increase the attractiveness of bundles.
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Chapter 1. Introduction

1.6. Research objectives

The overall aim of the thesis is to analyze the potential of option bundles to reduce

product variety and improve component demand forecasts. In this regard, we also de-

velop option bundles design approaches that could actually be used to bundle dozens of

options based on the preferences of thousands of customers. Even though the problems

analyzed in the thesis are relevant for an automotive setting, they can be related to other

industrial sectors in which highly configurable products that require a large number of

components from suppliers are manufactured.

The number of manufactured product variants has a large influence on all other op-

erational measures. As our literature review shows, the impact of option bundles on the

number of car variants has not been studied from a quantitative standpoint. Unfortu-

nately, modeling complexities hinder the integration of the minimization of the number

of car variants as an objective in option bundles design approach. However, we believe

that the approaches that focus on standard objectives, such as the maximization of rev-

enues, can actually impact product variety. Therefore, the first research question of the

thesis is:

RQ1: Do option bundles result in a reduction of product variety and, if yes, which

factors influence the magnitude of the reduction?

The approaches that are used by automotive manufacturers to plan the component

demand rely on the classic Material Requirements Planning (MRP) logic that is not

suitable for a high product variety environment. The approach of Stäblein, 2008 en-

hanced standard MRP approaches by ‘fusing’ customer preferences information and op-

tion take-rate forecasts to derive component demand plans for the suppliers. Stäblein,

2008 demonstrated the superiority of the enhanced MRP approach only for one realistic

test instance. However, the robustness of the results generated by the approach and

its applicability for a typical rolling horizon planning cycle were not studied. The next

research question therefore addresses the gap:

RQ2: Does the enhanced MRP approach developed by Stäblein, 2008 deliver robust

results and can it be embedded in a rolling horizon planning cycle?

A prerequisite for the approach of Stäblein, 2008 is that the take-rate forecasts are

accurate. However, the heterogeneity of the customer preferences hinders the accurate

estimation of option take-rates. We believe that the introduction of option bundles can

stabilize the option take-rates enough to improve options demand forecast accuracy.

However, there are no option bundle design approaches that include take-rate stability
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1.7. Thesis outline

as an objective. The final research question of the thesis is then:

RQ3: How can a stabilization of the option take-rates be included in the design of

option bundles and under which circumstances will bundles lead to a stabilization of the

take-rates?

1.7. Thesis outline

The thesis is based on three research papers that address the research objectives stated

in section 1.6. Chapter 2 provides an overview of the literature on the effects of option

bundles, as well as of the existing option bundles design methodologies.

Chapter 3 quantifies the impact of option bundling on product variety for three car

models of a large German automotive manufacturer. The chapter therefore addresses the

first research question. Since we cannot integrate the minimization of product variety

in an option bundles design methodology, an approach that only maximizes revenues

is introduced. We then apply the approach to evaluate the capability of bundles to

reduce product variety, as well as the robustness of the bundles to different assumptions

regarding customer behavior.

Chapter 4 addresses the second research question by evaluating the performance of the

component demand planning methodology of Stäblein, 2008 for multiple test instances,

including for a rolling horizon planning cycle. In the paper, we first present the short-

comings of the existing MRP approaches for a high-variety context. We then present

the enhanced MRP methodology developed by Stäblein, 2008 that fuses information

from multiple data sources. We compare the performance of the methodology to the

performance of a standard MRP approach, as well as of a state-of-the-art time-series

software package.

Since the method of Stäblein, 2008 requires accurate forecasts for the demand of

options as input, we investigate in chapter 5 the potential of option bundles to stabilize

the option demand patterns and thereby improve the option take-rate forecast accuracy.

We present the option bundles design model and the approach that balances revenues

and take-rate stability. In the numerical tests we investigate the impact of the bundles

on the trade-off between the two measures for a pure and a mixed bundling case.
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Chapter 1. Introduction

1.8. Included publications

The chapters in this thesis are based on individual publications that are readable as in-

dividual contributions. Combined, the papers illustrate the potential of option bundling

to improve operational measures, such as product variety or take-rate stability. Together

with the methodology of Stäblein, 2008, option bundling has the potential to increase

component demand forecast accuracy. The chapters are based on the following sources:

Chapter 2 Synthesis of the literature reviews in Popa et al., 2017 and Popa and

Grunow, 2017

Chapter 3 Popa, R. C. et al. (2017). “Product variety reduction through data-driven

option bundling”

Chapter 4 Stäblein, T. et al. (2016). “Enhancing MRP-based component demand

planning in a high-variety context”

Chapter 5 Popa, R. C. and M. Grunow (2017). “Stabilizing the demand for car

options by bundling”
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Chapter 2.

Related literature on option bundling

This chapter is a synthesis of the literature reviews in Popa et al., 2017 and Popa and

Grunow, 2017.

Research on option bundles has been devoted so far in two directions: the impact of

option bundles and the design methodologies. We provide an overview of both literature

streams.

2.1. Effects of option bundles

Since the introduction of the option bundling concept, research has mostly been devoted

towards determining its impact from a marketing and an economics perspective. The

perspectives on the impacts of bundling can be grouped into three categories: the impact

on consumer purchases and revenues, the impact on product quality and forecasts, and

the impact on buffers and costs.

The perspective in the literature regarding the impact of bundling on consumer pur-

chases and revenues, such as Stigler, 1963, shows how bundling can increase the profit of

the seller when consumer valuations are negatively correlated. Adams and Yellen, 1976

illustrate with a two-dimensional graphical framework and stylized examples that pure

and mixed bundling can in some cases be more profitable than unbundling. Schmalensee,

1984 confirms the profitability of bundling and the benefits of mixed bundling over pure

bundling for a negative demand correlation between the options. Behavioral customer

research on bundling and the corresponding price framing are analyzed by Soman and

Gourville, 2001. They explain price bundling effects by augmenting the economic model

with a measure of ‘how good a deal’ the customer is getting through a bundle acquisi-
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Chapter 2. Related literature on option bundling

tion. Central to their behavioral approach is the calculation of ‘gains and losses’ relative

to a set of reference points (which differ from the reservation prices used in economic

models) and the fact that ‘losses’ are more detrimental than corresponding ‘gains’. Cao

et al., 2015 show that bundling could be especially beneficial when at least one of the

products included in the bundle is in limited supply and the valuation of the products

is positively correlated. Chakravarty et al., 2013 illustrate that bundling can increase

the profit of a supply chain for high margin products with similar valuations and a

low demand correlation if the supply chain partners coordinate to eliminate a double

marginalization.

The second perspective on bundling addresses the impact of bundling on product

quality and forecasts. Pil and Holweg, 2004 discuss empirical evidence from automotive

manufacturers that bundling can reduce forecast error and thus the stock obsolescence

risk. They find that manufacturers can also greatly simplify their whole distribution

system by offering options as coherent bundles rather than offering all possible option

permutations.

The third perspective highlights the potential of option bundling to reduce buffers and

costs. Fisher and Ittner, 1999 recognize that bundling can reduce the required buffer

capacity inside a manufacturing plant. Ringbeck et al., 1999 state that the introduction

of option bundling can improve manufacturing productivity and lead to manufactur-

ing cost savings via economies of scale. Additionally, the ‘complexity costs’ resulting

from managing product variety in the production process are reduced. The results are

confirmed by Bitran and Ferrer, 2007 for the high-tech manufacturing industry. Eppen

et al., 1991 report the profit improvement potential of option bundling for the case of

an automotive manufacturer.

The impact of option bundles on forecasts has been studied qualitatively, whereas

there is no literature on the impact of option bundles on product variety. Whereas

the literature shows that option bundling reduces costs, there are no guidelines for the

integration of these effects in option bundles design methodologies.

2.2. Option bundles design methodologies

The few existing option bundling methodologies can be categorized based on the type of

input required: one set of methodologies requires reservation prices, whereas the other

methodologies require as inputs the ‘product attractiveness’.

In Hanson and Martin, 1990 and Wu et al., 2008, the reservation prices for the products
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2.2. Option bundles design methodologies

being bundled are known, whereas in Tönshoff et al., 1999 and Fuerderer et al., 1999,

the reservation prices for the candidate bundles are known. All these methodologies

design bundles using mathematical models. Whereas the model of Hanson and Martin,

1990 can generate any bundle, the models of Tönshoff et al., 1999 and Fuerderer et al.,

1999 determine which bundles to select from a list of bundle candidates. The model of

Wu et al., 2008 only specifies the number of products the customers can select to design

their own customized bundle. For all methods, the prices of the bundles can be defined

individually.

Chung and Rao, 2003, Bitran and Ferrer, 2007 and Cataldo et al., 2017 require as in-

puts the ‘attractiveness’ of the products included in the bundle with regards to a number

of predefined attributes. These methodologies employ discrete choice models to derive

the probability that customers would select certain bundles. Bitran and Ferrer, 2007

extended the method of Chung and Rao, 2003 by modelling a competitive environment.

Cataldo et al., 2017 extended the methodologies of Chung and Rao, 2003 and Bitran

and Ferrer, 2007 such that a pre-specified number of bundles could be generated.

There are a number of methodologies that do not maximize the profit of the bundles

seller. The objective of Dixon and Thompson, 2016 is to schedule and bundle various

events on different stages so that the customer satisfaction with the bundles they select

is maximized. The method of Proano et al., 2012 determines bundles of vaccines and

their prices such that the surplus society obtains from them is maximized.

All option bundles design methodologies except Dixon and Thompson, 2016 only fo-

cus on a single objective: on the improvement of profits, revenues, satisfaction or social

surplus. However, none of the methods can integrate two conflicting objectives. The

methodologies do not even incorporate operational measures as objectives. They do

not highlight the influence of bundling on actual product variety. The existing option

bundling approaches focus more on the pricing of the bundles rather than the composi-

tion design. With regards to input requirements, most methodologies need a considerable

amount of data or data which can not be easily gathered. For Chung and Rao, 2003, Bi-

tran and Ferrer, 2007 and Cataldo et al., 2017 the attractiveness of the products included

in the bundles with regards to certain attributes needs to be estimated. Furthermore,

the methods of Wu et al., 2008, Proano et al., 2012 and Dixon and Thompson, 2016

are not suitable for a manufacturing scenario. The methodology of Wu et al., 2008 can

only be used for products with low variable costs, such as software. The methodology of

Dixon and Thompson, 2016 is very customer-centric and cannot integrate an operational

objective. The method of Proano et al., 2012 is only suitable for a pharmacoeconom-
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ical setting. Moreover, none of the option bundling approaches is capable of handling

realistic test instances.
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Chapter 3.

Product variety reduction through

data-driven option bundling

This chapter is based on an article submitted as:

Popa, R. C. et al. (2017). “Product variety reduction through data-driven option

bundling”

3.1. Introduction

The mantra of many manufacturers has been to enable extensive product customization

such that customers can tailor products to their individual needs. However, offering

customers an ever increasing range of choices does often not go along with increased

competitiveness (Alptekinoğlu and Corbett, 2008). Dell was once the prime example of

a manufacturer with high levels of product variety. However Dell has moved towards

preconfigured personal computers, mainly because their online configuration system had

become too complex and costly. Levi Strauss allowed its customers to customize jeans

between 1993 to 2003, but abandoned the project due to the poor results. Samsung, of-

fered a wide range of smartphone models and managed to obtain a 17% operating margin

on their smartphones sales in the second quarter of 2016. Apple, in contrast, generated

a 38% operating margin in the same period on their narrower range of smartphones.

The automotive industry is an example of a sector in which customers can choose be-

tween dozens of options, such as multimedia and driving assistance systems or aesthetic

and safety enhancements, to customize their vehicles. The wide spectrum of available

choices results in a large number of potential car variants (2.1 · 1020 for volume vehicles
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Chapter 3. Product variety reduction through data-driven option bundling

like the Volkswagen Golf, 4.7 · 1024 for luxury vehicles such as the Mercedes C-class)

(Staeblein and Aoki, 2015). The number of car variants actually built is lower than the

theoretical number, but still causes significant efficiency and responsiveness losses. This

is a key motivation for many automotive manufacturers to introduce option bundles in

their (online) car configurators.

Despite their significant impact on revenues, the design of bundles is often done in

practice in an ad-hoc manner, based on the opinion of a small number of experts. Struc-

tured option bundling approaches exist that use actual insights into customer preferences

and especially into the appeal of product combinations. However, these approaches of-

ten require input data that is difficult to collect or estimate, such as the willingness to

pay of customers for individual options, also known as reservation prices. Traditionally,

estimates for reservation prices are obtained from conjoint analyses. The drawback of

conjoint analyses is that they require costly customer studies. When the number of

options is large, such consumer studies may not be feasible.

For existing options, customer preferences can alternatively be deduced from informa-

tion about past customer purchases. In contrast to the results from customer studies,

data on past customer purchases reflects a large number of actual customer decisions and

is readily available. The drawback of purchase data is that often it only illustrates which

option combinations were appealing to customers when they could purchase options in-

dividually. The customer behavior changes caused by the introduction of bundles can be

predicted by means of customer behavior models, such as discrete choice models. How-

ever, these models require data sets with multiple sales prices for each option, which are

often not available. Nevertheless, this paper still aims to exploit the available purchase

data without reliance on customer models that have excessive input data requirements.

In this paper, we focus on pure bundling, as it is the bundling policy that has the

potential to reduce product variety the most. It forces customers to decide whether they

buy all options in a bundle or none at all.

Our main contribution is the quantification of the impact of option bundling on prod-

uct variety for realistic settings. We develop a data-driven parallel bundling approach

that is capable of generating a pre-defined number of bundles for realistic test instances.

The effort connected to designing bundles is limited by using data that is often readily

available: the prices of the options and past customer purchases. Manufacturers can

use our approach for an efficient evaluation of the impact of the bundle number and the

bundle discount rate on the number of car variants and revenues. For a case study in the

automotive sector, we show that option bundling is an effective product variety mitiga-
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tion strategy. Manufacturers can choose between many bundle designs that reduce the

number of car variants and simultaneously increase revenues. While no bundle discounts

are required for a customer base with homogeneous preferences, the discounts must be

carefully selected for a customer base with heterogeneous preferences. The case study

results also show that the proposed bundle design approach is robust. The performance

of the determined bundles is impervious to customers showing reactions different from

those predicted by the employed customer behavior model.

In 3.2 we describe the mathematical model for designing bundles that only maximize

revenues given the current customer behavior model. We present the adapted branch-

and-price approach for generating bundles in section 3.3. Section 3.4 contains an analysis

of the effects the bundles generated by our approach on product variety and revenues

for various settings. We conclude with managerial and theoretical implications of our

work as well as potential extensions in section 3.5.

3.2. Model description

Considering the limitations of the existing option bundling approaches, we devised an

approach that generates a required number of bundles based on past customer purchases.

The approach does not necessitate the estimation of detailed customer information such

as option-specific reservation prices. We describe the behavior of a customer when being

offered bundles using only one parameter: the willingness to spend of a customer for

a bundle. The parameter is expressed as a percentage of the price of the options that

are part of the bundle and that were acquired in the past by the customer. When each

option is allocated to only one bundle, the customer purchases a bundle if the willingness

to spend for a bundle exceeds the bundle price. Based on our model, customers are

motivated to purchase options they did not in the past, if the willingness to spend for a

bundle that contains such options exceeds the bundle price. Bundle discounts can lower

the price of a bundle such that the bundle becomes attractive for customers. We show

in our numerical experiments that such a simplified description of customer behavior

is sufficient for the purpose of bundling options. Similar results are obtained for more

elaborate customer choice models that require significantly more detailed customer data.

In this paper, we allocate each option to one bundle. Since this policy has the potential

to inherently reduce product variety, the bundles must be designed to maximize revenues.

We therefore developed a binary linear model for designing option bundles such that

revenues are maximized. An option can be assigned to multiple bundles if copies of
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that option are created and added to the set of options that need to be bundled. The

purchase of a bundle that contains at least two options is rewarded with a discount. The

discount rate is set in advance by the marketing department. The definition of its value

is not within the scope of our model. We use the following notation:

Sets:

o ∈ O Set of options

b ∈ B Set of bundle candidates

c ∈ C Set of past customers

Parameters:

n Number of bundles to design

fo,b 1 if option o is included in bundle b, 0 otherwise.

Sc,b 1 if customer c would select bundle b, 0 otherwise

rb Total revenues generated by bundle b if offered

ρc Willingness to spend for a bundle: percentage of the price of

the options purchased by the customer in the past that are

included in a bundle (ρc ≥ 1)

d Common bundle discount for all bundles

po Original selling price of option o

so,c 1 if option o was selected in the past by customer c, 0 otherwise

Decision variables:

λb 1 if bundle b is offered, 0 otherwise.

The set of all possible bundles B consists of all possible combinations of the elements

in set O. The binary matrix fo,b represents the bundle structure. If required, it is also

possible to create a restricted set of bundles B. For example, the set could contain only

the bundles with a number of options below a certain threshold.

Based on our customer model and since each option is allocated to only one bundle,

it is possible to calculate in advance how much revenues each bundle generates, if it is

offered. Let Sc,b be an auxiliary parameter which takes on the value 1 if customer c

would acquire bundle b, 0 otherwise. For bundles that contain at least two options, the
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value of the parameter is determined based on the following expression:

Sc,b =

{
1 if

∑
o∈O ρc · po · so,c · fo,b ≥

∑
o∈O po · (1− d) · fo,b

0 otherwise
(3.1)

A customer c acquires a bundle b if the price of the bundle (
∑

o∈O po · (1 − d) · fo,b)
does not exceed the predefined percentage (ρc) of the value of the options acquired in

the past that are included in the bundle (
∑

o∈O ρc · po · so,c · fo,b).
After determining for each customer if she will acquire the bundle, the total revenues rb

generated by bundle b, should it be offered, are determined using the following expression:

rb =
∑
c∈C

(Sc,b ·
∑
o∈O

(1− d) · fo,b · po) (3.2)

After these preprocessing steps, the allocation of options to bundles can be represented

mathematically as a simple binary knapsack problem:

Objective function:

Maximize
∑
b∈B

rb · λb (3.3)

Subject to: ∑
b∈B

fo,b · λb = 1, ∀o ∈ O (3.4)∑
b∈B

λb = n. (3.5)

Objective function (3.3) maximizes the revenues that result from the bundles offered.

Constraint (3.4) ensures that each option is included in only one of the offered bundles.

Constraint (3.5) requires that n bundles are selected from set B.

3.3. Branch-and-price approach for designing option

bundles

It is not possible to use the model presented in the previous section for realistic settings,

as the size of set B grows exponentially in the set of options to be bundled. Even when

reducing set B to contain all the bundles with an acceptable number of options, the

number of elements in the set is still too large to be handled by a commercial solver.

We therefore can determine the option bundle designs by means of a branch-and-price
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approach. The approach (based on Barnhart et al., 1998) iteratively adds bundles which

improve the revenues that result from a starting solution. We describe the constituents

of the approach in the following subsections (outline of the approach in Appendix A).

3.3.1. Column generation procedure and branching scheme

In our column generation procedure, we use an adapted version of the model defined by

expressions (3.3) - (3.5). The adaptations of the decision variables are:

� The decision variables λb are relaxed (i.e. λb ∈ [0, 1] instead of λb ∈ {0, 1}) to

derive the dual variable values.

� Additional positive continuous decision variables feas+ and feas− are defined to

ensure that there will always be a feasible solution for the relaxed master problem.

The relaxed master problem model is presented in the following:

Maximize
∑
b∈B

λb · rb − (|C| ·
∑
o∈O

po + 1) · feas+ − (|C| ·
∑
o∈O

po + 1) · feas− (3.3’)

subject to:

Constraint (3.4)∑
b∈B

λb = n+ feas+ − feas− (3.5’)

Constraint (3.5) is extended in constraint (3.5’) to allow deviations from the required

number of bundles. However, the deviations are penalized in the adapted objective

function (3.3’) to ensure that the required number of bundles is offered if possible.

After solving the relaxed master problem, the dual variable values πopt corresponding

to constraint (3.4) and πnoBund corresponding to constraint (3.5’) are derived. The values

are used in the subproblem to generate bundles which lead to an improvement of the

objective function (3.3’). Such bundles are obtained either by means of a heuristic or by

using a mathematical model (both described in section 3.3.2). We first use the heuristic

and, if it fails to find any objective-improving bundle, then we use the subproblem model.

An optimal solution of the relaxed master problem is confirmed when the subproblem

model cannot find any objective-improving bundle.
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If the optimal solution for the relaxed master problem is also feasible for the original

problem (i.e. if there is no non-binary decision variable value) and is better than the

best solution found so far, we replace the best solution with the current one. However,

if the solution of the relaxed master problem is not feasible for the original problem,

but the objective function value of the relaxed master problem is better than the best

solution found so far, then we use a branching scheme based on Ryan and Foster, 1981

(named in the following BS1) to search for an integer solution. After all branches have

been visited, the best solution found by the approach is the optimal solution for the

model presented in section 3.2.

The branching scheme generates a list of candidate branches L. The elements of

type (o1, o2, 1) in the list represent the branches that enforce that options o1 and o2 are

either both allocated or are both absent in the generated bundles. The elements of type

(o1, o2, 0) in the list represent the branches in which the bundles contain either option

o1, o2 or none of the two options. The separation of the solution space is based on the

pair of options o1 and o2 for which the branch (o1, o2, 1) results in the highest revenues

after eliminating the illegal bundles. All other candidate branches are removed from set

L. The branch (o1, o2, 1) is explored first, since it leads to an integer solution faster.

The branch-and-price approach can be also used as a matheuristic by skipping the

search for a bundle using the subproblem model. If the subproblem heuristic cannot

find any bundles to improve the objective, then the matheuristic directly checks whether

further branching is needed.

3.3.2. Subproblem model and heuristic

The mixed-integer linear model for the subproblem generates the bundle that can im-

prove the objective of the relaxed master problem the most, i.e. which has the highest

positive reduced costs.

We use the following additional notation for the subproblem model:

Additional parameters:

m : Maximum number of options in a bundle

Mc Big, customer-specific numbers

M ′ Maximum price of a bundle that contains m options

Decision variables:
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xo : 1 if option o is included in the new bundle, 0 otherwise

yc : 1 if customer c acquires the new bundle, 0 otherwise

Φc : Revenues generated by customer c due to the new bundle,Φc ≥ 0

Objective function:

Maximize
∑
c∈C

P −
∑
o∈O

πopt · xo − πnoBund (3.6)

The objective function (3.6) represents the maximization of the reduced costs of the

new bundle. The first term represents the revenues generated when offering the new

bundle. The second term represents the objective reduction resulting from the options

included in the bundle.

The new bundle must fulfill the following constraints:∑
c∈C

P −
∑
o∈O

πopt · xo − πnoBund > 0 (3.7)∑
o∈O

xo ≥ 2 (3.8)∑
o∈O

xo ≤ m (3.9)∑
o∈O:so,c=1

po · xo · ρc −
∑
o∈O

po · xo · (1− d) +Mc · (1− yc) ≥ 0,∀c ∈ C (3.10)

P ≤ (1− d) ·
∑
o∈O

po · xo,∀c ∈ C (3.11)

P ≤M ′ · yc,∀c ∈ C (3.12)

xo1 = xo2 ,∀o1, o2 ∈ O : (o1, o2, 1) ∈ l (3.13)

xo1 + xo2 ≤ 1,∀o1, o2 ∈ O : (o1, o2, 0) ∈ l (3.14)

Constraint (3.7) enforces that only the bundles which improve the objective function

of the relaxed master problem are generated. Also, the constraint improves the com-

putational performance of the model. Since all ‘bundles’ that contain one option are

available at the start of our approach, constraints (3.8) and (3.9) enforce that the gener-

ated bundles should contain between 2 and m options. Constraint (3.10) represents the

bundle selection mechanism of the customers. A customer will not select a bundle if the

percentage value ρc of the options included in the bundle and that were purchased by

her in the past is less than the price of the bundle. Constraints (3.11) and (3.12) set the
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correct revenue generated by the new bundle for each customer. A customer will pay

the discounted price of the bundle if she purchases the bundle, 0 otherwise. Constraints

(3.13) and (3.14) enforce the active branching constraints.

After finding the optimal solution for the subproblem model, the new bundle b and

the total revenues generated by offering it,
∑

c∈C P are added in the relaxed master

problem model.

The model is also used to determine the upper bound of the branch-and-price approach

before starting it. By removing the objective function terms which include the dual

variables, the model determines the maximum revenue which can be obtained by offering

a bundle. Since solving this model requires a considerable amount of computation time,

we use the upper bound of the revenues found during a predefined amount of time to

determine the upper bound for our approach. We define MaxObj as the upper bound of

the revenues, Obj as the objective function of the relaxed master problem, and MinRed

as the minimum reduction of the objective function due to the dual variable values. The

upper bound for the reduced costs is then calculated by using the following expression

(Lübbecke and Desrosiers, 2005):

Obj + n · (MaxObj −MinRed) (3.15)

This upper bound may not in fact be attainable by means of an actual bundle, since

these reduced costs are only calculated based on the dual values of individual options,

without simultaneously considering possible bundle compositions. In the first iteration

of the column generation approach, the upper bound is tightened by obtaining the

maximum reduced costs resulting by means of a bundle. To this end, we use the upper

bound found by the solver for the complete subproblem model during a predefined

amount of time. Let MaxObj2 be the subproblem upper bound value. The second

upper bound for the approach is then:

Obj + n ·MaxObj2 (3.16)

Solving the subproblem model is computationally expensive. To speed up the column

generation process, we developed a simple greedy multicore heuristic subroutine. First,

it determines the bundles that contain two options and that do not violate the active

branching constraints. Each of these bundles is then processed by an available CPU

core. Each bundle is iteratively expanded with the options that increase the reduced

costs the most and do not violate the active branching constraints. The processing of
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Chapter 3. Product variety reduction through data-driven option bundling

a bundle on a CPU core is terminated as soon as the maximum number of options in

a bundle has been reached, all options have been added to the bundle, or the reduced

costs cannot be improved by adding an option. As soon as the processing of a bundle

on a CPU core is done, the core starts processing one of the remaining bundles. The

outline of the subproblem heuristic is illustrated in Appendix B.

If the subproblem heuristic cannot find any objective-improving bundle, the subprob-

lem model is used in the optimizing branch-and-price approach to find the bundle that

improves the objective function of the relaxed master problem the most.

3.4. Computational study

We tested our branch-and-price approach on data made available by a large German

automotive manufacturer. The purpose of our experiments was to quantify the potential

of option bundles to reduce the number of car variants. We define a car variant as a

unique combination of options that results from the bundles selected by the customers.

In addition, we analyzed whether the generated bundles would lead to an increase of

revenues, independent of the underlying customer behavior model.

In section 3.4.1 we present the data made available to us, as well as the computational

hardware used for the tests. Since the optimal branch-and-price approach required a lot

of time to generate bundles, we used the matheuristic version of the approach and

compared it with the optimizing approach on test instances with a small number of

options. The results of the comparison are presented in section 3.4.2. In section 3.4.3 we

evaluate the results of the branch-and-price matheuristic on a realistic case study that

includes the preferences of thousands of customers. In section 3.4.4, we determine the

robustness of our approach to input inaccuracies.

3.4.1. Case study data and implementation

Data for three car models was used for the numerical computational study: a volume

model (M1), a niche model (M2) and a luxury model (M3). For each model, we were

provided with a list of options to be bundled, a set of past customers and their option

selections, as well as the point in time when the orders were placed. Table 3.1 illustrates

the structure of the past purchases data. Table 3.2 presents the number of options and

customers included in our analysis, as well as the number of months over which the

customer orders were spread.
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Order month Order number Options selected
1 A1 O5; O23; O42; O63; ...
1 A2 O1; O2; O23; O42; ...
...

Table 3.1.: Structure of the provided past purchases data

Car model M1 M2 M3
# options 44 47 50
# customers 150,194 39,194 36,025
# months 10 9 7

Table 3.2.: Number of options, customers and months considered in the case study

To ensure that the bundles were accepted by the marketing department of the auto-

motive manufacturer, we generated bundle designs containing a number of bundles that

varied between |O| − 1 and d|O|/2e. We did not limit the number of options included

in a bundle, since the approach did not generate large bundles.

We split the customer dataset into a training and a validation dataset. The training

dataset was used by the branch-and-price approach. We evaluated on the validation

dataset how the customers would react when confronted with the generated bundles.

The purpose of the split was to determine the general validity of the effects of the

bundles on the number of car variants and revenues. We used the purchase data from

the last three months for each car model as validation data. The purchase data from all

the remaining months were used as training data.

We ran all our tests on an octacore 2.1 GHz Intel Xeon machine with 16 GB RAM. We

used IBM ILOG CPLEX 12.6 to solve the relaxed master problem and the subproblem

models. The branch-and-price approach was implemented in C#.

3.4.2. Performance of the matheuristic

We first compared the performance of the branch-and-price matheuristic (Heur) to the

original branch-and-price approach (Opt). We used all available customer data for the

comparison. We used ten test instances for each car model, each with ten randomly

selected options. We generated bundle designs containing between five and nine bundles.

We set a time limit of ten hours per bundle design for the approaches. If an approach
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Car model M1 M2 M3
Approach Opt Heur Opt Heur Opt Heur
% # of instances that require
less than 10 hours

97.91% 100% 85.71% 97.95% 97.87% 97.87%

% # of instances with identical
solutions for the matheuristic
and the optimal approach

93.75% 95.91% 100%

Average gap between
the optimal approach and
the matheuristic for the
non-identical solutions

0.96% -0.24% 0%

Table 3.3.: Computational performance of the approaches

required more than ten hours, it provided as output the best design found so far. We

let CPLEX search one hour for the upper bound of the revenues that can be generated

by a single bundle and 15 minutes for the upper bound of the reduced costs generated

by a single, column-generation-iteration-specific bundle.

Table 3.3 illustrates the share of test instances for which the approaches found a

solution in less than ten hours, the share of test instances in which the matheuristic

found a solution at least as good as the original approach, as well as the average gap

between the optimal and the matheuristic solution.

The matheuristic required significantly less time to find solutions compared to the

original approach. The mean computation time for the test instances requiring less than

ten hours was 414.20 seconds for the optimal branch-and-price approach, whereas for the

matheuristic was 11.52 seconds. Figure 3.1 highlights the spectrum of the computation

times over all test instances.

The matheuristic identified the same solution as the optimal approach in at least 93%

of the test instances. The revenues for model M1 were on average 0.96% lower for the

matheuristic than for the optimal approach. For model M2, in almost 5% of the test

instances the matheuristic found a solution that was better than the one provided by

the optimal approach. In the ten hours of computation time, not only did the optimal

approach not find the optimal solution, but it was also unable to find a better solution

than the matheuristic.

The results highlight the efficiency of the simple parallel subproblem heuristic. The

subroutine generated multiple bundles that in most cases lead to the optimal master

problem solution in a small amount of time. Analyzing the iterations of the optimal

branch-and-price approach, we observed that the subproblem model most often just
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Figure 3.1.: Computation time for the small dataset

confirmed the non-existence of any bundle with positive reduced costs.

There were instances in which the branch-and-price matheuristic also had a poor

computational performance. In these, the number of branches being evaluated was

extremely large. However, since our matheuristic does not ever generate an optimal

solution for the subproblem, we could not use dual bounds such as the one in Vanderbeck,

2011 to further prune the branches considered. We identified an upper bound only in

the root node of the branch-and-price approach, since this process is computationally

intensive.

3.4.3. Analysis of the generated bundles

Since the matheuristic performed very well for the small datasets, we used it for every car

model to generate bundles based on all options provided. We analyzed the computational

performance of our approach and the relevance of the generated bundles for real-life

situations. We also identified the impact of option bundling on the number of car

variants and the revenues for different discount levels and as well as willingness to spend

levels.

As in section 3.4.2, we generated bundle designs with a number of bundles ranging

between d|O|/2e and |O| − 1. The approach stored the best bundle design found in at

most 10 hours. Based on discussions with colleagues from the automotive manufacturer,

we used a common willingness to spend value ρc = ρ∗ of 110%. We ran additional tests

for a ρc value of 105% and 115%. We generated bundles for various discount rates: 0 %,

10 % and 20 %.
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Computational analysis and model validation

In Table 3.4, the average computation time, the share of test instances solved to opti-

mality, as well as the average and the maximum optimality gap for suboptimal bundle

designs are presented. The average computation time was less than 11,000 seconds. De-

spite the large size of the test instances, our approach generated many optimal bundle

designs in less than 10 hours. Based on the upper bound values, we demonstrated that

at least 50% of the generated configurations were optimal. When the approach did not

guarantee optimality, the average optimality gap was lower than 0.3 %.

Car model M1 M2 M3
∅ computation time (s) 10799.18 8419.79 5049.98
% test instances solved to optimality 56.36% 59.13% 55.20%
∅ optimality gap for suboptimal
bundle designs

0.22% 0.09% 0.29%

Maximum optimality gap for suboptimal
bundle designs

1.26% 0.66% 1.20%

Table 3.4.: Average computation time, share of optimal test instances, average and max-
imum optimality gap

We also evaluated the practical relevance of the generated bundles. It was especially

important not to have a large number of options grouped together in a bundle. For

a number of bundles close to the number of options, the approach generated bundles

containing two options. Examples are a bundle consisting of a right comfort seat and

a moonroof as well as a bundle consisting of a leather steering wheel and a 7-gear

automatic gearbox. As the number of bundles was reduced, the number of options

included in a bundle increased, but never exceeded seven options. Examples for larger

bundles are a bundle consisting of a 4-zone air conditioning system, an ashtray, and a

fire extinguisher, as well as a bundle consisting of a left comfort seat with additional

support, a tire pressure monitoring system, and exterior sports styling.

Number of car variants and revenues

To analyze whether the generated bundles would also be appealing to customers not

considered during the bundling process, we measured the correlation of the number of

car variants and the revenues between the training and the validation datasets (shown

in Table 3.5). The high correlation values suggest that the bundles have similar effects

on product variety and revenues when offered to customers not considered during the
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Car model M1 M2 M3
Correlation of # car variants 0.9995 0.9983 0.9600
Correlation of revenues 0.9902 0.9848 0.8257

Table 3.5.: Correlation of the number of car variants and revenues for the three car
models

design phase. The next analyses are done only based on the validation datasets, to

ensure that a good performance cannot be explained by the fact that the bundles were

tailored for the customers considered in the analysis.

Figure 3.2 presents the changes of the number of car variants, whereas Figure 3.3

illustrates the changes of the revenues compared to the unbundling case for the three

car models. The x-axis for both figures represents the ‘bundling intensity’. We define

bundling intensity as the percentage of options that are included in bundles of at least

two options. The bundling intensity is calculated by using the following expression:

1− n

|O|
(3.17)

Our results confirm that pure bundling decreases the number of car variants with in-

creasing bundling intensity, irrespective of the car model considered and the bundle

discount. For a bundling intensity of 50%, the number of car variants is reduced by 63%

for model M1, 30% for model M2 and 27% for model M3. The number of car variants

seems to have been reduced more for model M1 than for M2 and M3 due to the higher

homogeneity of the customer base and higher range of the option prices for model M1.

Whereas the ratio of the number of car variants in the unbundling case to the number of

customers is 22.93% for model M1, for models M2 and M3 the ratio is 48.71%, respec-

tively 39.92%. The approach used options that many customers wanted as a catalyst

for the acquisition of options for which the customer preferences were mixed.

The key advantage of our approach is that it not only reduces the number of car

variants, but also improves revenues. As shown in Table 3.6, the bundle designs that

generated the highest revenues increased revenues by up to 4% compared to unbundling

and reduced the number of car variants by up to 9%. Figure 3.3 illustrates that revenues

increased as long as the bundling intensity did not exceed 44% for model M1, 45% for

model M2, and 12% for model M3. When the bundling intensity was high enough that

the revenues equaled those for unbundling, the number of car variants were reduced by

up to 50%.
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Figure 3.2.: Change of the number of car variants compared to the unbundling case

Car model M1 M2 M3
# car variants Revenues # car variants Revenues # car variants Revenues

Values for bundle design
with maximum revenues

92.09% 104.60% 97.98% 104.11% 98.77% 101.34%

Values for first bundle design
with revenues lower than unbundling

44.56% 99.86% 75.84% 99.14% 98.56% 98.84%

Table 3.6.: Number of car variants and revenues for the maximum revenue bundle design
and for the first bundle design with revenues below those in unbundling

For low bundling intensities, the approach generated option bundles containing two

options. Here, the large willingness to spend for one option was used to increase the sales

of a second option. However, for a bundling intensity higher than 12%, the addition of

options to bundles only decreased revenue. The sales of the remaining unbundled options

were reduced when they were included in a bundle.

The revenues were increased compared to unbundling for a higher bundling intensity

for models M1 and M2 than for model M3. One of the reasons for this result is the

variance of the option prices for M3 together with the more heterogeneous customer

base. It was more difficult to ensure for model M3 that the willingness to spend would

cover the price of the bundles.

When the bundling intensity was increased, our approach sometimes attempted to

avoid a revenues reduction at the cost of an increase in the number of variants by a

28



3.4. Computational study

90%

95%

100%

105%

0% 10% 20% 30% 40% 50%%
 r

ev
en

u
es

 c
o
m

p
ar

ed
 t

o
 

u
n

b
u

n
d
li

n
g

Bundling intensity

Model M1

0% discount

10% discount

20% discount

Model M1

90%

95%

100%

105%

0% 10% 20% 30% 40% 50%%
 r

ev
en

u
es

 c
o

m
p

ar
ed

 t
o

 

u
n

b
u

n
d
li

n
g

Bundling intensity

Model M2

Model M3

Bundling intensity

90%

95%

100%

105%

0% 10% 20% 30% 40% 50%
Bundling intensity

Model M3

Figure 3.3.: Revenues change compared to the unbundling case

small amount. This is an effect of the revenue maximization objective pursued in our

approach.

Our results show that, by simply introducing option bundles, it is possible for the

current case study and for our customer model to increase revenues while simultaneously

reducing the number of car variants being manufactured. These effects can already be

observed for no bundle discount.

Effect of bundle discount

In practice, option bundles are often introduced at a discount to compensate customers

for the loss in customization flexibility. We therefore analyzed the impact of various

bundle discount levels (10%, 20%) on the number of car variants and revenues.

For models M1 and M2, discounts had only a small impact on the number of car

variants and revenues. The sales numbers were higher than in the unbundling case.

However, the revenue remained stable due to the discount of the option price.

For model M3, the discounts had a more significant impact. A discount rate of 10%

increased the bundling intensity, up to which the revenues were higher than in the

unbundling case from 12% to 46%. Here, the number of car variants was reduced by 29%

compared to unbundling and by 27% compared to the no-discount case. The revenues

were increased by up to 2.66% compared to the unbundling case and 1% compared to
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the no-discount case. The revenue maximal bundle design reduced the number of car

variants by almost 7% compared to the unbundling case and 5% compared to the no-

discount case. When a discount of 20% was offered, attractive, expensive options were

sold unbundled to avoid the bundle discount and maintain high revenues. However, this

also led to reduced sale of the bundles and a corresponding loss of the variant reduction

potential.

Our results for model M3 indicate that manufacturers benefit from offering bundle

discounts for a customer base with heterogeneous preferences. The choice of a moderate

discount level avoids revenue neutral free-rider effects on the one hand and a loss in

product variety reduction on the other.

Effect of willingness to spend

After evaluating the impact of the discounts, we then measured the impact of the will-

ingness to spend parameter on the number of car variants and revenues for each car

model. We used the discount rates than generated the highest revenues: no discount for

models M1 and M2, 10% for model M3. For each car model, we generated additional

bundle designs for a 105% and a 115% willingness to spend values. Figure 3.4 presents

the Pareto curves of the relative number of car variants and revenues compared to un-

bundling for the three ρ∗ levels tested: 115%, 110% and 105%. Each curve represents

the revenues and number of car variants combinations for the bundle designs that have

a bundling intensity higher than the revenue-maximal bundle design. The bundle de-

signs with a bundling intensity lower than the revenue-maximal design generate a larger

number of car variants compared to the designs with a higher bundling intensity than

the revenue-maximal design, while the revenues are similar. Therefore the designs with

an intensity lower than the revenue-maximal design are dominated and are not included

in the Pareto curves.

Similar to previous results, all bundle designs reduced the number of car variants

compared to unbundling. For a willingness to spend of 115%, the bundle designs of

our approach always increased the revenues compared to unbundling. Even for a very

conservative willingness to spend of 105%, the revenues were higher than those for un-

bundling for a bundling intensity of up to 34% for model M1, 27% for model M2 and

14% for model M3.

The analysis of the Pareto curves in Figure 3.4 highlighted that the number of car

variants reduction had the same pattern for all car models, irrespective of the willingness

to spend level. This was mainly a result of the similarity of the structure of the bundles
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Figure 3.4.: Pareto curve of the number of car variants and revenues compared to un-
bundling for different willingness to spend levels

generated by the approach. Irrespective of the willingness to spend level, the approach

first generated small bundles containing two options. As the bundling intensity was

increased, the approach created larger bundles that resulted in a larger reduction of the

number of car variants. For a willingness to spend of 115%, the reduction of the number

of car variants was larger for model M1. The approach exploited the higher willingness

to spend by creating larger bundles, which further reduced the number of car variants.

The willingness to spend analysis shows that our approach can efficiently exploit any

level of willingness to spend. Even for a conservative willingness to spend value of

105%, our approach finds bundle designs that reduce the number of car variants and

simultaneously increase the revenues.

3.4.4. Robustness analyses

In order to measure the impact of inaccurate estimations of the approach inputs, we

ran two robustness analyses. We measured the impact of an inaccurate estimation of

the willingness to spend parameter (section 3.4.4) and of a different customer behavior

when bundles are offered (section 3.4.4).
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Car model M1 M2 M3
# car variants Revenues # car variants Revenues # car variants Revenues

∅ difference between the bundles generated
for ρ = 1.1 and the optimized bundles

-0.30%
(p = 0.76)

-1.79%
(p = 6.69 · 10−11)

-0.31%
(p = 0.15)

-2.56%
(p = 3.3 · 10−10)

-2.48%
(p = 5.20 · 10−5)

-2.03%
(p = 3.49 · 10−10)

∅ difference between the actual performance
of the bundles generated for ρ = 1.1
and the expected performance

0.00%
(p = 1)

0.00%
(p = 1)

0.00%
(p = 1)

0.00%
(p = 0.32)

-0.04%
(p = 0.02)

0.01%
(p = 0.04)

Table 3.7.: Performance of the bundles generated for ρ∗ = 1.1 at an actual ρ∗ = 1.15

Car model M1 M2 M3
# car variants Revenues # car variants Revenues # car variants Revenues

∅ difference between the bundles generated
for ρ = 1.1 and the optimized bundles

-15.23%
(p = 1.93 · 10−9)

-52.09%
(p < 2.2 · 10−16)

-10.98%
(p = 6.26 · 10−12)

-46.42%
(p = 2.43 · 10−16)

-18.01%
(p = 3.41 · 10−10)

-32.92%
(p = 1.29 · 10−14)

∅ difference between the actual performance
of the bundles generated for ρ = 1.1
and the expected performance

-17.51%
(p = 8.99 · 10−12)

-54.86%
(p < 2.2 · 10−16)

-10.52%
(p = 1.73 · 10−12)

-49.06%
(p = 2.63 · 10−16)

-12.49%
(p = 2.28 · 10−10)

-35.37%
(p = 5.67 · 10−14)

Table 3.8.: Performance of the bundles generated for ρ∗ = 1.1 at an actual ρ∗ = 1.05

Willingness to spend

For the approach we developed, there are currently no methods to estimate the value of

the willingness to spend parameter ρ∗. We therefore analyzed the effects of an inaccurate

estimation of the parameter on the number of car variants and on the revenues. To this

end, we compared the performance of the bundles generated for ρ∗ equal to 1.05 and

1.15 to the performance of the bundles generated for the ρ∗ value of 1.1 if offered to

customers with a willingness to spend value of 1.05 and 1.15 respectively. Tables 3.7

and 3.8 illustrate the performance differences between the optimized bundles and the

ones generated for a ρ∗ value of 1.1. The tables also present the differences between the

expected performance and the actual performance for ρ∗ equal to 1.1. We ran a t-test to

determine the significance of the gap between these average differences and 0. In both

tables, the p value for the t-test is represented.

Our comparison shows that underestimating the willingness to spend of customers has

limited negative consequences. The revenues were on average by at most 2.6% higher for

the bundles optimized for the willingness to spend. The average revenues difference was

statistically significant from 0 for all car models, whereas the difference of the number

of car variants for the optimized bundles was not statistically significantly different from

0. The number of car variants increased on average by 2.48% for model M3. For no car

model was the expected performance of the bundles very different from the one obtained

for the actual willingness to spend levels.

In general, the revenues were increased for the optimized bundles. Additionally, the

bundle selections for model M3 became more heterogeneous compared to those for the

bundles designed for ρ∗ equal to 1.1. The result stems from the larger bundles that were

generated for the 5% additional willingness to spend. Many customers were able to buy
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the larger bundles but there were some customers who bought the cheaper options from

the bundle and did not have the willingness to spend to buy the whole bundle.

As the difference between the expected and the actual performance shows, even if the

willingness to spend was higher, it was often not possible with the bundles generated for

ρ∗ equal to 1.1 to motivate customers to buy additional bundles. In the bundles designed

for ρ∗ equal to 1.1, an option was usually grouped together with a comparatively cheaper

one. The higher willingness to spend for ρ∗ equal to 1.15 was still not sufficient to entice

the customers who were interested in the cheaper option to buy the bundle.

In contrast, the overestimation of the willingness to spend can have very severe con-

sequences on the performance of the bundles. Compared to the optimal bundles, the

number of car variants was statistically significantly reduced on average by at least 10%.

However, the reduction resulted from the abandonment of option purchases. On average,

the revenues were statistically significantly reduced by at least 32%. Also the expected

performance of the bundles was not met. Since our approach efficiently exploited the

willingness to spend of the customers, a willingness to spend value of 1.05 was not high

enough to finance the purchase of the bundles designed for a ρ∗ value of 1.1.

The analysis highlights that it is very important for our approach not to overestimate

the willingness to spend of customers. An underestimation does not reduce the perfor-

mance of the bundles by a lot compared to bundles tailored for the actual willingness

to spend value. Furthermore, the actual performance of the bundles was similar to the

one expected for the willingness to spend value planned for.

Customer behavior modelling

Our approach generates bundles based on readily available data, namely past customer

purchases. In many of the existing option bundling approaches, reservation-price-based

models are used to represent customer behavior. However, these models require input

data that is difficult and expensive to collect. Our goal was to evaluate whether the

bundles still have a good performance if the customers actually behaved according to

a customer model different from ours. We ran multiple simulations that involved a

reservation-price-based customer behavior model. We then analyzed the product variety

and revenues generated by the bundles designed by our approach.

In reservation-price-based customer behavior models, it is assumed that the customers

have a known, predefined reservation price for each individual option and that they buy

bundles in order to maximize the consumer surplus. When an option is allocated to only

one bundle, then a customer buys a bundle if the sum of her reservation prices for the
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included options is at least as large as the bundle price.

In our approach, the decision of a customer to purchase a bundle depends on which

options purchased in the past are included in the bundle, as well as the prices of these

options. Our model differs from a reservation-price-based approach in the use of a

single value for modeling the customer surplus, which is independent of the option and

customer. Also, the parameter ρ∗ does not encapsulate any information related to the

reservation prices of the options that the customers did not purchase in the past.

We ensured that the settings are similar for the two customer models in our compar-

ison. We first ran simulations in which we replicated a reservation price estimation in

which customers cannot be grouped in customer segments that is based on a conjoint

analysis or a discrete choice model. In such a setting, one reservation price that is rep-

resentative for all the customers is derived for each option. We additionally assumed

that the ρ∗ parameter value used for our approach was an accurate average of the cus-

tomer valuation of the options acquired in the past. We therefore drew for each option

a ρo value from a normal distribution with the mean ρ∗ and a standard deviation σ and

scaled the ρo values such that their average was equal to ρ∗. The reservation price of a

customer for an option purchased in the past was then ρo times higher than the price of

the option.

We also ran simulations for a more realistic setting, in which each customer has a spe-

cific reservation price. We drew for each customer a ρc value from a normal distribution

with the mean ρ∗ and a standard deviation σ. We scaled the ρc values such that their

average was equal to ρ∗. We then drew a value ρc,o for each option purchased in the past

by customer c from a normal distribution with the mean ρc and the standard deviation

σ. We scaled the ρc,o values for each customer such that their average was equal to ρc.

The reservation price of a customer for an option purchased in the past was then ρc,o

times higher than the price of the option.

Since the reservation price of a purchased option cannot be lower than the price of the

option, we set the ρc, ρc,o and ρo values equal to 1 for draws lower than 1. We measured

the impact of the σ parameter with two values: 1% and 2%. The 1% standard deviation

represents a setting in which the ρ∗ estimate is very accurate. For the 1% standard

deviation, almost all reservation prices for the purchased options were between 107%

and 113% of the price of these options. The 2% standard deviation represents a high

uncertainty case for the actual values of the reservation prices. For the 2% standard

deviation, the reservation prices of most options purchased in the past were between

104% and 116% of the price of the options. For the options the customers did not
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Figure 3.5.: Absolute difference spectrum for the number of car variants and revenues be-
tween the reservation-price-based model with customer-independent reser-
vation prices and our customer behavior model

purchase in the past, we assumed that customers would be willing to pay a conservative

value of 20% of the price of the options.

For each σ value and bundles configuration generated for ρc equal to 1.1, we ran 100

simulations. We did not offer a discount for the bundles for models M1 and M2 and

used a discount rate of 10% for model M3.

Figure 3.5 illustrates the number of car variants and revenues differences spectrum

between the reservation-price-based model with customer-independent reservation prices

and our model for the 1% and 2% standard deviation. The number of car variants and

revenues were similar to the ones obtained with our model for the 1% standard deviation.

For a standard deviation value of 2%, the revenues were reduced more than for the

1% standard deviation. Since the reservation prices were identical for all customers,

the number of different bundle selections made by the customers was reduced and the

decisions of customers became more homogeneous. The number of car variants was

therefore lower than the one predicted using our model.

Figure 3.6 illustrates the spectrum of the differences between the average number of

car variants and revenues for the reservation-price-based model with customer-specific

reservation prices and our model for the 1% and the 2% standard deviation values. The

number of car variants increased by up to 1% compared to the number predicted by our

customer model. However, the number of car variants was always smaller compared to

the unbundling case. The revenues for the reservation-price-based model were higher

than for unbundling for a bundling intensity of 41% for model M1, 43% for model M2

and 46% for model M3. Even if the standard deviation was doubled, the performance

of the bundles was still very good. For most bundle designs, the number of car vari-

ants was still lower compared to unbundling. The revenues were on average lower for

the reservation-price-based model compared to ours. However, they were still higher

35



Chapter 3. Product variety reduction through data-driven option bundling

Figure 3.6.: Absolute difference spectrum for the number of car variants and revenues be-
tween the reservation-price-based model with customer-specific reservation
prices and our customer behavior model

compared to unbundling for a bundling intensity of up to 34%. The analysis for both

standard deviation values shows that even for a different customer model, the same trend

was maintained: option bundling led to both an increase in revenues and a reduction in

the number of car variants.

The revenue drop was higher for models M1 and M2 compared to model M3 mainly

due to the price variability of the options. For models M1 and M2, our approach bundled

the popular expensive options with cheaper options. However, the price of the cheaper

options was still high enough that, for a low reservation price draw, the surplus for the

options did not cover the price of the cheaper options. The homogeneity of the customer

base led only to a small increase in the number of car variants. Since model M3 had

similar prices for the options, the number of customers who in the simulations selected

more bundles and the number of customers who purchased less bundles than predicted

by our model was similar. The revenues in the simulation were therefore similar to

the predicted revenues. Due to the many changes in the bundles selections and the

high customer base heterogeneity, the number of car variants increased compared to our

model.

Even though we proposed a completely new customer model for bundling purposes,

our experiments showed for our case study that the effects on the number of car variants

and revenues are similar to those obtained for a standard customer model. Even when

there is a higher uncertainty regarding the value of the reservation prices, it is possible,

with the bundles generated by our approach, to reduce the number of car variants while

at the same time to increase revenues. For a model in which the reservation prices of

the customers are identical, the results are even more indistinguishable from the ones

estimated by our approach.
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3.5. Conclusions

This paper systematically quantifies the effects of option bundling on product variety.

For this purpose, we have developed a data-driven approach for option bundling. In

contrast to conventional option bundling approaches, it does not rely on excessive data

requirements. Our approach primarily requires data that is readily available: the prices

of the options and past customer purchases. Due to the reduced input requirements, the

effort connected to gathering and preparing the input data for our approach is limited.

Our branch-and-price approach is highly relevant for practitioners, since it can deal

with the preferences of thousands of customers and can generate a predefined number

of bundles for a large number of options. Our approach exploits the capabilities of

modern computational hardware by distributing computational tasks over the available

CPU cores. For large problem instances, we designed a matheuristic that simplifies

the column generation procedure of the branch-and-price approach. The matheuristic

generated optimal or close-to-optimal results.

We tested our approach for three car models of a large German automotive manu-

facturer. We split the data on purchases of dozens of options made by thousands of

customers into a training set, which we used for bundle generation, and a validation

set, which we used for performance analysis. We demonstrated how the application

of our methodology resulted in a definition of the relevant trade space, specifying the

relationship between the number of car variants and revenues for varying numbers of

bundles. For the case study, it was possible to design bundles that reduced the number

of car variants and also increased revenues. For a bundle design with a neutral effect

on revenues, the reduction of the number of car variants was substantial. These results

were also observed for different willingness to spend and bundle discount levels, albeit at

different magnitudes. No discount is required to obtain the benefits of option bundling

if the customer base is homogeneous and the prices of the options have a wide range.

For other cases, bundle discounts need to be carefully selected.

Even when customers made their choices not according to our behavioral model but

according to the standard behavioral model that assumes a known reservation price

for each option and each customer, no significant differences in the performance of the

bundles were observed.

In our approach, the reduction of the number of variants is only an indirect effect.

Future research could further explore the variety reduction potential by developing a

multi-objective bundle design approach that in addition to revenue maximization also
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explicitly pursues the minimization of the number of product variants. If future research

also quantified the costs related to product variety, then a new option bundling approach

could even strive for a maximization of profits.

The focus of our research was to identify the impact of option bundling on product

variety. For this purpose, we developed an option bundling methodology with reduced

input requirements, which include the willingness to spend. We demonstrate how an

analysis can be carried out for given willingness to spend values. We also investigated

the impact of this parameter on the results, but its exact determination is not subject

of this paper. The available datasets did not contain sufficient information to estimate

customer-specific willingness to spend values. For this purpose, a consumer study would

have to be performed. Unsupervised learning approaches, such as deep learning net-

works, could be used to enhance the estimation of the willingness to spend parameters.

However, consumer studies are no longer possible for the car models in our case.

Our results are based on a case study that includes three car models. Even if the car

models are designed for different customer segments and the range of option prices is

model-specific, we cannot generalize our findings. Future research should incorporate

tests on a larger number of car models and on products from other industries, to confirm

our findings.

With our approach, practitioners have an option bundling approach at their disposal

that can be used for real-life applications. The design of option bundles is no longer at the

whim of a small number of experts, but results from a data-driven, well-defined process.

Our methodology enables manufacturers to exploit valuable knowledge on customer

preferences hidden within the trove of information lying inside their data warehouses.

Our work highlights that option bundling does live up to its promise to reduce product

variety. However, for the first time, researchers now have an example of an evaluation

of the actual reduction potential based on limited data. No longer will experts design

bundles by blindly following their intuition regarding the reduction of the number of

product variants. They now have a way to efficiently determine the impact of their

designs in a small amount of time. In such a setting, the design of bundles can finally no

longer be dominated by the marketing perspective alone. The design decision can now

be done by including an operations-related perspective, the reduction of the number of

variants.
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Chapter 4.

Enhancing MRP-based component

demand planning in a high-variety

context

This chapter is based on an article submitted as:

Stäblein, T. et al. (2016). “Enhancing MRP-based component demand planning in a

high-variety context”

4.1. Introduction

The ability to accurately plan component demand is a core capability for manufacturing

firms, as the quality of future sales predictions determines not only customer service, but

also inventory and supply chain performance. MRP and MRP-based scheduling mod-

ules embedded within Enterprise Resource Planning (ERP) systems have become the

industry standard for production planning in discrete manufacturing contexts (Jacobs

and Weston, 2007). Surveys of industrial practice consistently point to MRP usage rates

of more than 74% across large manufacturing firms (Olhager and Selldin, 2003, Jonsson

and Mattsson, 2006).

Despite their prominence in practice, several drawbacks of MRP systems have been

identified. Of particular concern is their inherent rigidity, and in turn, inability to cope

with dynamic changes of the environment in which they operate (Winters et al., 2008,

Goodhue et al., 2009, Fauscette, 2013, Tenhiälä and Helkiö, 2015). As a result, a consid-

erable risk of workarounds has emerged, potentially compromising the main advantage
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of ERP systems in terms of providing a reliable inter-organizational information process-

ing capability (Gattiker and Goodhue, 2005, Tenhiälä and Helkiö, 2015). As a result, a

great variability in outcomes of ERP implementations has been observed (Gattiker and

Goodhue, 2005, Stratman, 2007, Hendricks et al., 2007).

In this paper we address a particular problem with MRP-based scheduling caused

by the drastic increases in product variety and the globalization of manufacturing and

sourcing footprints that many durable goods manufacturers are facing. Combined, these

developments provide a real challenge for MRP-based scheduling systems. Due to an

exponential number of possible product configurations that share underlying components

and the unavailability of advance information on customer orders, the translation of

planned orders into detailed component plans in MRP becomes a problem in practice.

The (measurable) result has been a reduction in schedule accuracy in the supply chain,

as manufacturers are no longer able to simply ‘explode’ the bill of materials (BOM) to

derive the respective demand for the required components.

We argue that this problem can be addressed by harnessing all available planning in-

formation, past and present. To this effect we propose an enhancement to MRP systems

by using the analogy of ‘data fusion’ (Goodman et al., 1997, Hall and MacMullen, 2004)

that allows us to triangulate past order data with forward planning data for supply

chain planning purposes. We demonstrate the potential of the approach by comparing

it to a state-of-the-art time-series forecasting software package and to the existing MRP

approach used by Mercedes. We report on the ten-year process of the development, em-

pirical validation, and implementation of an improved algorithm at Mercedes-Benz Cars,

where it has demonstrated a 15% improvement in schedule accuracy over the existing

system.

The paper is organized as follows: in Section 4.2 we provide more detail on the focal

problem of operating existing MRP systems in a high-variety context, before review-

ing the relevant literature related to existing and emerging approaches to production

planning in durable goods manufacturing in Section 4.3. In Section 4.4 we introduce

the model for enhancing MRPs performance in the above context. In section 4.5 we

validate our model and benchmark its performance against existing solutions. Section

4.7 presents the conclusions.
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4.2. The problem

This research project was conducted in collaboration with Mercedes-Benz Cars (com-

monly known as ‘Mercedes’), the passenger car division of Daimler AG. Mercedes vehicles

are assembled in seven major assembly plants spread across four continents. Each of

these plants is closely tied to a dedicated network of local and global suppliers that

deliver on average 4,200 different individual components that are used to build a highly

customized Mercedes product. Such a level of supply chain complexity is not unusual

in the automotive industry. Premium manufacturers typically present their customers a

wide array of options to customize their vehicles in terms of choices of engines, colors,

interior materials, electric features or other functionalities such as sun-roofs or cup hold-

ers. These options increase external product variety exponentially due to their possible

combinations (Fisher and Ittner, 1999, Pil and Holweg, 2004). Mercedes builds a very

large fraction of its cars to order and regards offering a maximum level of customer

choice as a primary competitive advantage. Hence, the company has elected to offer

customers a choice of up to 120 options in the configuration process for its passenger

cars.

4.2.1. Rise in supply chain complexity

The underlying planning problem is exacerbated by two factors: firstly, as Figure 4.1

illustrates, supply chain complexity has increased steadily over the last two decades.

In 1980, Mercedes was producing just below 500,000 passenger cars in its two German

plants, across four models. By 2015, the production had risen to over 2 million cars

produced in seven assembly plants globally, across a total of 28 different models. The

IBM MRP system in operation today was implemented in 1985, and its functionality

has not evolved or been updated in any meaningful way during that time.

Secondly, product variety has been rising as durable goods manufacturers have chosen

to offer a large set of choices, or options, to its customers as part of their marketing

strategy. As Randall and Ulrich, 2001, p. 1603, state ’[...] the ultimate success of high-

variety strategies may rest not only on a supply chain’s ability to physically deliver

variety, but also on the ability to communicate and present options to consumers.’ The

higher the number of theoretical configurations of an integral product becomes, the more

complex the component-level demand planning problem becomes.

The requirement for most components depends on the combination of options, and cus-

tomer preferences play a central role for component-level demand scheduling. However,
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Figure 4.1.: Production volume, model line-up and global assembly plants at Mercedes-
Benz cars, 1980-2015

Lifecycle
Model name

(code)
Body styles Powertrains

Customization
options

Theoretically possible
product combinations

1984-1995
200-series
(W124)

2 6 16 786,432

1995-2003
E-class
(W210)

2 9 41 39,582,418,599,936

2003-2009
E-class
(W211)

3 15 70 53,126,622,932,283,500,000,000

2009-2016
E-Class
(W212)

4 16 80 77,371,252,455,336,300,000,000,000

Table 4.1.: Evolution of product variety across Mercedes-Benz E-class product genera-
tions

due to the option induced product complexity and the high combinatorial possibilities

between options, it is clearly not possible for the sales department to forecast take-rates

for all possible option combinations, or even smaller subsets of option combinations. To

give an example, we found that the ’CLS-Class’ model can be customized with up to 80

options, which theoretically allow for 7.74 · 1025 different configurations.

It is also important to note that the product variety levels offered on present models

exceed the variety for earlier models by orders of magnitude. Table 4.1 shows the

evolution of product variety of the E-Class platform and the constant increase of product

variety at Mercedes-Benz.

To further elucidate the interlinkage between overall product variety, and the variety

of components required to provide the former, we empirically analyzed the options in-

terdependencies for all 8,592 components listed for the Mercedes CLS-Class sedan. We
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Figure 4.2.: Statistical analysis of the options-to-components dependency used to deter-
mine component-level demand for the Mercedes CLS-Class model

used an automated query of the engineering product database (which contains the bills

of materials for all possible build combinations of any given model) to extract the num-

ber of options interdependencies for all components that could be used in the assembly

of the CLS model. Figure 4.2 graphically illustrates the number of interdependencies of

options for the components of the Mercedes CLS-Class.

While we did expect to find strong inter-dependencies, both the authors and the

production scheduling team at Mercedes-Benz were surprised to learn that 81.3% (6,985)

of the components incorporate at least one option in their definition, and a maximum

of no fewer than 62 options. Only 18.7% (1,606) of the components were independent

of any customer-driven customization (in other words they were installed in every car).

4.2.2. Production planning at Mercedes-Benz cars

At present Mercedes uses a rolling horizon cycle in their MRP-based component demand

planning and communicate with their suppliers on a continuous basis. This approach

does not deviate from any other ‘traditional’ MRP-based scheduling system commonly

used by large durable goods manufacturers. In Germany, for example, a typical auto-

motive first-tier supplier receives eight weeks’ worth of demand in the form of daily re-

quirements (updated daily), a further three months’ on a weekly basis (updated weekly),

and a further five months on a monthly basis (updated monthly) for capacity planning

and purchase purposes. This format is a mutually agreed industry standard for deliv-

ery forecasts and secondary demand information in the automotive industry. It is a

contractually binding framework that all vehicle manufacturers and component suppli-
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ers have agreed to adhere to in order to standardize and improve communication along

the supply chain. The German format (VDA 4905) is compatible with the European

‘DELNIS’ format of Organisation for Data Exchange by Tele Transmission in Europe

(ODETTE) and the ‘DELFOR’ format in the USA by the Automotive Industry Action

Group (AIAG). Currently there are on-going activities to elaborate a common format

for global use.

The 8-week and 3-month schedules are provided by the short-term MRP functions,

while the five month preview is generated by the midterm planning function since not

all customer orders are received yet. A central objective here is the minimization of

deviations between these rolling updates and the actual call-offs, to enable suppliers

to optimize and plan their operations. It is this deviation that our algorithm seeks to

minimize in a medium-term horizon.

The available information in the medium-term horizon is given by master production

planning, which determines the number of vehicles to produce per month in each plant

in the relevant time horizon. Furthermore, the sales allocation process determines a goal

estimate for dealers regarding the option customization of vehicles. The goal-setting of

the take-rates for the options in sales allocation planning is also a tool for dealer and

sales force organization. The production objective is to match these goals as closely as

possible.

The planned take-rates can deviate from the actual demand when the customer or-

ders are received. If a deviation is identified in the planning process, the impacts are

discussed. An alignment meeting serves to solve possible conflicts between the produc-

tion and sales unit and to increase the flexibility and stability of the planning process.

Planned take-rates are rarely used in available state-of-the-art MRP planning systems,

yet because most components depend on options and customization, we argue that it

could be highly beneficial to include then in the MRP planning process.

4.3. Component demand planning approaches: A review

Conceptually, the need to convert projected sales into demand plans for component

suppliers is a fundamental, recurring task in any discrete manufacturing environment

(Vollmann, 2005, Stadtler et al., 2015). The calculation and sharing of accurate demand

information with the supply chain partners not only supports the operational supply

chain efficiency, but also reduces managerial risk for all parties involved. Prior studies

highlight a potential reduction of lead-time (Cachon and Fisher, 2000), a decrease of the
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infamous ’bullwhip effect’ (Lee et al., 2004), and improved contract decisions (Cachon

and Lariviere, 2001). A manufacturer’s ability to provide reliable advanced demand

information for secondary demands of components and parts is a critical factor in oper-

ating an efficient supply chain (Childerhouse et al., 2008). Not surprisingly, the nature

of uncertainty adversely affecting the quality of sales forecasts at finished product level

and the ensuing ’nervousness’ in schedules have been the subject of many studies. In

this section we review how the underlying problem is being addressed within an MRP

context, and outline more recent time-series and Bayesian network approaches that have

been applied in durable goods manufacturing contexts.

4.3.1. MRP-based approaches

The most widely applied tools in the manufacturing industry are MRP-based algorithms,

many of which are components of ERP and Advanced Planning and Scheduling (APS)

systems, such as SAP’s Advanced Planner and Optimizer (APO) (Stadtler et al., 2015).

In a nutshell, MRP systems use a set of defined orders (e.g. actual customer orders when

available, or forecast orders for finished products, also called ’anticipated’, ’dummy’, or

’planned’ orders) and the BOM to derive the corresponding component demand. The

core logic of MRP systems has been widely discussed and will not be repeated here (see

Orlicky, 1975, Vollmann, 2005, Jacobs and Weston, 2007, Stadtler et al., 2015 for a

complete discussion of MRP and its functionality).

As early as the mid-1980s, some of the drawbacks of MRP procedures were being

discussed in the literature. Yeung et al., 1998 recognize MRP’s limitations in terms of

defining safety stock levels for the end items, ignoring of capacity constraints, consid-

ering very simple product structures only, and the inability of MRP to address input

uncertainties. When faced with uncertainty, the rigidness of MRP systems often leads

to the so-called ‘MRP nervousness’ in initial MRP implementations (Benton, 2007). Ho

and Ireland, 1998 determine by means of simulation that forecasting errors can have a

significant impact on the stability of MRP systems. Huq and Huq, 1994 note that MRP

systems tend to result in an increase in inventory levels for work-in-progress items. Rom

et al., 2002 recognize that the fixed lead times prevalent in MRP systems are not appro-

priate for some real-life situations . Jonsson and Mattsson, 2006 note that a significant

percentage of MRP users make parameter selection decisions, such as lot sizes, based

on experience. The literature review by Louly et al., 2008 shows that there were few

studies addressing lead time uncertainties or a combination of demand and lead times

uncertainties. The mentioned underlying problems fit into the wider context of the ERP
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systems that MRP tends to be embedded in, and more specifically, their inability to

respond to changes in the context in which they operate (Tenhiälä and Helkiö, 2015).

Based on the recognition of these shortcomings, a range of studies have attempted

to adapt MRP procedures to alleviate these issues. A range of different strategies have

been proposed to manage and/or reduce uncertainty at component-demand level within

MRP, such as rolling horizon updating of sales forecasts (Chand et al., 2002), freezing the

production schedule (Blackburn et al., 1986), and responding to early sales (Fisher and

Raman, 1996). Others have developed heuristics to address specific issues of MRP sys-

tems. Armentano et al., 2001 develop a heuristic to determine the lot sizes for the MRP

system in a multi-stage production system so that the resulting setup, production and

inventory costs are minimized while taking the production capacities into consideration.

Their approach is capable of providing feasible solutions for 83.7% of the instances con-

sidered in their computation study and leads to a reduction of the resource utilization.

Tang and Grubbström, 2002 present a dynamic approach for planning and re-planning

the material requirements in an environment with demand uncertainty while minimizing

the uncertainty and the schedule change costs. Their approach optimizes safety stock

levels and improves the robustness of the MRP method with regards to forecasting er-

rors. Xie et al., 2003 determine by means of simulations the effect of the freezing interval

parameters in a constrained capacity scenario for a multi item single-level MRP system.

They find that the proportion of periods which are frozen in a planning horizon leads

to a trade-off between the total costs of the system, the service level and the schedule

instability. Ram et al., 2006 propose a linear program that adapts MRP for flexible

BOMs. The flexibility is enabled by allowing the quantities of components to take on

values in ranges, instead of being fixed. The model minimizes the quantity deviations

from the standard bill of material while ensuring that the planned end items demand is

fulfilled.

Louly et al., 2008 develop a mathematical model and a branch-and-price algorithm to

compute the order lead times that are incorporated in the MRP system when component

procurement times are random. By optimizing the planned lead times, the authors

ensure that the costs caused by following up the recommendations of the MRP system

are reduced in an uncertain environment. Ioannou and Dimitriou, 2012 present an

approach that estimates lead times more accurately by taking into consideration the

existing orders and their impact on the lead times. Both approaches lead to the same

performance as a computer simulation of the considered job shop. Riezebos and Zhu,

2015 develop a dynamic programming approach for MRP for a scenario in which the
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lead times for component replenishments depend on the point in time the order is made.

Their algorithm determines the optimal order points which lead to minimal purchase,

setup, holding and backordering costs. They tackle realistic instances by using three

heuristics. Their work highlights the importance of considering order crossovers (i.e.

the arrival of an order before another order which was requested before the first order).

Their algorithm leads to a cost reduction of up to 25% compared to the heuristic not

considering order crossovers.

A number of research papers provide guidelines for the integration of MRP systems

with other complementary supply chain management modules. Ferrer and Whybark,

2001 illustrate the extension of a MRP system such that demand and supply decisions

are integrated in a remanufacturing company. Kreipl and Pinedo, 2004 describe how

to combine a MRP system with a scheduling algorithm and how the resulting process

is implemented in an APS module at Tuborg. They discuss the difficulties related to

the estimation of the cost parameter values for the APS module. Garcia-Sabater et al.,

2009 describe a linear program (LP) for capacitated MRP adapted for an automotive

manufacturer. The authors discuss implementation difficulties and the input inaccuracies

prevalent in real-life scenarios. In their recent survey of automobile producers, Staeblein

and Aoki, 2015 find that the classical MRP approach is still the dominant planning

system in the automotive industry.

In summary, the proposed MRP extensions address many specific shortcomings of

MRP systems. However, none of the approaches found in the literature is capable of ad-

dressing the particularities of an MRP system used for determining component demands

in a durable goods manufacturing context, such as the automotive industry. The key

difference or challenge compared to other manufacturing contexts is the utilization of a

complex product structure whereby the demand for a certain component depends not

only on the demand of a single end item alone, but also by combinations of end items.

None of the methods found in the literature can integrate such settings.

4.3.2. Alternative approaches

Time-series approaches have long been used to forecast component demand. The ob-

jective of time-series methods is to discover patterns in the historical consumption data

of each component and then extrapolate this pattern into the future. The ensuing fore-

cast is solely based on past values of the estimated component (for a recent review of

time-series techniques see Gooijer and Hyndman, 2006). Researchers have extended

time-series forecasting such that it is possible to rigorously select the best forecasting
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approach and calibrate its parameters automatically (see for example Hyndman and

Khandakar, 2008). However, these approaches are limited by not considering projected

sales information. Additionally, various inputs from the master production schedule,

such as production volume, model-mix constraints and planned option take-rates are

not taken into account.

A more recent class of forecasting models are Bayesian network models (Gebhardt et

al., 2008). Pilot implementations have been reported at Volkswagen (Detmer and Geb-

hardt, 2001) and Sun Microsystems (Yelland, 2010). In theory the component demand

could be planned based on component take-rates derived from the independent and con-

ditional option take-rates. However, when dealing with a large number of interrelated

variables such as the options of a passenger car, the domain under consideration for

conditional probabilities is growing rapidly, so scheduling based on probabilistic mod-

els requires great computational effort (Gebhardt et al., 2004). Graphical models like

Bayesian networks can be used for decomposition and to represent probability distribu-

tions between options, as illustrated by Steinbrecher et al., 2008. Such models can be

applied to generate a ‘complete model’ of the relationships between options and their

combinations, which can then be used to schedule certain components, as they depend

on option combinations. In practice, however, Bayesian networks have considerable

drawbacks: changes to the a-priori network in a planning situation become necessary,

as any new knowledge gained most likely will impact parts of the network. This task

is challenging, as only incomplete knowledge of interrelated options is available, and

new conditions (i.e. new desired take-rates for options) might not fit into the observed

network structures. In addition, local changes can lead to network inconsistencies. In-

telligent updating and revision algorithms can help identify and localize inconsistencies,

but require a considerable amount of computation time and expert knowledge, rendering

the approach virtually unfit for practical application in manufacturing.

4.3.3. Problem synthesis

In a context where there are an exponential number of possible configurations that

share underlying components available for a vehicle, and where advance information on

customer orders is not available, the translation of planned orders into detailed compo-

nent plans in MRP becomes a problem. The approaches available within existing MRP

systems, as well as more recent time-series and Bayesian concepts all have significant

drawbacks within the context of the underlying problem. In the following we present the

algorithm developed by Stäblein, 2008 that significantly enhances the ability of MRP
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to calculate component-level demand, by considering additional sources of forward- and

backward looking planning information.

4.4. Model

4.4.1. ’Data fusion’ as a guiding analogy

At present, the MRP system uses a traditional planned orders approach. Planned orders

are derived from the past order history to determine component schedules, omitting

relevant forward planning information, such as planned option take-rates, production

volumes and advance orders. The main premise of the algorithm developed by Stäblein,

2008 is to merge all available data and forecast information for planning purposes. The

author uses the analogy of ‘data fusion’, an approach that was originally developed

for military intelligence purposes to enable a meaningful analysis of multi-sensor data.

The main objective of data fusion is to use all available information when analyzing a

particular problem (Hall and MacMullen, 2004). The main characteristic of data fusion

is the combination of different types of information by means of mathematical methods.

In its first applications different types of images were overlaid to provide an overall

better understanding of the situation on the ground. Military data fusion problems

include multi-target detection, object identification, and object tracking (Goodman et

al., 1997). As a result of the ‘fusion’, complementary aspects of all available information

are exploited to the overall best knowledge.

In analogy to the data fusion application, the component demand scheduling pro-

cess needs to consider information which is generally not compatible in its structure or

format. On the one hand, automotive manufacturers use planned sales volumes and

option take-rates as inputs for the process to integrate their market knowledge about

the upcoming months. Past orders should be included since they incorporate the option

combinations prevalent in the market and the structural preferences of the customers.

Additionally, product configuration data are used to derive the component requirements

from the option combinations. These types of information have different modalities:

the planned sales volumes are integer numbers, the option take-rates are defined as

percentages of vehicles planned to contain each of the considered options, past orders

are represented as a tuple of option combinations and their selection frequencies, and

the product and component configuration data are complex Boolean relationships. To

enable accurate component demand schedules we posit that it is important to consider
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all types of information simultaneously and combine these numerically. ‘Data fusion’

provides automotive manufacturers with the conceptual framework to achieve this mean-

ingful combination within the context of production planning. In the following section

we discuss the mathematical approach underpinning the model of Stäblein, 2008.

4.4.2. Mathematical representation

The data fusion-inspired algorithm discussed in Stäblein, 2008 consists of two steps: (1)

the adjustment of past order frequencies by means of a non-linear mathematical model,

which ensures that the master production schedule is adhered to, and (2), the BOM

explosion based on the results of the model. By using mathematical optimization the

inputs of the planning procedure are incorporated more meaningfully that any of the

existing MRP heuristics used in the industry.

Our optimization model ‘learns’ from past customer preferences and assigns an ad-

justed selection frequency to past orders. The adjustment takes place in the light of

the master production schedule information and additional forecasts. In other words,

the model regularizes the past order frequencies using prior information and provides a

conceptual justification and a mathematical way of combining different types of input

data.

Our procedure can be used in a multi-period planning setting. Let t ∈ T be the future

periods (e.g. months) in the planning horizon for which component demands schedules

need to be prepared. We assume that for each period t a certain planning and/or

forecasting function (such as master production scheduling, sales allocation planning or

demand forecasting) provide information regarding (1) planned production volume Ñt

and (2) for each option o a planned take-rate Vo,t. Furthermore, we assume that in each

planning cycle these types of information are being updated in a rolling-horizon fashion

(Holweg and Pil, 2004)

For each of the future periods t requiring the computation of the component demand,

the model described in the following is used.

We use some of the notation presented in chapter 3. We include the following addi-

tional set in the model:

c′ ∈ C ′ Set of past orders
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The following parameters are incorporated in the model:

ac′,o 1 if past order c′ contained option o, 0 otherwise

Ko Past take-rate of option o

Ñt Planned production volume for period t

νc′ Frequency of past order c′

ω Weight for the deviation from the planned take-rates

Vo,t Planned take-rate of option o for period t

The following decision variables are used in the model:

wc′,t Adjusted frequency of the past order c′ for period t

The model is provided with a set of past orders C ′ from a specified time interval in

conjunction with the corresponding frequency of the past orders νc′ . The frequency νc′

represents the weight of order c′ in the pool of past orders. The past orders usually have

a frequency of 1, since luxury automotive manufacturers often state that each order

is unique. We note that the importance of a customer order based on the age of the

information can be adjusted with this term, e.g. by decreasing frequencies with the

increasing age of the information.

In addition, the model is provided with a set of options O that are relevant for the

component demand schedule together with the take-rate of the options Ko in the past

orders. The binary parameters ac′,o describe the option composition of the past orders.

The future market knowledge is included in the planned production volume Ñt and

the planned option take-rates Vo,t as a result of upstream planning and/or forecasting

procedures.

The objective function and the constraints of the model are presented in expressions

(4.1) through (4.6).
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Minimize

1

|O|
·
∑
o∈O

|
∑
c′∈C′

ac′,o · wc′,t
Ñt

− Vo,t|+
ω

|C ′|
·
∑
c′∈C′

(wc′,t − νc′)2 (4.1)

Subject to:

(4.2)∑
c′∈C′

wc′,t = Ñt (4.3)

Vo,t ≥
∑
c′∈C′

ac′,o · wc′,t
Ñt

≥ Ko ∀o ∈ O : Vo,t ≥ Ko (4.4)

Ko ≥
∑
c′∈C′

ac′,o · wc′,t
Ñt

≥ Vo,t ∀o ∈ O : Vo,t < Ko (4.5)

wc′,t ≥ 0 ∀c′ ∈ C ′ (4.6)

The model computes order frequencies wc′,t such that the planned option take-rates

Vo,t are adhered to as well as possible. The past orders contain an inherent structure of

high-dimensional option combinatorics of past customer configurations. This structure

is propagated in the following months, resulting in minimal overall structural changes.

Since it is not possible to forecast all different combinations for options due to their

extremely large number, we do not consider the adjusted computed frequencies wc′,t as

orders that are actually going to be placed by customers. Future orders should however

be seen as combinations of option blocks from the past orders, thus including groups of

options the customers would desire. In light of this perspective, the computed frequencies

are only used to derive the components demand. These frequencies are provided for

any planning period t of the relevant planning horizon. If another aggregation level is

needed for the schedules, the model can be easily adapted by incorporating the master

production schedule on that aggregation level.

An analysis of the past orders has shown that the take-rates for most of the options and

high-dimensional option combinations rarely vary significantly from the past ones in a

timespan of a few months. Similar studies of online product configurational data analysis

at Mercedes show similar results. For those cases in which they do, e.g. options with a

seasonal demand or marketing promotions etc., the planners incorporate the expected

changes in their planned take-rates. Therefore, the option take-rates that result from
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the adjusted frequencies are naturally bounded by the past option take-rates and the

planned option take-rates (constraints (4.4) and (4.5). A plan in which the resulting

take-rates lie outside these bounds would signal a scheduling error or inaccurate inputs.

Constraint (4.3) enforces that the sum of the adjusted frequencies of the orders is

equal to the planned sales volume. The constraints (4.6) represent the non-negativity

constraints.

The objective function (4.1) incorporates a trade-off between the adherence to the

planned option take-rates and a minimal change of the order frequency. The adherence

to the planned option take-rates is ensured by minimizing the average absolute difference

between the option take-rates that result from the adjusted order frequencies wc′,t and

the planned option take-rates Vo,t. The second term of the objective function represents

the average squared difference between the past order frequencies and the adjusted order

frequencies. Since the term is incorporated into the objective function, we require that

the frequencies of the orders are altered as little as possible. The frequency differences are

squared to enforce minimal structural changes. The average frequency deviation is then

weighted by parameter ω to allow the inclusion of managerial preferences with regard

to the trade-off. An alternative is to select the ω parameter value that minimizes an

accuracy measure such as the Mean Absolute Percentage Error (MAPE) on a training

dataset (e.g. an out-of-sample forecast minimization of the most recent component

demand plan). Hence, the scale of the trade-off is set so that the algorithm results

in the most accurate component demand schedule under consideration of the available

input data.

Due to the convex nature of the objective function, the problem can be solved effi-

ciently by commercial solvers such as IBM ILOG CPLEX.

The component demand is calculated by means of a standard BOM explosion: The

adjusted frequencies wc′,t are combined with the component structure. Let z ∈ Z be

the set of components to be scheduled and ιz,c′ binary parameters with ιz,c′ equal to 1 if

past order c′ included component z, 0 otherwise. In line with VDA 4905, the component

demand for the mid-term time horizon needs to be specified on the aggregation level

month. The demand for a certain component z in month t, dcomp
z,t is then equal to:

dcomp
z,t =

∑
c′∈C′

wc′,t · ιz,c′ (4.7)

We experimented with different approaches to model aspects of age-related influences

of past order data, such as decreasing weights for past order frequencies with the in-
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creasing age of the order information. These trials did not result in any significant

improvements in the forecast accuracy. Hence the model presented above uses a naive

approach to model the age influence of past orders by setting the frequency of each

order in the set of past orders C ′ to 1. We note that the pool of past order history

influences the results by taking into account the basic trade-off between noise-damping

and impulse-response. In practice, between five to nine months of order history (de-

pending on model and position in its life cycle) showed the best and most robust results.

More details on the size of the past orders used at Mercedes unfortunately cannot be

reported due to the commercial sensitivity of this information. Still, future extensions

of the model could investigate further approaches to consider age-related aspects of past

orders.

4.5. Validation and implementation

The initial outline of the algorithm was proposed to the Production Planning and Control

department at Mercedes’ headquarters in 2006. The reception was generally positive,

largely due to the fact that the shortcomings of the in-house MRP systems were widely

known. At the same time a considerable degree of scepticism regarding the capability

of the method to consistently provide good results in an acceptable amount of time,

while coping with the rolling horizon setup used at Mercedes, prevailed. To address

these concerns, the Head of Production Planning for Mercedes-Benz requested a series

of tests that would compare the novel algorithm not only against the existing system,

but also against other available tools. A call for proposals for a component demand plan

accuracy benchmark was sent in 2006. However, only a few software vendors responded.

4.5.1. Experimental design

We validate the Data fusion-based algorithm (DF) by comparing it against an algorithm

based on the existing MRP system logic (MRP) and time-series forecasting (time-series).

For time-series based forecasting, we used the ’forecast’ library implemented in the soft-

ware R. This library can represent any type of trend and seasonality and automatically

selects the best fitting forecasting parameters for the given demand pattern. The details

of the procedure are described in Hyndman and Khandakar, 2008.

We measured the performance of the algorithms in terms of schedule accuracy and

computation time. In this paper, schedule accuracy is defined as the error of the com-
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ponent demand schedule versus the actual component demand. We compared the errors

by using the Mean Absolute Deviation (MAD), the MAPE, and the Thiel Inequality

Coefficient (Thiel’s U). We used the MAD to measure the average absolute forecasting

errors and the MAPE to evaluate the relative deviations of the different components

with varying demand magnitudes. The Thiel’s U compares the accuracy of the algo-

rithms to the one resulting from naive forecasting. To ensure the validity of our results,

we ran an out-of-sample analysis to measure the component demand schedule accuracy

following Tashman, 2000. We also measured how much computation time was needed

to obtain the solutions. All tests were run on the same PC with an Intel i7 3.4 GHz 4

cores CPU and 16 GB RAM.

The real-world application of the model was tested by Stäblein, 2008 for one test

instance. We therefore ran two additional sets of tests that validate the application of

the model for a broader range of settings. Section 4.5.2 reports on experiments on eight

fictive, more difficult datasets based on real-world data. In Section 4.5.3 the ability to

operate the algorithm within a rolling horizon scheduling context is analyzed. For all the

tests, we selected the ω value which leads to a minimal MAPE in the training datasets.

4.5.2. Robustness checks

To assess the performance replication possibilities for the data fusion-based method,

we evaluated its schedule accuracy robustness under demand nervousness. We were

provided with the whole set of past customer orders from January through September

2006 (in total 39,195 orders) for the CLS model, a premium Mercedes-Benz four-door

coupe. We included the 197 options used for the configuration of vehicles. This product

was selected because it was in full production and it involved a very low number of

exceptional events needing to be filtered out (such as changes in product configurations,

low stability in production volumes, or part changes from product development). We

used the orders from January to June as common inputs for all methods.

For each algorithm, we computed the component demand plan for September and

compared it to the actual component demand in that month. We modified the num-

ber of vehicles (±30%) and the option take-rates (equal, ±10%, randomly in a 15%

interval), combined these settings and generated fictive orders based on these num-

bers, resulting in eight different datasets. In our analysis, we used 100 representative,

harder to predict components. The components were selected based on three criteria:

(1) high customer configuration dependency (i.e. components represented by complex

options-to-components dependencies), (2) frequently installed (in at least 10% of the
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Dataset no. Method MAD MAPE Thiel’s U Solving time (s)

#1 (+30% orders,
same take-rates)

Time-series 670.28 18.49% 0.1889 2.68
MRP 598.31 17.55% 0.2089 53.35
DF 109.2 2.83% 0.0277 4.36

#2 (-30% orders,
same take-rates)

Time-series 360.49 18.42% 0.1875 2.28
MRP 319.75 17.39% 0.206 31.97
DF 48.11 2.91% 0.028 1.99

#3 (+30% orders,
-10% take-rates)

Time-series 702.91 17.94% 0.182 2.36
MRP 637.94 16.98% 0.2005 32.92
DF 110.67 2.82% 0.0278 5.11

#4 (-30% orders,
-10% take-rates)

Time-series 383.73 18.29% 0.1872 2.35
MRP 342.12 17.11% 0.2036 40.55
DF 83.88 4.44% 0.0452 2.07

#5 (+30% orders,
+10% take-rates)

Time-series 631.64 18.88% 0.1931 2.51
MRP 559.23 18.07% 0.2158 58.89
DF 164.96 5.74% 0.0584 3.96

#6 (-30% orders,
+10% take-rates)

Time-series 330.13 18.14% 0.1831 2.6
MRP 284.07 17.01% 0.1996 27.48
DF 73.02 4.76% 0.0191 2.15

#7 (+30% orders, 15% random
take-rates interval)

Time-series 692.55 18.74% 0.1882 2.41
MRP 661.19 18.70% 0.217 31.38
DF 141.32 3.80% 0.0367 4.25

#8 (-30% orders, 15% random
take-rates interval)

Time-series 416.39 22.09% 0.2437 2.63
MRP 460.07 24.46% 0.3145 23.07
DF 79.46 4.21% 0.0432 1.97

Table 4.2.: Schedule accuracy and computational performance of the component demand
planning methods

vehicles each month) and (3) very valuable (for example cockpits in different variations,

door panels, seats, electronic equipment, etc.).

To measure the capabilities of the procedure while considering perfectly accurate in-

puts, the MRP algorithm and the data fusion-based algorithm were provided with the

actual option take-rates in September as the planned option take-rates. MRP and DF

also used the actual sales volume in September as the planned sales volume. The data

fusion-based algorithm was trained by using the information from January to May as

input and selected the ω value which minimized the MAPE when creating a component

demand schedule for June.

The schedule accuracy and the computational performance of the three methods in

each of the datasets are illustrated in Table 4.2. Figure 4.3 presents a comparison

between the number of components scheduled by each approach and the actual number

of components, the so-called A/F plot. The figure illustrates the results for September

over all eight datasets. The comparison of the absolute percentage errors over all datasets
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Figure 4.3.: A/F plot for the robustness analysis datasets

is presented in Figure 4.4. The data fusion-based algorithm manages to outperform the

other approaches in all datasets while being almost as fast as the time-series forecasting

method.

The R software package requires little time to tune the forecast model parameters and

can therefore provide results very quickly. Despite the quadratic objective function of

the DF model a solution is found very fast for the mathematical model due to the fact

that the decision variables are real numbers. In contrast, the MRP approach spends a

considerable amount of time searching for past order combinations that would reduce

deviations from the planned take-rates. Despite that both DF and MRP are provided

with the planned take-rates as inputs, the integrality of the frequencies enforced in MRP

prevents the algorithm to find solutions that are very close to the planned take-rates

and induces inaccuracies in the component demand plans.

4.5.3. Implementation in a rolling-horizon context

In the second experimental study we collected data on real-world uncertainty and repli-

cated a rolling horizon planning context. In these tests, we also evaluated how the meth-

ods would fare when provided with inaccurate input data. We again tested time-series,

MRP and DF and compared them additionally with regard to the stability of the result-

ing plans. We implemented the expression described by Kimms, 1998 to measure the

component demand plan stability. The component demand stability measure quantified
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Figure 4.4.: Absolute percentage error spectrum for the component demand planning
methods in the robustness analysis datasets

the magnitude of the scheduled component demand change from one planning run to

the other.

We generated 40 datasets based on the real-world data. In each of these, we con-

sidered a time horizon of a year with rolling component demand updates at the end of

months five, seven and nine. In each planning period, the component demand for month

twelve was scheduled by using the demand information from the corresponding last five

months. The same input data structure as described in section 4.5.2 was provided to the

algorithms. Each scheduling run was done independently of the others i.e. previously

planned component demands for the twelfth month were overwritten. We generated fic-

tive orders by taking the average number of orders, their standard deviation, the average

option take-rates, as well as their standard deviation from the real-world dataset into

consideration.

To simulate the information inaccuracies inherent in a rolling horizon framework, we

introduced information biases in the inputs. When integrating a bias of x% for the

option take-rates, the algorithms were provided with random planned option take-rates

between (1− x)% and (1 + x)% of the actual take-rates in the twelfth month. To avoid

the overlapping effects of two information biases, we did not consider the production

volume information bias. For reasons of confidentiality, the real-world information bias

could not be used. Instead, we selected a realistic bias of 12% when planning the

component demand in month five, 4% in month seven and no bias in month nine. Table
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Method MAD MAPE Thiel’s U Average solving time (s)
Time-series 901.13 36.41% 0.4859 1.56
MRP 632.65 27.88% 0.3513 233.72
DF 182.18 8.75% 0.0949 3.15

Table 4.3.: Schedule accuracy and computational performance of the component demand
planning methods for the rolling horizon context datasets
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Figure 4.5.: A/F plot for the rolling horizon context

4.3 illustrates the schedule accuracy measures over all 40 datasets, as well as the average

computational performance of the three methods. Figure 4.5 illustrates the A/F plot

for the study.

In all cases DF outperforms MRP and time-series forecasting with regard to the accu-

racy measures by more than 60%. One reason is the capability of the data fusion-based

method to fully incorporate the planned option take-rates and, thus, to translate the

reduced information bias in subsequent months in more accurate component demand

plans. Whereas the data fusion-based algorithm manages to provide very accurate com-

ponent demand predictions for months seven and nine, the other two procedures result

in significant deviations from the actual demand for a significant number of components.

Figure 4.6 illustrates the stability measure values for the three methods for every

planning run transition. DF not only provides the most accurate component demand

schedules, it also leads to minimal schedule changes from one planning run to the other.
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Figure 4.6.: Stability measure spectrum for the rolling horizon context

The schedules generated by the data fusion-based method are more stable than those

provided by time-series forecasting or the MRP-based method for more than 80% of the

components. By using the data fusion-based algorithm, Mercedes can provide suppliers

with stable, reliable component demand information. None of the other approaches are

capable of achieving such a performance.

Nevertheless, a comparison between Figure 4.3 and 4.5 shows that there are more

components for DF that have an inaccurate component demand plan. These plans

result in month five, when the planned option take-rates are inaccurate. The results

highlight that the quality of component demand plans is influenced by the accuracy of

the planned option take-rates used by the DF approach.

4.6. Implementation at Mercedes-Benz Cars

In preparation for a future roll-out, a project within the Sales department was initiated

that investigated the possibility of integrating option take-rates in the planning process.

It was at this point that the responsibility for the project was turned over from the

Research department to the IT department. In collaboration with the IT department,

further system requirements, exchange mechanisms with the wider IT landscape, and

aspects of usability were investigated. Key requirements here were an autonomous oper-

ation (with minimal maintenance) and a user interface that did not require the planning

staff to understand the core logic of the system. Hence, an automatic parameterization

60



4.7. Conclusion

of the model was designed with an ex-post MAPE minimization, which runs weekly

and self-adjusts the algorithm. This mechanism was tested over an extended period of

time to ensure the stability of the method with a low exception rate. The specifica-

tion was presented to management, but due to the deep crisis the automotive industry

experienced in 2009, the roll-out was postponed.

The project was restarted in 2012 in collaboration with the IT department to draft a

first complete system specification. Again, different software vendors were asked to de-

velop the new system and prepare the global roll-out and implementation. As a corporate

project it then followed the standard roll-out procedure with its testing, compatibility,

documentation, and training phases. While the full details of the implementation and

integration into the system landscape at Mercedes-Benz were deemed too commercially

sensitive to be discussed in detail here, conceptually the algorithm remained as described

in Section 4.4.

A contract with a software provider was signed in late 2012 and the change manage-

ment process was initiated. Training of the 500 operators began in 2013. As of 2013

the prototype has been still part of the planning process for all new product lines at

Mercedes-Benz (while existing product lines remained on the legacy MRP-system until

phase-out). The complete changeover to the new procedure was completed with the last

phase out of existing product lines in late 2015.

The new component demand planning approach has added the novel capability for the

Mercedes-Benz planning staff to simulate different sales scenarios and their consequences

at component-level, a process that the Central Planning department was only rarely

able to perform in the past due to the long run-times of the existing MRP system. The

planning staff had reported to us that in the past it could take up to four days to get

results from such simulations within the existing MRP system. Planners are now able

to compute and compare various scenarios in less than a single day.

4.7. Conclusion

MRP systems constitute the backbone of the production planning infrastructure in man-

ufacturing, yet their inability to cope with dynamic changes of the environment in which

they operate is increasingly being identified as a major area of concern (Retting, 2007,

Winters et al., 2008, Goodhue et al., 2009, Fauscette, 2013, Tenhiälä and Helkiö, 2015).

In this paper we have answered this call by reporting on the development, validation

and implementation of the algorithm developed by Stäblein, 2008 that improves the
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operation of an MRP system in the context of high product variety and global manufac-

turing and sourcing footprints. The enhancement follows the principles of data fusion,

combining information from different sources to improve the component demand plans.

Our algorithm follows on from many important improvements to MRP-based systems

that have been proposed, both in terms of updating its functionality (see for example:

Armentano et al., 2001, Tang and Grubbström, 2002, Xie et al., 2003, Ram et al., 2006,

Louly et al., 2008, Ioannou and Dimitriou, 2012, Riezebos and Zhu, 2015), and integrat-

ing it with other software systems (see for example: Ferrer and Whybark, 2001, Kreipl

and Pinedo, 2004, Garcia-Sabater et al., 2009).

Our computational study has demonstrated that the enhanced MRP has a good com-

putational performance and provides accurate component demand plans even for more

difficult datasets. The approach is as fast as the more simple time-series software pack-

age, but has a higher component demand forecast accuracy due to the integration of the

planned option take-rates. Additionally, the continuous decision variable values allow

the approach to have a higher flexibility when combining the planned option take-rates

and the past customer orders information. The flexibility also ensures that the compo-

nent demand plans developed by DF are more stable when embedded in a rolling horizon

context.

Our computational study could be enhanced by comparing the DF approach with

state-of-the-art Bayesian component demand forecasting models. Unfortunately, no soft-

ware vendor provided their software packages for such a comparison. Future research

can include such methodologies in an extensive computational study.

As the rolling horizon computational study has shown, the accuracy of the component

demand plans provided by DF is lower when the planned option take-rates are also

inaccurate. Therefore, DF needs to be provided with accurate planned option take-rates

to ensure a good accuracy for the component demand plans. Chapter 5 highlights how

option bundles can be designed to stabilize the option demand such that the forecast of

option take-rates becomes more accurate.

Yet, if anything, our case drastically illustrates the fact that MRP systems are em-

bedded in a context that is rapidly changing, providing an urgent call for more research

into the necessary adaptations and extensions needed to ensure MRP systems continue

to be ‘fit for duty’ in modern-day manufacturing.
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Chapter 5.

Stabilizing the demand for car options

by bundling

This chapter is based on an article submitted as:

Popa, R. C. and M. Grunow (2017). “Stabilizing the demand for car options by

bundling”

5.1. Introduction

Chapter 4 illustrated that the derivation of accurate component demand forecasts re-

quires accurate option take-rate forecasts. However, the heterogeneity of the customer

preferences induces a high volatility in the option take-rates. Figure 5.1 illustrates the

take-rate variability for five options offered by a large German automotive manufacturer.

A concept discussed at automotive manufacturers to address the issue is the sta-
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Figure 5.1.: Option take-rates variability for a volume car model
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Chapter 5. Stabilizing the demand for car options by bundling

bilization of option take-rates by means of option bundles. The German automotive

manufacturer could, for instance, bundle the phone connector and the seat memory sys-

tem, since they have opposing demand trends. However, revenue may be lost, because

customers may want to purchase individual options rather than the bundle.

Traditionally, bundles are designed to maximize revenues or profits. Manufacturers

now aim to bundle options such that the higher revenues are combined with the benefits

that result from take-rate stabilization. A methodology is required that balances both

objectives. The academic literature neither investigates the impact of option bundling

on take-rate stability nor does it offer an appropriate bundling methodology.

In contrast to previous work on bundling, the bundle design methodology developed in

this paper combines an operations perspective with the more traditional sales perspec-

tive. We introduce a branch-and-price option bundle design methodology for automotive

manufacturers that captures the trade-off between revenue maximization and take-rate

stability. Our methodology can be used to generate a specific number of bundles for

various bundling policies. This methodology is able to set an individual discount for

each bundle. We tested our method on a large dataset (225,413 orders) provided by a

German automotive manufacturer. Our computational study found a trade-off between

revenues and take-rate stability. Hence, a sole focus on maximizing revenues has detri-

mental consequences on take-rate stability. Nevertheless, our methodology identifies

bundle designs that simultaneously increase revenues and take-rate stability compared

to the unbundling case. Our methodology helps automotive manufacturers design bun-

dles while not only accounting for the sales perspective, but also for the operations

perspective.

We present the problem settings and the mathematical model at the foundation of

our methodology in section 5.2. The components of our branch-and-price methodology

are described in section 5.3. The settings and results of a comprehensive computational

study based on our methodology are discussed in section 5.4. We summarize the main

managerial findings and address the limitations of our methodology and computational

study in section 5.5.

5.2. Problem description

We devised for our problem a model that balances revenue maximization and take-rate

stability maximization. The take-rate stability represents the lack of take-rate changes

from one period to another.
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5.2. Problem description

The model designs a predefined number of bundles based on a set of options. To

ensure that customers are motivated to purchase bundles, we simplify the customer

choice process. To this end, we allocate each option to only one bundle. The following

assumptions are used for our methodology:

a The effects of option bundling observed for past customers are also relevant for the

near-future customers if a sufficiently large number of customers is considered.

b The reservation prices of the customers for the individual options are known or can

be estimated. The assumption is common for option bundling research and has

been used, among others, in Wu et al., 2008 and Hanson and Martin, 1990. Train,

2009 illustrates how reservation prices can be estimated based on past customer

purchases using discrete choice methods.

c Each customer acts rationally and selects bundles such that the consumer surplus

she achieves through her acquisition is maximized.

d The marketing department sets an upper limit for the bundle discounts.

We use the following notation in our mathematical model:

Sets:

o ∈ O Set of options

b ∈ B Set of bundle candidates

c ∈ C Set of past customers

t ∈ T Set of time periods

ζ(t) : Set of customers who have placed their orders in period t.

Parameters:

n Number of bundles to design

fo,b 1 if option o is included in bundle b, 0 otherwise

m Maximum number of options in a bundle

D Maximum bundle discount

η Bundle discounts increment

d′b Bundle discount of bundle b
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po Original selling price of option o

rb Total revenues generated by bundle b if offered

ho,t Take-rate of option o in period t

Sc,b 1 if customer c would select bundle b, 0 otherwise

ρ′o,c Reservation price of customer c for option o

∆TT
b Take-rates variability of all options included in bundle b

u 1 if the bundles are designed for mixed bundling,

0 for pure bundling

so,c 1 if option o was selected in the past by customer c,

0 otherwise.

Decision variables:

λb 1 if bundle b is offered, 0 otherwise.

The design of n bundles is equivalent to the selection of n bundles from the set of

bundle candidates B. Since in real-life, customers are not usually interested in pur-

chasing very large bundles, it is possible in our model to limit the number of options

that a bundle can include to a maximum. We define B as the set of the bundles that

contain a maximum of m options from set O. Set B also includes the pseudo-bundles

with only one option. Bundles with identical structure, but different bundle discounts

are included individually in set B. The bundle discounts d′b are multiples of the bundle

discount increment η, up to a value of D.

One strength of our modeling approach is that it is possible to determine if a customer

would purchase a bundle at a given discount before solving the bundle selection problem:

Sc,b =


1, if (

∑
o∈O

ρ′o,c · fo,b ≥
∑
o∈O

po · (1− d′b) · fo,b)

∧ ((u = 0) ∨ (
∑
o∈O

(ρ′o,c − po · (1− d′b) · fo,b) ≥
∑
o∈O

(so,c · (ρ′o,c − po) · fo,b))

0, otherwise

(5.1)

Since each option is assigned to only one bundle and a customer tries to maximize

her surplus, she buys the bundle in the pure bundling case if the sum of the reservation
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5.2. Problem description

prices of the options included in the bundle is at least equal to the price of the bundle.

In the mixed bundling case, the customer purchases the bundle only if the surplus that

results from the purchase of the bundle is also higher than the surplus that results from

the separate purchase of the options included in the bundle that were acquired by the

customer in the past.

After the identification of the bundle selections made by the customers, it is possible

to determine the total revenues generated by the bundle if it is offered with the discount

d′b:

rb =
∑
c∈C

(Sc,b ·
∑
o∈O

po · (1− d′b) · fo,b + u · (1− Sc,b) ·
∑
o∈O

so,c · po · fo,b) (5.2)

In the pure bundling case, a customer either buys the bundle or discards the acquisition

of the bundle and thereby does not receive any of the options included in the bundle.

In the mixed bundling case, she either buys the bundle or acquires the desired options

separately. The second term of equation (5.2) represents the revenues that are generated

through the separate acquisition of the options included in the bundle.

The take-rates that result for each option in each period can be calculated based on

the bundle and option selections. The take-rate of an option in a period is the share of

vehicles requested in that period that also contain the option:

ho,t =
∑
c∈ζ(t)

Sc,b · fo,b + u · so,c · (1− Sc,b) · fo,b
|ζ(t)|

(5.3)

The second term of equation (5.3) includes the separate purchases of the options for

the mixed bundling case in the calculation of the take-rates.

After the option take-rates have been determined, the total take-rate stability of the

options included in the bundle can be calculated based on equation (5.4). The stability

is defined as the negative sum of the absolute take-rate changes from one period to the

next.

∆TT
b = −

∑
o∈O

fo,b ·
∑

t∈{2...|T |}

|ho,t − ho,t−1| (5.4)

The design of n bundles can then be represented by the following compact binary

model:

Maximize

F1 =
∑

b∈B λb · rb,

F2 =
∑

b∈B λb ·∆TT
b

(5.5)
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subject to: ∑
b∈B

λb = n (5.6)∑
b∈B

λb · fo,b = 1,∀o ∈ O (5.7)

Expression (5.5) represents the objectives of our methodology: the maximization of

total revenues and option take-rate stability. Constraint (5.6) enforces exactly n bundles

being offered. Constraint (5.7) requires that each option is included in one, and only

one of the offered bundles at only one discount level.

We obtain the Pareto-efficient frontier for the problem by means of a standard ε

constraint methodology. Let Fmax
1 , Fmin

1 , Fmax
2 and Fmin

2 be the payoff table values

for the two objectives, τ be the number of Pareto curve points to be determined and

εj,2, · · · , εj,τj−1 be the limits for the total take-rate stability.

The model used to design bundles for the Pareto frontier point τ ′ is defined by the

following expressions:

Maximize F1 (5.5’)

subject to:

Constraints (5.6), (5.7)

F2 ≥ ε′τ (5.8)

5.3. Branch-and-price-based option bundles design

Due to the number of decision variables, the model defined by expressions (5.5’) - (5.8)

cannot be used for realistic problem instances, in which dozens of options must be bun-

dled. We therefore developed a branch-and-price methodology. The methodology can

be used both for the revenue maximization, as well as the take-rate stability maximiza-

tion problem required for the payoff table values. We describe the components of the

methodology in the following subsections.
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5.3.1. Column generation procedure and branching schemes

We use a relaxed and adapted version of the model defined by expressions (5.5’) - (5.8)

as part of a column generation procedure. The same relaxations described in chapter

3.3.1 are applied.

The column generation procedure starts with a set B that contains all one-option

bundles. For both the revenue maximization and the take-rates stability maximization

problems, the adapted model has the same structure:

Maximize F1 =
∑
b∈B

λb · κb − q · feas+ − q · feas− (5.5”)

subject to:

∑
b∈B

λb = n+ feas+ − feas− (5.6’)

Constraints (5.7), (5.8)

Depending on the problem that is solved, κb represents the revenues generated by

bundle b or the total take-rate stability of the options included in the bundle. Constraint

(5.6’) allows deviations from the required number of bundles. These deviations are

needed to always find a feasible solution for the model. However, the penalty costs q

must be set high enough that the model adheres to the required number of bundles, if

possible. For the revenue maximization problem, q is defined as:

q = |C| ·
∑
o∈O

po + 1

For the take-rate stability maximization problem, q is defined as:

q = (|T | − 1) · |O|+ 1

When the objective function values for the payoff table are determined, constraint

(5.8) is removed.

The structure of the current column generation procedure is typical. The dual vari-

able values πopt corresponding to constraint (5.7) and πnoBund, πepsilon corresponding

to constraints (5.6’) and (5.8) are derived based on the relaxed master problem solu-

tion. The dual variable values are used to generate additional bundles that improve
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the objective function value of the relaxed master problem. We use the subproblem

heuristic described in section 5.3.3 to generate bundles. If the heuristic cannot find an

objective-improving bundle, a mathematical model for the subproblem is used. The

problem-specific subproblem models are described in section 5.3.2.

If the column generation solution is not feasible for our problem, but better than the

best solution found so far, the branching scheme Ryan and Foster branching scheme

(BS1) and a problem-specific branching scheme are used. The branching scheme BS1

is used when none of the bundles with non-integer λb selection values have an identical

structure. The second branching scheme BS2 is used when at least two bundles with

the same structure, but different price levels, have a non-integer λb selection value.

The branching candidates of branching scheme BS2 are of type ({f ′o ∈ {0, 1}|o ∈
O},−1) and ({f ′o ∈ {0, 1}|o ∈ O}, φb′). The set {f ′o ∈ {0, 1}|o ∈ O} defines the

structure of the bundle based on which the branching is done. The branching candidate

({f ′o ∈ {0, 1}|o ∈ O},−1) represents the branch in which no other bundle with the

structure {f ′o ∈ {0, 1}|o ∈ O} is offered at any price other than φb′ . The branching

candidate ({f ′o ∈ {0, 1}|o ∈ O}, φb′) represents the branch in which the bundle with the

structure {f ′o ∈ {0, 1}|o ∈ O} and price φb′ is not offered. The price φb′ of the bundle

with the highest non-integer λb value is used for branching. The branch ({f ′o ∈ {0, 1}|o ∈
O},−1) is explored first to find an integer solution quickly.

Our branch-and-price methodology can also be used as a matheuristic. The subprob-

lem model is used only in the root node to ensure that the optimal relaxed master

problem solution has been found in the root node. The objective function value of the

root node solution is the tightest upper bound that can be found for our problem.

5.3.2. Subproblem models

We developed four mathematical model versions for the design of bundles that improve

the objective function value of the relaxed master problem. Two versions are used for the

revenue maximization problem and two for the option take-rate stability maximization

problem. For each problem there is a model version for pure bundling and one for mixed

bundling. All models design the bundle that has the highest positive reduced costs.

We use the following additional notation for all model versions:

Additional sets:

l : Set of active BS1 branching constraints
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b′ ∈ Θ : Set of bundles relevant for the branching scheme BS2

Additional parameters:

φ′b′ : Price of bundle b′ that should not be generated again, -1 if

no bundle with the structure of bundle b′ should be generated

Mc,M
∗
c : Big, customer-specific numbers

M ′ : Maximum price of a bundle that contains m options

Decision variables:

xo : 1 if option o is included in the new bundle, 0 otherwise

yc : 1 if customer c acquires the new bundle, 0 otherwise

θo,t : Number of customers who select option o in period t, θo,t ≥ 0

∆+
o,t,∆

−
o,t : Auxiliary variables that represent the absolute take-rate change

of option o from period t− 1 to period t,∆+
o,t,∆

−
o,t ≥ 0

P : Price of the new bundle, P ≥ 0

α : Multiple of the discount increment used for the bundle price, α ∈ N

Φc : Revenues generated by customer c due to the new bundle

β+
b′ , β

−
b′ : Deviations of the price of the new bundle from the price of bundle b′

ψb′ : 1 if the price of the generated bundle is larger than the price

of bundle b′, 0 otherwise.

After successfully running the required subproblem model, the new bundle defined by

the decision variables xo, the corresponding objective function contribution κb and the

take-rate stability ∆TT
b are added in the relaxed master problem model.

Pure bundling model

In the following, the revenues maximization subproblem model for the pure bundling

case is presented.

Objective function:

Maximize κb = Frev =
∑
c∈C

Φc −
∑
o∈O

πopt · xo − πnoBund − πepsilon ·
∑

t∈{2..|T |}

∑
o∈O

(∆+
o,t + ∆−o,t)

(5.9)
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Subject to:

κb ≥ 0 (5.10)

2 ≤
∑
o∈O

xo ≤ m (5.11)∑
o∈O

(1−D) · po · xo ≤ P ≤
∑
o∈O

po · xo (5.12)

P = η · α (5.13)∑
o∈O

ρ′o,c · xo − P +M∗
c · (1− yc) ≥ 0 ∀c ∈ C (5.14)∑

o∈O

ρ′o,c · xo − P −Mc · yc < 0 ∀c ∈ C (5.15)

θo,t ≤
∑
c∈ζ(t)

yc ∀o ∈ O, t ∈ T (5.16)

θo,t ≤ |ζ(t)| · xo ∀o ∈ O, t ∈ T (5.17)

θo,t ≥
∑
c∈ζ(t)

yc − |ζ(t)| · (1− xo) ∀o ∈ O, t ∈ T (5.18)

Φc ≤ P ∀c ∈ C (5.19)

Φc ≤M ′ · yc ∀c ∈ C (5.20)

θo,t − θo,t−1
|ζ(t)|

+ ∆−o,t −∆+
o,t = 0 ∀o ∈ O, t ∈ {2..|T |} (5.21)

xo1 = xo2 , ∀o1, o2 ∈ O : (o1, o2, 1) ∈ l (5.22)

xo1 + xo2 ≤ 1, ∀o1, o2 ∈ O : (o1, o2, 0) ∈ l (5.23)∑
o∈O:fo,b′=1

xo −
∑

o∈O:fo,b′=0

xo ≤
∑
o∈O

fo,b′ ∀b′ ∈ Θ : φb′ = −1 (5.24)

∑
o∈O:fo,b′=1

xo −
∑

o∈O:fo,b′=0

xo − β+
b′ − β

−
b′ ≤

∑
o∈O

fo,b′ ∀b′ ∈ Θ : φb′ 6= −1 (5.25)

P − β+
b′ + β−b′ = φb′ ∀b′ ∈ Θ : φb′ 6= −1 (5.26)

β+
b′ ≤M ′ · ψb′ ∀b′ ∈ Θ : φb′ 6= −1 (5.27)

β−b′ ≤M ′ · (1− ψb′) ∀b′ ∈ Θ : φb′ 6= −1 (5.28)

The objective function (5.9) represents the maximization of the reduced costs of the

designed bundle for the revenue maximization master problem. The first term represents

the revenues generated by the new bundle. The second term represents the reduced

costs decrease caused by the options included in the bundle. The last term represents
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the reduced costs decrease caused by the total take-rate variability of the bundle.

The new bundle can only improve the objective function of the relaxed master prob-

lem if it has positive reduced costs. We introduce constraint (5.10) to improve the

computational performance of the model. Since all bundles that contain one option

are provided at the start of the column generation procedure, constraint (5.11) hinders

the subproblem model to generate discounted bundles with only one option. The con-

straint also enforces that the new bundle contains at most m options. Constraint (5.12)

represents the bounds of the bundle price. Constraint (5.13) enforces that the bundle

price is a multiple of the bundle increment η. Constraints (5.14) and (5.15) represent

the bundle selection mechanism of the customers. Since each customer selects bundles

such that her surplus is maximized and each option is assigned to only one bundle, a

customer selects the new bundle only if the price of the bundle is at most equal to her

willingness to pay for the options included in the bundle. Constraints (5.19) and (5.20)

set the revenue generated by the new bundle for a specific customer equal to the price

of the bundle if the customer buys the bundle, 0 otherwise. Constraints (5.16) - (5.18)

determine the number of customers who selected an option in a particular month. The

θo,t values are then used in equation (5.21) to calculate the absolute option take-rate

changes for each option and for each time period. Constraints (5.22) and (5.23) enforce

the active branching constraints that require or prohibit the inclusion of pairs of options

in the generated bundles. Constraint (5.24) is used in the branches that require that a

certain bundle b′ is offered only with a certain price. The constraint prohibits the design

of any bundle that contains the same options as bundle b′. Constraints (5.25) - (5.28)

allow the generation of a bundle containing the same option as bundle b′ as long as the

price of the new bundle is different from the price of bundle b′, φb′ .

For the design of the bundle that maximizes take-rate stability, only the objective

function needs to be adapted:

Maximize κb = Fvar = −
∑

t∈{2..|T |}

∑
o∈O

(∆+
o,t + ∆−o,t)−

∑
o∈O

πopt · xo − πnoBund (5.9”)

Constraints (5.10) - (5.28) are also used for the take-rates stability maximization

subproblem model.
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Mixed bundling model

In the mixed bundling case, the model needs to include the impact of options purchased

separately by the customers. To this end, the θo,t decision variables from the pure

bundling models are replaced by new decision variables:

θ′o,c : 1 if customer c selects option o as part of the new bundle, 0 otherwise

The adaptations of the model are presented in the following:

Objective function:

Maximize κb = F ′rev = Frev +
∑
c∈C

(
∑
o∈O

(xo − θ′o,c) · so,c · po) (5.9*)

Subject to:

Constraints (5.10) - (5.13)∑
o∈O

ρ′o,c · xo − P −
∑
o∈O

(ρ′o,c − po) · so,c · xo +M∗
c · (1− yc) ≥ 0 ∀c ∈ C (5.14’)∑

o∈O

ρ′o,c · xo − P −
∑
o∈O

(ρ′o,c − po) · so,c · xo −Mc · yc < 0 ∀c ∈ C (5.15’)

θ′o,c ≤ yc ∀o ∈ O, c ∈ C (5.16’)

θ′o,c ≤ xo ∀o ∈ O, c ∈ C (5.17’)

θ′o,c ≥ yc + xo − 1 ∀o ∈ O, c ∈ C (5.18’)

Constraints (5.19), (5.20)∑
c∈ζ(t)(θ

′
o,c + (1− θ′o,c) · so,c)
|ζ(t)|

−
∑

c∈ζ(t)(θ
′
o,c + (1− θ′o,c) · so,c)
|ζ(t−1)|

+ ∆−o,t −∆+
o,t = 0 ∀o ∈ O, t ∈ {2..|T |} (5.21’)

Constraints (5.22) - (5.28)

In the adapted objective function (5.9*) we also include the revenues generated by

the customers who purchase the options offered in the bundle separately. Constraints

(5.14’) and (5.15’) enforce that a customer selects the bundle only if the surplus gained

by purchasing the bundle is also higher than the surplus that results for a separate

acquisition of the options in the bundle. Constraints (5.16’) - (5.18’) set θ′o,c equal to 1

if customer c buys the bundle generated by the model and option o is in the bundle. In

constraint (5.21’), the take-rate stability calculation also includes the number of options

74



5.4. Computational study

that the customers purchase separately.

The model for the design of the bundle for the take-rate stability maximizing prob-

lem is almost identical to the revenues maximization mixed bundling model. The only

difference is that the objective function (5.9”) needs to be used instead of (5.9*).

5.3.3. Subproblem heuristic

For the different subproblems, we use a greedy multi-core heuristic. This generates a

large number of bundles with positive reduced costs in a reasonable amount of time.

The reduced costs are determined by the objective functions of the models introduced in

the previous section. The heuristic is initialized with all bundles that contain a pair of

options. Then, the heuristic searches on each of the available CPU cores for whether an

initial bundle can be expanded with additional options such that the reduced costs are

increased. The search of an individual CPU core is terminated as soon as the expansion

of a bundle does not increase the reduced costs, all options have been added to the

bundle or the maximum number of options in a bundle has been reached. The heuristic

can store up to 1,000 bundles with positive reduced costs per CPU core search. At the

end of the search, the heuristic adds the stored bundles to the relaxed master problem.

5.4. Computational study

A large German automotive manufacturer provided us with data for three car models: a

volume model (M1), a niche model (M2) and a luxury model (M3). For each of the car

models, 30 options were made available for our bundling methodology. The options were

electronics and seating options that could be combined without restrictions. We were

also provided with customer purchase data that included the option selections made

by the customers, as well as the months in which the purchases were made. Table 5.1

illustrates the number of past customer purchases included in the datasets, the number

of months over which the customers were spread and the average take-rates and their

stability.
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Car model Model M1 Model M2 Model M3
# customers 150,194 39,194 36,025
# months 10 9 7
∅ take-rates 23.47% 35.91% 48.17%
∅ take-rate stability -4.24% -4.91% -2.65%

Table 5.1.: Number of past customer purchases and months included in the case study

Since the marketing department of the automotive manufacturer would not accept

bundle designs that concentrate many options in a small number of bundles, we generated

bundle designs that contained a number of bundles between d|O|/2e and |O|−1. For the

same purpose we also limited the maximum number of options in a bundle to 10. We

designed bundles separately for a pure and a mixed bundling policy. For each designed

bundle configuration we generated a Pareto frontier that consisted of 10 points.

We ensured that the performance of our bundles was not a result of overfitting by

splitting the customer data in a training and validation dataset. The customer purchases

from the last three months in the datasets were used as validation data. Data from

the remaining months were used as training data. The customer purchases from the

training datasets were used by our branch-and-price approach to design bundles. The

correlation of the take-rate stability and the revenues between the training and the

validation datasets was above 0.92 for all car models for pure and mixed bundling. The

very high correlation of each performance measure suggests that the bundles generated

by the matheuristic do not exhibit a dataset-specific influence on the revenues and the

take-rate stability. Nevertheless, the performance evaluation in the next sections is still

based on the customers from the validation dataset.

We set the input parameters for our tests based on discussions with colleagues from

the automotive manufacturer. Accordingly, the reservation price of a customer for an

option she previously purchased was set 10% higher than the price of the option and the

reservation price of a customer for an option she did not purchase in the past was set

equal to 30% of the price of the option. We set the upper limit for the bundle discounts

to 15% and the discount increment to 0.5%.

We ran all tests on Intel Xeon machines with 8 CPU cores and 16 GB RAM. The

relaxed master problem and the subproblem models were solved with IBM ILOG CPLEX

12.7. The models were embedded in a branch-and-price framework we developed in C#.
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Car model
Matheuristic

small test
instances

Optimizing
small test
instances

Realistic
test instances

Pure Mixed Pure Mixed Pure Mixed
∅ computation time (s) 100.30 355.88 259.35 3287.35 877.74 8,201.14
% test instances solved to optimality 100% 91.52% 27.08% 53.24%
∅ optimality gap 0% 0.01% 0.36% 0.14%

Table 5.2.: Average computation time, share of optimal test instances and average op-
timality gap for the small and the realistic test instance

5.4.1. Computational analysis

We first compared the performance of the branch-and-price matheuristic to the opti-

mizing branch-and-price approach on small test instances. In these tests, we designed

bundle configurations from 10 randomly selected options for each car model. 197 bundle

configurations were generated by each methodology, 138 of which for pure bundling and

59 for mixed bundling. We then designed bundles with the matheuristic based on the

complete set of options provided to us in realistic test instances. For these instances,

we set a computation time limit of 3 hours. The matheuristic output provided the best

bundle configuration found during that time. 857 bundle configurations were generated

for the realistic test instances: 441 for pure bundling and 416 for mixed bundling. Ta-

ble 5.2 presents an overview of the computational performance for the small, and the

realistic test instances.

The overall average computation time for the matheuristic for the small test instances

was substantially lower than for the optimizing approach. For the hard-to-solve mixed

bundling case, the calculation time can be reduced by almost 90%. All the bundles

generated by the matheuristic for pure bundling were proven to be optimal. For only

less than 10% of the mixed bundle configurations, the matheuristic did not generate the

optimal solution. For none of these configurations did the optimality gap exceed 0.11%.

For the realistic test instances, the matheuristic managed to always generate pure

bundling configurations in less than 3 hours. Despite that not more than 27% of the

bundle configurations were proven optimal, the average optimality gap was very low.

The computation time for mixed bundling was a lot higher than for pure bundling, since

often the matheuristic spent a lot of time in the branching phase.
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5.4.2. Revenues and take-rate stability

We analyzed the impact of option bundles on revenues and take-rate stability based on

the results for the realistic test instances. We first present an example of the bundle

configurations generated by the matheuristic. We then provide an overview of the im-

pact of bundling for a pure and a mixed bundling policy. To relate the results to the

concentration of options to bundles, we represent the number of bundles in our analysis

again by means of the bundling intensity.

Example of bundle configurations.

Figure 5.2 illustrates how option bundles induce revenue and take-rate stability changes.

It presents two bundle configurations designed for model M1 for a pure bundling policy

and a bundling intensity of 47%. Figure 5.2 shows only the options included in a bundle.

The figure showcases the average take-rate and take-rate change between periods for each

option and bundle.

The bundles that maximize revenues induce an average increase of the take-rates at

the cost of take-rate stability. The increase is generated by high-take-rate options, such

as 25, that increase the take-rates of the options with which they are bundled, e.g. 24 is

raised from 8.64% to 57.53%. Over all options, the average take-rate is increased by 34%

compared to unbundling. However, the revenue-maximizing bundles reduce the average

take-rate stability. For option 24 the average take-rate change increases from 4.74% to

20.79%. Over all options, the average take-rate change increases on average by 24%

compared to unbundling. Note that the high bundling intensity of 47% also requires the

creation of bundles which reduce revenues, e.g. bundle (13,14). For this example, the

bundling intensity that maximizes revenues lies at 30%.

In contrast, the bundles designed for the 3rd Pareto frontier point (for which there is

a lower limit on the take-rate stability) result in a simultaneous increase of the revenues

and take-rate stability. Option 24 is now bundled with options 22 and 23. Its average

take-rate is moderately increased to 15.58%. However, its take-rate changes are reduced

to an average of 3.84%. Over all options, the increases in the take-rate and in the take-

rate stability are 22% and 2%, respectively. Note that revenue maximization remains the

objective for bundling. Therefore some bundles still have negative effects on take-rate

changes (but positive effects on take-rates).
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Revenue maximization only

Revenue maximization with lower limit on take-rate stability (3rd Pareto frontier point)

2019 215 136 7 18149 161 17 223 152 4 1110 12 238
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6.08%

1.99%
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Legend: average take-rate
  average take-rate change between consecutive time periods

2019 215 136 7 18149 161 17 223 152 4 1110 12 238 24 25 26 27 28

3.68%
1.56%

1.99%
1.53%

14.38%
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14.79%
6.37%

15.58%
3.84%

57.53%
20.79%

17.71%
7.50%

Unbundling

Figure 5.2.: Bundles designed for model M1 for a pure bundling policy and a bundling
intensity of 47%

Pure bundling.

Pure bundling is more restrictive on the choices made available to the customers than

mixed bundling. Since options can only be bought as part of bundles, a customer who

wants to buy a particular option is forced to decide whether she purchases the bundle

that contains the option or discards the acquisition of the option. Pure bundling can

therefore be designed to efficiently steer customers such that the revenue and take-rate

stability objectives are achieved.

A Pareto frontier was generated based on 10 bundle configurations for each car model

and each bundling intensity. Figure 5.3 (a) illustrates the Pareto frontiers for car model

M2 for three different bundling intensities. The dominant bundle configurations over

all bundling intensities were used to derive an overall Pareto frontier, the ‘hull’. Figure

5.3 (b) presents the hull for each car model. The revenues and take-rate stability are

represented in the figure in relation to their values for unbundling. We only represent

the Pareto frontier points for which the revenues were reduced by no more than 15%

compared to unbundling. All points with lower revenues would be unacceptable for any

automotive manufacturer.

The results highlight the trade-off between revenues and take-rate stability. Our

computational study confirms that bundles designed to maximize revenues can increase

revenues compared to unbundling. For the car models M1, M2, and M3 in our study, the

revenue increase amounts to 10, 13 and 5%. However, our results show that the bundles
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Figure 5.3.: Pareto frontiers for the pure bundling case

designed only for revenue maximization drastically reduce the take-rate stability. The

loss amounts to 30% for M1, 25% for M2 and 19% for M3. The results demonstrate and

quantify the drawback of a standard, marketing-oriented bundle design when viewed

from an operational perspective.

However, we can design bundles that increase both revenues and take-rate stability.

Bundles that do not reduce revenues compared to unbundling can increase take-rate

stability by 15% (33%, 22%) for M1 (M2, M3). Hence, our methodology is able to

identify a wide range of bundles with synergies between marketing and operations.

The potential of option bundling to improve revenues and take-rate stability is model-

specific, as shown in Figure 5.3. The Pareto hulls of models M1 and M3 are very

close, with higher revenues and take-rate stability at the edges of the Pareto frontier

of model M1. Model M2 has the lowest take-rate stability for unbundling (cf. Table

5.1). Bundling for this model results in the highest revenues and take-rate stability

improvements. Since model M2 has many options with a low take-rate stability, many

bundles can be generated to stabilize the take-rates of these options. At the same time,

some option take-rate peaks can be exploited to subsidize the purchase of other options,

thereby increasing revenues.

We further analyzed the impact of bundling intensity on the bundle configurations

that improve both measures. To this end, we compared the bundling intensity-specific

Pareto frontiers. We calculated the ratio of the surface delimited by each Pareto frontier

to the surface delimited by the Pareto frontier hull. An example of a surface used for

the ratio calculation is presented in Figure 5.3 (a) as a hashed area for the 10% bundling

intensity. Figure 5.5 illustrates the ratio for each car model and each bundling intensity.

For low levels of bundling intensity, an increase of the bundling intensity improves both

revenues and take-rate stability. Here, an increase of the bundling intensity enables more
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Figure 5.5.: Ratio of surface covered by the Pareto frontiers of each bundling intensity
compared to the hull

flexibility in the design of bundles. Our methodology can then identify a larger diversity

of bundle configurations with a stronger impact on the trade-off between revenues and

take-rate stability.

The surface ratio peaks for each model at a different bundling intensity. Bundling

intensities beyond this point lead to a decline of the surface ratio. While models M1 and

M3 peak at low levels of bundling intensity, model M2 peaks at a high level of bundling

intensity. This corresponds to the results shown in Figure 5.3 (b). For models M1 and

M3, there are only few bundles with advantages. For model M2, many more bundles

can be identified that have a positive impact on both performance measures. As the

bundling intensity increases towards 50%, the surface ratio diminishes for all models.

We also analyzed the average discount of the bundle configurations that resulted in

an improvement of both the revenues and the take-rate stability. In principle, discounts

increase the appeal of bundles and thus stabilize take-rates. If set too high, however,

they also reduce revenues. The resulting average bundle discount in the computational

study was 7.88% for model M1, 7.56% for model M2 and 11.59% for model M3. All

values are far below the discount limit of 15%. Model M3, has a high take-rate and

take-rate stability in the unbundling case (cf. Table 5.1). Only high discounts can

motivate customers to purchase even more options as part of bundles.

Mixed bundling.

For a mixed bundling policy, the customers also have the possibility to purchase the

options they desire separately, at the original option price. The customers are then

not restricted in the choices made available to them. The design space of bundles that

simultaneously increase revenues and take-rate stability is therefore more restricted than

for pure bundling.
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Figure 5.7.: Ratio of surface covered by the Pareto frontiers for mixed bundling compared
to the hull

The Pareto frontier hulls in Figure 5.6 confirm the trade-off between revenues and

take-rate stability for mixed bundling as well. As for pure bundling, the bundles that

maximize revenues also reduce the take-rate stability by 15% for M1, 13% for M2 and 7%

for M3 compared to unbundling. At the same time, take-rate stability can be improved

by 16% for M1, 35% for M2 and 24% for M3 compared to unbundling, with at least the

same revenues as in the unbundling case.

In contrast to pure bundling, the effects of option bundling for mixed bundling become

more similar across car models with respect to the trade-off between revenues and take-

rate stability. The results highlight that mixed bundling can generate revenue and

take-rate stability improvements irrespective of the take-rates and their stability in the

unbundling case. However, the improvements are also far less pronounced.

We again analyzed the impact of the bundling intensity on the range of bundle con-

figurations that improve both revenues and take-rate stability. The comparison of the

results in Figure 5.7 with 5.5 shows that mixed bundling requires a higher bundling in-

tensity to reach the moderate performance improvement. Furthermore, for a very high

bundling intensity of 50%, the surface ratio is again reduced.

Mixed bundling only works when bundle discounts are offered. Otherwise customers
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Model M1 Model M2 Model M3
Coverage for pure bundling 50.36% 55.44% 28.87%
Coverage for mixed bundling 4.88% 82.78% 79.39%

Table 5.3.: Pareto hull surface coverage ratio

would simply purchase the individual options. The average discount of the bundle

configurations that result in simultaneous revenues and take-rate stability improvements

is 12.99% for model M1, 13.24% for model M2 and 14.29% for model M3. The discounts

are consistently high for all car models and for all Pareto frontier hull points.

5.4.3. Impact of discount flexibility

Discounts are used to exploit the consumer surplus and thereby motivate customers

to purchase more products than what they originally intend. As shown in Section 2,

researchers have developed approaches for option bundling to define bundle-specific dis-

counts that enhance the extraction of consumer surplus and thereby increase revenues or

profits. However, the impact of flexible discounts on operational performance indicators

has not been studied. We therefore compared the effects of the bundles discussed in

Section 5.4.2 with bundles designed by the matheuristic for a fixed discount of 15%. We

investigated the ratio of the surface covered by the Pareto hull for the fixed discounts,

when revenues and take-rate stability are both larger than in the unbundling case, to

the surface of the Pareto hull for the variable discounts. Table 5.3 presents the ratio for

each car model for pure and mixed bundling.

The smaller surface for fixed discounts shows that the potential of option bundling to

simultaneously increase revenues and take-rate stability is reduced, irrespective of the

bundling policy. In the case of model M1 for mixed bundling, the matheuristic identifies

only one such design for fixed discounts. Our results show that discounts are a useful

tool, not only from a marketing perspective, but also from an operations perspective.

5.5. Conclusion

Up until now, option bundles were designed from a marketing perspective, such that

revenues or profits were maximized. Our bundles design approach is the first that

actively pursues an operational perspective, the stabilization of the option take-rates.

Our experiments show that, contrary to previous analyses, option bundling does not
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lead to operational improvements if the operational effects are not taken into account

during the bundle design process. A design process performed with the objective of

a maximization of the revenues reduces the operational objective of take-rate stability

considerably. Therefore, a trade-off exists between revenues and take-rate stability.

However, our computational study shows that bundles can be designed to simultaneously

increase revenues and take-rate stability.

The potential of option bundling to improve revenues and take-rate stability is best

exploited for pure bundling. However, the scale of the improvement is influenced by the

take-rates and their stability in the unbundling case. In comparison, the improvements

generated by bundles designed for a mixed bundling policy are less pronounced than for

pure bundling. Also, mixed bundling requires a higher bundling intensity to reach the

moderate performance improvement.

The results highlight the potential of option bundling to increase take-rate stability

without any negative impact on revenues. In our experiments the bundles that did

not change revenues increased the take-rate stability by at least 15%, regardless of the

bundling policy implemented.

Our computational study also shows that bundle-specific discounts are not only an

important instrument from a marketing perspective. A common discount rate for all

bundles results in lower revenues and take-rate stability. The results show that practi-

tioners need to be aware that the bundle pricing decisions can also impact operational

measures.

Even if our matheuristic can design bundles for realistic test instances, the compu-

tational performance of the approach could still be improved in further research. For

example, branching could be enhanced by identifying stronger upper bounds that do not

require an optimal subproblem solution. Alternatively, the number of bundle configu-

rations that need to be generated could be reduced by imposing a lower bound for the

revenues. We did not insert such a constraint in order to analyze the complete spectrum

of the trade-off between revenues and take-rate stability . However, such a constraint is

relevant in industrial settings.

Our work used the typical customer behavior models for bundle selection. Even though

there are methods that can estimate reservation prices based on past customer purchases,

the datasets made available to us were not suitable for this purpose. An estimation of

reservation prices would, for example, require additional demographic information that

can be used to identify customer segments. While the current information exchange

between the car dealers and manufacturers does not allow for such analysis, future
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online sales will provide the required data. Future research could then integrate the

reservation prices estimation process in the design of bundles.

Furthermore, the results of our computational analysis are based on a dataset with

three car models. We have shown how take-rate stability can be taken into account

in the design of bundles. Our approach could be applied to a more extensive dataset

to draw general conclusions on the extent of operational benefits of bundling for the

automotive industry in general.

The standard marketing-oriented design of option bundles has repercussions on oper-

ations. Our work provides a methodology automotive manufacturers can use to support

an integrated business planning process aimed at identifying a suitable trade-off between

marketing and operations.
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Chapter 6.

Conclusion and future research

directions

6.1. Summary of findings

In this section, we summarize the main findings from the previous chapters and we

address the research questions formulated in section 1.6.

RQ1: Do option bundles generally result in a reduction of product variety and, if yes,

which factors influence the magnitude of the reduction?

Option bundles design approaches that also minimize product variety are too complex

to be used for realistic settings. Therefore, we analyzed whether bundles designed only

from a marketing perspective would also indirectly reduce product variety. We therefore

developed an option bundles design approach that uses a classic objective function,

the maximization of revenues. Our approach designs bundles for pure bundling, while

assuming that customers purchase a bundle if their willingness to spend for the bundle

exceeds the bundle price.

Our computational analysis shows that there is a trade-off between the revenues and

the levels of product variety that result from option bundles. Nevertheless, our approach

identifies bundles that can simultaneously increase revenues and reduce the number of

car variants. The bundles that do not change revenues compared to the unbundling

case reduce the number of car variants substantially. The effects persist for different

willingness to spend and bundle discount levels, albeit at different magnitudes. The

effects are also robust to the choice of the behavioral model used. Even when customers

make their choices according to the classic surplus maximization model, there are no

major performance differences.

The results of the computational study indicate that pure bundling results in a reduc-
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tion of product variety, irrespective of the car model considered. Option bundling can

already be an effective tool for no bundle discount, if the customer base is homogeneous

and the prices of the options have a wide range. The benefits of option bundling can be

obtained for other circumstances with a proper tuning of the bundle discount.

RQ2: Does the enhanced MRP approach developed by Stäblein, 2008 deliver robust

results and can it be embedded in a rolling horizon planning cycle?

The enhanced MRP approach developed by Stäblein, 2008 improved the capability of

automotive manufacturers to deliver more accurate component demands to their suppli-

ers. However, the author demonstrated the potential of the approach only for a single

case study that did not simulate a rolling horizon planning cycle. Chapter 4 addresses

these shortcomings by showcasing the robustness of the enhanced MRP approach, as

well as the performance of the approach for a rolling horizon planning cycle. We com-

pare the approach to a state-of-the-art time-series forecasting software package, as well

as an algorithm based on the MRP logic implemented at Mercedes.

The computational study shows for eight scenarios that the approach developed by

Stäblein, 2008 outperforms the other two approaches. The component demand plans are

more accurate and are generated almost as fast as by the time-series forecasting software

package. The comparison shows that the integration of option take-rate forecasts in MRP

approaches greatly improve the accuracy of the component demand forecasts.

We demonstrate the applicability of the approach for a rolling horizon context that

is typical for an automotive manufacturer. In our experiments, the forecast of the

option take-rates becomes more accurate as the month for which the component demand

plan is developed nears. Additionally, the classic MRP approach and the time-series

methods generate unstable plans in a rolling horizon context, whereas the enhanced

MRP approach stabilizes the component demand plans. Therefore, the fusion of the

option take-rate forecasts with past customer preferences information in a mathematical

model provides a competitive edge to the classic MRP approach.

RQ3: How can a stabilization of the option take-rates be included in the option bun-

dles design and under which circumstances will bundles lead to a reduction of take-rate

variability?

A prerequisite for the success of the enhanced MRP approach is a good forecast of

the option take-rates. The accuracy of the take-rate forecasts can be improved if the

demand pattern for the options is stabilized. We support automotive manufacturers in

this endeavour by developing an option bundling approach that balances the revenues

and the take-rate stability. We used the approach in an extensive computational study
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in which we designed bundles not only for a pure bundling, but also for a mixed bundling

policy. The approach is also capable to define bundle-specific discount rates.

Our computational study has shown that the design of option bundles results in a

trade-off between revenues and take-rate stability. However, it is possible to identify

bundles that simultaneously improve both measures compared to unbundling, but at

lower levels than for a design focused solely on one of the two measures. The bundles

that do not change revenues compared to unbundling result in a substantial increase of

the take-rate stability.

For pure bundling, our approach improves the trade-off between the two measures for

different types of car models up to a moderate concentration of options to bundles. The

measures can be further improved for higher concentrations of options to bundles if the

take-rates and their stability in the unbundling case is low. However, as the bundling in-

tensity approaches 50%, the matheuristic cannot generate as many bundle configurations

that result in an optimal trade-off between revenues and take-rate stability.

The revenues and take-rate stability improvement potential of bundles designed for

mixed bundling is not as high as for pure bundling. However, the bundles designed

to maximize take-rate stability for mixed bundling do not reduce revenues as much as

the bundles designed for pure bundling. Furthermore, the revenues - take-rate stabil-

ity trade-off is more similar across car models and can be improved up to a higher

concentration of options to bundles.

6.2. Future research directions

Even though we have developed models and branch-and-price approaches to design op-

tion bundles that can easily be adapted for different problems, the applications presented

in the thesis do not address all operational aspects relevant for an automotive manufac-

turer. We have shown that option bundling has residual effects on product variety, but

we did not develop an approach that can actually control the level of variety reduced

by the bundles. The main difficulty of such an implementation lies in the complexity of

the approach: the number of decision variables and constraints would be proportional

to the number of variants that would be manufactured. Each bundle offered requires

an additional set of constraints to be activated in the mathematical model. Future re-

search should identify modeling approaches that can generate the relevant variants on

an as-needed basis. Branch-and-price-and-cut approaches can tackle the problem, but

they need to be refined to solve large-scale test instances.
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The main issue for a design of bundles that also focuses on operational effects is that

the effects cannot be translated in costs. Multi-objective approaches such as the ε con-

straint method generate a Pareto frontier of the revenues and the operational measure.

However, the break-even point between the operational improvements and the revenue

losses cannot be identified based only on the Pareto frontier. In this regard, future

research should quantify the reduced costs that result from operational improvements.

With such advances, option bundles could be designed to maximize profits.

In the thesis, we designed methods that require simple input data, such as past cus-

tomer orders. However, the drawback of datasets that contain only past orders is that

the willingness to spend of customers for options or bundles cannot be accurately esti-

mated. Discrete choice methods can be used to obtain more accurate estimations, but

there is no clear guideline for the type of data that is needed to have accurate input

parameters. Future research should identify the input requirements and define a process

that integrates the estimation of the input parameters and the option bundles design

process.

We used past customer preferences not only in our option bundles design approach,

but also in the enhanced MRP approach. Currently, past customer preferences are in-

cluded in the enhanced MRP approach by associating a weight to each past customer

order. The computational study of Stäblein, 2008 showed that the utilization of more

complex methods based on past customer preferences, such as Bayesian networks, did not

improve component demand forecast accuracy compared to the enhanced MRP method.

However, recent methodologies from Artificial Intelligence research, such as Deep Learn-

ing methodologies, could be used to improve component demand forecasts even further.

Future research should investigate whether the representation of customer preferences

by means of neural networks could be integrated in an enhanced MRP method.

The thesis provides automotive manufacturers with a methodology that helps them

determine how to design bundles. We did not address the question when bundles should

be designed and introduced. A design before a model launch has the disadvantage that

there is limited information on the preferences of customers for completely new options.

Alternatively, bundles can be introduced after a facelift, since by then there is enough

information regarding past customer preferences. Since our computational study shows

that option bundling can boost revenues in general, bundles could also be introduced

after the sales peak stage to maintain high revenue levels. A decision support tool that

integrates the design of bundles and the timing of their introduction is needed.

Option bundling is only one of four product variety mitigation strategies. It is unclear
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6.2. Future research directions

what impact the other strategies would have on the operational measures we have inves-

tigated. Furthermore, there are methodologies for the design of platforms and modules,

but there is no decision support tool that helps automotive manufacturers choose which

product variety mitigation strategy to use and how to design the product based on the

decision. Ideally, future research will develop a decision support tool that provides prac-

titioners with an integrated product variety mitigation strategy selection and product

design process.
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Appendix A.

Outline of the branch-and-price

approach

1: B ← {|O| bundles containing one option}, l = ∅
2: LBound = −∞, UBound =∞
3: ColumnGeneration(l)
4:
5: function ColumnGeneration(l)
6: S1: Solve relaxed master problem (section ??)
7: Compute dual values πopt, πnoBund and, if multiple objectives active, πepsilon, bundle

selection values λb, objective function value Obj from relaxed master problem solution
8: B+ = HEURBUND(Π, πnoBund, πepsilon, l) (B)
9: if B+ 6= ∅ then B = B ∪B+, GoTo S1

10: else
11: Optimal generation of objective-improving bundle B+

12: if B+ 6= ∅ then B = B ∪B+, GoTo S1

13: else
14: if l = ∅ then UBound = Obj end if
15: if all λb integer then
16: if LBound < Obj then LBound = Obj,Save B end if
17: else
18: if Obj > LBound then
19: Generate branching constraints L
20: for each l′ ∈ L do
21: ColumnGeneration(l ∪ l′i)
22: end for
23: end if
24: end if
25: end if
26: end if
27: end function

93





Appendix B.

Outline of the subproblem heuristic

subroutine

1: function HeurBund(Π, πopt, πnoBund, πepsilon, l)
2: Sort options in ascending order according to πopt in list Λ.
3: Bs = {{o1, o2}|o1, o2 ∈ Λ,Λ−1(o1)

< Λ−1(o2)
}

4: for each OP ∈ Bstart do
5: repeat
6: Ok = true
7: for each o′ ∈ OP, o ∈ O : o /∈ OP do
8: if (o, o′, 1) ∈ l then Ok = false, OP = OP ∪ {o} end if
9: end for

10: until Ok
11: for each {o1, o2} ∈ OP do
12: if (o1, o2, 0) ∈ l ∨ |OP | > m then Remove OP from Bs end if
13: end for
14: end for
15: repeat
16: for each available CPU core do
17: OP = Bs

(1), Remove OP from Bs, pos = Λ−1(o2)
+ 1

18: BRC = reduced costs of OP , BSol = ∅
19: repeat
20: fB = false
21: for each o ∈ Λ : (o /∈ OP ) ∧ (Λ−1(o) > pos) do

22: RC = Reduced costs resulting from adding o to OP
23: if RC > BRC then
24: BRC = RC, BSol = OP ∪ {o}, fB = true
25: end if
26: end for
27: if BSol 6= ∅ then pos = Pos. of last element in BSol + 1 end if
28: until (fB = false) ∨ (pos ≥ |Λ|+ 1) ∨ (|OP | ≥ m)
29: if BSol 6= ∅ then Add BSol to B+ end if
30: end for
31: until Bs = ∅
32: return B+

33: end function
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Stäblein, T. (2008). Integrierte Planung des Materialbedarfs bei kundenauftragsorien-

tierter Fertigung von komplexen und variantenreichen Serienprodukten. Vol. Band

18. Innovationen der Fabrikplanung und -organisation. Aachen: Shaker. isbn: 383226986X.
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Steinbrecher, M., F. Rügheimer, and R. Kruse (2008). “Application of graphical models

in the automotive industry”. Computational intelligence in automotive applications.

Ed. by D. Prokhorov. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 79–88.

isbn: 978-3-540-79257-4. doi: 10.1007/978-3-540-79257-45.

103

https://doi.org/10.1111/poms.12318
https://doi.org/10.1007/978-3-662-09119-76
https://doi.org/10.1016/S0305-0483(02)00033-6
https://doi.org/10.1086/296250
https://doi.org/10.1509/jmkr.38.1.30.18828
http://dx.doi.org/10.1007/978-3-642-55309-7
https://doi.org/10.1016/j.ijpe.2014.07.005
https://doi.org/10.1016/j.ijpe.2014.07.005
https://doi.org/10.1007/978-3-540-79257-45


Bibliography

Stigler, G. J. (1963). “United States v. Loew’s Inc.: A note on block-booking”. The

Supreme Court Review, p. 152.

Stratman, J. K. (2007). “Realizing benefits from enterprise resource planning: Does

strategic focus matter?” Production and Operations Management 16.2, pp. 203–216.

doi: 10.1111/j.1937-5956.2007.tb00176.x.

Stremersch, S. and G. J. Tellis (2002). “Strategic bundling of products and prices: A

new synthesis for marketing”. Journal of Marketing 66.1, pp. 55–72. doi: 10.1509

/jmkg.66.1.55.18455.

Tang, O. and R. W. Grubbström (2002). “Planning and replanning the master pro-

duction schedule under demand uncertainty”. International Journal of Production

Economics 78.3, pp. 323–334. doi: 10.1016/S0925-5273(00)00100-6.

Tashman, L. J. (2000). “Out-of-sample tests of forecasting accuracy: An analysis and

review”. International Journal of Forecasting 16.4, pp. 437–450. doi: 10.1016/S01

69-2070(00)00065-0.
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