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Abstract
Computational fluid dynamics is a key design tool in the transportation and energy sectors. To-
day, many engineering flow problems cannot be computed with satisfactory accuracy and/or
within an acceptable time scale. The bottleneck in the simulations is the near-wall region, where
the grid resolution requirements can be very high, especially with regard to high Reynolds num-
bers. One reason for these resolution requirements is the high gradient occurring in the velocity
variable just at the wall in turbulent boundary layers.

The primary contribution of this work is a novel approach to computing the flow in the near-
wall region in a very cost-effective and yet accurate way. The idea is that the velocity profile is
modeled inside the cells of the numerical method at the same time as the Navier–Stokes equa-
tions are fulfilled discretely in the whole boundary layer, including the no-slip boundary condi-
tion. This approach enables the use of coarse meshes in the vicinity of the wall while the method
still accurately accounts for high longitudinal pressure gradients and nonequilibrium boundary
layer conditions. Therein, the method is based on the concept of function enrichment. The stan-
dard polynomial function space of the Galerkin method is enriched by a few additional shape
functions, which are constructed using a wall function. With such a function space available, the
numerical method automatically finds the optimal solution as a linear combination of the wall
function and the polynomial shape functions. It is the wall-function component of the solution
that enables the accurate representation of the high gradient at the wall, whereas the polynomial
component allows for more general velocity profiles.

The large discretization cells used with this approach imply that the turbulent motions in the
near-wall region are not resolved. These turbulent scales are modeled by the classical Reynolds-
averaged Navier–Stokes (RANS) or detached-eddy simulation (DES) methodologies in this
work. In addition, the composition of the solution of a wall-function component and a poly-
nomial component enables a much more general turbulence model for eddy-resolving simula-
tions. The polynomial component resolves eddies where the mesh is sufficiently fine; then the
wall-function component computes the remaining flow in an averaged sense. This idea solves
the typical problems associated with the outer edge of the RANS region in DES. All turbulence
modeling approaches are assessed by use of the benchmark examples of turbulent channel flow
and flow over periodic hills, which provide insight into the performance of the new models in
attached and separated boundary layers. The wall model shows excellent results in both of these
flow conditions and is capable of reproducing the results of wall-resolved simulations at a greatly
lower computational cost – up to two orders of magnitude.

The wall model may be included in any Galerkin method; the model is, in this work, imple-
mented in a continuous finite element method (FEM) and a high-order discontinuous Galerkin
(DG) solver. The latter solver targets turbulent incompressible flow and is developed further in
this thesis in order to address recently reported instabilities in spatially underresolved simula-
tions as well as small time steps. The key feature of the solver is a consistent penalty term that
reduces the local divergence error in order to overcome the instabilities. This penalty method is
similar to the grad-div stabilization widely used in the FEM. The numerical method is applied
to fully resolved turbulent flow (direct numerical simulation) and underresolved turbulent flow
(implicit large-eddy simulation). The high-order DG solver is also employed to compute a new
set of reference data of the flow over periodic hills with the highest fidelity to date.
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Zusammenfassung

Die numerische Strömungssimulation ist eines der wichtigsten Entwicklungswerkzeuge im
Verkehrs- und Energiesektor. Viele strömungsmechanische Problemstellungen können heute
nicht mit zufriedenstellender Genauigkeit und/oder innerhalb einer akzeptablen Simulationszeit
berechnet werden. Eine der größten Schwierigkeiten in der numerischen Strömungsmechanik ist
der wandnahe Bereich, da dort die Anforderungen an die Netzfeinheit insbesondere im Hin-
blick auf hohe Reynoldszahlen sehr hoch sind. Einer der Gründe für diese Anforderung ist
der hohe Gradient in der Geschwindigkeitsvariable, der in turbulenten Grenzschichten in der
wandnächsten Schicht auftritt.

Der Hauptbeitrag dieser Arbeit ist ein neuartiger Ansatz zur kostengünstigen und dennoch
genauen Berechnung der Strömung im wandnahen Bereich. Die grundlegende Idee besteht dar-
in, das Geschwindigkeitsprofil innerhalb der Zellen der numerischen Methode zu modellie-
ren, gleichzeitig aber die Navier–Stokes Gleichungen in der gesamten Grenzschicht diskret zu
erfüllen, inklusive der Haftbedingnung an der Wand. Der Ansatz ermöglicht grobe Netze in
Wandnähe. Die Methode berücksichtigt trotzdem hohe Druckgradienten und kann Grenzschich-
ten darstellen, die nicht im Gleichgewichtszustand sind. Das Modell basiert auf dem Konzept
der Funktionsanreicherung. Darin wird der gewöhnliche polynomiale Funktionenraum der Ga-
lerkinmethode mit zusätzlichen Formfunktionen angereichtert, die mit Hilfe einer Wandfunktion
konstruiert werden. Mit dem dadurch zur Verfügung stehenden Funktionenraum findet die nu-
merische Methode automatisch die optimale Lösung als eine Linearkombination aus der Wand-
funktion und den polynomialen Formfunktionen. Die Komponente, die auf der Wandfunktion
basiert, ermöglicht dabei die genaue Darstellung des hohen Gradienten an der Wand, wohinge-
gen die polynomiale Komponente davon abweichende Geschwindigkeitsprofile berücksichtigen
kann.

Da die finiten Elemente der Diskretisierung mit diesem Ansatz sehr grob sind, werden die
turbulenten Skalen in Wandnähe nicht aufgelöst. Diese Skalen werden im Rahmen der Arbeit
durch klassische Reynolds-Averaged Navier–Stokes (RANS) und Detached-Eddy Simulations-
modelle (DES) berücksichtigt. Zusätzlich ermöglicht die Zusammensetzung der Lösung aus ei-
ner Wandfunktions- und einer polynomialen Komponente ein neuartiges und wesentlich genau-
eres Turbulenzmodell für wirbelauflösende wandmodellierte Strömungssimulationen. Darin re-
präsentiert die polynomiale Komponente Wirbel dort, wo das Rechengitter ausreichend fein ist.
Die restliche Strömung wird gemittelt und durch die Wandfunktionskomponente dargestellt. Das
resultierende Turbulenzmodell zeigt im Gegensatz zu DES keine Probleme im Übergangsbereich
am Rand des RANS Gebiets. Alle Turbulenzmodellierungsansätze werden mit Hilfe von turbu-
lenten Benchmarkströmungen, bestehend aus einer Strömung in einem Kanal und über periodi-
sche Hügel, bewertet. Diese Beispiele ermöglichen einen Einblick in das Verhalten des Wand-
modells sowohl in anliegenden als auch abgelösten Grenzschichten. Das Modell zeigt ausge-
zeichnete Eigenschaften in beiden Strömungszuständen und resultiert in deutlich reduzierten
Rechenkosten – um bis zu zwei Größenordnungen im Vergleich zu wandaufgelösten Simulatio-
nen.

Das Wandmodell kann in jeden beliebigen Strömungslöser basierend auf der Galerkinmetho-
de implementiert werden. Das Modell wird in dieser Arbeit in einen kontinuierlichen Finite Ele-
mente Methode (FEM) und einen diskontinuierlichen Galerkin (DG) Löser mit hohen Ordnun-
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gen integriert. Letzterer wird im Hinblick auf die Berechnung von turbulenten inkompressiblen
Strömungen weiterentwickelt, indem Problemlösungen zu kürzlich berichteten Instabilitäten in
räumlich unteraufgelösten Simulationen und mit kleinen Zeitschritten vorgestellt werden. Die
Schlüsselkomponente des Lösers ist ein konsistenter Bestrafungsterm, der den lokalen Diver-
genzfehler in effektiver Weise reduziert. Die Funktionsweise dieses Bestrafungsterms ist ähnlich
der grad-div Stabilisierung, die im Rahmen der kontinuierlichen FEM vielfach angewendet wird.
Die numerische Methode wird zur Berechnung von vollaufgelösten (direkte numerische Simula-
tion) und unteraufgelösten (implizite Grobstruktursimulation) turbulenten Strömungen verwen-
det. Im Rahmen einer DNS wird dieser DG Löser auch dazu verwendet, einen neuen Referenzda-
tensatz für die Strömung über periodische Hügel zu berechnen, der alle bisherigen Referenzdaten
an Genauigkeit weit übertrifft.
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1
Introduction

Fluid dynamics is one of the most important physical phenomena in engineering and science.
Essentially, all engineering products are surrounded by fluid, most commonly air or water, and
the resulting fluid dynamic forces govern the design process of these products. Fluid dynamics
is not just a spurious phenomenon but necessary for the core functionality in most machines or
devices. It enables aircraft to fly, wind energy power plants to produce electricity, and the cooling
of engines, batteries, as well as microprocessors, just to name a few applications. Fluid dynamics
is also a key factor in the current transition to a sustainable and CO2-neutral energy economy
due to its high relevance in the power-generation and transportation sectors. Such applications
include cars, trains, planes, nautical vessels, all kinds of turbomachinery and fans, as well as
heat exchanging devices. One question that arises: How can we create products that achieve the
highest level of efficiency?

1.1. Motivation

The field of computational fluid dynamics (CFD) provides numerical tools that enable the pre-
diction of three-dimensional flow including the forces of lift and drag. For the design of a prod-
uct, we have to be able to compute the behavior of the fluid as accurately as possible, but the
computations are also time critical in order to evaluate a large number of designs. These two
requirements constitute opposing demands on the numerical approach employed for the simula-
tions. On the one hand, direct numerical simulation (DNS) may be used to compute all turbulent
motions of the flow in three space dimensions, which gives the highest possible fidelity. How-
ever, the computational effort required for such simulations is so high that the simulations take
on the order of months and years of computation time, and DNS of most industrial applications
with a high Reynolds number is not feasible today even on the largest supercomputers. With
such high computational demands, it is not possible to compute a sufficient number of designs
in a product development cycle. On the other hand, all turbulent scales may be modeled by
using a Reynolds-averaged Navier–Stokes (RANS) model, which often allows the use of simpli-
fied two-dimensional geometries and steady-state solvers, providing the fastest solution times.
However, the modeling errors of RANS can be severe, such that the best design of an industrial
product according to the computational model is not necessarily equal to the best design in re-
ality. A compromise between these two methodologies is to compute only the larger, energetic,
anisotropic, turbulent structures of the flow, while the smaller homogeneous ones are modeled
according to the paradigm of large-eddy simulation (LES). Owing to the continuous increase
of available computing resources, this methodology is currently starting to become feasible for
industrial applications at moderate Reynolds numbers, for example LES of internal turboma-
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chinery flows [264]. One goal of the present work is to propose and validate accurate, robust,
and efficient numerical methods for DNS, LES, and RANS.

The presence of boundary layers on solid walls significantly complicates the simulation of
turbulent flows and makes the balance of the aforementioned requirements of accuracy and effi-
ciency much more difficult, especially at high Reynolds numbers. With respect to LES, the sizes
of the energetic turbulent motions vary drastically within the boundary layer due to the principal
kinematic condition that the size of the largest turbulent structures is proportional to their dis-
tance from the wall [127]. This means that LES has, in the vicinity of walls, essentially similar
computational requirements as DNS. With increasing Reynolds number, the cost of resolving the
near-wall region dominates the cost of the entire simulation and makes an application of LES
infeasible for, e.g., aircraft or wind turbines. Solutions to this problem are sought in the field of
wall modeling. Another, essentially independent, challenge in the near-wall area is a very high
velocity gradient just at the wall, which comes along with high computational demands in all
flow simulation approaches.

Several wall modeling approaches exist, but all of them show drawbacks in at least one flow
condition. For example, the near-wall region may be computed using RANS and the region
further away from the wall via LES, according to the detached-eddy simulation (DES) method-
ology [240]. The issue in this approach is that the turbulent boundary-layer motions develop in
a nonphysical way in the region between the RANS and LES zones. This problem frequently
yields inaccurate results in attached boundary layers. As an alternative, the near-wall region may
be modeled by use of wall functions, which apply synthetic boundary conditions at an off-wall
location [168]. This method performs well in attached boundary layers, but no wall function ex-
ists that can accurately represent general nonequilibrium flows. In this work, a novel approach to
wall modeling is developed, which substantially reduces the computational effort of turbulence-
resolving simulations, while maintaining the high accuracy and consistency of LES.

Besides the aforementioned requirements for the development of efficient CFD tools, short
computation times and high accuracy, two additional requirements have shown to be essential:
the stability of the numerical method and the applicability to complex geometries. The require-
ment of stability is mandatory because an unstable numerical method would not produce trust-
worthy results if it gives results at all. In addition, it is the ambition of this work to contribute
to and propose novel numerical methods that are sufficiently general in order to be applied to
real-world industrial problems. These problems consist of complex bodies possibly with curved
boundaries, thus demanding simulation tools that are capable of handling complex geometries.

1.2. Contribution of this Work

This work proposes and further develops numerical methods in the field of CFD. These compu-
tational tools fulfill the four previously formulated requirements of accuracy, low computational
cost, stability, and applicability to complex geometries. The main contributions of this thesis are
the following:

Wall Modeling via Function Enrichment. Wall modeling via function enrichment is pro-
posed in this work as a methodology that drastically reduces the computer time and storage
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requirements of CFD tools (see Krank and Wall [153, 154], Krank et al. [150–152], and Kro-
nbichler et al. [159, 160]). The main idea is that the underlying interpolation stencils of the
numerical method are tailored for the specific application of turbulent wall-bounded flow. With
such a scheme available, the numerical method is much more efficient in computing turbulent
boundary layers in comparison to standard methods, without noticeable drawbacks in accuracy.
The method is much more accurate than the previously mentioned wall-function approaches and
computationally less expensive than DES.

Since wall modeling via function enrichment is a spatial discretization technique only, the
topic of modeling the unresolved turbulence in the near-wall region has to be addressed in ad-
dition. To this end, four different turbulence modeling approaches for an application with wall
modeling via function enrichment have been developed in this thesis:

• Wall modeling via function enrichment may be used in conjunction with the classical
RANS methodology in order to reduce the computational cost arising through the high
near-wall velocity gradient present at high-Reynolds-number applications (see Krank et
al. [152]).

• Wall modeling via function enrichment is employed in order to reduce the required number
of grid points in the near-wall region in DES (see Krank et al. [151]).

• Wall modeling via function enrichment can be used in order to construct a novel multi-
scale approach for the simulation of turbulent boundary layers (see Krank et al. [150]).
The numerical method resolves eddies via LES where the mesh is sufficiently fine. Ad-
ditionally, a RANS layer overlaps with the LES inside the near-wall region, where the
coarseness of the mesh does not allow the resolution of the velocity profile. The tailored
stencil enables coarse discretization cells at the wall, so the approach can be best described
as wall-modeled LES (WMLES). The model is constructed in such a way that it does not
show the problems of DES in the RANS–LES transition region.

• Wall modeling via function enrichment can be used in conjunction with several alternative
turbulence modeling approaches. An approach additionally considered due to historical
reasons at the Institute for Computational Mechanics is a residual-based variational mul-
tiscale method, which is supported by a multifractal subgrid scale model [215] in the bulk
flow (see Krank and Wall [153, 154]).

Wall modeling via function enrichment can be included in any Galerkin scheme, such as the
continuous finite element method (FEM) and the discontinuous Galerkin (DG) method. As part
of this thesis, the wall model has been implemented in two independent simulation programs:
a continuous FEM incompressible flow solver available in the simulation software BACI [258]
developed at the Institute for Computational Mechanics at the Technical University of Munich
and a new high-order incompressible DG solver [71], which has been developed further in this
work (see Krank et al. [147]).

A Stabilized High-Order Incompressible DG Scheme for Turbulent Flow. Another major
contribution of this thesis is the further development of a high-order DG method for incompress-
ible flow in close collaboration with a second PhD student Niklas Fehn under the supervision
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of Dr. Martin Kronbichler at the Institute for Computational Mechanics. The results of this col-
laboration have been published in a joint publication (see Krank et al. [147]). The novelty is a
modification of the scheme, which stabilizes issues in mass conservation and small time steps
reported in earlier works on high-order incompressible DG methods (see, e.g., [73, 246]), and a
new adaptive time stepping algorithm. This numerical method enables one of the first applica-
tions of an incompressible high-order DG scheme to underresolved 3D turbulent flow (implicit
LES, ILES) (see Krank et al. [147, 149] and Kronbichler et al. [159]).

A New High-Order DG Solver for RANS and DES. The high-order DG method has been
extended to the incompressible RANS equations based on the Spalart–Allmaras (SA) model (see
Krank et al. [152]). This code is extended to DES (see Krank et al. [151]) as well.

High-Fidelity Reference Data of Flow over Periodic Hills. In order to allow for the val-
idation and quantitative assessment of the preceding methodological developments, the use of
canonical benchmark flows is essential. One of the most widely used test cases is a flow over peri-
odically arranged, smoothly curved hills; see, e.g., [93]. Due to significant discrepancies between
existing reference databases for this flow, the present high-order DG method was employed to
compute new reference results via DNS with the highest fidelity to date at two Reynolds num-
bers (see Krank et al. [149]). This reference data has been made available on a public repository
(see Krank et al. [148]) and is extensively used in the remainder of this thesis.

As indicated, most of this work has already been published in peer-reviewed international
journals. The articles that have already been published are used in the remainder of this thesis
with permission.

1.3. Thesis Structure
The structure of this thesis is organized as follows. Chapter 2 provides an introduction to the fun-
damental concepts related to turbulent flows and the available principle approaches in CFD. The
remaining chapters are divided into two parts. In Part I, the numerical methods for wall-resolved
CFD without specific treatment of the near-wall region are described. Then, the approach of wall
modeling via function enrichment and its application in different turbulence modeling scenarios
is proposed in Part II of this thesis.

Chapters 3 to 5 form Part I of the thesis. Chapter 3 presents a high-order incompressible
DG code and proposes the modifications that stabilize the scheme in underresolved simulations.
This numerical method is applied to large-scale DNS and ILES of two canonical benchmark
examples, each at several Reynolds numbers, in Chapter 4. Chapter 5 extends the numerical
method to RANS by use of the SA model and this implementation is applied to DES as well.

In Part II, we begin in Chapter 6 with the motivation, the mathematical formulation, and
the efficient implementation of the new wall model. The subsequent chapters present the four
applications using different turbulence models as mentioned earlier. In Chapter 7, wall modeling
via function enrichment is applied in the context of the continuous FEM by use of a residual-
based turbulence model. Chapter 8 shows how the wall model may be used within the high-
order DG method in RANS by extending the RANS baseline solver presented in Chapter 5.
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In Chapter 9, it is shown that the DES method provides a suitable turbulence model for the
unresolved turbulent motions in wall modeling via function enrichment. Chapter 10 describes a
novel multiscale approach to wall modeling, which circumvents the typical problems of hybrid
RANS/LES methods that are visible in the results presented in Chapter 9.

Conclusions and suggestions for future research projects close the thesis in Chapter 11.
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2
A Brief Introduction to Turbulence and its

Numerical Simulation

As a basis for the CFD methods and models developed in this thesis, we introduce the primary
concepts related to turbulent flows and their numerical simulation. The first section summarizes
the governing equations as well as the phenomenological and statistical nature of turbulence
with a particular focus on turbulent boundary layers. In Section 2.2, we give a brief overview of
the most common discretization methods used in CFD and discuss arguments for selecting the
DG method for the solvers presented in Chapters 3 and 5. Section 2.3 summarizes the available
approaches to computing turbulent wall-bounded flows and discusses the range of applicability
of each method. The approaches considered in the present thesis are DNS, LES, RANS, and
hybrid RANS/LES including wall modeling. Wall modeling is identified as a crucial ingredient
of an efficient CFD method targeting turbulent wall-bounded flows at high Reynolds number.

2.1. Turbulent Flow: A Multiscale Phenomenon
The first section of this chapter states the governing equations of fluid dynamics as considered in
the present work (Section 2.1.1). Subsequently, a brief overview of the phenomenological nature
of turbulence is given in Section 2.1.2 including turbulent boundary layers in Section 2.1.3.

2.1.1. Incompressible Navier–Stokes Equations
The Mach number Ma is defined as the ratio of the fluid velocity magnitude to the speed of
sound. If the Mach number is below 0.3, the flow may be considered incompressible and the
density ρ is constant, allowing several simplifications of the Navier–Stokes equations. The re-
search presented in this thesis focuses on incompressible flows. However, the concepts of wall
modeling discussed herein are applicable to compressible and incompressible flows alike.

The incompressible Navier–Stokes equations are given in conservation form as

∂u

∂t
+∇ ·

(
F c(u) + pI −Fν(u)

)
= f in Ω× [0, T ] (2.1)

with the incompressibility condition,

∇ · u = 0 in Ω× [0, T ], (2.2)

ensuring mass conservation, where u = (u1, u2, u3)
T is the velocity, p the kinematic pressure,

T the simulation time, Ω the domain size, and f = (f1, f2, f3)
T the body force vector. The

convective flux is defined as F c(u) = u ⊗ u and the viscous flux as Fν(u) = 2νε(u) with
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the symmetric rate-of-deformation tensor ε(u) = 1/2(∇u+ (∇u)T ), where ν is the kinematic
viscosity. By use of the incompressibility condition (2.2), the convective term may be rewritten
as

∇ ·F c(u) = u · ∇u, (2.3)

which is denoted by convective form of the convective term, and both the divergence and con-
vective formulations of the convective term are considered in the present work. At t = 0, a
divergence-free velocity field is imposed as initial condition with

u(t = 0) = u0 in Ω. (2.4)

Boundary conditions on the Dirichlet and Neumann boundaries ∂ΩD and ∂ΩN , with ∂ΩD ∪
∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅, are defined as

u = gu on ∂Ω
D (2.5)

and
(−pI +Fν(u)) · n = h on ∂Ω

N , (2.6)

where the outward unit normal vector with respect to ∂Ω is denoted by n.
A two-dimensional version of these equations, where the third entry in all vector-valued quan-

tities is canceled, is also considered in some sections of this thesis. However, turbulence is a
three-dimensional phenomenon by nature and turbulence-resolving simulations must therefore
be performed using the three-dimensional Navier–Stokes equations.

2.1.2. Bulk Turbulence
The incompressible Navier–Stokes equations exhibit solutions of unexpected complexity. Two
solution states may be observed: laminar and turbulent flow. While laminar flow is smooth,
turbulent flow is irregular and chaotic. Whether a flow is laminar or turbulent may be determined
by means of the Reynolds number, Re = UL/ν, with a characteristic velocity U and length scale
L. Small Reynolds numbers indicate the dominance of viscous effects and therefore laminar
flow. High Reynolds numbers are a sign of prevailing inertial forces, promoting turbulent flow
conditions.

Turbulent flows manifest their chaotic nature through the presence of vortical structures, often
with a multitude of spatial and temporal scales, and their complex nonlinear interaction. Eddies
may be defined as regions, where the second invariant of the velocity gradient tensor,

Q =
1
2
(Ω : Ω− ε : ε) , (2.7)

with Ω = 1/2(∇u − (∇u)T ), is positive (Q > 0) [121]. This relation is the so-called Q
criterion, which is widely used to visualize vortex tubes by rendering iso-surfaces of Q > 0.
Such iso-surfaces of a developed turbulent flow, a zoom-in on the flow over periodic hills as
investigated in Section 4.3, are visualized in Figure 2.1. The picture shows vortex tubes, which
are in complex mutual interactions and in interactions with (invisible) smaller and larger eddies.
The isosurfaces in the figure are colored by the velocity magnitude, and the bulk flow is directed

8



2.1. Turbulent Flow: A Multiscale Phenomenon

Figure 2.1.: Bulk turbulence visualized via Q criterion. Red indicates a high and blue low veloc-
ity magnitude.

into the plane. A strong gradient in color along the circumference of the vortex tubes reveals the
significant circumferential velocity induced by the eddies.

A life-cycle of a typical eddy may be sketched as follows. A large vortex is generated by
one of the many vortex generating mechanisms, for example via pressure-induced separation or
natural boundary layer instability. Through convective interactions with other vortices, the eddy
is stretched and folded iteratively, and each stretching-and-folding process reduces the size of
the eddy, until it is dissipated by viscous forces. The statistical behavior of many eddies yields
the characteristic energy spectrum E(κ) with the wave number κ as sketched in Figure 2.2.
Herein, the largest, newly generated, vortices are the energy-carrying scales. The energy is then
consecutively transferred to smaller scales in the inertial sub-range until the viscous forces be-
come dominant and the energy is dissipated. The largest energy-carrying scales are typically
of similar size as the boundary conditions and the length scale of the smallest vortices may be
estimated by Kolmogorov’s viscous length scale η = (ν3/ε̃)1/4 [144], where ε̃ is the rate of
energy transfer. It is this multiscale nature of turbulence with broad spectra of length and time
scales that makes the direct computation of turbulent flow so challenging and defines the need
for turbulence modeling.

Turbulent flows exhibit numerous further phenomenological and statistical properties. For a
comprehensive and detailed description, we refer to the textbooks by Pope [206] and David-
son [56]. One such special case is boundary layer turbulence, which is the topic of the next
section.

2.1.3. Boundary Layer Turbulence

The presence of walls has a significant influence on the near-wall turbulence, since both the
mean velocity and the velocity fluctuations must be zero at the wall, and a vortex size is physi-
cally limited by its distance to the no-slip boundary. As a consequence, the flow just at the wall is
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Figure 2.2.: Schematic of a characteristic energy spectrum resulting from the energy cascade.

laminar. In attached boundary layers, the turbulence beyond the laminar sublayer is dominated by
two characteristic coherent turbulent structures: thin streamwise vortex tubes, so-called streaks,
and hairpin vortices, an arch-like connection of two counter-rotating streaks, which moves away
from the wall due to self-induced convection [221]. Such hairpin vortices are visualized in Fig-
ure 2.4 via the Q criterion for a plane boundary layer, showing a transitional stage of a channel
flow at the friction Reynolds number of Reτ = uτδ/ν = 2,000 using the setup presented in
Section 4.2.

Despite the complexity of the turbulent motions, a mean velocity profile may be derived for
attached turbulent boundary layers in near-equilibrium conditions1 with vanishing longitudinal
pressure gradient on smooth walls. In the inner layer of the boundary layer, y/δ < 0.2, with
the wall distance y and the boundary layer thickness δ, the mean shear stress is approximately
constant. Based on this assumption, the velocity is proportional to the wall distance inside the
viscous sublayer, just at the wall. Further away from the wall, the viscous effects are negligible
and the velocity profile obeys a logarithmic relation up to the outer edge of the inner layer,
y/δ = 0.2 [56]. We have

u+ =

{
y+ y+ < 5,
1
κ

ln(y+) +B y+ > 40 and y
δ
< 0.2, (2.8)

and consider κ = 0.41 and B = 5.17 according to Dean [59] throughout this work. Herein, the
dimensionless wall coordinate y+ and the dimensionless velocity u+ are defined as

y+ =
yuτ
ν
, u+ =

u

uτ
,

1The term ‘boundary layer in equilibrium state’ seems to originate from an analogy proposed by Clauser [47] of
the turbulent boundary layer with a dynamic nonlinear mechanical system. A boundary layer is in equilibrium
when the dimensionless output variables of the boundary layer system, for example the velocity profile, asymp-
totically tend to a steady-state with fixed input parameters. The term equilibrium boundary layer commonly
refers to the case without pressure gradient, which yields the log-law as a velocity profile in the inner layer
as presented herein. However, the discussion in [47] stresses that there are other equilibrium states including
pressure gradients or roughness, which yield other velocity profiles.
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Figure 2.3.: Boundary layer turbulence visualized via Q criterion. Red indicates high and blue
low velocity magnitude.

�
�
��
u1

with the statistically averaged velocity u and the friction velocity uτ =
√
τw/ρ, where τw =

ρν du
dy

∣∣∣
y=0

is the wall shear stress and ρ the density. We note that the law of the viscous sub-

layer fulfills two boundary conditions, given as no-slip conditions (u+|y=0 = 0) and the slope
du+
dy+

∣∣∣
y=0

= 1, where the latter is responsible for reproducing the correct wall shear stress [58].

The laws of the viscous sublayer and the logarithmic region are plotted in Figure 2.4. In the y+

region between 5 ≤ y+ ≤ 40, both viscous and inertial forces are relevant and the velocity profile
blends from the linear to the logarithmic profile in the so-called buffer layer. Several empirical
wall laws have been proposed, which provide a continuous description for the velocity profile
in the whole range of the linear and logarithmic region as well as the buffer layer. Probably the
most widely known relation is Spalding’s law [245], which is also plotted in Figure 2.4 and is
discussed in Section 6.3.2.3 alongside several other wall functions. Further away from the wall,
beyond y/δ ≥ 0.2, the velocity profile deviates from the log-law as the assumption of constant
shear stress becomes inaccurate. Several modifactions have been proposed in order to account
for the wake of the bulk flow, for example the defect law by Coles [51] or the correction by
Dean [58]. For a detailed derivation and a further discussion of the analytical velocity profiles,
it is again referred to the textbook by Davidson [56]. The logarithmic character of the velocity
profile in the inner layer results in extremely sharp velocity gradients just at the wall, and the
mean velocity gradient in the viscous sublayer scales with Reτ . Therefore, the velocity gradient
may become very high and a significant part of the velocity drop towards the no-slip boundary
“takes place below y+ = 80” [127].
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Figure 2.4.: Boundary layer profile consisting of a linear and a logarithmic region, as well as a
buffer layer.

What size do the characteristic energy-carrying near-wall eddies have, in relation to the vis-
cous length scale and the bulk turbulence? Jiménez provides a quantitative analysis to this ques-
tion in a review article [127] and the relevant results are summarized. Figure 2.5 shows the
typical sizes of energy-carrying and dissipating scales. Near the wall, the smallest structures
and the energy-containing scales are of similar length. In the outer layer, the length scale ratio
between the largest and the smallest scales is of the order of Reτ/100 wall units, so the ratio
increases substantially with increasing Reynolds number. In the logarithmic layer, the size of the
energy-carrying eddies is approximately proportional to the wall distance [127].

2.1.4. The Multiscale Nature of Turbulence: A Challenge to Simulation
and Modeling

The key conclusions of the latter two sections are summarized in view of the present thesis. The
nature of turbulence is governed by several multiscale phenomena and these are responsible for
the challenges related to the simulation and modeling of turbulent flow:

• In the bulk of the flow, many different scales exist and the gap between energy-containing
and viscous dissipation scales increases dramatically with the Reynolds number. However,
it will be sufficient and affordable to compute the largest scales only and model the small
scales (see Section 2.3.2).

• Near walls, the largest scales are of similar size as the viscous dissipation scales, render-
ing a direct computation of these turbulent motions impossible in high-Reynolds-number
engineering flows. Yet, the near-wall turbulence has to be resolved or modeled in order
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Figure 2.5.: Sketch showing the sizes of the energy-carrying and viscous dissipation scales in a
turbulent channel flow at Reτ = 2,000, based on data from Jiménez [127].

to predict engineering quantities such as the mean velocity profiles and the skin friction.
Remedies to this challenge are sought in the field of wall modeling (see Section 2.3.4).

• As the mean velocity gradient at the wall increases with the Reynolds number, it is de-
manding to accurately compute this gradient. This is another, independent, and more gen-
eral difficulty and has to be addressed by wall modeling techniques.

In the scope of this work, numerical methods and models are developed, which allow an accurate
and fast computation of turbulent wall-bounded flows despite these three challenges.

2.2. Overview of Numerical Discretization Schemes
We give a brief overview of the most commonly used numerical schemes for the spatial dis-
cretization of the incompressible Navier–Stokes equations. The discussion is not intended to
provide an exhaustive listing of characteristics and techniques, but merely the primary advan-
tages and difficulties are mentioned, serving as a motivation for the numerical methods devel-
oped and promoted in the present work. We follow the arguments presented by Hesthaven and
Warburton [112], Ferrer [73], and Landmann [166] and it is referred to these publications for
further details.

In the first subsection, we introduce requirements on a numerical discretization scheme in
view of the efficient computation of time-dependent flow problems. Subsequently, the four most
common spatial discretization methods are presented and their characteristics are compared to
the requirements.

2.2.1. Requirements on the Numerical Baseline Method
In the introduction (Section 1.1), four basic requirements for the development of an efficient
computational method for the simulation of turbulent boundary layers were introduced: high ac-
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curacy, low computational cost, stability of the numerical method, and applicability to complex
geometries. These requirements may be translated into requirements on the spatial discretiza-
tion scheme. An efficient time stepping scheme enables a low computational cost. High-order
spatial accuracy contributes to an accurate method. We further require the applicability to gen-
eral geometries and the convective stability of the spatial discretization according to the stability
criterion.

2.2.1.1. Efficient Time Stepping

For the discretization of space- and time-dependent partial differential equations, two principal
procedures are available: The spatial and temporal domains may be discretized separately, in
which case there is a large number of time stepping methods available. As an alternative, a dis-
cretization in space and time may be carried out simultaneously by the same numerical method.
In Chapter 3, several alternatives are mentioned in the context of the DG method. In the case of
an independent discretization of space and time, another subdivision into explicit and implicit
time stepping methods may be considered. Explicit time integration schemes do not necessitate
the solution of equation systems and exhibit short computation times per time step, but are sub-
ject to time step size limitations. Implicit time integration schemes on the other hand necessitate
the solution of global equation systems. The question if explicit or implicit time stepping is more
efficient in simulating eddy-resolving turbulent flows is the subject of ongoing research. In this
work, we consider a semi-explicit time integration method of the incompressible Navier–Stokes
equations, which exhibits a wide range of applicability without severe time step restrictions and
is presented in Section 3.2.

Due to the explicit character of the time integration method, we prefer a spatial discretization
that yields a local mass matrix, which is invertible without the cost of a global equation system.

2.2.1.2. High-Order Accuracy

Early numerical methods have mainly used low-order schemes of first to third order accuracy
or linear and quadratic interpolation. The reason for this limitation may lie in the preconception
that the cost of wide stencils in high-order methods could annihilate the improved accuracy. In
Figure 2.6, the velocity error is plotted over the computational cost using the solver presented
in the current work. It may be observed, that the efficiency of the numerical method increases
dramatically with the polynomial degree, and thus the order of accuracy. In addition, the nu-
merical dissipation of the discretization scheme decreases with increasing order of accuracy,
which is beneficial in eddy-resolving simulations such as presented in Chapter 4. It is noted that
high-order methods are expensive in implicit codes when the traditional matrix-based solution
procedures are employed. In order to achieve good performance when using iterative solvers
in conjunction with a high-order method, matrix-free solution procedures have to be employed.
Such algorithms are used and developed in this thesis and exhibit solution times per degree of
freedom (DOF), which are almost independent of the spatial order of accuracy.

2.2.1.3. Complex Geometries

Most engineering problems consist of complex geometries with curved boundaries, which cannot
be meshed using structured grids without great effort. It is the aim of this work to develop
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Figure 2.6.: Velocity error versus computational cost in the context of varying grid refinement
and polynomial degree of the numerical method.

computational tools usable with complex geometries, and capable to utilize unstructured meshes.
Due to this requirement on the numerical method, spectral Fourier methods, which are limited
to periodic domains, are not considered.

2.2.1.4. Convective Stability

As the last requirement, we consider the ability to achieve a stable scheme in flows that are dom-
inated by convection. The nonsymmetric character adhering problems with dominating convec-
tion causes stability issues in symmetric discretization schemes. We are looking for a numerical
method, which provides efficient techniques to tackle this issue with low dissipation properties.

In addition to these four aspects, there is a large number of further requirements that may be
relevant, see, for example, the extensive listings presented in [73, 166].

2.2.2. Numerical Methods
The four most widely used spatial discretization methods for flow problems are discussed in
view of the formulated requirements.

2.2.2.1. The Finite Difference Method

In the finite difference (FD) method, the spatial domain is discretized by a structured mesh.
All terms of the conservation law are explicitly computed on the nodes of the grid. The spatial
derivatives are evaluated along one-dimensional stripes via FD stencils, which perform numeri-
cal differentiation based on neighboring nodes. For example, the simplest finite difference stencil
for evaluation of the node A is based on the two neighboring nodes A− 1 and A+ 1 in 1D,

. . . eA− 1 eA eA+ 1
. . .

-
x

h
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allowing an evaluation of the first and second spatial derivatives of a quantity φ with

∂φ

∂x
≈ φA+1 − φA−1

2h
,

∂2φ

∂x2 ≈
φA+1 − 2φA + φA−1

h2 ,

yielding a spatial accuracy of second order. It is straight-forward to extend this approach to
higher accuracy by considering more consecutive points in the stencil. The FD approach is
considered as one of the fastest methods for the solution of time-dependent partial differential
equations, in particular for explicit schemes due to the locality of the mass matrix. Convection-
dominated simulations can be treated using upwinding schemes, in which the information “up-
wind” of the current node is weighted stronger, providing an improved stability of the scheme.
A severe limitation of the FD method is that it relies on neighboring nodes for the evaluation of
the finite derivatives, which makes the extension to unstructured grids and complex geometries
difficult. Since the capability of complex geometries was listed as an essential requirement in the
introduction, the FD method is not considered in this thesis.

2.2.2.2. The Finite Volume Method

The finite volume (FV) method is a method that allows the use of unstructured meshes and
enables complex geometries. Instead of considering nodes, this method fulfills the conservation
laws in finite cells or volumes. The Navier–Stokes equations are integrated over one such volume
and the divergence theorem is applied in order to obtain a balance in terms of fluxes across the
cell boundaries. The capability of unstructured meshes is achieved by this construction, since no
assumptions are made regarding the shape of each volume cell. In its simplest form, the solution
is constant in each cell and the solution variables have to be reconstructed at the cell boundary
during the evaluation of boundary integrals. If a linear interpolation is chosen, the resulting
scheme is on structured meshes essentially equivalent to the classical FD method. In view of
a high-order extension of the FV method, interpolation schemes spanning several volume cells
would be necessary, similar to the FD method. However, such a high-order stencil would limit
the FV method to structured grids; the high-order extension in conjunction with unstructured
grids is challenging. Like with the FD method, the FV approach implies local mass matrices,
which yield high performance in explicit schemes. The interpolation scheme may be chosen in
such a way that the upwind information is weighted stronger, which again yields a method that
is stable in the convective regime. Despite the lack of general higher-order capability, the FV
method is today the ‘working horse’ in the industrial simulation of turbulent flow. The combined
requirements of geometrical flexibility and high accuracy do not seem to be feasible with the FV
method.

2.2.2.3. The (Spectral) Finite Element Method

The classical continuous FEM, also denoted by the continuous Galerkin method, is derived by
the multiplication of the residual with a weighting function and integration over the whole com-
putational domain, yielding the variational form. The domain is then subdivided into a finite
number of elements, and these elements are, with some exceptions, of tetrahedral or hexahe-
dral shape. Inside each cell, the solution and weighting functions are approximated by means of
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Table 2.1.: Overview of numerical discretization schemes including advantages and disadvan-
tages, similar to [112].

Method
Unstructured
meshes

High-order
capable

Mass
matrix

Convective
stabilization

FD difficult good local good
FV good difficult local good
FEM good good global difficult
Spectral FEM good good local difficult
(Spectral) DG good good local good

polynomials of the form:
uh(x, t) =

∑
B∈N

NB(x)uB(t), (2.9)

with shape functions NB and DOFs uB. The subscript (·)h indicates the identification of the re-
spective variable with a characteristic element length h. Despite the flexibility regarding unstruc-
tured grids, we have not made any assumption on the polynomial degree of the shape functions
in each cell. The accuracy of the method per DOF increases generally with the polynomial de-
gree, and the method is denoted by spectral element method if very high degrees are employed.
If the shape functions NB are so-called nodal shape functions, there are points within each ele-
ment, where all but one shape functions are zero-valued, and these points are called nodes. On
the boundary of each cell, the nodes are shared among the two neighboring elements. This con-
nection couples the DOFs with neighboring cells, such that the mass matrix becomes a global
matrix and a global matrix system has to be solved in an explicit time stepping scheme. It is
noted that this drawback vanishes if an implicit time stepping method is employed. Also, the
approximation of lumping the mass matrix provides an engineering solution to the problem; this
technique is frequently used in explicit spectral element codes. The issue of convective stabiliza-
tion is in the context of the FEM commonly treated by literally weighting the residual upstream
with a higher weight than downstream trough a modification of the weighting function in the
Streamline Upwind Petrov-Galerkin method (SUPG) [34]. The SUPG is quite costly in terms of
computational effort in comparison to the other upwinding methods in FD and FV and comes
along with a significant amount of artificial dissipation – often more than desired. Therefore,
convective stabilization is a real challenge in the FEM, in particular in the spectral regime. Due
to the drawbacks regarding the mass matrix and the convective stabilization, the FEM is not
considered an ideal candidate for the spatial discretization of the Navier–Stokes equations.

We highlight one particular feature of the Galerkin method, which distinguishes this method
from the FD and FV methods: As a user, we choose the shape functions and the Galerkin method
automatically tries to find an optimal solution in a least-squares sense. Out of common practice,
polynomial shape functions are usually chosen. However, most physical phenomena show so-
lutions of nonpolynomial shape. Therefore, the Galerkin method enables vastly efficient spatial
discretizations by employing problem-tailored shape functions using an a priori known approx-
imate solution as an enrichment function. This idea is used in Part II of this thesis to develop a
novel approach to wall modeling in CFD. Therein, the continuous FEM approach can be used as
a baseline method (see Chapter 7).
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2.2.2.4. The Discontinuous Galerkin Method

So far, none of the presented methods has shown fully satisfactory characteristics. Table 2.1
gives an overview of the methods discussed and it is noted that each method shows a different
drawback. The question is therefore: can a method be constructed that combines the unstructured
mesh and high-order capabilities of the FEM with the efficiency of the FV method in explicit
schemes including convective stabilization? The answer is the DG method. This method is de-
rived from the partial differential equations by first subdividing the computational domain into
finite cells and subsequently deriving variational formulations for each cell. In this manner, the
geometric flexibility is maintained while the solution is represented by a (possibly high-order)
polynomial in each cell as in the FEM. Between elements, the numerical fluxes may be used
to stabilize the method in the convective regime analogous to the FV method. Since the ele-
ments are decoupled, the mass matrix becomes block-diagonal such that a local mass matrix can
be inverted in each cell. Furthermore, the DG method with a polynomial degree of zero yields
for pure advection problems exactly the same equations as the second-order FV method. These
characteristics satisfy all the basic requirements for the development of an efficient numerical
method for turbulent flow, as noted in the introduction.

Therefore, a high-order DG solver is used and further developed in this study. This solver is
described in Chapter 3 for laminar and eddy-resolving simulations and extended in Chapter 5 to
ensemble-averaged simulations of turbulent flow. As the DG method exhibits the same flexibility
in terms of choosing shape functions outside of the traditional polynomial space, we develop wall
modeling approaches via function enrichment based on the DG solver in Chapters 8 to 10.

2.2.3. Suitability of Standard Schemes for Simulating Multiscale
Turbulence

All of the presented numerical methods are ideally-suited for simulating single-scale phenomena
such as wave propagation with a single wave number. In such simulations, the discretization
errors may be quantified and the resolution can be adjusted to match the required accuracy. Due
to the multiscale phenomena present in turbulent flows, some scales are inevitably resolved very
well while others are computed with marginal resolution, and most of the turbulence is not even
resolved in industrial simulations. As a result, there is a necessity for modeling, and several
methodologies are summarized in the subsequent section.

2.3. Fundamental Approaches to the Numerical Simulation of
Wall-Bounded Turbulence

There is no such CFD method that fulfills all requirements of engineers and researchers. Rather,
different applications pose different requirements, with fidelity and computational cost as the
basic parameters. In the following, four methodologies for simulating wall-bounded turbulent
flows are outlined. In this work, we develop computational tools in all of these fields and perform
computations using all four methodologies, with the aim of increasing the ratio of accuracy over
speed for engineering-type simulations.
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2.3.1. Direct Numerical Simulation
DNS is the simplest and yet most challenging approach to computing turbulent flows and pro-
vides the highest level of accuracy. All scales in the flow are resolved, including the viscous
dissipation scales, such that modeling is not needed. In Figure 2.2, the computed part of the
energy spectrum is labeled. In order to guarantee that sufficient physical dissipation is captured
by the scheme, the resolution of a DNS has to be evaluated carefully. According to Pope [206],
most of the dissipation occurs at a length scale of approximately 24 Kolmogorov lengths η and
Moin and Mahesh [184] state that most of the dissipation is resolved above 15η. Depending on
the resolution power of the scheme, the distance between two grid points is usually around 1 to
4η [184]. The resolution capacity of the spectral DG solver of this work is discussed in more
detail in Chapter 4.

The sole limitation of DNS is its computational cost. The scaling of the resolution require-
ments with Kolmogorov units yields a dependence of the required number of grid points with
the Reynolds number as Re2.25 according to [40], and as Re2.65 according to [45]. Additional
requirements are posed on the time step size in order to resolve the relevant temporal scales.
Therefore, DNS is out of reach in the foreseeable future regarding most industrial applications
in the moderate to large Reynolds number regime. DNS is still a valuable tool in research and
industry, e.g., for computing reference data and investigating selected low-Reynolds-number
configurations, see for example [184] for an overview.

In Chapter 4 of this thesis, we perform DNS of two popular reference benchmarks with the
high-order DG solver presented: turbulent channel flow and flow over periodic hills. The latter
simulations exhibit the highest fidelity to date and provide a new set of reference data for two
Reynolds numbers.

2.3.2. Large-Eddy Simulation
The high cost of resolving all turbulent scales suggests a method where only the large, inhomoge-
neous, energy-containing scales are resolved and the smaller homogeneous scales are modeled.
This is the methodology of LES and the respective part of the energy spectrum is labeled in
Figure 2.2. Governing equations for LES may be derived by several approaches, for example
by the classical filtering [175] or a variational projection onto a given spatial discretization in
the context of Galerkin methods [120]. In the case of filtering using a filtering operator ¯(·), the
incompressible Navier–Stokes equations become under the assumption of commutativity of the
gradient and filtering operators [223]:

∂ū

∂t
+∇ ·

(
F c(ū) + p̄I −Fν(ū)

)
= f −∇ · τLES, (2.10)

∇ · ū = 0, (2.11)

with the LES subgrid tensor τLES = u⊗ u− ū⊗ ū, which has to be modeled.
Sagaut [222] classifies the subgrid models in two groups, functional models on the one hand

and structural models on the other hand. Functional models mimic the physical dissipation of
the unresolved subgrid scales whereas structural models recover some of the nonlinear interac-
tions between small resolved and subgrid scales. In Chapter 7, a structural LES model will be
employed in conjunction with a variational multiscale approach within the continuous FEM. In
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Chapters 5 and 9, a functional model is used in the context of DES (see subsequent section).
A third approach is the idea of implicit subgrid models, stating that the numerical dissipation
required to stabilize the scheme may in fact be appropriate to model the turbulent motions on
subgrid level, or at least their physical dissipation. This modeling approach is popular in partic-
ular in the context of the DG method, see the discussion and literature review in the Chapters 3
and 4.

LES is recognized as a method, which is well capable of reproducing results of DNS with
much coarser grids and its particular strengths lie in the accurate prediction of separated flows.
One key advantage of LES in comparison to the subsequent modeling approaches is that grid
refinement always yields convergence to DNS.

The primary limitation of LES arises from what is displayed in Figure 2.5: The size of the
energy-containing scales is proportional to the distance to the wall and, near the wall, the largest
turbulent motions are of a similar size as the viscous dissipation scales. As a result, very fine
boundary layer meshes have to be used, and the near-wall spatial and temporal resolution re-
quirements increase dramatically with the Reynolds number. Chapman [42] estimates the scaling
of the grid resolution requirements with the Reynolds number as Re1.8, which is only moderately
relaxed compared to the DNS requirement, and Baggett et al. [12] derived a scaling in wall units
of Re2

τ . The difference in the exponent between Re and Reτ arises from the scaling of the skin
friction with Re−0.2 [42]. Small computation cells in the boundary layer come along with severe
constraints on the time step size to resolve the temporal scales of momentum-transfer mecha-
nisms and to be compliant with time step restrictions if explicit time integration schemes are
employed. These computational requirements are out of reach in many industrial applications
and there is a need for the further reduction of the computational cost through more invasive
modeling. These are the topics of the two subsequent sections: statistical modeling and wall
modeling.

2.3.3. Reynolds-Averaged Navier–Stokes
In the past, the available computer resources were by far not sufficient for LES of industrial
flows. Even today, when thousands of parameter settings have to be analyzed during a prod-
uct development cycle, a primary requirement is short run time. Under these circumstances, the
method of choice would be the RANS approach. The governing equations are derived by consid-
ering a Reynolds decomposition of the velocity and pressure into a statistical ensemble-averaged
component, denoted by 〈·〉, and a fluctuating component, denoted by (·)′, yielding

u = 〈u〉+ u′. (2.12)

Substituting this decomposition in Equations (2.1) and (2.2) and assuming permutability of gra-
dient and averaging operators [223] results in the RANS equations:

∂〈u〉
∂t

+∇ ·
(
F c(〈u〉) + 〈p〉I −Fν(〈u〉)

)
= f −∇ · τRANS, (2.13)

with the Reynolds stress tensor τRANS = 〈u′ ⊗ u′〉, which has to be modeled. The continuity
equation remains unchanged:

∇ · 〈u〉 = 0. (2.14)
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The vast majority of RANS turbulence models considers an eddy viscosity approach, taking into
account the Reynolds stress tensor by the Boussinesq approximation,

−〈u′ ⊗ u′〉 ≈ 2νtε(〈u〉) = Fνt(〈u〉), (2.15)

with the eddy viscosity νt. Historically the first and probably the simplest turbulence model is
Prandtl’s mixing length model, which is applicable in the log-layer of a boundary layer:

νt = (κy)2|ε(〈u〉)|, (2.16)

where |ε(〈u〉)| =
√

2ε(〈u〉) : ε(〈u〉). There is a large number of advanced one and two-
equation models, and their review is beyond the scope of this introduction; see, e.g., [266] for an
overview. In Chapters 5 and 8, we consider the SA one-equation turbulence model [242] as an
extension of the DG scheme.

RANS models depend heavily on calibrated model constants and their range of applicability
is limited. They are generally well-suited for flows with attached boundary layers with moderate
pressure gradients. In massively separated flows or flow separation from curved boundaries,
RANS models may show deficiencies (see, e.g., [125]). For example, the SA model fails to
accurately predict the flow in the recirculation zone of the periodic hill flow (see Section 5.4.2).
Also, due to the statistical modeling approach, RANS simulations do not converge to DNS data
by means of mesh refinement. Finally, resolving the sharp velocity gradient at the wall with the
numerical scheme may be quite costly as well, and requires additional wall modeling at high
Reynolds numbers, see for example the wall model developed in Chapter 8.

2.3.4. DES, Wall Modeling, and Hybrid RANS/LES
Due to the high cost of LES in the boundary layer, the concept of wall modeling was introduced
in early works on LES by Deardorff [60] and Schumann [231] in an attempt to circumvent the
resolution dependence on wall units. Wall modeling implies that near-wall turbulence and the
accompanying momentum transfer are not resolved but modeled in a statistical sense. Despite
this statistical modeling, wall-modeled LES often exhibits higher accuracy than RANS as the
anisotropic turbulent motions of the bulk flow are resolved. With the near-wall turbulence mod-
eled, the size of dominating eddies in the bulk of the flow are governed by geometrical scales
of boundary conditions with resolution requirements increasing approximately as Re0.4 [204].
Such a Reynolds number dependence is acceptable in most industrial applications. As a compre-
hensive review of the literature is beyond the scope of this introduction, we refer to the reviews
in [94, 168, 203, 204, 223, 268], and the discussion is limited to the main ideas.

There are two principal approaches to wall modeling: hybrid RANS/LES including DES and
wall-stress models.

• Hybrid RANS/LES or detached-eddy simulation (DES) approaches consider a RANS clo-
sure in the inner boundary layer, whereas an LES subgrid model is used in the outer layer
or the bulk flow. Both methods are applied on the same computational grid and employ
the same baseline solver. The traditional detached-eddy simulation approach according to
Spalart et al. [244] blends the turbulence models by limiting the wall distance parameter in
the SA model (see Section 5.2) by a characteristic grid length scale such that the standard
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RANS equations are solved in the boundary layer and the RANS model degenerates to a
one-equation LES closure elsewhere. As the boundary layer turbulence is not resolved, the
wall-parallel grid spacing can be very large, which achieves a drastic reduction in the grid
point requirements. Regarding the application of DES, two main branches are frequently
used. If the wall-parallel grid length is chosen of the order of up to 0.1δ, with the boundary
layer thickness δ, the SA model acts as a RANS model in the inner boundary layer region
only and as an LES subgrid model in the outer layer [195, 204] (see Section 2.1.3), yielding
WMLES. As an alternative, the whole boundary layer may be computed in RANS mode,
where the wall-parallel grid spacings are of the order of δ such that only the turbulence in
‘detached’ shear layers is resolved [168, 244]. WMLES is by a factor of 10 to 100 more
expensive than classical DES, but still yields substantial savings [168]. Numerous other
hybrid RANS/LES approaches have been proposed, for example the method of explicitly
blending RANS and LES eddy viscosity models by Baggett [11] or the theoretical frame-
work for blending hybrid RANS/LES filters instead of models by Germano [97]. Applica-
tions within DG may be found for example in [179, 267]. We consider DES as WMLES in
Section 5.5 and extend the approach by a new wall modeling concept in Chapters 9 and 10.

• Wall-stress models are a second category of wall models. The aim of this approach is
to model the inner layer, including both the turbulent motions and the velocity profile in
one method. Therein, the no-slip boundary conditions are replaced by traction boundary
conditions, i.e., Neumann boundary conditions, such that the velocity gradient at the wall
does not have to be resolved by the scheme. In turn, the wall shear stress is computed based
on the velocity of a grid point, which usually lies in the logarithmic region. There is a large
number of ways for predicting the wall stress in turbulent boundary layers and applying
the stresses as boundary conditions, see for example the wall models developed within
the high-order DG method [88, 90, 263]. The simplest approach is to employ the relation
of the log-law, which poses the requirement that the first off-wall node has to be located
inside the log-layer. In addition, the underlying assumptions in such models are significant
and they may only be applied in equilibrium boundary layers [203]. These restrictions can
be reduced by more advanced wall functions. Another and better consistent approach is
the so-called two-layer model (TLM) (see, e.g., the review in [204]), in which simplified
thin-boundary layer equations (TBLE) are solved on a separate grid in the inner layer.

We discuss further advantages and disadvantages of these wall modeling approaches in Chap-
ter 6 prior to introducing a novel approach to wall modeling. Wall modeling may also be neces-
sary in RANS simulations of high-Reynolds number, as the resolution of the near-wall velocity
gradient would be quite expensive. Further details on wall modeling for RANS are given in
Chapters 6 and 8.

2.4. Summary
In this chapter, the chaotic and eddy-dominated nature of turbulence was identified as a chal-
lenge for the simulation of turbulent flows. The most accurate simulation approach to turbulence
is DNS, where all scales are resolved. As the Reynolds number increases, ratio of the large over
small scales grows, making a direct computation of all scales impossible. One possibility is to
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simulate the large and inhomogeneous eddies only and to model the smaller scales, which yields
a similar level of accuracy while reducing the cost. However, this approach is still too com-
putationally demanding for many applications, as the large near-wall eddies are indeed small.
A statistical model of the whole flow is possible, however with the drawback of a reduced fi-
delity of the prediction. A reasonable compromise can be seen in the concept of wall modeling
in conjunction with LES, where the large eddies are only computed away from the walls, and
the near-wall turbulence is modeled. In this thesis, we develop computational methods for all of
these simulation approaches with a strong focus on the latter wall modeling concept. These mod-
els are developed within a high-order DG method, which will be introduced in the subsequent
chapter.
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3
A High-Order Incompressible Semi-Explicit

Discontinuous Galerkin Solver

The description of the numerical methods for the solution of the Navier–Stokes equations in
Section 2.2 identified the DG method as an approach that combines four highly desirable char-
acteristics in one computational approach. These characteristics are, according to Section 2.2:
stability in the convection-dominated regime with low dissipation properties, high-order capa-
bility in conjunction with unstructured meshes, and efficiency in explicit time stepping. In this
chapter, a solver for incompressible flows is presented and extended, that makes use of these
qualities and is applicable to laminar and turbulent incompressible flow, however with a strong
focus on spatially underresolved simulations of turbulence (LES). Instabilities occurring in the
limit of small time steps and in marginally resolved flows are analyzed in detail and remedies to
these issues are developed.

This solver is applied to DNS and LES of turbulent flow in Chapter 4. An extension to the
RANS equations is developed in Chapter 5 and the concept of wall modeling via function en-
richment is also implemented in this solver, which is described in Part II of this thesis. In the
first section of the following chapter, we give an overview of available DG schemes in the litera-
ture. Subsequently, the temporal discretization of a splitting scheme is presented in Section 3.2.
Section 3.3 introduces the spatial DG discretization and Section 3.4 compares several modifi-
cations of the scheme. Section 3.5 gives an overview of the implementation and Section 3.6
presents laminar verification examples. The present chapter is based on joint work with a second
PhD student Niklas Fehn under the supervision of Dr. Martin Kronbichler at the Institute for
Computational Mechanics and has been published in Krank et al. [147].

3.1. A Review of High-Order DG Methods for Incompressible
Flow and Motivation

3.1.1. Use Compressible or Incompressible Schemes?
High-order DG schemes governed by the compressible Navier–Stokes equations have been
developed for many years and can be applied to a wide range of compressible turbulent
flows and simulation approaches, e.g., DNS (see Section 2.3.1) [15, 115], LES (see Sec-
tion 2.3.2) [15, 19, 262], and RANS simulations (see Section 2.3.3) [17, 167, 259]. Applications
range from internal turbomachinery flows [264], the side-view mirror of a car [87], a high-lift
configuration of an entire aircraft [110], to environmental flows [98, 99].

As fully incompressible DG schemes of an equally mature development level have not been
widely available, it is common practice to compute incompressible flows with compressible
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codes at small Mach number to avoid compressibility effects; see, e.g., [15, 19, 28, 52, 263].
However, the time step restrictions in such schemes can be severe if an explicit approach is
used [263], since the time step has to be chosen based on the speed of sound as the convec-
tive velocity instead of the fluid velocity. The analysis in [263] concludes that a Mach number
of Ma = 0.1 is sufficient to avoid compressibility effects, so an explicit compressible scheme
would require approximately ten times more time steps in comparison to an explicit incom-
pressible method. However, the study in [145] compares the results of a compressible and an
incompressible approach and their results show noticeable differences even at Ma = 0.05 in
the compressible method, so further analysis is required in order to assess the suitability of
compressible schemes for incompressible flows. In addition to the time step restriction, the com-
pressible Navier–Stokes equations require the supplementary solution of the energy equation
and exhibit a higher degree of nonlinearity, which either results in more expensive terms [140]
or requires a higher level of modeling in form of dealiasing [112].

The bottleneck in incompressible schemes is the pressure variable, since this quantity cannot
be formulated explicitly unless the partial differential equations are modified, such as in artificial
compressibility methods; see, e.g., [181] (LES) and [196] (URANS) for an application to tur-
bulent flow. As a result, the pressure in truly incompressible methods requires the solution of a
challenging equation system, which can be quite expensive as well. As a comprehensive compar-
ison of two highly developed compressible and incompressible schemes is not readily available,
it is currently impossible to answer the question whether compressible or incompressible high-
order DG methods are better suited for incompressible flows. However, we present techniques
for incompressible solvers that allow such a comparison in the future.

3.1.2. DG Schemes for Incompressible Flow
Incompressible numerical schemes in the context of eddy-resolving simulations are rare and
have for example been employed by [73, 74] within a 2D DG solver coupled with a spectral van-
ishing viscosity approach in the third space dimension and by [248] using a space-time method.
Fully resolved unsteady laminar (DNS-like) simulations and have been carried out by [54] us-
ing an artificial compressibility flux method within an incompressible scheme [16]. The latter
numerical method was recently applied to turbulent channel flow as well [86]. The related hy-
bridizable discontinuous Galerkin (HDG) method has shown promising results in [193] for sim-
ple setups. Furthermore, [174] used HDG for the convective and DG for the viscous term within
an operator-splitting technique. In the context of the state-of-the-art matrix-free algorithms used
in the present thesis, the symmetric interior penalty (SIPG) DG flavor is much more efficient in
comparison to HDG, especially in three space dimensions [162].

An efficient time integration scheme is the key to large-scale simulations of the incom-
pressible Navier–Stokes equations aiming at turbulent flows. Coupled solvers applied within
DG for example in [48, 49, 141, 218, 229] require the solution of a saddle point problem
and include nonlinear iterations within each time step; they have so far only been applied to
small-scale academic examples. On the contrary, temporal splitting schemes allow for tailored
solution procedures regarding the respective terms contained in the Navier–Stokes equations,
which renders them much more efficient in many applications. In particular, explicit time in-
tegration steps can be performed very efficiently in DG (see Section 2.2.1.1). There are four
main branches of splitting methods, namely pressure-correction, velocity-correction, algebraic-
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splitting and consistent-splitting schemes, see [105] for an overview. With respect to DG, a
pressure-correction method with discontinuous velocity and continuous pressure has for exam-
ple been proposed in [30]. Pressure-correction schemes are however limited to second-order ac-
curacy in time [105]. An algebraic splitting scheme has for example been proposed by Shahbazi
et al. [234].

In this thesis, we consider the high-order velocity-correction (also termed dual-splitting)
scheme by Karniadakis et al. [135], which has been applied within DG in a series of recent
publications [66, 67, 72–75, 77, 112, 147, 202, 246] and within the related spectral multidomain
penalty method (SMPM) in [68, 129]. The scheme allows equal-order interpolations for veloc-
ity and pressure [136] and splits each time step into three substeps: The nonlinearity present in
the convective term is first handled explicitly, a Poisson problem is subsequently solved for the
pressure which is used to make the velocity divergence-free and the viscous term is taken into
account in the third step.

3.1.3. Instabilities Reported in the Literature
A downside of many splitting schemes are limitations coming along with the splitting ap-
proach [105]. As a novel contribution of this thesis, remedies are provided to two such limitations
observed with the dual-splitting scheme when employed in conjunction with the DG method as
reported in a series of recent papers, e.g., [72, 73, 75, 129, 147, 202, 246]. These issues are not
related to the well-understood aliasing errors induced by underintegration of nonlinear terms
[112] or convection-dominated flow regimes. The two sources of instabilities are:

• Ferrer and Willden [73] and Ferrer et al. [75] discuss instabilities encountered for small
time steps with this scheme, both for continuous and discontinuous Galerkin discretiza-
tions. In the remainder of this chapter, it is shown that these instabilities arise due to spu-
rious divergence errors as a consequence of the finite spatial resolution. Several remedies
to this issue are reviewed, among them a consistent div-div penalty term within the local
projection step reducing the point-wise divergence error. This term may be seen as a much
simpler variant of the postprocessing proposed in [246] and is similar to the grad-div term
frequently used in continuous Galerkin [197].

• Violation of the mass balance through velocity discontinuities across element boundaries
triggers another instability recently described by Joshi et al. [129]. This instability be-
comes especially relevant in spatially underresolved simulations such as LES of turbulent
flow. We review and benchmark two remedies to this problem, which are a supplementary
jump-penalty term included in the projection according to [129] on the one hand or partial
integration of the right-hand side of the Poisson equation on the other hand.

With regard to this time integration scheme, a third issue has been discussed in the literature.
The dual-splitting scheme exhibits an inf-sup instability if equal orders for velocity and pressure
are used when very small time steps are employed [72, 75]. As we aim at time step sizes close
the maximum allowable ones in this work, this issue is not directly relevant for the simulations
presented in this thesis.

Based on these enhancements, we develop an efficient high-order DG solver applicable to
laminar and turbulent incompressible flow including implicit LES. The spatial DG discretization
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Table 3.1.: Time integration parameters for time stepping with constant time step size [135]. The
parameters are extended in Section 3.3.3 to adaptive time stepping.

J, Jp α0 α1 α2 β0 β1 β2 γ0

1 1 0 0 1 0 0 1
2 2 −1/2 0 2 −1 0 3/2
3 3 −3/2 1/3 3 −3 1 11/6

follows the approaches proposed in Hesthaven and Warburton [112] and Shahbazi et al. [234]
(although the latter publication uses triangular elements and an algebraic splitting scheme), and
a preliminary version of the solver used in this work was developed by Fehn [71]. We choose the
local Lax–Friedrichs numerical flux for the discretization of the convective term and the interior
penalty method [10] for the Poisson problem and the viscous term. The local conservativity
of the overall method is attained by use of the divergence form of the incompressible Navier–
Stokes equations [234]. The method further employs nodal Lagrangian shape functions. As it is
described in [147], multigrid solvers with smoothing based on the point Jacobi method require
fewer iterations with nodal polynomials than with modal shape functions, which are used, e.g., in
[73, 75, 246]. This is since the underlying matrices are closer to diagonal dominance in the case
of nodal shape functions. In addition, face integrals involving shape values of nodal polynomials,
where only some shape functions are nonzero on a particular face, are cheaper to evaluate than
bases that must be interpolated from all shape functions onto the boundary [147]. The method is
implemented based on matrix-free operator evaluation that relies on sum factorization [146, 156–
158] in a solver called INDEXA (INcompressible Discontinuous Galerkin towards the EXA
scale).

3.2. Temporal Velocity-Correction Scheme
The incompressible Navier–Stokes equations (2.1) and (2.2) are discretized in time by use of
the semi-explicit dual-splitting scheme by Karniadakis et al. [135]. Herein, the transient term is
discretized by a backward-differencing formula (BDF), the nonlinear convective term is treated
with an extrapolation scheme (EX) and the pressure, viscous and body force terms are handled
implicitly. The time-discretized momentum equation (2.1) becomes

γ0u
n+1 −

∑J−1
i=0

(
αiu

n−i)
∆t

+
J−1∑
i=0

βi∇ ·F c(un−i) +∇pn+1 −∇ ·Fν(un+1) = fn+1, (3.1)

with the solution un+1 and pn+1 at time level tn+1 = (n + 1)∆t with n indicating the time step
and ∆t the increment in time. The time integrator constants γ0, αi, and βi of the BDF and EX
schemes are given in [135] and they are listed in Table 3.1. We consider the temporal orders
of accuracy J = {1, 2, 3}. In Section 3.3.3, we give details on how these parameters may be
adaptively computed in order to take into account temporally varying time step increments. As
the scheme is not self-starting for J = {2, 3}, the first time steps are performed either by succes-
sively increasing the BDF order or by interpolation of the solution to the discrete time instants
tn−1, ..., tn−J+1 if an analytical solution is available.
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In the framework of DG methods, the dual-splitting scheme by Karniadakis et al. [135] has
for example been investigated by Hesthaven and Warburton [112], Ferrer and Willden [76],
Steinmoeller et al. [246], Ferrer et al. [75], as well as Emamy [66]. It splits Equation (3.1) into
three substeps: (i.) the nonlinear convective term is advanced in time explicitly, (ii.) the pressure
is computed by solving a pressure Poisson equation and the result is used to project the velocity
onto a solenoidal space, and (iii.) the viscous term is handled implicitly. The substeps are:

i. Explicit convective step

In the first substep, the nonlinear convective term is handled efficiently by explicit time
advancement,

γ0û−
∑J−1

i=0

(
αiu

n−i)
∆t

= −
J−1∑
i=0

βi∇ ·F c(un−i) + fn+1, (3.2)

yielding the first intermediate velocity û.

ii. Pressure Poisson equation and projection

The pressure step consists of solving a Poisson equation for the pressure at time tn+1 given
as

−∇2pn+1 = −γ0

∆t
∇ · û. (3.3)

Consistent boundary conditions for this problem on ∂ΩD may be derived according to
[135, 199] by multiplication of the momentum equation (2.1) with the normal vector. The
resulting transient term is treated using the Dirichlet values given, likewise the body force,
while the convective and viscous contributions are handled explicitly to avoid a depen-
dency on the velocity solution, yielding

∇pn+1 · n =

−
(
∂gu(t

n+1)

∂t
+

Jp−1∑
i=0

βi
(
∇ ·F c(un−ih ) + ν∇× ωn−i

)
− fn+1

)
· n on ∂Ω

D. (3.4)

Herein,ω denotes the vorticity and Jp the extrapolation order of the convective and viscous
terms in the Neumann pressure boundary condition. Throughout this work, we take Jp = J
in order to obtain optimal temporal convergence rates both in velocity and pressure. On
the contrary, the mixed-order case Jp = J − 1 discussed for example in [106, 177] yields
sub-optimal convergence rates for the pressure [106, 177], see also the discussion in [71].
Note that only the solenoidal part in form of the rotational formulation of the viscous term
is accounted for, which has been reported to be essential for reducing boundary divergence
errors as well as high-order temporal accuracy of the overall methodology [135, 199]. A
suitable boundary condition on ∂ΩN for Neumann outflow is pn+1 = gp(t

n+1), prescribing
the desired pressure value gp(tn+1) directly.

Utilizing the new pressure field pn+1, the first intermediate velocity û is projected onto the
space of divergence-free vectors by

ˆ̂u = û− ∆t

γ0
∇pn+1, (3.5)
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resulting in the second intermediate velocity ˆ̂u.

iii. Implicit viscous step

The final solution un+1 at time tn+1 is computed implicitly due to stability considerations
by a Helmholtz-like equation reading

γ0

∆t
(un+1 − ˆ̂u) = ∇ ·Fν(un+1). (3.6)

The system is closed by specifying boundary conditions for the velocity according to

un+1 = gu(t
n+1) on ∂ΩD and

Fν(un+1) · n = h(tn+1) + gp(t
n+1)n on ∂ΩN .

(3.7)

3.3. Spatial Discretization
Let us commence the discussion on the spatial discretization in the first Subsection 3.3.1 by
introducing the notation used. Subsequently, the variational formulation is presented in Subsec-
tion 3.3.2. Several alternative variants of the resulting weak form are discussed and compared
with regard to stability in marginally resolved simulations as well as for small time steps in the
subsequent Section 3.4.

3.3.1. Preliminaries

We consider a tessellation of the d-dimensional domain Ω ⊂ Rd into Ne nonoverlapping quadri-
lateral/hexahedral finite elements Ωh =

⋃Ne

e=1 Ωe. The exterior boundaries of Ωh are denoted by
∂Ωh. They are partitioned into a Dirichlet and Neumann boundary ∂Ωh = ∂ΩD

h ∪ ∂ΩN
h with

∂ΩD
h ∩ ∂ΩN

h = ∅. Interior boundaries ∂Ω−e ∩ ∂Ω+
e between two adjacent elements Ω−e and Ω+

e

are named ∂ΩΓ

e . The unit normal vectors of such interior boundaries are oriented outwards of the
respective element yielding n−

Γ
= −n+

Γ
, i.e., n−

Γ
is oriented from Ω−e to Ω+

e as well as outwards
with respect to Ω−e on exterior boundaries, accordingly. In the element-wise notation of the weak
form presented in the following subsections, we refer to the current element by the superscript
(·)− and to the neighboring element by (·)+, i.e., nΓ = n−

Γ
.

The discontinuity of the primary variables across element interfaces may be expressed in
terms of jump operators [·] and J·K, which are defined as [φ] = φ− − φ+ and JφK = φ− ⊗ n−

Γ
+

φ+ ⊗ n+
Γ

, respectively, where the latter is given for the multiplication operator ⊗ applicable
to scalars, vectors as well as tensors and which increases the tensor rank by one. Similarly, an
averaging operator is defined as {{φ}} = w−φ− + w+φ+ with the weights w− = w+ = 1/2 if
not specified otherwise. This averaging operator will be used in Chapters 5 and 10 to consider
spatially dependent material parameters in the viscous term. We also use extensions of these
operator definitions to the boundaries, which are {{φ}}ND = {{φ}} and [φ]ND = [φ] on ∂ΩΓ

e and
{{φ}}ND = φ− as well as [φ]ND = 0 on ∂ΩN

e ∪ ∂ΩD
e .

Dirichlet boundary conditions are enforced using the mirror principle according to [71, 112]
for all terms, defining φ+ = −φ−+2g and∇φ+ = ∇φ− on ∂ΩD

e . Neumann boundary conditions
are applied by setting the external value to φ+ = φ− and prescribing a gradient as ∇φ+ · n =
−∇φ− · n+ 2hφ on ∂ΩN

e , where hφ is the Neumann boundary condition [71, 112].
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Further notation used in the weak formulations below includes L2-inner products abbreviated
with (a, b)Ωe =

∫
Ωe
ab dΩ for scalars, (a, b)Ωe =

∫
Ωe
a · b dΩ for vectors and (a, b)Ωe =

∫
Ωe
a :

b dΩ for tensors of rank 2 (the double dot product is evaluated as a : b = aijbij in index
notation). Boundary integrals are defined accordingly.

Approximate solutions are to be found within spaces of the form

Vph = {ph ∈ L2 : ph|Ωe ∈ Pk(Ωe),∀e ∈ Ωh}
for the pressure and the equivalent vector-valued version Vuh = (Vph)d for the velocity. Herein,
Pk(Ωe) denotes the space of polynomials of tensor degree up to k where the polynomial order is
restricted by k ≥ 1 while the high-order pressure boundary conditions may first be represented
sufficiently well with k ≥ 2. The polynomials are given by a tensor product of one-dimensional
Lagrange polynomials based on Legendre–Gauss–Lobatto nodes for good conditioning at arbi-
trary polynomial degrees [136]. Further details on aspects related to efficient implementation of
these elements are discussed in Section 3.5.

3.3.2. Variational Formulation
The variational formulation is derived for each substep of the time integration scheme by mul-
tiplying Equations (3.2) to (3.7) with appropriate weighting functions vh ∈ Vuh and qh ∈ Vph,
respectively, and integrating over one element volume Ω−e . If possible without ambiguity, the
superscript (·)− is dropped in the following for simplicity. The variational forms are based on
the work by Fehn [71] and include the modifications suggested by Krank et al. [147] regarding
the viscous term and the pressure boundary condition.

i. Explicit Convective Step

The flux formulation of the convective step is derived by integration by parts and subse-
quent application of the divergence theorem, yielding(

vh,
γ0ûh −

∑J−1
i=0

(
αiu

n−i
h

)
∆t

)
Ωe

=

J−1∑
i=0

βi

((
∇vh,F c(un−ih )

)
Ωe
−
(
vh,F c∗(un−ih ) · nΓ

)
∂Ωe

)
+
(
vh,f

n+1
h

)
Ωe

(3.8)

where ûh ∈ Vuh . The local Lax–Friedrichs numerical flux is applied as it provides a stable
formulation of the convective term. We have

F c∗(un−ih ) =


{{F c(un−ih )}}+ Λ/2Jun−ih K on ∂ΩΓ

e ,
F c(un−ih ) on ∂ΩN

e ,
1/2
(
F c(2gu(tn−i)− un−ih ) +F c(un−ih )

)
+Λ
(
un−ih − gu(tn−i)

)
⊗ nΓ on ∂ΩD

e

(3.9)

using Λ = max(λ−, λ+) according to, e.g., [234] and the maximum eigenvalue of the
respective flux Jacobian [147],

λ− = maxj

∣∣∣∣λj(∂F(u)·nΓ

∂u

∣∣
u−,n−i
h

)∣∣∣∣ = 2|u−,n−ih · nΓ| and

λ+ = maxj

∣∣∣∣λj(∂F(u)·nΓ

∂u

∣∣
u+,n−i
h

)∣∣∣∣ = 2|u+,n−i
h · nΓ|.

(3.10)
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3. A High-Order Incompressible Semi-Explicit Discontinuous Galerkin Solver

The latter is defined as λ+ = 2|(2gu(tn−i) − u−,n−ih ) · nΓ| on ∂ΩD
e . Note that Λ is eval-

uated on each quadrature point according to [71, 147], which differs from several other
studies, where it is suggested to evaluate Λ based on mean values of u+ and u− across
the entire respective element (see, e.g., [142, 234]). Further, the factor 2 present in the
eigenvalues (3.10) has been omitted in some publications; see, e.g., [112].

ii. Pressure Poisson Equation and Projection

For discretization of the pressure term, the SIPG method by Arnold [10] is considered. The
weak form of the right-hand side of Equation (3.4), denoted by a(qh, ûh) in the following,
is one of the primary objects of study in this chapter and will be discussed in detail in
Section 3.4. In the simplest variant according to [112], we have

(∇qh,∇pn+1
h )Ωe −

1
2
(∇qh,Π∗)∂Ωe − (qh,P∗ · nΓ)∂Ωe = −(qh,

γ0

∆t
∇ · ûh)Ωe︸ ︷︷ ︸

=:a(qh,ûh)

, (3.11)

where the pressure jump function Π∗ is given as

Π∗ =


Jpn+1
h K on ∂ΩΓ

e ,
(2pn+1

h − 2gp(tn+1))⊗ nΓ on ∂ΩN
e and

0 on ∂ΩD
e .

(3.12)

The interior penalty flux P∗ includes a stabilization term according to

P∗ =


{{∇pn+1

h }} − τIPJpn+1
h K on ∂ΩΓ

e ,
∇pn+1

h − 2τIP(p
n+1
h − gp(tn+1))⊗ nΓ on ∂ΩN

e ,

−
(
∂gu(tn+1)

∂t
+
∑J−1

i=0 βi
(
∇ ·F c(un−ih ) + ν∇× ωn−ih

)
− fn+1

)
on ∂ΩD

e ,

(3.13)
with the interior penalty parameter for hexahedra [113]

τIP,e = (k + 1)2A(∂ΩΓ

e)/2 + A(∂ΩN
e ∪ ∂ΩD

e )

V (Ωe)
(3.14)

including surface area A and element volume V . We apply the maximum penalty param-
eter across element boundaries

τIP =

{
max(τ−IP,e, τ

+
IP,e) on ∂ΩΓ

e and
τ−IP,e on ∂ΩN

e ∪ ∂ΩD
e .

(3.15)

The vorticity ωh ∈ Vuh present in the boundary condition (3.13) is evaluated employing a
local L2-projection as suggested in Fehn [71] by

(vh,ωh)Ωe = (vh,∇× uh)Ωe (3.16)

in order to avoid the necessity of computing the second derivatives directly.
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3.3. Spatial Discretization

Using the newly computed pressure pn+1
h , the velocity is projected onto the solenoidal

space by an element-wise operation according to

(vh, ˆ̂uh)Ωe = (vh, ûh)Ωe −(vh,
∆t

γ0
∇pn+1

h )Ωe︸ ︷︷ ︸
=:b(vh,pn+1

h )

, (3.17)

with ˆ̂uh ∈ Vuh . This equation is studied in detail in this work and we are going to modify
the right-hand-side term b(vh, p

n+1
h ) as well as add supplementary terms to ensure stability

in the small-time-step limit and underresolved case in Section 3.4.

iii. Implicit Viscous Step

The weak form of the viscous step (3.6) reads(
vh,

γ0

∆t
un+1
h

)
Ωe

+
(
ε (vh) ,Fν

(
un+1
h

))
Ωe
− s (wFν (vh) ,U∗)∂Ωe

−
(
vh,Fν∗ (un+1

h

)
· nΓ

)
∂Ωe

=
(
vh,

γ0

∆t
ˆ̂uh
)

Ωe

. (3.18)

The parameter s is chosen either as 1 or −1 corresponding to the symmetric (SIPG) or
nonsymmetric interior penalty (NIPG) methods (see, e.g., [220]). In the remainder of this
chapter, we will solely consider the symmetric version s = 1 since it qualifies for efficient
solution procedures of the linear system via a conjugate gradient solver and enables op-
timal convergence rates of orders k + 1 in the L2 norm [109]. The nonsymmetric variant
may nevertheless be useful since it provides a stable method with relaxed requirements on
the penalty parameter τIP. For example, the extension of the present scheme towards wall
modeling via function enrichment presented in Chapters 8 to 10 uses s = −1, ensuring
coercivity of the bilinear form and thus stability of the numerical method in the context of
nonpolynomial shape functions. The velocity jump function U∗ is defined as

U∗ =


Jun+1

h K on ∂ΩΓ

e ,
(2un+1

h − 2gu(tn+1))⊗ nΓ on ∂ΩD
e and

0 on ∂ΩN
e .

(3.19)

The numerical flux Fν∗(un+1
h ) includes a penalty term as already used for the pressure

Poisson equation (3.13)

Fν∗(un+1
h ) =


{{Fν(un+1

h )}} − τIPνJun+1
h K on ∂ΩΓ

e ,
Fν(un+1

h )− 2τIPν(u
n+1
h − gu(tn+1))⊗ nΓ on ∂ΩD

e and
(h(tn+1) + gp(t

n+1)nΓ)⊗ nΓ on ∂ΩN
e ,

(3.20)
with τIP as defined in Equations (3.14) and (3.15). As opposed to the Laplace formulation
of the viscous term (Fν(u) = ν∇u), the present formulation (Fν(u) = ν(∇u+(∇u)T ))
has been used less frequently in conjunction with the SIPG method. The stability of the
present formulation has yet been proven in the context of cut-FEM in [226] and references
therein.

35



3. A High-Order Incompressible Semi-Explicit Discontinuous Galerkin Solver

3.3.3. The CFL Condition and Adaptive Time Stepping
The explicit treatment of the convective step restricts the time step size according to the Courant-
Friedrichs-Lewy (CFL) condition to

Cr
k2 =

U∆t

h
(3.21)

with the Courant number Cr = O(1), a characteristic element length h and velocity U , a relation
that has been obtained via analysis of linear convection [112]. The CFL restriction scales by
theory with the square of the polynomial degree and behaves similarly as for continuous spectral
elements [136]. In the DG context, the relevant length is the minimal distance between nodal
points inside an element [112].

The time step size restriction coming along with this CFL condition may be quite painful, so
the condition deserves some more attention. In particular, the most severe problem with Equa-
tion (3.21) is that the velocity field is not known a priori, such that the time step size has to be
chosen based on a rough estimation of the velocity field with a large safety factor, in order to
allow a computation to complete. The result is a waste of computational efficiency. Therefore,
an adaptive algorithm has been developed, which chooses the largest allowable time step size in
each step. In this way, the computational efficiency of the flow solver is considerably increased,
no knowledge of the flow is required before the simulation run, and the CFL condition does not
cause a simulation to fail.

As a result of a detailed analysis carried out by Legat [173] as part of the present work, the
CFL condition is reformulated, reading

Cr
k1.5 = max

j

∣∣(J−Tunh)j∣∣∆t, (3.22)

where the transposed inverse of the Jacobian is employed to transform unh into the parameter
space of each element. Here, the largest absolute vector component of J−Tunh as velocity-to-
length ratio has performed best in the investigations regarding curved boundaries and anisotropic
meshes. The exponent of the polynomial degree of 1.5 has been determined experimentally as
giving the tightest fit for k ≤ 8. A similar trend can be observed in the data provided by [136],
and this exponent is lower than the theoretical value of 2 in Equation (3.21).

The time step size ∆t resulting from a constant Courant number is computed in each step and
applied for the time-advancement from tn to tn+1. The variable time step increments require
the recalculation of the time integration constants αi, βi, and γ0, which are unique in each time
step. In order to describe the relevant relations, the time increments along the temporal axis are
denoted as ∆tn between the time instants tn and tn+1 according to

. . .

0 tn−2 tn−1 tn tn+1 T
. . .︸ ︷︷ ︸

∆tn−2
︸ ︷︷ ︸

∆tn−1
︸ ︷︷ ︸

∆tn

following [173], such that the symbol ∆t used in the previous Sections is equal to ∆tn. With this
definition available, the time integration constants are given by [257] and are listed in Tables 3.2
and 3.3. It is noted that this adaptation scheme allows large ratios of successive time step sizes,
which are derived in [257], such that no further modifications of the method are necessary.
Problems with this adaptation scheme as reported in [73] were not observed.
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Table 3.2.: Time integration parameters αi for time stepping with variable time step size [257].
J, Jp α0 α1 α2

1 1 0 0

2
∑1

i=0 ∆tn−i

∆tn−1 − (∆tn)2

∆tn−1
∑1

i=0 ∆tn−i 0

3 (
∑1

i=0 ∆tn−i)(
∑2

i=0 ∆tn−i)
∆tn−1

∑2
i=1 ∆tn−i − (∆tn)2 ∑2

i=0 ∆tn−i

∆tn−1∆tn−2
∑1

i=0 ∆tn−i

(∆tn)2 ∑1
i=0 ∆tn−i

∆tn−2(
∑2

i=0 ∆tn−i)(
∑2

i=1 ∆tn−i)

Table 3.3.: Time integration parameters βi and γ0 for time stepping with variable time step
size [257].

J, Jp β0 β1 β2 γ0

1 1 0 0 1

2
∑1

i=0 ∆tn−i

∆tn−1 − ∆tn

∆tn−1 0 2∆tn+∆tn−1∑1
i=0 ∆tn−i

3 (
∑1

i=0 ∆tn−i)(
∑2

i=0 ∆tn−i)
∆tn−1

∑2
i=1 ∆tn−i −∆tn

∑2
i=0 ∆tn−i

∆tn−1∆tn−2
∆tn

∑1
i=0 ∆tn−i

∆tn−2
∑2

i=1 ∆tn−i 1 + ∆tn∑1
i=0 ∆tn−i +

∆tn∑2
i=0 ∆tn−i

The present adaptation scheme exhibits Courant numbers, which are approximately indepen-
dent of the numerical example, of about Cr = 0.14 for J = 2 (BDF2) and Cr = 0.09 for J = 3
(BDF3), where the inverse Jacobian represents a transformation from physical space to a pa-
rameter space of unit length ([0, 1]). For a parameter space ranging from [−1, 1], the equivalent
numerical values would be Cr = 0.28 and Cr = 0.18.

3.4. Four Variants of the Projection Step and Impact on
Stability

We pay special attention to the small-time-step as well as the spatially underresolved limit and
associated instabilities of the ‘standard’ version of the present scheme as discussed in a series
of recent papers [66, 67, 72, 75, 76, 129, 147, 202, 246]. The investigations carried out in this
thesis have confirmed that these aspects are of high relevance regarding an accurate and robust
numerical method, especially considering underresolved turbulent flows at high Reynolds num-
ber. In the first Subsection 3.4.1 we give numerical evidence that the instabilities may be traced
back to two particular sources within the right-hand side of the Poisson equation (3.3). Remedies
presented in the literature as well as several extensions are reviewed and compared in Subsec-
tion 3.4.2. The two most promising stabilization techniques are selected in Subsection 3.4.3
which will be validated and compared thoroughly in Section 3.6 and Chapter 4 for laminar and
turbulent flow, respectively. The matrix formulation is outlined in Subsection 3.4.4.

The preliminary numerical investigations regarding small time steps shown in this section
are performed using the laminar vortex problem according to [112] and described in detail in
Section 3.6.1 with a domain size of [−0.5, 0.5] × [−0.5, 0.5] and discretizations of Ne = 42

elements as well as the polynomial degrees k = {2, 3, 4} and a kinematic viscosity of ν = 0.025.
The cases are labeled accordingly specifying the number of elements N42, the polynomial order
k{2, 3, 4} and the variant under investigation, i.e., VHW for the ‘standard’ variant of Hesthaven
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Figure 3.1.: Instability behavior for small time steps using the ‘standard’ variant by Hesthaven
and Warburton [112] (VHW) for three spatial discretizations. Data taken from [147].

and Warburton [112] given in Section 3.3 or V1 to V4 discussed in the following. A first-order
time integration scheme is used with J = Jp = 1 (BDF1 and EX1) for these developments
to show the influence of the temporal discretization error, which would be negligible for J =
{2, 3}, while results presented in the remainder of this thesis will mainly employ the second and
third-order accurate scheme. Regarding the CFL condition, this investigation employs the simple
CFL criterion based on constant time steps, given in Equation (3.21).

The second numerical example considered in this section is turbulent channel flow at a fric-
tion Reynolds number of Reτ = 180 and investigates marginal spatial resolution. We employ a
discretization of 83 elements of degree k = 3 and a Courant number of the order of unity for the
BDF3 scheme. Further details on the configuration are given in Section 4.2.

3.4.1. Sources of Instabilities
The two modes of instability are introduced and an overview of remedies considered in this work
is given.

3.4.1.1. The Small-Time-Step Limit

The occurrence of instabilities for small time step sizes has first been described by Ferrer and
Willden [76] and has been investigated further by Ferrer et al. [75]. The source of these instabil-
ities may be identified according to [147] by rewriting the strong form of the pressure Poisson
equation (Equation (3.3)) by inserting the first intermediate velocity û of the convective step
(Equation (3.2)):

−∇2pn+1 = −
J−1∑
i=0

(αi
∆t
∇ · un−i

)
−∇ ·

(
−

J−1∑
i=0

βi∇ ·F c(un−i) + fn+1

)
. (3.23)

It is noted that the first term on the right-hand side includes a scaling of the divergence of un−i

with 1/∆t. So, if there are spurious divergence errors through the finite spatial discretization,
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these are amplified, which may result in an inaccurate scheme and eventually render the method
unstable for very small time steps if no additional measures are taken. The velocity divergence
errors ∇ · un−i may be analyzed in more detail by taking the divergence of the equation for the
viscous step (3.6) according to [147], yielding

γ0

∆t
∇ · un+1 − 2ν∇2(∇ · un+1) =

γ0

∆t
∇ · ˆ̂u. (3.24)

Following [147], the second intermediate velocity of the dual-splitting scheme would be exactly
divergence-free, ∇ · ˆ̂u = 0, if there was no spatial discretization error. However, the discrete
spatial resolution present in the numerical method yields an intermediate velocity, which is not
exactly divergence free after the projection step [246]. As it is observed in Equation (3.24), these
divergence errors are directly transferred to the final velocity solution un+1. In Equation (3.23),
it is observed that the divergence errors are amplified in the first term of the right-hand side by a
factor of 1/∆t, which is the source of the instabilities at small time steps [147]. This behavior is
observed in numerical experiments by [147], which are shown in Figure 3.1, where the laminar
vortex problem has been computed using the ‘standard’ method as presented in Section 3.3.2.

We consider the following remedies to this problem, which will be discussed in more detail in
the subsequent Section 3.4.2:

• V1: Ferrer et al. [75] propose to increase the penalty parameter τIP of the discrete Laplace
operator of the pressure Poisson equation to circumvent the instabilities. In the same pub-
lication, it is stated that this type of instability is related to the inf-sup condition, which
we cannot confirm as mixed-order elements of degrees k and k − 1 for velocity and pres-
sure, respectively, also lead to instabilities in the limit of small time steps. However, the
inf-sup problem can indeed yield pressure oscillations at even smaller time steps with this
scheme [72].

• V2: The problematic term is dropped using the condition∇·un−i = 0, which corresponds
to the approach proposed by Leriche and Lambrosse [176] as well as Leriche et al. [177]
in the context of the unsteady Stokes equations.

• V3 and V4: The divergence error is controlled by an additional and consistent div-div
penalty term inspired by works of Steinmoeller et al. [246] as well as Joshi et al. [129].
The term is similar to the popular grad-div term in continuous Galerkin and enables a
stable numerical method.

3.4.1.2. Conservation of Mass in the Underresolved Limit

The second aspect of the present DG method requiring special attention is mass conservation in
the underresolved limit. The error stemming from the continuity equation in the discontinuous
context may for example be described in an element-wise sense as

econtinuity
e =

∫
Ωe

|∇ · ˆ̂uh|dΩe +

∫
∂Ωe

1
2
|[ ˆ̂uh] · nΓ|dΓ (3.25)

and consists of two contributions: The first term represents the divergence error within elements
and the second term accounts for the mass balance across element interfaces. The factor 1/2 is
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Figure 3.2.: Stability investigation for the spatially underresolved limit for variants VHW, V3a
to V3c and V4 (from left to right) of turbulent channel flow at Reτ = 180 and a
spatial discretization of 83 k = 3 elements. The divergence and continuity errors are
defined in Equations (3.26) and (3.27), respectively.

included in the latter term since the error appears on two neighboring elements. In the Poisson
equation as described in Equation (3.11) no control on the second term is included in the DG
context. As a consequence, an instability may arise in underresolved turbulent simulations since
marginal resolution generally results in more pronounced velocity discontinuities that increase
the impact of the second term in Equation (3.25). This type of instability has recently been
examined by Joshi et al. [129] and is investigated numerically in Figure 3.2 with a marginally re-
solved turbulent channel flow simulation. For these computations, the error in mass conservation
is, according to Equation (3.25), defined separately as the divergence error

δ
∫

Ωh
|∇ · ˆ̂uh|dΩ∫

Ωh
|| ˆ̂uh||dΩ

(3.26)

with the channel-half width δ and the continuity error∫
∂ΩΓ

h
|[ ˆ̂uh] · nΓ|dΓ∫

∂ΩΓ

h
|{{ ˆ̂uh}} · nΓ|dΓ

(3.27)

measuring the loss of mass in between elements. In Figure 3.2, the ‘standard’ variant VHW
exhibits large divergence and continuity errors, which lead to a diverging solution.

In the present contribution, we review and compare two particular remedies to this issue,
which will be discussed in more detail in the subsequent Section 3.4.2. Their common purpose
of reducing the inter-element continuity error is attained by different approaches:

• V3b and V3c: We reformulate the right-hand side of the Poisson equation (term a(qh, ûh)
in Equation (3.11)) such that a term both for the velocity divergence and the discontinuity
at element boundaries is taken into account, in analogy to the error definition listed in
Equation (3.25). Steinmoeller et al. [246] use the equivalent strong form of this term.
However, that work lacks an explanation as well as investigation of this issue. We also
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show that it may be beneficial to modify the right-hand side of the projection, given as
b(vh, p

n+1
h ) in Equation (3.17), yielding a complementary improvement of the method.

• V4: Joshi et al. [129] propose to penalize velocity jumps at element interfaces within the
projection step, which may be seen as a straightforward measure to the underlying prob-
lem, however at the cost of an additional global system to solve.

Remark: The two modes of instability have been introduced here separately despite an un-
doubted mutual dependence. In order to obtain a robust numerical method, it is considered a
necessity to include a measure for both limits. For example, the primary instability mode under
investigation in Steinmoeller et al. [246] cannot be determined since they operate in the under-
resolved high-Reynolds-number regime and, in addition, do not specify the time step size used
for their computations in terms of the Courant number. Indeed, their proposal is similar to V3b
discussed in the following including measures for both instabilities.

3.4.2. Four Variants

3.4.2.1. Variant 1 (V1)

Instabilities with the present dual-splitting scheme in the small time step regime have for the first
time been reported by Ferrer and Willden [76] considering an unsteady Stokes flow example.
This instability analysis is extended in Ferrer et al. [75], where it is suggested that the time step
size should not be smaller than a critical value of ν∆tlim ∼ h2/k3 to guarantee the stability of
the method. As a result, a high spatial resolution is required, which is the opposite of what we
are aiming for in this thesis, considering implicit LES, i.e., underresolved turbulent flow at high
Reynolds number. In order to still allow the use of coarser spatial discretizations, it is in [75]
suggested to scale the interior penalty parameter τIP (3.15) of the Poisson problem (3.11) by
a factor of 1/ν∆t. As this scaling factor is not dimensionless, this approach has been slightly
modified by [147] in order to make the approach more general and to assess the stability of the
stabilization technique. The interior penalty parameter is scaled by

τIP,V 1 = τIP
∆tref

∆t
, (3.28)

where ∆tref is a reference time step, which allows the stable computation of the respective exam-
ple.

Numerical experiments carried out by [147] are shown in Figure 3.3 and indicate that the
small-time-step limit is relaxed in comparison to Figure 3.1. All simulations eventually get un-
stable, though. Moreover, it is argued in [147] that the most problematic aspect of this stabiliza-
tion approach lies in the drastic increase of computational cost per time step when small time
step sizes are employed. Assuming that the condition number of the discrete Laplace operator is
proportional to τIP [112], the cost per time step increases as (1/∆t)1/2 when applying an itera-
tive Krylov method to the numerical solution of the pressure Poisson equation (see, e.g., [233]).
Finally, this type of stabilization approach does not consider inter-element mass conservation,
which would have to be included analogous to V3b, V3c or V4.
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Figure 3.3.: Stability experiments for small time steps using V1 and V2 for three spatial dis-
cretizations. Data taken from [147].

3.4.2.2. Variant 2 (V2)

The most straightforward approach to tackle the problematic source term on the right-hand-side
of the pressure Poisson equation given in Equation (3.23), as well as to verify the hypothesis
regarding the small-time-step instability, would be to exploit the condition ∇ · un−i = 0 and
to drop the problematic term entirely. This idea leads to a time integration scheme equivalent to
the method proposed in Leriche and Lambrosse [176] and Leriche et al. [177] for the unsteady
Stokes equations. Regarding the present case of the incompressible Navier–Stokes equations, a
modified scheme has been derived in [147] based on this idea.

The numerical results for this scheme according to [147] are depicted in Figure 3.3 including a
comparison to V1. It may be observed that there is no instability with this scheme for small time
steps and the error perfectly converges to a constant level, where the spatial error is dominant.
The results therefore support the hypothesis that the divergence term on the right-hand side
of the Poisson equation (3.23) causes instabilities in the small-time-step limit [147]. However,
Figure 3.3 also reveals a major drawback of the modified time integration scheme: the L2 error is
generally larger compared to V1 for large time steps, an observation already reported by Leriche
et al. [177]. In further numerical experiments carried out in this work, optimal convergence rates
of order k + 1 in space were not obtained for velocity or pressure. The idea of the schemes by
Leriche and Lambrosse [176] and Leriche et al. [177] has recently been considered by Emamy et
al. [67], who presented similar results. If this scheme would be applied to spatially underresolved
high-Reynolds-number flows, an additional stabilization of velocity discontinuities as included
in V3b, V3c, or V4 would be necessary nonetheless.

3.4.2.3. Variant 3 (V3)

Variant 3a. Steinmoeller et al. [246] propose to postprocess the second intermediate velocity ˆ̂u
to a point-wise exactly divergence-free velocity field as a means to stabilize the method. Despite
the introduction of this idea as an enhancement of the splitting scheme for coarse resolutions
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and high Reynolds numbers in [246], we demonstrate that this approach also stabilizes in the
small-time-step limit.

The postprocessing step applied in [246] appears costly in three space dimensions, however,
since a total of nine different shape functions for each polynomial order of the modal space would
be necessary. Instead of projecting the velocity field onto an exactly divergence-free basis, we
perform this postprocessing in an approximate and very efficient way by including a supplemen-
tary div-div penalty term in the projection step, which is similar to the frequently used grad-div
stabilization in the context of the continuous FEM (see, e.g., [101, 197]) to enhance mass conser-
vation. A similar term is also included in the weak projection by Joshi [129] which is discussed
in V4 and a coupled DG solver presented in [230]. The local projection step becomes

(vh, ˆ̂uh)Ωe + (∇ · vh, τD∇ · ˆ̂uh)Ωe︸ ︷︷ ︸
div-div penalty

= (vh, ûh)Ωe −(vh,
∆t

γ0
∇pn+1

h )Ωe︸ ︷︷ ︸
=b(vh,p

n+1
h )

, (3.29)

where τD is a penalty parameter. It is noted that this represents a consistent modification of
the projection step since it involves the continuity residual ∇ · ˆ̂uh. Further, the velocity field
approaches the point-wise exactly divergence-free one with increasing τD while the simultaneous
degradation of the condition of the matrix system plays a minor role due to the locality of the
problem.

We exploit the similarity of the present penalty term to the grad-div stabilization and define
the penalty parameter according to [197] for equal-order elements as

τD = ζD‖unh‖h∆t, (3.30)

where ‖unh‖ is the norm of the element-wise volume-averaged velocity, h = V (Ωe)
1/3 is a

characteristic element length defined as the cube root of the respective element volume, and
the proportionality parameter ζD may be used to control the final divergence error. We further
note that the factor ∆t is introduced in the parameter, since the projection step is multiplied by
the time step size during derivation. In addition, the viscous contribution considered in [197] is
omitted in this work, as the focus herein lies on convection-dominated flows.

The impact of the proportionality parameter ζD on the small-time-step limit is investigated
in Figure 3.4 with data from [147] by comparing ζD = {0, 1, 10, 100, 1/Cr} using the present
variant V3a. We observe a drastic improvement of the stability behavior of the splitting scheme
for increasing penalty parameters and, in particular, stable results are obtained with ζD = 1/Cr
for all time step sizes considered in this investigation. From this result we draw the conclusion
that the first term on the right-hand side of Equation (3.23), which appears as a source term in
the pressure Poisson equation, is counter-balanced universally by a scaling of ζD with 1/Cr. In
the remainder of this thesis we therefore employ

ζD = ζ∗D/Cr (3.31)

with ζ∗D = 1 if not specified otherwise. Further numerical evidence for these arguments is shown
in Figure 3.5, again with data from [147], where all cases V3a exhibit an ideal behavior for
small time steps. With respect to the different choices of the Courant number in Equations (3.21)
and (3.22), the user-specified Courant number is used, making the implementation independent
of any specific CFL criterion.
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Figure 3.4.: Impact of proportionality parameter ζD included in V3 and V4 on small-time-step
stability. Legend from left to right: ζD = 0, ζD = 1, ζD = 10, ζD = 100, ζD = 1/Cr.
Data taken from [147].
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Figure 3.5.: Stability experiments for small time steps using V3a, V3b, and V3c for three spatial
discretizations. Data taken from [147].

Remark: An interesting interpretation of the grad-div stabilization again in the context of
continuous Galerkin is also given in [197] where the necessity of this term is related to an insuf-
ficient resolution of the pressure field. It is further shown that the grad-div term for continuous
Galerkin may be seen as the subgrid component for the pressure. Although the transfer of this
idea would certainly be illustrative in the context of the current div-div penalty term, we do not
elaborate this concept within this work.

Variant 3b. Since V3a does not contain a measure for controlling the inter-element mass con-
servation according to Section 3.4.1.2, we show in V3b a modification of V3a, which takes this
aspect into account. Steinmoeller et al. [246] and Emamy [66] reformulate the right-hand side
of the Poisson equation (3.11), a(qh, ûh), by integration by parts and consideration of a central
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flux formulation, yielding

a(qh, ûh) = (∇qh,
γ0

∆t
ûh)Ωe − (qh,

γ0

∆t
{{ûh}}ND · nΓ)∂Ωe . (3.32)

This expression may be recast into the strong formulation by integrating by parts once again

a(qh, ûh) = −(qh,
γ0

∆t
∇ · ûh)Ωe + (qh,

γ0

∆t

1
2
[ûh]

ND · nΓ)∂Ωe . (3.33)

While the strong formulation is mathematically equivalent to Equation (3.32), it highlights that
the right-hand side of the Poisson equation now is of the same structure as the continuity error de-
fined in Equation (3.25), considering terms including the velocity divergence and discontinuity.
The additional source term in Equation (3.33) thus results in a modified pressure field that takes
into account mass conservation in between elements, which comes along with a potentially less
smooth pressure field in comparison with the ‘standard’ variant of a(qh, ûh). In the numerical
investigations presented in Figure 3.2 it is found that this definition of a(qh, ûh) indeed improves
mass conservation across element boundaries, compared to the standard formulation V3a, and
results in a constant error level after an initial transient. However, it is observed in data by [147],
shown in Figure 3.5, that this modification of the Poisson equation degrades the stability for
small time steps. This makes a further modification of the projection step necessary, which is
discussed in the following variant V3c.

We note that the formulation of the flux in Equation (3.32) has recently been refined by the
derivation of a fully consistent boundary condition [72] in replacement of the boundary flux
{{ûh}}ND = û−h employed in the present work. In future work, this new boundary condition
should be employed.

Variant 3c. We also consider the partial integration of b(vh, pn+1
h ) of the projection step and

employ a central flux similar to [66]

b(vh, p
n+1
h ) = (∇ · vh,

∆t

γ0
pn+1
h )Ωe − (vh,

∆t

γ0
{{pn+1

h }}NDnΓ)∂Ωe , (3.34)

which increases robustness in our most challenging test cases and yields more accurate results.
We choose the partially integrated version of a(qh, ûh) according to Equation (3.32) and include
a div-div penalty in the projection (3.29). The results presented in Figure 3.5 [147] show that
this definition of b(vh, pn+1

h ) cures the deficiencies observed with V3b for small time step sizes.
Further, mass conservation in Figure 3.2 exhibits even lower error levels compared to V3b both
for the divergence and continuity error.

It is noted that this combination of a(qh, ûh) and b(vh, pn+1
h ) represents a similar formulation

as presented by Cockburn et al. [48] in the framework of a coupled mixed-order DG method. A
supplementary pressure stabilization as proposed by Cockburn et al. [49] for equal-order coupled
DG was not found to be necessary in the context of the present splitting scheme, however.

3.4.2.4. Variant 4 (V4)

A natural approach to handle both instabilities simultaneously is to include a div-div penalty and
a supplementary jump-penalty term controlling both divergence and continuity errors within the
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Figure 3.6.: Stability experiments for small time steps using V4 for three spatial discretizations.
Data taken from [147].

projection (3.17). Joshi et al. [129] have recently proposed a similar idea where these penalty
terms are contained in a postprocessing step for the intermediate velocity ˆ̂uh in order to weakly
enforce the incompressibility condition inside cells and the continuity condition across element
faces. The projection becomes

(vh, ˆ̂uh)Ωe + (∇ · vh, τD∇ · ˆ̂uh)Ωe︸ ︷︷ ︸
div-div penalty

+(vh, τC [ ˆ̂uh]ND)∂Ωe︸ ︷︷ ︸
jump penalty

= (vh, ûh)Ωe + b(vh, p
n+1
h ) (3.35)

with the continuity-penalty parameter τC . We define the latter in analogy to τD as [147]

τC,e = ζC‖unh‖∆t, (3.36)

with ζC = ζ∗C/Cr similar to ζD, ζ∗C = 1 if not specified otherwise. It is noted in [147] that this
penalty parameter assures consistent physical units within the projection in contrast to the choice
in [129]. On internal faces we use the average according to [147]

τC =

{
{{τC,e}} on ∂ΩΓ

e and
τ−C,e on ∂ΩN

e ∪ ∂ΩD
e .

(3.37)

Regarding the right-hand sides a(qh, ûh) and b(vh, pn+1
h ), Preliminary numerical investigations

showed that optimal spatial convergence rates may only be obtained in the test case presented in
Section 3.6.1.2 using the partially integrated versions according to Equations (3.32) and (3.34).
In principle, the approach is also stable with the standard variants given in Equations (3.11)
and (3.17), however. The jump-penalty term included in V4 makes the projection step a more
expensive global equation system compared to the purely local projection used in V3. The pre-
liminary investigations in Figure 3.6 with data by [147] indicate ideal behavior for small time
steps while maintaining low error levels throughout. According to Figure 3.2, conservation of
mass gives a similar behavior as variants V3b and V3c which makes this approach a promising
alternative to V3c despite the additional computational cost.
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3.4.3. Conclusion on Variants 1 to 4
In this section, we have identified small time steps and coarse spatial resolutions as potential
sources of instabilities and discussed a number of remedies. On the one hand, spurious diver-
gence errors are amplified for small time steps leading eventually to an unstable scheme. On
the other hand, pronounced velocity discontinuities in underresolved simulations give rise to an
excessive violation of the continuity equation also leading to instabilities. While the first issue
may be stabilized successfully via a div-div penalty term within the projection, two remedies
exhibit promising characteristics for stabilization of marginally-resolved simulations: We have
obtained a robust and fast computational method by partial integration of the right-hand side of
the Poisson equation and projection, detailed in V3c, while a supplementary jump-penalty term
within the projection step also yields a promising method at slightly higher computational cost
according to V4.

We anticipate at this point that variant V3c is the working-horse for the computation of tur-
bulent flows in this thesis, since it combines all highly desirable aspects of a numerical scheme,
consisting of stability regarding small time steps and spatially underresolved simulations, opti-
mal spatial convergence rates as well as low computational cost, thus most of the turbulent flow
examples shown below are computed with this variant.

The topic of instabilities regarding the dual-splitting scheme in conjunction with high-order
DG discretizations is a topic of active and high-paced research, such that several additional
methods have recently been proposed, for example the approaches by Piatkowski et al. [202] and
Emamy et al. [67]. These methods should be taken into consideration and a critical assessment
has yet to be performed. In addition, the results of the recent analysis of similar continuity and
divergence penalty terms as presented herein may be taken into account [5].

3.4.4. Matrix Formulation
The discussion on the spatial discretization in Sections 3.3 and 3.4 is concluded with the matrix
formulation, which is the basis for the presentation of the solution procedures employed for the
linear systems in the subsequent Section 3.5. The matrix formulation for the convective step
(Equation (3.8)) results in

γ0Û =
J−1∑
i=0

αiU
n−i − ∆tM−1

J−1∑
i=0

βiF
c(Un−i)Un−i + ∆tF (tn+1), (3.38)

with the block-diagonal mass matrix M , the evaluation of the convective term for the corre-
sponding time step F c, the body-force vector F and the respective velocity vectors U . The
matrix form of the pressure Poisson equation (3.11) is given by

LP n+1 =
γ0

∆t
AÛ −LBCGp(t

n+1), (3.39)

with the discrete Laplace operator L, the pressure solution vector P , the respective variant of
the velocity divergence operator A according to a(qh, ûh) in Section 3.4.2, and boundary terms
LBCGp. For the local projection (3.17), we get

(M + τDD + τCC) ˆ̂U =

(
MÛ +

∆t

γ0
BP n+1

)
, (3.40)
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with the block-diagonal div-div penalty operator D only considered in V3 and V4, the jump-
penalty terms C solely included in V4, as well as the discrete pressure gradient BP according
to b(vh, pn+1

h ). Finally, the Helmholtz-like equation of the viscous step reads in matrix form(γ0

∆t
M − F ν

)
Un+1 =

γ0

∆t
M ˆ̂U + F ν

BCGu(t
n+1), (3.41)

with the linearized viscous term F ν and the right-hand-side boundary terms F ν
BCGu.

3.5. Implementation
The solver presented in the previous sections has been implemented using the open-source deal.II
finite element library [9] developed in the C++ programming language. We give an overview of
the cell evaluation routines, solution strategies employed to solve the linear systems and present
a performance evaluation. The discussion on the implementation and solution strategies of linear
systems follows the ideas developed in [71] and [147].

3.5.1. Evaluation and Integration of Cells and Faces via Sum Factorization
The evaluation of cell and face integrals given in the weak forms of the splitting scheme is
implemented using the computational kernels by Kronbichler and Kormann [156–158]. These
kernels provide an efficient implementation of the evaluation of cell and face shape functions of
the form

ph(ξ, t) =
k∑

l,m,n=0

Nk
lmn(ξ)plmn(t), (3.42)

for the pressure, where the shape functions Nk
lmn are given through the tensor product

of one-dimensional polynomials `kl (ξi) in the unit-cell direction i, yielding Nk
lmn(ξ) =

`kl (ξ1)`
k
m(ξ2)`

k
n(ξ3), and plmn is the corresponding DOF. The polynomials considered in this

work, `kl (ξi), are nodal Langrange polynomials on (k + 1) Gauss–Lobatto points in each cell di-
mension. If polynomials of this structure are combined with quadrature rules of a similar tensor-
product structure, the cells may be evaluated using sum-factorization techniques, which aim at
reducing the algorithmic cost of reoccurring terms, an approach that has a long-going tradition
in spectral-element methods [61, 78–81, 180, 198, 201, 251].

The computational kernels by Kronbichler and Kormann [156] within the deal.II library use
several additional techniques, which aim at fast algorithms problem-tailored for current and fu-
ture CPU architectures [158, 159]. One of these techniques is the parallel evaluation of cells and
faces via vector instructions (AVX on Intel processors) on a single CPU core with individual pa-
rameters and geometries each, such that for example four cells or faces are evaluated on current
CPU architectures (Intel Sandy Bridge, Haswell, or Broadwell achitecture), which are used for
most computations presented in this work.

These computational kernels are used for all evaluations of integrals in weak forms, including
matrix vector products. As quadrature formulas, Gaussian quadrature with nq = k+1 quadrature
points per dimension is used for all linear terms, yielding an accuracy of 2k+1. In order to avoid
aliasing effects due to underintegration of the nonlinear terms, nq =

⌊
3k
2

⌋
+ 1 quadrature points

are employed for the convective terms, which yields exact quadrature on affine cells.
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The software toolbox [156, 157] further provides a specialized algorithm for the action of
applying the inverse mass matrix. As the mass matrix does not include coupling between cells,
the matrix is block-diagonal and may be inverted locally. However, as nodal Langrange polyno-
mials on Gauss–Lobatto points in conjunction with Gaussian quadrature are employed, the mass
matrix is nondiagonal. A method has been developed in [161], which applies the inverse mass
matrix by a similar sum factorization technique as the evaluation of the shape functions, and this
inverse mass operator is employed throughout this Chapter.

3.5.2. Matrix-Free Solution of Linear Systems
The linear systems of the pressure Poisson matrix (Equation (3.39)), projection matrix (Equa-
tion (3.40)), and viscous matrix (Equation (3.41)) are all symmetric and solved by preconditioned
conjugate gradient methods (CG). To this end, the traditional solution procedure of first comput-
ing the system matrix and then passing it to the solver, comes along with very high memory
requirements if high polynomial degrees are used. In addition, such codes are usually memory-
bound on modern computer architectures, meaning that the computation time required for the
memory access limits the speed of the overall solution procedure. The approach chosen in this
work is to evaluate all operators in a matrix-free manner by the computational kernels discussed
above [156]. This technique both cuts the memory requirements and outperforms the classical
solution methods using sparse matrices drastically [156].

For the respective equation systems, problem-tailored preconditioning techniques are de-
scribed in the remainder of this section, summarizing the main ideas presented in [71] and [147].

Viscous Solver. The Helmholtz problem is solved using a preconditioner based on the inverse
mass matrix similar to the method applied in [234] and [71]. This preconditioner is particularly
effective in convection-dominated regimes or if the time step is small. Prior to solving the linear
system of the viscous step, the solution is extrapolated from the previous time steps using the
extrapolation formula already employed for the convective term:

Un+1
ext =

J−1∑
i=0

βiU
n−i (3.43)

yielding the extrapolated velocity Un+1
ext , which is used as an initial guess for the iterative solver.

This technique enables low relative solver tolerances while achieving high absolute accuracy.
For turbulent eddy-resolving flow, solver iteration counts lie usually in the range of 3 to 5 to
guarantee a relative accuracy of 10−4.

In the case of the nonsymmetric face terms (s = −1) in Equation (3.18), the matrix is not
symmetric, so a GMRES solver is applied using the same preconditioner.

Poisson Solver. The Poisson problem is solved employing the geometric multigrid algorithm
by Kronbichler and Wall [162]. Therein, a single V-cycle with a polynomial Chebyshev smoother
is used [3]. Besides the matrix diagonal, which is precomputed once during the initial setup, this
preconditioner only requires the action of the Poisson operator, which is evaluated in a matrix-
free manner using the fast sum factorization kernels. As a coarse-level solver, the Chebyshev
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iteration is used as well and the number of matrix-vector applications is chosen such that the
usual Chebyshev error estimator reaches a tolerance of 10−3 [254] in the standard setting. The
latter value is increased to 10−2 for the periodic hill problem, as this modification does not result
in more solver iterations for this example while saving a few percent of computation time. In
the geometric multigrid approach, the mesh is coarsened up to one single cell in the case of the
turbulent channel flow and up to two cells in the periodic hill flow example in Chapter 4 using the
mesh hierarchy management tools provided by the p4est library [37]. Analogous to the viscous
solver, the pressure solution is extrapolated to the new time step according to

P n+1
ext =

J−1∑
i=0

βiP
n−i, (3.44)

which is used as an initial guess for the Poisson solver, in order to yield high absolute accuracy
despite of moderate relative solver tolerances of usually 10−4. This setup yields approximately
9 to 12 solver iterations in turbulent eddy resolving flow with moderate mesh stretching, but
may increase up to approximately 30 solver iterations in meshes with high aspect ratio. In the
case of pure Dirichlet and periodic boundary conditions, pure Neumann boundary conditions are
applied on the pressure Poisson problem, which renders the equation system under determined.
This issue can be solved by a projection onto the subspace with zero mean [25], see also [147]
for details.

Projection Solver. The local projection in the variants VHW, V1, and V2 may be solved by
simply applying the inverse mass operator. If a div-div or jump penalty term is included accord-
ing to V3, an iterative solution procedure is applied. To this end, the div-div penalty projection is
a local problem, as the cells are decoupled, so each cell can be solved independently and a local
CG solver is considered. As a preconditioner, the inverse mass matrix is employed. This iterative
solution procedure is approximately one to two orders of magnitude faster for computing the lo-
cal projection with div-div penalty in comparison to a direct solver consisting of a matrix-based
LU-factorization approach.

If the jump-penalty term is included in addition in V4, the cells are no longer decoupled and the
projection becomes a global equation system, which is solved using a CG method preconditioned
with an inverse mass operator as well.

3.5.3. Performance Evaluation
In order to benchmark the parallel scaling properties of the code, a strong scaling experiment
is performed using the largest turbulent channel flow example considered in Section 4.2. Since
V3c will be considered almost exclusively in the remainder of this work, the scaling experiments
focus on this variant. The spatial discretization consists of a boundary-refined grid of 643 ele-
ments of fourth degree (k = 4), i.e., 33 million node points and 131 million DOFs overall (see
Section 4.2 for further details). The highest aspect ratio of ∆x+/∆y+ = 12.3 is reached at the
cells closest to the boundary. Periodic boundary conditions are applied in streamwise and span-
wise direction, respectively, and no-slip boundary conditions at the top and bottom walls. As an
initial condition, a velocity profile of a polynomial of degree six is prescribed, which fulfills the
boundary conditions. It approximately resembles the final mass flux and is heavily disturbed in
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Figure 3.7.: Wall time Twall per time step showing strong scaling of the finest turbulent channel
flow DNS presented in Section 4.2 up to 32,768 CPU cores.

streamwise and spanwise direction in order to trigger transition to a fully turbulent flow. The
timings are averaged over the first 500 time steps of the simulation since the number of solver
iterations is approximately constant over the whole simulation time. The scaling experiments
are performed on the SuperMUC Phase 1 system (9,216 nodes of dual-socket, eight-core Intel
Sandy Bridge processors at 2.7 GHz each) in Garching, Germany. Figure 3.7 shows the results
of the strong scaling tests from 64 and up to 32,768 processor cores for all substeps. Almost
ideal scaling is achieved up to 2,048 cores and the scalability saturates at 32,768 cores and 0.05s
wall clock time per time step. At 32,768 cores, each processor holds only 8 elements. Due to
the vectorized processing of all element evaluations, four elements are evaluated simultaneously
in double precision and eight elements in single precision within the pressure Poisson multigrid
algorithm. Therefore, no substantial further speed-up of this example is expected beyond 32,768
cores, as all pressure multigrid levels are already latency-bound, except for the finest level.

In order to investigate the algorithm with regard to larger simulation scales and processor
counts, the test case is simplified to laminar channel flow using the same boundary conditions at
Reτ = 80. A uniform mesh in a box of 2×2×2 units and Cr = 1 is employed. Figure 3.8 shows
the results of weak and strong scaling experiments for variant V3c using the spatial polynomial
degrees k = 3 and k = 5 up to 147,456 CPU cores again on Phase 1 of SuperMUC. The scaling
of all solver components observed in Figure 3.8 is excellent. Further, a comparison of the weak
scaling plots in Figure 3.8 reveals that the computation time per DOF and time step is essentially
independent of the polynomial degree, making the use of high orders very attractive for example
for laminar flows and the DNS of turbulent flows.

Regarding the weak scaling graphs in Figure 3.8, it is observed that the time spent in the
local projection solver even decreases with increasing problem size. This behavior is due to the
fact that the same flow is used in all computations and that the resolution of this flow increases
substantially when going to large processor counts in the weak scaling. As a consequence of this
high resolution, the velocity field is highly resolved and divergence-free, so a penalization of the
divergence error is not necessary.
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Figure 3.8.: Wall time Twall per time step showing weak (left) and strong (right) scaling up to
147,456 CPU cores for third (top) and fifth (bottom) polynomial degree.

3.6. Verification

We verify the code described above and compare the two variants V3c and V4 which emanated
as the most promising ones from the discussion in Section 3.4 in the following. We commence
in Section 3.6.1 by proving optimal convergence rates in time (Subsection 3.6.1.1) and space
(Subsection 3.6.1.2) for velocity and pressure using the vortex problem already investigated in
Section 3.4. We also discuss the efficiency of our code for laminar flows regarding the optimal
use of high polynomial orders in Subsection 3.6.1.3 in the context of this example. A further
test case is presented in Section 3.6.2 consisting of an unsteady laminar flow past a cylinder that
demonstrates the geometrical flexibility of the present approach. Several additional verification
examples are shown in [71]. While the examples in this section employ the 2D implementation
of the code, we discuss application to large-scale simulations of 3D turbulent channel flow in
Chapter 4.
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Figure 3.9.: Temporal convergence of V3c and V4 using J = Jp = 1 (BDF1), J = Jp = 2
(BDF2) and J = Jp = 3 (BDF3).

3.6.1. Vortex Problem
Let us consider a laminar vortex problem according to [112] as implemented in [71] with the
analytical solution for velocity and pressure given as

u(x, t) =

(
− sin (2πx2)
+ sin (2πx1)

)
exp

(
−4νπ2t

)
and (3.45)

p(x, t) = − cos (2πx1) cos (2πx2) exp
(
−8νπ2t

)
, (3.46)

defined in the domain [−0.5, 0.5]× [−0.5, 0.5] with respective Dirichlet boundary conditions on
the inflow and exact Neumann boundary conditions given as gp and h on the outflow boundaries
(see [112] for details). We choose a viscosity of ν = 0.025, the simulation time as T = 1 and
define the Courant number according to Equation (3.21) with the maximum velocity U = 1.4.
The relative L2 error is computed at t = T and is defined as

‖ u(x, t = T )− uh(x, t = T )‖Ωh

‖u(x, t = T )‖
Ωh

(3.47)

for the velocity and
‖ p(x, t = T )− ph(x, t = T )‖Ωh

‖p(x, t = T )‖
Ωh

(3.48)

for the pressure.

3.6.1.1. Temporal Convergence

Simulations are performed for this example in order to investigate the convergence for the tem-
poral orders of accuracy J = Jp = {1, 2, 3} in addition to the computations shown in Section 3.4
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3. A High-Order Incompressible Semi-Explicit Discontinuous Galerkin Solver

using J = Jp = 1. The time step is chosen using criterion (3.21) starting from Cr = 2 by suc-
cessive bisection down to Cr = 0.0039 for all cases. We have observed that the present scheme
allows computations with Courant numbers beyond the common limit of Cr = 1 for this flow and
that there is no major difference in stability limits comparing the second and third order method,
which is in contrast to the conditional stability for J = 3 reported in [177], since the flow oper-
ates near the limit of viscous dominance. The spatial discretization uses Ne = 82 elements and a
polynomial degree of k = 7. The results presented in Figure 3.9 are labeled accordingly through
the temporal scheme BDF1 for J = Jp = 1, BDF2 for J = Jp = 2, BDF3 for J = Jp = 3 as
well as the respective variant V3c and V4.

The results in Figure 3.9 show optimal convergence rates for the respective order until the
spatial error becomes predominant. There is essentially no difference between the variants V3c
and V4. Please note that earlier studies frequently present the current splitting scheme with mixed
temporal orders, e.g., J = 2 and Jp = 1, for which the temporal accuracy according to [106,
177] is at most second order for the velocity and order 3/2 for the pressure. By choosing J =
Jp we get optimal convergence rates for both velocity and pressure at virtually no additional
computational cost.

3.6.1.2. Spatial Convergence

We proceed with an investigation of the spatial convergence using the same example. Grid re-
finement studies are performed for the polynomial degrees k = {1, 2, 3, 4, 5, 6, 7} considering
both V3c and V4 with the time step chosen according to the CFL condition (3.21) as Cr = 0.0625
and J = Jp = 3. This way, the spatial error is dominant.

It may be observed in Figure 3.10 that optimal convergence rates of order k+1 are obtained for
the velocity and pressure in all cases. The error is not distinguishable between the two variants
V3c and V4.

3.6.1.3. Performance Evaluation

Which polynomial degree yields the most efficient algorithm for laminar flows? In order to pro-
vide a first answer to this question, Figure 3.11 shows the error of the vortex problem according
to Figure 3.10 for k ≥ 1 over the wall time of the simulations Twall. All simulations have been
conducted in serial on the same computational setup, meaning that the wall time may be inter-
preted as the computational cost. The graph illustrates that increasing polynomial orders result
in a steeper slope, i.e., the error decreases more rapidly if larger computational effort is invested.
The expected slope of these curves of order O(T−(k+1)/(d+1)

wall ) (with d = 2 for this example) is
obtained by considering a decrease of the error with hk+1 and an increase in computation time
with Twall ∼ h−(d+1) due to the number of elements to be evaluated on the one hand as well as
the CFL condition on the other hand. The curves depicted in Figure 3.11 show very good agree-
ment with this slope starting from the fourth refinement level, which confirms the optimality of
the code for high refinement levels. The cause of the discrepancy regarding the coarser meshes
is the efficiency of the particular multigrid algorithm, which results in decreased performance
for a small number of refinement levels compared to finer meshes [147].

We conclude from this investigation that high-order methods are very efficient if high preci-
sion is required while lower polynomial degrees may be advantageous if a fast time to solution
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Figure 3.10.: Spatial convergence for several polynomial degrees k{1, 2, 3, 4, 5, 6, 7}.
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Figure 3.11.: Computational cost in terms of the wall time of a serial computation Twall for the
vortex problem using several polynomial orders k{2, 3, 4, 5, 6, 7}.

at reduced accuracy is desired. Please note that this discussion only presents a rough estimation
since we do not tune the Courant number or the relative error tolerances of the linear solvers
for these cases, which would result in lower computation times for moderate precision and low
polynomial degrees. Moreover, these conclusions might change in the advection-dominated case,
which is dominated by cumulative dispersion errors. Considering high accuracies it is yet the
slope that is more relevant than the absolute wall time. Further, computation times of variant V4
are slightly elevated in comparison to V3c due to the global character of the projection equation
system.
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mesh, coarsest level

velocity magnitude

vorticity

pressure

Figure 3.12.: Flow past cylinder from top to bottom: coarsest mesh level, velocity magnitude,
vorticity and pressure snapshot at time t = 5.5. The latter three have been com-
puted with the finest mesh including k = 6 and V3c. Red indicates high and blue
low values.

3.6.2. Laminar Flow past Cylinder
As a second laminar benchmark we investigate unsteady vortex shedding in the wake of a cylin-
der presented as test case 2D-3 in [225] with accurate reference data provided in [128] consider-
ing the implementation of this flow in INDEXA according to [71]. The domain is of dimensions
W × H in streamwise and vertical direction, respectively, with W = 2.2 and H = 0.41. The
cylinder is of diameter 0.1 and its center point is located at 0.2 units from the inflow as well as
the bottom walls. At the inflow boundary, the velocity is prescribed by

gu1(x2, t) = U
4x2(H − x2)

H2 sin(πt/T ) (3.49)

with U = 1.5 and the simulation time T = 8. At the top and bottom wall as well as the
cylinder surface, no-slip boundary conditions are applied. At the outlet, zero pressure boundary
conditions are applied with gp = 0 and h = 0. The resulting flow exhibits unsteady vortex
shedding behind the cylinder as illustrated in Figure 3.12 at the time instant t = 5.5.

We perform simulations for the spatial polynomial degrees k = {4, 5, 6, 7} and present three
levels of refinement for each polynomial degree. The approximation of the cylindrical geometry
is enhanced by mapping the boundary nodes onto the cylinder surface using an iso-parametric
mapping through facilities provided in the deal.II library [9], which yields an accurate repre-
sentation of the geometry for high-order polynomials. A similar mapping technique based on
commercial preprocessor tools has been presented in [114]. The resulting mesh of the coarsest
level is displayed in Figure 3.12. The third-order accurate time integration scheme is chosen with
J = Jp = 3 and a Courant number of Cr = 0.25 based on U and the minimum edge length of
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Table 3.4.: Flow past cylinder cases, resolutions and results: Number of grid points N , maxi-
mum drag coefficient cDmax, maximum lift coefficient cLmax, and pressure difference
between windward and lee side of cylinder at end of simulation ∆pend.

V3c V4
k N cDmax cLmax ∆pend cDmax cLmax ∆pend

4
3,400 2.767868 0.437474 -0.108995 2.767668 0.414535 -0.108205
13,600 2.963629 0.487026 -0.111627 2.969142 0.488884 -0.111537
54,400 2.950792 0.478365 -0.111654 2.950868 0.478380 -0.111638

5
4,896 2.958448 0.512599 -0.109378 2.965825 0.512767 -0.109407
19,584 2.951065 0.480343 -0.111616 2.951639 0.480529 -0.111599
78,336 2.950454 0.477967 -0.111618 2.950385 0.477948 -0.111618

6
6,664 2.964686 0.504783 -0.111059 2.968793 0.507933 -0.110952
26,656 2.949137 0.478317 -0.111614 2.948920 0.478338 -0.111617
106,624 2.950829 0.477940 -0.111615 2.950826 0.477921 -0.111615

7
8,704 2.949849 0.487586 -0.111414 2.949785 0.487317 -0.111382
34,816 2.950198 0.477948 -0.111615 2.950064 0.477944 -0.111614
139,264 2.950927 0.477941 -0.111615 2.950922 0.477920 -0.111616

2 ∼200,000 [128] 2.95092 0.47795 -0.1116 2.95092 0.47795 -0.1116
lower bound [225] 2.9300 0.4700 -0.1150 2.9300 0.4700 -0.1150
upper bound [225] 2.9700 0.4900 -0.1050 2.9700 0.4900 -0.1050

the respective mesh hmin, and we use the CFL condition with constant time stepping according to
Equation (3.21). The relative solver tolerances are chosen as 10−6 for the Poisson and Helmholtz
solver and 10−9 for the projection solver. The solution quality is evaluated according to [225]
by the maximum value of the drag and lift coefficients cDmax and cLmax over time as well as the
pressure difference between the windward and the lee side of the cylinder at the end of the simu-
lation, denoted ∆pend = ∆p(t = T ). A detailed description of how these quantities are computed
is given in [128, 225].

The results of the present simulations are displayed in Table 3.4 along with reference data
by [128], where cDmax is of absolute accuracy 5 · 10−7 and cLmax as well as ∆pend are of accuracy
10−4. In addition, upper and lower bounds for all three quantities as presented in [225] are also
included.

The results exhibit excellent agreement with the reference data. Especially the pressure dif-
ference is already predicted with the same accuracy as the reference data for 13,600 grid points
with V3c and reaches two additional digits in precision during refinement. The drag coefficient
also converges to the reference data yielding an accuracy of at least five digits and an excellent
agreement between V3c and V4. The lift coefficient converges to 0.4779 using V3c and V4 which
is in excellent agreement with reference value given as 0.47795, where the error was specified
to be no larger than 10−4.
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3.7. Summary
In this chapter, we have developed a stable, accurate and efficient numerical scheme for the sim-
ulation of the incompressible Navier–Stokes equations by reviewing, comparing and extending
stabilization techniques proposed in the literature. The best stabilization for small time steps
is based on a div-div penalty approach that enhances the point-wise divergence-free condition
within elements. Underresolved flows have been stabilized by the partial integration of the right-
hand side of the Poisson equation and optionally a supplementary jump-penalty term within the
projection. The resulting algorithm exhibits convergence orders equal to polynomial degree plus
one in space and three in time both in velocity and pressure and is embedded in a matrix-free
implementation.

The high efficiency of this implementation for high polynomial degrees was demonstrated by
two laminar flow examples present in a vortex problem and flow past a cylinder. This character-
istic makes the present methodology also very attractive for an application to DNS and LES of
turbulent flows, which is the topic of the next chapter.

Finally, the solver presented in this chapter paves the way for several extensions as part of
this thesis: In Chapter 5, an extension of the scheme towards the RANS equations using the
SA model is presented. This method is also applied to DES. The primary topic of this work,
wall modeling via function enrichment, is also implemented as an extension of this solver in
Chapters 8 to 10.
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Application to DNS and LES of Turbulent Flow

We demonstrate the applicability of the code presented in the previous chapter to DNS and LES
of turbulent flow. DNS is the most accurate approach to computing turbulent flows, since all
turbulent scales are resolved by the numerical method, see Section 2.3.1. As discussed in the
first subsection, the current DG method is very attractive for computing DNS due to its high-
order capability, in addition to its speed and high scalability on massively parallel computers.
DNS is yet out of reach in the foreseeable future regarding most industrial applications in the
moderate to large Reynolds number regime, which is why we show that the present approach is
also very well suitable for implicit LES.

Two benchmark flows are considered, turbulent channel flow (Section 4.2) and flow over pe-
riodic hills (Section 4.3), which cover all relevant flow phenomena. Turbulent channel flow pro-
vides insight into the performance of the numerical scheme in attached boundary layers, while
the periodic hill flow shows a number of complex flow conditions such as flow separation and
high pressure gradients. Both configurations will be extensively used in the remainder of this
thesis to assess CFD models and discretization schemes. Due to the lack of accurate reference
data in the literature for the periodic hill flow, we make use of the DNS capabilities of the method
and compute this flow with very high resolution in order to provide a new set of reference data
at two Reynolds numbers. The research presented in this chapter was previously published in
Krank et al. [147, 149].

4.1. DNS and Implicit LES using High-Order DG Methods
We comment on the characteristics of the present DG approach regarding DNS and the potential
of ILES for underresolved computations of turbulent flow.

4.1.1. Resolution Power for DNS
DG codes have been used for DNS of several flows, for example in [8, 15, 115, 147, 149, 178,
263] and of a weakly turbulent flow in [54]. It is frequently argued that high-order (spectral) DG
methods are particularly suited for DNS, and these arguments are detailed in the following. The
basic characteristics of high-order DG methods have recently been investigated via dispersion-
diffusion analysis, for example by Gassner and Kopriva [96] and Moura et al. [188, 189], with
regard to their applicability to turbulent flows. Although the latter study investigates full upwind-
ing DG methods and the local Lax–Friedrichs flux may be less dissipative, the key findings are
still relevant for the present numerical method:

• The smallest resolvable scales, i.e., the grid filter size, may be approximated as he/(k+1)
with a characteristic cell size he.
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• Higher order DG schemes exhibit much lower dispersion and dissipation errors than lower
order methods and maintain this characteristic over a broader wave number range. Thus,
higher order methods can resolve turbulent scales until close to the filter size.

• Scales just marginally larger than the filter size are damped more significantly with in-
creasing degree.

Based on the dispersion-diffusion analysis, [188, 189] introduced a measure for the efficiency
of a numerical scheme, the 1% rule, which specifies the minimum number of grid points per wave
length in which the amplitude of a scale is dissipated by less than 1% while being convected by
a distance of he/(k + 1). As an example, a second-order DG scheme (k = 1) would require
8.2 nodes per wave length (in 3D [188]), whereas 3.4 nodes would suffice for a scheme of 6th

order accuracy, 3.2 nodes for a scheme of 7th order accuracy, and 3.1 nodes for a scheme of
8th order accuracy. This analysis allows the conclusion that a DG scheme introduces almost
zero numerical dissipation if all scales are larger than the limit defined by the 1% rule, and
that high polynomial orders are much more efficient in order to achieve this goal. In practice,
there are several other techniques required, which make the use of such high degrees possible.
In particular, a matrix-free solution procedure of linear systems is necessary, as the computation
of system matrices would be very expensive and sparse matrix-based linear solvers are slow for
high polynomial degrees (see Section 3.5). In addition, the number of solver iterations of the
iterative solver should be constant with respect to the polynomial degree, which is the case for
the solvers used herein. The limiting factors regarding high polynomials are the decreasing time
step size due to the CFL condition as∼ k−1.5 (see Section 3.3.3), the increase in solution time of
the linear system as a result of an increased communication cost in parallel, and a saturation of
the resolution power for even higher polynomial degrees. We argue therefore, that the polynomial
degrees k = 5 to 7 are particularly efficient for DNS using the present method. As an alternative,
fully explicit codes may be used for the compressible Navier–Stokes equations [115], which do
not require the solution of linear systems, but their time step is additionally restricted by the
viscous term and the speed of sound in nearly incompressible schemes, see Section 3.1.1.

4.1.2. Application to LES
The high-order accuracy present in DG methods is also efficient for LES. The low dissipation
and dispersion errors allow a resolution of turbulent scales with relatively few DOFs, such that
coarser meshes may be used in comparison to low-order methods. The low dispersion errors are
particularly relevant for LES, since eddies close to the resolution limit can be convected over
large distances with high accuracy. A typical application for such a requirement would be a
formula one car, where vortical structures are generated by the front wing and the front wheels,
which interact with other parts of the car at a downstream location. High-order methods would
provide a higher accuracy for the intermediate distance between these two areas of interest.
Furthermore, a faster damping of the poorly-resolved scales quickly removes them from the
velocity field, preventing “them from polluting the numerical solution” [189].

This numerical dissipation is also the basis for the implicit LES (ILES)-paradigm. In ILES,
the idea is that the numerical dissipation necessary to stabilize the scheme in underresolved
flows is in fact appropriate to model the unresolved subgrid scales. This method will be assessed
with the present numerical method in the remainder of this chapter. In addition, high-order DG
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Table 4.1.: Comparison of y+ criteria for the assessment of near-wall resolution.
degree k 1/k 1/(k + 1) ∆y1,GL/∆ye

1 1 0.5 1
2 0.5 0.3333 0.5
3 0.3333 0.25 0.2764
4 0.25 0.2 0.1727
5 0.2 0.1667 0.1175
6 0.1667 0.1429 0.0849
7 0.1429 0.125 0.0641

schemes have been extensively used for ILES, see for example [15, 19, 20, 28, 62, 147, 149,
178, 262, 264], and [117] for a rigorous derivation in the variational context. While ILES is used
for most LES-type simulations in this thesis, an eddy-viscosity subgrid model will be considered
in the context of DES in Chapters 5 and 9 and other eddy-viscosity subgrid models have been
investigated in conjunction with high-order DG in the literature, e.g., the WALE model in [178].

4.1.3. Criteria for Assessing the Near-Wall Resolution
With regard to the assessment of resolution, we discuss one particular aspect in detail, which is
relevant for all turbulent wall-bounded simulations presented herein. Near no-slip boundaries, a
requirement is in all numerical schemes that the first grid point should be located near y+1 ∼ 1 in
order to capture the velocity gradient in the laminar sublayer. Regarding higher order elements,
several interpretations of this requirement are possible. The above discussion on the resolution
power suggested that the smallest resolvable scales may be approximated by ∆ye/(k + 1) with
the wall-normal element size ∆ye. As the boundary nodes of two neighboring cells lie at the same
location, one may also consider the factor of ∆ye/k appropriate; see, e.g., [267]. Going back to
the original requirement that the first off-wall node should be considered, the best consistent way
of applying the y+ criterion would be to determine the location of the first off-wall node inside
the cells, ∆y1,GL, which is given through the Gauss–Lobatto nodes in this case. These criteria are
compared in Table 4.1 for the polynomial degrees one to seven. It is noted that the criterion using
the Gauss–Lobatto points yields a strong variation with the polynomial degree, which mirrors the
higher resolution power of higher order polynomials. This criterion is considered as best compa-
rable to the classical requirement of y+1 ∼ 1 and is therefore primarily used in the remainder of
this work. As an alternative, one may also determine the width of an entire cell required to cap-
ture the near-wall gradient and the turbulent motions through numerical experiments, and apply
that criterion. Regarding the assessment of the wall-parallel solution, the factor 1/(k+ 1) seems
to be most relevant, as it is in line with the findings within the dispersion-diffusion analysis cited
above.

4.2. Turbulent Channel Flow
We begin with the presentation of the DNS results in Section 4.2.1 and discuss the application
to ILES in Section 4.2.2.
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Table 4.2.: Channel flow cases and resolutions. Specification of the first off-wall node through
y+1,GL = y1,GLuτ/ν and all other mesh quantities ∆(·)+ = ∆(·)euτ/ν(k + 1) is given
as the respective element length ∆(·)e divided by the number of nodes in each spatial
direction per element k + 1 where k is the polynomial degree. ∆x+: resolution in
x1-direction; ∆y+1,GL: first off-wall point in x2-direction; ∆y+c : resolution at center in
x2-direction; ∆z+: resolution in x3-direction.

Case N 3
e k N Cr Reτ γ ∆x+ ∆y+1,GL ∆y+c ∆z+

ch180 N323 k5 V 3c dns 323 5 7.1M 1 180 1.4 11.8 0.76 3.0 3.9
ch590 N643 k4 V 3c dns 643 4 32.8M 0.8 590 1.65 11.6 0.81 6.5 5.8
ch180 N83 k3 V 3c les 83 3 0.03M 1 180 1.8 35.3 3.9 20.1 17.7
ch180 N163 k3 V {3c, 4} les 163 3 0.26M 1 180 1.8 17.7 1.5 10.5 8.8
ch180 N323 k3 V 3c les 323 3 2.1M 1 180 1.8 8.8 0.69 5.3 4.4
ch590 N163 k4 V {3c, 4} les 163 4 0.51M 1 590 2.25 46.3 1.7 33.1 23.2
ch590 N323 k4 V 3c les 323 4 4.1M 1 590 2.25 23.2 0.73 16.9 11.6

4.2.1. Direct Numerical Simulation

There is a vast number of publications in the field of DNS of turbulent channel flow providing
accurate reference data for turbulence modeling research as well as the validation of numerical
schemes, see for example Moser et al. [187] for friction Reynolds numbers Reτ = 180, 395,
and 590 and an overview of publications on DNS of the case Reτ = 180 by Vreman [256].
Herein, Reτ is defined as Reτ = uτδ/ν with the given channel-half height δ and friction velocity
uτ =

√
τw/ρ, where τw is the wall shear stress. In the present work, we perform DNS of turbulent

channel flow at Reτ = 180 and 590. Computational domain sizes for these flows are specified
in [187] as 4πδ×2δ×4

3πδ in streamwise, wall-normal, and spanwise direction, respectively, for
the case Reτ = 180 and 2πδ×2δ×πδ for the case Reτ = 590 accordingly. Periodic boundary
conditions are considered in the streamwise and spanwise directions and no-slip boundary con-
ditions are imposed at the walls. The mesh is graded towards the no-slip boundaries to improve
the resolution of near-wall turbulent structures according to the hyperbolic mesh mapping given
as f : [0, 1]→ [−δ, δ]:

x2 7→ f(x2) = δ
tanh(γ(2x2 − 1))

tanh(γ)
(4.1)

using the mesh-stretching parameter γ according to Table 4.2. The spatial discretizations em-
ployed are similar in resolution as the simulations presented in [187] and are listed in Table 4.2.
For the case Reτ = 180, 32×32×32 elements of degree 5 are used, resulting in 7.1 million nodes
and 28.3 million DOFs overall, which is slightly finer than in [187] with 128×129×128 Fourier
modes in the periodic directions as well as Chebyshev nodes in the wall-normal direction and
2.1 million nodes. Regarding Reτ = 590, a mesh of 64×64×64 elements of degree 4 with 32.8
million nodes (131 million DOFs) is used again compared to a mesh of 384×257×384 (37.9
million nodes) in [187]. The time step of the BDF3 scheme (J = Jp = 3) is chosen based on the
CFL condition using constant time stepping (Equation (3.21)) according to ∆t = Cr hmin/Uk

2

where we take Cr = 1 for Reτ = 180 and Cr = 0.8 for Reτ = 590, hmin as the minimum
edge length and U = 15uτ representing the estimated maximum velocity occurring in the cells
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velocity magnitude

Q-criterion

Figure 4.1.: DNS of turbulent channel flow at Reτ = 590: Contour of velocity magnitude (top)
and eddies visualized via the Q-criterion, colored by velocity magnitude (bottom).
High velocity is colored red and low velocity blue.

with the shortest edge length, which are located at the no-slip boundaries. Statistics are sampled
spatially over homogeneous planes and temporally over approximately 30 flow-through times
based on the mean center-line velocity for the case Reτ = 180 and 68 flow-through times for
Reτ = 590. The nominal simulation parameters are chosen as uτ = τw = ρ = δ = 1, resulting
in ν = 1/Reτ for the viscosity, and the results are normalized with the numerical value of τw.
The flow is driven by a body force, which may be determined through equilibrium of forces
to f1 = 1. Our numerical investigations have shown that relative solver tolerances of 10−4 for
the Poisson solver, 10−6 for the local projection solver, and 10−4 for the Helmholtz solver are
sufficient and may even be relaxed by one magnitude regarding the Poisson solver. For the DNS
computations, we solely consider the variant V3c.

The resulting turbulent flow is depicted in Figure 4.1 for the case Reτ = 590 via velocity
contours as well as the Q-criterion for eddy visualization of one snapshot. The cases are labeled
according to Table 4.2 and the results are plotted over the wall coordinate y+ = yuτ/ν and
x2/δ, respectively, in Figure 4.2. Herein, the normalized mean velocity is defined as u+ = u1/uτ
and fluctuations in form of the root-mean-square (RMS) velocities as u′+ = RMS(u1)/uτ , v′+ =
RMS(u2)/uτ , andw′+ = RMS(u3)/uτ as well as the Reynolds shear stresses (RSS) as (u′v′)+ =
(u1u2)/u

2
τ . The curves exhibit excellent agreement with the reference data from [187] labeled

DNS MKM99. The marginal underprediction of the mean velocity in the center of the channel
may possibly be due to a too coarse mesh in that region.

4.2.2. Implicit Large-Eddy Simulation

We consider the same benchmark example for the assessment of the scheme regarding ILES.
We employ a setup similar to the previous subsection with a domain size of 2πδ×2δ×πδ for all
computations. All cases considered are listed in Table 4.2 and include three refinement levels for
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Figure 4.2.: DNS of turbulent channel flow at Reτ = 180 and 590: Mean velocity u+ = u1/uτ
(top) and RMS velocities u′+ = RMS(u1)/uτ , v′+ = RMS(u2)/uτ , and w′+ =
RMS(u3)/uτ as well as RSS (u′v′)+ = (u1u2)/u

2
τ (bottom). For the case Reτ =

590, the mean velocity is shifted upwards by six units and all other quantities by one
unit for clarity.
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Figure 4.3.: ILES of turbulent channel flow at Reτ = 180 and 590: Mean velocity u+ = u1/uτ
(top) and RMS velocities u′+ = RMS(u1)/uτ , v′+ = RMS(u2)/uτ , and w′+ =
RMS(u3)/uτ as well as RSS (u′v′)+ = (u1u2)/u

2
τ (bottom). For the case Reτ =

590, the mean velocity is shifted upwards by six units and all other quantities by one
unit for clarity.
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the case Reτ = 180 and two refinement levels for Reτ = 590. All cases are computed with the
variant V3c and two representative cases are shown employing variant V4 (see Section 3.4.2),
which are labeled accordingly.

The results of all ILES cases listed in Table 4.2 are depicted in Figure 4.3 along with the DNS
data from [187]. Regarding variant V3c, an excellent agreement with the reference solutions is
observed and the coarsening of the discretizations has very little effect on the solution quality.
The mean velocity of the cases V4 is very similar to variant V3c.

A comparison of computation times yields an elevated computational cost of
the case ch180 N163 k3 V 4 les by a multiplicative factor of 2.2 in comparison
to ch180 N163 k3 V 3c les using the same computational setup. Analogously, the
case ch590 N163 k4 V 4 les also completes in 2.2 times the computational cost of
ch590 N163 k4 V 3c les. These differences are largely due to the global equation system
introduced in the projection step in V4. It is therefore concluded from these investigations that
V3c is the most efficient variant discussed in the present work for simulation of turbulent flows,
both for DNS and ILES, as it combines high accuracy with short computation times. Therefore,
this variant is considered in the remainder of this thesis.

4.3. Flow over Periodic Hills

We proceed with an application of the present solver to DNS and ILES of flow over periodic
hills according to, e.g., Temmerman et al. [249] and Fröhlich et al. [93]. This example has in
recent years become one of the most widely used test cases for the validation and assessment of
CFD codes and turbulence models. Its popularity lies in its simplicity regarding simulation setup
and boundary conditions on the one hand and complexity with respect to flow phenomena and
turbulence modeling on the other hand. The flow configuration consists of streamwise periodi-
cally arranged smoothly curved hills at the lower wall, a plane boundary at the upper wall, and
periodic boundary conditions in spanwise direction, so the setup is quite similar to the turbulent
channel flow presented in the previous section. A major advantage of this setup is the periodicity
in streamwise direction, which does not require the definition of synthetic inflow conditions, and
therefore simplifies the reproducibility of the results. The developed turbulent flow is depicted in
Figure 4.4 and shows several challenging and highly relevant flow conditions, which make this
example particularly interesting as a benchmark case, such as: separation from a curved surface,
recirculation in the wake of the hill, a sharp shear layer, strong pressure gradients, and flow reat-
tachment. The flow was used as a test case, e.g., for wall-resolved LES [13, 19, 28, 62, 159, 178]
and wall models [13]. In the context of RANS and hybrid RANS/LES, this flow was analyzed
rigorously within the European initiative ‘Advanced Turbulence Simulation for Aerodynamic
Application Challenges’ (ATAAC), of which the final report by Jakirlić is available at [210]. In
the subsequent chapters, this flow is used to assess several modeling approaches, such as RANS
and DES (Chapter 5), and wall models (Chapters 7 to 10).

The first results of ILES for the periodic hill flow at a Reynolds number of ReH = 10,595 were
presented in [160] using this scheme and the computations presented in the following sections
were published in [149].
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x1

x2

x3

H

Figure 4.4.: Visualization of the turbulent flow structures at ReH = 10,595 via iso-surfaces of the
Q-criterion colored by velocity magnitude. Red indicates high and blue low velocity.

4.3.1. Previous Reference Data

Several reference databases exist for this flow and an overview is given in Tables 4.3 and 4.4
for two Reynolds numbers. The flow has been investigated numerically via LES by Fröhlich et
al. [93] at a Reynolds number ReH = Hub/ν = 10,595, based on the hill height H and bulk
velocity above the hill ub. The width of the domain in spanwise direction was studied and a
value of 4.5H was found sufficient, which has since been used in most studies. As a numerical
scheme, two independent second order accurate finite volume methods were used and the upper
wall was modeled by a wall function. In Table 4.4, these cases are labeled as FMRTL R1 and
R2, respectively, corresponding to RUN1 and RUN2 in [93]. The reference database has been
complemented by Breuer et al. [32], who performed simulations over a wide range of Reynolds
numbers, starting from ReH = 700 and up to ReH = 10,595. Again, second order accurate finite
volume schemes were used and the simulations are fully resolved (DNS) up to ReH = 5,600
and well-resolved (LES) at ReH = 10,595. These cases are referred to as BPRM (DNS/LES)
in Tables 4.3 and 4.4. Finally, Rapp and Manhart [211] conducted water-channel experiments
of the Reynolds numbers ReH = 5,600, ReH = 10,600, ReH = 19,000, and ReH = 37,000,
labeled as RM in Tables 4.3 and 4.4. The data of Breuer et al. [32] and Rapp and Manhart [211]
is available in the ERCOFTAC QNET-CFD Wiki contributed by Rapp et al. [210] alongside a
detailed test case description. Further experimental data was recently acquired at the Reynolds
numbers ReH = 8,000 and ReH = 33,000 [131].
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4. Application to DNS and LES of Turbulent Flow

Table 4.3.: ReH = 5,600: DNS and highly resolved LES (HRLES) cases in comparison to refer-
ence data, including polynomial degree k, order of accuracy (k + 1), total number of
grid points N , sampling time ∆taver in number of flow-through times T ∗, separation
and reattachment length x1,sep and x1,reatt. The number of nodes of the present DG
solver is obtained by the number of cells in each spatial direction times the number
of nodes per cell (k + 1) in each direction. All cases are incompressible.

label grid points k order N type ∆taver
T ∗

x1,sep

H

x1,reatt
H

HRLES 5600 448×224×224 6 7 22.5M HRLES 61 0.16 4.82
DNS 5600 512×256×256 7 8 33.6M DNS 61 0.17 5.04
BPRM [32] 280×220×200 - 2 13.1M LES 140 0.18 5.09
BPRM [32] 765×750×404 - 2 231M DNS 38 0.18 5.14
RM [211] - - - - Exp. - - 4.83

The available reference data shows significant differences, in particular between the exper-
imental and the numerical DNS/LES data; for example, the reattachment lengths range from
4.83H (experiments) up to 5.14H (DNS) in the case ReH = 5,600 and from 4.21H (experi-
ments) to 4.72H (LES) in the case ReH = 10,595.

Further simulations with higher resolution and high-order accurate schemes have been pre-
sented in [13] (labeled BPP in Table 4.4) and [62] (labeled DM in Table 4.4), however, these
studies employed compressible solvers at low Mach numbers and comparably short averaging
times of 15 flow-through times1 and 25 flow-through times, respectively, which renders them
unsuitable as reference data [62].

4.3.2. Extension of the Reference Database
As a primary concern of this section, we shed light on the differences visible in the previous
reference data sets, discuss sources of error, and provide a new set of reference data for the
Reynolds numbers ReH = 5,600 and ReH = 10,595, which will be used in the remainder of this
thesis as reference data. Possible weaknesses of the previous numerical reference data may be:

• All reference computations were carried out using similar numerical schemes of second
order spatial accuracy, which consequently also have similar dissipation and dispersion
properties. In order to provide new insights into the flow cases, we perform simulations
using the present DG scheme at high-order spatial accuracy with very low dissipation and
dispersion characteristics (see Section 4.1).

• The averaging times of the numerical reference data lie in a broad range of approximately
∆taver/T

∗ = 38 to ∆taver/T
∗ = 140 flow-through times, based on the sampling time ∆taver

and a single flow-through time T ∗ = 9H/ub. In this work, we investigate the issue of
the sampling time and estimate the sampling error in order to assess the relevance of the
averaging error in the context of the most widely used computational setup.

1Private communication with Ponnampalam Balakumar
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Table 4.4.: ReH = 10,595: DNS and highly resolved LES (HRLES) cases in comparison to ref-
erence data, including polynomial degree k, order of accuracy (k+1), total number of
grid points N , Mach number Ma/incompressible (inc.), sampling time ∆taver in num-
ber of flow-through times T ∗, separation and reattachment length x1,sep and x1,reatt.
The number of nodes of the present DG solver is obtained by the number of cells in
each spatial direction times the number of nodes per cell (k + 1) in each direction.

label grid points k order N type Ma ∆taver
T ∗

x1,sep

H

x1,reatt
H

HRLES 10595 768×384×384 5 6 113M HRLES inc. 61 0.19 4.57
DNS 10595 896×448×448 6 7 180M DNS inc. 61 0.20 4.51
FMRTL R1 [93] 196×128×186 - 2 4.7M LES inc. 55 0.20 4.56
FMRTL R2 [93] 196×128×186 - 2 4.7M LES inc. 55 0.22 4.72
BPRM [32] 280×220×200 - 2 13.1M LES inc. 140 0.19 4.69
DM [62] 384×192×192 7 8 14M ILES 0.1 25 0.20 4.37
BPP [13] 800×500×500 - 7 200M DNS 0.2 151 - 4.5
RM [211] - - - - Exp. inc. - - 4.21

• The available skin friction and pressure coefficient curves show numerical oscillations due
to the spatial discretization. It is the ambition of this work to provide these quantities with
a higher quality.

In addition to the highly resolved simulations, the present DG solver is assessed regarding
ILES with this benchmark example in a detailed h/p-refinement analysis using the new reference
data. In the following section, we discuss the simulation setup, present the meshes and discuss
the resolution of the DNS. The DNS results are shown in Section 4.3.4 and the assessment of
ILES is presented in Section 4.3.5.

4.3.3. Simulation Setup, Resolution Requirements, and Mesh
We give an overview of the simulation setup, boundary conditions, and the mesh used for the
DNS simulations.

4.3.3.1. Simulation Setup

We consider a domain of the dimensions 9H×3.036H×4.5H in streamwise, wall-normal, and
spanwise direction, respectively. Periodic boundary conditions are applied in streamwise and
spanwise direction and no-slip conditions at the lower and upper wall. The flow is driven as
in [93] by a pressure gradient, represented by a body force f = (f1, 0, 0)T , where f1 is constant
in space. The volume flux Q =

∫
Ω
u1 dΩ/9H , and thus the Reynolds number, is kept constant

in time by a control algorithm, which is similar to the one proposed in Benocci and Pinelli [23]
and detailed in the following. We use a simple proportional control algorithm with an additional
damping term to ensure a constant mass flux. We define

fn+1
1 = fn1 + b1(Q

0 −Qn)− b2(Q
n −Qn−1), (4.2)
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Figure 4.5.: Grid for DNS. Top: DNS 5600. Bottom: DNS 10595. In each grid cell, the solution
is represented by polynomials of 7th (ReH = 5,600) and 6th (ReH = 10,595) degree
and the scheme exhibits an order of accuracy of polynomial degree plus one.

where b1 is the gain of the proportional controller and b2 of the damper. If we would choose
b1 = b2 = 1/∆t, the controller would be identical to the frequently used algorithm in [23]. In
practice, we have found that another empirical choice of b1 and b2 increases the robustness of the
approach. For the present computations, we choose b1 = 500 and b2 = 30,000, corresponding to
H = 0.028, ρ = 1, and ub = 5.621, yielding Q0 = 0.040376. With this choice, the mass flux is
constant to five digits of accuracy after the start-up.

The simulations are run for about 84 flow-through times T ∗ of which statistics are sampled
during ∆taver = 61T ∗ after the initial transient. The statistics are also averaged over the homoge-
neous spanwise direction and more than 100,000 samples are used in the averaging process for
the highly resolved simulation cases in order to minimize the error stemming from the statistical
postprocessing.

4.3.3.2. Meshes

For the DNS cases, we use a spatial discretization with 64×32×32 cells with a polynomial
degree of k = 7, yielding 512×256×256 grid points and a spatial accuracy of 8th order, for the
case ReH = 5,600, and a grid of 128×64×64 cells with a polynomial degree of k = 6, yielding
896×448×448 grid points and a spatial accuracy of 7th order, for the case ReH = 10,595. These
meshes are displayed in Figure 4.5. The grid is equally spaced in streamwise and spanwise
direction and mildly stretched towards the walls in order to improve the near-wall resolution.
We refrain from refining the grid locally, for example near the hill crest or in the shear layer. In
particular, the locations of the separation point on the hill crest and the shear layer are highly
unsteady [93], thus a locally refined grid design based on averaged flow quantities may not be
sufficient to fully resolve the unsteady flow. In addition, the propagation of small scales through
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Figure 4.6.: Location of first off-wall Gauss–Lobatto point ∆y+1,GL (left) as well as normalized
grid spacings in streamwise and spanwise direction ∆x+ = ∆z+ (right). The shal-
lower curves correspond to the upper wall.

streamwise stretched grids has a dissipating effect and through streamwise refined grids an anti-
dissipation-effect, which has for example been investigated for standard second order central
differences in [155], and the implications of such behavior on the turbulent flow are unclear. In
order to guarantee a highly accurate representation of the boundary, the curved hill geometry
is represented by the same polynomial degree as the solution with mapping facilities provided
by the deal.II library [9]. This mapping and a preliminary version of the problem setup was
implemented in INDEXA by Legat [173]. The vertical grid lines are aligned parallel to the
vertical axis and it is noted that orthogonality of the grid is not relevant in the context of DG
as the stencils used herein are truly three-dimensional. A second grid is considered for each
Reynolds number with a very similar layout, but with one degree lower (p-coarsening). The DNS
cases are in the following labeled DNS 5600 and DNS 10595, respectively, and the p-coarsened
cases HRLES 5600 and HRLES 10595, HRLES denoting highly resolved LES, according to
Tables 4.3 and 4.4.

4.3.3.3. Assessment of Resolution

The mesh resolution is evaluated using criteria for the near-wall region and the bulk flow as
in [32, 93]. Figure 4.6 shows the location of the first off-wall Gauss–Lobatto point, ∆y+1,GL, as
well as the dimensionless streamwise and spanwise grid-spacings ∆x+ = ∆z+. The quantity
∆y+1 is below 0.70 at the upper wall for both DNS cases. At the lower wall, ∆y+1 exhibits a
characteristic peak on the windward side of the hill crest with a maximum of max(∆y+1 ) = 0.86.
In the streamwise and spanwise directions, the distribution is similar with maximum values of
max(∆x+) = 7.2 at the upper wall and a more pronounced peak at the lower wall of up to
max(∆x+) = 13.7. This resolution is well sufficient to fully resolve the velocity gradient and the
turbulent scales at the wall.

The resolution of the bulk flow is assessed by comparing the grid filter width h = he/(k + 1)
(see Section 4.1) with the resolved Kolmogorov length η = (ν3/ε̃)1/4. The grid size is defined
based on a cell volume V (Ωe) as he = V (Ωe)

1/3 neglecting direction-dependence, however, the
cells in the bulk flow are almost cubic, since ∆x = ∆z throughout and ∆y is in a similar range.
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Figure 4.7.: Assessment of resolution: Kolmogorov length through resolved dissipation (top) and
ratio of grid size to Kolmogorov length (bottom).

The dissipation rate is computed via the resolved velocity field vectoru as ε̃ = ν((∇u)ij(∇u)ij)
in index notation (see [206] for further details) and averaged over time and the spanwise direc-
tion. In Figure 4.7 (top), we show averaged profiles of η at ten streamwise stations, located at
x1/H = {0.05, 0.5, 1, 2, 3, 4, 5, 6, 7, 8}, and compare the respective DNS and HRLES cases. As
essentially no difference is visible despite the varying resolution, it is assumed that the subgrid
scale contribution to the dissipation rate is negligible. In Figure 4.7 (bottom), the ratio h/η is
plotted over all ten stations and iso-lines at values of 0, 2, and 4 are included as a reference. The
value of h/η is located between 2 and 4 with peaks in the shear layer of 4.48 in the case DNS
5600 and 4.07 in the case DNS 10595. As already described in Section 2.3.1, Pope [206] speci-
fies the 24η-range as the length scale where most dissipation occurs and Moin and Mahesh [184]
state that most dissipation is resolved above 15η, and the latter publication lists DNS examples
with a resolution around h/η ∼ 4. Considering the spectral characteristics of the present scheme
(see Section 4.1), we regard the resolution of the DNS cases sufficient to be denoted direct nu-
merical simulation. The HRLES cases exhibit max(h/η) = 5.15 and also use a scheme with one
degree lower, which exhibits larger dissipation and dispersion errors, and are therefore denoted
highly resolved LES.

72



4.3. Flow over Periodic Hills

256 1,024 4,096 16,384 65,536
10

−1

10
0

10
1

number of cores

T
w
a
ll
p
er

ti
m
e
st
ep

[s
]

 

 

DNS 10595
pressure step 10595

DNS 5600
pressure step 5600

ideal

Figure 4.8.: Parallel scaling of the DNS setups at both Reynolds numbers up to 65,536 CPU
cores.

4.3.3.4. Computational Cost

The DNS are performed on Phase 1 of SuperMUC in Garching, Germany, on 2×8 core Intel
Sandy Bridge CPUs at 2.7GHz. Scaling experiments for both cases are shown in Figure 4.8.
At ReH = 5,600, the solver exhibits very good strong scaling up to 2,048 CPU cores and the
curve flattens up to 16,384 CPU cores. The case ReH = 10,595 yields excellent strong scaling
up to 8,192 CPU cores and shows a speed-up until 65,536 CPU cores. All steps of the time
integration scheme show close-to-optimal scaling, except for the pressure Poisson algorithm,
which involves a significant amount of communication; the scaling of the pressure Poisson solver
is also included in Figure 4.8. Regarding the simulation at ReH = 10,595, the shortest absolute
wall time achieved in this scaling test is approximately 0.22s per time step at 65,536 compute
cores. As a good compromise between resource efficiency and run time, the final computations
were performed on 8,192 cores, yielding a wall time per time step Twall of approximately 0.45s
and an overall run time of approximately six weeks for 8.5 million time steps.

4.3.4. Direct Numerical Simulation

We present the results for the skin friction and pressure coefficients as well as velocity statistics
separately for each Reynolds number and compare the DNS with the available reference data.
While it is the aim of this study to provide new reference data for both Reynolds numbers,
the results of the present work are first compared to highly resolved reference data at the lower
Reynolds number to validate the simulation setup. Subsequently, some more controversial issues
are discussed regarding the higher Reynolds number. The last part of this section presents an
analysis of the statistical sampling error including the confidence interval of the reattachment
length.
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curves correspond to the upper wall. Results for the cases BPRM LES and BPRM
DNS are only available on the lower wall.

4.3.4.1. ReH = 5,600: Skin Friction and Pressure Coefficients

We commence the discussion of the simulation results by considering the skin friction and pres-
sure coefficients

cf =
τw

1
2ρu

2
b

, (4.3)

cp =
ρ(p− pref)

1
2ρu

2
b

, (4.4)

with the wall shear stress τw, the kinematic pressure p and a reference pressure pref at the probe
location at x1 = 0 on the bottom wall. The pressure coefficient is multiplied by the density since
the kinematic pressure is used throughout this work. The wall-parallel component of the stress
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is computed on the hill shape at the lower boundary by

τw = sgn
(
∂u1

∂x2

)
ρν

√(
∂u1

∂x1
n1 +

∂u1

∂x2
n2

)2

+

(
∂u2

∂x1
n1 +

∂u2

∂x2
n2

)2

(4.5)

and using the components of a wall-normal vector n = (n1, n2, n3)
T of unit length, and the sign

function sgn. Note that this formulation is equivalent to the alternative τw = ρνtT · (∇u · n)
(evaluated in the x1x2 plane, with the tangential vector t, in the continuous sense. The results for
both coefficients at the upper and lower wall are shown in Figure 4.9 and the curves are com-
pared to the DNS and LES results of [32], labeled BPRM DNS and BPRM LES, respectively,
according to Table 4.3. Regarding the skin friction, the cases DNS 5600 and HRLES 5600 are in
very good agreement overall. Between x1/H = 4 and x1/H = 7, the case HRLES 5600 over-
predicts the skin friction to a minor extent. In comparison to the reference data, the agreement
between the two DNS is excellent. However, the case BPRM DNS exhibits strong oscillations
near the peak of the skin friction at the hill crest, as well as minor oscillations at the lower wall
around x1/H = 0 and x1/H = 7 where the boundary is curved, while the present DNS case
yields smooth data. The simulation BPRM LES predicts the skin friction in the region x1/H = 4
to x1/H = 7 at the bottom wall slightly lower, but the agreement is on a very high level overall.
The profiles of the skin friction at the lower wall predict the presence of two recirculation bub-
bles in accordance with the reference simulations [32]. The primary recirculation zone separates
around x1,sep/H = 0.17 and the reattachment point lies near x1,reatt/H = 5.0, determined via the
zero-crossings of the skin friction. These locations are in good agreement with the reference data
and the exact values are compared in Table 4.3. Furthermore, a separate section is devoted to a
discussion of the quality of the predicted reattachment point, see Section 4.3.4.5. That discussion
concludes that the reattachment lengths of the cases BPRM LES, BPRM DNS, and DNS 5600
are in agreement with each other within the available accuracy, while the case HRLES may pre-
dict the reattachment point slightly shorter. The additional data provided by experiments [211]
also predicts the reattachment length marginally shorter at x1,reatt/H = 4.83. The second recir-
culation bubble is located just in front of the hill at the windward side, between x1/H = 7.04
and x1/H = 7.31 considering the results of the present DNS.

There are more significant differences in the pressure coefficient. The largest deviations be-
tween the simulation cases are visible in the range x1/H = 0 to x1/H = 1 at the lower wall,
where the pressure sees a strong positive pressure gradient. The length of this zone with positive
pressure gradient varies significantly for the different flow cases. Since the pressure at x1/H = 0
at the lower wall is used as the reference pressure, this discrepancy shifts the pressure curves con-
siderably. We argue therefore that the pressure at x1/H = 0 at the upper wall should be used as
the reference pressure in future work, which has shown to be much more robust with respect to
the resolution near the hill crest. This pressure value is unfortunately not available for all refer-
ence data sets considered herein. While the cases HRLES 5600 and BPRM LES are affected by
this shift, the two DNS cases yield very good agreement overall. The simulations BPRM LES
and HRLES 5600 show noticeable differences to the two DNS.

The results discussed up to this point show particularly good accordance with the highly re-
solved reference simulation BPRM DNS, and the new reference results are of even higher qual-
ity due to the absence of oscillations in the skin friction and the longer averaging time (see
Section 4.3.4.5).

75



4. Application to DNS and LES of Turbulent Flow

0 1 2 3 4 5 6 7 8 9

0

1

2

3

x
2
/H

u/ub + x1/H

 

 

0 1 2 3 4 5 6 7 8 9

0

1

2

3

x
2
/H

5v/ub + x1/H

0 1 2 3 4 5 6 7 8 9

0

1

2

3

20u′v′/u2
b + x1/H

x
2
/H

0 1 2 3 4 5 6 7 8 9

0

1

2

3

15K/u2
b + x1/H

x
2
/H

DNS 5600
HRLES 5600

 

 

BPRM LES
BPRM DNS

 

 
RM Exp

Figure 4.10.: ReH = 5,600: Profiles of mean velocity in streamwise and vertical direction u and
v, RSS u′v′, as well as TKE K = 1/2(u′u′ + v′v′ + w′w′) (from top to bottom).
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4.3.4.2. ReH = 5,600: Velocity Statistics

The same cases are further compared via profiles of the streamwise and vertical mean velocity,
RSS, and turbulence kinetic energy (TKE) in Figure 4.10. The data is plotted at ten streamwise
stations, which are located at x1/H = {0.05, 0.5, 1, 2, 3, 4, 5, 6, 7, 8}. Additionally, the simula-
tion results are compared to the experimental data available [211], including the mean velocity
profiles and the RSS. The results of the mean velocity profiles of all four simulation cases are in
excellent agreement, and the accordance of the streamwise velocity with the experimental data is
good. Regarding the vertical velocity, the experimental data exhibits the largest deviations from
the other data sets. At the fourth (x1/H = 2) and last station (x1/H = 8), the case HRLES 5600
also shows differences to the three other simulation cases.

With respect to the RSS, the picture gets more diverse. Firstly, the experimental data shows
values of much higher magnitude than the simulation cases. This effect may be due to the differ-
ent spanwise extension of the experimental and numerical domains [131]. At the three stations
up to x1/H = 1, the two DNS simulations exhibit an excellent agreement, while the other cases
show a tendency of overpredicting (HRLES 5600) and underpredicting (BPRM LES) the mag-
nitude in the shear layer above the recirculation zone. The agreement of the numerical data at
x1/H ≥ 3 is generally good. At x1/H = 2, the new DNS (DNS 5600) shows values of smaller
magnitude in the shear layer than in the DNS reference. This deviation may either be due to a
statistical sampling error, or due to the significant mesh coarsening in streamwise direction tak-
ing place in the case of BPRM DNS near x1/H = 2, which can have a dissipative effect caused
by the behavior of second-order central difference schemes (see Section 4.3.3.2).

Finally, profiles of the TKE show even more pronounced differences in the shear layer region
above the recirculation zone. The two DNS exhibit excellent accordance up to x1/H = 1. The
case BPRM LES shows an underprediction of the profile in the shear layer. This behavior may
indicate a minor underresolution in that region. The case HRLES 5600 may also be slightly
underresolved in that region, as the peak in the shear layer is higher than the DNS, a characteristic
behavior indicating underresolution in DG (cf. results presented in Section 4.2). At x1/H =
2, the cases BPRM DNS and DNS 5600 deviate significantly, for which again the change in
resolution of the case BPRM DNS may be held responsible. The differences of the numerical
data are less significant at the downstream stations.

From this discussion, we conclude that

• the two DNS cases are in excellent agreement overall,

• the new DNS data does not show oscillations in the skin friction, whereas the case BPRM
DNS does,

• the new DNS data has a longer sampling time than the case BPRM DNS, which reduces
the uncertainty of the quantities (cf. Section 4.3.4.5),

• the present simulation cases employ equidistant grids in streamwise direction, which ex-
cludes artificial numerical dissipation errors due to such a grid stretching.
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Figure 4.11.: ReH = 10,595: Skin friction (top) and pressure (bottom) coefficients. The shal-
lower curves correspond to the upper wall. Reference results at the upper wall are
only available for cp through the case FMRTL R2.

4.3.4.3. ReH = 10,595: Skin Friction and Pressure Coefficients

In Figure 4.11, we compare the profiles of the skin friction and pressure coefficients to the
available reference data of the cases BPRM LES [32], FMRTL R2 [93], and DM [62], according
to Table 4.4. Regarding the skin friction, we notice significant disagreement between x1/H = 7
and x1/H = 9: in the acceleration zone at the windward side of the hill, the present simulation
cases HRLES 10595 and DNS 10595 show very good agreement with BPRM LES in that region,
whereas the cases FMRTL R2 and DM predict a significantly smaller skin friction, but agree well
with each other. This difference may be due to a different postprocessing of the wall shear stress.
In this work, we consider the wall-parallel wall shear stress τw, which takes into account the
slope of the hill shape and considers the contributions from both velocity components, u1 and
u2, according to Equation (4.5). We have found that the DNS results agree well with the cases
FMRTL R2 and DM in that region if only the u1-component of the wall shear stress, τw,1, is
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taken into account according to

τw,1 = ρν

(
∂u1

∂x1
n1 +

∂u1

∂x2
n2

)
. (4.6)

This component can be computed from τw by

τw,1 =
τw√

1 +
(

dg
dx1

)2
, (4.7)

where dg
dx1

is the slope of the function g that defines the hill shape. Unfortunately, none of the
references gives details on how the wall shear stress was computed on the hill. We consider
the wall-parallel definition of τw as more consistent, in particular also for the assessment of the
near-wall resolution through the y+1 criterion, but τw,1 may also be a possible choice if indicated
clearly. Note that this issue is also present on the lee side of the hill, although not as clearly
visible.

However, in the region between the hills, 2 ≤ x1/H ≤ 7, which is most interesting, the results
are not affected by the difference in the prostprocessing as the wall is horizontal, allowing a
comparison of the curves. The data sets HRLES 10595, DNS 10595, DM and BPRM LES show
good accordance in the region from x1/H = 2 to x1/H = 4, but the data of DM exhibits minor
oscillations, which may be due to the comparably short sampling time used in that work or
due to a remaining discretization error (see Section 4.3.5). The case FMRTL R2 underpredicts
the wall shear stress in that region. Near the reattachment zone in the interval x1/H = 4 to
x1/H = 6, the accordance of DM and the present simulation cases is still good, whereas both
FMRTL R2 and BPRM LES yield an underprediction. Accordingly, the primary recirculation
bubble separates at around x1,sep/H = 0.20 and reattaches near x1,reatt/H = 4.5, where the two
cases FMRTL R2 and BPRM LES predict larger values and the case DM a shorter reattachment
length as compared to the other three cases. The measurement data specifies the reattachment
length significantly shorter as x1/H = 4.21. All available data is compared in Table 4.4. In
Section 4.3.4.5, we discuss these quantities from the perspective of the statistical sampling error.
The secondary recirculation at the windward side of the hill separates at x1/H = 7.05 and
reattaches at x1/H = 7.24 according to the case DNS 10595, which is in agreement with the
reference data [32]. In addition to these two recirculations, a third recirculation may be observed
at the hill crest according to the references [32, 93]. The separation point is computed to x1/H =
0.00 and the reattachment to x1/H = 0.08 based on the case DNS 10595. This recirculation is
so thin that it is not visible in the mean velocity profiles presented in the subsequent section,
where the first data point at x1/H = 0.05 is located 0.0015/H above the wall. This may explain
why this recirculation bubble was not found in the experiments in [131] at a similar Reynolds
number.

Finally, it is remarkable how well the two simulation cases presented in this work agree with
each other in the whole range and including the upper wall, indicating that the spatial discretiza-
tion error, as well as other uncertainties, indeed are negligible in these cases.

Next, we discuss the pressure coefficient also included in Figure 4.11. The effect of the differ-
ent length of the pressure ramp near x1/H = 0 discussed in conjunction with the lower Reynolds
number is even more severe in the present case. Again, this disagreement shifts the remaining
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part of the plot in vertical direction, as the reference pressure is considered at the lower wall at
x1/H = 0. The two curves computed in this study show an outstanding agreement throughout,
which confirms that the discretization error in these cases is very small. The other simulation
cases follow the trend well, despite the significant offset. Also, the pressure coefficient curves
on the upper wall exhibit the same trend as the reference FMRTL R2 but with a shift of approxi-
mately 0.1. This aspect highlights once again that the value at x1/H = 0 at the upper wall should
be used as the reference pressure in future work, which would allow a better comparison of the
curves.

4.3.4.4. ReH = 10,595: Velocity Statistics

The profiles of the averaged velocity, RSS, and TKE are plotted in Figure 4.12 for the Reynolds
number ReH = 10,595 at ten stations. The present data is compared to the two LES reference
cases, BPRM LES and FMRTL R2, as well as experimental results, where available. Regard-
ing the mean streamwise velocity, the two data sets DNS 10595 and HRLES 10595 exhibit an
excellent agreement. These curves lie mostly in between the experimental and LES references,
for example above the hill crest or in the reattachment zone, but the differences are very small
overall. With respect to the vertical velocity, there are more noticeable aspects. On the lee side of
the hill, there is a distinct gap visible between the LES reference cases and the present data, and
the new results are closer to the experimental reference. The last station at x1/H = 8 shows a
similar picture, as the present simulation results lie in the gap between the LES and experimental
references.

Regarding the profiles of the RSS, the cases BPRM LES and FMRTL R2 underpredict the
magnitude of the stress in the thin shear layer in the range 0 ≤ x1/H ≤ 1. The experimental
data is in much better accordance to the numerical data than for the lower Reynolds number. The
agreement of all data sets beyond x1/H = 3 is good.

The profiles of the TKE of the cases DNS 10595 and HRLES 10595 are in excellent agree-
ment, which allows the conclusion that the spatial discretization of the DNS is capable of re-
solving all relevant scales. In the sharp shear layer above the recirculation bubble, both LES
reference cases predict considerably lower magnitudes. A possible explanation for these differ-
ences may be that the turbulent motions in this area are not sufficiently resolved. We note that
this underresolution also may be the cause for the overestimation of the reattachment lengths by
the two LES reference cases in comparison to the present DNS. The deviations of the profiles
beyond the reattachment point are minor.

The following major conclusions may be drawn from the discussion of the Reynolds number
ReH = 10,595:

• the DNS 10595 and HRLES 10595 cases show excellent agreement in all figures, which
indicates that the spatial discretization error as well as other sources of error are minor,

• the widely used reference data BPRM LES and FMRTL R2 may not capture all relevant
turbulent motions in the thin shear layer above the recirculation bubble sufficiently well,
which may come along with an underestimation of the momentum exchange in that region,
resulting in a longer recirculation,
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Figure 4.12.: ReH = 10,595: Profiles of mean velocity in streamwise and vertical direction u and
v, RSS u′v′, as well as TKE K = 1/2(u′u′ + v′v′ + w′w′) (from top to bottom).
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Figure 4.13.: Averaging error of the spanwise velocity component w (absolute value) and com-
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• the DNS yields a shorter reattachment length than the previously available LES reference
data, but longer than in the experiments.

4.3.4.5. Analysis of the Sampling Error

The averaging times considered in the reported simulation cases differ, according to Tables 4.3
and 4.4, by approximately one order of magnitude, which we see as an indication that this pa-
rameter should be investigated in more detail. Beginning with the mean velocity components, a
frequently used measure for the averaging error in these quantities is the deviation of the span-
wise velocity, which should vanish in the mean. The absolute value of the spanwise velocity is
plotted in Figure 4.13 and iso-lines indicate the 1% error level. It may be observed that the error
of the spanwise velocity is consistently below 1%, most of the time even significantly below
0.5%; an error that seems to be acceptable.

However, it was already reported by Rapp [209] in the context of the measurements that it
was difficult to determine the reattachment length of the primary recirculation bubble due to
low-frequency motions of the reattachment point in streamwise direction. The recent experi-
mental study [131] further elaborates on the issue of rare events having an influence on the flow
statistics. This behavior motivates a separate analysis of the averaging error of the reattachment
length. This length is of paramount importance in this benchmark case, as it is frequently used
as an ‘error norm’, summarizing the overall performance of a numerical method or model in one
number.

In order to analyze the statistical convergence behavior of this quantity in detail, we plot inter-
mediate convergence results of x1,reatt/H over the respective sampling time in number of flow-
through times ∆taver/T

∗, see Figure 4.14 for ReH = 5,600 and Figure 4.15 for ReH = 10,595.
These data points are subject to an error bandwidth, which converges as ∼ ±const/

√
∆taver/T ∗

according to the statistical theory of the ‘standard error of the mean’. In order to estimate the er-
ror at the end of the sampling time, this error bandwidth is also plotted in Figures 4.14 and 4.15
by considering the curves x1,reatt/H ± α/

√
∆taver/T ∗ and adjusting the constant parameter α
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Figure 4.14.: ReH = 5,600: Analysis of the statistical averaging error of the reattachment length
x1,reatt/H . The error bandwidth is given as x1,reatt/H±const/

√
∆taver/T ∗ and yields

an estimation of the error after 61 flow-through times of ±0.09H .

manually such that most points lie within the bandwidth. This procedure yields an estimation of
the sampling error for x1,reatt/H of ±0.09H for ReH = 5,600 and ±0.06H for ReH = 10,595.

Both plots include the available reference data, which may be compared to the error band-
width of the DNS cases. Regarding ReH = 5,600, the references BPRM DNS/LES lie within
the bandwidth, which means that they are in agreement with the present DNS within the avail-
able accuracy. The experimental reattachment length and the case HRLES 5600 lie outside of
the bandwidth, rendering other sources of error than the statistical averaging error relevant. Re-
garding ReH = 10,595, it is apparent that the bandwidths of HRLES 10595 and DNS 10595
overlap significantly, such that the remaining difference in the reattachment length may be a sta-
tistical averaging error. This result mirrors the excellent agreement of the data discussed in the
previous section. The cases BPRM LES and FMRTL R2 lie well outside of the error bandwidth,
indicating that the differences to the DNS are other sources of error, such as underresolution.
The experimental reference also lies significantly outside of the uncertainty range. The cases
BPP, FMRTL R1, and DM lie inside or near the bandwidth, such that these cases are in agree-
ment with the DNS within the available accuracy, which does not exclude other sources of error,
however.

It may be concluded from this discussion that the reattachment length of this flow is very sen-
sitive to insufficient sampling. This fact may be explained by the small slope of the cf curves
in Figures 4.9 and 4.11 near the reattachment points. While the statistical error after 61 flow-
through times of ±0.09H and ±0.06H may seem large as reference data, the reduction by a
factor of two for the higher Reynolds number would necessitate an additional sampling time of
183 flow-through times due to the slow convergence with ∼ 1/

√
∆taver/T ∗, which would re-
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Figure 4.15.: ReH = 10,595: Analysis of the statistical averaging error of the reattachment
length x1,reatt/H . The error bandwidth is given as x1,reatt/H ± const/
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and yields an estimation of the error after 61 flow-through times of ±0.06H .

quire additional 19 million CPU core hours and three months of computation time, as well as
400,000kWh of electricity. Furthermore, sampling times as high as 1,000 flow-through times
suggested in [131] will not be available in the context of DNS at the present Reynolds numbers
for several years, nor are such sampling times desirable in the application of benchmark simu-
lations. As a result, researchers have to be made aware of the presence of statistical errors and
they should be taken into account when using the DNS data as a reference.

4.3.5. Implicit Large-Eddy Simulation

The high computational cost of the DNS makes an application of this approach to most industrial
flows infeasible. Computing only the larger, inhomogeneous eddies and modeling the smaller,
homogeneous turbulent motions promises a similar level of accuracy for the present benchmark
example at a drastically reduced numerical effort. In this section, we assess the idea of ILES
using the same high-order DG scheme and computational setup as employed for the highly
resolved cases. We perform a detailed h/p-refinement study in order to analyze the influence of
the polynomial degree and the rate of convergence to the DNS.

Regarding the h-refinement study, we consider meshes of 32×16×16 (coarse mesh),
64×32×32 (medium mesh), and 128×64×64 (fine mesh) cells, all with k = 4, since this poly-
nomial degree has given accurate results in the context of turbulent channel flow and can be seen
as a compromise between accuracy and time to solution. With respect to p-refinement, we take
the medium mesh, 64×32×32, and vary the polynomial degree through k = {3, 4, 5, 6}. In order
to achieve a full h/p analysis, we present further results of the coarse and fine mesh with all four

84



4.3. Flow over Periodic Hills

Table 4.5.: ILES h/p-refinement study at ReH = 10,595: Simulation cases and reference data, in-
cluding polynomial degree k, order of accuracy (k+1), total number of grid pointsN ,
Mach number Ma/incompressible (inc.), maximum value of ∆y+1,GL at the upper wall
(near-wall resolution) and h/η (bulk flow resolution), sampling time ∆taver in number
of flow-through times T ∗, separation and reattachment length x1,sep and x1,reatt. The
number of nodes of the present DG solver is obtained by the number of cells in each
spatial direction times the number of nodes per cell (k + 1) in each direction.

ref. grid points k order N Ma max
(
∆y+1,GL

)
max

(
h
η

)
∆taver
T ∗

x1,sep

H

x1,reatt
H

- 128×64×64 3 4 0.52M inc. 5.69 17.3 61 0.27 3.65
- 160×80×80 4 5 1.0M inc. 3.28 15.4 61 0.23 3.90
- 192×96×96 5 6 1.8M inc. 2.21 13.8 61 0.22 4.19
- 224×112×112 6 7 2.8M inc. 1.60 12.8 61 0.21 4.19
- 256×128×128 3 4 4.2M inc. 2.62 11.7 61 0.21 3.81
- 320×160×160 4 5 8.2M inc. 1.66 0.96 61 0.21 4.22
- 384×192×192 5 6 14.2M inc. 1.30 8.48 61 0.21 4.24
- 448×224×224 6 7 22.5M inc. 1.09 7.55 61 0.21 4.38
- 512×256×256 3 4 33.6M inc. 1.75 6.17 61 0.20 4.23
- 640×320×320 4 5 65.5M inc. 1.10 5.36 61 0.19 4.36
- 768×384×384 5 6 113M inc. 0.86 4.65 61 0.19 4.57
- 896×448×448 6 7 180M inc. 0.66 4.07 61 0.20 4.51
[28] 160×80×802 4 - 1.0M 0.1 - - 56 - 3.623

[28] 224×112×1122 6 - 2.8M 0.1 - - 56 - 4.183

[178] 256×128×128 3 4 4.2M 0.1 - - - - 3.9

polynomial degrees, which are only evaluated by comparing their reattachment length as a global
measure of the error. The total number of grid points for these meshes is obtained by taking the
number of cells times k+ 1 in each dimension. All simulation cases are listed in Table 4.5. Note
that the two finest cases are equal to the DNS 10595 and HRLES 10595 cases presented in the
previous sections. The grid stretching is adjusted in order to achieve a compromise between near-
wall and bulk resolution. Representative mesh parameters are also included in Table 4.5, given
as the maximum value of ∆y+1 at the upper wall, and the maximum ratio of h/η occurring in the
shear layer similar to Figure 4.7. The results are compared to the case DNS 10595 discussed in
the previous sections. We additionally compare the results of the reattachment length to previous
ILES by [28] and LES (based on the WALE model) by [178] using compressible high-order DG
methods with comparable spatial discretizations, which are also included in Table 4.5.

2Private communication with Thomas Bolemann
3Extracted from figure 9 in [28]
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Figure 4.16.: ILES h-refinement study at ReH = 10,595: Skin friction (top) and pressure (bot-
tom) coefficients. The shallower curves correspond to the upper wall.

4.3.5.1. ILES h/p-Refinement Study at ReH = 10,595: Skin Friction and Pressure
Coefficients

We present the skin friction and pressure coefficients for the h-refinement study in Figure 4.16
and for the p-refinement study in Figure 4.17. Regarding the h-refinement, the skin friction on
the upper wall and on the windward side of the hill exhibits differences to the DNS for the
coarse mesh only and is converged for the medium and fine mesh. On the lee side of the hill,
the coarse mesh yields significant deviations from the reference, whereas the medium and fine
meshes agree well with the DNS. In the recirculation zone between x1/H = 3 and x1/H = 5,
the skin friction coefficient is overpredicted by the coarse and medium simulations. In addition,
the coarse case exhibits characteristic waves, which are due to the spatial discretization. The
waves may be observed with reduced amplitude for the medium mesh and are not visible for the
fine mesh. Such behavior was previously described for this flow in [28] within a compressible
DG scheme and is also visible in the skin friction curves of the original publication of the case
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Figure 4.17.: ILES p-refinement study at ReH = 10,595: Skin friction (top) and pressure (bot-
tom) coefficients. The shallower curves correspond to the upper wall.

DM [62], which was discussed in the previous sections, despite the relatively high resolution. It
was found in [28] that this effect is not related to insufficient statistical averaging. It is interesting
to see that [178] presents smooth curves in the simulations using the WALE subgrid model, and
it should be further investigated if this is due to the particular DG formulation used in that study,
for example due to differences in the imposition of the Dirichlet boundary conditions, or due
to the eddy viscosity subgrid model. The extension of the present numerical method to DES
(including an eddy viscosity subgrid model) in Chapter 5 shows these waves as well, but with
a smaller magnitude. With respect to the pressure coefficient, the curves converge quickly, with
significant deviations for the coarse case, moderate differences for the medium case and minor
errors for the fine case.

The p-refinement shows generally a similar trend as the h-refinement, and exhibits a smaller
bandwidth regarding the error level. The skin friction of the case k = 5 shows minor errors and
the case k = 6 is almost indistinguishable from the DNS. The waviness of the skin friction near
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Table 4.6.: ILES h/p-refinement study at ReH = 10,595: Summary of reattachment lengths.
Data is redundant with Table 4.5, and reprinted using number of cells Nei per spatial
direction i and polynomial degree k. The statistical averaging uncertainty is approxi-
mately ±0.06H in all cases.

Ne1×Ne2×Ne3 \ k 3 4 5 6

32×16×16 3.65 3.90 4.19 4.19
64×32×32 3.81 4.22 4.24 4.38
128×64×64 4.23 4.36 4.57 4.51

the recirculation zone is also present with a smaller amplitude, but vanishes incrementally for
the higher degrees. The pressure curves improve significantly from k = 3 to k = 4, but the finest
case still differs from the DNS. Comparing the case k = 6 on the medium mesh across the plots
with the fine mesh using k = 4, one observes a similar error level. This fact is remarkable, since
the fine mesh with k = 4 has almost three times the number of DOFs compared to the medium
mesh with k = 6.

The reattachment lengths of all cases of the h/p-refinement analysis are given in Table 4.6.
It is noted that the reattachment length is consistently underpredicted by the coarse meshes, in
accordance with the overprediction of the skin friction coefficient in that region, and most cases
with a reasonably fine LES grid lie in the area around x1/H = 4.2. While this result is quite
good, it also indicates that a further improvement of the ILES approach is possible. The ILES
and LES references [28, 178] listed in Table 4.5, which also use high-order DG methods, show
almost the same reattachment lengths as the simulation case with the corresponding mesh and
polynomial degree.

4.3.5.2. ILES h/p-Refinement Study at ReH = 10,595: Velocity Statistics

The cases considered in the h/p-refinement study are further compared via profiles at ten stream-
wise stations in Figures 4.18 and 4.19. Regarding the streamwise velocity, the agreement with the
DNS is generally very good. Solely near the lower wall in the region of the reattachment point,
the velocity is overpredicted by the coarser simulation cases in accordance with the shorter recir-
culation bubble observed in these cases. Regarding the vertical velocity, the coarser cases exhibit
differences to the DNS, but the simulations show a clear trend to convergence with increasing
resolution. With respect to the RSS, the errors are on a very low level throughout and deviations
from the DNS are only significant for the coarsest case in the h and p-refinement study, respec-
tively. The TKE profiles agree well with the DNS, again except for the coarsest cases, which
show some deviations. In addition, the profiles of the coarsest simulations exhibit pronounced
ticks at the element boundaries, which originate from the discontinuity present in the solution at
the cell boundaries and have been reported for turbulent channel flow as well (see Section 4.2).
This issue occurs since the velocity statistics include data points on the cell boundaries where
the contributions from two neighboring cells are considered. The study in [178] found that this
issue is considerably improved if an eddy viscosity subgrid model is included; this observation
is confirmed in Section 5.5 in the context of DES. However, the ticks vanish with increasing
resolution and the case DNS 10595 is smooth.
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4.4. Summary

The present analysis of ILES using the high-order scheme has exhibited a good level of accu-
racy with the DNS simulations and has shown that the present DG scheme can be used to predict
challenging flows such as the periodic hill flow via underresolved simulations. The use of high
polynomial degrees yields better results than a refined mesh regarding the required number of
DOFs. The scheme may be further improved considering the prediction of the reattachment
length, the waviness of the skin friction at the lower boundary, as well as the ticks present in the
solution of the TKE.

4.4. Summary
In this chapter, we have applied the present high-order semi-explicit DG code to DNS and ILES
of turbulent channel flow and flow over periodic hills. The numerical method is very well suitable
for DNS due to its high-order accuracy, which yields a high resolution power with relatively few
DOFs. These DNS capabilities were used to compute new reference data for the periodic hill
flow at the hill-Reynolds numbers ReH = 5,600 and ReH = 10,595. These reference results
have been made available on a public open source repository in [148] and will be extensively
used as reference data in the remainder of this thesis. Finally, we have shown that the present
numerical method may be employed for ILES as well. We have performed detailed h-refinement
for the turbulent channel and h/p-refinement for the periodic hill flow, and have obtained an
excellent agreement with the DNS results in a wide range of spatial resolution.
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5
Extension to RANS and DES

The aim of this chapter is to extend the high-order DG scheme presented in Chapter 3 to the
RANS equations (see Section 2.3.3) and to perform wall-modeling DES (see Section 2.3.4) using
this scheme. Both RANS and DES are of high relevance in industrial applications, due to their
low cost in comparison to LES. The RANS equations are particularly cheap to compute, as they
exhibit very large time scales (see Section 2.3.3), enabling large time steps in implicit schemes,
and many applications even allow the use of a stationary solver. DES is increasingly used in
research and industry, as it provides an approach with similar accuracy as LES in separated
flows, however with reduced computational cost of the near-wall layer, and also allows for the
analysis of aeroacoustical noise sources in the flow. In addition, the computational requirements
have become available for example in the automotive industry [24, 241].

In order to extend the present velocity-correction scheme to these simulation approaches, the
SA turbulence model [242] is considered in an additional step. The SA model is popular due
to its simplicity with only one additional transport equation while yielding accurate results in
many applications [166]. The present method requires minimal additional implementation effort
if it is implemented as an extension of the velocity-correction scheme, and does not require
any nonlinear iterations in the algorithm. This explicit approach renders the method particularly
efficient for DES. We begin in this chapter with a literature overview of applications of the DG
method to the SA model. Subsequently, the governing equations are recited and the velocity-
correction approach of Section 3.2 is extended by including the SA equation, see Section 5.2.
Details on the spatial discretization are given in Section 5.3. Numerical results are presented for
RANS in Section 5.4 and DES in Section 5.5. The work presented in Sections 5.2 to 5.4 is based
on Krank et al. [152].

5.1. Literature Review and Motivation

During the past ten years, a large number of implementations of the SA model for the DG and
HDG method have been proposed, for example in [35, 53, 55, 166, 185, 270] (DG) and [194]
(HDG). All of these methods have been developed within implicit time integration schemes and
most approaches consider the compressible Navier–Stokes equations [35, 55, 166, 185, 194, 270]
while [53] considers the incompressible Navier–Stokes equations. Solely [166] compares the
performance of an implicit and explicit method and comes to the conclusion that the time step
restrictions of an explicit method for RANS are significant. Issues with negative values of the
working variable of the SA model are the primary object of study in all of these publications.
These problems occur primarily at the outer edge of the boundary layer, where the variable sees
a steep decrease in magnitude in order to become zero in the laminar freestream. The issues arise
as this outer edge of the boundary layer is usually underresolved, which can result in a negative

93



5. Extension to RANS and DES

eddy viscosity and thus an unstable method. While these problems have been reported for other
discretization approaches as well [7, 35], high-order methods come along with less numerical
diffusion and are therefore more exposed. The proposed methods include regularization [185],
clipping of the working variable [53, 166], and modification of the definition of the SA model [7].
In this work, we do not examine these issues in detail and a simple clipping of the working
variable is employed [53, 166].

The focus of this work lies in the investigation of another algorithmic approach: The SA model
is frequently implemented in the DG method with the aim of computing eddy-resolving DES-
type simulations [244], for which high-order DG methods are particularly suited; see, e.g., [267].
Considering an eddy-resolving approach, the time scales of the simulation have to be quite small
in order to resolve the temporal scales of the turbulent motions sufficiently, however. Therefore,
the implicit schemes, which are undoubtedly more efficient for RANS than explicit ones due to
time step restrictions [166, 241], are not necessarily more efficient for DES. On the contrary, due
to the larger cells in the near-wall region used in DES, one would expect that the allowable time
step size of the Navier–Stokes steps is much larger in comparison to LES for an explicit scheme.
This becomes in particular relevant if the time step restrictions from an explicit diffusive term in
the SA model can be decoupled from the Navier–Stokes terms.

5.2. Incompressible Navier–Stokes Equations and the
Spalart–Allmaras Model

5.2.1. The Spalart–Allmaras Model
The incompressible Navier–Stokes equations (2.1) and (2.2) are extended by an additional equa-
tion, which provides a closure model via the Boussinesq approximation (see Section 2.3.3),
yielding

∇ · u = 0 in Ω×[0, T ], (5.1)
∂u

∂t
+∇ ·

(
F c(u) + pI −Fν+νt(u)

)
= f in Ω×[0, T ], (5.2)

∂ν̃

∂t
+∇ ·

(
F̃
c
(u, ν̃)− F̃

ν̃
(ν̃)
)

= Q(u, ν̃) in Ω×[0, T ]. (5.3)

In addition to the familiar quantities, u, p, f , Ω, and T according to Section 2.1.1, a new vari-
able is introduced, ν̃, which is the eddy-viscosity-like working variable of the SA model. The
convective flux of the momentum equation is defined as in Section 2.1.1 and the viscous flux
takes into account the model term as

F c(u) = u⊗ u, Fν+νt(u) = 2(ν + νt)ε(u)

with the eddy viscosity νt = ν̃fv1, where fv1 is a quantity defined through the SA model. The
convective as well as diffusive fluxes of the SA equation are given as

F̃
c
(u, ν̃) = uν̃, F̃

ν̃
(ν̃) =

ν + ν̃

cb3
∇ν̃,
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where cb3 is a model constant. The source term Q(u, ν̃) is considered in the following formula-
tion:

Q(u, ν̃) = cb1S̃ν̃ +
cb2
cb3
∇ν̃ · ∇ν̃ − cw1fw

(
ν̃

y

)2

(5.4)

using the expressions

S̃ = S +
ν̃

κ2y2fv2, Ω =
1
2
(∇u− (∇u)T ), S =

√
2Ω : Ω,

χ =
ν̃

ν
, fv1 =

χ3

χ3 + c3
v1
, fv2 = 1− χ

1 + χfv1
,

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

, g = r + cw2(r
6 − r), r =

ν̃

S̃κ2y2
,

and constants

cb1 = 0.1355, cb2 = 0.622, cb3 = 2/3,
cv1 = 7.1, κ = 0.41,

cw1 =
cb1
κ2 +

1 + cb2
cb3

, cw2 = 0.3, cw3 = 2.

In the nonphysical case of ν̃ < 0, we set Q(u, ν̃) = 0 [53] as well as νt = 0 [53, 166].
The initial conditions are specified at t = 0 as

u(t = 0) = u0 in Ω and (5.5)
ν̃(t = 0) = ν̃0 in Ω. (5.6)

In the context of the SA model, periodic as well as no-slip Dirichlet boundary conditions on
solid walls ∂ΩD = ∂Ω are considered that close the problem with

u = gu = 0 on ∂Ω
D and (5.7)

ν̃ = gν̃ = 0 on ∂Ω
D. (5.8)

5.2.2. Extension of the Velocity-Correction Scheme
The governing equations (5.1) to (5.3) are integrated in time by extending the velocity-correction
scheme used in Chapter 3 as follows. The Navier–Stokes equations are treated using the exact
same temporal scheme as before and the SA equation is integrated in time explicitly in order to
avoid nonlinear iterations.

Explicit Spalart–Allmaras Step. The semi-discrete form of the SA equation becomes

γ0ν̃
n+1 −

∑J−1
i=0 (αiν̃

n−i)

∆t
=

−
J−1∑
i=0

βi

(
∇ ·
(
F̃
c (
un−i, ν̃n−i

)
− F̃

ν̃ (
ν̃n−i

))
−Q

(
un−i, ν̃n−i

))
, (5.9)
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with the BDF and EX schemes already used in the velocity-correction scheme, either using
constant time step sizes according to Table 3.1, or employing the coefficients αi, βi, and γ0

allowing adaptive time stepping according to Sections 3.3.3 and 5.3.2. The explicit SA step
yields ν̃n+1 at the new time step.

Explicit Convective Step. The temporal integration of the Navier–Stokes equations follows
the method presented in Section 3.2 and is repeated for completeness. The convective term is
integrated explicitly, yielding the first intermediate velocity û:

γ0û−
∑J−1

i=0 (αiu
n−i)

∆t
= −

J−1∑
i=0

βi∇ ·F c
(
un−i

)
+ fn+1. (5.10)

Pressure Poisson Equation and Projection. The pressure is subsequently computed by solv-
ing a Poisson equation, given as

−∇2pn+1 = −γ0

∆t
∇ · û. (5.11)

The high-order boundary conditions in Equation (3.4) may be modified by taking into account
the boundary conditions gu = 0 and gν̃ = 0 according to:

∇pn+1 · n = −

(
J−1∑
i=0

βi
(
∇ ·F c

(
un−ih

)
+ ν∇×ωn−i

)
− fn+1

)
· n (5.12)

on ∂ΩD. No modifications are made to the projection equation (3.5), which reads

ˆ̂u = û− ∆t

γ0
∇pn+1 (5.13)

and results in the second intermediate velocity ˆ̂u.

Implicit Viscous Step. Finally, the viscous term takes into account the eddy viscosity and
yields the velocity un+1 at time level tn+1 in a Helmholtz-like equation, which is given as

γ0

∆t

(
un+1 − ˆ̂u

)
= ∇ ·Fν+νt

(
un+1) . (5.14)

The system is closed with boundary conditions on the no-slip walls

un+1 = 0 on ∂Ω
D and (5.15)

ν̃n+1 = 0 on ∂Ω
D. (5.16)

5.3. Spatial Discretization
The spatial discretization of the incompressible Navier–Stokes equations is similar to Chapter 3
and introduces several minor modifications, which guarantee the stability of the approach. The
spatial discretization of the SA equation employs similar methods.
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5.3.1. Galerkin Formulation
The following variational formulations are derived analogous to Section 3.3.2 by multiplication
of the strong forms (5.9) to (5.16) with an appropriate weighting function µh ∈ V ν̃h , vh ∈ Vuh ,
or qh ∈ Vph and integration over one element volume. Regarding the function spaces for the
primary variable of the SA model, we take the same space as for the pressure according to
V ν̃h = Vph, defined in Section 3.3.1. Upon partial integration, suitable fluxes are specified in order
to guarantee a stable numerical method.

Explicit Spalart–Allmaras Step. The variational formulation of the SA step becomes(
µh,

γ0ν̃h −
∑J−1

i=0

(
αiν̃

n−i
h

)
∆t

)
Ωe

= −
J−1∑
i=0

βi

(
−
(
∇µh, F̃

c (
un−ih , ν̃n−ih

))
Ωe

+
(
µh, F̃

c∗ (
un−ih , ν̃n−ih

)
· nΓ

)
∂Ωe

+
(
∇µh, F̃

ν̃
(ν̃h)

)
Ωe

−
(
wF̃

ν̃
(µh) , Jν̃hK

)
∂Ωe

−
(
µh, F̃

ν̃∗
(ν̃h)

)
∂Ωe

−
(
µh, Q

(
un−ih , ν̃n−ih

))
Ωe

)
.

(5.17)

Herein, the local Lax–Friedrichs numerical flux is employed for the convective term as for the
Navier–Stokes equations in Equation (3.8), yielding

F̃
c∗ (
un−ih , ν̃n−ih

)
= {{F̃

c (
un−ih , ν̃n−ih

)
}}+ Λ̃/2Jν̃n−ih K, (5.18)

where Λ̃ = max(λ̃−, λ̃+) represents the largest eigenvalue of the flux Jacobian across the element
interface with

λ̃− = maxj

∣∣∣∣λ̃j (∂F̃(u−,n−i
h ,ν̃)·nΓ

∂ν̃

)∣∣∣∣ = |u−,n−ih · nΓ| and

λ̃+ = maxj

∣∣∣∣λ̃j (∂F̃(u+,n−i
h ,ν̃)·nΓ

∂ν̃

)∣∣∣∣ = |u+,n−i
h · nΓ|.

(5.19)

The diffusive term is discretized by the SIPG method in the same way as the pressure Lapla-
cian (3.11) and the viscous terms (3.18). However, the term is modified to take into account
harmonic weighting [36] of the discontinuous diffusivity by specifying weights for the averag-
ing operator defined in Section 3.3.1 using the material parameter of the diffusive term:

w− =
ν + ν̃+h

2ν + ν̃−h + ν̃+h
, w+ =

ν + ν̃−h
2ν + ν̃−h + ν̃+h

, (5.20)

which renders the formulation stable for large discontinuities in ν̃h as well. The diffusive flux
then becomes

F̃
ν̃∗ (

ν̃n−ih

)
= {{F̃

ν̃ (
ν̃n−ih

)
}} − τIP

2
(
ν + ν̃−h

)
(ν + ν̃+h )

cb3
(
2ν + ν̃−h + ν̃+h

) Jν̃n−ih K. (5.21)

The interior penalty parameter τIP according to Equations (3.14) and (3.15) is used. On external
boundaries, we define ν̃+h = −ν̃−h , ∇ν̃+h = ∇ν̃−h and u+

h = −u−h , which are in agreement with
no-slip Dirichlet boundary conditions.
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Explicit Convective Step. The weak form of the convective step is exactly equivalent to Equa-
tion (3.8) and the associated local Lax–Friedrichs flux, so it is not repeated here.

Poisson Equation and Projection. The second derivatives present in the pressure Poisson
equation are again discretized by use of the SIPG method. The formulation of the pressure and
projection step is equivalent to the solver in Equations (3.11) to (3.17) with the modifications
proposed in V3c in Section 3.4.2. In brief, we get(
∇qh,∇pn+1

h

)
Ωe
− 1

2
(
∇qh, Jpn+1

h K
)
∂Ωe
− (qh,P∗ · nΓ)∂Ωe

=
(
∇qh,

γ0

∆t
ûh

)
Ωe

−
(
qh,

γ0

∆t
{{ûh}} · nΓ

)
∂Ωe

, (5.22)

with the flux function including the high-order boundary conditions for the RANS case defined
in Equation (5.12)

P∗ =
{
{{∇pn+1

h }} − τIPJpn+1
h K on ∂ΩΓ

e and

−
(∑J−1

i=0 βi
(
∇ ·F c

(
un−ih

)
+ ν∇×ωn−ih

)
− fn+1

)
on ∂ΩD

e .
(5.23)

Again, the same interior penalty parameter definition as in Equation (3.15) is adopted for τIP

and the vorticity ωh is computed as previously. On ∂ΩD
e the exterior pressure is further set to

p+h = p−h . According to V3c in Section 3.4.2, the projection includes the div-div penalty term and
the partially integrated right-hand side, yielding(
vh, ˆ̂uh

)
Ωe

+
(
∇ · vh, τD∇ · ˆ̂uh

)
Ωe

= (vh, ûh)Ωe
+

(
∇ · vh,

∆t

γ0
pn+1
h

)
Ωe

−
(
vh,

∆t

γ0
{{pn+1

h }}nΓ

)
∂Ωe

. (5.24)

In order to guarantee a stable scheme, we employ an amplification factor of ζ∗D = 10 in Equa-
tion (3.31) for all simulation cases presented with this RANS model. It is noted at this point, that
the present RANS equations compute physical flows with dominant convection, but numerically
the set of equations is viscous-dominated. Therefore, it may be considered in future work to take
into account the viscous stabilization parameter contribution in [197], which was neglected in
Equation (3.30). This modification may allow the use of the standard value of ζ∗D = 1. All DES
examples presented in Sections 5.5 and 9.2 are computed with ζ∗D = 1.

Implicit Viscous Step. The viscous term may in this chapter be discretized either by the SIPG
or NIPG method, as mentioned in Section 3.3.2. To this end, we will consider nonpolynomial
shape functions in Part II of this thesis in conjunction with the present RANS model. As the
standard interior penalty parameter definitions for the SIPG are only available for polynomial
shape functions and the NIPG is theoretically stable with any penalty parameter τIP > 0 [220],
we choose the NIPG at this instance. We get(

vh,
γ0

∆t
un+1
h

)
Ωe

+
(
ε (vh) ,Fν+νt

(
un+1
h

))
Ωe
− s

(
wFν+νt (vh) , Jun+1

h K
)
∂Ωe

−
(
vh,Fν+νt∗

(
un+1
h

)
· nΓ

)
∂Ωe

=
(
vh,

γ0

∆t
ˆ̂uh
)

Ωe

(5.25)
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and take s = −1. Again we deal with possible discontinuities present in the viscosity using
harmonic weighting according to Equation (5.20) by replacing ν̃h with νt. The interior penalty
flux is defined as

Fν+νt∗(un+1
h ) = {{Fν+νt(un+1

h )}} − τIP
2(ν + ν+t )(ν + ν−t )

2ν + ν−t + ν+t
Jun+1

h K (5.26)

and we use the same value for τIP as previously (see Equation (3.15)), as this penalization yields
good results in the computational experiments. A drawback of this nonsymmetric formulation is
that we may only obtain convergence rates of the baseline solver of order k in the L2 norm [109],
in contrast to k + 1 of the original version of the solver employing the SIPG in Chapter 3.

With regard to the extensions of the present solver in Part II of this thesis, where very high
gradients in the solution just at the wall would result in a distinct violation of the no-slip boundary
condition, the results presented herein have been computed with a modified boundary condition.
We employ strong velocity Dirichlet boundary conditions on the viscous step, prescribing u+

h =
u−h = 0 with ∇u+

h = ∇u−h on the face terms whereas no changes are made in the mass term.
A drawback of this modification is that more solver iterations are required in the viscous term.
These boundary conditions are therefore modified once again in Chapter 10, where the standard
weak boundary conditions are considered, however using a ten times higher NIPG stabilization
parameter. This further modification improves the fulfillment of the boundary conditions in a
similar way while exhibiting almost no effect on the number of viscous solver iterations.

5.3.2. Time Stepping
The explicit formulation of both the convective and the diffusive term in the SA equation, as
well as the convective term in the Navier–Stokes equation, restrict the time step size by the CFL
condition (see Section 3.3.3) and the diffusion number D. An adaptive algorithm maximizing
the time step size while fulfilling both conditions is described in the following. The time step
size ∆tNS resulting from a constant Courant number is computed in each step using the adaptive
method presented in Section 3.3.3 and applied for the time-advancement of the Navier–Stokes
equations. A value of Cr = 0.08 has been used for all RANS examples in this Chapter, where
the inverse Jacobian represents a transformation from physical space to a parameter space of unit
length ([0, 1]).

The SA equation is additionally subject to the diffusion number D, which is given as

D

k3 =
(ν + ν̃nh )∆t

SA

cb3h2 (5.27)

with the cell-wise shortest edge length h and the exponent of k determined experimentally as
3 [71]. A value of D = 0.03 has been used for all computations in Section 5.4.1 and D = 0.02
for all examples in Section 5.4.2. As the SA equation is much cheaper to evaluate compared to the
Navier–Stokes equation, a sub-cycling algorithm is employed in case the latter condition restricts
the time-step size, keeping the convective velocity constant during the sub-cycles. The number of
sub-cycles is given by NSA = max(1, d∆tNS/∆tSAe) and defines the final time step to be used for
the SA equation within each Navier–Stokes time step to ∆tSA = ∆tNS/NSA. The time integrator
constants αi, βi, and γ0 for nonequally spaced time intervals may be computed as described in
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Section 3.3.3 independently for the SA and the Navier–Stokes steps, and are recalculated when
necessary. Sub-cycling counts in the simulations of the present chapter are typically in the range
NSA = [1, 50]. If significantly larger NSA occur at higher Reynolds numbers, one may consider
to use an implicit implementation of the SA equation. Such an implicit implementation could
be included in the velocity correction scheme by solving the SA equation together with the
Helmholtz equation in a monolithic way, however requiring nonlinear iterations.

5.3.3. Matrix Formulation
Upon evaluation of all integrals in the Galerkin formulation according to Section 3.5, one arrives
at the matrix formulation, which is presented in the following. The matrix formulation of the
Navier–Stokes step is very similar to Section 3.4.4, the viscous term is now dependent on the
solution of the SA equation, however.

The sub-steps are:

Explicit Spalart–Allmaras Step. The matrix formulation of the explicit SA step becomes

γ0Ñ
n+1 =

J−1∑
i=0

αiÑ
n−i

− ∆tM̃−1
J−1∑
i=0

βi

(
F̃ c
(
Un−i) Ñn−i − F̃ ν̃

(
Ñn−i

)
Ñn−i −Q

(
Un−i, Ñn−i

))
(5.28)

with the eddy viscosity vector Ñ , mass matrix M̃ , convective as well as diffusive flux terms F̃ c

and F̃ ν̃ , source termsQ, and the familiar velocity vector U .

Explicit Convective Step. We proceed with the matrix formulation for the Navier–Stokes steps
as previously with the present velocity-correction method, see Section 3.4.4. The convective term
is first integrated explicitly with

γ0Û =

J−1∑
i=0

αiU
n−i − ∆tM−1

J−1∑
i=0

βiF
c
(
Un−i)Un−i + ∆tF n+1, (5.29)

where the variables Û ,M , F c, and F are known from Chapter 3.

Pressure Poisson Equation and Projection. The pressure Poisson problem does in this case
have Neumann boundary conditions only and yields

LP n+1 =
γ0

∆t
AÛ , (5.30)

with the Laplace and Divergence operators L andA, as well as the pressure vector P . Using the
pressure available, a divergence-free velocity vector ˆ̂U may be obtained by the local projection,
including the div-div penalty matrixD:

(M + τDD) ˆ̂U =

(
MÛ +

∆t

γ0
BP n+1

)
(5.31)
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Table 5.1.: SA-RANS: Channel flow cases and resolutions. Nei number of elements per spatial
direction i, Reτ friction Reynolds number, γ mesh stretching parameter, and ∆y+1e
width of first off-wall element. All computations employ k = 4 as the polynomial
degree.

case Ne1×Ne2 Reτ γ ∆y+1e
ch SA 16×16 180 1.8 5.5

16×16 395 2.0 9.3
16×16 590 2.25 9.8
32×32 950 2.0 9.8
32×64 2,000 2.0 9.7

with the gradient operatorB. As with the standard velocity-correction scheme, the projection is
a local problem since the matrix is block-diagonal.

Implicit Viscous Step. Finally, we arrive at the velocity solution at time tn+1 = tn + ∆t by
solving the Helmholtz equation, given as(γ0

∆t
M − F ν+νt

(
Ñn+1

))
Un+1 =

γ0

∆t
M ˆ̂U , (5.32)

where the viscous flux is denoted by F ν+νt and is dependent on the SA solution.
The solution strategies for all substeps are equivalent to the ones of Chapter 3, except that a

preconditioned GMRES instead of CG solver is employed for the nonsymmetric viscous prob-
lem.

5.4. Numerical Examples
The present approach is validated through the two numerical examples of turbulent channel flow
and periodic hill flow. All computations are carried out with a scheme of temporal accuracy of
second order (BDF2) including adaptive time stepping and we take the spatial polynomial degree
of k = 4 for velocity, pressure, and the eddy viscosity working variable, which has performed
best in terms of accuracy and time-to-solution in preliminary investigations.

Figure 5.1.: SA-RANS: Turbulent channel flow at Reτ = 590: Numerical solution of the stream-
wise velocity (left) and solution of the eddy-viscosity working variable (right). Red
indicates high and blue low values.
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Figure 5.2.: SA-RANS: Velocity solution of turbulent channel flow u+ = u/uτ for Reτ = 180,
395, 590, 950, and 2,000, each shifted upwards by three units for clarity. All com-
putations have been carried out with k = 4 and meshes according to Table 5.1.

5.4.1. Turbulent Channel Flow

We consider turbulent channel flow using a similar setup as for the eddy-resolving simulations
in the previous chapter, however in two space dimensions only. The computational domain is of
the dimensions 2π×2δ in streamwise and wall-normal direction, respectively. Periodic boundary
conditions are specified in streamwise direction and no-slip boundary conditions are prescribed
at the solid walls. The flow is driven by a constant body force derived from the nominal quantities
and the velocity is normalized using the numerical wall shear stress in u+ = u/uτ with uτ =√
τw/ρ. We consider five Reynolds numbers according to the available reference data by [187]

up to Reτ = 590, by [6] (Reτ = 950), and by [116] (Reτ = 2,000). Regarding the resolution of
the laminar sublayer, a priori investigations in Section 8.1 have shown that a sufficient criterion
for RANS in the present high-order context is to require that the width of the first off-wall cell
should be smaller than ∆y+1e < 10 if a polynomial degree of k = 4 is used, such that the first
off-wall Gauss–Lobatto node is located below y+1,GL = 1.7 according to Table 5.1. All simulation
cases and resolutions are presented in Table 5.1. The time step is adaptively computed based
on Cr = 0.08 and D = 0.03. The solution for Reτ = 590 is visualized in Figure 5.1 via the
streamwise velocity and the eddy viscosity working variable.

Profiles of the mean streamwise velocity are shown in Figure 5.2 for all cases. Excellent agree-
ment with the reference data is observed overall, in particular in the log-layer. In the buffer layer,
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Figure 5.3.: SA-RANS: Profiles of ν̃, the eddy-viscosity-like variable of the SA model for Reτ =
590, 950, and 2,000 in comparison to the analytical log-layer solution of νt.

the SA model exhibits a small modeling error, since the mean velocity is slightly overestimated
in comparison to the DNS.

Further, the profiles of the working variable of the SA model are plotted in Figure 5.3. Therein,
the numerical results are compared to the analytical solution in the log-layer, which is given as
a linear relation with respect to the wall coordinate by ν̃ = κy+ν [134]. This result may for
example be obtained by considering Prandtl’s mixing length model (Equation (2.16)) according
to νt = (κy)2 |du/dy|. Inserting the velocity profile of the log-layer yields directly νt = κy+ν
and we have ν̃ ≈ νt in the log-layer. A comparison with the numerical profiles of ν̃ shows good
agreement between the curves within the log-layer up to approximately y/δ = 0.2. Moreover,
the working variable of the SA model extends the linear profile to the viscous sublayer such that
the numerical resolution requirements of ν̃h in the inner layer are very low.

5.4.2. Flow over Periodic Hills

As a second numerical example, flow over periodic hills is considered according to Section 4.3
at a Reynolds number of ReH = 10,595 and according to Rapp and Manhart [211] of ReH =
19,000. As noted earlier, this example has been investigated rigorously regarding RANS within
the European ATAAC initiative [232] (see the final report by Jakirlić for a cross-comparison of
the results) as well as Jakirlić and co-workers; see, e.g., [125].

The simulation setup is similar to Section 4.3, but considers a 2D domain only. The domain is
of the dimensions 9H × 3.036H in streamwise and vertical direction, respectively, with no-slip
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Table 5.2.: SA-RANS: Simulation cases and resolutions of the periodic hill benchmark. ReH =
10,595: ph10595 SA Ref wall resolved RANS simulation, NTS SA Ref reference
using the SA model [123], DNS 10595 DNS according to Section 4.3. ReH = 19,000:
ph10595 SA Ref wall resolved RANS simulation, RM EXP experiments [211]. Res-
olutions are specified in terms of elements per direction Nei and grid points Ni =
Nei(k + 1).

case ReH approach Ne1×Ne2 N1×N2×N3 x1,reatt/H

ph10595 SA Ref 10,595 RANS (SA) 64×32 320×160 7.68
NTS SA Ref 10,595 RANS (SA) - 161× 161 7.7
DNS 10595 10,595 DNS - 896×448×448 4.51
ph19000 SA Ref 19,000 RANS (SA) 64×32 320×160 7.67
RM EXP 19,000 experiment - - 3.94

boundary conditions at the top and bottom wall and periodic boundary conditions in streamwise
direction. The meshes considered consist of 64×32 cells for both Reynolds numbers, and the grid
is stretched towards the boundary in order yield a good resolution of the near-wall area. While
almost all cells at the wall fulfill the requirement of y+1e < 10 for the lower Reynolds number,
the sharp peak present in the wall shear stress yields a minor violation of this relation. Although
the grid stretching ratio is higher for the higher Reynolds number, the near-wall resolution lies
at approximately y+1e = 15 at the upper wall and reaches a peak of y+1e = 20 near the hill crest
at the lower wall, which can be considered to be just sufficient for the accurate prediction of the
mean velocity. An overview of the meshes and cases is given in Table 5.2. The adaptive time
stepping algorithm according to Section 5.3.2 with Cr = 0.08 and D = 0.02 is used. The flow at
ReH = 10,595 is visualized via the components of the mean velocity, the pressure, and the eddy
viscosity working variable in Figure 5.4.

Figure 5.4.: SA-RANS: Turbulent flow over periodic hills at ReH = 10,595. Solution of the
streamwise velocity (upper left), vertical velocity (upper right), pressure (lower left),
and solution of the eddy-viscosity working variable (lower right). Red indicates high
and blue low values.
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Figure 5.5.: SA-RANS: Friction coefficient (left) and pressure coefficients (right) for ReH =
10,595 comparing resolved RANS simulations with DNS data. The shallower pres-
sure curves correspond to the top wall. For the case NTS SA Ref, there is no cf -
reference data available between x1/H = 8.3 and x1/H = 8.8.

The results are compared to three data sets, which are also included in Table 5.2. For the
case ReH = 10,595, the DNS reference data presented in Section 4.3 is employed, which is
labeled in the figures as DNS 10595. The experimental data of Rapp and Manhart [211] is used
as a reference for ReH = 19,000, labeled RM EXP. As further reference data, we consider
a wall-resolved simulation of the case ReH = 10,595 using the SA model, which has been
conducted by Strelets and Adamian within the ATAAC project and has been extracted from
vector-graphics plots in [123]. This reference data is labeled NTS SA Ref. Since we use the
same RANS approach, we expect good agreement to the latter RANS simulation. We also expect
considerable differences between the SA solution and the DNS or experimental results since
RANS turbulence models generally have difficulties in predicting the flow separation from the
curved boundary of this flow example [125].

105



5. Extension to RANS and DES

0 1 2 3 4 5 6 7 8 9

0

0.5

1

1.5

2

2.5

3

u/ub + x1/H

x
2
/H

 

 

0 1 2 3 4 5 6 7 8 9

0

0.5

1

1.5

2

2.5

3

4v/ub + x1/H

x
2
/H

DNS 10595 NTS SA Ref ph10595 SA Ref

Figure 5.6.: SA-RANS: Streamwise (top) and vertical (bottom) velocity components u and v of
flow past periodic hills at ReH = 10,595. Comparison of RANS and DNS data.
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Figure 5.7.: SA-RANS: Streamwise (top) and vertical (bottom) velocity components u and v of
flow past periodic hills at ReH = 19,000. Comparison of RANS and reference data.
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The skin friction and pressure coefficients are shown in Figure 5.5 for ReH = 10,595.
The comparison of the available skin friction data yields very good agreement with the case
NTS SA Ref. The accordance with the DNS is less satisfactory, however. Due to the good agree-
ment between the RANS cases, it may be concluded that this error stems from the SA model,
and not from the numerical discretization. The conclusions drawn from the comparison of the
SA results with the DNS regarding the pressure coefficient are accordingly. Reference data using
the SA model are not available for these quantities, however.

The mean streamwise and vertical velocity is shown in Figure 5.6 for the Reynolds number
ReH = 10,595 at ten streamwise stations. The results exhibit a similar quality as for the skin
friction. The agreement with the RANS data is very good, the differences to the DNS are sub-
stantial, however. The picture is analogous for the mean velocity profiles at ReH = 19,000,
shown in Figure 5.7.

Figure 5.8.: SA-DDES: Turbulent channel flow at Reτ = 950: Contour of the instantaneous
velocity magnitude (left) and solution of the eddy-viscosity working variable (right).
Red indicates high and blue low values.

5.5. Application to Detached-Eddy Simulation
The deficiencies of the SA-RANS model for the periodic hill flow example motivate an extension
of the solver to DES according to Spalart et al. [244], see also the introduction in Section 2.3.4. In
DES, the RANS model acts as a statistical model in the near-wall region only. Further away from
the wall, the inhomogeneous energy carrying eddies are comparably large and their resolution
is often affordable (see Section 2.1.3). The idea of DES is therefore to modify the SA model in
such a way that it acts as an LES subgrid model in the bulk flow and the most important unsteady
turbulent motions are resolved. The statistical modeling of the boundary layer turbulence allows
very coarse cell sizes in the wall-parallel directions in comparison to the length scales of the
turbulent eddies. The numerical methods presented herein can be used for both the WMLES and
the classical DES branch (see Section 2.3.4), but the numerical tests in this section will focus on
WMLES.

The original DES methodology modifies the SA model by limiting the wall distance function
y present in the source term (Equation (5.4)) with a characteristic cell length h according to

yDES = min(y, CDESh), (5.33)

where the parameter CDES has been calibrated to CDES = 0.65 and the grid length scale is defined
as the maximum of the cell length over the space dimensions h = max(∆x1,∆x2,∆x3) [236].
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Table 5.3.: SA-DDES: Channel flow cases and resolutions. Specification of the first off-wall
node through y+1,GL = y1,GLuτ/ν. Resolutions are specified in terms of elements per
direction Nei and grid points Ni = Nei(k + 1).

Case Ne1×Ne2×Ne3 k N1×N2×N3 Reτ γ ∆y+1,GL

ch950 N16×16×8 k4 DDES 16×16×8 4 80×80×40 950 2.75 1.32
ch2000 N16×32×8 k4 DDES 16×32×8 4 80×160×40 2,000 2.75 1.16

As a result, the RANS model acts as a one-equation LES model if y > CDESh. In this work,
we consider the enhanced version of this approach by Spalart et al. [243], which is denoted by
delayed detached eddy simulation (DDES). This variant is given by the functions

rd =
ν + νt√

(∇u)ij(∇u)ijκ2y2
, (5.34)

fd = 1− tanh
(
(8rd)3) , (5.35)

which results in the new length scale

yDDES = y − fd max(0, y − CDESh). (5.36)

The increasing resolution power of the DG scheme with increasing polynomial degree should
be taken into account in the (D)DES grid length scale h [267]. Based on the analysis of the
resolution power of DG schemes performed in [188], we choose

h =
max(∆xe1,∆xe2,∆xe3)

k + 1
(5.37)

as a length scale, with the given cell size ∆xei in the respective space dimension i, in contrast to
the factor of 1/k chosen in [267]. The DDES methodology was previously successfully applied
within high-order DG for example in [179, 267].

For the following assessment of the DDES approach, we consider the RANS solver presented
in this chapter and employ BDF2 time integration with the corresponding adaptive time stepping
algorithm using Cr = 0.14 and D = 0.02 for all simulation cases. The Dirichlet boundary
conditions are applied weakly as in the standard solver in Chapter 3.

5.5.1. Turbulent Channel Flow
The DDES approach is investigated using two turbulent channel flow simulations at Reτ = 950
and 2,000 by considering the setup of Section 4.2. Table 5.3 summarizes the properties of the
simulation cases and shows the resolution of the near-wall criterion. The spatial discretizations
consist of 16 cells in streamwise and 8 cells in spanwise direction for both Reynolds numbers,
yielding a switching location between the RANS and LES modes of the DDES model of y/δ ≈
0.05. This choice of parameters clearly yields a WMLES, since solely the near-wall region is
computed in RANS mode and the turbulent structures in the outer layer are explicitly computed.
The number of wall-normal grid points is adjusted in order to enable a good resolution of the
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Figure 5.9.: SA-DDES of turbulent channel flow at Reτ = 950 and 2,000: Mean velocity
u+ = u1/uτ (top) and RMS velocities u′+ = RMS(u1)/uτ , v′+ = RMS(u2)/uτ ,
and w′+ = RMS(u3)/uτ as well as RSS (u′v′)+ = (u1u2)/u

2
τ (bottom). For the case

Reτ = 2,000, the mean velocity is shifted upwards by six units and all other quanti-
ties by one unit for clarity. The symbol indicates the switching location between the
RANS and LES modes of the DDES model (y/δ ≈ 0.05).
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Table 5.4.: SA-DDES: Simulation cases and resolutions of the periodic hill benchmark at
ReH = 10,595. DDES: ph10595 N32×16×16 k4 DDES coarse DDES sim-
ulation, ph10595 N64×32×32 k4 DDES fine DDES simulation; ILES accord-
ing to Section 4.3: ph10595 N32×16×16 k4 ILES coarse ILES simulation,
ph10595 N64×32×32 k4 ILES fine ILES simulation; DNS according to Sec-
tion 4.3: DNS 10595. Resolutions are specified in terms of elements per direction
Nei and grid points Ni = Nei(k + 1).

case approach Ne1×Ne2×Ne3 N1×N2×N3 x1,reatt/H

ph10595 N32×16×16 k4 DDES DDES 32×16×16 160×80×80 5.02
ph10595 N64×32×32 k4 DDES DDES 64×32×32 320×160×160 4.50
ph10595 N32×16×16 k4 ILES ILES 32×16×16 160×80×80 3.90
ph10595 N64×32×32 k4 ILES ILES 64×32×32 320×160×160 4.22
DNS 10595 DNS - 896×448×448 4.51

viscous sublayer. The instantaneous flow field at the lower Reynolds number is visualized in
Figure 5.8.

The velocity statistics are compared to the DNS according to [6] and [116] in Figure 5.9. The
mean velocity agrees well with the DNS up to the outer edge of the inner layer, where the RANS
mode is active, and subsequently sees a so-called log-layer mismatch [205, 268], which is typical
for wall-modeling DES. The reason for this behavior is that the turbulence is modeled entirely
in the inner layer, but the momentum transfer relies on the resolved turbulent eddies in the outer
layer. Between these regions, the turbulent motions are not fully developed nor is the RANS
model fully active, which yields an error in the sum of the modeled and resolved shear stress.
Possible improvements of the DDES model that reduce the effect of this issue are presented
in [237].

5.5.2. Flow over Periodic Hills

The DDES solver is further assessed via flow over periodic hills at ReH = 10,595 using the
computational setup according to Section 4.3. Regarding DDES, this flow was assessed within
the ATAAC project including several alternative hybrid RANS/LES methods (see the final report
by Jakirlić for cross-comparison of results). Two meshes are considered, 32×16×16 cells and
64×32×32 cells, both with k = 4. These meshes are very similar to the coarse and medium
mesh used for the ILES h refinement study in Section 4.3.5. The location of the first off-wall
Gauss–Lobatto node is plotted in Figure 5.10. An instantaneous numerical solution is displayed
in Figure 5.11.

The skin friction and pressure coefficients are compared in Figure 5.12 to the case DNS 10595
discussed in Chapter 4. The skin friction at the lower and upper walls is in excellent agreement
with the DNS for both cases. In accordance with the accurate prediction of the skin friction
curves at the lower wall, the length of the recirculation bubble is predicted well for both cases
as 5.02H and 4.50H for the coarser and finer mesh, respectively, according to Table 5.4. These
results are in fact much more accurate than the ILES cases presented in the preceding chapter
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Figure 5.10.: SA-DDES: Flow over periodic hills: Location of first off-wall Gauss–Lobatto point
∆y+1,GL (left) as well as normalized grid spacings in streamwise and spanwise direc-
tion ∆x+ = ∆z+ (right). The shallower curves correspond to the upper wall.

Figure 5.11.: SA-DDES of turbulent flow over periodic hills at ReH = 10,595 using the coarser
mesh. Instantaneous DDES solution of the streamwise velocity (upper left), verti-
cal velocity (upper right), pressure (lower left), and solution of the eddy-viscosity
working variable (lower right). Red indicates high and blue low values.

with similar meshes, which predicted a shorter recirculation bubble (see reattachment lengths
included in Table 4.5). The pressure coefficient is also in remarkable agreement with the DNS.

The profiles of the mean streamwise velocity, mean vertical velocity, RSS, and TKE are plot-
ted in Figure 5.13. Analogous to the high accuracy of the skin friction curves, these profiles
agree very well with the DNS. Solely in the TKE distributions, unphysical peaks are visible at
the boundaries of the cells, these appear to be smaller than for the ILES of the corresponding
meshes in the previous chapter, however.

5.6. Summary
In this chapter, we extended the dual-splitting scheme by an additional step, in which the SA
equation is solved. This method provides a numerical approach that is relatively simple to im-
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Figure 5.12.: SA-DDES: Skin friction (top) and pressure (bottom) coefficients of flow over peri-
odic hills. The shallower curves correspond to the upper wall.

plement based on an existing flow solver using the velocity correction scheme. The approach has
been applied to RANS and DES of turbulent channel flow as well as flow over periodic hills. A
drawback may be that the scheme requires many time steps in comparison to the temporal time
scales of unsteady RANS simulations. This fact renders implicit schemes more efficient for most
applications, but the present method is sufficient for analyzing and validating the wall modeling
approach presented in Part II of this thesis. The drawback is also relieved when DES is applied
as a wall model, where turbulent motions are explicitly computed in the outer boundary layer,
which have much smaller time scales.

The efficiency of the present DES method seems to be limited by two factors. If applied as a
wall model for LES, the results show a log-layer mismatch in the turbulent channel flow example.
In addition, while DES allows the application of relatively coarse meshes in the streamwise and
spanwise direction, the wall-normal direction necessitates many grid points in order to resolve
the laminar sublayer with y+1 ∼ 1. The first issue may for example be improved by tuning the

112



5.6. Summary

0 1 2 3 4 5 6 7 8 9

0

1

2

3

u/ub + x1/H

x
2
/H

 

 

0 1 2 3 4 5 6 7 8 9

0

1

2

3

x
2
/H

5v/ub + x1/H

0 1 2 3 4 5 6 7 8 9

0

1

2

3

20u′v′/u2
b + x1/H

x
2
/H

0 1 2 3 4 5 6 7 8 9

0

1

2

3

15K/u2
b + x1/H

x
2
/H

DNS 10595

 

 

ph10595 32×16×16 k4 DDES

ph10595 64×32×32 k4 DDES

Figure 5.13.: SA-DDES: Profiles of mean velocity in streamwise and vertical direction u and v,
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5. Extension to RANS and DES

LES length scale in the DES according to [237]. As an alternative, both issues are addressed by
the wall modeling approach presented in Part II of the present thesis.
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Wall Modeling via Function Enrichment
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6
Wall Modeling via Function Enrichment:

Motivation, Formulation, Implementation

Wall modeling is the key technology for making industrial high-Reynolds-number flows acces-
sible to computational analysis. In the second part of this thesis, a novel approach to computing
the near-wall region in turbulent boundary layers is proposed, which significantly reduces the
computational complexity compared to wall-resolved simulations at the same time as the full
consistency in the numerical method is maintained. The function space of the Galerkin method
is locally ‘enriched’ in such a way that it includes the law-of-the-wall in additional shape func-
tions, besides the standard polynomial ones. The Galerkin method then automatically finds the
optimal solution among all shape functions available. This construction allows the use of much
larger cells in the near-wall region than in wall-resolved simulations since the numerical method
is a priori capable of resolving a turbulent boundary layer. The idea gives the wall model vast
flexibility in nonequilibrium boundary layers and is fully consistent, since the Navier–Stokes
equations are computed in the whole boundary layer. The consistency of the wall model is nec-
essary in order to guarantee the requirement of accuracy as defined in the introduction (Sec-
tion 1.1).

The aim of this chapter is to introduce the basic concepts of this wall modeling technique.
In order to allow for a comparison with other wall modeling approaches, we begin with the ba-
sic challenges related to the simulation of turbulent boundary layers and subsequently discuss
how current flow simulation methodologies tackle these challenges. The new approach, wall
modeling via function enrichment, is proposed in Section 6.3 for the DG and continuous FEM,
including a review of potential enrichment functions as well as algorithms for spatial and tem-
poral adaptation. The wall model is applied and assessed in the subsequent chapters in different
scenarios, including the continuous FEM (Chapter 7) and DG (Chapters 8 to 10), as well as
wall modeling in LES (Chapters 7, 9, and 10) and RANS (Chapter 8). This chapter represents a
summary of the methods developed in Krank and Wall [153, 154], Krank et al. [150–152],and
Kronbichler et al. [159, 160]).

6.1. The two Challenges in Computing Turbulent Boundary
Layers

The simulation of turbulent boundary layers at high Reynolds number faces two fundamental
challenges, which have to be addressed by any CFD approach. The velocity gradient is extremely
sharp in the viscous sublayer just at the wall, and the whole boundary layer features a multitude
of length and time scales, see Sections 2.1.3 and 2.1.4. Subsequent to the following discussion of
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Figure 6.1.: Numerical velocity solution of turbulent channel flow u+ = u/uτ at Reτ = 100,000.

these two challenges, the most common wall modeling approaches are reviewed with a particular
focus on their strategies of tackling the challenges.

Velocity Gradient. In order to visualize the dimensions of the gradient, Figure 6.1 shows the
numerical solution of turbulent channel flow at Reτ = 100,000 plotted over the channel half
height. Just at the wall, the velocity gradient is du+/d(y/δ) = 100,000! This gradient has to be
resolved or modeled in order to capture the skin friction accurately, which is of primary engineer-
ing interest. If this gradient has to be resolved by the numerical scheme, Nikitin et al. [195] sug-
gest to place the first off-wall grid point around y+ = 1 and to consecutively stretch the grid by a
grid stretching factor of 1.15. This procedure yields a logarithmic scaling of the required number
of grid points with Reτ , which makes high Reynolds numbers in principle accessible. Yet, for a
boundary layer spanning 100,000 wall units, 69 wall-normal grid layers would be required, and
this number increases by 17 additional layers for every order of magnitude in Reτ [195]. This is
a very high cost in terms of computational complexity and storage requirements in comparison
to the low engineering interest in the detailed velocity profile in the log-layer.

Turbulent Spatial and Temporal Scales. The turbulent scales present in the near-wall region
have to be resolved or modeled in order to predict the velocity profile accurately, and thus the
skin friction. The spatial mesh requirements for resolving the scales near the laminar sublayer
are ∆x+ = 100 and ∆z+ = 20 according to Chapman [42]. This scaling in wall units yields
an increase of the required number of grid points for LES with Re2

τ [12] and an additional
scaling of the number of time steps with Reτ due to the proportionality of the time step with the
streamwise grid length according to the CFL condition, but also to resolve the temporal scales.
Considering again the example of turbulent channel flow at Reτ = 100,000, we may estimate the
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requirements by a comparison with the LES computations presented in Chapter 4, which yields
approximately 1.5e10 grid points and 1.7e8 time steps. The spatial resolution alone seems to be
feasible as may be seen from the strong scaling plot in Figure 3.8, where INDEXA was scaled
up to 0.86e10 grid points. However, each time step would with such a grid topology take more
than one second wall time, which equals an overall computation time of approximately 5.4 years.
Computation times of this order are not practicable, nor can a consumption of electricity of the
order of 1e8kWh in a single computation be justified. These excessive resolution requirements
originate from the fact that the energetic eddies are very small in the near-wall area, in particular
the streaks in the buffer layer, as it was discussed in Section 2.1.3 (see also Figure 2.5), and their
size is universal in wall units. Within the log-layer, the largest scales are of similar size as the
wall distance, so the resolution requirement for LES is much lower further away from the wall.
The energy-carrying eddies in the outer layer scale in the length scale of the boundary conditions
and it is affordable to compute these vortices. This example highlights the need for modeling the
turbulent motions near the wall.

In addition to these two challenges, any wall modeling technique has to fulfill the underlying
partial differential equations, the Navier–Stokes equations, as accurately as possible. In particu-
lar, none of the terms should be neglected entirely, since for example high longitudinal pressure
gradients can lead to a nonequilibrium state in the boundary layer (see Section 2.1.3), where
the velocity profile deviates from the equilibrium one. This has shown to be of significance es-
pecially in the inner boundary layer, since nonequilibrium conditions yield an immediate effect
on the boundary layer in that region [47]. The next section discusses how state of the art CFD
approaches deal with these two challenges.

6.2. A Review of Wall Modeling Approaches for CFD
In Section 2.3.4, we have introduced two wall modeling methodologies: hybrid RANS/LES and
wall-stress models. In this section, we discuss how these wall models deal with the two chal-
lenges presented in the previous section. In addition, the problems resulting from the basic de-
sign of each wall modeling approach are reviewed. Three modeling approaches are considered
in this discussion: DES, wall-stress models using wall functions, and the extension of the lat-
ter to the TLM. The arguments are summarized in Table 6.1, considering the categories: are
the Navier–Stokes equations satisfied or modeled?, is the near-wall turbulence resolved or mod-
eled?, is the velocity gradient resolved or modeled?, as well as the computational cost in terms of
the scaling of the grid point requirements with the Reynolds number. For comparison, the DNS
and LES approaches are included as well, where the Navier–Stokes equations are satisfied, the
near-wall turbulence is essentially fully resolved in both approaches, the gradient is resolved,
and the scaling of the computational cost is given according to Section 2.3.

6.2.1. Detached-Eddy Simulation
In DES, the Navier–Stokes equations are satisfied, since the governing equations are solved in
the whole boundary layer. The near-wall turbulence is modeled in both approaches in a statistical
sense by the RANS model. Estimates of the cost of DES lie in a wide range and depend on the
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Table 6.1.: A comparison of eddy-resolving simulation approaches for turbulent boundary lay-
ers. The table shows the simulation methodology (DNS: direct numerical simula-
tion, LES: large-eddy simulation, DES: detached-eddy simulation, TLM: two-layer
model, WSM: wall-stress model, WME (WMLES/DES): wall modeling via function
enrichment applied in conjunction with WMLES or DES), how the Navier–Stokes
equations are considered (discretely satisfied or modeled), if the near-wall turbulence
is resolved or modeled, if the velocity gradient is resolved or modeled, and the com-
putational cost in required number of grid points.

methodology Navier–Stokes near-wall turb. gradient cost
DNS satisfied resolved resolved Re2.25 [40] to Re2.65 [45]
LES satisfied resolved resolved Re1.8 [42] to Re1.85 [45]
DES (WMLES) satisfied modeled resolved Re0.4 [42] to Re [45]
DES satisfied modeled resolved 0.1 to 0.01 · cost(WMLES) [168]
WSM modeled modeled modeled Re0.4 [42] to Re [45]
TLM satisfied (TBLE) modeled resolved Re0.4 [42] to Re0.9 [204]
WME (WMLES) satisfied modeled modeled Re0.4 to Re
WME (DES) satisfied modeled modeled < cost(DES)

location of the RANS/LES interface; DES may either be used to compute the whole boundary
layer in RANS mode or as a wall model in LES (see Section 2.3.4). Regarding the WMLES
branch, Chapman [42] estimates the spatial resolution requirements of simulations, in which the
near-wall turbulence is modeled, to Re0.4, whereas Nikitin et al. [195] derive the relation of Re0.9

(see also [204]), and Choi and Moin [45] derive a scaling for WMLES with Re for a flat plate
boundary layer. If DES is used to model the turbulence in the whole boundary layer, the cost
can be significantly lower, since the wall-parallel grid length can be of the order of the boundary
layer thickness, whereas approximately 10 times more cells are required in each wall-parallel
direction in the WMLES branch [168].

What is often neglected in these estimates is the cost for resolving the gradient. As became
clear in the previous section, the corresponding grid point requirements scale logarithmically,
so they increase slowly indeed in the high-Reynolds number range (y+ > 5,000), but the first
5,000 wall units in the wall-normal direction come along with a fixed cost of approximately 48
layers of grid points (see Section 6.1). In addition, if larger cells could be used in the near-wall
region, the cells in the subsequent layers could be larger as well due to the limitation of the grid
stretching factor. Another issue with DES is the RANS/LES transition region if DES is used as a
wall model for the inner layer only. The problem is that “LES content has to be generated in the
outer part of the boundary layer” [223] since the momentum transfer is fully modeled in RANS
but relies on the turbulent structures in LES. The result of this effect can be a so-called log-layer
mismatch [205, 268], see the results obtained for turbulent channel flow in Section 5.5.1. A
careful choice of the model parameters may solve this issue [237]; alternative approaches exist
such as artificial forcing [139], which yields a narrower ‘gray area’ in the RANS/LES transition
region.
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6.2.2. WMLES Using Wall-Stress Models

The idea of wall-stress models is to model the inner layer by means of a wall function and to
compute the outer layer via LES; see, e.g., [204]. The application of wall functions implies that
the Navier–Stokes equations are modeled and the velocity profile of an equilibrium boundary
layer can be used, although the wall functions may include an empirical correction for the pres-
sure gradient. As an alternative to using wall functions, the wall shear stress can be modeled
directly, as for example in the Werner and Wengle model [261]. By modeling the wall shear
stress, the near-wall turbulence is modeled as well. One major advantage of wall-stress models
is that the velocity gradient is not resolved explicitly, but included in the wall model. This fact
allows the use of relatively uniform cell sizes in the whole computational domain. The computa-
tional cost scales as Re0.4 [42] to Re [45], and the cost can be of one to two orders of magnitude
higher than in the classical DES, since the outer layer is resolved [168].

A clear drawback of this approach is that nonequilibrium boundary layers cannot be computed
with the same fidelity as LES and DES (WMLES), since the Navier–Stokes equations are not
discretized in the inner boundary layer. As it is discussed in [47], it is impossible to define a one-
parameter wall function that takes into account all nonequilibrum effects. Some examples of
failing wall-stress models will be shown in the context of the periodic hill flow in Chapters 7.3.2
and 10.5.2. Advanced wall functions seek to improve this problem by including corrections for
convective and pressure-gradient effects; see, e.g., [235, 269] and also the assessment in [89]. An
issue with wall-stress models is the choice of the coupling point at which the velocity is taken
as input for the wall model. A location closer to the wall may improve the validity of the wall
function, but the turbulent motions are marginally resolved in the first and second off-wall grid
layer, so the coupling point should be placed further inside the domain.

6.2.3. WMLES Using the Two-Layer Model

More accurate TLM have been developed, which solve the simplified TBLE on a separate do-
main between the wall and the first off-wall node to predict the momentum transfer inside the
boundary layer [14, 260], see also [203, 204] for a comprehensive overview. These models can
be seen as a compromise between DES and wall-stress models. As the Navier–Stokes equa-
tions are solved in the near-wall region, they are satisfied with good approximation in the inner
layer. The unresolved turbulent motions can be modeled by an algebraic RANS model, which
provides sufficient accuracy in the inner layer [44, 204], and the velocity gradient is resolved
as well. These characteristics make this methodology quite similar to DES (WMLES), but the
RANS/LES coupling is handled differently. Accordingly, the computational cost is expected to
lie in a similar range as wall-stress models and DES (WMLES). Recent developments in this
field include an application with unstructured grids [26, 200], improvement of wall shear stress
predictions in equilibrium boundary layers [137, 138, 200], laminar-turbulent transition [26, 27]
and applications of the TBLE with further simplifications [44, 46]. If the simplifications neglect
entire terms in the Navier–Stokes equations, the same problems in accuracy as with simple wall-
stress models can arise, however. In this context, see also the assessment of the TLM in [89],
which concludes that the convective term should not be neglected if the pressure gradient is
considered, otherwise the results can even be worse than the predictions of simple equilibrium
models.
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6.2.4. Preview of Wall Modeling via Function Enrichment

Finally, we give a preview of the novel approach presented in Section 6.3 within these categories.
Wall modeling via function enrichment satisfies the Navier–Stokes equations in a discrete sense,
which makes it well-suited for nonequilibrium conditions, and the near-wall turbulence is mod-
eled. What is unique with this method in comparison to all existing methods is that the velocity
gradient is modeled to a certain extent, at the same time as the Navier–Stokes equations are
satisfied. This may be seen in the overview in Table 6.1.

The method has at least two branches analogous to DES. It may be applied in conjunction with
the classical DES turbulence modeling approach, where the turbulence in the whole boundary
layer is modeled, or with a WMLES approach with RANS in the inner layer and LES in the
outer layer on the same grid. Since the gradient is modeled in the inner layer, the computational
complexity is significantly reduced in comparison to DES. For example, the first off-wall grid
node can typically be placed in the region of 100 wall units, which yields a saving of 20 grid
point layers according to the grid stretching discussed previously. Due to the lower aspect ratio
of the cells in the computational domain, the actual saving should be much higher since the
mesh can be coarser in the outer layer as well and due to the easier solution of linear systems in
implicit schemes. In explicit schemes, the larger cells result in an even larger saving due to the
significantly relaxed time step restrictions. Finally, despite the similarity with DES regarding the
turbulence modeling, the approach enables the construction of a multiscale turbulence model,
which does not show a log-layer mismatch by default.

6.2.5. Wall Modeling in RANS

We close this section with a brief comment on wall modeling in RANS. The advantage of wall
modeling in this context is that the velocity gradient does not have to be resolved. Common
techniques employ wall functions analogous to wall-stress models [64, 169], so both the gra-
dient and the Navier–Stokes equations are modeled. If wall modeling via function enrichment
is applied to RANS, the resolution requirements are reduced in a similar way, but the Navier–
Stokes equations are satisfied in a discrete sense. These aspects are summarized in Table 6.2.
A comparison of the computational cost is not possible, since the wall-parallel resolution re-
quirements are given through the geometry of the flow problem rather than the boundary layer
properties. However, the saving in the wall-normal direction is analogous to DES and WMLES,
so wall modeling via function enrichment can model of the order of 20 to 40 grid layers plus
significant advantages in the conditioning of the equation system.

6.3. Capturing the Gradient via Function Enrichment

The primary innovation of this work is a novel approach to wall modeling, which combines the
advantage of large discretization cells at the wall with high accuracy in nonequilibrium boundary
layers. This is done by constructing a problem-tailored numerical method that is inherently capa-
ble of resolving high velocity gradients with very coarse meshes (y+1 ∼ 10 to 1000) similarly to
the aforementioned wall-stress models, while preserving consistency and flexibility in nonequi-
librium boundary layers. The basic idea is that a wall function is inserted into the function space
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Table 6.2.: A comparison of RANS approaches for turbulent boundary layers. The table shows
the simulation methodology (RANS: wall-resolved, WME (RANS): wall modeling
via function enrichment with RANS), how the Navier–Stokes equations are consid-
ered (discretely satisfied or modeled), if the near-wall turbulence is resolved or mod-
eled, and if the velocity gradient is resolved or modeled.

methodology Navier–Stokes near-wall turb. gradient
RANS satisfied modeled resolved
RANS (wall-modeled) modeled modeled modeled
WME (RANS) satisfied modeled modeled

of the Galerkin method in addition to the standard polynomial component. With such a function
space available, it is a basic characteristic of all Galerkin methods that the method automatically
tries to find an optimal solution using these shape functions. In this section, we first give a review
of similar enrichment techniques applied to other physical phenomena. The general framework
used for such a function enrichment is presented in Subsections 6.3.2.1 and 6.3.2.2, possible
enrichment functions are reviewed in Subsection 6.3.2.3, and aspects related to the spatial and
temporal adaptation of the method are discussed in Subsection 6.3.2.4. We comment on the po-
tential regarding turbulence modeling with the present methodology in Subsection 6.3.2.5, which
will be detailed in Chapters 7 to 10 using different approaches. Finally, aspects of implementing
such a function enrichment are explained in Section 6.3.3.

6.3.1. Function Enrichment: Applications with High Gradients

The first framework for designing customized numerical methods was introduced by Melenk
and Babuška [183] with their partition-of-unity method (PUM). Belytschko and Black [21] sub-
sequently suggested a formalism that allows for the construction of a problem-tailored computa-
tional method in the application of crack propagation in solid mechanics, which is today known
as extended FEM (XFEM) in the scientific community. An enrichment function representing an
approximate analytical solution is usually used to extend the solution space of the method, be-
sides the standard polynomial function space. For a comprehensive overview of the method we
refer to the review articles in [22, 92]. Applications of this method in the field of fluid mechanics
can be found in several academic examples such as enrichment with analytical high-gradient so-
lutions of the convection-diffusion equation [1, 2, 252, 253], simulating a sharp corner in Stokes
flow via an asymptotic expansion as enrichment [83] or resolving the bottom boundary layer of
oceanic flow via a logarithmic enrichment function applied to a 1D water column [107]. A recent
publication suggests an enrichment with modes obtained via proper orthogonal decomposition to
resolve the boundary layer of a stochastically forced Burger’s equation [43]. The general frame-
work can also be used to resolve other features of the solution besides high gradients, such as
jumps or kinks, and can even be used to cut elements (see, e.g., [228]). In general, the enrich-
ment function is not prescribed as solution but the method ‘chooses’ the best solution among all
functions available in its function space in a consistent manner.

The so-called discontinuous enrichment method (DEM) by Farhat and co-workers [69] with
application to high-gradient enrichments for the convection-diffusion equation, e.g., in [70,
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132, 133], represents another framework for constructing problem-tailored numerical schemes.
A major distinction between these two methods is that XFEM is typically (but not necessarily)
based on continuous functions both for the polynomial and the enrichment component, whereas
in DEM the enrichment component is discontinuous at cell interfaces allowing for the static
condensation of the enrichment via Lagrange multipliers. In addition, the enrichment function
in the XFEM is usually (but not necessarily) weighted using a partition of unity given through
standard polynomial shape functions, whereas the enrichment function is directly added to the
solution in DEM.

In the present thesis, the XFEM framework is considered both within the continuous FEM and
the DG method. Regarding DG, the cells are connected through appropriate fluxes as described
in Chapters 3 and 5 instead of enforcing weak continuity as in the DEM. The XFEM may be
considered more efficient within the particular matrix-free implementation described in Chap-
ter 3 and due to the requirement of temporal adaptation of the shape functions in the context
of turbulent flow simulations, which makes static condensation less attractive. The supplemen-
tary weighting of the enrichment function with standard polynomial shape functions introduce
a higher level of flexibility in the function space of the XFEM. However, this weighting can be
‘switched off’ by considering a polynomial of degree zero, which would be equivalent to the
DEM, if conditioning is an issue, as will become clear later. Despite these arguments in favor of
the XFEM framework, wall modeling via function enrichment should be implemented in several
methodologies in future work, including the DEM and the approaches in [29, 33, 219], in order
to allow for a critical assessment of the efficiency for boundary layer enrichments.

6.3.2. Wall Modeling via Function Enrichment

Wall modeling via function enrichment is proposed and the necessary modeling steps are dis-
cussed in this subsection. The solution space of the method is capable of resolving high boundary
layer gradients and adapts to local characteristics of the flow. This is done by extending the solu-
tion space with the help of an approximate analytical representation of the mean velocity profile
given as the law-of-the-wall. With a solution space capable of resolving the high gradient, the
solution is not prescribed but the numerical method is able to find an appropriate solution in
the offered function space, given that the unresolved turbulence is modeled accurately. As a nu-
merical method, a variant of the PUM or the XFEM is chosen as it provides a framework for
designing such a customized space. In Subsection 6.3.2.1, it is shown how the enrichment is
constructed in DG and in Section 6.3.2.2 in the continuous FEM. Subsequently, possible choices
for enrichment functions are presented and a temporal adaptation algorithm are introduced.

The wall modeling approach achieves a drastic reduction in computational complexity through
the large discretization cells employed in turbulent boundary layers. As a consequence, the cells
near the wall are so large that not even the largest near-wall eddies are resolved. These turbulent
motions have to be modeled by use of a statistical RANS-type model. In Subsection 6.3.2.5, we
give an overview of the turbulence modeling approaches considered in the subsequent chapters.
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Figure 6.2.: High-order DG: composition of the velocity uh in a boundary layer consisting of the
polynomial and the enrichment component ūh and ũh for an ideal boundary layer
given as Spalding’s law (left) and a nonequilibrium boundary layer in a separated
flow or with high pressure gradient (right). Symbols indicate cell boundaries, i.e.,
one cell near the wall is enriched.

6.3.2.1. Enriching the DG Solution Space

The standard polynomial function space of the DG method is extended by an additional compo-
nent, yielding the following composition of the velocity variable uh(x, t):

uh(x, t) = ūh(x, t) + ũh(x, t), (6.1)

and assuming the direct sum decomposition of the underlying discrete solution spaces Vuh =
V ūh ⊕ V ũh . Herein, the variable ūh ∈ V ūh represents the polynomial function space that was
exclusively used in Part I of this thesis, where it was defined as

V ūh = {ūh ∈ (L2)d : ūh|Ωe ∈ Pk(Ωe),∀e ∈ Ωh} (6.2)

using the notation introduced in Section 3.3.2. The polynomials Pk can both be defined through
Lagrangian tensor-product elements as used in this work (see Section 3.5.1), through a modal
basis, or any other kind of mixture between the two. The polynomial component ūh(x, t) is in
each element represented by a polynomial FE expansion of degree k according to Section 3.5.1:

ūh(x, t) =
∑
B∈Nk

Nk
B(x)ūB(t) (6.3)

with shape functions Nk
B and DOFs ūB(t). The enrichment space consists of an enrichment

function ψ(x, t) times a polynomial of degree l:

V ũh = {ũh ∈ (L2)d : ũh|Ωe ∈ (ψPl(Ωe)),∀e ∈ Ω̃h}, (6.4)

where Ω̃h ⊂ Ωh is a thin layer near the wall. As an enrichment function, we consider an a
priori known approximate analytical or empirical solution to the underlying flow problem and
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several enrichment functions relevant for wall modeling are presented in Section 6.3.2.3. The
enrichment function is the key ingredient to the overall approach, as it allows the numerical
method to represent a solution of similar shape as the enrichment function with very coarse cells.
The degree l can and should often be chosen independently of k and we consider l = {0, 1, 2},
whereas k should often be significantly higher due to reasons of efficiency, see Section 6.3.3.1.
A degree of l > 0 weights the enrichment function with a polynomial, which adds flexibility
to the approach in cases where the solution differs significantly from the enrichment function.
If l = 0, the weighting polynomial becomes a constant function such that the enrichment is of
similar form as in the DEM. Written in terms of shape functions, the enrichment expansion reads

ũh(x, t) = ψ(x, t)
∑
B∈N l

N l
B(x)ũB(t). (6.5)

The enrichment is only taken into account where it is necessary. The thickness of the layer Ω̃h

can either be user-specified (Chapter 7) or be determined by an adaptation algorithm, which
evaluates if the enrichment is necessary in each cell and at each time instant (Chapters 8 to 10).
In standard boundary layers, it is sufficient to enrich a few layers of cells in the vicinity of the
no-slip boundary and we set ũh(x, t) = 0 outside of Ω̃h. The number of required cells depends
significantly on k. If k > 2, a single layer of enriched elements would commonly be sufficient,
as the high-order polynomial component can resolve the quickly decaying velocity gradient,
whereas several element rows may be enriched if k = 1 and 2. Finally, we note that the number
of additional DOFs required by the enrichment is often very small, due to the locality of the
problem and in particular if k � l.

The composition of the resulting function space is illustrated in Figure 6.2 for an equilibrium
boundary layer and for a nonstandard boundary layer profile, such as in separated flows. In an
equilibrium boundary layer, the velocity profile may to the largest extent be captured by the
enrichment while the full flexibility of a high-order polynomial plus a weighted wall function is
available if the solution demands.

We discuss the treatment of the remaining variables p and ν̃, the latter in case the SA model is
considered. In typical boundary layers, high-gradient solutions do not occur in the pressure vari-
able, thus we employ only the standard polynomial function space of degree k to discretize
ph ∈ Vph. Regarding the SA model, we have observed that the eddy-viscosity-like working
variable results in a linear distribution of ν̃ ∼ y+ between the wall and the outer edge of
the logarithmic layer under equilibrium assumptions [134], see also the profiles plotted in Fig-
ure 5.3. We therefore assume that a polynomial element of degree k adds sufficient flexibility to
ν̃h ∈ V ν̃h = Vph in order to capture more general profiles of ν̃ in nonequilibrium boundary layers
as well. Finally, researchers may be interested in employing the present function-enrichment ap-
proach in the context of other turbulence models or flow physics. Considering the compressible
Navier–Stokes equations, where the energy equation is discretized in addition, the approach does
not require any modification as long as the energy varies smoothly within the boundary layer
(which is always the case on adiabatic walls). The energy variable could then be resolved by
the polynomial component analogous to the pressure. Likewise, other RANS turbulence models
may be considered if the turbulence model quantities, which have to be discretized, vary slowly
such that they can be resolved sufficiently with a polynomial of degree k in the first off-wall
cells.
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Figure 6.3.: Enriching the solution space of the continuous FEM: Ramp functions are a possi-
bility of defining a conforming function space at the interface between enriched and
nonenriched cells.
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Figure 6.4.: Continuous FEM: composition of the velocity uh in a boundary layer consisting
of the polynomial and the enrichment component ūh and ũh for an ideal bound-
ary layer given as Spalding’s law (left) and a nonequilibrium boundary layer in a
separated flow or with high pressure gradient (right). Symbols indicate cell bound-
aries, i.e., (usually at least) two cells near the wall are enriched of which one is the
blending layer.

We note that the particular construction of the enrichment shape functions in Equation (6.5)
multiplies the enrichment function by a standard FE partition-of-unity. This formulation enables
a relatively simple implementation of the enrichment in common FE libraries such as the deal.II
library [9], since the shape functions do not have to be modified on a basic level, but are recom-
bined subsequently to existing evaluation routines. A separate section of this thesis explains the
implementation of the enrichment in an existing solver within the deal.II library with minimal
modification of the original code (see Section 6.3.3.4). The aspect of straightforward implemen-
tation is one of the reasons why the DG method is particularly suited for including enrichments,
whereas the continuous FEM requires additional steps in the computation of the shape functions.
These modifications are discussed in the subsequent section.

6.3.2.2. Enriching the Solution Space of the Continuous FEM

The above definition of the enrichment component of the velocity solution has to be modified in
order to be compatible with the continuous FEM. It is a basic characteristic of the DG method
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that the cells are weakly coupled, which inherently allows different solution spaces in neighbor-
ing elements. In contrast, the continuous FEM connects neighboring cells by sharing the DOFs
located on the faces and edges (see Section 2.2.2.3). This characteristic has to be taken into ac-
count at the interface where the enriched cells end and the standard polynomial cells begin, in
order to obtain a conforming discretization. Such a blending of function spaces may be achieved
by multiplying the enrichment function with a ramp function rh(x), which exhibits a linear
distribution in the element layer in between fully enriched cells and nonenriched cells [91], ac-
cording to Figure 6.3. Furthermore, it is desirable that the enrichment vanishes on the nodes of
the shape functions, which reduces issues in the blending layer and simplifies postprocessing, as
it is sufficient to postprocess the nodal values of the standard FE space. This modification also
makes the enrichment similar to the concept of bubble functions (the enrichment does not vanish
entirely on the cell faces, however). The enrichment FE expansion becomes

ũh(x, t) =
∑
B∈N l

N c,l
B (x)(ψ(x, t)− ψ(xB, t))rh(x)ũB(t), (6.6)

with globally defined continuous shape functions N c,l
B of degree l. It is noted that the ramp func-

tion ‘distorts’ the enrichment space in the cell where the linear profile is active, such that the
enrichment is less effective. Therefore, at least two layers of elements should be enriched with
this approach. Such a decomposition of the solution into a polynomial and an enrichment com-
ponent for the continuous FEM is depicted in Figure 6.4 and it is apparent that the enrichment
solution vanishes on the nodes.

Ramp functions are not the only possibility of blending the function spaces. For example, the
domains may be coupled weakly using a mortar approach [65] or a cut-FEM method, which
couples two fluid domains with similar terms as two neighboring cells in DG [227]. As an alter-
native, constraint matrices may be used to achieve the blending of function spaces [57] within
the deal.II library.

6.3.2.3. Wall Functions as Enrichment Function

An appropriate choice of the enrichment function ψ(x, t) is the key feature of the overall method-
ology. This function provides the opportunity to include information a priori known about
boundary layers in the function space without prescribing the solution itself. We propose to
enrich the function space with an empirical single analytic function for the law-of-the-wall in-
cluding the viscous sublayer and inner layer. This choice allows the Galerkin method to resolve
the ensemble-averaged velocity profile of the turbulent boundary layer as well as the laminar
sublayer, and thus the prediction of the accurate skin friction, with very coarse meshes. In addi-
tion, the resolution requirement becomes independent of wall units in a wide y+-range.

Such mean velocity profiles have for example been suggested by Reichardt [217], van Dri-
est [63], and more widely known by Spalding [245]. They satisfy the boundary conditions at the
wall u(y = 0) = 0 and ∂u+

∂y+
|y=0 = 1 (see Section 2.1.3) which is necessary in order to predict

the wall shear stress accurately. Thus, in the limit of y+ → 0, we get u+ = y+.
In the following, we give an overview of four wall functions, which are highly relevant as an

enrichment function for the present wall modeling approach: Spalding’s law and van Driest’s
law, which will be employed as an enrichment function in the subsequent chapters, as well as
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Reichardt’s law and the wall function given through the SA model. These four wall functions are
plotted and compared to DNS data of turbulent channel flow by [116] in Figure 6.5.

Spalding’s Law. One of the enrichment functions proposed in this work is a minor modifica-
tion of the wall function by Spalding, which is implicitly given as

y+ =
ψ

κ
+ e−κB(eψ − 1− ψ − ψ2

2!
− ψ3

3!
− ψ4

4!
), (6.7)

where the common formulation is recovered with u+ = ψ
κ

. The constants κ = 0.41 andB = 5.17
according to Section 2.1.3 are employed throughout this work. Details on how Equation (6.7)
is evaluated numerically are given in Appendix A.1. The velocity profile shown in Figure 6.5
matches the DNS data very well in the laminar sublayer and the log-layer, whereas the distribu-
tions exhibit differences in the buffer layer. Further, the profiles deviate in the bulk flow, which
is expected, since the log-law is only valid up to y/δ ∼ 0.2. If this limitation is considered to be
too stringent, the modifications by Coles [51] and Dean [58] may be taken into consideration,
which provide a model for the bulk flow.

Van Driest’s Law. If a RANS eddy viscosity approach is used as a turbulence model, it would
be highly relevant to employ the particular wall function as an enrichment function which is
consistent with the RANS model. This wall function is obtained by considering a plain bound-
ary layer in equilibrium state without pressure gradients. As a result, the method achieves full
consistency between the RANS model and the solution space. Indeed, preliminary numerical in-
vestigations with the model proposed in Chapter 10 have shown that the predictions of the wall
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shear stress could be enhanced in accuracy and robustness if the consistent wall function is used
instead of Spalding’s law. As van Driest’s [63] extension of Prandtl’s algebraic near-wall RANS
model (see Section 2.3.3) is employed in that chapter, we consider the corresponding wall func-
tion in the following, specified in the same publication. The enrichment function is defined as

ψ =

∫ y+

0

2 dy+

1 +

√
1 + (2κy+(1− e(−y+/A+)))

2
, (6.8)

with u+ = ψ, and we take A+ = 26. Since the enrichment function has to be evaluated on every
quadrature point of the numerical method in a layer of elements near the wall, we describe a
possible approach in Appendix A.2. In Figure 6.5, this wall function predicts a lower velocity
magnitude in the buffer layer, but the differences are moderate.

Spalart–Allmaras’ Wall Function. Again due to reasons of consistency, it may be relevant
to consider the wall function which results from the SA model (see Capter 5) in a wall-modeled
RANS or DES approach. An explicit analytical expression for this wall function was derived
in [7] and is given as

u+ = B + c1 ln
(
(y+ + a1)

2 + b2
1

)
)− c2 ln

(
(y+ + a2)

2 + b2
2

)
− c3 atan2(b1, y

+ + a1)− c4 atan2(b2, y
+ + a2), (6.9)

with the parameters

B = 5.0333908790505579,
a1 = 8.148221580024245, b1 = 7.4600876082527945,
a2 = −6.9287093849022945, b2 = 7.468145790401841,
c1 = 2.5496773539754747, c2 = 1.3301651588535228,
c3 = 3.599459109332379, c4 = 3.6397531868684494,

where atan2 is the four-quadrant inverse tangent function. Figure 6.5 reveals differences to Spald-
ing’s law and van Driest’s law in the buffer layer, where the SA model results in a higher ve-
locity magnitude. Also, this wall function converges to a different logarithmic wall law, namely
u+ = 1

κ
ln(y+ + 1

κ
) + B, and the difference in the constant B ≈ 5.03 is noticeable in Figure 6.5

through a lower velocity profile in the logarithmic layer.

Reichardt’s Law. Finally, Reichardt’s wall function [217] is given according to

u+ =
1
κ

ln(1 + κy+) + c1

(
1− e−y+/11 − y+

11
e−0.33y+

)
, (6.10)

and the constants are adapted to match the present choice of κ and B, which yields c1 = 7.34
instead of c1 = 7.8 with the formula given in the original publication. The underprediction of
the velocity inside the buffer layer in comparison to the DNS shown in Figure 6.5 is noticeable.
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Other Wall Functions. There is a large number of alternative wall functions available in the
literature. For example, wall functions with advanced capabilities in separated flows have been
proposed in [143, 207, 235], or even the expected velocity profile in regions of backflow may be
modeled [238]. Further, other RANS models than the SA model result in different velocity pro-
files and a derivation of the analytical profile may not always be possible. For such applications,
a procedure described by Kalitzin et al. [134] would be relevant, which allows the implemen-
tation of arbitrary profiles via tables. Finally, it was pointed out by an anonymous reviewer in
the context of the work presented in Chapter 8 that a function enrichment approach may be
promising for RANS in regions just downstream of stagnation points, where the boundary layer
is laminar. This is due to the fact that the newly developing boundary layer is extremely thin and
typical discretizations employed in RANS computations are usually too coarse to capture this
boundary layer. If an analytical profile for such regions is not available, the approach by Kalitzin
et al. could be considered as well.

All four wall functions presented above are equally well-suited as an enrichment function in
turbulent boundary layers. In general, it can be said that the particular shape inside the buffer
layer is less important, since the detailed velocity profile in the buffer layer is usually not of in-
terest for CFD engineers and researchers. However, as noted earlier, the wall function should be
consistent with the particular eddy viscosity approach considered, meaning that the wall func-
tion should match the exact velocity profile that results from the turbulence model in a plane
equilibrium boundary layer as close as possible.

6.3.2.4. Spatial and Temporal Adaptation

It is the nature of wall functions for turbulent boundary layers to be universal in the wall coor-
dinate y+ = y

ν

√
τw
ρ

, see Section 2.1.3. The wall coordinate scales the enrichment function in

wall-normal direction to match the local wall shear stress τw. As a consequence, the wall shear
stress used to compute the wall function has to be adapted spatially and temporally in the nu-
merical method in order to take the local features of the flow as well as their temporal evolution
into account in the model. For that purpose, the wall shear stress is discretized based on linear
continuous shape functions N c,m

B (m = 1). Therein, the wall shear stress is computed on each
node B in N c,m with

τw,B =
‖
∫
∂ΩD N

c,m
B (x)τw dA‖∫

∂ΩD N
c,m
B (x) dA

, (6.11)

where τw is the wall shear stress vector, which may be computed as τw = ρν (∇uh) · n. Note
that we compute the integral for each component of the wall shear stress vector and subsequently
take the vector norm. The nodal values are interpolated using

τw,h =
∑

B∈Nc,m

N c,m
B τw,B. (6.12)

It is observed that the quantity τw,h includes a spatial coarsening of the wall shear stress dis-
tribution if k > 1 due to m = 1. This coarsening is physically motivated and required for the
eddy-resolving simulation approaches considered subsequently, since the wall function repre-
sents a relation for the mean quantities, i.e., the mean wall shear stress gives a mean velocity
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profile. Without this coarsening, one would observe a statistical overprediction of τw,h as the ve-
locity vector does not always point in the global streamwise direction. Similar approaches have
been considered in the literature, for example, Schumann [231] averaged the wall shear stress
over the walls of channels and pipes. As we are seeking to develop a flexible tool, which also
can account for local variations present in complex flow geometries, we average the stresses only
locally by the different choice of the polynomial degrees if k > 1 andm = 1. A continuous poly-
nomial results in a smoother variation of τw,h (and a smoother variation of the function space)
in comparison to, for example, a constant distribution (DG of degree m = 0). Additionally,
high-order polynomials may result in large localized variations of τw,h inside one cell, which
would be demanding regarding the efficient numerical integration of weak forms. The traction
computed at the no-slip nodes is communicated to the respective off-wall nodes in Ω̃h, where the
node pairs are determined via the shortest distance to the respective node on the wall, analogous
to the following definition of the wall distance.

The wall distance is likewise defined using a finite element expansion in order to facilitate the
evaluation of the enrichment shape functions. The discrete distance from the wall yh is given
through the weights yB, which represent the shortest distance between the current node B and
the closest wall node and are interpolated using the same linear continuous shape functions as
for the wall shear stress:

yh =
∑

B∈Nc,m

N c,m
B yB. (6.13)

We note that this definition of the wall distance is robust even for surfaces where the wall-normal
vector is not unique.

For the application within the incompressible Navier–Stokes equations, the first and possibly
the second derivative of the enrichment component with respect to Cartesian coordinates are
required. Their derivation is straight forward and included in Appendix A.3.

The wall shear stress is evaluated prior to every time step using the velocity solution of the
previous time step to allow for temporal adaptivity. As an alternative, one may compute the
wall shear stress using an extrapolated velocity solution, for example via extrapolation formulas
employed in the right hand side of the explicit step in Equation (3.2), for improved accuracy in
time-resolved computations. Since the discrete function space varies from time step to time step,
the velocity based on the old function space un,old

h is projected onto the new FE space un,new
h via

local L2 projection according to(
vn,new
h ,un,new

h

)
Ωe

=
(
vn,new
h ,un,old

h

)
Ωe
, (6.14)

with n indicating the current time step number. Supplementary vectors required by the time
integration scheme, such as older velocity components or the vorticity vector, are projected using
the same approach or recomputed, if possible.

6.3.2.5. Turbulence Modeling

Since the full incompressible Navier–Stokes equations are solved in the boundary layer including
the no-slip boundary condition, the unresolved turbulent motions have to be modeled. In other
words, wall modeling via function enrichment is a spatial discretization technique, no turbulence
model. Note that this is a fundamental difference to other applications of high-gradient enrich-
ments. For example, in crack-tip enrichments [22], the high gradient occurs due to the singularity
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in the geometry, and in high-Péclet-number convection-diffusion problems [253], the high gradi-
ent is the solution of the underlying partial differential equation. In contrast, the Navier–Stokes
equations do not show turbulent boundary layer profiles if the turbulent motions are not resolved
or modeled (see Section 6.1). In the subsequent Chapters 7 to 10, the wall model is applied to
different scenarios including RANS, DES, and WMLES.

RANS. The wall modeling approach may be employed in a pure RANS framework, where all
turbulent motions are modeled by use of a statistical turbulence model. As a consequence, no
modifications of the turbulence modeling approach are required, and the enrichment approach
reduces the number of required grid points in wall-normal direction. This approach is detailed in
Chapter 8.

DES. If the classical detached-eddy simulation methodology is considered, the turbulence
model takes the unresolved turbulent motions in the near-wall layer into account and provides
a statistical model in those cells which are too coarse to resolve the energy containing vortices.
DES models automatically switch between the RANS and LES mode according to the spatial
resolution provided by the scheme, such that no further modification is required in the turbulence
modeling approach. This method is applied in Chapter 9.

Wall-Modeled LES and Multiscale Wall Modeling. The enrichment approach may also be
interpreted as a separation of the solution vector into two scale groups. The two scales are given
by the standard polynomial component ūh and the enrichment component ũh. With regard to
WMLES, the standard polynomial scale resolves large eddies that are at least of the size of
the characteristic element length. The enrichment scale, however, represents flow features in a
statistical sense where the large eddies cannot be resolved due to the coarseness of the mesh. This
interpretation and the framework of the variational multiscale method allow tailored turbulence
models for each of the scales in separate equations – a RANS turbulence model for the RANS
scale and an LES turbulence model for the LES scale. This approach is employed in Chapter 10
including a rigorous derivation of the respective models. Several alternative WMLES techniques
are thinkable within the framework of wall modeling via function enrichment. In Chapter 7, a
turbulence model is presented which relies on a residual-based method in conjunction with a
structural LES turbulence model in the outer boundary layer within the continuous FEM.

6.3.3. Implementation of High-Gradient Enrichments
The present wall modeling approach may be embedded in any steady or unsteady, compressible
or incompressible, RANS, DES, or LES flow solver based on a Galerkin method, i.e., the DG
method or the continuous FEM. In this section, it is explained how weak forms including the
enrichment shape functions can be evaluated. Several algorithmic aspects of the overall solu-
tion procedure are detailed, including the matrix-free application of the inverse mass matrix and
the computation of the residuals in iterative solvers. Further details on this work will be given
in a separate article [160]. Finally, a strategy is presented that allows the straightforward im-
plementation of the wall model in an existing code written in an object-oriented programming
language.
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Table 6.3.: Guide lines for the choice of quadrature rules using Gaussian integration. The quan-
tity nq denotes the number of quadrature points in wall-normal direction.

∆y+1e < nq

90 8
110 10
130 12
160 14
200 17
300 20
500 35
2,500 200
5,000 300

6.3.3.1. Evaluation of Weak Forms

If the enriched function space in Equation (6.1) is inserted in the Galerkin formulations pre-
sented in Sections 3.3.2 and 5.3.1, the arising integrals contain polynomial and nonpolynomial
terms, the latter due to the nonpolynomial character of the considered enrichment functions. The
polynomial terms can be exactly evaluated on affine cells using Gaussian quadrature with k + 1
quadrature points for linear terms and

⌊
3k
2

⌋
+ 1 points for nonlinear terms as it was described in

Section 3.5.1. These quadrature formulas are also employed in all nonenriched cells and faces.
The terms arising from the enrichment shape functions require special attention due to the

nonpolynomial shape functions. As discussed in [92], it may be efficient to construct problem-
tailored quadrature formulas for applications of high-gradient enrichments, especially regarding
the high-gradient direction, i.e., the wall-normal direction. There are several approaches for com-
puting tailored quadrature formulas, for example moment-fitting, see [191, 247]. This idea was
assessed within the present study in a student project [163]. Therein, it was found that quadrature
formulas that use the enrichment function and its spatial derivatives as basis functions indeed re-
duce the required number of quadrature points in comparison to Gaussian quadrature. However,
the construction of such tailored quadrature formulas is expensive and the associated equation
systems are badly conditioned. In view of a function space that changes every time step and
varies from element to element, it does not seem to be practicable to recompute tailored quadra-
ture rules dynamically. Further, the tabulation of such quadrature formulas is challenging, since
the width of the cells in y+- units is a continuous function. As a very promising alternative, an
adaptive algorithm may be employed in order to integrate the nonpolynomial terms, for exam-
ple the one described in [190]. Further, hexahedral cells could be subdivided in the wall-normal
direction into several layers, which are each integrated with Gaussian quadrature. Such an ap-
proach would have the potential of significantly reducing the required number of quadrature
points, as the slices could be thinner in the region of the high gradient near the wall (see the
evaluation algorithm of van Driest’s law in Appendix A.2).

In this work, we employ Gaussian quadrature at higher order of accuracy for the integration
of all enriched cells. Typically, at least nq = 8 quadrature points are necessary in the wall-
normal direction, and the requirement increases if the enriched element spans a wider range in
y+-units. As shown in Chapter 7, the quadrature rules may be direction-dependent as a higher
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accuracy is required in the wall-normal direction. To this end, nq = 4 to 6 quadrature points were
sufficient in each wall-parallel dimension for the simulations carried out in Chapter 7. Based
on the extensive experience gained in hundreds of simulations carried out in this thesis, rough
guidelines for the choice of the required number of quadrature points are shown in Table 6.3.
However, the quadrature requirements vary considerably for different pairs of k, l and m. It is
noted that the present enrichment shape functions are well-behaved regarding underintegration,
as the algorithm indicates underintegration through an elevated number of solver iterations (see
Section 6.3.3.3) or minor oscillations in the wall shear stress from time step to time step long
before the underintegration is visible in the averaged results. Further, these requirements on the
quadrature motivate an application of the enrichment with moderately high polynomial degrees
2 . k . 6. If k = 1, the excess in quadrature points due to the enrichment is very high. In
contrast, if k = 4, 5 quadrature points per dimension would be used in linear and 7 in nonlinear
terms, so only a few additional points in wall-normal direction would be necessary (considering
∆y+1e . 200). Finally, despite the successful application of these quadrature formulas, it can be
said that the efficient integration of the enriched weak forms is currently the bottleneck of the
methodology with respect to the independence of the resolution requirements with wall units,
i.e., the cell size is somewhat limited in the y+-direction. Further research in this field should
aim at an adaptive quadrature algorithm that reduces the required number of quadrature points.

6.3.3.2. Matrix-Free Application of the Inverse Mass Matrix

The inverse mass matrix M−1 is applied repeatedly in each time step in the solver presented
in Chapters 3 and 5, and it is considered a crucial ingredient in other explicit and semi-explicit
numerical schemes. Besides the use for the explicit convective step, we use inverse mass precon-
ditioners for the local projection solver as well as the viscous solver, and the operator is used to
compute L2 projections; the use of the inverse mass operator accumulates to about 25 applica-
tions per time step. The mass matrix in DG is block diagonal and an inverse mass operator can
therefore be applied in each cell separately. With regard to enriched elements, we consider the
problem of [

Ū

Ũ

]
=

[
M V̄ Ū M V̄ Ũ

M Ṽ Ū M Ṽ Ũ

]−1 [
R̄

R̃

]
, (6.15)

where the input and output vectors R and U are split into two parts, the polynomial DOFs,
indicated with the superscript ¯(·), and the enrichment DOFs, indicated with (̃·). Accordingly,
the mass matrix is split into four blocks corresponding to the polynomial and enrichment rows
and columns. It is noted that the matrix-free operator in [161], which is used in the nonenriched
cells, corresponds to (M V̄ Ū )−1 and an extension of the idea of that operator to enriched cells
is not possible. In the classical spectral DG method, where the nodes and quadrature points
coincide (i.e., they are co-located), the mass matrix is even diagonal and its inverse is trivial;
this characteristic is lost in enriched cells. Due to these reasons, the development of an efficient
application of the inverse mass operator is crucial for the efficiency of the overall methodology.
Two methods of computing and applying the inverse mass operator have been developed: a
matrix-based variant that uses LU factorization for computing and applying the inverse mass
matrix and a matrix-free variant via a Schur complement. These two approaches are detailed and
compared in the following.
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Matrix-Based via LU Factorization. Since the mass matrix is block-diagonal, the inverse
may be calculated on each enriched element independently. In this variant, a scalar mass matrix
is precomputed for each element ahead of every time step and an LU factorization is used for
applying the action of its inverse on each velocity component. To this end, it is noted that the
higher-degree quadrature rules described in the previous section are used to compute the integral
of the weak form. The complexity of such a matrix-based evaluation is O((k + 1)6) rather than
O((k+ 1)4) in the matrix-free case. In addition, it is expected that a matrix-based application of
the inverse is computationally bound by the speed of the memory access on modern computers,
see Section 3.5.

Matrix-Free via Schur Complement. An alternative strategy for the action of the application
of the inverse mass matrix has been developed. The method is based on two considerations:
Firstly, the matrix terms that consist only of polynomial terms should be integrated using k + 1
quadrature points per space dimension, which are sufficient for the exact integration of these
terms on affine cells. This aspect is crucial since the polynomial matrix block M V̄ Ū has many
more matrix entries than the remaining rows and columns, so the largest portion of the cost
comes from the evaluation of the polynomial shape functions on the high quadrature rules in the
matrix-based approach. Secondly, as many terms as possible should be evaluated in a matrix-
free manner in order to shift effort to arithmetics rather than loading large data structures from
memory, see Section 3.5.

By making use of an inner Schur complement, the action of the matrix inverse may be com-
puted by a scheme proposed in [161] in the context of the HDG method. The DOFs of the
enriched component of the vector are first calculated via

Ũ =

(
M Ṽ Ũ −M Ṽ Ū

(
M V̄ Ū

)−1
M V̄ Ũ

)−1 (
R̃−M Ṽ Ū (M V̄ Ū )−1R̄

)
, (6.16)

and the DOFs of the polynomial component are obtained by

Ū =
(
M V̄ Ū

)−1 (
R̄−M V̄ ŨŨ

)
. (6.17)

Further details on this solution strategy are given in the following:

• The matrix blocks M Ṽ Ũ , M Ṽ Ū , and M V̄ Ũ include the enrichment and have to be com-
puted using quadrature rules with more points. Since the mass matrix is symmetric with
M Ṽ Ū = (M V̄ Ũ )T , it is sufficient to compute the matrix columns of the blocks M V̄ Ũ

and M Ṽ Ũ of a scalar mass matrix, which equals one single matrix column in the case of
l = 0 and 8 matrix columns in the case of l = 1. In the algorithm, these matrix columns
are precomputed for all enriched cells once per time step and stored.

• The matrix
(
M Ṽ Ũ −M Ṽ Ū

(
M V̄ Ū

)−1
M V̄ Ũ

)
is computed by applying the matrix-free

polynomial inverse
(
M V̄ Ū

)−1
on each column of the precomputed matrix block M V̄ Ũ .

The resulting matrix is of the dimensions 1×1 for l = 0 and 8×8 for l = 1 and the inverse
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(
M Ṽ Ũ −M Ṽ Ū

(
M V̄ Ū

)−1
M V̄ Ũ

)−1

has to be computed explicitly. This is done once

per time step for each enriched element via Gauss–Jordan elimination and the result is
stored. Again in the classical spectral DG method, the diagonal inverse mass matrix block(
M V̄ Ū

)−1
is obtained by element-wise inverting the diagonal.

• When the equations are applied as an inverse mass operator, the polynomial inverse
(M V̄ Ū )−1 has to be applied twice (once in Equation (6.16) and once in Equation (6.17)),
which enables the use of the standard quadrature rules and the same matrix-free inverse
mass operator for these terms as in the nonenriched elements according to [161].

In summary, the resulting algorithm consists of two steps. Once in each time step, the matrix
columns corresponding to the enrichment DOFs are precomputed and stored. Furthermore, a
small local matrix is computed and inverted explicitly. The action of applying the matrix inverse
requires two matrix-free applications of the polynomial inverse mass matrix block plus some
further terms based on the precomputed matrices, the cost of which is small. Note that four
cells with individual parameters are processed simultaneously in the present implementation via
vector instructions (on the Intel Sandy-Bridge and Haswell CPU architectures) within the deal.II
library [9].

Performance Evaluation. The two inverse mass operators are in the following thoroughly
compared with regard to their performance. To this end, a computational setup similar to the
turbulent channel flow case in Section 4.2 is used, which consists of 32 cells at varying polyno-
mial degrees k = {2, 3, 4, 6, 8} and l = {0, 1}, which are all enriched using van Driest’s law.
The physical parameters are chosen such that Reτ = 100. For this case the first off-wall cell
spans a relatively small y+-range and thus ensures low requirements on the quadrature. Short
simulations are run of approximately three flow-through times, and the performance numbers
are averaged over several hundred time steps. The numerical experiments were carried out on a
single core of an Intel Haswell CPU at 2.4GHz taking turbo boost into account.

Figure 6.6 shows the performance of the two inverse mass operators regarding their setup
phase (one-time cost per time step). Herein, the performance is measured in throughput in terms
of DOFs/s and the graphs are plotted over the number of quadrature points used for the enrich-
ment terms nq per space dimension, which is varied in the range of [6, 30] (the total number of
quadrature points is n3

q per cell). In this graph, it may be seen that the throughput of all curves
reduces with an increasing number of quadrature points, which is an expected behavior. The
matrix-free approach yields a larger throughput for higher polynomial degrees k for a fixed num-
ber of enrichment quadrature points, whereas this relation is inverted for the LU-based approach.
The setup step takes approximately one to two orders of magnitude longer for the matrix-based
LU approach than for the matrix-free approach; this behavior is expected since only 1 matrix
column has to be computed in the matrix-free case for l = 0 and 8 columns for l = 1, and the
cheap matrix-free polynomial inverse needs to be applied with the same frequency. In contrast,
the full mass matrix for a scalar consists of (k + 1)3 + (l + 1)3 matrix columns, which have to
be computed in the LU-based method. Accordingly, the setup phase for the matrix-free method
should take approximately 8 times longer in the case of l = 1 compared to l = 0, whereas the
dependence of the performance of the LU-based method on l is minor.
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Figure 6.6.: Enriched inverse mass operator: performance of ‘precompute’ routines in DOFs/s
over number of quadrature points per space dimension. Top: l = 0, bottom: l = 1.

The corresponding performance of the two inverse mass operators in applying the operator
once is shown in Figure 6.7 considering the same settings. It is first noted that all curves are
horizontal, meaning that the cost of applying both inverse mass operators is independent of
the applied quadrature formula. This is an expected behavior, since the numerical integration
of the enriched terms of the weak form is carried out in the setup step in both approaches.
The performance of the LU-based method deteriorates for increasing polynomial degree k, a
typical behavior of matrix-based methods, whereas the matrix-free approach yields almost no
dependence on the polynomial degree, a typical behavior of matrix-free methods. Further, the
matrix-free approach is faster than the matrix-based method by one to two orders of magnitude,
but the advantage is somewhat reduced in the case of l = 1 compared to l = 0.

From this performance analysis we draw the conclusion that the presented matrix-free inverse
mass operator via a Schur complement is much faster compared to a straightforward matrix-
based approach. The inverse mass operator requires a setup step in each time step, in which
the columns of the enrichment DOFs of a scalar mass matrix are precomputed. The cost of
applying the inverse mass operator is independent of the number of quadrature points used for the
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Figure 6.7.: Enriched inverse mass operator: performance of ‘apply’ routines in DOFs/s over
number of quadrature points per space dimension. Top: l = 0, bottom: l = 1.

integration of the enriched weak form, at approximately twice the cost of a matrix-free inverse
mass operator in a nonenriched cell.

6.3.3.3. Mixed Matrix-Free Projection Step

The projection step in Equation (3.40) according to V3c is also analyzed in detail regarding the
efficiency of several solution strategies. The locality of the problem allows a variety of solution
approaches. The equation may either be solved by a direct method, where the element matri-
ces are evaluated and the equation system is solved via LU factorization. As an alternative, the
projection step may be solved iteratively in a matrix-free manner with the procedure accord-
ing to Section 3.5.2. We further consider a mixed approach, which applies different evaluation
approaches for the cheap polynomial and expensive enrichment components.

In view of this discussion, we summarize the terms of the matrix formulation of the projection
step in Equation (3.40) as K = M + τDD. This matrix is block-diagonal due to the absence
of coupling terms between the elements and may further be split into four blocks, which corre-
spond to the polynomial and enrichment DOFs analogous to the previous subsection, such that
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Equation (3.40) becomes [
K V̄ Ū K V̄ Ũ

K Ṽ Ū K Ṽ Ũ

] [
Ū

Ũ

]
=

[
R̄

R̃

]
, (6.18)

where the velocity vector corresponds to the second intermediate velocity and the vectors R̄ and
R̃ to the right hand side.

Matrix-Based. The equation system may be solved in a straightforward manner by computing
the element matrices and applying the action of its inverse via LU factorization. In this variant,
all integrals are computed using the high quadrature rules required for the enrichment terms.

Standard Matrix-Free. The local system may be computed by the procedure presented in
Section 3.5.2. Therein, an iterative conjugate gradient approach is considered, in which the
vector-matrix products are computed in a matrix-free manner. It is noted that all terms have
to be evaluated by the high quadrature rules required for the enrichment terms. In this variant,
the matrix-free inverse mass operator via Schur complement according to the previous section is
considered as a preconditioner.

Mixed Matrix-Free. The latter scheme may be modified as follows. The expensive matrix
rows and columns corresponding to the enrichment are only computed once in each time step
and stored prior to the iterative solver. Therein, it is sufficient to compute the matrix columns
corresponding to the enrichment DOFs, Ũ , due to the symmetry of the problem with K V̄ Ũ =

(K Ṽ Ū )T . This means that 3 matrix columns are precomputed in the case of l = 0 and 24
matrix columns in the case of l = 1. These precomputed matrix blocks are used to compute
the respective contributions to the matrix-vector product in each solver iteration. The remaining
purely polynomial terms of the matrix-vector product are computed in a matrix-free manner in
each solver iteration using k + 1 quadrature points. For this variant, the inverse mass operator
via Schur complement is employed as a preconditioner as well.

Performance Evaluation. The performance of these three solution strategies is evaluated us-
ing the same numerical example as for the benchmarking of the inverse mass matrix routines
presented in the previous section. We consider the whole projection step including the precom-
putation of the matrix terms in the mixed matrix-free variant, and the iterative solvers are con-
verged to a relative accuracy of 10−6. In Figure 6.8, the throughput in DOFs/s is plotted over the
number of quadrature points used for the enrichment terms nq separately for l = 0 and l = 1.
Regarding l = 0, we note that the throughput increases with higher polynomial degree k for
the two matrix-free variants, whereas the throughput decreases for the matrix-based variant. The
mixed matrix-free variant is faster by approximately a factor of 3 to 5 than the matrix-free pro-
cedure, and that includes the precomputation of the matrix blocks containing enrichment shape
functions. The matrix-based variant is in the range of one to two orders of magnitude slower
compared to the matrix-free variants.

The picture is similar for the case l = 1, the advantage of the mixed matrix-free approach is
much less significant, though. This is due to the relatively high cost of precomputing 24 matrix
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Figure 6.8.: Enriched projection solver: performance comparison of matrix-based, standard
matrix-free, and mixed-matrix-free solution in DOFs/s over number of quadrature
points per space dimension. Top: l = 0, bottom: l = 1.

columns. In this case, the graphs reveal another interesting aspect of the iterative solver: the
iterative solution strategies yield curves that flatten in the range below nq = 12. This fact is
assumed to be due to inexact integration of the residual if few quadrature points are used. The
number of required solver iterations of an iterative solver, which includes enrichment shape
functions, can therefore be seen as an indicator of insufficient quadrature.

From this discussion, we conclude that the mixed matrix-free approach is the most efficient
method for the solution of the local projection step. As a rule of thumb, it can be said that such
a solver is promising in situations where the required number of solver iterations is larger than
the number of enriched matrix columns. For example, in the viscous step, the number of solver
iterations is usually in the range of 3 to 5 and 3 matrix columns would have to be precomputed
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for l = 0. These numbers do not make an application of a similar mixed matrix-free approach
attractive in the viscous step (in addition to the nonsymmetry of the matrix in the NIPG formu-
lation, which would require a larger number of precomputed terms). Finally, it is noted that the
number of solver iterations in the viscous step lies in a similar range as in nonenriched simula-
tions. From this fact we conclude that the conditioning of the equation system is in general not
degraded through the enrichment shape functions, in particular in the case l = 0.

6.3.3.4. Implementation of Enriched Integrals in C++

The cell and face integrals of the Galerkin formulations in Sections 3.3.2 and 5.3.1 are evalu-
ated using the computational kernels by Kronbichler and Kormann [156] within the deal.II finite
element library [9] implemented in C++ according to Section 3.5. In this framework, the evalu-
ation of the finite element interpolation in a quadrature point uh(xq, t) as well as multiplication
by test functions vh(xq, t) and summation over quadrature points is provided by a class called
FEEvaluation. The computational kernels include read (gather) and write (scatter) opera-
tions into global vectors, evaluation and integration routines based on sum factorization, as well
as the combination of values and gradients on quadrature points.

For the evaluation of solutions from enriched function spaces, a modular extension to
FEEvaluation has been developed. As this extension can be used generically and is not
restricted to the current setting, it is detailed in the following. According to the definitions in
Equations (6.1) and (6.5), the evaluation of the enriched function uh(xq, t) combines the inter-
polation of a standard polynomial space ūh of degree k with the interpolation ũh of degree l.
For the combined evaluation according to Equation (6.1), the two polynomial representations
underlying ūh and ũh are each evaluated in the quadrature point location xq with index q. The
following C++ code shows the implementation of the function that computes the enriched inter-
polation in the q-th quadrature point, get value, where the two components are combined and
the enrichment function is multiplied. The second method described here concerns integration
where the action on a quadrature point with index q is to submit a value prior to the multiplication
by all the test functions in the quadrature point, submit value [9, 156]. Note that the value
to be tested is submitted to both the test function slot associated with the polynomial function
space function space 1 and the slot of the enrichment polynomials function space 2
both receiving a contribution in the respective DOFs in the residual. After the loop over quadra-
ture points, the actual multiplication by all basis functions and summation over all basis func-
tions via sum factorization is done in a function called integrate. If gradients are evalu-
ated as well in the same routine, as it is necessary in the Navier–Stokes equations, the quan-
tities entering the submit value and submit gradient routines have to be temporally
stored on each quadrature point, since the gradients generate contributions to the polynomial
submit value paths as well due to the product rule (see Appendix A.3). When the function
evaluate is called, the temporally stored values are submitted to the submit value and
submit gradient functions of the polynomial evaluators.

t e m p l a t e < . . .> c l a s s EnrichedEvaluation
{

t y p e d e f typename FEEvaluation< . . . > : :value_type value_type ;
t y p e d e f typename FEEvaluation< . . . > : :scalar_type scalar_type ;

142



6.3. Capturing the Gradient via Function Enrichment

value_type get_value ( c o n s t u n s i g n e d i n t q ) c o n s t
{

r e t u r n function_space_1 .get_value (q ) +
enrichment_function [q ] ∗ function_space_2 .get_value (q ) ;

}

vo id submit_value ( c o n s t value_type value_to_test ,
c o n s t u n s i g n e d i n t q )

{
function_space_1 .submit_value (value_to_test , q ) ;
function_space_2 .submit_value (enrichment_function [q ]

∗value_to_test , q ) ;
}
. . .
FEEvaluation< . . .> function_space_1 ;
FEEvaluation< . . .> function_space_2 ;
scalar_type ∗enrichment_function ;

} ;

The implementation of FEEvaluation uses templates on the space dimension, polynomial
degree, the number of integration points, and number of components that are omitted for brevity.
For the fluid velocity, the type value type denotes a tensor with d components but the same
code can be used for scalar enrichments when the value type is a scalar. Furthermore, the
particular implementation in deal.II combines the evaluation of several elements at once for
making use of SIMD instructions (vectorization) in modern CPUs [156], which is why the inner
quantity in a component of the tensor is not simply a double field but rather a short array of
double variables.

In the evaluator, the wall function is a scalar quantity of type scalar type that is ac-
cessed via a pointer enrichment function to a table of the values on all enriched cells
and all quadrature points. This factor can be precomputed prior to each time step using another
FEEvaluation evaluator accessing the continuous finite element vectors of degree m for τw,h
and yh and resolving the formula for ψ(xq). The latter quantity, for example Spalding’s implicitly
given wall function or van Driest’s law, is evaluated numerically with the algorithms described
in Appendices A.1 and A.2.

This enrichment evaluator EnrichedEvaluation is included in the existing Navier–
Stokes code INDEXA (see Chapters 3 and 5) that also contains standard polynomial code paths
where the additional operations due to the enrichment are undesirable. In order to avoid reim-
plementing all the weak forms of the Navier–Stokes equations with different evaluators, the
generic programming capabilities of the C++ programming language are used via templates.
To this end, a wrapper class FEEvaluationWrapper is introduced that contains a tem-
plate argument to switch between a basic FEEvaluation object in standard simulations and
EnrichedEvaluation in simulations including enriched elements. Both classes have the
same interface, allowing for a seamless integration into the solver with a simple change in types
and zero computational overhead in nonenriched simulations.
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6.4. Summary
In this chapter, the high near-wall velocity gradient and the multitude of spatial and temporal
scales present in turbulent boundary layers were identified as the two challenges in the simula-
tion of turbulent wall-bounded flow. Wall modeling via function enrichment has been introduced
as an approach which allows the computation of the sharp velocity gradient including the lami-
nar sublayer with much coarser cells than can be used in standard numerical schemes. The basic
idea is that a wall function is included in the function space of the numerical method as an addi-
tional shape function, besides the standard polynomial ones. As a result, the numerical method
can inherently represent equilibrium boundary layers, but it is also sufficiently flexible to resolve
nonequilibrium boundary layers, for example with high longitudinal pressure gradient. In gen-
eral, the Galerkin method will find the optimal solution among the enrichment shape functions
and the polynomial component in a least squares sense.

The formulation of the wall model and its efficient implementation have been presented. This
wall modeling approach is applied in four different scenarios in the subsequent chapters, includ-
ing the continuous FEM, the high-order DG method, RANS, DES, and WMLES.
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Application I: Wall Modeling for LES in the

Continuous FEM

The high computational cost of wall-resolved LES is the primary incentive for developing wall
modeling via function enrichment, so the first application considers WMLES. As it was detailed
in the previous chapter, the grid-resolution requirements of wall-resolved LES depend on the
friction Reynolds number approximately as Re2

τ [12]. The goal of wall modeling is to reduce
this dependency of the resolution requirements on wall units.

The methodology of wall modeling via function enrichment as introduced in the previous
chapter is applied in the context of the continuous FEM. The continuous FEM is less frequently
used in applications of high Reynolds number as compared to the DG method, and publica-
tions on wall modeling approaches are rare in this context; see the review article in [216] for
an overview of available studies. One example is the weak imposition of no-slip boundary con-
ditions [18, 95], in which the no-slip conditions are applied with similar terms as in the DG
method presented in Chapter 3, but a certain amount of slip is allowed at the boundary. As a
consequence, the gradient is modeled in the near-wall region, which enables the use of coarser
meshes. A standard equilibrium wall function has for example been implemented in an FEM
solver in [41].

With respect to subgrid scale modeling for LES, a variety of subgrid models is available
within the continuous FEM [4]. The turbulent subgrid motions are in the present chapter mod-
eled via a multifractal subgrid scale model embedded in a variational multiscale method. This
model gives excellent results for wall-resolved LES [215] and has been successfully extended
to passive-scalar mixing [214], low-Mach-number flow with variable density [213], and two-
phase flow [212]. In the application to wall modeling via function enrichment, the idea is that
the residual-based method provides numerical dissipation, which is both appropriate to stabilize
the scheme and to model the unresolved energetic scales at the wall. As the work presented in
the present chapter is historically the first application of high-gradient enrichments for the sim-
ulation of turbulent flow governed by the incompressible Navier–Stokes equations, it is the least
developed compared to the subsequent chapters, in particular with respect to turbulence model-
ing. The insights gained in this study were yet essential in the further development of the wall
model and triggered the development of a novel multiscale wall model, which will be presented
in Chapter 10.

In this chapter, we begin with a short summary of the considered enrichment function space
and introduce a minor modification of the adaptation algorithm described in Section 6.3.2.4,
which is better consistent in the context of the continuous FEM. Since the numerical method
used in this chapter is independent of the code presented in Part I of this thesis, several aspects
are detailed, in particular the turbulence modeling approach (Section 7.2). Numerical results are
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discussed in Section 7.3. The work presented in this chapter was previously published in Krank
and Wall [153, 154].

7.1. Enrichment Space
The present chapter considers the continuous FEM with eight-noded trilinearly interpolated hex-
ahedral finite elements (k = 1). The enrichment space ũh includes ramp functions according to
Equation (6.6) in order to obtain a conforming discretization at the interface, where the enrich-
ment ends, and is also based on linear finite elements (l = 1). As enrichment function, we employ
Spalding’s law according to Equation (6.7) with spatial derivatives according to Appendix A.3
and the numerical evaluation of the wall function according to Appendix A.1. The choice of
l = 1 enables the method to weight the wall function linearly, which adds substantial flexibil-
ity to the method, in particular in recirculation zones. The enrichment function is modified by
subtracting by its nodal values ψ(xB, t) as in Equation (6.6) such that the enrichment vanishes
on the nodes, which facilitates postprocessing and the application of boundary conditions. The
decomposition of the proposed function space into a linear standard and enrichment component
is visualized in Figure 6.4. Only a few cell layers at the wall are enriched, in the present chapter
between 2 and 4, and the width of Ω̃h is user-specified. In Chapter 8, an adaptation scheme is
introduced, which evaluates in each time step, which of the cells should be enriched.

Any other Lagrangian finite element could be employed as well, including higher-order el-
ements and unstructured grids. For example, unstructured tetrahedral meshes were used in a
student thesis carried out as part of this research [111], in which linearly interpolated four-noded
tetrahedral elements were used both for the standard polynomial and enrichment space; the ap-
plication of function enrichment in that context is possible without modification of the method.
It is noted that the doubling of the DOFs per element (with k = 1 and l = 1) gives the numerical
method a turbulence-resolving power well beyond linear elements despite its formal accuracy
of second order. This fact may contribute to the success of the present method and the ability
of using comparably coarse meshes for the boundary layer flows presented in Section 7.3. The
pressure is discretized using the standard polynomial space with k = 1.

The wall shear stress is adapted spatially and temporally in order to take into account local
fluctuations and their temporal evolution. To this end, the adaptation algorithm presented in
Section 6.3.2.4 is modified in the present chapter, to increase the consistency in the context of
the continuous FEM and to take into account the special case of k = l = 1 as follows.

In the FEM, the wall shear stress can be computed with Equation (6.11) via the velocity
gradient. An alternative method is to calculate the wall shear stress in terms of a nodal wall-
parallel force vector rv‖B on the strongly enforced Dirichlet boundary ∂ΩD divided by the nodally
defined local area AB. The result is interpolated according to Equation (6.12) with a standard
linear FEM expansion of degree m = 1,

τw,h =
∑

B∈Nc,m

N c,m
B

‖rv‖B‖
AB

, (7.1)

with the norm ‖·‖ of the three components corresponding to the space dimensions. The force
vector equals the right-hand-side residual vector of the final matrix system as discussed in Sec-
tion 7.2.5. The nodal area is given as the integral of the polynomial partition of unity on the
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boundary:

AB =

∫
∂ΩD

N c,m
B dA. (7.2)

Both the wall shear stress via velocity gradient and the present force-based method represent
an accurate definition of the instantaneous traction and are equivalent for the continuous case,
but differences arise on discrete level. One of the differences is that the latter force-based method
in Equation (7.1) requires the residual to be converged to give an accurate prediction. Therefore,
the gradient-based method is applied in the first five time steps of the transient simulation as a
converged residual is not available in the first time step and the gradient-based method is more
robust if the initial field is not divergence-free.

Another aspect is the spatial coarsening introduced in the wall shear stress by taking m = 1
and k > 1 (see Section 6.3.2.4), which does not apply in the present chapter due to k = 1.
This coarsening is physically motivated since Spalding’s law is a relation for mean quantities,
i.e., the mean velocity is related to the average wall shear stress. The wall shear stress would be
statistically overpredicted without this coarsening, since the nodal traction vectors do in general
not point in streamwise direction. It is suggested to calculate the stress via a locally averaged
force field with a characteristic length scale αh instead of h. Such a local averaging operation al-
lows for spatial variations of the traction and yet local fluctuations are smoothed. This averaging
is realized via level-transfer operators from plain aggregation algebraic multigrid methods for
separating scales, similar to the method used by [102] to explicitly separate the velocity scales
in LES. A discrete wall shear stress τw,αh with a coarser characteristic element length αh as a
multiple of the element length h is obtained.

For this method a prolongation matrix P h
αh is generated and the restriction matrix is defined as

the transpose of the prolongation matrix resulting inRαh
h = (P h

αh)
T and implyingRαh

h P
h
αh = I

with the identity matrix I . A scale-separation or aggregation operator is defined as

Sαhh = P h
αhR

αh
h (7.3)

yielding a coarse-scale force field via a vector-matrix multiplication according to

rvαh = S
αh
h r

v
h. (7.4)

This result is applied to calculate the shear stress τw,αh in Equation (7.1) with the usual value
given by the algebraic multigrid algorithms of α = 3. Figure 7.1 compares τw,h and τw,3h show-
ing that the field variable is averaged locally but still may take larger variations into account.
Thus, τw,3h is an appropriate representation of the wall-shear stress for the spatial adaptation of
Spalding’s law.

Further, special treatment in the case of τw,3h approaching zero, such as at reattachment points,
is required, as the function space would become linearly dependent in the limit of τw,3h → 0.
At such locations, we prescribe a minimum wall shear stress of 1% of the nominal value for
computation of Spalding’s law, which has shown to be sufficient to circumvent this issue without
loss of accuracy. This clipping is replaced in the subsequent chapters by an adaptation algorithm,
in which the enrichment would automatically be switched off in such locations. Finally, the fact
that the mass matrix is a global equation system (see Section 2.2.2.3) modifies the L2 projection
in Equation (6.14) to yield a global equation system. However, the special construction of the
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Figure 7.1.: Comparison of the wall shear stress (left) with the aggregated wall shear stress
(right) of turbulent channel flow on a mesh with 323 elements. Red indicates high
and blue low values.

enrichment suggests to solely project the enrichment component of the solution according to

(ṽn,new
h , ũn,new

h )
Ω
=
(
ṽn,new
h , ũn,old

h

)
Ω

. (7.5)

This modification guarantees that the solution on the nodes remains unchanged in the projection.
Complementary vectors required by the discrete time integration procedure such as a potential
acceleration vector are projected with the same matrix system.

7.2. Subgrid-Scale Modeling
Wall modeling via function enrichment is designed to use coarse meshes in the near-wall region,
implying that not even the largest turbulent motions are resolved at the wall. In the bulk flow,
the unresolved turbulent scales on subgrid level are derived via a scale separation by variational
projection as suggested originally for LES by Hughes et al. [120] instead of the more widely
used filter-based one [175]. The scale separation gives rise to unresolved scales that we model
by a structural reconstruction via a multifractal subgrid scale embedded in a residual-based vari-
ational multiscale method as outlined in the following. At the wall, the residual-based approach
shows to be sufficiently general to act as a statistical turbulence model. In Chapters 9 and 10, the
near-wall turbulence is instead modeled by a classical RANS model. In this section, we begin
with a derivation of the weak form and subsequently derive the multifractal subgrid terms as
well as the residual-based method.

7.2.1. Weighted Residual Formulation
The incompressible Navier–Stokes equations are considered in this work as given in Sec-
tion 2.1.1 with the momentum equation (2.1) and the continuity equation (2.2) including the
convective formulation of the convective term (Equation (2.3)), as well as the corresponding
initial and boundary conditions. A weighted-residual formulation is obtained with a standard
procedure by multiplying the momentum equation (2.1) with a weighting function v ∈ Vu and
the continuity equation (2.2) with q ∈ Vp, where u ∈ Vu and p ∈ Vp. Appropriate continuous
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FEM spaces for Vu and Vp based on a conforming FE discretization are assumed, and the dis-
crete velocity space may include the high-gradient enrichment according to Equation (6.6). In
contrast to the DG formulation derived in Section 3.3.2, the equations are not only integrated
over one cell but over the whole domain Ω, the pressure and viscous terms are integrated by
parts and the Neumann boundary conditions (Equation (2.6)) are applied to the arising boundary
integrals. The resulting variational formulation reads

BNS(v, q;u, p) = `(v) (7.6)

with the left hand side of the momentum equation and the contribution of the continuity equation

BNS(v, q;u, p) =
(
v,
∂u

∂t

)
Ω

+ (v,u · ∇u)
Ω
− (∇ · v, p)

Ω
+ (ε(v), 2νε(u))

Ω
+ (q,∇ · u)

Ω

(7.7)
and the right hand side of the momentum equation

`(v) = (v,f)
Ω
+ (v,h)∂ΩN . (7.8)

The L2-inner product is defined as in Section 3.3.1, and (·, ·)∂ΩN defines an integral over the
Neumann boundary ∂ΩN .

7.2.2. Scale Separation for Large-Eddy Simulation
In addition to the decomposition of the solution space into standard and enriched components ac-
cording to Equation (6.1), the velocity space is further separated into resolved uh and unresolved
scales u′, reading

u = uh + u
′ = ūh + ũh + u

′. (7.9)

The equivalent separation of scales of the pressure into a resolved ph and unresolved component
p′ is also performed, resulting in

p = ph + p′. (7.10)

The direct sum decomposition of the underlying spaces into resolved and unresolved ones is
assumed as Vu = Vuh ⊕ Vu

′
= V ūh ⊕ V ũh ⊕ Vu

′ and Vp = Vph ⊕ Vp
′ . In Chapter 10, a similar

composition of the solution of resolved and unresolved scales is developed, which increases the
consistency in the context of wall-modeling via function enrichment. Inserting Equations (7.9)
and (7.10) into the weighted residual formulation (7.6) gives rise to the following relation:

BNS(v, q;uh, ph) + Blin
NS(v, q;u

′, p′) + C(v;uh,u′) +R(v;u′) = `(v). (7.11)

The term BNS(v, q;uh, ph) constitutes the part of the formulation that is represented by the re-
solved solution space. The contribution Blin

NS(v, q;u
′, p′) summarizes the linear terms dependent

on the subgrid scales u′ and p′:

Blin
NS(v, q;u

′, p′) =

(
v,
∂u′

∂t

)
Ω

− (∇ · v, p′)
Ω
+ (ε(v), 2νε(u′))

Ω
+ (q,∇ · u′)

Ω
. (7.12)
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The nonlinear convective term gives rise to the cross- and Reynolds stresses as

C(v;uh,u′) = (v,uh · ∇u′ + u′ · ∇uh)Ω
(7.13)

and
R(v;u′) = (v,u′ · ∇u′)

Ω
. (7.14)

A basic characteristic of the variational multiscale method is that the solution and weighting
function spaces have the same structure, i.e., the spaces for the weighting function may likewise
be decomposed into the corresponding resolved and unresolved contributions:

v = vh + v
′ = v̄h + ṽh + v

′, (7.15)

q = qh + q′. (7.16)

Since Equation (7.11) is linear with respect to the weighting functions, it may be separated into
an equation for the resolved scales and an equation for the unresolved scales. According to the
variational multiscale methodology, only the equation for the resolved scales is taken into further
consideration:

BNS(vh, qh;uh, ph) + Blin
NS(vh, qh;u′, p′) + C(vh;uh,u′) +R(vh;u′) = `(vh). (7.17)

This result still contains the unresolved quantities u′ and p′ which are unknown and have to
be modeled. In the following sections, this is done via multifractal scale similarity and residual-
based modeling.

Remark: The enrichment approach may also be interpreted as a separation of the solution
vector in three scale groups as for example described by Gravemeier et al. [104] and indicated
in Equation (7.9). The three scales are represented by the standard resolved scale ūh, the enrich-
ment scale ũh, as well as the unresolved scale u′. With regard to LES, the standard scale resolves
large eddies that are at least of the size of the characteristic element length. The enrichment scale,
however, represents flow features in a statistical sense and without resolving large eddies in the
near-wall region explicitly. The physical interpretation of the unresolved scales are fluctuations
on the subgrid level. This interpretation and the framework of the variational multiscale method
allows for tailored turbulence models for each scale range: A RANS turbulence model for the
statistical part of the solution and an LES model for the eddy-resolving part of the solution. Such
a turbulence modeling approach is elaborated in Chapter 10. This turbulence model could be
considered in the present continuous FEM framework as well.

7.2.3. Subgrid Modeling with Multifractal Subgrid Scales
The cross and Reynolds stress terms (Equation (7.13)) and (Equation (7.14)) are modeled ex-
plicitly by reconstruction of the unresolved scale u′ via a multifractal subgrid-scale model as
proposed by Rasthofer and Gravemeier [215]. The multifractal subgrid scale model follows the
idea that turbulence originates from repeated stretching and folding of vortical structures and that
this process is scale-invariant. The model attempts to reconstruct the subgrid-scale vorticity and
computes the subgrid velocity through the law of Biot-Savart, indicating that the large eddies of
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the flow have to be resolved explicitly. For a detailed derivation of the governing relations it is
referred to Burton and Dahm [38]. The subsequent description summarizes the model as it was
used by Rasthofer and Gravemeier [215].

The subgrid velocity scales with the small-resolved velocity field δūh and a proportionality
factor B as

u′ ≈ Bδūh. (7.18)

The small-scale velocity is determined by an explicit filtering of the standard FE component of
the resolved velocity, yielding

u = ūαh + δūh + ũh + u
′ (7.19)

for the overall composition of the velocity space. The large-scale velocity field ūαh is identified
by a length scale of αh as a multiple of the element length. This decomposition is chosen due to
the physical interpretation of the standard finite element space as eddies whereas the enrichment
space represents a statistical velocity profile that does not resolve eddies by nature.

The explicit scale separation of ūαh and δūh is performed analogous to [215] via level-transfer
operators from a plain aggregation algebraic multigrid method as proposed in [102] and applies
similar relations as used for smoothing of the wall shear stress in Section 6.3.2.4. The standard
parameter of α = 3 is applied.

The proportionality factor in Equation (7.18) is given as

B = Csgs
(
1− α−4/3)−1/2

2−2N/3 (24N/3 − 1
)1/2

. (7.20)

In the current application of convection-dominated high-Reynolds-number flow, the constant
Csgs = 0.15 is chosen. This value is significantly lower than the one suggested in [215], which
compensates for the fact that the near-wall limit as suggested in the original publication is not
considered herein. B is evaluated at the quadrature points during the evaluation of the dis-
crete formulation (Equation (7.17)). The number of cascade steps N from the smallest resolved
scales of size h to the viscous scale λν is approximated via the local element Reynolds number
Reh =

‖uh‖h
ν

and a proportionality constant cν resulting in

N = log2

(
h

λν

)
= log2

(
cνRe3/4

h

)
. (7.21)

A value for the proportionality constant cν = 0.1 is used, which is close to the value of 1
12.3

determined experimentally by Mullin and Dahm [192], and h is approximated by the cube root
of the local element volume.

The final result for the modeled cross and Reynolds stress terms (Equation (7.13) and (7.14))
with the presented relation for the subgrid-scale velocity (Equation (7.18)) is

C(vh;uh,u′) ≈ (vh, B(uh · ∇δūh + δūh · ∇uh))Ω
(7.22)

and
R(vh;u′) ≈

(
vh, B

2(δūh · ∇δūh)
)

Ω
. (7.23)
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7.2.4. Residual-Based Modeling
The multifractal subgrid scale model as presented in the previous section enables the recon-
struction of the subgrid velocity field in order to model the cross and Reynolds stress terms. As
reported in [39], the model allows both for dissipation and backscatter of energy, which may
result in destabilizing effects. Therefore, it was embedded in the residual-based variational mul-
tiscale method providing a stable numerical method in [215], and this approach is chosen in the
current work as well.

To the left hand side of the scale separation in Equation (7.17), the following additional terms
are added:

(uh∇ · vh, τMRM,h)Ω︸ ︷︷ ︸
SUPG

+(∇ · vh, τDRC,h)Ω︸ ︷︷ ︸
grad-div

+
(
∇qh, τMRM,h

)
Ω︸ ︷︷ ︸

PSPG

, (7.24)

which are partly taken into account by the term Blin
NS(vh, qh;u′, p′). The included terms consist in

an SUPG, a grad-div and a Pressure Stabilizing Petrov–Galerkin (PSPG) term. The SUPG term
stabilizes the method with respect to convection by introducing a certain amount of artificial
dissipation [34], see also Section 2.2.2.3. A better fulfillment of the divergence-free constraint
(Equation (2.2)) and improved convergence of the iterative solver is obtained via the grad-div
term [197] which also introduces a certain amount of dissipation in the system. This term is
analogous to the div-div term presented in Chapter 3, which penalizes the divergence error with
the same idea. The PSPG contribution enables circumventing the inf-sup condition (see e.g. [82])
and allows velocity and pressure spaces of equal order [250].

The momentum residualRM,h is defined as

RM,h =
∂uh
∂t

+uh·∇uh+∇ph−2ν∇·ε(uh)−fh+B(uh·∇δūh+δūh·∇uh)+B2(δūh·∇δūh).
(7.25)

In contrast to [215], it is suggested to include the modeled cross and Reynolds stress terms in
Equations (7.13) and (7.14) in the residual for better consistency. The discrete continuity residual
RC,h is

RC,h = ∇ · uh. (7.26)

The stabilization parameters τM and τD are designed to take into account the nonpolynomial
character of the element space. A definition inspired, among others, by Codina [50] and Grave-
meier et al. [101] is chosen including a transient, convective and viscous contribution for τM as

τM =
1

1
∆t
+ 2
√

λh
3 ‖uh‖2 + 4λhν

(7.27)

with the time step ∆t and a reciprocal scaling of τM and τD, yielding

τD =
1

4λhτM
. (7.28)

It is noted that
(

2
√
λh/3

)2
≤ 4λh which has been reported to be a requirement for example

in [50].
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The parameter λh generally incorporates the characteristics of the element, for example the
polynomial order of the underlying function space. For standard Lagrangian shape functions
with well-defined polynomial order, such as the nonenriched elements, values are for instance
for the polynomial orders p = {1, 2, 3} given as λh = { 3

h2 ,
12
h2 ,

60
h2} with the characteristic el-

ement length h [84, 108]. In the current application, element spaces of the enriched elements
are nonpolynomial making it impossible to specify appropriate values a priori. Therefore, an
element-specific value for λh is computed in a consistent way via inverse estimate as suggested
by Harari and Hughes [108] ensuring stability for convection-dominated flows by solving the
local generalized eigenvalue problem for its maximum eigenvalue λh and vh given as

(∆wh,∆vh)Ωe − λh(∇wh,∇vh)Ωe = 0. (7.29)

Ωe represents the element domain and the solution vh and weighting function space wh are
defined similarly as the enriched velocity space in Equation (6.1), e.g., for vh:

vh(x, t) = v̄h(x, t) + ṽh(x, t) (7.30)

The standard and enrichment components are given with a single DOF per node as

v̄h(x, t) =
∑
B∈Nu

Nu
B(x)v̄B(t) (7.31)

and
ṽh(x, t) =

∑
B∈Nu

enr

Nu
B(x)(ψ(x, t)− ψ(xB, t))rh(x)ṽB(t). (7.32)

In Equation (7.29), we only consider the diagonal part of ∆wh and ∆vh such that the transition
to the values of λh used in standard elements, which are derived based on the 1D assumption,
becomes smoother.

Evaluating the inverse estimate with one DOF per node results in matrix dimensions of only
16×16 for the elements presently considered, such that the eigenvalue-related computation time
is negligible. A favorable characteristic of the presented stabilization parameter is highlighted:
τM and τD are completely free of the element length if λh is computed via Equation (7.29).
Especially for anisotropic elements, the definition of h is not obvious and many definitions have
been proposed. The advantages of such a definition are also discussed for example by Franca
and Madureira [85].

Solely for linear elements, the standard value of λh = 3/h2 is applied with the volume-
equivalent diameter h = (6V (Ωe)/π)

1/3/
√
d with the element volume V (Ωe) and the number

of space dimensions d for simplicity [119]. Due to large variations of the stabilization parameters
τM and τD within one element, especially in the first element at the no-slip boundary condition,
the parameters are evaluated on the quadrature points.

The present approach for turbulence modeling has been presented as a subgrid-scale model
for LES assuming that the largest eddies are resolved by the scheme. However, inside the first
element at the wall, with the first off-wall node placed at y+ > 100, this is certainly not ful-
filled in the wall-region. The presented turbulence model has yet proven to be able to model the
necessary subgrid scales even if the largest eddies are not resolved everywhere.
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7.2.5. Final Discrete Problem
Since the present continuous FEM solver is independent of the numerical methods developed in
Chapters 3 and 5, further details on the solution procedure are given. The final semi-discretized
problem becomes(

vh,
∂uh
∂t

)
Ω

+ (vh,uh · ∇uh)Ω
− (∇ · vh, ph)Ω

+ (ε(vh), 2νε(uh))Ω

+ (vh, B(uh · ∇δūh + δūh · ∇uh))Ω︸ ︷︷ ︸
C

+
(
vh, B

2(δūh · ∇δūh)
)

Ω︸ ︷︷ ︸
R

+ (uh∇ · vh, τMRM,h)Ω︸ ︷︷ ︸
SUPG

+(∇ · vh, τDRC,h)Ω︸ ︷︷ ︸
grad-div

+ (qh,∇ · uh)Ω
+ (∇qh, τMRM,h)Ω︸ ︷︷ ︸

PSPG

= (vh,fh)Ω
+ (vh,hh)∂ΩN (7.33)

where the contributions of the multifractal and residual-based subgrid-scales are labeled. The
residualsRM,h andRC,h are defined in Equations (7.25) and (7.26), the stabilization parameters
τM and τD are given in Equations (7.27) and (7.28) and the coefficient B in Equation (7.20).
The terms are integrated in space applying direction-dependent Gaussian quadrature rules of ap-
propriate order, as it is detailed in Section 6.3.3.1, that enable an accurate integration despite
the nonpolynomial function space. Equation (7.33) is integrated in time by means of an im-
plicit second-order accurate generalized-α time integration scheme with ρ∞ = 0.5 [103, 126].
Adaptive time stepping is employed such that the maximum Courant number is kept constant at
Cr = 0.5 for all simulations presented.

The final matrix system is linearized and iteratively solved via a Picard-iteration scheme,
yielding

Kn+1
i ∆zn+1

i+1 = −rn+1
i (7.34)

for the current time step n + 1 and nonlinear iteration i + 1, omitting the subscript h for sim-
plicity. The increment includes both velocity and pressure increments from the current nonlinear
iteration such that

∆zi+1 =

[
∆Ui+1

∆Pi+1

]
=

[
Ui+1 −Ui

Pi+1 − Pi

]
. (7.35)

The matrix K contains the linearization of all contributions of Equation (7.33) except C, R
and the respective stabilization terms, which are treated in a fixed-point-like procedure [215].
The residual r summarizes all terms of Equation (7.33) at the previous nonlinear iteration i. In
Equation (7.36),K is split into four parts includingKvu,Kvp,Kqu, andKqp and r is split into
two vectors rv and rq:

K =

[
Kvu Kvp

Kqu Kqp

]
r =

[
rv

rq

]
(7.36)

Kvu contains the transient, convective, and viscous term as well as terms of SUPG and grad-div.
Kvp comprises the pressure term and the respective part of SUPG.Kqu andKqp summarize the
continuity contribution and the PSPG terms. The nodal values of the momentum-residual vector
rv on the Dirichlet boundary are equivalent to the nodal forces and are used to calculate the
wall-shear stress τw,αh in Equation (7.1).
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Table 7.1.: WMLES: Channel flow cases and resolutions.
Case Nx1×Nx2×Nx3 Reτ y+1 Nwm

Ch8wm2 8×8×8 590; 950; 2,000 147.5; 237.5; 500 2
Ch12wm2 12×12×12 590; 950; 2,000 98.3; 158.3; 333.3 2
Ch16wm3 16×16×16 590; 950 73.8; 118.8 3
Ch16wm2 16×16×16 2,000 250 2
Ch24wm3 24×24×24 950 79.2 3
Ch24wm2 24×24×24 5,000 416.7 2
Ch32wm2 32×32×32 5,000 312.5 2
Ch128 128×128×128 950 1.54 -
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Figure 7.2.: WMLES: Decomposition of the mean velocity u+ = u1/uτ with uτ =
√
τw/ρ of

case Ch12wm2 at Reτ = 2,000 into the linear and enrichment components and
comparison to DNS data. Symbols indicate nodes. The first off-wall node is located
at y+1 = 333.3.

7.3. Numerical Examples
In this section, the performance of wall modeling via function enrichment within the continuous
FEM is investigated for turbulent channel flow at various Reynolds numbers, flow over peri-
odic hills and backward facing step flow. The latter two examples assess the performance under
separated boundary layer conditions and adverse pressure gradients.

7.3.1. Turbulent Channel Flow
A channel flow example analogous to Section 4.2 is considered, with a domain of the dimen-
sions 2πδ×2δ×πδ in streamwise, wall-normal, and spanwise direction, respectively. We discuss
flows at friction Reynolds numbers Reτ = 590, 950, 2,000, and 5,000 on coarse uniform meshes
starting with 8×8×8 and up to 32×32×32 elements, see Table 7.1 for an overview. The column
Nwm indicates the number of layers of enriched elements employed next to the solid bound-
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Figure 7.3.: WMLES: Normalized mean velocity for Reτ = 590, 950, 2,000, and 5,000, each
shifted upwards by 6 units for clarity. Symbols indicate nodes.

aries. Table 7.1 also compares the location of the first off-wall nodes in wall units, which are
located between y+1 = 73.8 and y+1 = 500 for the different flows and given discretizations. For
comparison, we also include an LES with resolved near-wall region, i.e., without wall model,
at Reτ = 950 on a discretization with 128×128×128 elements. The mean velocity is postpro-
cessed on a large number of wall-parallel planes within the elements using the definition of the
resolved flow field uh (Equation (6.6)) such that the full velocity profile inside the enriched ele-
ments is made visible. The results presented in the following are labeled according to Table 7.1.
They are compared with DNS data at Reτ = 590 [187], Reτ = 950 [6], and Reτ = 2,000 [116].
The results for Reτ = 5,000 are compared with u+ = 1

κ
ln(y+) + B with κ and B defined as in

Section 2.1.3.
We commence the discussion of the results with Figure 7.2 showing the decomposition of

the mean velocity of case Ch12wm2 at Reτ = 2,000 similar to Figure 6.4. The normalized
mean velocity profile u+ = u1/uτ follows the DNS data closely and provides an excellent match
despite the relatively coarse resolution. With the first off-wall node located at y+1 = 333.3, a
large part of u+ is in the first element represented by the enrichment component of the flow, ũ+,
which also constitutes the largest part of the gradient at the boundary. The enrichment enables an
accurate representation of the viscous sublayer and the buffer layer within the first off-wall cell.
Further away from the wall in the second element layer, the contribution of the standard space
ū+ constitutes almost the whole solution.

The nondimensional mean velocity profiles for all 13 simulations are included in Table 7.1
is shown in Figure 7.3. A significant mesh independence is observed for all Reynolds numbers.
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Even for discretizations consisting of only 8×8×8 elements, the resolving power of the addi-
tional DOFs together with the law-of-the-wall shape functions yield results of acceptable to very
good agreement with the DNS data. The normalized mean velocity is slightly overestimated for
the friction Reynolds numbers Reτ = 590 and 950. The simulation results at Reτ = 2,000 and
5,000 exhibit an excellent match with the reference data, however. Comparing the wall-resolved
LES of case Ch128 at Reτ = 950, a mean velocity of approximately equal quality as the WM-
LES is obtained. The differences to LES data presented by Rasthofer and Gravemeier [215] are
due to the fact that we do not consider the near-wall limit suggested in the original publication of
the subgrid-scale modeling approach and possibly due to the smaller proportionality parameter
Csgs chosen here, as explained in Section 7.2.3.

The performance of the present wall model is further assessed via RMS profiles of the fluctu-
ations u′+ in streamwise, v′+ in wall-normal, and w′+ in spanwise direction, as well as the RSS
(u′v′)+ at Reτ = 950 displayed in Figure 7.4. Considering u′+, a distinct tendency to conver-
gence for an increasing number of elements is observed. For w′+, the predictions show a similar
behavior as observed for u′+ whereas v′+ is generally predicted too small. The RSS is predicted
quite accurately for all discretizations. The fact that the near-wall fluctuations are not of the
same quality as the mean velocities is inherent in all wall models since the turbulent motions in
the inner layer are not resolved. As expected, the RMS curve of the case Ch128 is in favorable
agreement with the DNS data, since a significant amount of the near-wall turbulent structures is
resolved.

From the results presented in this section it is concluded that relatively coarse resolutions can
be used for the simulation of turbulent channel flow. The first off-wall node can be located at up
to y+1 = 500 wall units.

7.3.2. Flow over Periodic Hills
We consider flow over a smoothly curved 2D-periodic hill as described and analyzed in Sec-
tion 4.3 with a Reynolds number based on the hill height of ReH = 10,595 and 19,000 to vali-
date the wall modeling approach. Wall models for LES are challenged by this flow with a strong
adverse pressure gradient that causes many models to produce deficient results. For example,
Chen et al. [44] have found that their wall model based on the simplified TBLE underestimates
the skin friction in the recirculation region as the convective term is neglected in that model.
In wall modeling via function enrichment, all terms of the Navier–Stokes equations are satis-
fied discretely such that a better performance with respect to adverse pressure gradients may be
expected. Temmerman et al. [249] investigated several wall functions and subgrid closures for
LES and found that the location of the separation point has a major impact on the reattachment
location. Also, the accurate prediction of the separation point of this flow is challenging em-
ploying steady RANS simulations [124]. Hybrid RANS/LES techniques have been analyzed by
Breuer et al. [31] and Šarić et al. [224] who have shown that the RANS/LES interface should be
located inside the boundary layer on the crest of the hill. Due to the construction of the present
technique, there is no explicit interface between the statistical and the LES region such that these
problems are not expected to occur.

A domain of the same dimensions as in Section 4.3 with periodic boundary conditions in
the streamwise and spanwise direction and no-slip boundary conditions at the top and bottom
walls is considered. A coarse mesh comprising 64×32×32 elements and a refined, yet relatively
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2
τ for Reτ = 950.

coarse, mesh with 96×48×48 cells with uniform grid spacings in all directions and vertical grid
lines as depicted in Figure 7.5 are employed. An overview of the simulation cases is given in
Table 7.2, where the coarser grid is labeled PhC and the finer grid PhF for ReH = 10,595. A
simulation without wall model is also investigated for comparison, which is labeled PhFNWM
and employs the finer mesh. Considering ReH = 19,000, the same meshes are applied and
labeled PhC19, PhF19, and PhFNWM19, respectively. The number of enriched element layers
is Nwm = 4 for both meshes at the upper and lower walls. Figure 7.6 shows the location of
the first off-wall grid point over the x1-coordinate. The first off-wall node is located at varying
distance depending on resolution and Reynolds number up to approximately y+1 = 216 with
minima near the zero-crossings of the wall shear stress. The mass flow is kept approximately
constant over the simulation time by the adaptive algorithm in Equation (4.2) and statistics are
sampled over 10,000 time steps, corresponding to approximately 45 flow-through times for the
coarse mesh and 25 flow-through times for the fine mesh. For postprocessing, we exploit the fact
that the enrichment vanishes on the nodes in Equation (6.6) such that only the nodal values of
the standard FE space ūB are taken into account. A preliminary setup including postprocessing
routines for the present simulations was developed by Jäger [122] as part of this research.

An overview with respect to the reference data considered is also given in Table 7.2. The
results for ReH = 10,595 are compared to the DNS data according to Chapter 4, labeled as DNS
10595, and the coarse mesh results discussed by Chen et al. [44] (CHDBA WMLES) with 64
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Table 7.2.: WMLES: Simulation cases and resolutions of the periodic hill flow. ReH = 10,595:
PhC coarse mesh with wall modeling, PhF refined mesh with wall modeling,
PhFNWM refined mesh without wall modeling, DNS 10595 DNS, CHDBA WMLES
and CHDBA WMLES F wall modeling based on a simplified TBLE and immersed in-
terface method [44]. ReH = 19,000: PhC19 coarse mesh with wall modeling, PhF19
refined mesh with wall modeling, PhFNWM19 refined mesh without wall modeling,
RM Exp experiments.

Case N1×N2×N3 ReH x1,sep/H x1,reatt/H Nwm

PhFNWM 96×48×48 10,595 0.2 3.68 -
PhC 64×32×32 10,595 0.25 3.77 4
PhF 96×48×48 10,595 0.25 4.91 4
DNS 10595 896×448×448 10,595 0.20 4.51± 0.06 -
CHDBA WMLES [44] 96×64×32 10,595 0.65 4.0 -
CHDBA WMLES F [44] 192×72×48 10,595 0.5 4.42 -
PhFNWM19 96×48×48 19,000 0.2 3.4 -
PhC19 64×32×32 19,000 0.24 2.58 4
PhF19 96×48×48 19,000 0.26 3.94 4
RM Exp [211] - 19,000 3.94 -

cells in vertical direction. The separation and reattachment points are further compared to the
fine mesh results by Chen et al. [44] (CHDBA WMLES F). The results for ReH = 19,000 are
compared to experiments by Rapp and Manhart [211] (RM Exp).

We begin with a discussion of the results for the flow at ReH = 10,595. The skin friction
coefficient cf at the lower wall and pressure coefficients cp at the upper and lower wall are
compared to the DNS data in Figure 7.7. They are defined according to Equations (4.3) and (4.4).
The skin friction is computed via the right-hand side residual (Equation (7.1)) and the pressure
at the upper wall at x1 = 0 is chosen as the reference pressure pref. The skin friction profiles
computed by the WMLES are in close agreement with the reference data over large parts of
the domain. Solely on the crest of the hill, the peaks between x1 = 8 and 9 as well as x1 =
0 and 1 are significantly overpredicted, but improve for the case PhF with higher resolution.
This overprediction may be related to the local averaging operation of the wall shear stress
applied during the construction of the shape functions. The minor recirculation at the top of the
hill observed in the DNS data is not visible in the results of PhC and PhF. The separation and
reattachment points are predicted with acceptable agreement via the zero-crossing of cf as well
and are summarized in Table 7.2. For the case PhFNWM without enrichment, large discrepancies
including high peaks are visible near the hill crest. In the recirculation region, the skin friction
is overestimated and the reattachment length is predicted shorter than for the cases with wall
modeling. The skin friction coefficient is also compared to the results of Chen et al. [44], where
cf is significantly underestimated due to the neglected convective term as aforementioned.

The pressure curves of the present wall model are also in good agreement with the reference
data and improve with resolution. The case PhC shows discrepancies both at the lower and upper
wall, which are due to the coarseness of the resolution. The case PhFNWM overpredicts the
pressure in the recirculation bubble and exhibits negative peaks on the hill crest. In the recovery
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Figure 7.5.: Grid of case PhC. Enriched elements are colored red and standard linear elements
blue.
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Figure 7.6.: WMLES: Location of the first off-wall node in wall units over the streamwise coor-
dinate of the periodic hill case.

region, the estimation is comparable to the coarse mesh with wall modeling, PhC. At the upper
wall, the prediction with wall model is superior compared to the one without.

The profiles of the mean velocity in streamwise and vertical direction, the RSS u′1u
′
2, and the

TKE of the case ReH = 10,595 are compared with the DNS data of Chapter 4 in Figure 7.8.
The mean velocity u1 exhibits discrepancies with the reference data for case PhC in the reat-
tachment and recovery region whereas the finer mesh PhF results in good agreement with the
reference data. Without wall model, PhFNWM predicts u1 with similar quality as the coarse
mesh with wall modeling, PhC. Also regarding the mean velocity u2 in vertical direction, good
results are obtained for the fine mesh including wall modeling, PhF. For the other cases, u2 is
underestimated above the recirculation bubble due to the shorter reattachment length. The RSS
u′1u

′
2 is heavily overpredicted for the cases PhC and PhFNWM near the crest of the hill and in

the shear layer between the recirculation region and the bulk flow. Refinement leads to a good
match with the reference data for the case PhF. Finally, the TKE distributions are only predicted
accurately everywhere with PhF whereas PhC and PhFNWM overpredict its magnitude inside
the recirculation zone.

The good results observed for ReH = 10,595 motivate an application of the wall model to a
higher Reynolds number. For this second assessment, we choose the next higher Reynolds num-
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Figure 7.7.: WMLES: Skin friction (top) and pressure (bottom) coefficients for flow over peri-
odic hills at ReH = 10,595. The shallower cp curves correspond to the upper wall.

ber, ReH = 19,000, and consider the same meshes. The results in Figure 7.9 include the mean
velocities u1 and u2 as well as RSS profiles u′1u

′
2 and are compared to the experimental data,

labeled RM Exp. The quality of the fine mesh with wall modeling is very similar to the results
at Reynolds number ReH = 10,595 discussed above. The reattachment length is also predicted
perfectly with this mesh. The coarser case PhC shows slightly worse predictions in the recircu-
lation, reattachment and recovery region for the mean velocity u1 and in the recirculation bubble
for the RSS. Also, the reattachment length is predicted significantly too short, which may be due
to an overly coarse mesh. The case without wall model, PhFNWM19, exhibits results of quality
between the coarse and fine wall-modeled simulations. Here, another defect is highlighted: sig-
nificant oscillations in the mean velocity profiles are visible especially at the lower wall and in
the vicinity of the hill. Such oscillations are not visible for the wall-modeled computations and
show another advantage of the wall model.
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Figure 7.8.: WMLES: Mean velocity u1 in x1 and u2 in x2-direction, RSS u′1u
′
2 and TKE K for

the periodic hill at ReH = 10,595.

From the investigations of flow over periodic hills the following conclusion may be drawn.
The present enrichment-based wall model exhibits favorable characteristics with respect to sep-
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Figure 7.9.: WMLES: Mean velocity u1 in x1 and u2 in x2-direction as well as RSS u′1u
′
2 for the

periodic hill at ReH = 19,000.

arated flows as well as under adverse pressure gradients and allows the use of comparably coarse
meshes. Further simulations of the periodic hill flow using fully unstructured tetrahedral meshes
confirmed the present results [111].

7.3.3. Backward Facing Step Flow
We assess the wall modeling approach further with flow over a backward facing step at
Reh = 5,000 with an expansion ratio of ER = 1.2 as studied experimentally by Jovic and
Driver [130]. DNS data of a similar configuration at a Reynolds number of Reh = 5,100 is
available through computations by Le et al. [170], and results for WMLES have been presented,
e.g., by Chen et al. [44] mentioned earlier, who encountered difficulties predicting the correct
skin friction and reattachment point for this flow as well.

163



7. Application I: Wall Modeling for LES in the Continuous FEM

Table 7.3.: WMLES: Simulation cases and resolutions of backward facing step flow.
BFS NWM without wall modeling, BFS WM3 with wall modeling,
BFS J&D EXP experiments, BFS LMK DNS DNS.

Case Reh x1,reatt/h Nwm

BFS NWM 5,000 13.49 -
BFS WM3 5,000 6.78 3
BFS J&D EXP [130] 5,000 6.0± 0.15 -
BFS LMK DNS [170] 5,100 6.28 -

Figure 7.10.: WMLES: (Top) Instantaneous velocity magnitude over the backward facing step:
red indicates high and blue low values. (Bottom) Mesh in the vicinity of the step:
enriched elements are colored red and standard elements blue.

The computational domain behind the step is of the dimensions 30h×6h×3h in streamwise,
wall-normal and spanwise direction, respectively. The domain extends 30h upstream of the step
and the velocity is prescribed at the inflow boundary using mean DNS data of a turbulent bound-
ary layer at a similar Reynolds number [239] with an additional random perturbation of 10% of
the center line velocity uc. The inflow data is only prescribed on the standard space ūh whereas
the enrichment ũh is set to zero for simplicity. Periodic boundary conditions are applied in the
spanwise direction and slip boundary conditions at the upper wall. The domain is meshed uni-
formly with four elements per step height h in all space dimensions. For the case with wall
modeling, three rows of elements at the lower wall are enriched, including the inflow region
and the step. The resulting mesh is quite coarse and displayed in Figure 7.10 along with a con-
tour plot of the instantaneous velocity. For the statistical results presented in the following, the
quantities are averaged over 5,000 time steps starting after the initial transient. As for the pe-
riodic hill benchmark, only the nodal values of the standard FE component are considered for
postprocessing.

An overview of the results discussed is provided in Table 7.3. The computation including
wall modeling is labeled as BFS WM3 and compared to the same mesh where the enriched
elements are replaced by standard elements, labeled BFS NWM . We compare the results with
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Figure 7.11.: WMLES: Skin friction (left) and pressure (right) coefficients for the flow over a
backward facing step at Reh = 5,000.

the experiments by Jovic and Driver [130] labeled as BFS J&D EXP and the skin friction is
additionally evaluated against the DNS data by Le et al. [170] BFS LMK DNS.

Again we begin with a discussion of the distribution of the skin friction and the pressure
coefficients along the lower wall. They are defined analogous to Equations (4.3) and (4.4) with
the reference velocity uc and the reference pressure located at x1 = 24h. The results of the
case BFS WM3 displayed in Figure 7.11 exhibit a favorable agreement with the reference
data. In contrast, the computation without wall model, BFS NWM , does not give physically
reasonable results. The peak in negative skin friction is very large and shifted downstream by
several step heights. Further, significant oscillations are observed. Accordingly, the reattachment
length defined as the zero-crossing of the skin friction coefficient is predicted as x1,reatt = 6.78h
for the case with wall modeling, which matches the references of x1,reatt = 6.0h and x1,reatt =
6.28h quite well. In contrast, the simulation without wall modeling predicts x1,reatt = 13.49h.
An overview with respect to reattachment lengths is also given in Table 7.3. The prediction of
the pressure coefficient shows a similar quality as for the friction coefficient. Including wall
modeling, the curve follows the reference data closely, while the one without wall model is
delayed by several step lengths.

The mean streamwise velocity, RMS velocity fluctuations of the streamwise and wall-normal
components and the RSS are displayed at six locations in Figure 7.12. It may be observed in the
graphs that both the velocity and fluctuations in front of the step are in good agreement with the
reference data, implying that the simple procedure of applying turbulent inflow boundary condi-
tions gives useful results. For the case without wall modeling, the fluctuations are not reproduced
correctly, however.

The mean velocity behind the step matches the reference data very well for the case
BFS WM3 including wall modeling. It is mentioned here that the velocity is only postpro-
cessed on the element nodes, which are connected with straight lines in the graph for simplicity.
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Figure 7.12.: WMLES: Mean velocity u1 in x1 direction, RMS values of the fluctuations u′1 and
u′2 in x2-direction, and the RSS u′1u

′
2 for the backward facing step flow.

Therefore, the detailed velocity distribution at the second location inside the recirculation region
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is not shown in the graph. Without the enrichment, the result is barely physical and the size of
the recirculation is significantly overpredicted.

The RMS quantity u′1 is predicted very well for the case with wall modeling. Even without
wall modeling the match is quite good in the recovery region, but lower magnitudes are ob-
served inside the recirculation. The RMS profiles of the fluctuation in x2-direction, u′2, are also
predicted well if the wall model is included. In the recovery region, small discrepancies are vis-
ible, however. It may be assumed that this behavior is due to the coarseness of the mesh in the
shear layer above the recirculation and is not directly related to the wall model. The simulation
without wall model yields deficient predictions already at the first location. The RSS is predicted
with acceptable accuracy at the first locations but an overestimation is observable around the
fourth location. Without wall model, the RSS is neither predicted accurately at the inflow nor
behind the step.

From the backward facing step flow investigated with and without wall model in this section,
we find further evidence that wall modeling via function enrichment gives excellent results in
separated flow regimes. The method is robust with respect to kinks in the boundary conditions
and ambiguous wall-normal vectors. Its strengths are accurate predictions of the skin friction and
pressure coefficients as well as mean velocity profiles with coarse meshes, but even turbulence
quantities are estimated well. Additional results on this example with a different mesh were
published in [154] and showed that the cell aspect ratio is uncritical for the present method.

7.4. Summary

Wall modeling via function enrichment has been applied to the continuous FEM. The wall func-
tion considered in this chapter, Spalding’s law, is not prescribed as a boundary condition, but
offered as an additional component of the solution in a consistent way. The first off-wall node
can be placed at up to y+1 ∼ 500 and the wall shear stress is still captured by the additional shape
functions based on the wall function.

The method has been validated with attached and separated boundary layer flows, present
in turbulent channel flow, flow over periodic hills, and backward facing step flow. Turbulent
channel flow could be computed with relatively coarse meshes, and the mean velocity profiles
may be computed accurately and have shown almost no dependence on the mesh. The RMS
values of the velocity fluctuations do not exhibit the same level of accuracy, since the turbulent
motions in the inner layer are not resolved. Flow over periodic hills and backward facing step
flow exhibit the high potential of the presented method for many practical applications with high
adverse pressure gradients and under separated flow conditions. The reason for the high level of
accuracy in these simulations is the full consistency of the method, i.e., that the Navier–Stokes
equations are satisfied in a discrete sense in the whole boundary layer, see Section 6.2.

The near-wall turbulent motions are not resolved by the present method, but modeled statis-
tically, whereas the large turbulent motions are resolved in the outer layer on the same grid.
Wall modeling via function enrichment can therefore be seen as a branch of wall-modeled DES.
This similarity is developed further in Chapter 9, where the SA model is employed in RANS
mode in the near-wall region and in LES mode in the outer layer. A further development of ideas
discussed in the present chapter is presented in Chapter 10, where the a priori separation of
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the function space into an eddy-resolving and an averaged component is used to apply tailored
turbulence models for each of these two scales.
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8
Application II: Wall-Modeling for RANS in

High-Order Discontinuous Galerkin

Resolving the sharp velocity gradient present in turbulent boundary layers is particularly costly in
RANS simulations, as the wall-parallel resolution requirements are comparably low. Wall func-
tions are therefore frequently used to economize computer time and storage requirements by
placing the first node in the logarithmic region and specifying appropriate boundary conditions
(see, e.g., the reviews in [64, 169] and the discussion in Section 6.2.5). However, wall functions
are often not valid in strong nonequilibrium boundary layers and it may be difficult to define con-
sistent boundary conditions for turbulence quantities at general off-wall locations, especially in-
side the buffer layer between 5 < y+ < 30 [64, 134]. Special wall functions have been designed
in order to enhance the performance in nonequilibrium flow conditions, see [134, 143, 207, 255]
and the discussion in Sections 6.2.2 and 6.3.2.3. Suitable boundary conditions for turbulence
quantities have been discussed for example in [134].

In the present chapter, we transfer the idea of wall modeling via function enrichment to RANS
and the high-order DG method. The RANS turbulence model takes into account all turbulent mo-
tions in the whole domain, such that no modifications have to be made to the turbulence modeling
approach. The application to RANS is the most straightforward example of wall modeling via
function enrichment since the whole simulation methodology reduces to taking additional shape
functions into account in the spatial discretization. The SA model is considered for these investi-
gations in the formulation as it is described and implemented in the high-order DG framework in
Chapter 5. The DG method considered herein yields a simpler formulation of the enrichment as
compared to the continuous FEM used in the preceding chapter. Also, the SA model offers the
possibility of a straightforward extension of the approach to detached-eddy simulation, which
will be presented in the subsequent chapter.

We begin with a summary of the considered function enrichment space in the first section and
introduce an extension of the adaptation algorithm that only takes into account the enrichment
when it is needed. Subsequently, benchmark results are computed using the two familiar exam-
ples of turbulent channel flow and flow over periodic hills. The work presented in this chapter is
based on Krank et al. [152].

8.1. Enrichment Space: Enrich Only When Needed

The concept of function enrichment allows the resolution of the sharp spatial velocity gradient
present at the wall with very coarse meshes up to y+1 ∼ 1,000 in the context of RANS, while
preserving consistency and flexibility in nonequilibrium boundary layers. This is achieved by
inserting a wall function in the function space of the Galerkin method in addition to the standard
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polynomial component. Since the full Navier–Stokes equations are then solved in the boundary
layer including the no slip boundary condition, good results are expected even in nonequilibrium
conditions. The general framework for such a function enrichment was already introduced in
Section 6.3. The methodology is further extended in the following sections by an adaptation
algorithm, which automatically takes the enrichment into account when it is needed.

8.1.1. Enrichment Space
We consider wall modeling via function enrichment within the DG method according to Sec-
tion 6.3.2.1. As an enrichment function, Spalding’s law is used according to Equation (6.7) with
the constants κ and B as defined in Section 2.1.3, since the results obtained with this function
in the previous chapter are very promising. As it was discussed in Section 6.3.2.3, the analytical
wall function that solves the SA equation in [7] would also be highly interesting as an enrichment
function, since this function would yield an even higher degree of consistency in the approach.
The enrichment function is in this chapter weighted using the polynomial degrees l = {0, 1, 2}
with an emphasis on the linear case (l = 1), and arguments for this choice are discussed in
the context of a numerical example in Section 8.2.1. The weighting of the wall function with
a linear FE space gives the method a high degree of flexibility in adapting the enrichment to
separated flow conditions while the number of additional DOFs introduced by the enrichment is
often small. Since we consider higher polynomial degrees in this chapter (k = 4) for the poly-
nomial velocity component, the eddy viscosity working variable, and the pressure, in contrast to
the low-order method employed in Chapter 7, it is sufficient to enrich a single layer of cells near
the wall. As it was noted in Section 6.3.2.1, the blending of the function spaces at the position,
where the enrichment ends, is not an issue within DG, since neighboring cells can have different
shape functions due to the weak coupling of the cells. The composition of the resulting function
space is illustrated in Figure 6.2 for an equilibrium boundary layer and for a nonequilibrium
boundary layer profile. The wall shear stress is discretized using linear continuous shape func-
tions (m = 1) as it was introduced in 6.3.2.4 and updated every time step in order to take into
account spatial and temporal variations of the flow in the model. This adaptation algorithm is
enhanced in the following.

8.1.2. Enhancement of the Adaptation Scheme
The enrichment is only necessary when the first off-wall cell spans a y+-range up to a certain
y+max at which the polynomial of degree k is no longer capable of predicting the correct velocity
profile including the gradient in the viscous sublayer. In addition, if the enrichment is employed
in elements spanning only a small range of y+ units, the polynomial and enrichment shape func-
tions may become close to linearly dependent, resulting in a degradation of conditioning and
robustness. We therefore switch the enrichment on or off according to a certain criterion. This
criterion is evaluated prior to every time step. The L2-projection in Equation (6.14) allows for
such nonconforming function spaces in time, i.e., a velocity solution un,old

h containing the en-
richment may be projected onto a purely polynomial solution un,new

h and vice versa.
This raises the question of how to choose the criterion and a specific value of y+max. In Fig-

ure 8.1, we analyze the error occurring if a polynomial of degree k = 4 is used to approximate a
typical boundary layer profile, given as the enrichment function ψ, for y+max = {10, 20, 30, 40}.

170



8.1. Enrichment Space: Enrich Only When Needed

0 10 20 30 40
−0.04

−0.02

0

0.02

0.04

0.06

ψ
h
−
ψ

ψ
(y

+ m
a
x
)

y+

 

 

y+max = 10

y+max = 20

y+max = 30

y+max = 40

Figure 8.1.: Analysis of several values of y+max. The quantity ψh represents an interpolation of ψ
onto the Gauss–Lobatto nodes of an element with k = 4 with the end points located
at y+ = 0 and y+ = y+max, respectively.

This function is interpolated onto the Gauss–Lobatto nodes and the error is normalized by the
value ψ(y+max). At y+max = 10, the error of the interpolated function is very small, so if the first off-
wall cell spans a y+-range up to this value, the boundary layer is fully resolved by the polynomial
component. This result has lead to the recommendation of y+1e < 10 in wall-resolved simulations
used in Section 5.4.1. The error is larger for higher values of y+max and reaches approximately
3% in the case y+max = 40. The final choice of this parameter is a trade-off between robustness
and accuracy and values between 20 and 30 have proven suitable in the investigations. In this
chapter, we perform wall-enriched turbulent channel flow simulations with the first off-wall cell
size down to ∆y+1e = 25 without difficulty and set y+max to 30 for the periodic hill flow example to
allow for robustness near separation and reattachment locations. A further analysis of this prob-
lem in the context of the method presented in Chapter 10 showed that y+max = 30 is even suitable
in eddy-resolving simulations, so this parameter is used in the remainder of this thesis if not
specified otherwise. In the implementation of this criterion in two and three space dimensions,
we compute the numerical value of y+ on all quadrature points in Ω̃e and toggle the enrichment
in that cell on if at least one quadrature point lies in y+ > y+max.

The present adaptation technique replaces the clipping of the wall shear stress introduced in
Section 6.3.2.4 in order to avoid τw → 0 and thus y+ → 0 near separation or reattachment
points.

In summary, at the beginning of each time step, we perform the following steps in our algo-
rithm according to the present adaptation scheme and the steps discussed in Section 6.3.2.

i. Compute new wall shear stress τw,h.

ii. Evaluate criterion whether element is enriched.

iii. Precompute Spalding’s law and its derivatives on each quadrature point.

iv. Precompute element-wise inverse mass matrix terms of a scalar mass matrix for all en-
riched elements according to Section 6.3.3.2.
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v. Perform element-wise L2-projection according to Equation (6.14).

vi. Recompute vectors of the time integration scheme.

8.1.3. Implementation
The resulting function space for the velocity is inserted in the weak forms presented in Chap-
ter 5 and integrated over all cells and faces and the enrichment cells are integrated using Gaussian
quadrature rules of higher order according to the quadrature guidelines formulated in Table 6.3.
The inverse mass matrix is applied in this chapter using the matrix-based approach via LU factor-
ization as discussed in Section 6.3.3.2, since the faster matrix-free variant was not yet available
at the time when the simulations were performed. With respect to the implicit steps of the numer-
ical scheme, the standard iterative solvers according to Section 3.5.2 give similar iteration counts
compared to the standard polynomial case. From this fact we conclude that conditioning is not an
issue. The no-slip Dirichlet boundary condition is applied in a strong sense on the viscous term
as discussed in Section 5.3.1 in order to allow very large cell sizes in the first off-wall element
up to y+1e = 5,000, which would not be possible with the weak Dirichlet boundary conditions
presented in Chapter 3. As an alternative, it would be possible to use a higher interior penalty
stabilization parameter on the boundary faces in the viscous step; this approach was chosen in
Chapter 10. It is noted that the latter weak Dirichlet boundary conditions are even more solver-
friendly in three space dimensions, and they are recommended for future applications of the wall
model. The enrichment is implemented in the INDEXA code with minimal modification of the
original implementation by using the wrapper classes introduced in Section 6.3.3.4.

8.2. Numerical Examples

We investigate wall modeling via function enrichment for RANS with the same two examples
as in the context of the standard RANS solver in Section 5.4, i.e., turbulent channel flow and
flow over periodic hills. These two benchmark examples provide insight into the performance
regarding wall-attached flow in the first case and separated flow with a high adverse pressure
gradient in the second setup. All computations are carried out with a scheme of temporal ac-
curacy of second order (BDF2) and we take the spatial polynomial degrees of k = 4 for the
standard velocity component, pressure, and eddy viscosity, in order to be able to compare the
results to the wall-resolved simulation cases presented in Section 5.4. The polynomial degree of
the enrichment l is chosen as l = 1 for most simulation cases, but results for l = 0 and l = 2 are
also presented.

8.2.1. Turbulent Channel Flow
We consider turbulent flow in a 2D plane channel with the same setup as in Section 5.4.1. The
velocity solution is postprocessed at simulation time using the definition of uh at sufficiently
many y+ levels such that the full velocity profile may be compared to the reference data. The
following numerical experiments are separated into three groups investigating the independence
of the Reynolds number with the same mesh, mesh refinement with a constant Reynolds number,
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Table 8.1.: SA-RANS: Channel flow cases and resolutions. Nei number of elements per spatial
direction i, Reτ friction Reynolds number, γ mesh stretching parameter, and ∆y+1e
width of first off-wall element. All computations employ k = 4 as the polynomial
degree of the standard space as well as a single enriched element row at the wall. The
polynomial degree of the enrichment space is l = 1 for most cases with one example
for l = 0 and l = 2, respectively. The cases ch SA Ref are the same as in Table 5.1.

Case Ne1×Ne2 Reτ l γ ∆y+1e
ch N82 k4l1 8×8 180 1 - 45

8×8 395 1 - 99
8×8 590 1 - 118
8×8 950 1 - 238
8×8 2,000 1 - 500
8×8 5,200 1 - 1,300
8×8 10,000 1 - 2,500
8×8 20,000 1 - 5,000

ch395 N82 k4l1 8×8 395 1 - 99
ch395 N162 k4l1 16×16 395 1 - 49
ch395 N322 k4l1 32×32 395 1 - 25
ch395 N8×16 k4l1 8×16 395 1 - 49
ch395 N8×32 k4l1 8×32 395 1 - 25
ch395 N82 k4l0 8×8 395 0 - 99
ch395 N82 k4l2 8×8 395 2 - 99
ch50000 N162 k4l1 16×16 50,000 1 2.0 1,175
ch100000 N162 k4l1 16×16 100,000 1 2.25 1,664
ch SA Ref 16×16 180 - 1.8 5.5

16×16 395 - 2.0 9.3
16×16 590 - 2.25 9.8
32×32 950 - 2.0 9.8
32×64 2,000 - 2.0 9.7

and the application to high Reynolds numbers. All simulation cases and resolutions are presented
in Table 8.1.

The first investigations discussed here employ all the same mesh as visualized in Figure 8.2
of 8×8 equally distributed cells and including a single enriched element row with l = 1 at the
walls. With this spatial discretization, the enrichment constitutes only 4% of the overall number
of DOFs. We perform simulations using friction Reynolds numbers Reτ = uτδ/ν in accordance
with reference DNS at Reτ = 180, 395, and 590 [187], Reτ = 950 [6], Reτ = 2,000 [116], and
Reτ = 5,200 [172]. Further friction Reynolds numbers of Reτ = 10,000 and Reτ = 20,000 are
included and compared to the linear and log-laws in the respective y+ regions. These simulation
setups result in locations of the first off-wall element interface in a y+ range between y+1e = 45
and 5,000 wall units, see Table 8.1. As a y+ criterion, we consider the width of the first off-wall
cell as more meaningful compared to the first off-wall Gauss–Lobatto point used in Part I, since
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Figure 8.2.: Mesh for turbulent channel flow computations with N = 82 elements. Enriched ele-
ments are colored red and standard polynomial elements blue, i.e., a single element
layer is enriched at the walls.

Figure 8.3.: SA-RANS: Numerical solution of the streamwise velocity of the case
ch395 N162 k4l1 at the end of the simulation. Red indicates high and blue low
velocity

the width of the first off-wall cell is equal to the thickness of the enrichment layer. The velocity
solution is illustrated in Figure 8.3 for the case ch395 N162 k4l1. As additional reference data,
we have computed wall-resolved RANS simulations, i.e., without enrichment on a fine mesh
(∆y+1e < 10 according to Section 8.1), using the present numerical scheme. These simulation
cases have already been presented in Section 5.4.1, where they were compared to DNS data. The
results of the normalized velocity u+ are depicted in Figure 8.4 and exhibit excellent agreement
with the reference data including the inner layer and viscous sublayer despite the substantial
difference in resolution respective wall units.

In the middle of the channel, the velocity is overpredicted to a minor extent for Reτ = 180
in comparison to the DNS data and marginally underpredicted for Reτ = 20,000, the error
is acceptable, however. Also, the velocity is slightly overpredicted in the buffer layer between
5 < y+ < 30 in comparison to DNS data. The reason for this behavior is assumed to be twofold:
Firstly, the enriched and the wall-resolved RANS computations show a close agreement in the
buffer layer, indicating that this error is related to the SA model, see also Section 5.4.1. Secondly,
the wall-resolved RANS computations show a very good agreement with DNS data in the log-
layer while some of the enriched cases show a small mismatch, indicating that this error may be
a discretization error. The source of the latter discretization error is presumably that Spalding’s
law results in a slightly different velocity distribution in the buffer layer as compared to the SA
model [7, 134], see also the comparison of the wall function resulting from the SA model with
Spalding’s law and DNS data in Figure 6.5. Aiming at fine-tuning this approach, it would in
future research certainly be valuable to investigate alternative enrichment functions, in particular
the wall functions implicitly given through the SA equation as specified in Section 6.3.2.3, in
order to minimize the discretization error.

Simple wall function approaches are often prone to inaccuracies during mesh refinement, es-
pecially when the coupling location moves inside the buffer layer. A refinement study is therefore
performed for the case Reτ = 395 using three successive refinement levels from 8×8 to 32×32
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Figure 8.4.: SA-RANS: Velocity solution of turbulent channel flow u+ = u/uτ for Reτ = 180,
395, 590, 950, 2,000, 5,200, 10,000, and 20,000, each shifted upwards by three units
for clarity. All computations have been carried out with the same mesh displayed in
Figure 8.2 consisting of N = 82 elements of fourth polynomial degree plus first
degree for the enrichment within the first off-wall element row. Symbols indicate
the location of element interfaces.

cells. The wall model is active only in the first off-wall cells, ranging up to y+1e = 99 in the
coarsest case and y+1e = 25 in the finest case. The adaptation algorithm according to Section 8.1
does not have any impact on the present computations, i.e., y+max < 25. Additionally, the mesh is
refined unidirectionally in wall-normal direction using the meshes 8×16 and 8×32 to investigate
the influence of varying element aspect ratios. Comparing the results to wall-resolved RANS in
Figure 8.5 shows that the results are converged already for the 16×16-case and are not degraded
if the wall model is switched off inside the buffer layer as for the finest case 32×32.

In Figure 8.5, we also demonstrate that other polynomial degrees may be used to construct
the enrichment (l = 0 and l = 2) with the cases ch395 N82 k4l0 and ch395 N82 k4l2. Using
l = 0 implies that the enrichment is multiplied with a constant shape function in each element,
yielding a lower degree of flexibility in adapting to the flow configuration. The results depicted
in Figure 8.5 exhibit a small underestimation of the velocity. It would in future research never-
theless be interesting to investigate this case with the enrichment function derived through the
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Figure 8.5.: SA-RANS: Velocity solution of turbulent channel flow u+ = u/uτ for Reτ = 395
employing eight different discretizations. Bottom: Refinement study using N = 82,
N = 162, and N = 322 elements, compared to a wall-resolved RANS reference and
DNS. Top: Unidirectional refinement in wall-normal direction and investigation of
the cases l = 0 and l = 2, compared to the same reference data. One single element
layer closest to the wall is enriched in all cases. Symbols indicate the location of
element interfaces.

SA model as this improvement in consistency is likely to enhance the results, at least in near-
equilibrium flows. Regarding the case l = 2, the results in Figure 8.5 are in good agreement
with the reference computation. The numerical investigations have shown that degrees of l > 1
quickly degrade the conditioning of the system, as the shape functions become too similar, and
the results are not substantially improved. Therefore, we recommend using l = 0 or l = 1. In
future work, it may also be interesting to consider anisotropic enrichment shape functions, which
enable a higher resolution capability in streamwise and spanwise direction and constant or linear
shape functions in wall-normal direction in order to circumvent this issue.

Many industrial applications, for example in the automotive, aerospace, or wind energy sector,
demand for much higher friction Reynolds numbers. We demonstrate that higher Reynolds num-
bers may easily be computed with the present wall modeling approach. The friction Reynolds
numbers Reτ = 50,000 and Reτ = 100,000 are investigated and compared to the linear and
log-laws in the respective y+ regions. Meshes using 16×16 cells are chosen and they are slightly
refined towards the wall using the hyperbolic mapping defined in Equation (4.1) improving the
resolution of the near-wall area. The values for the mesh stretching parameter γ are selected as
2.0 and 2.25 according to Table 8.1. The results displayed in Figure 8.6 confirm the accuracy of
the present method and indicate the suitability for high-Reynolds-number applications.
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Figure 8.6.: SA-RANS: Velocity solution of turbulent channel flow u+ = u/uτ applied to high
Reynolds numbers of Reτ = 50,000 and Reτ = 100,000, the latter shifted upwards
by three units for clarity. One single element layer closest to the wall is enriched in
both cases. Symbols indicate the location of element interfaces.

From this section we draw the conclusion that wall modeling via function enrichment in con-
junction with RANS and the high-order DG method allow the prediction of wall-attached flows
with coarse meshes where the first cell spans y+ bandwidths of up to 5,000 wall units. The ap-
proach exhibits a high level of grid independence and the solution quality is retained also when
increasing the spatial resolution.

8.2.2. Flow over Periodic Hills
As a second numerical example, flow over periodic hills is investigated with the same compu-
tational setup as in Section 5.4.2 at ReH = 10,595 and ReH = 19,000. As it was noted earlier,
this test case is challenging for common wall modeling approaches since it includes a separation
bubble as well as a high adverse pressure gradient, violating the assumptions inherent to equi-
librium wall modeling approaches. Wall modeling via function enrichment on the contrary has
exhibited promising characteristics in the previous chapter in the context of WMLES.

Three meshes are considered for the discretization of the 2D domain, a coarse one using 16×8
cells, a medium one using 32×16 cells, and a fine one using 64×32 cells, all employing equidis-
tant grid spacings for simplicity. The standard Galerkin component consists of polynomials of
degree k = 4 and the enrichment is based on polynomials of degree l = 1 solely included within
the first element layer near the no-slip walls. The additional DOFs of the enrichment increase
the overall DOF-count by no more than 4% in the coarse case, 2% in the medium case, and
1% in the fine case. The enrichment is switched off adaptively according to Section 8.1 during
the initial transient. In the steady-state solution, only the finest computations are affected by the
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Table 8.2.: SA-RANS: Simulation cases and resolutions of the periodic hill benchmark.
ReH = 10,595: ph10595 N16×8 k4l1 coarse mesh with wall modeling,
ph10595 N32×16 k4l1 medium mesh with wall modeling, ph10595 N64×32 k4l1
fine mesh with wall modeling, ph10595 N32×16 k4 medium mesh without wall
modeling. ReH = 19,000: ph19000 N16×8 k4l1 coarse mesh with wall modeling,
ph19000 N32×16 k4l1 medium mesh with wall modeling, ph19000 N64×32 k4l1
fine mesh with wall modeling, ph19000 N32×16 k4 medium mesh without wall
modeling. Resolutions are specified in terms of elements per direction Nei and grid
points Ni ≈ Nei(k + 1). The wall-resolved reference cases are the same as in Ta-
ble 5.2.

case ReH approach Ne1×Ne2 N1×N2×N3 x1,reatt/H
ph10595 N16×8 k4l1 10,595 RANS (SA) 16×8 80×40 7.32
ph10595 N32×16 k4l1 10,595 RANS (SA) 32×16 160×80 7.59
ph10595 N64×32 k4l1 10,595 RANS (SA) 64×32 320×160 7.64
ph10595 N32×16 k4 10,595 RANS (SA) 32×16 160×80 7.46
ph10595 SA Ref 10,595 RANS (SA) 64×32 320×160 7.68
ph19000 N16×8 k4l1 19,000 RANS (SA) 16×8 80×40 7.35
ph19000 N32×16 k4l1 19,000 RANS (SA) 32×16 160×80 7.57
ph19000 N64×32 k4l1 19,000 RANS (SA) 64×32 320×160 7.62
ph19000 N32×16 k4 19,000 RANS (SA) 32×16 160×80 7.46
ph19000 SA Ref 19,000 RANS (SA) 64×32 320×160 7.67

adaptation as the enrichment is switched off in a few cells near the separation and reattachment
points at the lower boundary as follows: ph10595 N64×32 k4l1: 0.28H − 1.97H (separation
region), 5.06H − 7.88H (reattachment region), ph19000 N64×32 k4l1: 0.70H − 1.13H (sep-
aration region), 7.31H − 7.73H (reattachment region). Furthermore, the results are compared
to the wall-resolved RANS cases presented in Section 5.4.2 and the medium mesh without wall
modeling are considered to assess the impact of the enrichment. All simulation cases includ-
ing the labels used in the following plots are listed in Table 8.2. The mesh is mapped onto the
curved boundary using an isogeometric approach as in Section 4.3. The resulting coarse mesh
is displayed in Figure 8.7. With these grids, the first off-wall elements including the enrichment
span a range in y+-units up to approximately y+1e ≈ 420 at the top wall and y+1e ≈ 340 at the
hill crest for the coarser mesh as well as the higher Reynolds number. The detailed distribution
of y+1e for all cases is included in Figure 8.8. The velocity solution is visualized in Figure 8.9.
All quantities are postprocessed at simulation time using the full definition of uh and ph and the
probe locations may also be placed inside cells.

We commence the discussion of the results with the friction and pressure coefficients cf and
cp at the walls. They are defined as in Equations (4.3) and (4.4) and the reference pressure pref

is taken at x1 = 0 on the upper wall. The results are plotted in Figure 8.10 for ReH = 10,595.
Therein, the skin friction computed by the wall-modeled simulation cases converges well to the
reference computation. Remaining discrepancies are observed in the vicinity of the hill crest,
where the first off-wall cell spans up to 73 wall units in the finest case, which still seems to be
slightly too coarse to capture all details accurately. Yet, the tendency to convergence is clear. The
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Figure 8.7.: Grid of coarse refinement level. Enriched elements are colored red and standard
polynomial elements blue.
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Figure 8.8.: SA-RANS: Location of first off-wall element interface y+1e for flow past periodic hills
at ReH = 10,595 (left) and ReH = 19,000 (right). The shallower curves correspond
to the upper wall.

Figure 8.9.: SA-RANS: Streamwise velocity (left) and vertical velocity (right) of the case
ph10595 N32×16 k4l1 at the final simulation time. Red indicates high and blue
low values.

largest deviation from the reference is observed for the medium mesh without wall model, for
example in the recirculation region and near the hill top. The overall performance of all cases
may be summarized by the reattachment lengths x1,reatt/H included in Table 8.2, which confirm
these observations quantitatively. The pressure curves according to Figure 8.10 are less sensitive
regarding the wall model and refinement yields almost an ideal match with the reference data.
Also, the medium case without wall modeling is of very similar quality to the corresponding
case with wall modeling.

Next, the velocity solutions in streamwise and vertical direction u and v are plotted in Fig-
ure 8.11 at ten streamwise locations for the same Reynolds number ReH = 10,595. The three
computations carried out with the present approach display overall a very good agreement with
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Figure 8.10.: SA-RANS: Friction coefficient (top) and pressure coefficients (bottom) for ReH =
10,595 comparing the wall-modeled simulations with wall-resolved RANS cases.
The shallower pressure curves correspond to the upper wall.

the wall-resolved reference. This fact indicates that the wall model is well capable of provid-
ing an appropriate function space that yields results almost equal to considerably finer meshes
without wall model. Noticeable differences are solely observed in the vertical velocity between
x1/H = 0 and x1/H = 1 for the coarse and minor differences for the medium grid. The poorest
results are obtained with the medium grid without wall model, where the boundary layer at the
top wall is not sufficiently resolved.

The application of the same meshes to the higher Reynolds number of ReH = 19,000 confirms
the observations of the lower Reynolds number. The reattachment lengths predicted with the
wall-modeled cases included in Table 8.2 show a clear convergence behavior to the reference
computation. The velocity solution displayed in Figure 8.12 shows very similar results to the
lower Reynolds number case. Refinement leads to small differences between x1/H = 0 and
x1/H = 1 and the finest wall-modeled computation is identical to the reference using the SA
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Figure 8.11.: SA-RANS: Streamwise (top) and vertical (bottom) velocity components u and v
of flow over periodic hills at ReH = 10,595. Comparison of wall-modeled, wall-
resolved, and underresolved simulations.

model. If the wall model is not included as for the case with the medium mesh, the boundary
layer at the top wall is not predicted accurately.

In summary, it has been found that the present wall modeling approach provides an appropriate
function space even in separated flows, as we have been able to reproduce reference results using
the SA model without wall model. A major benefit of the wall model is that refinement does
not lead to a degradation of the result quality as opposed to standard wall functions, since the
polynomial component of the elements is retained and automatically jumps in if necessary.

8.3. Summary
In this chapter, we have applied wall modeling via function enrichment to RANS and the high-
order DG method. This wall modeling approach overcomes the limitations of common wall
function models regarding grid dependence and poor performance in separated flows. This is
achieved by solving the full Navier–Stokes equations including the SA model with exact wall
boundary conditions. The method is capable of employing grids where the first off-wall cell
spans a y+-range of up to 5,000 wall units.

Finally, researchers may be interested in employing the present function-enrichment approach
in the context of other RANS turbulence models or flow physics. Such an extension is in gen-
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Figure 8.12.: SA-RANS: Streamwise (top) and vertical (bottom) velocity components u and v
of flow over periodic hills at ReH = 19,000.

eral possible, if the additional variables vary smoothly within the boundary layer and may be
discretized using a polynomial degree of k in the first off-wall cell, see Section 6.3.2.1.
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9
Application III: Extension to DES

The first results of wall modeling via function enrichment were presented in Chapter 7 within the
continuous FEM as a wall modeling technique for LES. This method allowed the use of coarse
cells with a wall-normal width of several hundred wall units in the inner layer. Such a coarse
spatial discretization necessitates a statistical turbulence model of RANS-type in that area, since
the energetic scales are not resolved. In Chapter 7, a residual-based turbulence model was used,
supported by a structural LES model in the outer layer, a model that was originally not intended
for underresolved boundary-layer simulations. The numerical examples still showed promising
results in separated flows, but the limiting factor in terms of accuracy was the turbulence model.

In this chapter, we show that the widely used DDES methodology [243] (see Section 5.5)
may be used to model the unresolved turbulence in the near-wall region in wall modeling via
function enrichment. The near-wall region is computed in RANS mode, where the grid filter size
is too coarse to resolve the turbulent motions. Further away from the wall, it is affordable to
resolve the dominant turbulent scales, so the SA model is modified in such a way that it acts as
a one-equation LES subgrid model (see Equations (5.33) to (5.37)). Such a turbulence model is
physically motivated and widely recognized in the literature for its accuracy in separated flows.
As the DDES model is based on a modification of the SA model, the implementation of the
enrichment presented in the previous chapter can be extended in a straightforward way.

Such an implementation of wall modeling via function enrichment has the potential of sub-
stantially reducing the computational cost of (D)DES. The grid saving of the standard (D)DES
in comparison to LES is achieved by using relatively coarse meshes in the wall-parallel direc-
tions of up to 0.1δ (WMLES) and δ (classical DES) with the boundary layer thickness δ (see
Section 2.3.4). The wall-normal direction necessitates many grid points in order to resolve the
laminar sublayer due to the requirement of placing the first off-wall node at y+1 ∼ 1, however.
For example, if a boundary layer of a thickness of 10,000 wall units is computed with a constant
grid stretching factor of 1.15 [195], a total of 53 grid layers would be required. This is a quite
high cost compared to the relatively low engineering interest in that region. Wall modeling via
function enrichment within the approach presented in this chapter allows the first grid point to
be located in the range y+1 ∼ 10 to 100, saving 17–33 grid layers for that example, without
noteworthy loss in accuracy, in addition to much better conditioned equation systems through
the lower grid anisotropy.

In the next section, we summarize the enrichment formulation used in this chapter. In Sec-
tion 9.2, the approach is validated and assessed by use of the two familiar benchmark examples
of turbulent channel flow and flow over periodic hills. The research presented in this chapter was
previously published in Krank et al. [151].
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Table 9.1.: SA-DDES: Overview of simulation cases for the turbulent channel flow. The number
of polynomial grid points per direction i is Ni = (k + 1)Nie with the number of
cells per direction Nie and the polynomial degree k = 4, ∆y+1e is the thickness of the
first off-wall cell, in which the enrichment is active, y = CDESh is the RANS–LES
switching location in terms of channel half-height δ, and err(τw) is the relative error
of the computed wall shear stress.

Reτ N1e×N2e×N3e γ ∆y+1e y = CDESh err(τw)
395 16×8×8 0.8 76 0.05δ 0.6%
950 16×8×8 1.6 91 0.05δ 4.3%
2,000 16×8×8 1.9 137 0.05δ −3.3%

16×16×8 1.9 54 0.05δ 0.1%
32×16×16 1.9 54 0.025δ 0.4%

5,200 16×16×8 2.2 93 0.05δ −4.8%
10,000 16×16×8 2.5 116 0.05δ −2.3%
20,000 16×24×8 2.5 139 0.05δ 0.2%
50,000 16×40×8 2.5 191 0.05δ 0.8%

9.1. Enrichment Space

Analogous to the previous chapters, the function space for the velocity variable is composed of a
polynomial and an enrichment component according to Equations (6.1) to (6.5). In this chapter,
we employ a weighting of the enrichment function with a constant shape function in each cell
(l = 0), i.e., with one DOF per space dimension in ũ0. This particular choice allows a substantial
simplification of the enrichment space as

ũh(x, t) = ψ(x, t)ũ0(t). (9.1)

A comparison of such a constant weighting with a linear weighting in each cell (l = 1) in
the context of WMLES is presented in the subsequent chapter. This analysis shows that the
algorithm using linear weighting requires three times more solver iterations in the viscous step
than the constant weighting, at the same time as the results are not substantially improved. This
result renders the constant weighting most relevant in three space dimensions. Regarding the
enrichment function, we use Spalding’s law (Equation (6.7)) in this chapter as well, but note that
the wall function given through the SA model (Equation (6.9)) would also be very well suited.

In the algorithm, Spalding’s law is adapted in each time step according to the local wall shear
stress and its temporal evolution is taken into account. To this end, we employ the adaptation
algorithm presented in Section 6.3.2.4 with the enhancements discussed in Section 8.1. The
latter modification ‘switches off’ the enrichment in cells where the wall-normal width in y+-
units becomes small, such that the enrichment is not necessary to resolve the gradient and the
turbulent length scales. With the WMLES approach presented in Chapter 10, this adaptation
method was assessed in detail, and the previously suggested value of y+max = 30 showed to be
suitable for eddy-resolving simulations as well.
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Figure 9.1.: Mesh for turbulent channel flow at Reτ = 950. Red indicates enriched cells and blue
standard polynomial cells, i.e., a single layer of cells at the wall is enriched. In each
cell, the solution consists of a polynomial of 4th degree plus one enrichment shape
function in the enriched cells.

Figure 9.2.: SA-DDES: Instantaneous numerical solution of turbulent channel flow at Reτ = 950
via velocity magnitude. Red indicates high and blue low values.

9.2. Numerical Examples

Wall modeling via function enrichment is assessed by considering DDES in the WMLES branch.
We employ again the examples of turbulent channel flow and flow over periodic hills as bench-
mark flows. Analogous to the previous chapter, the polynomial degree of k = 4 is used for all
simulation cases presented. All simulation cases further use the adaptive time stepping method
according to Section 5.3.2 with a temporal accuracy of second order (BDF2), a Courant number
of Cr = 0.14, and a diffusion number of D = 0.02. The weak forms including the enrichment
shape functions are integrated in space using the higher order quadrature rules listed in Table 6.3.
The matrix-free inverse mass operator via Schur complement according to Section 6.3.3.2 is
used. Finally, for the examples presented in this chapter, we note that we apply no-slip boundary
conditions weakly according to Section 3.3.2 in all steps of the scheme. These boundary condi-
tions limit the width of the first off-wall cell to a few hundred wall units, as the no-slip condition
would otherwise be violated severely.

9.2.1. Turbulent Channel Flow

We consider flow in a stream- and spanwise periodic channel of the dimensions 2πδ×2δ×πδ
in streamwise, wall-normal, and spanwise direction, respectively, with the same setup as in Sec-
tion 4.2. We investigate this flow in a wide range of friction Reynolds numbers, which are chosen
according to the available DNS data at Reτ = 395 [187], Reτ = 950 [6], Reτ = 2,000 [116],
Reτ = 5,200 [172], and additionally Reτ = 10,000, Reτ = 20,000, and Reτ = 50,000. All
simulation cases, meshes, and resolution criteria are presented in Table 9.1.
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Figure 9.3.: SA-DDES (WMLES) of turbulent channel flow at several Reynolds numbers: Mean
velocity normalized according to u+ = 〈u1〉/uτ .

The meshes considered are chosen such that the wall-parallel grid length scale yields ap-
proximately h = 0.08δ for most cases, so the RANS–LES switching point is located at
CDESh ≈ 0.05δ. One simulation case uses twice the number of grid cells in streamwise and
spanwise direction, resulting in a RANS–LES switching point at CDES∆ ≈ 0.025δ. As for the
wall-normal resolution, the enrichment is taken into account in the wall-nearest cell layer in all
simulation cases, see Figure 9.1. As it was discussed earlier, the enrichment shape functions
allow the resolution of the averaged near-wall flow with very coarse cell sizes. The width of
the first off-wall cell lies in the range of 51 to 191 wall units in this section. In order to enable
an application to high Reynolds numbers, a hyperbolic grid stretching is additionally consid-
ered, according to Equation (4.1), with the mesh stretching parameter γ. The values of γ for
all simulation cases are included in Table 9.1. In the numerical method, the velocity solution is
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postprocessed at sufficient wall-parallel layers inside each cell using the definition of the velocity
variable according to Equation (6.1) such that the behavior of the enrichment may be analyzed.

The turbulent flow is visualized at one time instant in Figure 9.2. Time-averaged results are
presented in Figures 9.3 and 9.4. The mean velocity is generally predicted very accurately in the
laminar sublayer and the log-layer, where the enrichment shape functions are active. In order to
get a better impression of the role of the enrichment, the numerical enrichment solution is plot-
ted in Figure 9.3 alongside the full mean velocity solution. The enrichment solution represents
the largest part of the near-wall solution in most cases, including the high velocity gradient. In
particular in cases, where the first off-wall cell spans a range of more than 100 wall units, the
enrichment represents most of the mean velocity. Solely at the lowest Reynolds number, the en-
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Table 9.2.: SA-DDES: Simulation cases and resolutions of the periodic hill flow. The cases use
a coarse mesh with 32×16×16 grid cells and a fine mesh with 64×32×32 elements.
The polynomial degree is k = 4 for all simulation cases, and the number of grid
points per direction is k + 1 in each cell. The separation and reattachment lengths
x1,sep and x1,reatt correspond to the zero-crossings of the skin friction.

Case Ne1×Ne2×Ne3 N1×N2×N3 ReH max(∆y+1e) x1,sep/H x1,reatt/H

ph10595 coarse 32×16×16 160×80×80 10,595 75 0.25 4.58
ph10595 fine 64×32×32 320×160×160 10,595 36 0.17 4.62
DNS 10595 - 896×448×448 10,595 - 0.19 4.51
ph37000 coarse 32×16×16 160×80×80 37,000 143 0.40 3.34
ph37000 fine 64×32×32 320×160×160 37,000 78 0.26 4.56
RM Exp [211] - - 37,000 - - 3.76
CM WMLES coarse - 128×64×64 37,000 - - 2.3
CM WMLES fine [265]- 256×128×128 37,000 - - 2.8

richment solution plays a minor role, which essentially means that the polynomial component is
capable of resolving most of the flow. Further away from the wall we observe the characteristic
log-layer mismatch, that we expect in wall-attached simulations using DDES [195, 268] (see
Section 6.2.1). The log-layer mismatch is especially visible for the lower Reynolds numbers. We
note that there are several techniques available in the literature that reduce this effect, for exam-
ple [237]. In the framework of the present enrichment methodology, it is possible to construct an
alternative hybrid RANS/LES turbulence model, which does not show a log-layer mismatch by
definition. This approach is the topic of the subsequent chapter.

The RMS velocities and the RSS are presented in Figure 9.4 up to Reτ = 5,200 and compared
with the DNS data. These quantities show that the RANS–LES transition extends up to approx-
imately 0.4δ and the flow is in full LES mode further away from the wall. This means that we
do not expect agreement with the DNS below 0.4δ, and the curves match the DNS above this
value very well. Only in the refined case at Reτ = 2,000 and at the lowest Reynolds number, the
RANS–LES transition takes place closer to the wall.

Finally, a major advantage of the present method is the accurate prediction of the wall shear
stress despite of the coarse grids. In Table 9.1, we list the relative error of the computed wall
shear stress compared to the nominal simulation parameters for each simulation case. The error
lies within a few percent for all cases. Comparing the values with the errors in the skin friction
coefficient presented in [195] of up to 22%, this is an excellent result.

We conclude from this section that wall modeling via function enrichment allows an accurate
computation of the near-wall region in turbulent boundary layers with very coarse cells, while
still satisfying the full incompressible Navier–Stokes equations in the whole boundary layer.
DDES is a suitable turbulence modeling approach for wall modeling via function enrichment.

9.2.2. Flow over Periodic Hills
As a second benchmark example, we consider flow over periodic hills at the Reynolds numbers
of ReH = 10,595 and ReH = 37,000. Several hybrid RANS/LES methods were assessed us-
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x1

x2

Figure 9.5.: Mesh for flow over periodic hills of the case ph37000 coarse. Red indicates enriched
cells and blue standard polynomial cells, i.e., a single layer of cells at the wall is
enriched. In each cell, the solution consists of a polynomial of 4th degree plus one
enrichment shape function in the enriched cells.

x1

x2

Figure 9.6.: SA-DDES: Instantaneous numerical solution of flow over periodic hills of the case
ph37000 coarse via velocity magnitude. Red indicates high and blue low values.

ing this flow configuration within the European ATAAC initiative [232], including DDES (see
the final report by Jakirlić for cross-comparison of results). A strong adverse pressure gradient
and flow separation from the curved boundary are challenging for many statistical modeling
approaches, but DDES yielded very good agreement with a reference LES in that study.

The computational setup is analogous to Section 4.3, except for the details specified in the fol-
lowing. Two meshes are considered at each Reynolds number, a coarser mesh with 32×16×16
cells, and a finer one with 64×32×32 cells. As for the previous example, the solution is rep-
resented by a polynomial of degree k = 4 in each cell, plus one enrichment shape function in
the wall-nearest cell layer. The mesh is moderately stretched towards the no slip walls to yield
a better resolution of the near-wall area. One representative mesh is displayed in Figure 9.5.
The wall-normal width of the enrichment layer is plotted in Figure 9.7 in wall coordinates. An
overview of all simulation cases and resolution parameters is given in Table 9.2. One snapshot
of the instantaneous velocity field is visualized in Figure 9.6.

We begin the discussion of the results with the skin friction and pressure coefficients cf and
cp. They are defined according to Equations (4.3) and (4.4) where the reference pressure pref is
taken at x1 = 0 at the upper wall. The results of the lower Reynolds number are compared to the
DNS in Figure 9.8. All profiles yield very good agreement with the DNS. Solely the skin friction
coefficient predicted by the coarse mesh shows an overprediction of the magnitude between
x1/H = 2 and x1/H = 4. Even the characteristic peak in the skin friction on the windward
side of the hill crest is predicted very well for both cases. The overall excellent agreement is also
observed in the estimation of the length of the reattachment zone of x1,reatt/H = 4.58 and 4.62
(see Table 9.2) in comparison to the DNS result of x1,reatt/H = 4.51 ± 0.06. We also note that
the ‘waviness’ of the skin friction coefficient is much less pronounced than in Chapter 4.3.
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Figure 9.7.: SA-DDES: Width of wall-layer (width of first off-wall cell) for ReH = 10,595 (top)
and ReH = 37,000 (bottom). The shallower curves correspond to the upper wall.

The velocity profiles of the same Reynolds number are compared to the DNS data at ten
streamwise locations in Figure 9.9. The streamwise velocity agrees exceptionally well with the
reference DNS. The vertical velocity shows a minor difference at x1/H = 2 for the coarser
simulation case, but the remaining profiles essentially lie on the DNS curves. A similar level
of accuracy is observed in the RSS distribution. The TKE computed with the coarse simulation
case shows an underprediction of the magnitude in the shear layer. These results also exhibit
unphysical peaks in the shear layer, which are typical for high-order DG, since the discontinuity
present in the velocity yields higher fluctuations near the element boundaries, see also [149].

The excellent results obtained at the lower Reynolds number motivate an application of the
wall model to a substantially higher Reynolds number. The velocity statistics are compared to
the available experimental reference data at ReH = 37,000 in Figure 9.10. In order to allow for
a critical assessment of the present wall modeling approach, we additionally compare the results
of the mean streamwise velocity with a recent implementation of an equilibrium wall model
within the high-order DG [265] (cases baseline and fine in that publication). These simulations
employ grids comparable to the respective coarse and fine case presented in this work and are
also included in the overview if Table 9.2. Regarding the mean velocity, all wall-modeled cases
yield larger errors as compared to the lower Reynolds number. The equilibrium wall model
overpredicts the velocity in the recirculation zone, yielding a shorter reattachment length of
x1,reatt/H = 2.3 and x1,reatt/H = 2.8 in comparison to the experiments (x1,reatt/H = 3.76,
see Table 9.2). The present wall-enriched DDES simulations overpredict the mean streamwise
velocity in that region with the coarse mesh and underpredict the velocity in the fine case. Yet,
the DDES cases are closer to the reference than the equilibrium model, both for the coarse and
fine mesh. The reattachment lengths are computed as x1,reatt/H = 3.34 and 4.56 and confirm the
observations of the mean velocity. The profiles of the vertical velocity yield differences with the
reference on the lee side of the hill as a result of the different length of the separation bubble.
The magnitude of the RSS is overpredicted by the coarse case and is accurately estimated by the
fine case.

We conclude from the results of the periodic hill flow that wall modeling via function en-
richment with DDES as turbulence model is well capable of computing nonequilibrium flows.
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correspond to the upper wall.

This is due to the full consistency of the method, as all terms of the Navier–Stokes equations are
satisfied discretely.

9.3. Summary

In this chapter, we have used the DDES methodology to model the unresolved turbulent motions
in wall modeling via function enrichment. The results of turbulent channel flow and flow over
periodic hills are in very good agreement with the reference data.

Wall modeling via function enrichment with the DDES turbulence model does not provide a
solution for the problems in the hybrid RANS–LES transition region in attached boundary layers.
However, an alternative hybrid RANS/LES turbulence modeling approach can be constructed
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RSS u′v′ = 〈u1u2〉 − 〈u1〉〈u2〉 of the periodic hill flow at ReH = 37,000. The
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for the streamwise velocity.

based on the enrichment, which a priori circumvents these problems and the associated log-
layer mismatch. This turbulence model is described in the next chapter.
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RANS/LES Wall Modeling

The previous chapter showed that a hybrid RANS/LES turbulence model is a consistent ap-
proach to model the unresolved turbulent motions in the context of wall modeling via function
enrichment. However, the DES model used in that chapter did not address the issue of the hybrid
RANS–LES transition. In DES, all turbulent motions are modeled in the near-wall region, where
the eddy viscosity model operates in RANS mode. Further away from the wall, the energetic
turbulent motions are resolved and they are responsible for most of the momentum transfer. In
such an approach, the problem is therefore the transition region from the RANS to the LES zone,
where the turbulence is not sufficiently developed to account for the momentum transfer but the
model does not operate in RANS mode either. This problem results in the log-layer mismatch
discussed earlier in Section 6.2.1, which is also visible in the DES results in Chapters 5 and 8.

In this chapter, a new and fully consistent wall modeling approach is developed, which makes
use of the structure of the shape functions in wall modeling via function enrichment and resolves
the problem of the RANS–LES transition.

The remainder of this chapter is organized as follows. In the first subsection, we outline the ba-
sic idea of the wall modeling approach and discuss similarities and differences in comparison to
other hybrid RANS/LES methods. In Section 10.2, we derive consistent governing equations for
the RANS and LES components and show how these equations may be solved in the framework
of the variational multiscale method. In Section 10.3, the function space used for the velocity
variables is revisited. Section 10.4 describes how the multiscale wall model can be implemented
in the present high-order DG scheme. In Section 10.5, numerical examples demonstrate the ex-
cellent mesh independence of the present wall model and show how the full consistency of the
model enables accurate results in separated flow conditions. The multiscale wall model was pre-
viously described in Krank et al. [150] and the present chapter is closely related to that article.

10.1. Basic Idea and Comparison to Existing Hybrid
RANS/LES Methods

10.1.1. Basic Idea
The two challenges in computing turbulent boundary layers were introduced in Section 6.1 as (i)
the high spatial gradient and (ii) the multiscale nature of the turbulent motions. In this chapter,
we propose a novel approach to hybrid RANS/LES wall modeling, which resolves the velocity
gradient at the wall with relatively coarse meshes (cf. (i)), models the near-wall turbulence (cf.
(ii)), and additionally solves the problem of the RANS–LES transition. The basic idea is that,
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in the vicinity of the wall, the solution is decomposed into a RANS and an LES component.
The two components overlap in this near-wall layer, and together they represent the velocity
solution. The decoupling is achieved by applying the RANS eddy viscosity on the RANS DOFs
only which allows the energy-carrying turbulent structures to fully develop inside the near-wall
layer, which entirely circumvents the aforementioned problem of transition at the RANS/LES
interface. This structure of the eddy viscosity term is a direct result of applying a new three-level
hybrid RANS/LES filter, which is defined based on Germano’s framework of additive filters [97].
Despite the fact that the two components are expressed and modeled separately, the full Navier–
Stokes equations are computed in the whole boundary layer in a single equation, with exact
boundary conditions. This ensures robustness in challenging flow conditions such as separated
flows featuring a high adverse pressure gradient. The velocity gradient is resolved, although the
first off-wall node for the LES may be placed in a range y+1 ∼ 1 . . . 100, by using wall modeling
via function enrichment.

Once the solution is decomposed into a RANS and an LES component, each with different
shape functions, we employ a feature of the Galerkin method: The weighting functions have
the same structure as the solution functions, allowing an explicit decomposition of the govern-
ing equations into separate equations for the RANS and the LES components – although the
problem is still solved in one single equation – according to the variational multiscale method-
ology [117, 118]. The scale separation allows appropriate turbulence modeling for each of the
scales, a RANS turbulence model for the RANS equation and an LES subgrid model for the LES
scale, exactly as they are derived through the three-level hybrid RANS/LES filter. We note that
this is a fundamental difference to the application of function enrichment in DES according to
the previous chapter, where the domain is clearly separated into the inner RANS region and the
outer LES region, with a ‘grey area’ in between, since the RANS eddy viscosity acts on the poly-
nomial velocity component as well in that study; these differences are detailed in the subsequent
section.

10.1.2. Comparison to Other Hybrid RANS/LES Methodologies
The composition of the solution of a RANS and an LES component relates the present method
to the nonlinear disturbance equations (NLDE) [164, 165, 186], which have been proposed in
order to reconstruct the energy-carrying turbulent structures (LES) around an averaged mean
flow (RANS), with the primary application in the field of aeroacoustics. In the NLDE, the RANS
and LES components overlap in a part of the domain, as they do in the present method. Several
features of our approach distinguish between the methods:

• In NLDE, the RANS equations are first solved for the mean flow and the turbulent fluc-
tuations are reconstructed in a subsequent step, whereas the RANS and LES solutions are
computed simultaneously in a single equation in the present model.

• In NLDE, the LES represents fluctuations around a mean flow, while the LES and RANS
are each a variable fraction of one solution in the present methodology.

• The NLDE usually require the LES to be wall-resolved, whereas in our model the RANS
provides the LES with the necessary dissipation if the LES is underresolved, i.e., not all
energetic scales have to be computed in the LES.
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The multiscale wall model is further compared to two of the classical hybrid RANS/LES wall
models, the original DES approach by Spalart et al. [244], which was applied in the DDES
variant in the previous chapter, and the method of blending subgrid models through a weighted
sum by Baggett [11]. Both models follow the idea of two spatially separated zones, a RANS
layer and an LES bulk flow, with a transition region in between. They compare to the proposed
method as follows:

• DES achieves the blending by limiting the wall distance function in the SA model by a
characteristic grid length scale such that the RANS model acts as a one-equation LES
model in the bulk flow, see, e.g., [267] for an application with DG. The present method
applies the idea of limiting the wall distance of the RANS model by a characteristic cell
length scale in order to account for the resolved Reynolds stresses.

• The method of weighted sum blends the subgrid stress tensor from a RANS model at the
wall into an LES model in the bulk flow via an explicitly defined blending function. This
approach has been refined by Germano [97] and Rajamani and Kim [208], who suggested
to blend LES and RANS filtering operators instead of subgrid models, and it is this filter
that will be extended to a three-level filter in the present work.

• The major difference of the proposed approach to both the DES and the weighted sum
method is, however, that a marginally/underresolved LES, which is not directly affected
by the RANS eddy viscosity, extends to the no-slip boundary. It is this difference that
avoids nonphysical velocity fluctuations, such as described by Baggett [11], within the
present method. A direct qualitative and quantitative comparison of DES using function
enrichment according th the preceding chapter and the present multiscale wall model will
be presented in Section 10.5.1.

10.2. A Multiscale Approach to Wall Modeling

The primary contribution of this chapter is the derivation of a consistent multiscale RANS/LES
wall modeling framework for wall modeling via function enrichment. In the context of wall
modeling via function enrichment, the Galerkin method enables a much more elegant turbulence
model than the DDES model used in the previous chapter; the derivation of this model is the
topic of this section.

In the following, the solution of the incompressible Navier–Stokes equations in a layer near
the wall is split into two parts, an eddy-resolving component (LES) and an ensemble-averaged
component (RANS). The equations are derived by applying a new three-level filter to the Navier–
Stokes equations, which is defined based on Germano’s framework for additive filtering. The
implications of this filter are that both the RANS eddy viscosity term and the definition of the
eddy viscosity variable depend only on the RANS component, thus the LES component can
evolve independently and is limited solely by its own resolution. Further, the RANS and the
LES components are not spatially separated, but overlap in the near-wall layer. This construction
yields a method that does not show the typical problems in the RANS–LES transition region and
the associated log-layer mismatch.
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Figure 10.1.: Zoom-in on the near-wall area. The full domain is denoted Ω and a subset in a
layer near the wall Ω̃ ⊂ Ω. In Ω̃, the solution is composed of a RANS and an LES
component, both in variable composition, while the solution outside this area is
represented by an LES component only. The interface in between is denoted ∂Ω̃I .

In this section, we begin with the introduction of the scale separation by a three-level filter and
subsequently discuss the differences to the classical hybrid RANS/LES filter in Section 10.2.1.
Section 10.2.2 shows how the variational multiscale method is employed to solve for the RANS
and LES solutions using weak forms and appropriate solution as well as weighting functions.

10.2.1. Three-Level Hybrid RANS/LES Filter
We propose a novel hybrid RANS/LES filter based on Germano’s framework of additive filter-
ing [97]. The filter is constructed such that an underresolved LES solution overlaps with the
RANS solution in the near-wall area. In this subsection, the classical two-level additive hybrid
RANS/LES filter [97] is first recited and that framework is subsequently used to define a new
three-level filter. In applying the new filter to the incompressible Navier–Stokes equations, we
obtain a set of equations for an eddy-resolving velocity variable and a statistical velocity vari-
able, and their sum represents the final velocity solution. These equations have formally seven
unknowns, three LES velocity components, three RANS velocity components, and one pressure
variable. In practice, the LES and RANS components will be solved by taking a different set of
shape functions tailored for each of the two scales (see Sections 10.2.2 and 10.3).

The derivations address the near-wall area of a computational domain. Figure 10.1 gives an
overview of the general concept and the variables defining the wall model. The near-wall region
is denoted Ω̃ ⊂ Ω analogous to the preceding chapters; the baseline LES solver is used outside
this area. Coupling conditions defining the transition from the near-wall region to the outer region
at the interface ∂Ω̃I are also discussed in this section.

10.2.1.1. The Classical Two-Level Additive Hybrid RANS/LES Filter

Germano’s hybrid RANS/LES filter [97] defines the velocity and pressure as a weighted sum of
the LES-filtered and RANS-averaged quantities, yielding

uH = a1ū+ a2〈u〉, (10.1)
pH = a1p̄+ a2〈p〉. (10.2)

Herein, ¯(· ) denotes an LES-filtering operator and 〈· 〉 a statistical (ensemble-averaging) operator.
As an LES filter, implicit grid filtering is commonly considered, which may also be interpreted
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as a variational projection in the context of the Galerkin method [120]. The continuous blending
functions 0 ≤ a1 ≤ 1 and a2 = 1− a1 may be spatially dependent and are predefined. The filter
fulfills two basic requirements, namely

a1 + a2 = 1, (10.3)
〈uH〉 = 〈u〉, (10.4)

and equivalently for the pressure. Applying this filter to the governing equations (2.2) and (2.1)
and using the rule of permutation of the derivative and the filtering operator [97], we obtain

∇·uH = 0, (10.5)
∂uH
∂t

+∇· (F c (uH) + pHI −Fν (uH)) = f −∇· τH , (10.6)

where τH is the corresponding subgrid stress tensor, which is defined in [97]. It is noted that the
chain rule applies in all spatial derivatives if a1 is spatially dependent.

It is argued that the construction of this filter promotes some of the issues associated to hy-
brid RANS/LES methods, such as in the transition region. For any blending factor a1 < 1,
the resolved LES scales in uH are not allowed to evolve with their full magnitude as they are
multiplied by a factor smaller than one, which induces a damping of the resolved turbulence.
Therefore, the smallest resolved scales would be larger than the given grid filter size and the
method does not exhibit optimal efficiency in resolving turbulent scales. It is one of the primary
incentives of this work to construct a numerical method which allows the LES scales to evolve
independently, only limited by the coarseness of the LES filter size. This is achieved by propos-
ing a new formulation of the hybrid RANS/LES filter in the following, which allows the use of
a1 = 1 throughout.

10.2.1.2. A New Three-Level Additive Hybrid RANS/LES Filter

We modify the classical additive hybrid RANS/LES filter by adding a third term, yielding

uH = a1ū+ a2〈u〉+ a3〈ū〉, (10.7)
pH = a1p̄+ a2〈p〉+ a3〈p̄〉, (10.8)

for the filtered velocity and pressure. Herein, the third filtering operator 〈 ¯(· )〉 defines a hierarchi-
cal filter by successively applying an LES filter and a statistical filter. This particular construction
enables the choice of the constant factors a1 = 1, a2 = 1, and a3 = −1 throughout the near-wall
region. The third component subtracts the statistical average of the resolved variables from the
balance. Due to a1 = 1, resolved turbulent structures are not damped artificially by the method.
The eddy resolving component ū may be significantly underresolved as we place the first off-
wall node in the region of y+1 ∼ 1...100, so the energy-carrying scales do not have to be resolved
in the near-wall area. The resulting filtering operator fulfills the requirements:

a1 + a2 + a3 = 1, (10.9)
〈uH〉 = 〈u〉, (10.10)

and equivalently for the pressure.
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The present hybrid filter may be related to the NLDE, where full LES and RANS solutions
overlap in a part of the domain [164, 165, 186]. The NLDE is formally derived using a hier-
archical scale separation operator, applying both an LES filter and a RANS operator, such that
〈ū〉 = 〈u〉 holds by definition. This characteristic stands in contrast to the present approach,
since the LES filter size is usually so coarse that the mean flow is not captured sufficiently by
the LES scale and we have 〈ū〉 6= 〈u〉.

When this approach is applied to the incompressible Navier–Stokes equations, the derivatives
of ai with respect to the spatial coordinates vanish and the subgrid tensor becomes [97]:

τH =a1τLES + a2τRANS + a3τ3 + a1a2 (ū− 〈u〉)⊗ (ū− 〈u〉)
+ a1a3 (ū− 〈ū〉)⊗ (ū− 〈ū〉) + a2a3 (〈u〉 − 〈ū〉)⊗ (〈u〉 − 〈ū〉) , (10.11)

with the LES and RANS subgrid tensors

τLES = u⊗ u− ū⊗ ū, (10.12)
τRANS = 〈u⊗ u〉 − 〈u〉 ⊗ 〈u〉 = 〈u′ ⊗ u′〉, (10.13)
τ3 = 〈u⊗ u〉 − 〈ū〉 ⊗ 〈ū〉 = 〈τLES〉+ 〈ū′ ⊗ ū′〉, (10.14)

where (· )′ denotes the fluctuating component of the respective quantity, i.e., u = 〈u〉 + u′. In
order to simplify the subgrid terms in the following, we define a new velocity variable summa-
rizing the statistical velocity contributions, ũ = 〈u〉 − 〈ū〉.

Remark: The quantity ū is of course related to the standard polynomial solution and the vari-
able ũ to the enrichment solution as introduced in Chapter 6. This means, that we will explicitly
solve for these components in the final numerical method and the velocity solution is considered
in the form uH = ū+ ũ, as a sum of an LES and a RANS component.

Inserting the constants ai in Equation (10.11) and application of the relation (10.10), 〈u〉 =
〈ū〉+ ũ, yields

τH =τLES + τRANS − τ3 + (ū− 〈u〉)︸ ︷︷ ︸
ū′−ũ

⊗ (ū− 〈u〉)︸ ︷︷ ︸
ū′−ũ

− (ū− 〈ū〉)︸ ︷︷ ︸
ū′

⊗ (ū− 〈ū〉)︸ ︷︷ ︸
ū′

− (〈u〉 − 〈ū〉)︸ ︷︷ ︸
ũ

⊗ (〈u〉 − 〈ū〉)︸ ︷︷ ︸
ũ

(10.15)

=τLES − 〈τLES〉+ 〈u′ ⊗ u′〉 − 〈ū′ ⊗ ū′〉 − ū′ ⊗ ũ− ũ⊗ ū′. (10.16)

In the near-wall area, we assume that Reynolds stresses dominate, allowing the simplification

τH ≈ 〈u′ ⊗ u′〉 − 〈ū′ ⊗ ū′〉. (10.17)

Herein, the LES subgrid stresses play a minor role in the vicinity of the wall, as barely any
turbulence is resolved due to an overly coarse LES mesh and usually almost the entire solution
is represented by ũ. In the present chapter, we consider the implicit LES capabilities of the
numerical method (see Chapter 4), where the numerical upwind fluxes introduce an appropriate
amount of dissipation in the high-frequency range, so any LES subgrid tensor is omitted in the
following. Further remarks on how to include an explicit LES model are given in Section 10.2.2.
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As a model for the remaining subgrid terms, we employ an eddy viscosity closure

τH ≈ 〈u′ ⊗ u′〉 − 〈ū′ ⊗ ū′〉
≈ −2νt (ε (〈u〉)− ε (〈ū〉)) (10.18)
= −2νtε (ũ)

with the RANS eddy viscosity νt. The relevant velocity component, on which the eddy viscosity
model acts, is the RANS component ũ, which is a direct result of the formal definition of the
three-level filter, as indicated in Equation (10.18).

Remark: The earlier elaborations on using a constant blending factor of a1 = 1 manifest
themselves in the numerical method: the LES DOFs are not directly impacted by the RANS
eddy viscosity, so they are not damped.

For simplicity and since we only apply it to the inner layer in the present work, we employ
Prandtl’s algebraic mixing length eddy viscosity model including van Driest’s damping func-
tion [63]

νt = l2mix|ε (ũ) |, (10.19)

with the mixing length

lmix = κyDES

(
1− e−y+/A+

)
, (10.20)

where A+ = 26, the norm |ε (ũ) | =
√

2ε (ũ) : ε (ũ), and a modified wall distance yDES. An
algebraic RANS model is particularly attractive in this application, since such a model does not
require the solution of an additional transport equation, the definition of boundary conditions at
the outer edge of the RANS/LES zone would be challenging, and the scheme is not subject to the
diffusion number as the SA implementation in Chapter 5, if the viscous Navier–Stokes term is
implemented in an implicit step. We further note that the Reynolds stresses in Equation (10.17)
include the difference between the full and resolved stress tensor 〈u′⊗u′〉− 〈ū′⊗ ū′〉. It would
be possible to explicitly compute all terms involving the resolved scales in Equation (10.17)
(−〈ū′ ⊗ ū′〉) by averaging over homogeneous directions and subtracting the result from the
eddy viscosity tensor in the philosophy of Medic et al. [182]. In this work we account for the
resolved Reynolds stress tensor by considering the classical DES approach of Spalart et al. [244],
which limits the wall distance y with the characteristic grid length scale h times a model constant
CDES:

yDES = min (y, CDESh) ≈

(
1
yβ

+
1

(CDESh)
β

)−1/β

, (10.21)

and we use the latter modification in order to avoid kinks in the residual. For CDES, Spalart et
al. [244] specify a value of the order of unity and a careful calibration using turbulent channel
flow yields CDES = 0.85 with the solver presented in Section 10.4. We further employ the
constant β = 6 and take h as the wall-normal width of the element ∆ye divided by k + 1,
h = ∆ye/(k+1), see also Section 5.5. Finally, the y+-variable in the mixing length eddy viscosity
model in Equation (10.20) is computed based on the definitions of τw,h and yh in Equations (6.12)
and (6.13).

Remark: Taking the wall-normal cell width in Equation (10.21) stands in contrast to the
recommendation in DES of using max(∆x1,∆x2,∆x3) [236] as a characteristic cell length (see
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Section 5.5). The wall-normal grid size is chosen in this work as we require the flow to be
fully turbulent at the interface ∂Ω̃I where the RANS component ends, and the resolved LES
stresses are assumed to behave approximately universal in wall-normal direction. The require-
ment that turbulent eddies have to be resolved by the first off-wall cell limit the cell aspect ratio
max(∆x1,∆x3)/∆y1 in the same way as for wall-stress models. The specific cell aspect ratio
requirements are analyzed in detail in Section 10.5.1.

As the final result we obtain for the hybrid-filtered Navier–Stokes equations

∇· (ū+ ũ) = 0, (10.22)
∂ (ū+ ũ)

∂t
+∇· (F c (ū+ ũ) + pHI −Fν (ū+ ũ)−Fνt (ũ)) = f , (10.23)

where the components of the velocity solution have been expanded in uH = ū + ũ. We solve
for these two velocity components, an eddy-resolving velocity component ū and a statistical
velocity component ũ, explicitly in our numerical method. The idea is that the method computes
turbulent eddies where the LES mesh is sufficiently fine. If the mesh is too coarse to resolve the
near-wall flow, the method automatically promotes the RANS modes and computes the flow, or
parts of it, in a statistical sense. Since the resolution of the pressure is of much less relevance
in turbulent boundary layers, the pressure is kept as a single variable filtered with the hybrid
RANS/LES filter.

Remark: At first glance, a straightforward discretization of Equations (10.22) and (10.23)
with the same function space for ū and ũ does not seem to be possible, as there are formally
seven unknowns (three components each in ū and ũ as well as pH) whereas solely four equations
are available. As it will become clear in the subsequent section, this seemingly underdetermined
problem statement can be solved in an elegant and fully consistent way in the context of the
Galerkin method by taking phyiscally meaningful shape functions for the two velocity compo-
nents, which are linearly independent. To this end, the obvious choice for such a basis is given
by the concept of wall modeling via function enrichment. A more general framework of weak
forms in a multiscale context, where different shape functions are used for particular scales,
is discussed in the subsequent section and the particular function space used in this chapter is
described in Section 10.3.

Outside of the near-wall layer Ω̃, only the LES scale ū is considered, and the coupling con-
dition on the interface ∂Ω̃I in Figure 10.1 is uH = ū. Additionally, we require that the viscous
flux by the eddy viscosity term Fνt (ũ) becomes zero in normal direction to avoid a kink in the
solution, giving the interface condition

Fνt (ũ) ·n = 0 on ∂Ω̃
I × [0, T ]. (10.24)

Since νt is in general not zero, this condition is equivalent to ε (ũ) ·n = 0.

10.2.2. Variational Multiscale Formulation
The goal of the present subsection is twofold: We explain, on an abstract level, how the solv-
ability of Equations (10.22) and (10.23) is enabled despite the seemingly underdetermination of
the equation system. This is done by choosing weighting functions for the weak form which are
of the same structure as the velocity components and by taking linearly independent functions

202



10.2. A Multiscale Approach to Wall Modeling

for the two scales ū and ũ with finite dimension each. An efficient set of discrete linearly in-
dependent function spaces via function enrichment is presented in Section 10.3. Furthermore,
we explain how the viscous operator in Equation (10.23) has to be modified in order to enable a
physically suitable RANS solution to develop.

For this purpose, we derive an abstract weak form of Equations (10.22) and (10.23) in the
standard procedure by multiplication of these equations with appropriate weighting functions
v ∈ Vu as well as q ∈ Vp and integration over the whole spatial domain Ω. As a result we obtain
the variational form of the incompressible Navier–Stokes equations as

C (q, ū+ũ) =0, (10.25)

M
(
v,
∂ (ū+ũ)

∂t

)
+ F c (v, ū+ũ) + P (v, pH)−F ν (v, ū)−F ν+νt (v, ũ) =` (v) . (10.26)

Herein, the terms correspond to the transient (mass) term M , convective term F c, pressure
term P , the rearranged viscous terms F ν and F ν+νt , and the right-hand-side term `, as well
as the velocity-divergence term of the continuity equation C . All terms are bilinear regarding v
as well as ū and ũ except for the convective term, which is nonlinear in the second slot. The
detailed definitions of these operators will be elaborated in the context of the solver description
in Section 10.4.

The classical Bubnov–Galerkin method suggests to take weighting functions of the same space
as the solution functions. We choose appropriate solution functions ū ∈ V ū and ũ ∈ V ũ, assume
direct sum decomposition of the underlying spaces Vu = V ū ⊕ V ũ, i.e., (ū+ ũ) ∈ Vu, and we
require V ū ∩ V ũ = {0} for linear independence. Employing the same basis for the weighting
functions, we obtain two components for v, v̄ = V ū and ṽ = V ũ, and we have v = v̄ + ṽ.
By inserting this ansatz into the weak forms (10.25) and (10.26), the momentum equation may
be decomposed into two equations resembling the two scales of the solution according to the
classical variational multiscale paradigm [117, 118]: an LES scale, weighted with v̄, and a RANS
scale, weighted with ṽ, yielding

C (q, ū+ũ) =0, (10.27)

M
(
v̄,
∂ (ū+ũ)

∂t

)
+ F c (v̄, ū+ũ) + P (v̄, pH)−F ν (v̄, ū)−F ν+νt (v̄, ũ) =` (v̄) , (10.28)

M
(
ṽ,
∂ (ū+ũ)

∂t

)
+ F c (ṽ, ū+ũ) + P (ṽ, pH)−F ν (ṽ, ū)−F ν+νt (ṽ, ũ) =` (ṽ) . (10.29)

The equation for the continuity equation remains unchanged. Through the weighting of Equa-
tions (10.28) and (10.29) with linearly independent function spaces, the equation system is well
posed and resolves the underdetermination discussed in the previous section.

The equation for the LES scale, Equation (10.28), is essentially a standard LES approach
on a background convective velocity ũ, similar to NLDE [164], except for an additional eddy
viscosity term based on ũ, providing the LES scale with physical dissipation in regions where
the energy-carrying scales are not sufficiently resolved. Potential LES subgrid models contained
in τLES would also be added to this equation.

Equation (10.29) represents the RANS scale, which resolves a variable fraction of the av-
eraged velocity. It may be observed that the LES solution couples into the RANS equation
in (10.29) and this coupling should be investigated in more detail. Considering again the NLDE
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methodology as a reference, the RANS equations are well defined without the additional LES
source terms. However, the definition of the eddy viscosity in this work (Equation (10.19)) takes
the resolved Reynolds stresses of the LES arising in the convective term, such that the full con-
vective flux should be included, and thus the transient term accordingly. In contrast, there is
no physical justification for the viscous LES part. Indeed, our numerical tests revealed that the
method tends to promote an unphysical RANS mode, such as a RANS solution directed ad-
verse to the primary flow direction even in attached boundary layers, if the viscous LES term is
included in the RANS equation. Further arguments to be considered are that we expect the vis-
cous RANS flux to be dominant in the underresolved LES region

(
|Fν (ū) | � |Fν+νt (ũ) |

)
.

Additionally, numerical stability issues according to a coercivity analysis (in Section 10.4.2)
suggest that this term would significantly restrict the range of application if taken into account.
We conclude that the viscous LES term should be canceled from the RANS equation according
to

M

(
ṽ,
∂ (ū+ ũ)

∂t

)
+ F c (ṽ, ū+ ũ) + P (ṽ, pH)−F ν+νt (ṽ, ũ) = ` (ṽ) (10.30)

in replacement of Equation (10.29). It is noted that this modification solely has an impact on
one component of the equations and therefore primarily represents a measure for helping the
method to find a physically suitable composition of ū and ũ within the solution space. Similar
modifications in the framework of the variational multiscale method are frequently considered
regarding scale separation into large and small resolved/unresolved scales in LES turbulence
modeling, see, e.g., the review article [100].

In this section, a consistent set of governing equations has been derived, which decomposes
the incompressible Navier–Stokes equations into a RANS scale and an LES scale. We have
argued that a linearly independent function space is required for these two components in order to
guarantee solvability of the equation system. In the next section, we discuss how wall modeling
via function enrichment may be used to construct a highly efficient discrete function space for ū
and ũ.

10.3. RANS and LES Velocity Components Using Wall
Modeling via Function Enrichment

A key ingredient of the present multiscale wall model is that wall modeling via function enrich-
ment as presented in the previous chapters provides appropriate solution spaces for the LES and
RANS components in the same solution vector. This is done by constructing additional shape
shape functions using a wall-law as enrichment function, as it was described in Chapter 6 and ap-
plied in Chapters 7 to 9. As a consequence, the function space is a priori capable of representing
the averaged (RANS) boundary layer profile of the inner layer with very few DOFs. In addi-
tion, the standard high-order polynomial is used to resolve eddies where the mesh is sufficiently
fine. Since these basis functions are linearly independent, they may be used to approximate the
RANS and LES scales in the variational multiscale method described in Section 10.2.2. This
function space enables the use of very coarse meshes in the near-wall region along with exact
boundary conditions since the function space is capable of resolving the sharp boundary layer
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gradient present in the mean velocity. The ingredients necessary to construct such a function
space were already described in detail in Chapter 6 and the enrichment formulation considered
in this chapter is summarized in the following.

According to Equation (6.1), the discrete velocity solution consists of two parts, the high-order
polynomial component ūh (x, t) and the enrichment component ũh, yielding

uh (x, t) = ūh (x, t) + ũh (x, t) . (10.31)

These two components are of course related to the respective RANS and LES contributions of
the solution as introduced in the previous section. In each element, we explicitly solve for an
LES component in terms of the high-order polynomial contribution ūh. The RANS velocity
component is approximated by the enrichment shape functions. As indicated in Figure 10.1,
the subdomain Ω̃h corresponds to the RANS/LES zone and this layer is chosen equivalent to
the width of the first off-wall cell in the present high-order context (e.g. k = 4). If k ≤ 2,
two cell layers may be considered. The enrichment function is weighted with a polynomial of
degree l = {0, 1} with an emphasis on the constant case (l = 0) analogous to the preceding
chapter. Arguments for this choice are discussed in the numerical analysis of this parameter
in Section 10.5.1. The resulting decomposition of uh into the two components is illustrated in
Figure 6.2.

Regarding the choice of the enrichment function, we employed Spalding’s law in the previous
Chapters 7 to 9, which has proven to be suitable both for RANS, DES, and LES. Preliminary in-
vestigations of the present wall model have indicated the substantial potential of using the partic-
ular wall function which is consistent with the eddy viscosity model presented in Section 10.2.1
in the viscous sublayer and the buffer layer (y+ < 30). For example, the predictions of the wall
shear stress could be enhanced in accuracy and robustness. This wall function has been proposed
by van Driest [63] and is defined in Equation (6.8); see also the numerical evaluation routines in
Appendix A.2.

As the enrichment function is universal with respect to the wall coordinate y+ = y
√
τw/ρ/ν,

the wall coordinate scales the enrichment function in wall-normal direction to match the local
wall shear stress. To this end, the adaptation algorithm as introduced in Chapter 6.3.2.4 with the
modifications described in Chapter 8 is used. As in the previous chapters, the wall shear stress
present in the wall y+ variable is recomputed from the velocity solution of the previous time
step. Due to the transient character of the simulation, this choice introduced a certain ‘lag’ in
τw,h. Due to the semi-explicit time integration scheme considered, this error is small.

Finally, the present adaptation algorithm also allows to switch off the wall model when not
needed, i.e., when the standard polynomial component is sufficient to resolve the necessary
scales, see Section 8.1. In particular, one observes problems in conditioning when the enriched
element spans a y+-range smaller than approximately 15 wall units, depending on the respec-
tive choice of k and l, as the standard and enrichment shape functions become close to linearly
dependent when τw → 0, yielding ψ → 0. This issue is circumvented by switching off the en-
richment and the complete multiscale wall model if all quadrature points of the wall-nearest cell
lie in y+ < 30. A parameter study regarding the latter quantity, using turbulent channel flow
with the setup applied in Figure 10.7, yielded almost indistinguishable results for values of y+max
in the range of 20 to 30. In case y+ becomes larger than 30 at any quadrature point of this cell
in a subsequent time step, the wall model is simply switched on again by taking the enrichment
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into account in the solution of the new time step and an appropriate RANS solution develops
automatically within a few time steps.

10.4. Galerkin Formulation and Implementation
The multiscale wall model is implemented in the high-order DG solver presented in Chapter 3.
The modifications of the viscous term introduced in Equation (10.30) require major modifica-
tions of the viscous term. In addition, the viscous term is reformulated to take into account
the spatially varying material parameter given through the eddy viscosity. In order to allow an
accurate description of the formulation, the important aspects of the Galerkin formulation are re-
peated in the following (Section 10.4.1). The present section also presents a numerical stability
analysis of the viscous multiscale term (Section 10.4.2) and discusses the implementation of the
enriched elements (Section 10.4.3).

10.4.1. Galerkin Formulation
Variational formulations are derived for all steps of the time integration scheme (Equations (3.2)
to (3.6)) and the weak forms are related to the symbolic variational formulations discussed in
Section 10.2.2. These weak forms are adapted from Chapters 3 and 5 with major modifications
of the viscous term as summarized in the following. To this end, we consider the notation used in
Section 3.3.1. Regarding the imposition of boundary conditions, the present chapter is limited to
no-slip and periodic conditions analogous to Section 5.2. These boundary conditions are imposed
by prescribing external values for φ+ and ∇φ+ on ∂ΩD and interface conditions on ∂Ω̃I . The
weak form of the multiscale model additionally makes use of the definitions Ω̃e = Ωe ∩ Ω̃

(enriched cell interior), ∂Ω̃I
e = ∂Ωe ∩ ∂Ω̃I (face on ∂Ω̃I , exactly one face enriched), and ∂Ω̃e =

∂Ωe ∩ Ω̃\∂Ω̃I
e (both adjacent faces enriched).

We derive element-wise weak forms for each term of the Navier–Stokes equations by multi-
plying the respective term with a weighting function and integrating over one element volume:

Mass Term. The mass term is obtained without further modification as

Me(v,u) = (v,u)
Ωe
. (10.32)

Neighboring cells are not connected due to the absence of face terms.

Convective Term. The weak form is integrated by parts, yielding

F c
e (v,u) = − (∇v,F c (u))

Ωe
+ (v,F c∗ (u) ·nΓ)∂Ωe

(10.33)

for the convective term. The convective flux is defined via the local Lax–Friedrichs flux

F c∗ (u) = {{F c (u)}}+ Λ/2JuK, (10.34)

and we take the maximum of Λ = max(λ−, λ+) across the interface of the largest eigenvalue of
the flux Jacobian (see Equation (3.10)).
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Pressure Gradient. The pressure gradient is integrated by parts as suggested in Section 3.4,
yielding

Pe(v, p) = − (∇·v, p)
Ωe

+ (v, {{p}}nΓ)∂Ωe
. (10.35)

Velocity Divergence. The velocity divergence is integrated by parts according to Section 3.4
as well and results in

Ce(q,u) = − (∇q,u)
Ωe

+ (q, {{u}}·nΓ)∂Ωe
. (10.36)

Viscous Multiscale Term. We discuss a suitable viscous term in view of the modifications
introduced in Section 10.2.2. The baseline viscous implementation of our solver is an interior
penalty method in symmetric form in the standard flow solver (Chapter 3) and in nonsymmetric
form in the enriched solver (Chapter 5). The nonsymmetric variant of the interior penalty method
has the advantage of being stable with very low requirements on the penalty parameter [220],
which is beneficial in the case of nonpolynomial shape functions, such as the present boundary
layer enrichment, where the derivation of inverse estimates on the fly is not economical.

The viscous term considered in the multiscale model follows Chapter 5 and the impact of the
LES solution ū on the equations for the RANS scale weighted with ṽ are canceled as suggested
in Section 10.2.2. We propose the following formulation of the viscous multiscale term:

volume terms : adjoint terms : std. consist. terms : penalty terms :
F ν
e (v̄, ṽ, ū, ũ) =

ṽ,ũ :−
(
ε (ṽ),Fν+νt (ũ)

)
Ω̃e
−
(
wFν+νt (ṽ),JũK

)
∂Ω̃e

+
(
ṽ,{{Fν+νt (ũ)}}·nΓ

)
∂Ω̃e
−(ṽ,τIPνJũK·nΓ)∂Ωe

ṽ,ū : −
(
wFν+νt (ṽ),JūK

)
∂Ω̃e

+(ṽ,{{Fν (ū)}}·nΓ)∂Ω̃I
e
−(ṽ,τIPνJūK·nΓ)∂Ωe

v̄,ũ :−
(
ε (v̄),Fν+νt (ũ)

)
Ω̃e
−
(

1
2
Fν (v̄),JũK

)
∂Ω̃I

e
+
(
v̄,{{Fν+νt (ũ)}}·nΓ

)
∂Ω̃e
−(v̄,τIPνJũK·nΓ)∂Ωe

v̄,ū :−(ε (v̄),Fν (ū))Ωe −
(

1
2
Fν (v̄),JūK

)
∂Ωe +(v̄,{{Fν (ū)}}·nΓ)∂Ωe −(v̄,τIPνJūK·nΓ)∂Ωe

(10.37)

where all terms are expanded into the individual contributions from the RANS and LES scale.
Herein, the row (ṽ, ũ) represents the RANS contribution to the RANS equation, the row (ṽ, ū)
the LES contribution to the RANS equation, the row (v̄, ũ) the RANS contribution to the LES
equations and finally the last row the LES contributions to the LES scale. The columns corre-
spond to the respective volume terms, the adjoint face terms, the standard consistency face terms,
and the penalty terms. We note the skew-symmetry of the standard consistency and adjoint face
terms as well as the symmetry of the penalty terms.

In Equation (10.37) we do not entirely cancel the LES impact on the RANS equations but shift
the adjoint term at the inner enriched faces ∂Ω̃e from the row (v̄, ũ) to the row (ṽ, ū). This modi-
fication is consistent, since it relies on the discontinuity of the velocity solution at element bound-
aries, and is required in order to guarantee a stable scheme through skew-symmetric face terms.
The skew-symmetry is beneficial in the context of the coercivity analysis in the subsequent sec-
tion. In contrast, on the interface between enriched and nonenriched cells ∂Ω̃I

e, the opposite face
terms are considered, namely the adjoint term in row (v̄, ũ) and the skew-symmetric standard
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consistency term in row (ṽ, ū) again in order to allow the fulfillment of the coercivity argument.
The resulting Galerkin formulation is in agreement with the interface conditions ū+ = ū−+ ũ−

and ũ+ = 0 on ∂Ω̃I
e (i.e., JuK = (ū− + ũ− − ū+)⊗nΓ and JũK = ũ−⊗nΓ), where the left face

(· )− is enriched and the right face (· )+ is not enriched, without loss of generality. However, the
condition ε (ũ−) ·n = 0 is not exactly fulfilled as we have Fν+νt (ũ−) ·n−

Γ
= {{Fν (ū)}}·nΓ

on ∂Ω̃I
e, but the error is considered to be small since kinks have not been observed in the solu-

tion at that boundary. As an alternative, numerical tests have shown that the standard consistency
term in row (ṽ, ū) may be neglected, which yields a better fulfillment of the latter interface con-
dition while problems in stability have not been observed with this modified formulation. The
numerical examples shown in Section 10.5 yet employ the variant with proven stability.

We further note that the material parameter ν is applied to the interior penalty term in the
whole domain. As interior penalty stabilization parameter τIP we use the definition by Hille-
waert [113] (see also Equations (3.15) and (3.14)), since this choice has yielded favorable results
in underresolved turbulent flows (ILES) in Chapter 4. On the Dirichlet boundary, we have taken
measures to enhance the accuracy of the weakly enforced no-slip condition in Chapter 5 applied
with the enrichment in Chapter 8. In the present chapter, we increase the interior penalty pa-
rameter τIP on all Dirichlet boundary faces by a factor of 10, which has a similar effect while
being more solver-friendly in 3D. The weights of the averaging operators with spatially varying
material parameter νt included in the Fν+νt-terms are given through harmonic weighting [36]
similar to Equation (5.20):

w− =
ν + ν+t

2ν + ν−t + ν+t
, w+ =

ν + ν−t
2ν + ν−t + ν+t

. (10.38)

On ∂Ω̃I , all terms including the eddy viscosity vanish, making a consideration of the varying
material law unnecessary.

Velocity Div-Div Penalty. The present scheme requires a div-div penalty operator for stabiliza-
tion of mass conservation, see Section 3.4 for a detailed discussion. The corresponding operator
reads

De (v,u) = (∇·v, τD∇·u)Ωe
. (10.39)

We note that the contribution of this term vanishes if the velocity field is exactly divergence-
free, as it relies on the continuity residual∇·u. The stabilization parameter τD is given in Equa-
tion (3.30).

Pressure Laplace Term. The pressure Poisson equation further requires the discretization of
a Laplace term. We use the symmetric interior penalty method [10], yielding

Le

(
q, pn+1) = − (∇q,∇pn+1)

Ωe
+

1
2
(
∇q, Jpn+1K

)
∂Ωe

+ (q,P∗·nΓ)∂Ωe
. (10.40)

For the numerical flux P∗, we include an interior penalty term on internal faces and use the
pressure boundary conditions on the Dirichlet boundary (5.12) as given in Equation (5.23).
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Finally, these weak operators allow a compact definition of the dual-splitting scheme in
element-wise Galerkin form. The explicit convective step reads

γ0Me(vh, ûh)−
∑J−1

i=0

(
αiMe(vh,u

n−i
h )

)
∆t

= −
J−1∑
i=0

βiF
c
e

(
vh,u

n−i
h

)
+ Me

(
vh,f

n+1
h

)
. (10.41)

The pressure Poisson equation is

−Le

(
qh, p

n+1
h

)
= −γ0

∆t
Ce (qh, ûh) (10.42)

and as boundary condition for ûh on ∂ΩD we employ the interior value {{ûh}} = û−h . The
element-wise projection step is obtained by adding the div-div penalty term (10.39) to the left-
hand side, resulting in

Me

(
vh, ˆ̂uh

)
+ De

(
vh, ˆ̂uh

)
= Me (vh, ûh)−Pe

(
vh, p

n+1
h

)
(10.43)

where boundary conditions on the pressure variable are again applied using the internal value
{{pn+1

h }} = pn+1,−
h on ∂ΩD. The viscous step may be written as

γ0

∆t

(
Me

(
vh,u

n+1
h

)
−Me

(
vh, ˆ̂uh

))
= F ν

e

(
v̄h, ṽh, ū

n+1
h , ũn+1

h

)
. (10.44)

Boundary conditions for all remaining quantities on no-slip walls are specified using the mirror
principle [112], defining the exterior velocity contribution with u+

h = −u−h + 2gu = −u−h on
∂ΩD.

10.4.2. Coercivity Analysis
We sketch a coercivity analysis of the viscous term in order to investigate the stability of the
numerical scheme. The Lax–Milgram theorem ensures solvability of the variational Helmholtz
problem (10.44) if there is a constant C ≥ 0 such that

−F ν
e (v̄, ṽ, v̄, ṽ) ≥ C

(
‖v̄‖2 + ‖ṽ‖2) , for all v̄ ∈ V ū, ṽ ∈ V ũ (10.45)

holds. Herein, we disregard the mass terms, as they always yield a positive contribution on the
left-hand side of the inequality and the Helmholtz equation degenerates to an L2 projection if
−F ν

e → 0.
Due to their skew-symmetric construction, the face terms on ∂Ω̃e in Equation (10.37) cancel

each other when the solution and weighting functions are equal. Solely the interior penalty face
terms remain, which have an entirely positive contribution. Therefore, the following inequality
holds for enriched cells,

−F ν
e (v̄, ṽ, v̄, ṽ)

≥ (ε (v̄) , 2νε (v̄))
Ω̃e

+ (ε (v̄) , 2(ν + νt)ε (ṽ))Ω̃e
+ (ε (ṽ) , 2(ν + νt)ε (ṽ))Ω̃e

(10.46)
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leaving only the volume terms for further consideration. The first and the last volume term
are each symmetric and thus positive while the nonsymmetric second term is problematic as
it can yield a negative contribution. In the following, we derive an estimate for this term in
order to guarantee that the sum of all terms in the bilinear form is bounded from below by
C
(
‖v̄‖2 + ‖ṽ‖2

)
.

Young’s inequality

2ab ≥ −a
2

ε
− εb2 (10.47)

for any ε > 0 applied to the second volume term in (10.46) results in:(
ε(v̄), 2 ̂(ν + νt)ε(ṽ)

)
Ωe

≥

(
ε(v̄),−

̂(ν + νt)

ε
ε(v̄)

)
Ωe

+
(
ε (ṽ) ,−ε ̂(ν + νt)ε (ṽ)

)
Ωe

. (10.48)

Herein, we have introduced the modified viscosity term ̂(ν + νt). Inserting this relation in in-
equality (10.46) yields an estimate for −F ν

e based on the two symmetric terms,

−F ν
e (v̄, ṽ, v̄, ṽ)

≥

(
ε(v̄), (2ν −

̂(ν + νt)

ε
)ε(v̄)

)
Ωe

+
(
ε(ṽ),

(
2(ν + νt)− ε ̂(ν + νt)

)
ε(ṽ)

)
Ωe

, (10.49)

allowing the conclusion that the Lax–Milgram theorem is fulfilled under the following condi-
tions:

2ν −
̂(ν + νt)

ε
≥ 0, 2(ν + νt)− ε ̂(ν + νt) ≥ 0. (10.50)

Upon rearrangement, these inequalities directly result in the condition for coercivity of the vis-
cous multiscale term:

̂(ν + νt) ≤ 2
√
ν(ν + νt). (10.51)

This means that the amount of viscous dissipation introduced in the LES scale by the RANS
solution has to be limited if ν + νt > 4ν for reasons of stability. We apply the modified eddy
viscosity

ν̂ + νt = min(ν + νt, 2
√
ν(ν + νt)) (10.52)

in the volume term of the row (v̄, ũ) in Equation (10.37), which comes along with a minor
limitation of the application range of the wall model. This aspect will be investigated in detail
in Section 10.5.1. We anticipate at this point that the width of the first off-wall cell should not
exceed a y+-range of approximately 120 wall units in the statistical data. The relation (10.52)
guarantees the stability of the scheme in outliers due to turbulent fluctuations. We emphasize that
this behavior is related to the particular discrete method used for the viscous multiscale term in
the present work and we encourage mathematicians to develop alternative formulations in order
to weaken or remove this limitation.

For completeness, we remark on the relations for the case with the viscous LES term according
to Equation (10.29), i.e., without the modification introduced in Equation (10.30) and therefore
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including all terms in the rows (ṽ, ū) and (v̄, ũ) in Ω̃e as well as on ∂Ω̃e (in Equation (10.37)).
The nonsymmetric term on the right hand side of inequality (10.46) would get a material factor
of 2(2ν + νt) instead of 2(ν + νt), resulting in the condition ̂(ν + νt) ≤ 2

√
ν(ν + νt) − ν for

the material parameter of the volume term in the row (v̄, ũ). This condition limits the growth
of the eddy viscosity variable if ν + νt > ν, which would represent a too strong restriction in
practical applications.

10.4.3. Implementation
The Galerkin formulations of the dual splitting scheme, Equations (10.41) to (10.44), are in-
tegrated by numerical quadrature, yielding a matrix formulation for each sub-step. The matrix
forms are similar to the ones described in Sections 3.4.4 and 5.3.3. The numerical integration
of the weak forms is performed using Gaussian quadrature as described in Section 6.3.3.1. In
this chapter, we consider the matrix-free version of the inverse mass operator according to Sec-
tion 6.3.3.2 and the mixed matrix-free evaluation of the residual of the matrix-free projection
solver discussed in Section 6.3.3.3. All other steps of the scheme are evaluated as described in
Section 3.5.

10.5. Numerical Examples
The present multiscale wall model is validated with turbulent channel flow (Section 10.5.1) as
well as flow past periodic hills (Section 10.5.2). These two benchmark examples provide insight
into the performance of the wall model both in attached and separated boundary layers. We
follow the earlier recommendations of using a polynomial degree of k = 4 for the discretization
of the LES scale, since this choice yields a good compromise between accuracy and time-to-
solution within the present solver. In addition, a polynomial of 4th degree inside the wall layer
is capable of resolving sufficient turbulence within a single layer of cells. The influence of the
degree of the polynomial weighting of the enrichment function, l, is investigated and guidelines
for the use of the wall model are formulated.

10.5.1. Turbulent Channel Flow
As a first validation example, we consider turbulent flow in a rectangular channel of the dimen-
sions 2πδ×2δ×πδ in streamwise, vertical, and spanwise direction, respectively, with the channel
half-width δ using the setup as considered in Section 4.2. The grid is graded towards the walls by
the hyperbolic mapping given in Equation (4.1) with the mesh stretching parameter γ. The wall
model is active in the first off-wall element layer and a typical mesh is shown in Figure 10.2.
The initial conditions are solely applied on the polynomial DOFs of the solution and the RANS
component develops in the course of the simulation once y+ > 30 at any quadrature point of
a wall-layer cell according to Section 8.1. The flow is driven by a constant pressure gradient
derived from the nominal flow quantities and the results are normalized using the numerical
wall shear stress in the friction velocity uτ =

√
τw/ρ. We consider the friction Reynolds num-

bers Reτ = uτδ/ν in accordance to DNS reference data at Reτ = 395 [187], Reτ = 950 [6],
Reτ = 2,000 [116], and Reτ = 5,200 [172]. One snapshot of the turbulent flow is visualized
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Table 10.1.: Multiscale-WMLES (MS-WMLES): Overview of simulation cases for the turbu-
lent channel flow example: Investigation of several Reynolds numbers (Figure 10.4),
comparison of the new approach to DDES including function enrichment (see Chap-
ter 9) (Figure 10.5), grid stretching factors and mesh aspect ratios (Figure 10.6),
transition from wall-resolved to WMLES (Figure 10.7), weighting of the enrichment
function with a constant or linear basis (Figure 10.8), and the performance compar-
ison of the wall model with wall-resolved LES (Figure 10.9). The number of cells
per direction i is denoted Nie and the normalized dimensions of the first off-wall
cell is defined as ∆y+1e = ∆y1euτ/ν in wall-normal direction and ∆x+ie = ∆xieuτ/ν
in direction i and ∆x+emax = max(∆x+1e,∆x

+
2e,∆x

+
3e). The number of LES grid points

per direction i is Ni = (k + 1)Nie with k = 4 in all cases.

fig. case N1e×N2e×N3e Reτ l γ ∆y+1e ∆x+emax
∆y+1e(k+1)

∆x+e max

10.4

ch395 N12×8×12 k4l0 γ0.8 12×8×12 395 0 0.8 76 207 1.84
ch950 N12×8×12 k4l0 γ1.6 12×8×12 950 0 1.6 91 497 0.92
ch2000 N24×8×24 k4l0 γ2.2 24×8×24 2,000 0 2.2 96 524 0.92
ch5200 N48×16×48 k4l0 γ2.05 48×16×48 5,200 0 2.05 114 681 0.84

10.5
ch950 N163 k4l0 γ0.001 16×16×16 950 0 0.001 119 373 1.60
ch950 N163 k4l0 γ0.001 DDES 16×16×16 950 0 0.001 119 373 -

10.6

ch950 N163 k4l0 γ0.001 16×16×16 950 0 0.001 119 373 1.60
ch950 N163 k4l0 γ0.8 16×16×16 950 0 0.8 85 373 1.14
ch950 N163 k4l0 γ1.2 16×16×16 950 0 1.2 59 373 0.79
ch950 N163 k4l0 γ1.5 16×16×16 950 0 1.5 42 373 0.56
ch950 N163 k4l0 γ1.0 16×16×16 950 0 1.0 72 373 0.97
ch950 N16×16×32 k4l0 γ1.0 16×16×32 950 0 1.0 72 373 0.97

10.7

ch950 N243 k4 γ2.25 24×24×24 950 - 2.25 10 249 0.20
ch950 N243 k4l0 γ1.75 24×24×24 950 0 1.75 19 249 0.38
ch950 N243 k4l0 γ1.5 24×24×24 950 0 1.5 27 249 0.54
ch950 N243 k4l0 γ1.25 24×24×24 950 0 1.25 36 249 0.72
ch950 N243 k4l0 γ1.0 24×24×24 950 0 1.0 46 249 0.92

10.8
ch950 N163 k4l0 γ1.2 16×16×16 950 0 1.2 59 373 0.79
ch950 N163 k4l1 γ1.2 16×16×16 950 1 1.2 59 373 0.79

10.9
ch950 N12×8×12 k4l0 γ1.6 12×8×12 950 0 1.6 91 497 0.92
ch950 N243 k4 γ2.25 24×24×24 950 - 2.25 10 249 0.20
ch950 N323 k4 γ2.0 32×32×32 950 - 2.0 10 187 0.27

in Figure 10.3 via contours of the velocity magnitude and turbulent vortex structures are made
visible using iso-surfaces of the Q-criterion. All simulation parameters and discretization cases
are summarized in Table 10.1.

Reynolds Number Independence. The results of a first application of the wall model includ-
ing all four Reynolds numbers are depicted in Figure 10.4. Overall, excellent agreement is ob-
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Figure 10.2.: Grid of the case ch950 N163 k4l0 γ0.001. The solution is represented by a poly-
nomial of degree four in each cell plus the enrichment shape functions in the wall-
layer (red cells).

Figure 10.3.: MS-WMLES: Qualitative comparison of the present multiscale wall model in-
cluding enrichment (top) with DDES using enrichment (see Chapter 9) (bot-
tom) on the same mesh. Velocity magnitude (left) and visualization of turbu-
lent eddies via the Q-criterion colored by velocity magnitude (right) of the cases
ch950 N163 k4l0 γ0.001 and ch950 N163 k4l0 γ0.001 DDES. All cases use
the same color scale and the Q-criterion shows the same iso-value. Red indicates
high and blue low values.

served both for the mean velocity, the RMS velocities and the RSS. Furthermore, it is apparent
that the results do not depend on the Reynolds number. Regarding the mean velocity, the en-
richment represents the whole mean velocity and the time-averaged LES solution is almost zero
in the wall layer. Therefore, the LES result is only visualized for the lowest Reynolds number
and not considered in the remainder of this section. The RSS is computed based on the resolved
fluctuations, which explains the small gap to the reference data in the near-wall zone. In partic-
ular the u′+ and w′+ curves exhibit small unphysical peaks at the element interfaces, which is a
typical result for coarse meshes in DG and has been observed in the previous chapters as well.
These unphysical peaks vanish with increasing resolution.

Comparison to DDES. Since the primary incentive for the development of the present mul-
tiscale wall model was the deficiencies of DES in the hybrid RANS/LES transition region, we
compare the two simulation methodologies directly. To this end, we consider DDES including
wall modeling via function enrichment presented in the previous chapter for the spatial dis-
cretization, such that the exact same meshes can be used for both models. Figure 10.3 shows a
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Figure 10.4.: MS-WMLES: WMLES of turbulent channel flow at several Reynolds numbers:
Mean velocity (top) and RMS-velocities as well as RSS (bottom). All quantities
are normalized according to u+ = 〈u1〉/uτ , u′+ =

√
〈u′21 〉/uτ , v′+ =

√
〈u2

2〉/uτ ,
w′+ =

√
〈u2

3〉/uτ , and (u′v′)+ = 〈u1u2〉/u2
τ . The polynomial part is inside the

wall-layer only displayed for Reτ = 395.

qualitative comparison of two simulations at Reτ = 950; they deviate drastically. DDES operates
in RANS mode in the inner layer up to y/δ ≈ 0.05 and the eddy viscosity acts on the polynomial
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Figure 10.5.: MS-WMLES: Quantitative comparison of the present multiscale wall model with
DDES using function enrichment (see Chapter 9) employing the same grid: Mean
velocity (top) and RMS-velocities as well as RSS (bottom). All quantities are
normalized according to u+ = 〈u1〉/uτ , u′+ =

√
〈u′21 〉/uτ , v′+ =

√
〈u2

2〉/uτ ,
w′+ =

√
〈u2

3〉/uτ , and (u′v′)+ = 〈u1u2〉/u2
τ . The full solution is displayed as solid

line and the enrichment component as dashed line.
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Figure 10.6.: MS-WMLES: Grid stretching and element aspect ratios: Mean velocity (top) and
RMS-velocities as well as RSS (bottom). All quantities are normalized according
to u+ = 〈u1〉/uτ , u′+ =

√
〈u′21 〉/uτ , v′+ =

√
〈u2

2〉/uτ , w′+ =
√
〈u2

3〉/uτ , and
(u′v′)+ = 〈u1u2〉/u2

τ . The full solution is displayed as solid line and the enrichment
component as dashed line.

velocity component as well, such that no vortices are resolved in the inner layer. This stands in
contrast to the present multiscale wall model, which computes turbulent motions in the inner
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boundary layer as well. In DDES, turbulent eddies evolve outside of the inner layer, but the
flow generally behaves differently due to the use of the LES eddy viscosity subgrid model given
through the SA model in LES mode. These two simulations are further compared quantitatively
through velocity statistics in Figure 10.5. As it is expected, DDES overpredicts the mean velocity
in the outer layer as a result of a log-layer mismatch caused by the RANS–LES transition. Such
a log-layer mismatch is not observed with the present model. The turbulent stresses show that
the transition in the DDES model extends until approximately y/δ = 0.4, whereas the present
multiscale wall model makes much better use of the eddy-resolving capability of the mesh and
resolves the important turbulent motions beyond y/δ = 0.05.

Grid Independence. The wall model including its application range and robustness with re-
gard to grid dependence is analyzed in a systematic manner in the following. In Figure 10.6,
five grid stretching factors are investigated using the same number of cells in each spatial di-
rection. In addition, the number of cells is doubled in the x3-direction in one case. The results
show that the wall model generally exhibits an excellent robustness regarding the choice of
the mesh. The dependence of the cell aspect ratio may be analyzed by considering the mea-
sure ∆y+1e(k + 1)/max(∆x+1e,∆x

+
2e,∆x

+
3e), which quantifies the available number of grid points

in the wall-parallel direction to resolve a turbulent motion of the size of ∆y+1e; this quantity
is included in Table 10.1 for all simulation cases. Remember that we require sufficient tur-
bulence to be resolved at a distance from the wall ∆y+1e such that the RANS model can be
‘switched off’, so the cell aspect ratio should not exceed a certain limit. It is noted that other
wall modeling approaches, such as wall-stress models, in principle have the same requirement
if not even more stringent. The factor ∆y+1e(k + 1)/max(∆x+1e,∆x

+
2e,∆x

+
3e) varies in the range

0.56 to 1.60. The simulation case with the highest aspect ratio, ch950 N163 k4l0 γ1.5, shows
a minor overprediction of the mean velocity where the wall model ends, allowing the conclu-
sion that ∆y+1e(k + 1)/max(∆x+1e,∆x

+
2e,∆x

+
3e) should not go below the limit ∼ 0.5. According to

Jiménez [127], the streamwise size of the energetic eddies in the log-layer is approximately 5y
so they are well-resolved with 2.5 grid points at the height ∆y+1e, where the RANS layer ends.

Application Rage. The coercivity analysis in Section 10.4.2 requires the clipping of the eddy
viscosity beyond ν̂ + νt > 4ν in the nonsymmetric volume term of the viscous operator. A nor-
malization of this relation may be obtained by division with the viscosity ν̂+t = ν̂ + νt/ν > 4.
This relation is universal in y+-units; compare the normalized eddy viscosity profiles in Fig-
ure 5.4. It is thus possible to investigate the clipping of ν̂+t for one flow configuration and to
transfer the conclusions to other simulations. Given that the maximum values of ν̂+t grow with
the width of the wall layer, it is sufficient to find the upper limit of the application range (cf.
Equation (10.52)). In Figure 10.6, ν̂+t is clipped on approximately 11% of the quadrature points
of all wall-layer cells for the case ch950 N163 k4l0 γ0.001. Although the results are excellent
for this case, we do not recommend the application of the wall model far beyond this y+-range
in order to guarantee the reliability of the results. In conclusion, the wall model should not ex-
tend beyond approximately 120 wall units in the statistical data. We stress at this point that the
stability of the numerical method is guaranteed irrespective of the application of the wall model
and this y+-limit is only due to the result quality, which may degrade for thicker wall layers.
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Figure 10.7.: MS-WMLES: Transition from wall-resolved to WMLES: Mean velocity (top) and
RMS-velocities as well as RSS (bottom). All quantities are normalized according
to u+ = 〈u1〉/uτ , u′+ =

√
〈u′21 〉/uτ , v′+ =

√
〈u2

2〉/uτ , w′+ =
√
〈u2

3〉/uτ , and
(u′v′)+ = 〈u1u2〉/u2

τ . The full solution is displayed as solid line and the enrichment
component as dashed line.

Transition WMLES–WRLES The transition from wall-modeled to wall-resolved LES is in-
vestigated in Figure 10.7. At least 243 cells are required for sufficiently resolving the energetic
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scales in the case without wall model, based on resolution guidelines by Chapman [42] and our
experience with the present scheme (see Chapter 4, with k + 1 grid points per cell, we have
∆y+1 ≈ ∆y+1e/(k + 1) ≈ 2, ∆z+e ≈ ∆z+/(k + 1) ≈ 20). In Figure 10.7, the grid stretching of the
wall resolved LES is successively reduced until the wall model is fully active. The wall-resolved
simulation slightly overpredicts the mean velocity and the turbulent fluctuations agree well with
the reference. Regarding the case ch950 N243 k4l0 γ1.75, the wall model is taken into account
in the algorithm, but the model is switched off during the entire simulation due to the condition
described in Section 8.1. The results in Figure 10.7 are equivalent to the wall-resolved case. For
the case ch950 N243 k4l0 γ1.5 the wall model is activated dynamically in a temporally varying
fraction of the cells and the enrichment shape functions constitute a small part of the mean veloc-
ity. The mean velocity profile agrees well with the DNS, even better than the wall-resolved case.
For smaller grid stretching factors, the wall model is fully switched on after the initial laminar-
turbulent transition and the enrichment solution is equivalent to the mean velocity profile. The
mean velocity in these simulation cases is slightly underpredicted compared to the reference data
and the turbulent fluctuations agree well with the reference data. From this numerical test it may
be concluded that the wall model is well capable of handling the full range from WRLES to
WMLES.

Comparison l = 0 with l = 1. Until this point, all simulation cases have used a constant
weighting of the enrichment function (l = 0) and we put forward reasons for this choice. Fig-
ure 10.8 compares two simulation cases, one with l = 0 and one with l = 1, where the latter
represents a linear weighting of van Driest’s law. The curves lie on top of each other, including
the enrichment solution and the fluctuations. This suggests that, for attached boundary layers,
there is no need for a weighting of the enrichment with more than a constant factor. Further-
more, the enrichment using linear functions requires additional DOFs (24 instead of 3 per cell)
and, most importantly, results in approximately three times the number of linear iterations in the
GMRES solver of the Helmholtz equation due to worse condition numbers. Regarding nonequi-
librium boundary layers, a linear weighting may yield slightly better results due to the additional
flexibility within the RANS solution, but the higher computational cost is not justified.

Performance Evaluation. We conclude the present section of the turbulent channel flow with
a performance comparison of WRLES and WMLES. On the one hand, the wall model allows
much coarser meshes near the wall, which also comes along with larger time steps due to the
explicit time integration, and the lower grid anisotropy yields fewer iterations in the expensive
pressure Poisson solver. On the other hand, the wall model requires additional computational
effort due to the larger number of quadrature points in the enriched cells and supplementary al-
gorithmic steps. Figure 10.9 compares the results of a wall-modeled case with the above coarse
wall-resolved simulation as well as an additional finer wall-resolved case. The wall-modeled
simulation exhibits better agreement with the DNS than the coarse wall-resolved simulation,
but worse than the fine wall-resolved case. The computational cost is measured in number of
processor cores times wall clock time of the entire simulation and the result is normalized by
the wall-modeled simulation cost. The wall-modeled case (ch950 N12×8×12 k4l0 γ1.6) gives
a cost of 1, the coarse LES simulation (ch950 N243 k4 γ2.25) yields a factor of 77, and the
fine wall-resolved calculation (ch950 N323 k4 γ2.0) a cost of 158. Comparing the coarse wall-
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Figure 10.8.: MS-WMLES: Comparison of constant and linear shape functions for the weighting
of the enrichment function: Mean velocity (top) and RMS-velocities as well as
RSS (bottom). All quantities are normalized according to u+ = 〈u1〉/uτ , u′+ =√
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Figure 10.9.: MS-WMLES: Performance comparison of wall-resolved and wall-modeled cases:
Mean velocity (top) and RMS-velocities as well as RSS (bottom). All quantities
are normalized according to u+ = 〈u1〉/uτ , u′+ =

√
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√
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2〉/uτ ,
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√
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τ . The full solution is displayed as solid

line and the enrichment component as dashed line. The wall-modeled simulation
reduces the computational cost by a factor of 77 compared to the coarser and by a
factor of 158 compared to the finer wall-resolved case.
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resolved calculation and the wall-modeled calculation in more detail, the use of the wall model
reduces the number of time steps by a factor of 5.7 (for the same simulation time) and reduces
the number of cells by a factor of 12. In addition, the wall-resolved simulation requires approx-
imately 22 Poisson solver iterations instead of 9 in the wall-modeled case to yield the same
relative accuracy in the iterative solver due to the higher mesh stretching, which overcompen-
sates the extra cost of the wall model. These results allow the conclusion that the wall model
promises a speed-up compared to wall-resolved LES by a factor of approximately two orders of
magnitude and we expect an even larger benefit for higher Reynolds numbers.

The multiscale wall model has been thoroughly investigated regarding its application limits,
mesh dependence and performance. The major results are that the model can compute the whole
range from wall-resolved to WMLES and is extremely robust with respect to different meshes as
well as aspect ratios. However, the wall model should not be used beyond y+ = 120 to guarantee
accurate results due to a stability condition. Given this limitation, the wall model has accelerated
the simulations of turbulent channel flow by a factor of approximately two orders of magnitude.

10.5.2. Flow over Periodic Hills
As a second benchmark example, we consider flow over periodic hills at the Reynolds numbers
ReH = 10,595, ReH = 19,000, and ReH = 37,000 with the setup described in detail in Sec-
tion 4.3. For most of the simulation cases, a mesh consisting of 32×16×16 cells of degree k = 4
is employed, resulting in 160×80×80 nodes, and the enrichment with l = 0 is included in the
first off-wall element layer, as it is illustrated in Figure 10.10. At the highest Reynolds number,
an additional simulation case is presented, in which the number of cells is doubled in each spatial
direction. The grid is graded towards the walls and we investigate three grid stretching factors in
order to show the influence of the width of the wall layer. According to Figure 10.11, the wall
layer and thus the first off-wall cells span a range in y+-units up to 86 for the lowest, 138 for
the medium, and 156 for the highest Reynolds number, with peaks near the hill top and minima
near the separation and reattachment points. The enrichment DOFs constitute equal or less than
0.1% of the overall number of DOFs. Further, the enrichment and thus the multiscale wall model
are switched off dynamically if the boundary layer is sufficiently resolved. The wall model is
therefore effectively not taken into account behind the hill crest and in the region of the flow
reattachment. More cells are switched off in the lower Reynolds number cases; the active cells in
one snapshot are depicted in Figure 10.10. The velocity field of the fully turbulent flow and tur-
bulent vortex structures are visualized in Figure 10.12. All discretization cases are summarized
in Table 10.2, including the labels employed in the subsequent figures. The investigations of the
wall model include a comparison to one simulation for each Reynolds number, which uses the
exact same mesh but without the wall model and is labeled with the addition NWM (no wall
model) in Table 10.2.

We begin the discussion of the results with the friction and pressure coefficients for the lowest
Reynolds number. They are defined in Equations (4.3) and (4.4) and the location of the reference
pressure pref is chosen as x1 = 0 at the upper wall. The curves are compared to the DNS reference
data in Figure 10.13. Overall, good agreement of all curves with the DNS is observed and the
largest error occurs near the hill top. Even the case without wall modeling is in acceptable agree-
ment with the reference data, although the peak in the skin friction is predicted less distinct in that
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Table 10.2.: MS-WMLES: Simulation cases and resolutions of the periodic hill flow. The cases
at ReH = 10,595 and 19,000 use 32×16×16 cells with varying grid stretching in
vertical direction and, at ReH = 37,000, a finer mesh with 64×32×32 grid cells
is additionally considered. The polynomial degrees are k = 4 and l = 0 for all
simulation cases, and the number of grid points per direction is k + 1 in each cell.
The addition NWM stands for ‘no wall model’. The separation and reattachment
lengths x1,sep and x1,reatt correspond to the zero-crossings of the skin friction.

case Ne1×Ne2×Ne3 N1×N2×N3 ReH max(∆y+1e)
x1,sep

H

x1,reatt
H

ph10595 stretch1 32×16×16 160×80×80 10,595 86 0.32 4.23
ph10595 stretch2 32×16×16 160×80×80 10,595 73 0.23 4.24
ph10595 stretch3 32×16×16 160×80×80 10,595 60 0.19 3.98
ph10595 stretch2 NWM 32×16×16 160×80×80 10,595 - 0.29 3.99
DNS 10595 - 896×448×448 10,595 - 0.19 4.51
ph19000 stretch1 32×16×16 160×80×80 19,000 138 0.42 2.85
ph19000 stretch2 32×16×16 160×80×80 19,000 113 0.35 3.60
ph19000 stretch3 32×16×16 160×80×80 19,000 95 0.25 3.64
ph19000 stretch2 NWM 32×16×16 160×80×80 19,000 - 0.32 1.99
RM EXP [211] - - 19,000 - - 3.94
ph37000 stretch3 32×16×16 160×80×80 37,000 156 0.37 2.78
ph37000 stretch3 fine 64×32×32 320×160×160 37,000 78 0.28 3.38
ph37000 stretch3 NWM 32×16×16 160×80×80 37,000 - - -
RM EXP [211] - - 37,000 - - 3.76
CM WMLES [265] - 128×64×64 37,000 - - 2.3
CM WMLES fine [265] - 256×128×128 37,000 - - 2.8

case. Also, the separation and reattachment lengths in Table 10.2, given as the zero-crossings of
the skin friction, are in good agreement with the reference. The reattachment lengths of the cases
ph10595 stretch1 and ph10595 stretch2 at ∼ 4.25H are slightly underpredicted in comparison
to the DNS reference of 4.51H . Regarding the case ph10595 stretch3, the reattachment length is
predicted even shorter as 3.98H . With respect to the latter, a possible source of error could be the
coarser mesh in the shear layer within the LES region, resulting in a more dissipative behavior
of the numerical scheme and thus affecting the length of the recirulation zone.

The time-averaged streamwise velocity, vertical velocity, and RSS are depicted in Figure 10.14
at ten locations. The curves essentially lie on top of each other, including the wall-modeled sim-
ulations, the underresolved case, and the DNS. From this fact we conclude that the wall model
shows an outstanding performance for nonequilibrium boundary layers, which confirms the re-
sults obtained for wall modeling via function enrichment presented in the previous chapters as
well as the robustness of the method with respect to mesh aspect ratios observed in the previous
section.

The fact that even the underresolved case without the wall model yields a good agreement
with the reference data motivates an application of the same meshes to a higher Reynolds num-
ber. The mean streamwise velocity, vertical velocity, and RSS for ReH = 19,000 are shown
in Figure 10.15. The wall model exhibits results of similar quality as for the lower Reynolds

223



10. Application IV: A Multiscale Approach to Hybrid RANS/LES Wall Modeling

Figure 10.10.: MS-WMLES: Grid of the case ph10595 stretch2 (left). The wall-model cells are
used in one layer near the wall. However, the enrichment is in these cells switched
off dynamically if the polynomial is sufficient to resolve the turbulence. There-
fore, the enrichment is in some cells at the lower wall inactive in the instantaneous
flow field (right, computational domain shown from below). Enriched cells are
depicted red and standard nonenriched cells blue.
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Figure 10.11.: MS-WMLES: Width of wall-layer (width of first off-wall cell) for ReH = 10,595,
ReH = 19,000 (top right), and ReH = 37,000 (from left to right). The shallower
curves correspond to the upper wall.

Figure 10.12.: MS-WMLES: Velocity magnitude (left) and visualization of turbulent ed-
dies via the Q-criterion colored by velocity magnitude (right) of the case
ph10595 stretch2. Red indicates high and blue low values.

number and the sensitivity regarding the grid stretching is slightly higher. However, the results
for the case without wall model do not agree with the reference data at all. In particular, the
reattachment length with 1.99H instead of 3.94H is substantially underpredicted.
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Figure 10.13.: MS-WMLES: Skin friction coefficient at the lower wall (top) and pressure coef-
ficient at the lower and upper boundary (bottom). The shallower pressure coeffi-
cient curves correspond to the upper wall.

Finally, we assess whether the wall model gives any added value in separated flow conditions
in comparison to the simpler wall-stress model by Carton de Wiart and Murman within a high-
order DG method [265]. Two meshes are employed, the grid with the highest mesh stretching
considered previously and a refined variant with twice as many cells in each spatial direction.
These meshes are quite similar to the baseline and fine grid used by Wiart and Murman [265], la-
beled as CM WMLES and CM WMLES fine, respectively. Slightly more points are used herein,
the approach in the reference [265] exhibits an order of accuracy of 8 in comparison to the 4th

order accuracy of the present method, however. A full data set including reference data is only
available for the mean streamwise velocity, which is presented in Figure 10.16. The coarser case
using wall modeling via function enrichment shows slightly better solutions than the coarse case
with the equilibrium wall model, in particular with respect to the reattachment length. A possible
explanation for this agreement may be that some of the relevant scales in the separation region
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Figure 10.14.: MS-WMLES: Streamwise u = 〈u1〉 and vertical v = 〈u2〉 mean velocity, as well
as RSS u′v′ = 〈u1u2〉 − 〈u1〉〈u2〉 of the periodic hill flow at ReH = 10,595.

may not be sufficiently resolved, which would also explain the delayed separation length of the
case ph37000 stretch3 of 0.37H . Comparing the refined simulation cases, the equilibrium model
does not show a substantial improvement in comparison to the coarse cases while the results of
the present wall model are almost converged to the experimental reference data. An investigation
of the reattachment lengths confirms these observations, as the simulation ph37000 stretch3 fine
shows the best agreement considering this quantity. This superiority of the function-enrichment-
based wall model in separated flow conditions is due to the full consistency of the method and
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Figure 10.15.: MS-WMLES: Streamwise u = 〈u1〉 and vertical v = 〈u2〉 mean velocity, as well
as RSS u′v′ = 〈u1u2〉 − 〈u1〉〈u2〉 of the periodic hill flow at ReH = 19,000.

the consideration of all terms of the Navier–Stokes equations. The case without wall modeling
does not show a separation region at all as the near-wall region is significantly underresolved.

In summary, the present multiscale wall model enables an accurate computation of separated
boundary layers, is robust with regard to mesh sensitivities and exhibits considerably more ac-
curate results compared to an equilibrium wall-stress model.
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Figure 10.16.: MS-WMLES: Streamwise u = 〈u1〉 mean velocity of the periodic hill flow at
ReH = 37,000.

10.6. Summary
In this chapter, we have developed a new approach to turbulence modeling within wall modeling
via function enrichment. Based on a rigorous derivation of the modeling terms using Germano’s
framework of additive filtering, a RANS model is applied in a thin layer near the wall. Unlike
existing wall modeling approaches, the RANS and an underresolved LES solution overlap inside
the near-wall layer. This composition allows the LES solution to develop within the wall layer
such that the typical issue of the RANS–LES transition is avoided. As the method uses wall
modeling via function enrichment for the spatial discretization, the model is also capable of
resolving the velocity gradient and thus the wall shear stress in the viscous sublayer with coarse
meshes, where the first off-wall cell extends up to 120 wall units. The wall model has exhibited
outstanding characteristics in attached and separated boundary layers and does not show a log-
layer mismatch in contrast to the DDES model presented in the preceding chapter. The model
has reduced the cost of a benchmark simulation by approximately two orders of magnitude in
comparison to wall-resolved LES. This turbulence modeling approach is also considered as more
consistent than the one used in Chapter 7 for WMLES.
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Summary and Outlook

Summary. The research presented in this thesis makes major contributions to the next gener-
ation of CFD tools by increasing the ratio of accuracy and computational cost of the numerical
simulations. The work has been presented in two parts. The first part further develops the state of
the art in high-order DG methods for incompressible flow problems. The second part introduces
a novel approach to wall modeling for Galerkin methods. The achievements may be summarized
as follows:

In Part I of this thesis, a semi-explicit high-order DG solver for incompressible flows based on
the dual-splitting scheme has been presented. The formulation of the spatial discretization has
been extended in order to obtain a stable method in the limit of spatial underresolution and small
time steps. This flow solver has been applied to DNS and ILES of two widely used benchmark
examples, turbulent channel flow and flow over periodic hills. The numerical method is par-
ticularly suited for DNS due to its spectral capabilities, which yield low numerical dissipation
properties and a high resolution power at high polynomial degrees, in addition to its excellent
parallel scaling characteristics. Therefore, the code has been used to compute new reference data
via DNS for the example of flow over periodic hills at two Reynolds numbers, which has been
made available to the scientific community on a public repository [148]. The numerical method
also shows very good results in ILES, where the numerical dissipation of the computational
method accurately models the turbulent subgrid motions. The solver has been extended to the
RANS equations based on the Spalart–Allmaras model and this algorithm has been applied to
DDES of the previously mentioned examples.

Part II extends these numerical methods by a novel approach to computing turbulent boundary
layer flows. The challenge of such flows is twofold. On the one hand, the mean velocity gradient
becomes very high in the viscous sublayer at high Reynolds numbers. On the other hand, the
flow is governed by a multitude of spatial and temporal scales. The accurate consideration of
both of these problems in the numerical method is essential. The new wall modeling approach
developed in this work primarily addresses the issue of the high gradient, but the approach can
be used to formulate an elegant model for the unresolved turbulence as well. The wall model is
based on the fundamental idea of Galerkin methods that the user chooses the shape functions,
and the numerical method automatically computes the optimal solution with these given shape
functions. By including a wall function in the function space of the near-wall cells, the method
is a priory capable of resolving the sharp velocity gradient in the viscous sublayer. With such
a function space available, the full incompressible Navier–Stokes equations are solved in the
whole boundary layer such that all terms are satisfied discretely, including the convective term
and the contribution of the pressure gradient. Since the polynomial shape functions are retained,
the method can represent more general boundary layer profiles as well, such as in separated flow
conditions. The wall model has been implemented in a high-order DG framework and a standard
FEM solver.
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The unresolved turbulence may be taken into account in the wall model in several ways.
We have shown that the classical RANS methodology may be used, so the wall model can
be included in a RANS solver in order to reduce the resolution requirements in the near-wall
region. The presented numerical examples show that the first off-wall grid point may be placed
at up to approximately y+1 = 1,000 wall units. This RANS solver may also be extended to
DES in a straight-forward manner, where the Spalart–Allmaras model accurately models the
unresolved turbulent scales in the near-wall region, while the model is used as an LES subgrid
closure further away from the wall, where the energetic turbulent eddies are explicitly computed.
In addition, a third approach has been developed, which interprets the function space as two
components of the solution: the high-order polynomial component computes turbulent eddies
via LES and the additional enrichment shape functions represent the unresolved part of the flow
in an averaged sense. This particular interpretation and the variational multiscale method allow
for the application of tailored turbulence models for each of these scales, a RANS model for
the RANS solution component and an LES model for the LES solution component, and both
solutions overlap inside the near-wall layer. Through this construction, the hybrid RANS/LES
approach does not exhibit a log-layer mismatch by definition. The method has yielded a speed-
up in comparison to WRLES by approximately two orders of magnitude. All applications of
the wall model with different turbulence closures showed a high accuracy in attached boundary
layers and a high level of flexibility in separated flows such as the periodic hill flow. The wall
modeled simulations could reproduce the results of wall-resolved simulations with much coarser
meshes.

Outlook. The work presented in this thesis is intended to lay the basis for further research in
the fields of high-order DG methods and wall modeling. Several improvements of the high-order
DG solver are currently under development or may be considered in future work:

• For the velocity and pressure variables, equal-order function spaces are used throughout
this thesis, which is possible since the dual-splitting scheme enables stable computations
with such a setup. A recent analysis of the topic [72] concludes that it is still beneficial to
employ mixed-order elements, where the pressure shape functions are of one degree lower
than the velocity shape functions. Additional enhancements of the numerical scheme are
also discussed in that publication.

• The high-order DG scheme presented in this work has been stabilized by a divergence-
penalty term, which reduces the divergence error inside the elements. Alternative measures
should be considered that reduce the divergence error and they should be compared to the
present method regarding their efficiency and accuracy (see, e.g., [171]).

• In Chapter 4, the subgrid turbulence was accounted for by the numerical dissipation of the
scheme. While this approach yielded good results in these simulations, alternative explicit
subgrid models may be investigated in order to allow for a critical comparison.

• DNS reference data for the periodic hill flow has been be computed up to ReH = 10,595
in this work. A DNS of the next higher Reynolds number of ReH = 19,000 is feasible on
the generation of supercomputers, which is currently installed, with a similar simulation
setup as used for the case ReH = 10,595. A mesh of approximately 256×128×128 cells

230



with a polynomial degree of k = 5 in each cell and 900 million grid points, as well as 13
million time steps would be necessary. This reference data would be highly valuable for
the assessment of wall models.

• The RANS and DES solver based on a semi-explicit approach requires many time steps in
relation to the temporal scales of unsteady RANS simulations. A fully implicit formulation
of the solver may be considered in future work. As a further development of the RANS
solver presented, the SA equation may be implemented in an implicit step as part of the
viscous solver of the dual-splitting scheme.

The wall modeling approach presented in Part II of this thesis should be seen as the starting
point for a further development towards an application of the method in industrial simulation
programs. The most important open topics are the following:

• Since RANS is still the state of the art in the industry, wall modeling via function enrich-
ment should be developed further for this application. In particular, the wall model should
be included in a steady-state solver and a fully implicit solver in order to avoid a depen-
dency of the time step size of the diffusion number and to allow larger time step sizes of
the order of the time scales of unsteady RANS. It may also be of interest to consider DES
in the context of a fully implicit solver instead of the present semi-explicit approach.

• A fully implicit solver necessitates the development of efficient preconditioning strategies,
such as multigrid preconditioners. To this end, one possibility of treating the enrichment
would be the use of a p-multigrid step, in which the enrichment is included in the polyno-
mial part. Subsequently, standard h-multigrid methods could be used.

• The topic of the numerical quadrature of the weak forms including the nonpolynomial
enrichment shape functions is one of the aspects with the largest potential for the further
development of the solvers presented in this work. The most promising approach seems to
be an adaptive method that takes into account the locality of the high-gradient region near
the viscous sublayer and uses less quadrature points further away from the wall.

• Wall modeling via function enrichment has been introduced in this work based on the
XFEM framework. There exist several alternative numerical methods that enable the con-
struction of function spaces based on enrichment functions (see Section 6.3.1). It would be
interesting to extend the wall model to other enrichment methodologies in order to enable
a critical comparison of several approaches with respect to their efficiency.

• Furthermore, wall modeling via function enrichment should be extended to the compress-
ible Navier–Stokes equations.

• Wall modeling via function enrichment may also be extended to other RANS turbulence
models in a straightforward manner, if the variables considered in additional transport
equations vary smoothly inside the inner boundary layer, such that the standard polynomial
component is sufficient to discretize these variables.

• The WMLES method presented in Chapter 10 would benefit from further development by
mathematicians in order to remove the limit of application discussed in that chapter.
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11. Summary and Outlook

• The numerical examples presented in this work are canonical flows that allow a quanti-
tative assessment of the model with relatively low computational effort. The wall model
should be validated with additional industry-oriented examples with complex geometries
that show the applicability of the wall model to real-size industrial problems.

• Finally, the wall model may be considered in multiphysics scenarios. One of the moti-
vations for developing the present wall models for eddy-resolving CFD is an application
of the WMLES solution to aeroacoustics and fluid-structure interaction, which are both
relevant for example in the automotive industry.
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A
Evaluation of Enrichment Functions and Spatial

Derivatives

The implementation of wall modeling via function enrichment uses the following algorithms and
equations. They describe the numerical evaluation of two wall functions and the computation of
their spatial derivatives with respect to the Cartesian coordinates, which are necessary for the
evaluation of weak forms.

A.1. Numerical Evaluation of Spalding’s Law
There are many ways to evaluate Spalding’s implicitly given wall function (Equation (6.7)). In
this work, Newton’s method is used, where the residual is defined as

Fj = −y+h +
ψj
κ

+ e−κB
(
eψj − 1− ψj −

ψ2
j

2!
−
ψ3
j

3!
−
ψ4
j

4!

)
(A.1)

with j indicating the iteration number. As initial condition, we use the explicit expressions for
the viscous sublayer and the logarithmic region:

ψ0 =

{
y+h κ, if y+h < 11,
ln(y+h ) + κB, if y+h ≥ 11.

(A.2)

We iterate until either the residual |Fj| or the increment |∆ψj+1| with ∆ψj+1 = − Fj

dFj/dψj
reach

an accuracy of 10−14, which takes approximately three to eight iterations depending on y+h . Step
size limiting, line search and other modifications have not been considered.

A.2. Numerical Evaluation of van Driest’s Law
The enrichment function ψ given as van Driest’s wall-law in Equation (6.8) has to be computed
on each quadrature point during evaluation of the weak forms. The wall function necessitates
the evaluation of an integral in the interval [0, y+]. In order to avoid computing the integral
over the entire interval each time the wall function is evaluated, we tabulate the wall function
ψi at several discrete values of the wall coordinate y+i . When the integral is evaluated at run
time, solely a small slice of the interval has to be computed, namely [y+i , y

+] with i such that
y+i ≤ y+ < y+i+1:

ψ = ψi +

∫ y+

y+i

2 dy+

1 +

√
1 + (2κy+(1− e(−y+/A+)))

2
(A.3)

233



A. Evaluation of Enrichment Functions and Spatial Derivatives

Table A.1.: Location of support points y+i and corresponding valuesψi for the efficient evaluation
of the enrichment function.

i y+i ψi

0 0.0 0.0
1 5.0 4.88298776233176
2 11.0 8.91824406645381
3 24.0 12.3978516813118
4 59.0 15.1875389926298
5 144.0 17.4177125619900
6 361.0 19.6484300823042
7 946.0 21.9930107788854
8 2517.0 24.3778307011372

This remaining integral is evaluated employing a nine-point Gaussian quadrature rule (with a
polynomial order of accuracy of 17) irrespective of the width of the interval in our code. The
fixed selection allows for efficient SIMD instructions that include quadrature points in several
elements, each with different parameters. The tabulated quantities have been computed using 32
digit precision in Matlab and are listed in Table A.1 for κ = 0.41 and A+ = 26 and yield a
guaranteed relative accuracy for ψ of 10−12 up to y+ = 5,000. The rapid change of the y+i values
shows that the near-wall area necessitates a denser distribution of the support points, while the
integrand varies more slowly beyond y+ > 1,000, such that only a few quadrature nodes are
sufficient. As the wall function is only computed once per time step on each quadrature point and
stored, the evaluation cost is negligible. Aiming at fine-tuning the approach, one may consider
to use more support points y+i and a Gaussian rule with fewer support points.

Besides the enrichment function itself, the spatial derivative dψ/dy+ is also required for eval-
uating the weak forms. This derivative is given by the integrand in Equation (A.3).

It is noted that a scaling of the enrichment function with a factor of 0.1 is considered in the
applications of the DG code, which yields better conditioned systems by scaling the enrichment
shape functions to a similar value range as the standard polynomial shape functions.

A.3. Derivatives of the Enrichment in Cartesian Coordinates

The first and second derivatives of the enrichment with respect to Cartesian coordinates, which
are required for the evaluation of Galerkin formulations with enriched function spaces, are ob-
tained by applying the chain rule iteratively starting from Equation (6.5) for the DG case and
Equation (6.6) for the standard FEM case. Since the standard FEM enrichment is more com-
plex it is detailed here. Regarding DG, the ramp function may simply be set to rh = 1 such
that all derivatives are canceled. Likewise, the nodal values of the enrichment function consid-
ered below, ψ(xB, t), are canceled. The equations are split into three groups: (i.) expressions
in Cartesian coordinates, (ii.) transformation to the wall coordinate y+ and (iii.) derivative with
respect to y+. Indices define space dimensions i, j ∈ {1, 2, 3}.
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A.3. Derivatives of the Enrichment in Cartesian Coordinates

i. The first derivative is

∂

∂xi
ũh(x, t) =∑

B∈N l

(∂N l
B(x)

∂xi
(ψ(x, t)− ψ(xB, t))rh(x) +N l

B(x)
∂ψ(x, t)

∂xi
rh(x)

+N l
B(x)(ψ(x, t)− ψ(xB, t))

∂rh(x)

∂xi

)
ũB(t) (A.4)

and the second derivative gives

∂2

∂xixj
ũh(x, t) =∑

B∈N l

(∂2N l
B(x)

∂xi∂xj
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∂xi
rh(x)

+N l
B(x)

∂2ψ(x, t)
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B(x)
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∂xj

+
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B(x)

∂xj
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∂rh(x)

∂xi
+N l

B(x)
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+N l
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∂2rh(x)

∂xi∂xj
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ũB(t). (A.5)

The ramp function is defined node-wise and interpolated with the standard linear FE ex-
pansion, allowing for the straight-forward computation of its derivatives.

ii. As the enrichment function is defined via the wall coordinate, its derivatives are trans-
formed to y+ yielding

∂ψ(x, t)

∂xi
=

dψ
dy+

∂y+

∂xi
(A.6)

with

∂y+

∂xi
=

∂yh
∂xi

ν

√
τw,h
ρ

+
yh

∂τw,h

∂xi

2ν√τw,hρ
(A.7)

where ∂yh
∂xi

and ∂τw,h

∂xi
are obtained in a straight-forward manner via the standard linear FE

expansion in Equation (6.13) and (6.12). Applying the chain rule successively, the second
derivative becomes

∂2ψ(x, t)

∂xi∂xj
=

d2ψ

dy+2

∂y+

∂xj

∂y+

∂xi
+

dψ
dy+

∂2y+

∂xi∂xj
(A.8)
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A. Evaluation of Enrichment Functions and Spatial Derivatives

with

∂2y+

∂xi∂xj
=

∂2yh
∂xi∂xj

ν

√
τw,h
ρ

+

∂yh
∂xi

∂τw,h

∂xj

2ν√τw,hρ
+

∂yh
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∂τw,h

∂xi

2ν√τw,hρ
−

yh
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∂xj

4ν
√
ρ(τw,h)3/2 +

yh
∂2τw,h

∂xi∂xj

2ν√τw,hρ
. (A.9)

iii. The derivatives of ψ(x, t) based on Spalding’s law with respect to y+ may be obtained
explicitly with given ψ as

dψ
dy+

=
1

1
κ
+ e−κB(eψ − 1− ψ − ψ2

2! −
ψ3

3! )
(A.10)

and
d2ψ

dy+2 = −e−κB
(
eψ − 1− ψ − ψ2

2!

)(
dψ
dy+

)3

. (A.11)

The first spatial derivative of van Driest’s law with respect to y+ is given through the
integrand of the definition of the wall function,

dψ
dy+

=
2

1 +

√
1 + (2κy+(1− e(−y+/A+)))

2
. (A.12)

The second derivative may be obtained by differentiation and application of the chain rule,
but it is not required for the weak forms presented in this thesis.
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[6] J.C. DEL ÁLAMO, J. JIMÉNEZ, Spectra of the very large anisotropic scales in turbulent
channels, Physics of Fluids 15, L41–L44, 2003.

[7] S.R. ALLMARAS, F.T. JOHNSON, P.R. SPALART, Modifications and clarifications for
the implementation of the Spalart–Allmaras turbulence model, in: Seventh International
Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, 2012.

[8] C. ALTMANN, A. BECK, A. BIRKEFELD, F. HINDENLANG, M. STAUDENMAIER,
G. GASSNER, C.D. MUNZ, Discontinuous Galerkin for high performance computational
fluid dynamics (hpcdg), in: W.E. NAGEL, D.B. KRÖNER, M.M. RESCH (eds.), High
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