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Abstract

In this thesis, the extension of the Standard Model by an extra Higgs singlet (EHS) Φh is
investigated. The singlet exclusively couples to the standard sector via a renormalizable
quartic Higgs-portal interaction term in the modified Higgs potential. Three scenarios
are studied which differ by the related non-standard symmetry group under which
Φh transforms. In the complex-Φh extension the scenarios are considered where Φh

is charged under a local (EHSL model) or global (EHSG model) non-standard U(1)
symmetry group. In the ab-initio real-Φh extension the scenario is considered where
Φh transforms under a discrete non-standard Z2 symmetry group (EHSD model). In
any case, the underlying non-standard symmetry is spontaneously broken by the non-
vanishing vacuum expectation value of Φh.

A massive non-standard Abelian gauge field is part of the physical content of the
EHSL model. It does not couple directly to the standard sector owing to an additionally
postulated Z2 symmetry. In the EHSG model the imaginary part of Φh is a physical
non-standard Goldstone boson. In each of the three considered models the real part of
Φh mixes with the real part of the neutral component of the standard Higgs doublet
due to the non-vanishing vacuum expectation value of Φh in the presence of the Higgs-
portal coupling. It is assumed that one of the two associated scalar mass eigenstates
is responsible for the resonance detected around 125 GeV by the experiments at the
CERN Large Hadron Collider.

The Lagrangians of the three models are elaborated, full one-loop renormalization is
performed, and a complete list of corresponding Feynman rules is established. Within
the scope of perturbative unitarity theoretical bounds for the free model parameters are
derived. In order to test the models by means of experimental measurements precise
predictions for important observables accessible at collider experiments are calculated
including one-loop quantum effects. Explicit results are provided for the most sensitive
electroweak precision observables as well as for the significant Higgs observables: the
partial decay widths, the total decay width and the branching ratios of the standard-
like Higgs boson. With these, the free parameters of the three EHS models can be
considerably constrained by comparing with experimental data.
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Zusammenfassung

Diese Doktorarbeit befasst sich mit der Erweiterung des Standardmodells mit einem
extra Higgs-Singlett (EHS) Φh. Das Singlett-Feld wechselwirkt mit dem Standard-
sektor ausschließlich über einen renormierbaren biquadratischen Higgs-Portal-Term
im modifizierten Higgs-Potential. Es werden drei Szenarien analysiert, welche sich in
der zugehörigen Nichtstandard-Symmetriegruppe unterscheiden, unter welcher Φh sich
transformiert. In der Erweiterung mit komplexem Φh wird eine Nichtstandard-U(1)-
Symmetriegruppe mit den beiden Varianten einer globalen U(1)-Symmetrie (EHSG-
Modell) und einer lokalen U(1)-Eichsymmetrie (EHSL-Modell) betrachtet. In der Er-
weiterung mit einem ab-initio-reellen Feld Φh wird das Szenario betrachtet, in welchem
Φh unter einer diskreten Nichtstandard-Z2-Symmetriegruppe transformiert (EHSD-
Modell). In jedem Fall wird die zugrunde liegende Nichtstandard-Symmetrie spontan
durch den nicht verschwindenden Vakuumerwartungswert von Φh gebrochen.

Zum physikalischen Inhalt des EHSL-Modells gehört ein massives Abelsches Nicht-
standard-Eichfeld. Aufgrund einer zusätzlich postulierten Z2-Symmetrie koppelt dieses
nicht direkt an den Standardsektor. Im EHSG-Modell liefert das komplexe Feld Φh ein
physikalisches Nichtstandard-Goldstone-Boson. Wegen des nicht verschwindenden Va-
kuumerwartungswerts von Φh mischen sich in jedem der drei betrachteten Modelle
der Realteil von Φh und der Realteil der neutralen Komponente des Standard-Higgs-
Dubletts in Anwesenheit der Higgs-Portal-Kopplung. Es wird davon ausgegangen, dass
einer der beiden zugehörigen skalaren Masse-Eigenzustände für die an den Experimen-
ten am CERN Large Hadron Collider entdeckte Resonanz bei 125 GeV verantwortlich
ist.

Die Lagrange-Dichten der drei Modelle werden ausgearbeitet, die zugehörige voll-
ständige Renormierung auf dem Einschleifen-Niveau durchgeführt und eine Liste der
kompletten Feynman-Regeln erstellt. Im Rahmen von perturbativer Unitarität wer-
den theoretische Grenzen für die freien Modellparameter hergeleitet. Um die Modelle
anhand von experimentellen Messungen zu testen, werden präzise Vorhersagen für re-
levante Observablen einschließlich der Einschleifen-Quantenkorrekturen berechnet und
diskutiert. Für die sensitivsten elektroschwachen Präzisionsobservablen sowie für die
signifikanten partiellen Zerfallsbreiten, die Gesamtzerfallsbreite und die Verzweigungs-
verhältnisse des standardartigen Higgs-Bosons werden explizit Ergebnisse bereitge-
stellt. Hiermit können die freien Parameter der drei betrachteten EHS-Modelle durch
Vergleich mit experimentellen Daten deutlich eingeschränkt werden.
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Chapter 1
Introduction

The ambitious and extensive search for a consistent theory of the fundamental inter-
actions between the elementary constituents of matter has led to the contemporary
formulation of the Standard Model (SM) of particle physics [1–10]. This renowned
relativistic quantum field theory (QFT) is based on the gauge theories of the strong
and electroweak interaction and incorporates spontaneous symmetry breaking in the
electroweak sector according to the Higgs mechanism [6,7,11–15]. As a renormalizable
QFT the SM allows to make precise predictions for measurable quantities. With re-
markable success it has been validated by many experiments from low to high energy
scales. After the discovery of a Higgs-like particle at the CERN Large Hadron Collider
(LHC) by the ATLAS and CMS collaboration [16,17] in July 2012 it soon became clear
that the observed state behaves like the SM Higgs boson [18]. This ground-breaking
discovery corresponds to a milestone step towards a deeper understanding of the mech-
anism providing masses to the fundamental particles. With the accurately measured
mass of the Higgs boson, M exp

H = 125.09± 0.24 GeV [19], the entire input of the SM is
determined and the sensitivity to physics beyond the SM is increased.

In fact, physics beyond the SM is required in order to address remaining unresolved
problems of crucial importance in elementary particle physics which subsist both from
a theoretical and an experimental point of view: the missing link to gravity, the size of
the observed baryon asymmetry in the universe [20], the strong CP problem [21], the
origin of dark matter [22,23] and dark energy [24]. There are also some secondary issues
like e.g. a potential instability of the electroweak vacuum [25] in the SM with reference
to the measured values of the Higgs-boson and top-quark mass. In order to tackle these
issues theorists both seek for a more fundamental theory (which incorporates the SM
as an effective theory in the low energy limit) and investigate the phenomenological
impact of extensions of the SM.

Since the Higgs sector is currently the least understood part of the SM, even after
the discovery in 2012, extensions of the SM naturally go along with modifications of the
scalar sector still compatible with experimental data. The minimal extensions of the
SM with an augmentation of the Higgs sector are of the type “Higgs portal” and involve
an extra scalar field. The minimal Higgs-portal extensions of the SM just involve an
additional Higgs singlet [26–77]. In that context, it is assumed that the observed spin-
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2 1. Introduction

zero particle brings along modified couplings to the well-known standard sector and/or
new couplings to a hidden (non-standard) sector. The standard-like scalar might be
produced and decay in more involved ways but nevertheless pretend to be the SM
Higgs boson within the current limits of experimental accuracy. Precise predictions for
ongoing and future experimental investigations are required for testing the theoretical
concepts.

In this thesis, the minimal extension of the SM Higgs sector by one additional scalar
singlet field Φh is investigated up to the one-loop level in various classes of models with
different realizations of the hidden sector associated with the singlet Φh. The extra
Higgs singlet (EHS) is assumed to be “hidden”, i.e. completely neutral with respect to
the symmetry group of the SM. The only coupling to the standard sector occurs via
a renormalizable quartic interaction term of the form (Φs

†Φs)(Φh
†Φh), the portal, with

the standard doublet Φs in the enlarged Higgs potential.

Three distinct scenarios are studied which differ by the underlying non-standard
symmetry group (the hidden symmetry) and the corresponding particle content. It
is assumed that the hidden symmetry is spontaneously broken by a non-zero vacuum
expectation value (vev) vh of the scalar singlet Φh. The singlet field itself can be
complex or real; accordingly, the hidden symmetry is either continuous or discrete. For
these two settings the simplest non-standard symmetry groups under which Φh can
transform are examined.

Regarding the version with a complex Φh, the scenario is studied where vh sponta-
neously breaks a hidden U(1) symmetry group U(1)Yh . The hidden hypercharge Yh can
be considered the generator of either a global or a local U(1)Yh . The scenario with the
global symmetry is denoted as EHSG model, the other one with the local symmetry
as EHSL model. In the version where the field Φh is real, the hidden symmetry under
which Φh transforms is restricted to be a discrete one. This third scenario is called
EHSD model and the related discrete hidden symmetry group is denoted as ZD

2 .

In the EHSL scenario, with a broken local U(1)Yh gauge symmetry, an extra non-
standard gauge field Z ′ appears which is neutral under the SM gauge group. Kinetic
mixing with the standard B-field is basically possible and would yield another connec-
tion to the standard sector. It is prevented when invariance of the Lagrangian under a
non-standard Z2 symmetry group, labeled as ZL

2 , is imposed.

The three models have different physical contents. In the EHSG model the breaking
of the global U(1)Yh symmetry leads to a massless Goldstone boson, described by the
imaginary part ϕh of Φh. In the EHSL model the field ϕh is unphysical as it can be
gauged away by means of the local U(1)Yh . It yields the longitudinal polarization state
of the Z ′ boson by the Higgs mechanism, providing also a mass MZ′ which will be
treated as a free parameter. Finally, neither the Z ′ nor the ϕh boson exists in the
EHSD model where Φh is real ab initio.

Still, there is a significant characteristic feature the three models have in common.
Due to the non-vanishing hidden vev vh in each of these models the real part of Φh mixes
with the real part of the neutral component of Φs in the case of a coupled hidden sector.
Therefore, the two associated scalar mass eigenstates H1 and H2 with corresponding
masses MH1 and MH2 both consist of a standard and a non-standard field component.
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The intrinsic mixing is parametrized by an angle α and vanishes in the decoupling limit
α → 0 which brings us back to the SM phenomenology. The field H1 is chosen to be
the standard-like scalar found by the LHC experiments and consequently its mass is
fixed to MH1 = M exp

H . In each of the three models the non-standard parameters α,
MH2 and vh are treated as free parameters.

At the cost of a few extra parameters these EHS extensions could solve some of
the open questions of the SM. This in particular holds for the EHSL model. By
absence of kinetic mixing it provides a stable dark-matter candidate, the Z ′ boson
which is compatible with the established experimental constraints for dark matter [42].
The EHSL model is even capable of simultaneously generating a strong first-order
electroweak phase transition as required for effective electroweak baryogenesis [42] − an
especially promising explanation of baryon asymmetry in our universe. Furthermore,
the instability or metastability of the electroweak vacuum can be eliminated by the
EHSL model [43]. Consequently, the EHSL model is a paradigm of a promising minimal
SM extension by which future discoveries at collider experiments could also be related
to important aspects of cosmology.

In either of the three considered models the second (non-standard type) Higgs boson
H2 does not represent a stable dark-matter candidate unless tiny mixing angles α are
considered. For such miniscule mixing, however, the models become less interesting
from a phenomenological point of view. Still, also in the absence of a gauged non-
standard sector the singlet extension of the SM remains attractive and may likewise
account for the stabilization of the electroweak vacuum [35,39], for improved fits with
the experimental data and for future discoveries. The respective models may also be
considered as part of more involved extensions of the SM. Hence, a comparison of the
EHSL, EHSG and EHSD model predictions for observables beyond the leading order
(LO) in perturbation theory is desirable for higher precision. In this work, we carry
out this task for the first time.

At LO in perturbation theory the EHSL and EHSD models have been studied earlier
with primary focus on constraints from perturbativity, vacuum stability, dark-matter
and collider phenomenology [27–43]. Models with a real singlet have been studied at
the one-loop level [51–53]. The one-loop renormalization of the EHSD model has been
addressed in [51].

Here, we work out the Lagrangians of the EHSL, EHSG and EHSD models with
particular focus on gauge invariance, respectively BRS invariance and quantization.
Furthermore, we derive corresponding exclusion bounds from tree-level perturbative
unitarity. In this thesis we establish new one-loop renormalization schemes for the
EHSL, EHSG and EHSD models which enable a convenient comparison of correspond-
ing next-to-leading order (NLO) predictions. Our renormalization schemes moreover
cover the associated unphysical sectors such that all the Green functions are properly
renormalized. The complete list of corresponding Feynman rules including counter-
terms is specified in the appendix. Related FeynArts [78] model files for automatic
calculations in the three models have been created.

The non-standard parameter space associated with an extended Higgs sector can of-
ten be constrained indirectly from experimental precision data by exploring the impact
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of associated non-standard quantum effects. In the EHSD model it has been shown
that the prediction for the W -boson mass MW is quite sensitive to non-standard one-
loop contributions of the extended scalar sector [52]. The related impact on further
electroweak precision observables (EWPOs) has been discussed in [53]. In that regard,
only the non-standard parameters α and MH2 play a role. At the one-loop level the
fields Z ′ and ϕh do not contribute to EWPOs, hence the corresponding predictions
are the same in the three models under consideration. We improve the calculation of
EWPOs by taking into account the feedback on the standard contributions from the
shift in MW due to non-standard contributions in the loop terms. We furthermore take
into account the (so far neglected) non-standard one-loop effects in the couplings of the
Z boson to fermions. We perform a ∆χ2 analysis which combines our non-standard
NLO predictions for the most sensitive EWPOs MW , sin2 θlep

eff (effective leptonic mix-

ing angle) and A0,b
FB (forward-backward pole asymmetry of the Z decay into a pair of b

quarks) and hereby obtain bounds complementary to the constraints from unitarity.

Finally, we focus on observables related to the decays of the H1 boson in the three
models and apply our renormalization schemes to calculate the one-loop contribu-
tions to the relevant decay rates that are studied by the LHC experiments. In this
way we obtain new NLO predictions for the significant fermionic two-body partial
widths Γ(H1 → bb), Γ(H1 → cc) and Γ(H1 → ττ) into b quarks, c quarks and τ lep-
tons. Moreover, we provide new predictions for the inclusive four-body partial widths
Γ(H1 → V V → 4f) into fermion pairs via the exchange of two standard gauge bosons
V = W,Z. A new (basically model-independent) formula is derived in order to in-
clude the dominant non-standard one-loop corrections which stem from the associated
renormalized H1V V -vertex corrections.

Besides these decay modes of the H1 boson into SM particles, there are also decay
channels into non-standard particles, depending in detail on the specific type of the
EHS models. For masses MH2 < MH1/2 the decay channel H1 → H2H2 is open in all
three model classes. For the EHSG model with a physical Goldstone boson the decay
H1 → ϕhϕh is always possible for non-zero mixing. In the EHSL model with gauged
U(1)Yh symmetry the hidden Goldstone bosons are unphysical, instead, the decay mode
H1 → Z ′Z ′ occurs for sufficiently low masses of the U(1)Yh gauge boson Z ′. For all
these cases we calculate the partial widths including the one-loop contributions in the
specific models for the first time.

The heavy-to-light Higgs partial width Γ(H1 → H2H2) has already been studied at
the one-loop level in the EHSD model [51]. Here, we complete the NLO contributions
by including the residual loops arising in the models EHSL and EHSG and show that
associated one-loop effects from the EHSL non-standard gauge sector are in general
non-negligible.

The new decay channels H1 → Z ′Z ′ and H1 → ϕhϕh occur only in the EHSL and
EHSG models. The partial width Γ(H1 → Z ′Z ′) in the limit of massless Z ′ bosons turns
into the partial width Γ(H1 → ϕhϕh) as a consequence of the equivalence theorem. An
explicit calculation and comparison confirms this limit at the NLO level, and thus
underlines the consistency of our renormalization schemes.

Summing up all the individual decay channels yields the total width ΓH1
tot of the
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H1 boson, including the respective one-loop contributions. Finally, we provide new
one-loop predictions for ΓH1

tot and the branching ratios BR(H1 → Xi) into the vari-
ous standard-particle final states (Xi = ZZ,WW,AA,AZ, gg, ττ , bb, cc), including also
photons A and gluons g. Together with recent experimental bounds for the total width
and signal strengths of the standard-like Higgs boson [79] these results can be used to
considerably constrain the non-standard parameter ranges associated with the EHSL,
EHSG and EHSD models.

This work is structured in the following way: In Chapter 2 we recall the formulation
of the electroweak Standard Model. In Chapter 3 we describe the theoretical frame-
works of the EHSL, EHSG and EHSD models. Proceeding from the Lagrangian of
the EHSL model we emphasize the differences between the three models and highlight
their interconnection. In Chapter 4 we derive the bounds for the non-standard param-
eters from tree-level perturbative unitarity. The one-loop renormalization of the three
models is worked out in Chapter 5. We examine the impact of associated non-standard
one-loop contributions on the predictions for EWPOs in Chapter 6. The decays of H1

are presented and discussed in Chapter 7. Conclusions are given in Chapter 8. In
Appendix A we provide the full list of Feynman rules for the one-loop renormalized
EHSL, EHSG and EHSD models. A distinguished set of Ward identities from the
hidden U(1) is specified in Appendix B. It contains relations between scalar n-point
vertex functions and counterterms for checks of consistency in the EHSG model and in
the limiting case of a vanishing hidden gauge coupling in the EHSL model. Appendix
C collects further numerical results for the H1-decay observables in completion of those
discussed in Chapter 7.
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Chapter 2
The electroweak Standard Model

In this chapter the theoretical framework of the electroweak Standard Model (in the
following abbreviated by SM) is summarized. Here, we do not intend to describe
the latter in detail but rather want to illustrate the conventions we use in this work
with respect to the standard sector. For a more extensive treatment of the SM see
e.g. [80–83].

2.1 The classical Lagrangian
The SM describes the electroweak interactions within the framework of a QFT which is
gauge invariant under the symmetry group SU(2)W × U(1)Y . This symmetry group is
spontaneously broken by the Higgs mechanism, which among others predicts a physical
massive scalar particle − the infamous Higgs boson. As a consequence of electroweak
symmetry breaking, the desired mass terms for the gauge bosons of the broken sub-
groups are generated, as well as mass terms for the fundamental fermions via Yukawa
couplings. The Lorentz- and gauge-invariant classical Lagrangian Lcl

SM of the SM is
made up of a gauge part LG

SM, a fermionic part LF
SM and a Higgs part LΦ

SM,

Lcl
SM = LG

SM + LF
SM + LΦ

SM, (2.1.1)

which will be defined one by one in the following.

2.1.1 Gauge part

The non-Abelian gauge group SU(2)W × U(1)Y is generated by the weak isospin op-
erators Ia (a = 1, 2, 3) and the weak hypercharge operator Y .1 For each of those
generators there exists a dedicated vector field which transforms according to the ad-
joint representation of the corresponding gauge group. Accordingly, we introduce a
triplet of vector fields W a

µ associated with Ia and a singlet vector field Bµ belonging
to Y . In the following, g2 and g1 represent the gauge coupling constants of SU(2)W

1With Ia and Y acting on a field X, the corresponding representation matrices IaX and weak
hypercharge YX are obtained.

7
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and U(1)Y . Furthermore, εabc are the structure constants corresponding to the Lie al-
gebra of SU(2)W. The above-mentioned vector fields form the associated field strength
tensors, defined as

W a
µν = ∂µW

a
ν − ∂νW a

µ + g2ε
abcW b

µW
c
ν ,

Bµν = ∂µBν − ∂νBµ,
(2.1.2)

such that the gauge part of the classical Lagrangian can be written as

LG
SM = −1

4
W a
µνW

a,µν − 1

4
BµνB

µν . (2.1.3)

According to the principle of minimal substitution, the covariant derivative

Dµ = ∂µ − ig2I
aW a

µ + ig1
Y

2
Bµ (2.1.4)

determines the interaction of the gauge fields with fields corresponding to LF
SM and

LΦ
SM, as shown in the following.

2.1.2 Fermionic part

The left-handed leptons (L′i) and quarks (Q′i) of each generation i are doublets,

L′Li = ω−L
′
i =

(
ν ′Li
l′Li

)
, Q′Li = ω−Q

′
i =

(
u′Li
d′Li

)
, (2.1.5)

the right-handed fermions are singlets,

l′Ri = ω+l
′
i, u′Ri = ω+u

′
i, d′Ri = ω+d

′
i, (2.1.6)

under SU(2)W. Here, ω± = 1±γ5
2

are the projectors on the right- and left-handed
fields. The fermion fields introduced in (2.1.5) and (2.1.6) are weak eigenstates, which
is marked by the prime index. The symbol ν stands for a neutrino, l for a charged
lepton, u for an up-type and d for a down-type quark. These fundamental fermions are
classified by the quantum numbers of the weak isospin I, its third component I3 and
the weak hypercharge Y . The latter is chosen such that for each fermion the associated
electric charge can be derived from the Gell-Mann-Nishijima relation

Q = I3 +
Y

2
, (2.1.7)

which defines the generator of the electric charge Q. The left-handed (right-handed)
fermion fields are related to the fundamental (trivial) representation of SU(2)W with
Ia = τa/2 (Ia = 0), where τa are the Pauli matrices. Here, we consider the minimal
formulation of the SM in which no right-handed neutrinos are considered. Therefore,
all the neutrinos remain massless after electroweak symmetry breaking. The kinetic
terms of the fermions as well as the couplings of the fermions to the gauge sector are
comprised in the fermionic part LF

SM of the classical Lagrangian, which reads (Feynman
slash notation)

LF
SM =

∑
i

(
Li
′Li /DL′Li +Qi

′Li /DQ′Li + li
′Ri /Dl′Ri + ui

′Ri /Du′Ri + di
′Ri /Dd′Ri

)
, (2.1.8)

with Dµ specified by (2.1.4).
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2.1.3 Higgs part

In order to obtain massless photons but massive W and Z bosons, we have to break
the SU(2)W × U(1)Y gauge symmetry such that the electromagnetic subgroup U(1)em

remains unbroken. In order to achieve this target one applies the Higgs mechanism,
which in turn also generates the masses of the fermions as soon as the above-mentioned
Yukawa couplings are introduced. Hence, the desired mass terms for the gauge bosons
and fermions are obtained by adding the Higgs part

LΦ
SM = (DµΦ)† (DµΦ)− V (Φ)

−
∑
i,j

(
Li
′LGl

ijl
′R
j Φ +Qi

′LGu
iju
′R
j Φ̃ +Qi

′LGd
ijd
′R
j Φ + h.c.

)
(2.1.9)

to the classical Lagrangian. At this point a weak-isospin doublet

Φ(x) =

(
φ+(x)
φ0(x)

)
(2.1.10)

with hypercharge Y = 1 is introduced. The Higgs doublet Φ is composed of two
complex scalar fields φ+ and φ0. The charge conjugated Higgs doublet Φ̃ is defined by
Φ̃ = iτ 2Φ∗. More explicitly, the Higgs potential V (Φ) in (2.1.9) reads

V (Φ) = −µ2Φ†Φ +
λ

4

(
Φ†Φ

)2
, µ2, λ > 0. (2.1.11)

In this parametrization, the coupling λ must be positive in order to confine the energy
from below and the mass parameter µ2 has to be positive such that Φ acquires a
non-vanishing vacuum expectation value (vev) by minimizing (2.1.11):

〈Φ〉 =
1√
2

(
0
v

)
, v =

2µ√
λ
. (2.1.12)

This non-vanishing vev v is essential for the desired electroweak symmetry breaking.
Expanded around this ground state we can write Φ as

Φ(x) =

(
φ+(x)

1√
2

[v +H(x) + iϕ(x)]

)
, (2.1.13)

where the component fields H(x), φ+(x) and ϕ(x) have a vanishing vev. In the follow-
ing, φ−(x) represents the adjoint of φ+(x). The fields φ±(x) and ϕ(x) are the would-be
Goldstone bosons − unphysical degrees of freedom, since these fields can be removed
by a gauge transformation. In contrast, the Higgs field H(x) describes physical scalar
particles that are neutral with respect to the electric charge and have corresponding
mass

MH =
√

2µ. (2.1.14)

The scalar fields H,φ± and ϕ have triple and quartic self-couplings determined by the
potential (2.1.11). The couplings of the fields H,φ± and ϕ to the gauge fields are
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determined by the first term in (2.1.9), namely the kinetic term of Φ, according to
minimal substitution. In the second line of (2.1.9) the Yukawa part of LΦ

SM is specified.
It consists of terms involving the Yukawa-coupling matrices Gf (f = l, u, d) which
provide couplings of the scalar component fields to the fermion sector as well as mass
terms for the up-type quarks, the down-type quarks and the charged leptons.

2.1.4 Gauge invariance

The classical Lagrangian Lcl
SM as given above is invariant under the gauge transforma-

tions

TW(x) = exp

[
i
τa

2
θa(x)

]
, TY (x) = exp

[
−iY

2
θY (x)

]
, (2.1.15)

with the local transformation parameters θa and θY corresponding to SU(2)W and
U(1)Y . Under the (combined) transformations (2.1.15) the Higgs doublet behaves like

Φ(x)→ TW(x)TY (x)Φ(x), (2.1.16)

and the left-handed and right-handed fermions transform according to

Ψ′Li (x)→ TW(x)TY (x)Ψ′Li (x), (Ψ′i = L′i, Q
′
i),

ψ′Ri (x)→ TY (x)ψ′Ri (x), (ψ′i = l′i, u
′
i, d
′
i).

(2.1.17)

Finally, the vector bosons act as

Bµ(x)
Y

2
→ TY (x)

[
Bµ(x)

Y

2
− i 1

g1

∂µ

]
T†Y (x),

W a
µ (x)

τa

2
→ TW(x)

[
W a
µ (x)

τa

2
+ i

1

g2

∂µ

]
T†W (x),

(2.1.18)

according to the rule of minimal substitution. In infinitesimal form (2.1.16), (2.1.17)
and (2.1.18) read

Φ(x)→
[
1− i1

2
δθY (x) + i

τa

2
δθa(x)

]
Φ(x),

Ψ′Li (x)→
[
1− iY

2
δθY (x) + i

τa

2
δθa(x)

]
Ψ′Li (x),

ψ′Ri (x)→
[
1− iY

2
δθY (x)

]
ψ′Ri (x),

Bµ(x)→ Bµ(x) +
1

g1

∂µδθ
Y (x),

W a
µ (x)→ W a

µ (x) +
1

g2

∂µδθ
a(x) + εabcW b

µ(x)δθc(x).

(2.1.19)
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2.1.5 Physical basis

As specified above, the classical Lagrangian Lcl
SM depends on the following set of original

parameters: the gauge coupling constants g1 and g2, the Yukawa coupling constants
Gf
ij and the Higgs-potential parameters µ2 and λ. This set can be replaced by an

equivalent set of physical parameters corresponding to the physical fields of the theory.
In order to identify the latter, the mass matrices for the gauge fields as well as for the
charged leptons, the up-type and the down-type quarks have to be diagonalized.

Mass-eigenstate basis of the gauge bosons

For the gauge sector we obtain the mass eigenstates W±
µ , Zµ and Aµ as a linear com-

bination of the original gauge fields W a
µ (a = 1, 2, 3) and Bµ from

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
(2.1.20)

and (
Zµ
Aµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
W 3
µ

Bµ

)
. (2.1.21)

The resulting masses for the physical W bosons (W±
µ ), Z bosons (Zµ) and photons

(Aµ) are

MW =
v

2
g2, MZ =

v

2

√
g2

1 + g2
2, MA = 0. (2.1.22)

The electroweak mixing angle θW introduced in (2.1.21) is related to the masses of the
W and Z bosons as follows,

cos θW =
g2√
g2

1 + g2
2

=
MW

MZ

. (2.1.23)

We also have

sin θW =
g1√
g2

1 + g2
2

, (2.1.24)

and for convenience the abbreviations sW ≡ sin θW and cW ≡ cos θW are used in the
following. Matching to QED, the elementary electric charge e =

√
4παem can be related

to g1 and g2 as

e =
g1g2√
g2

1 + g2
2

. (2.1.25)
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Mass-eigenstate basis of the fermions

With the help of a bi-unitary transformation U
f,L/R
ij of the left/right-handed fermion

fields, the mass matrices for charged leptons l′i, up-type quarks u′i and down-type quarks
d′i can be diagonalized. As a result, we obtain the fermion mass eigenstates

fL
i =

∑
j

U f,L
ij f ′Lj , fR

i =
∑
j

U f,R
ij f ′Rj , (2.1.26)

with corresponding masses

mf,i =
v√
2

∑
j,k

U f,L
ij Gf

jkU
f,R†
ki . (2.1.27)

In order to denote fermionic mass eigenstates, we stick to the notation for the related
weak eigenstates introduced in (2.1.5) and (2.1.6) but drop the corresponding prime
index.

As already stated before, the neutrinos remain massless since no right-handed neu-
trinos are present in the minimal formulation of Lcl

SM. Due to this zero-mass degeneracy
in the neutrino sector we are free to choose the corresponding transformation Uν,L

ij such
that related charged-current interactions are diagonal. This defines the physical neu-
trino states

νL
i =

∑
j

U l,L
ij ν

′L
j . (2.1.28)

Transforming into the fermionic mass-eigenstate basis generates one remaining non-
trivial 3× 3 matrix, the quark-mixing matrix V [10], given by

V = Uu,LUd,L†. (2.1.29)

At the tree-level V only appears in the charged-current interaction between quarks and
the W boson. Tree-level interactions between fermions and the neutral gauge bosons
cannot trigger flavour-changing neutral currents since the unitary transformation ma-
trices U f,L/R drop out in the associated vertices.

Gauge transformations of the mass eigenstates

For the sake of completeness, we also provide the infinitesimal gauge transformations
listed in (2.1.19) in the physical basis. Introducing the related fields and parameters as
specified above, we obtain the corresponding transformations of the scalar component
fields,

H → H +
e

2sW cW
ϕ δθZ +

ie

2sW

[
φ+δθ− − φ−δθ+

]
,

ϕ→ ϕ− e

2sW cW
[v +H] δθZ +

e

2sW

[
φ+δθ− + φ−δθ+

]
,

φ± → φ± ∓ ie φ±
[
δθA +

s2
W − c2

W

2sW cW
δθZ
]
± ie

2sW
[v +H ± iϕ] δθ±,

(2.1.30)
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of the left- and right-handed fermion fields ψL
i,± and ψR

i with associated electric charges
QψL

i,±
and QψR

i
,

ψL
i,± → ψL

i,± − ie
[
QψL

i,±
δθA +

sW
cW

(
QψL

i,±
∓ 1

2s2
W

)
δθZ
]
ψL
i,±

+
ie√
2sW

δθ±v±ij ψ
L
j,∓, (ΨL

i ≡ (ψL
i,+, ψ

L
i,−)T = LL

i , Q
L
i ),

ψR
i → ψR

i − ieQψR
i

(
δθA +

sW
cW

δθZ
)
ψR
i , (ψR

i = uR
i , d

R
i , l

R
i ),

(2.1.31)

as well as of the gauge bosons,

Aµ → Aµ + ∂µδθ
A + ie

[
W+
µ δθ

− −W−
µ δθ

+
]
,

Zµ → Zµ + ∂µδθ
Z − iecW

sW

[
W+
µ δθ

− −W−
µ δθ

+
]
,

W±
µ → W±

µ + ∂µδθ
± ∓ ie

sW

[
W±
µ

(
sW δθ

A − cW δθZ
)
− (sWAµ − cWZµ) δθ±

]
,

(2.1.32)

with

δθ± =
1√
2

1

g2

(
δθ1 ∓ iδθ2

)
,

δθA =
1

g1

cW δθ
Y − 1

g2

sW δθ
3,

δθZ =
1

g2

cW δθ
3 +

1

g1

sW δθ
Y ,

(2.1.33)

and (δij is the Kronecker delta)

v−†ij = v+
ij =

{
Vij, for quarks,

δij, for leptons.
(2.1.34)

Equipped with (2.1.12), (2.1.14), (2.1.22), (2.1.25), (2.1.27) and (2.1.29) the original
parameters of Lcl

SM, namely g1, g2, λ, µ2 and Gf
ij, can be replaced by the equivalent

set of physical parameters e, MW , MZ , MH , mf,i and Vij. The latter ones can be
measured directly by suitable experiments.

2.2 Quantization

A characteristic feature of a non-Abelian gauge theory like the SM is that for proper
quantization a gauge-fixing term Lfix

SM and a related Faddeev-Popov term Lghost
SM have

to be added to Lcl
SM [84]. The gauge-fixing term Lfix

SM is required in order to eliminate
unphysical degrees of freedom which originate from the invariance of Lcl

SM under the
gauge transformations specified in (2.1.19) and (2.1.30), (2.1.31), (2.1.32). However,
just adding Lfix

SM to Lcl
SM still leaves some remaining unphysical contributions. This is



14 2. The electroweak Standard Model

why, additionally, the term Lghost
SM has to be introduced. It cancels these remaining

unphysical contributions originating from the gauge-fixing term.

For higher-order calculations, choosing a renormalizable gauge is of importance. In
this regard, a convenient choice is the class of the Rξ gauges in which the gauge-fixing
term of the SM reads

Lfix
SM = − 1

2ξA

(
FA
)2 − 1

2ξZ

(
FZ
)2 − 1

ξW
F+F−, (2.2.1)

with the linear gauge-fixing operators

FA = ∂µAµ,

FZ = ∂µZµ −MZξ
′
Zϕ,

F± = ∂µW±
µ ∓ iMW ξ

′
Wφ
±,

(2.2.2)

and the five independent gauge parameters, namely ξa (a = A,Z,±) and ξ′a (a = Z,±),

where ξ
(′)
± = ξ

(′)
W . Introducing such a general linear gauge-fixing term leads to the gauge-

boson propagators

i∆V a

µν (k) = − i

k2 −M2
a

gT
µν −

iξa
k2 − ξaM2

a

gL
µν , (2.2.3)

which behave as 1/k2 for large k2. The term proportional to

gT
µν = gµν −

kµkν
k2

(2.2.4)

represents the transverse part; the term proportional to

gL
µν =

kµkν
k2

(2.2.5)

stands for the longitudinal part of the propagator, and we use the notation V a =
A,Z,W± for a = A,Z,±, where M± = MW .

As mentioned above, additionally we have to consider the Faddeev-Popov part,
which reads

Lghost
SM = −

∫
d4z d4y ua(x)

[
δF a(x)

δφc(z)

δφc(z)

δθb(y)
+
δF a(x)

δV c
ν (z)

δV c
ν (z)

δθb(y)

]
ub(y), (2.2.6)

and introduces the Faddeev-Popov ghost and anti-ghost fields ua(x) and ua(x). Here,
we have a, b, c ∈ {A,Z,±}, with φZ ≡ ϕ and φA ≡ 0. As can be seen from (2.2.6),
the dynamics of the ghost fields including associated tree-level couplings to the vector
and scalar bosons is completely determined by the variation of the linear gauge-fixing
operators (2.2.2) under the infinitesimal transformations δϕ, δφ±, δAµ, δZµ and δW±

µ ,
specified in (2.1.30) and (2.1.32).

Within the ’t Hooft gauge [85,86], where ξ′a = ξa is chosen for a = Z,±, we do not
have to consider mixing terms of the form V a

µ ∂
µφa. The latter generally stem from the
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kinetic term of Φ in (2.1.9) as a consequence of electroweak symmetry breaking. These
terms, together with the corresponding mixing terms introduced by Lfix

SM in the ’t Hooft
gauge, form a four-derivative which leaves the action invariant. This is how we get rid
of such undesired terms in the Lagrangian. In the ’t Hooft gauge, the propagators of
the would-be Goldstone bosons read

i∆φa(k) =
i

k2 − ξaM2
a

, (a = Z,±), (2.2.7)

and similarly, the propagators of the ghost fields are given by

i∆ua(k) =
i

k2 − ξaM2
a

, (a = A,Z,±). (2.2.8)

The ξa-dependence of the corresponding masses emphasizes that these fields correspond
to the unphysical sector. Generally, the ghost field uA remains massless, since MA = 0.
The would-be Goldstone bosons ϕ and φ± as well as the other ghost fields uZ and
u± have propagator poles which coincide with the poles we obtain for the longitudinal
parts of the associated gauge-boson propagators specified in (2.2.3). This is crucial for
a proper cancellation of unphysical poles in S-matrix elements.

For convenience, we mostly consider the ’t Hooft-Feynman gauge, where all the
gauge parameters introduced above are set to unity (ξA = 1, and ξa = ξ′a = 1, for
a = Z,±). According to the considerations above, the ’t Hooft-Feynman gauge provides
gauge-boson propagators which are particularly simple (in fact directly proportional
to the Minkowski metric gµν) as well as masses for the unphysical fields φ±, u±, ϕ, uZ

and uA, which are equal to the related gauge-boson masses (2.1.22).

Altogether, the complete Lagrangian of the (quantized) SM can be written as the
sum

LSM = Lcl
SM + Lfix

SM + Lghost
SM . (2.2.9)

A list of corresponding Feynman rules can be found e.g. in [82].

2.3 BRS invariance

Normal gauge invariance is destroyed by adding the gauge-fixing and Faddeev-Popov
part to the classical Lagrangian of a gauge theory like the SM. However, a wider sym-
metry of the Lagrangian can be reestablished by defining the transformation behaviour
of the ghost and anti-ghost fields appropriately. This symmetry is called BRS symme-
try [87–89], named after Becchi, Rouet and Stora. Regarding the introduction of the
ghost fields in (2.2.6), the BRS symmetry provides a deeper motivation. Furthermore,
the concept of BRS invariance is essential for the general proof of renormalizability
of non-Abelian gauge theories [85, 86, 90–92]. This is because the continuous BRS
symmetry leads to the Slavnov-Taylor identities [93,94] between Green functions.

The BRS transformations of the scalar fields, fermions and gauge bosons in the SM
follow from (2.1.30), (2.1.31) and (2.1.32) by replacing the corresponding infinitesimal
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transformation parameters (2.1.33) according to

δθA = δλ uA, δθZ = δλ uZ , δθ± = δλ u±, (2.3.1)

where δλ is a Grassmann-valued, infinitesimal constant which anticommutes with the
ghost and anti-ghost fields. Therefore, we can directly conclude that Lcl

SM is BRS
invariant. In this context, it is convenient to introduce the BRS operator s which is
defined by the BRS transformation of a generic field X according to

X −→ X + δBRSX ≡ X + δλ sX. (2.3.2)

Note that for the two generic products of fields A and B we have the product rule

s (AB) = (sA)B ±A (sB) , (2.3.3)

with the plus (minus) sign for the case in which A contains an even (odd) number of
Grassmann variables. Taking into account (2.1.30), (2.1.31), (2.1.32), (2.1.34), (2.3.1)
and (2.3.2), we obtain the BRS transformations of the scalar component fields,

sH =
e

2sW cW
ϕuZ +

ie

2sW

[
φ+u− − φ−u+

]
,

sϕ = − e

2sW cW
[v +H]uZ +

e

2sW

[
φ+u− + φ−u+

]
,

sφ± = ∓ie φ±
[
uA +

s2
W − c2

W

2sW cW
uZ
]
± ie

2sW
[v +H ± iϕ]u±,

(2.3.4)

of the left- and right-handed fermion fields,

sψL
i,± = −ie

[
QψL

i,±
uA +

sW
cW

(
QψL

i,±
∓ 1

2s2
W

)
uZ
]
ψL
i,± +

ie√
2sW

u±v±ij ψ
L
j,∓,

sψR
i = −ieQψR

i

(
uA +

sW
cW

uZ
)
ψR
i ,

(2.3.5)

as well as of the gauge bosons,

sAµ = ∂µu
A + ie

[
W+
µ u
− −W−

µ u
+
]
,

sZµ = ∂µu
Z − iecW

sW

[
W+
µ u
− −W−

µ u
+
]
,

sW±
µ = ∂µu

± ∓ ie
[
W±
µ

(
uA − cW

sW
uZ
)
−
(
Aµ −

cW
sW

Zµ

)
u±
]
.

(2.3.6)

The BRS transformations of ua and ua can be defined in such a way that Lfix
SM +Lghost

SM

is BRS invariant:

suA = ie u−u+, sūA = − 1

ξA
FA,

suZ = −iecW
sW

u−u+, sūZ = − 1

ξZ
FZ ,

su± = ±i e
sW

u±
(
sWu

A − cWuZ
)
, sū± = − 1

ξW
F∓.

(2.3.7)

Consequently, the aim of a BRS-invariant total Lagrangian LSM is achieved.



Chapter 3
The model with an extra Higgs singlet

As already pointed out in the introduction, in this work we investigate the extension
of the SM Higgs sector (see Subsect. 2.1.3) by one additional scalar singlet Φh. In
the class of models under consideration the extra Higgs singlet (EHS) Φh exclusively
couples to the standard sector through a renormalizable quartic interaction term of
the form (Φs

†Φs)(Φh
†Φh) in the extended Higgs potential. From now on Φs denotes the

standard Higgs-doublet field which as usually only transforms under the gauge group
SU(2)W×U(1)Y of the SM. With respect to the latter, the scalar field Φh is completely
neutral. The singlet Φh, however, transforms under a symmetry group associated with
the hidden (non-standard) sector.1 Depending on whether the complex-Φh or the real-
Φh extension is considered, the hidden symmetry under which Φh transforms is either
continuous or discrete. In any case the underlying hidden symmetry is spontaneously
broken by the non-vanishing vev vh which corresponds to Φh.

For the complex-Φh extension we study the case where vh spontaneously breaks a
hidden U(1) symmetry group, which we denote by U(1)Yh . The hidden hypercharge Yh

either generates

• a global U(1)Yh , denoted as scenario EHSG, or

• a local U(1)Yh , denoted as scenario EHSL.

For the (ab-initio) real-Φh extension we examine the case where vh spontaneously breaks
a discrete hidden Z2 symmetry group ZD

2 , which acts on the field Φh as

Φh → −Φh. (3.0.1)

Accordingly, the last scenario is named EHSD model.

Only in the EHSL model with a spontaneously broken local U(1)Yh the non-standard
gauge boson Z ′ appears. In order to prevent kinetic mixing with the standard sector
we impose the invariance of the EHSL Lagrangian under a non-standard Z2 symmetry
group denoted as ZL

2 . The hidden vev vh leaves the ZL
2 unbroken. In the EHSL model

1In this regard, the appended lower index s (h) of a given field marks the affiliation with the
standard (hidden) sector.

17
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model Φh vh 6= 0 spontaneously breaks Z ′ ϕh

EHSL complex local U(1)Yh X unphysical
EHSG complex global U(1)Yh − physical
EHSD real discrete ZD

2 − −

Table 3.1: Short overview of the models under consideration.

the degree of freedom which goes into the longitudinal polarization of the massive Z ′

boson is given by the imaginary part of Φh, here denoted as ϕh, according to the Higgs
mechanism. Thus, in the EHSL model the field ϕh is unphysical and plays the role of a
hidden would-be Goldstone boson. In contrast, in the EHSG model where the U(1)Yh
is global, ϕh is a physical massless scalar field. Finally, neither the Z ′ boson nor the
field ϕh exists in the EHSD model where Φh is real. In Tab. 3.1 we give a summary of
the three considered scenarios.

In this chapter we establish the theoretical framework of the three model classes.
We start with the EHSL model as the most general case. The theoretical framework of
the EHSG model is obtained by taking the limit of a vanishing hidden gauge-coupling
constant. Subsequently removing the imaginary part ϕh of Φh by hand finally provides
us with the theoretical framework of the EHSD model.

3.1 The extended classical Lagrangian
In this section we survey the classical Lagrangian of the model with an EHS Φh. We
focus on the classification according to the EHSL, EHSG and EHSD models. While in
the EHSG model and in the EHSD model only the Higgs part of Lcl

SM is extended, the
EHSL model furthermore takes into account an extended gauge sector. Throughout this
work, it is assumed that fermions have no interactions with the hidden sector, hence
the fermionic part of Lcl

SM is left untouched. Accordingly, the classical Lagrangian
corresponding to the extension of the SM by an EHS Φh can be written as

Lcl
EHS = LG

SM + LF
SM + LZ′EHSL + LΦs/h

EHS , (3.1.1)

where the entire Higgs part is summarized in LΦs/h

EHS and the non-standard gauge part
of the EHSL model is given by LZ′EHSL. Hence, the third term on the right-hand side
of (3.1.1) is absent in the EHSG and EHSD models. The gauge part LG

SM and the
fermionic part LF

SM of the SM are already defined in Subsects. 2.1.1 and 2.1.2.

3.1.1 Higgs and gauge part

In its compact form the Lagrangian of the extended Higgs sector reads

LΦs/h

EHS = (DµΦs)
† (DµΦs) + (Dh,µΦh)† (Dh

µΦh)− V (Φs,Φh)

−
∑
i,j

(
Li
′LGl

ijl
′R
j Φs +Qi

′LGu
iju
′R
j Φ̃s +Qi

′LGd
ijd
′R
j Φs + h.c.

)
,

(3.1.2)
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with the scalar fields Φs and Φh introduced in the beginning of this chapter. The first
two terms on the right-hand side of (3.1.2) are the corresponding kinetic terms. The
standard doublet Φs is only charged under the gauge group SU(2)W×U(1)Y of the SM
and carries the corresponding hypercharge Y = 1. Therefore, the standard covariant
derivative Dµ is the one already given in (2.1.4). The kinetic term of Φh contains the
non-standard covariant derivative

Dh,µ = ∂µ + igh
′ Yh

2
Z ′µ, (3.1.3)

which is effective in the EHSL model according to the principle of minimal substitution.
The hidden gauge-coupling constant g′h as well as the non-standard spin-one field Z ′µ
is associated with the local U(1)Yh of the EHSL model. In the following, we substitute
the hidden hypercharge Yh into gh according to

gh ≡ gh
′ Yh

2
. (3.1.4)

In the EHSG and EHSD models the field Φh does not carry quantum numbers of any
gauge group and consequently the non-standard covariant derivative Dh,µ in (3.1.2)
then simply has to be replaced by the four-derivative ∂µ.

With the third term on the right-hand side of (3.1.2) the renormalizable modified
Higgs potential

V (Φs,Φh) = − µ2
s Φs
†Φs +

λs

4
(Φs
†Φs)

2

− µ2
h Φh

†Φh +
λh

4
(Φh
†Φh)2 + η (Φs

†Φs)(Φh
†Φh)

(3.1.5)

is introduced, with the real-valued parameters µ2
s , µ2

h, λs, λh and η. We demand that
the modified Higgs potential provides the two non-vanishing vevs vs for Φs and vh for
Φh. Minimizing the potential (3.1.5) and requiring that both the standard vev vs and
the hidden vev vh is positive definite yields

vs =

√
4µ2

sλh − 8ηµ2
h

λsλh − 4η2
, vh =

√
4µ2

hλs − 8ηµ2
s

λsλh − 4η2
. (3.1.6)

The last term in (3.1.5) is proportional to the Higgs-portal coupling η and gives rise
to the interaction between the standard and the hidden sector. Additional terms in
(3.1.5) are forbidden by the requirement of renormalization and the U(1)Yh symmetry
of the EHSL and EHSG models, respectively the ZD

2 symmetry of the EHSD model.2

Hence, it is important to note that in each of the three models under consideration the
modified Higgs potential is given by (3.1.5).

The fields Φs and Φh can be expanded around the respective vevs vs and vh yielding

Φs(x) =

(
φ+(x)

1√
2

[vs +H(x) + iϕs(x)]

)
, Φh(x) =

1√
2

[vh + χ(x) + iϕh(x)] .

(3.1.7)

2In the real-Φh extension without the ZD
2 the hidden vev vh becomes irrelevant as it can be shifted

away by means of a reparametrization of the Higgs-potential parameters [50].
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We write the Higgs doublet in analogy to the SM (cf. Subsect. 2.1.3) but attach the
lower index s to the corresponding vev and to the associated neutral would-be Gold-
stone boson in order to distinguish these quantities from the related counterparts in the
hidden sector. So, the component fields φ± and ϕs represent the charged and neutral
would-be Goldstone bosons of the standard sector. Since Φh is real in the EHSD model
the component field ϕh is only present in the EHSL and EHSG models. Therefore, in
the EHSD model we set ϕh ≡ 0. The role of the fields H, χ and ϕh in the Φh extension
of the SM is discussed in the next section where we introduce the physical basis.

The second line of (3.1.2) depicts the Yukawa part of LΦs/h

EHS . Its structure is identical
to the Yukawa part of LΦ

SM in the SM (cf. Subsect. 2.1.3). Only the doublet Φs couples
to the fermion sector via standard Yukawa-interaction terms where Φ̃s = iτ 2Φ∗s. Hence,
the hidden vev vh does not contribute to the generation of fermion masses. Couplings
of Φh to the fermions are forbidden due to standard and non-standard symmetry.

We still have to specify the non-standard gauge part LZ′EHSL corresponding to the
EHSL model. Relating to the above-mentioned ZL

2 the fields of the standard sector are
neutral but the non-standard fields transform as

Φh → Φh
†, Z ′µ → −Z ′µ. (3.1.8)

Consequently, the term BµνZ ′µν involving just one power of the non-standard field
strength tensor Z ′µν = ∂µZ

′
ν−∂νZ ′µ violates the ZL

2 and therefore kinetic mixing between
the Abelian standard and non-standard gauge fields is forbidden (cf. Subsect. 2.1.1).
As indicated in [70] this also holds at higher orders. Kinetic mixing is not generated
radiatively in the EHSL model. With respect to the ZL

2 the field Φh has to transform
as specified in (3.1.8) such that the kinetic term of Φh in (3.1.2) is allowed. Hence, the
non-standard gauge part in (3.1.1) is given by

LZ′EHSL = −1

4
Z ′µνZ

′µν . (3.1.9)

Having specified the complete classical Lagrangian (3.1.1) we emphasize that in each
of the three models the Higgs-portal term proportional to the coupling η in (3.1.5) is
the exclusive source of interaction between the standard and the hidden sector. The
limit of a vanishing Higgs-portal coupling η → 0 inevitably leads to the decoupling of
the entire hidden sector and thus brings us back to the phenomenology of the SM.

3.1.2 Gauge invariance

At this point, let us have a closer look at the underlying symmetries of Lcl
EHS in the

three models under consideration. The classical Lagrangian Lcl
EHS is invariant under

the gauge transformations (2.1.15) specified for the SM. Since Φs only carries quantum
numbers of the SM gauge group we have

Φs(x)→ TW(x)TY (x)Φs(x), (3.1.10)

in analogy to (2.1.16). The singlet Φh transforms trivially under SU(2)W ×U(1)Y and
the same holds for the non-standard gauge field Z ′µ.
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In the EHSL model, the field Φh transforms as follows

Φh(x)→ TYh(x)Φh(x), (3.1.11)

with

TYh(x) = exp

[
−iYh

2
θYh(x)

]
, (3.1.12)

whereas the Z ′µ transforms as

Z ′µ(x)
Yh

2
→ TYh(x)

[
Z ′µ(x)

Yh

2
− i 1

g′h
∂µ

]
T†Yh(x), (3.1.13)

according to the convention of minimal substitution (cf. Subsect. 2.1.4). In infinitesimal
form, the gauge transformations (3.1.10), (3.1.11) and (3.1.13) read

Φs(x)→
[
1− i1

2
δθY (x) + i

τa

2
δθa(x)

]
Φs(x),

Φh(x)→
[
1− iYh

2
δθYh(x)

]
Φh(x),

Z ′µ(x)→ Z ′µ(x) +
1

g′h
∂µδθ

Yh(x).

(3.1.14)

In the EHSG model (where no Z ′µ appears) the transformation of Φh can be written as
in (3.1.11), (3.1.12) and (3.1.14) but with a global TYh (i.e. in the EHSG model TYh or
rather θYh has no space-time dependence). In the EHSD model with the discrete ZD

2

(3.0.1) there is no infinitesimal transformation of Φh.

In each of the three models the associated transformations of the left-handed and
right-handed fermion fields as well as of the standard gauge fields are identical to those
of the SM. The corresponding expressions are already given in (2.1.17), (2.1.18) and
(2.1.19).

3.1.3 Physical basis

Rewriting (3.1.5) in terms of the scalar component fields introduced in (3.1.7) yields

V (Φs,Φh) =− tHH − tχχ−
tH
vs

φ+φ− − tH
2vs

ϕ2
s −

tχ
2vh

ϕ2
h +

1

2

(
H,χ

)
M2

(
H
χ

)
+
λsvs

4
H3 +

λhvh

4
χ3 +

ηvs

2
Hχ2 +

ηvh

2
H2χ+

λsvs

2
Hφ−φ+

+ ηvhχφ
−φ+ +

λsvs

4
Hϕ2

s +
λhvh

4
χϕ2

h +
ηvs

2
Hϕ2

h +
ηvh

2
χϕ2

s

+
λs

16
H4 +

λh

16
χ4 +

η

4
H2χ2 +

λs

4
H2φ−φ+ +

η

2
χ2φ−φ+

+
λs

8
H2ϕ2

s +
η

4
χ2ϕ2

s +
η

4
H2ϕ2

h +
λh

8
χ2ϕ2

h +
λs

4

(
φ−φ+

)2

+
λs

4
φ−φ+ϕ2

s +
η

2
φ−φ+ϕ2

h +
λs

16
ϕ4

s +
η

4
ϕ2

sϕ
2
h +

λh

16
ϕ4

h,

(3.1.15)
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with the tadpole coefficients

tH = µ2
svs −

1

4
λsv

3
s −

1

2
ηvsv

2
h, tχ = µ2

hvh −
1

4
λhv

3
h −

1

2
ηvhv

2
s , (3.1.16)

and the symmetric but non-diagonal squared-mass matrix

M2 =

(
−µ2

s + 3
4
λsv

2
s + 1

2
ηv2

h ηvsvh

ηvsvh −µ2
h + 3

4
λhv

2
h + 1

2
ηv2

s

)
(3.1.17)

of the fields H and χ. The terms involving the field ϕh in (3.1.15) are only present in
the complex-Φh extension of the SM and have to be set to zero when considering the
EHSD model. In the last five lines of (3.1.15) the resulting cubic and quartic scalar
self-coupling terms are listed. Without exception the terms involving both standard
and hidden component fields are proportional to the portal coupling η. The tadpole
coefficients tH and tχ vanish at LO according to the minimum conditions (3.1.6). Con-
sequently, at LO the mass matrix (3.1.17) further simplifies to

M2
LO =

(
1
2
λsv

2
s ηvsvh

ηvsvh
1
2
λhv

2
h

)
, (3.1.18)

and the mass terms of φ±, ϕs and ϕh in (3.1.15) vanish.

Mass-eigenstate basis of the scalar fields

Due to the non-vanishing vh a mixing between H and χ occurs in the presence of the
Higgs-portal coupling η in each of the three models; hence, neither the field H nor
the field χ is a mass eigenstate. We switch to the related mass-eigenstate basis by
diagonalizing the symmetric squared-mass matrix (3.1.18). This is achieved by means
of the rotation

T −1M2
LOT =

(
M2

H1
0

0 M2
H2

)
, T =

(
cα −sα
sα cα

)
, (3.1.19)

with the notation cα ≡ cosα and sα ≡ sinα and with the corresponding mixing angle
α which obeys the relation

tan 2α =
4ηvsvh

λsv2
s − λhv2

h

. (3.1.20)

The physical scalar fields H1 and H2 for the mass eigenstates can be written as a linear
combination of the original scalar fields H and χ,(

H1

H2

)
=

(
cα sα
−sα cα

)(
H
χ

)
, (3.1.21)

with corresponding mass eigenvalues

M2
H1/2

=
1

4

(
λsv

2
s + λhv

2
h

)
± 1

4

(
λsv

2
s − λhv

2
h

)√
1 + tan2 2α. (3.1.22)
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Inversion of (3.1.21) allows us to rewrite the original scalar fields H and χ as linear
combinations of the mass eigenstates H1 and H2. Therefore, e.g. the tadpole coefficients
tH1 and tH2 of the fields H1 and H2 are simply given by the linear combinations

tH1 = cαtH + sαtχ,

tH2 = −sαtH + cαtχ,
(3.1.23)

and thus vanish at LO, too. The original Higgs-potential parameters λs, λh and η can
be replaced by the parameters α, MH1 , MH2 , vs and vh according to

λs =
M2

H1
+M2

H2
+
(
M2

H1
−M2

H2

)
c2α

v2
s

,

λh =
M2

H1
+M2

H2
−
(
M2

H1
−M2

H2

)
c2α

v2
h

,

η =

(
M2

H1
−M2

H2

)
s2α

2vsvh

,

(3.1.24)

which follows from (3.1.20) and (3.1.22). Equipped with (3.1.15), (3.1.21) and (3.1.24)
it is straightforward to derive the cubic and quartic scalar self-coupling terms in the
mass-eigenstate basis. The corresponding Feynman rules are listed in Appendix A.

From (3.1.20) we can deduce that only the domain

−π
4
< α < +

π

4
(3.1.25)

has to be considered. With (3.1.25) there is no hierarchy of MH1 and MH2 , i.e. we
take into account both MH2 > MH1 and MH2 < MH1 . From (3.1.21) it follows that
the limit α → 0 provides us with the situation in which the field H1 is equal to the
standard Higgs field H and in which the field H2 is equal to the hidden component
field χ. Taking into account (3.1.20) and the positive definite vs/h we see that the limit
α → 0 requires η → 0 which leads to a decoupling of the hidden sector as explained
above. Thus, without exception, the limit α→ 0 brings us back to the phenomenology
of the SM. As already stated before, in this work we treat the field H1 to be responsible
for the resonance detected around 125 GeV at the LHC [16, 17] and we fix the mass
MH1 accordingly.

Non-standard couplings to the standard gauge bosons

With Φs given in (3.1.7), expansion of the corresponding kinetic term yields

(DµΦs)
† (DµΦs) =

1

2
(∂µH)(∂µH) +M2

WW
−
µ W

+µ

(
1 +

2

vs

H +
1

v2
s

H2

)
+

1

2
M2

ZZµZ
µ

(
1 +

2

vs
H +

1

v2
s

H2

)
+ . . . ,

(3.1.26)

where the dots summarize the remaining terms which appear analogously to the SM
and involve couplings with the standard would-be Goldstone bosons φ± and ϕs as well
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as the kinetic terms of the latter. Analogously to the SM (cf. Subsect. 2.1.5), for the
standard gauge bosons W±

µ , Zµ and Aµ we obtain the corresponding masses

MW =
vs

2
g2, MZ =

vs

2

√
g2

1 + g2
2, MA = 0. (3.1.27)

Sometimes in this work, we use the relation

vs =
2sWMW

e
, (3.1.28)

which follows from (2.1.24), (2.1.25) and (3.1.27). Obviously, the hidden vev vh does
not contribute to electroweak symmetry breaking in the standard sector.

Due to the mixing (3.1.21) of H and χ both the physical standard-like scalar field
H1 and the physical non-standard-like scalar field H2 couple to the massive standard
gauge bosons W±

µ and Zµ at the tree-level. Analogously to the SM, there exist no
tree-level couplings of the standard Higgs field H to the photon field Aµ. Therefore,
the mass eigenstates H1/2 do not directly couple to the photon either. The resulting
standard and non-standard couplings in the mass-eigenstate basis can be found in terms
of corresponding Feynman rules in Appendix A. Note that the non-standard fields Z ′

and ϕh do not couple to the standard gauge bosons at the tree-level.

Couplings to the non-standard gauge bosons

With Φh given in (3.1.7), expansion of the corresponding kinetic term in the EHSL
model yields

(Dh,µΦh)† (Dh
µΦh) =

1

2
(∂µχ) (∂µχ) +

1

2
(∂µϕh) (∂µϕh) +

1

2
(ghvh)2 Z ′µZ

′µ

+ ghvhZ
′
µ (∂µϕh)− gh (∂µχ)Z ′µϕh + gh (∂µϕh)Z ′µχ

+ g2
hvhχZ

′
µZ
′µ +

1

2
g2

hχ
2Z ′µZ

′µ +
1

2
g2

hϕ
2
hZ
′
µZ
′µ.

(3.1.29)

The first two terms in (3.1.29) are the kinetic terms of the non-standard component
fields χ and ϕh. According to the Higgs mechanism the third term on the right-hand
side of (3.1.29) generates a mass MZ′ for the non-standard gauge boson Z ′µ,

MZ′ = ghvh, (3.1.30)

as a consequence of the non-vanishing vev vh which spontaneously breaks the local
U(1)Yh in the EHSL model. Accordingly, in the EHSL model the field ϕh plays the
role of a hidden would-be Goldstone boson which constitutes the longitudinal degree
of freedom of the massive Z ′µ.

The first term in the second line of (3.1.29) is a mixing term between Z ′µ and its
corresponding would-be Goldstone boson ϕh. Analogously to the SM, we get rid of this
term by a suitable gauge-fixing choice which is introduced in the following section.

The remaining terms in (3.1.29) are the emerging triple and quartic interaction
terms between the Z ′ boson and the non-standard scalar fields χ and ϕh. Note that
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due to the mixing (3.1.21) in the third line of (3.1.29) the first term provides the tree-
level couplings HiZ

′Z ′ and the second term provides the tree-level couplings HiHjZ
′Z ′,

where i, j ∈ {1, 2}. These couplings are of particular interest both in the context of
collider signatures of the fields H1, H2, Z ′µ and in the context of astrophysical topics
like e.g. vector dark-matter relic abundance in the EHSL model [42, 43, 70]. Relating
to collider signatures of the standard-like Higgs boson H1, one may not forget about
the corresponding decay channel H1 → Z ′Z ′ in the non-standard parameter region
MZ′ < MH1/2. In Chapter 7 we give the first NLO prediction for the corresponding
partial width Γ(H1 → Z ′Z ′) and investigate its potential impact on further H1-decay
observables.

From (3.1.29) we can conclude that the limit gh → 0 provides us with the situation
of a decoupled massless Z ′ boson and hence with the EHSG model where the field ϕh is
the Goldstone boson of the spontaneously broken global U(1)Yh . Recall that the term
quadratic in the field ϕh in (3.1.15) is proportional to the tadpole coefficient tχ and
thus vanishes at LO according to the minimum condition (3.1.6). The zero-mass of
ϕh is furthermore protected from radiative corrections as a consequence of the global
U(1)Yh symmetry. The corresponding U(1)Yh Ward identity is listed in relation (B.2.1)
of Appendix B. In the EHSG model (3.1.29) only consists of the two kinetic terms
corresponding to χ and ϕh. Additionally removing the component field ϕh in the limit
of vanishing gh provides us with the phenomenology of the EHSD model, where (3.1.29)
is only given by the kinetic term of the real component field χ.

Non-standard couplings to the fermions

From the Yukawa part of LΦs/h

EHS specified in the second line of (3.1.2) we obtain the
fermion mass eigenstates (2.1.26) and (2.1.28) already introduced in the context of the
SM. Analogously to (2.1.27) the masses for the charged fermion fields read

mf,i =
vs√

2

∑
j,k

U f,L
ij Gf

jkU
f,R†
ki . (3.1.31)

The non-vanishing hidden vev vh does not contribute to the mass generation in the
fermion sector.

The resulting couplings of the scalar component fields H, φ± and ϕs to the fermion
fields are identical with those appearing in the SM. Here, we obtain non-standard tree-
level couplings of the scalar fields H1 and H2 to the massive fermion fields due to the
mixing (3.1.21) of H and χ. The non-standard fields Z ′ and ϕh, however, do not couple
to the fermion fields.

Gauge transformations of the mass eigenstates

Next, we provide the infinitesimal gauge transformations of the fields corresponding to
the extended Higgs and non-standard gauge sector of the EHSL model in the mass-
eigenstate basis. Taking into account (3.1.14) and (3.1.28), we introduce the physical
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fields and parameters as defined in this section and obtain

H1 → H1 + cα

(
MZ

vs

ϕs δθ
Z + i

MW

vs

[
φ+δθ− − φ−δθ+

])
+ sα

MZ′

vh

ϕh δθ
Z′ ,

H2 → H2 − sα
(
MZ

vs

ϕs δθ
Z + i

MW

vs

[
φ+δθ− − φ−δθ+

])
+ cα

MZ′

vh

ϕh δθ
Z′ ,

φ± → φ± ∓ ieφ±
[
δθA +

s2
W − c2

W

2sW cW
δθZ
]
± iMW

vs

[vs + cαH1 − sαH2 ± iϕs] δθ
±,

ϕs → ϕs −
MZ

vs

[vs + cαH1 − sαH2] δθZ +
MW

vs

[
φ+δθ− + φ−δθ+

]
,

ϕh → ϕh −
MZ′

vh

[vh + sαH1 + cαH2] δθZ
′
,

Z ′µ → Z ′µ + ∂µδθ
Z′ ,

(3.1.32)
with the infinitesimal local transformation parameter

δθZ
′
(x) =

1

g′h
δθYh(x) (3.1.33)

corresponding to the hidden gauge sector of the EHSL model (cf. Subsect. 2.1.5).
The infinitesimal SU(2)W × U(1)Y gauge transformations of φ± and ϕs in (3.1.32) are
the same in the EHSG and EHSD models. For the three models the infinitesimal
SU(2)W×U(1)Y gauge transformations of the fermion fields and of the standard gauge
bosons are already specified in (2.1.31) and (2.1.32).

The infinitesimal gauge transformations of the fields H1, H2 and ϕh in the EHSG
model are obtained from the respective ones in (3.1.32) by taking the limit g′h → 0
after a consistent reintroduction of the parameter g′h according to (3.1.4), (3.1.30) and
(3.1.33), which yields

H1 → H1 + cα

(
MZ

vs

ϕs δθ
Z + i

MW

vs

[
φ+δθ− − φ−δθ+

])
+ sαϕhδθh,

H2 → H2 − sα
(
MZ

vs

ϕs δθ
Z + i

MW

vs

[
φ+δθ− − φ−δθ+

])
+ cαϕhδθh,

ϕh → ϕh − [vh + sαH1 + cαH2] δθh,

(3.1.34)

with the infinitesimal global transformation parameter

δθh =
Yh

2
δθYh . (3.1.35)

In the EHSD model there are no infinitesimal non-standard transformations and the
infinitesimal SU(2)W × U(1)Y gauge transformations of H1 and H2 read

H1 → H1 + cα

(
MZ

vs

ϕs δθ
Z + i

MW

vs

[
φ+δθ− − φ−δθ+

])
,

H2 → H2 − sα
(
MZ

vs

ϕs δθ
Z + i

MW

vs

[
φ+δθ− − φ−δθ+

])
.

(3.1.36)
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3.2 Quantization
In the EHSL model the gauge-fixing and the Faddeev-Popov Lagrangian of the SM
have to be extended due to the presence of the associated U(1)Yh gauge sector.3 There-
fore, in order to obtain the quantized Lagrangian for the Φh extension of the SM, we
define a proper gauge-fixing term Lfix

EHS and a related Faddeev-Popov term Lghost
EHS in the

following.

A suitable gauge-fixing Lagrangian is given by

Lfix
EHS = − 1

2ξA

(
FA
)2 − 1

2ξZ

(
FZ
)2 − 1

ξW
F+F− − 1

2ξZ′
(FZ′)2, (3.2.1)

where the first three terms are identified with the standard gauge-fixing operators

FA = ∂µAµ, FZ = ∂µZµ −MZξ
′
Zϕs, F± = ∂µW±

µ ∓ iMW ξ
′
Wφ
±, (3.2.2)

and thus correspond to the gauge-fixing part of the standard sector which is treated
analogously to the SM (cf. Sect. 2.2). In the EHSG and EHSD models alongside the
gauge symmetries of the standard sector no additional gauge symmetry is imposed.
Consequently, in the EHSG and EHSD models we do not have to extend the gauge-
fixing part of the SM and the corresponding gauge-fixing Lagrangian is just given by
the first three terms on the right-hand side of (3.2.1). The last term in (3.2.1) has to
be considered only in the EHSL model and introduces the linear gauge-fixing operator

FZ′ = ∂µZ ′µ −MZ′ξ
′
Z′ϕh, (3.2.3)

which is associated with the corresponding U(1)Yh gauge sector. All in all we have seven
independent gauge parameters in the EHSL model, the five standard gauge parameters
ξa (a = A,Z,W ) and ξ′a (a = Z,W ), and the two non-standard gauge parameters ξZ′
and ξ′Z′ .

Next, we specify the corresponding Faddeev-Popov part which reads

Lghost
EHS = −

∫
d4z d4y ua(x)

[
δF a(x)

δφc(z)

δφc(z)

δθb(y)
+
δF a(x)

δV c
ν (z)

δV c
ν (z)

δθb(y)

]
ub(y), (3.2.4)

and introduces the Faddeev-Popov ghost and anti-ghost fields ua(x) and ua(x), re-
spectively, with a, b, c ∈ {A,Z,±, Z ′}. We have φA ≡ 0, φZ ≡ ϕs, φ

Z′ ≡ ϕh and
V a = A,Z,W±, Z ′ for a = A,Z,±, Z ′. The structure of Lghost

EHS extends the structure
of Lghost

SM specified in (2.2.6) by the hidden gauge sector with non-standard ghost and
anti-ghost fields uZ

′
(x) and uZ

′
(x). These fields cancel unphysical degrees of freedom

associated with the non-standard gauge sector and only couple via the trilinear vertices
Hi u

Z′uZ
′
, i = 1, 2 (cf. App. A.18). Compared to the SM (cf. Sect. 2.2), in the model

with an EHS Φh the ghost fields uA, uZ and u± (and their overlined counterparts) have
similar couplings. The only difference is that due to the mixing of the original scalar

3Regarding the quantization of the standard gauge sector we closely follow the conventions estab-
lished for the SM in [83].
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fields H and χ, in each of the three models under consideration couplings of the fields
H1 and H2 to the ghost fields of the standard sector emerge.

The couplings involving standard and non-standard Faddeev-Popov fields are de-
rived from (3.2.4) with the variation of the linear gauge-fixing operators (3.2.2) and
(3.2.3) under the infinitesimal gauge transformations δAµ, δZµ, δW±

µ , δϕs, δφ
±, δZ ′µ

and δϕh specified in (2.1.32) and (3.1.32). The same holds for the propagators of the
Faddeev-Popov ghosts. Corresponding Feynman rules (’t Hooft-Feynman gauge) are
listed in Appendix A. Therein, furthermore the associated one-loop counterterms are
listed. We refer to Sect. 5.3 where we amongst others introduce the renormalization of
the unphysical sector.

Unless stated otherwise in this work we stick to the ’t Hooft-Feynman gauge, such
that ξa = 1 (a = A,Z,W,Z ′) and ξ′a = 1 (a = Z,W,Z ′). Accordingly, the standard
and non-standard mixing terms Zµ∂

µϕs, W
±
µ ∂

µφ± and Z ′µ∂µϕh from the kinetic terms
(3.1.26) and (3.1.29) are cancelled (cf. Sect. 2.2), the propagators of the gauge bosons
have the simplest form, and the masses of the would-be Goldstone bosons and ghosts are
equal to the masses of the related gauge bosons. Only in the context of renormalization
we treat the seven distinct gauge-fixing parameters as independent quantities.

Closely related to the associated non-standard gauge sector, in the EHSL model
the fields uZ

′
and uZ

′
decouple in the limit gh → 0. Note that according to (3.1.30) for

a fixed value of the hidden vev vh the limit gh → 0 implies MZ′ → 0 which results in
Mϕh

→ 0. Hence, also at the quantized level the limit gh → 0 properly brings us back
to the phenomenology of the EHSG model, where ϕh is a physical massless scalar field.

Finally, the complete Lagrangian of the (quantized) Φh extension of the SM can be
written as the sum

LEHS = Lcl
EHS + Lfix

EHS + Lghost
EHS , (3.2.5)

with Lcl
EHS, Lfix

EHS and Lghost
EHS specified in (3.1.1), (3.2.1) and (3.2.4).

3.3 BRS invariance
As already mentioned in the context of the SM, conventional gauge invariance is de-
structed once the inevitable gauge-fixing and Faddeev-Popov part has been added to
the classical Lagrangian. Therefore, in LEHS we have lost the invariance under the local
transformations defined in (2.1.15) and (3.1.12) for the EHSL model, respectively in
(2.1.15) for the EHSG and EHSD models. The extended BRS symmetry can be found
in analogy to Sect. 2.3 and provides the fundamental framework for the derivation of
useful Slavnov-Taylor identities in the model with an EHS Φh. In the EHSL model
we have to treat the U(1)Yh symmetry, which is broken by the introduction of Lfix

EHS,
accordingly. Therefore, we have to define a suitable transformation behaviour of the
associated non-standard ghost and anti-ghost fields uZ

′
and uZ

′
.

In the model with an EHS Φh the infinitesimal SU(2)W×U(1)Y gauge transforma-
tions of the fermions and standard gauge bosons are the same as in the SM. Conse-
quently, the BRS transformations of the fermions, standard gauge bosons and standard
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ghost and anti-ghost fields do not change compared to the SM and are thus already
given in (2.3.5), (2.3.6) and (2.3.7).

The remaining BRS transformations in the EHSL model can be derived from
(3.1.32), with the infinitesimal transformation parameters δθA, δθZ and δθ± replaced
according to (2.3.1) and with δθZ

′
replaced according to

δθZ
′
= δλ uZ

′
. (3.3.1)

The Grassmann-valued, infinitesimal constant δλ in (2.3.1) and (3.3.1) anticommutes
with the ghost fields of the standard and the hidden sector. We obtain the BRS
transformations

sH1 = cα

(
MZ

vs

ϕsu
Z + i

MW

vs

[
φ+u− − φ−u+

])
+ sα

MZ′

vh

ϕhu
Z′ ,

sH2 = −sα
(
MZ

vs

ϕsu
Z + i

MW

vs

[
φ+u− − φ−u+

])
+ cα

MZ′

vh

ϕhu
Z′ ,

sφ± = ∓ieφ±
[
uA +

s2
W − c2

W

2sW cW
uZ
]
± iMW

vs

[vs + cαH1 − sαH2 ± iϕs]u
±,

sϕs = −MZ

vs

[vs + cαH1 − sαH2]uZ +
MW

vs

[
φ+u− + φ−u+

]
,

sϕh = −MZ′

vh

[vh + sαH1 + cαH2]uZ
′
,

sZ ′µ = ∂µu
Z′ ,

(3.3.2)

making use of the BRS operator s which is defined in (2.3.2). The BRS transformations
of the non-standard ghost uZ

′
and anti-ghost uZ

′
are defined such that the requirement

δBRS(Lfix
EHS + Lghost

EHS ) = 0 is fulfilled. In this way, for general ξZ′ and ξ′Z′ we obtain the
BRS transformations

suZ
′
= 0, sūZ

′
= − 1

ξZ′
FZ′ . (3.3.3)

The SU(2)W × U(1)Y BRS transformations of φ± and ϕs in (3.3.2) also apply to the
EHSG and EHSD models. In the EHSG model there is no BRS transformation for the
global U(1)Yh symmetry and according to (2.3.1) and (3.1.34) the non-standard scalar
fields transform as

H1 → H1 + cα

(
MZ

vs

ϕs δλ u
Z + i

MW

vs

[
φ+δλ u− − φ−δλ u+

])
+ sαϕhδθh,

H2 → H2 − sα
(
MZ

vs

ϕs δλ u
Z + i

MW

vs

[
φ+δλ u− − φ−δλ u+

])
+ cαϕhδθh,

ϕh → ϕh − [vh + sαH1 + cαH2] δθh,

(3.3.4)

with the infinitesimal global transformation parameter δθh specified in (3.1.35).

In the EHSD model the SU(2)W×U(1)Y BRS transformations of H1 and H2 follow
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from (2.3.1) and (3.1.36) and read

sH1 = cα

(
MZ

vs

ϕsu
Z + i

MW

vs

[
φ+u− − φ−u+

])
,

sH2 = −sα
(
MZ

vs

ϕsu
Z + i

MW

vs

[
φ+u− − φ−u+

])
.

(3.3.5)

The SU(2)W × U(1)Y BRS transformations in the real-Φh extension of the SM have
already been given in [51].

In Appendix B we utilize the global U(1)Yh transformations in (3.3.4) in order to
derive a helpful set of Ward identities between scalar vertex functions from the global
U(1)Yh invariance of the generating vertex functional (cf. App. B.1). These U(1)Yh
Ward identities can be used for consistency checks, in particular with regard to the
one-loop renormalization of the EHSG model which is discussed in Chapter 5.

Slavnov-Taylor identities between Green functions

The Slavnov-Taylor identities between Green functions of spontaneously broken gauge
theories can be written in the generic form [83]

0 =
δBRS

δλ

〈
T
∏
l

ΨIl

〉
= s

〈
T
∏
l

ΨIl

〉
, (3.3.6)

where the Green functions are written as vevs 〈 . . . 〉 of time-ordered products of fields.
Here, a generic field ΨIl (with the index I containing the possibly occurring indices)
stands for one of the fields W±

µ , Zµ, Aµ, ψL
i,±, ψL

i,±, ψR
i , ψR

i , H1, H2, Z ′µ, φ±, ϕs,
ϕh, ua and ua, or for one of the gauge-fixing operators F a (a = A,Z,±, Z ′). For
on-shell asymptotic fields we denote the corresponding physical components by Ψphys

Il
.

According to [95–97] the BRS variation of the latter must vanish, i.e.

sΨphys
Il

= 0. (3.3.7)

In Chapter 7 we make use of (3.3.6) and (3.3.7) in order to confirm the Goldstone-boson
equivalence theorem in the limit of massless Z ′ bosons at the one-loop level.



Chapter 4
Perturbative unitarity

In order to obtain a detailed overview over the regions of interest in non-standard
parameter space, i.e. about those regions where the model with an EHS Φh is reliable
on perturbative grounds, we study the related issue of (tree-level) perturbative unitarity
in this chapter. The EHSL and EHSD models have already been discussed earlier in
this context in [29] and [39]. The authors followed the guideline of [98] in which an
upper bound for the Higgs mass in the SM was derived from tree-level perturbative
unitarity for the first time. Here, we perform a similar analysis in order to obtain
bounds for the non-standard parameters α, MH2 and vh. We obtain more compact
and easy-to-handle expressions for the set of inequalities which represent the bounds
from tree-level perturbative unitarity in the complex-Φh and in the real-Φh extension
of the SM. This is achieved with the help of orthogonal transformation matrices which
convert the scattering matrices in the high-energy limit from the basis of the original
scalar fields H and χ into the corresponding mass-eigenstate basis and vice versa.

4.1 Concept

The framework of [98] can be extended in order to obtain constraints for models with
more involved Higgs sectors.1 For such an analysis several (model-dependent) bosonic
2 → 2 scattering processes have to be considered. Analogously to the SM, a partial
wave analysis shows that only the l = 0 partial waves (angular momentum l) for the
scattering channels involving the associated physical scalar bosons and longitudinal
vector bosons in the external legs are relevant for unitarity considerations. According to
the Goldstone-boson equivalence theorem (cf. Subsect. 7.2.7), in the high-energy limit
the external longitudinally-polarized gauge bosons can be replaced by the associated
would-be Goldstone bosons. Thus, only pure scalar high-energy 2 → 2 scattering
processes have to be considered with regard to this analysis of perturbative unitarity.

For the EHS models the relevant processes can be summarized in terms of respective

1In the same way e.g. the two-Higgs-doublet model has been discussed in [99]. Furthermore, we
refer to [60] where the real-Φh extension of the SM without ZD

2 symmetry in the SM limit is examined
in a similar manner.

31



32 4. Perturbative unitarity

scattering matrices. Propagator-suppressed processes can be neglected in the high-
energy limit. Consequently, each element of a given scattering matrix is determined
just by one of the tree-level quartic scalar self-couplings emerging from the modified
Higgs potential (3.1.5). We thus have to distinguish between two distinct sets of quartic
scalar self-couplings − the one corresponding to the complex-Φh extension and the one
corresponding to the real-Φh extension of the SM. The high-energy scattering matrix
for the EHSL model is identical to the one for the EHSG model and from this analysis
we hence obtain identical bounds for these two models.2 For the real-Φh extension of
the SM we obtain different bounds due to the absence of the imaginary part ϕh.

Equipped with the two pure scalar high-energy scattering matrices for the complex-
Φh and real-Φh extensions of the SM, we derive the bounds in the following way: for
each of the two-particle initial states we require that the probability of scattering
into the sum of accessible two-particle final states is less or equal to one. From this
requirement we obtain upper bounds for the eigenvalues of the two scattering matrices
which depend on the free original parameters λs, λh and η associated with the modified
Higgs potential (3.1.5). With the help of (3.1.24) these constraints can be translated
into corresponding bounds for the free parameters α, MH2 and vh.

For the numerical analysis in this chapter, the standard vev vs is approximated
by the value 246 GeV, according to v2

s ≈ 1/(
√

2GF) ≈ (246 GeV)2, with the Fermi
constant GF [100, 101]. Throughout in this work, we fix the mass of the standard-like
Higgs boson MH1 to the current experimental central value of 125.09 GeV [19].

4.2 Calculation

Performing a partial wave decomposition of the matrix elementM which corresponds
to the generic scalar scattering process S1S2 → S3S4 yields

M (s, θ) = 16π
∞∑
l=0

(2l + 1)Pl(cos θ)al(s), (4.2.1)

with the Mandelstam variable s (center-of-mass energy squared), the partial wave
amplitudes al and the Legendre polynomials Pl which depend on the cosine of the
scattering angle θ. In the center-of-mass system the corresponding differential cross
section can be written as

dσ

dΩ
=

1

64π2s
|M|2 . (4.2.2)

Exploiting the orthogonality of the Pl, we obtain the total cross section

σ =

∫ 2π

0

∫ +1

−1

d (cos θ)
dσ

dΩ
=

16π

s

∞∑
l=0

(2l + 1) |al|2 (4.2.3)

2This is because, similarly to [29], we desist from considering non-standard parameter regions in the
EHSL model where the corresponding (gh-dependent) transverse amplitudes might be non-negligible.
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of the generic scattering process S1S2 → S3S4. With the help of the optical theorem
we can relate (4.2.3) to the imaginary part of the corresponding forward scattering
amplitude, which yields

|al|2 = Re (al)
2 + Im (al)

2 !
= Im (al) (4.2.4)

and leads us to the unitarity constraint

|Re (al)| ≤
1

2
(4.2.5)

for the partial wave amplitudes.3 The partial wave amplitudes al in (4.2.5) can be
written as

al (s) =
1

32π

∫ +1

−1

d (cos θ)Pl (cos θ)M (s, θ) , (4.2.6)

which follows from inversion of (4.2.1).

For an analysis of the significant scattering amplitudes in the limit s → ∞ it is
sufficient to restrict us to the l = 0 partial waves and to neglect processes mediated by
internal propagators. Accordingly, the matrix element in (4.2.6) reduces to the generic
quartic scalar self-coupling CS1S2S3S4 which corresponds to the underlying tree-level
scattering process S1S2 → S3S4 and the constraint (4.2.5) can be converted into

|CS1S2S3S4| ≤ 8π. (4.2.7)

The constraint (4.2.7) already constitutes an upper bound for the quartic scalar self-
couplings CS1S2S3S4 which stem from the modified Higgs potential (3.1.5). In the EHSL
and EHSG models we have S1, S2, S3, S4 ∈ {H1, H2, ϕs, φ

±, ϕh}, in the EHSD model
we have S1, S2, S3, S4 ∈ {H1, H2, ϕs, φ

±}. The couplings CS1S2S3S4 which are listed in
App. A.11 depend on the free parameters α, MH2 and vh. Thus, (4.2.7) already puts a
constraint on the latter.

So far, we treated the distinct 2→ 2 scatterings separately. More stringent bounds
for the non-standard parameters α, MH2 and vh are obtained by the requirement that
the probability of scattering into the sum of accessible two-particle final states is less
or equal to one for each of the two-particle initial states. This corresponds to the
requirement that the eigenvalues of the scattering matrices obey the constraint (4.2.7)
initially imposed on the individual quartic scalar self-couplings of the EHS models.

The 15 × 15 scattering matrix MH1H2
15×15 for the complex-Φh extension of the SM is

defined in the basis

(φ+φ−, ϕsϕs/
√

2, ϕhϕh/
√

2, H1H1/
√

2, H2H2/
√

2, H1H2,

φ+H1, φ
+H2, φ

+ϕs, φ
+ϕh, ϕsH1, ϕsH2, ϕhH1, ϕhH2, ϕhϕs),

(4.2.8)

where the fields φ± and ϕs stand for the longitudinal W±
µ and Zµ, and the field ϕh

either stands for the longitudinal Z ′µ (EHSL model) or for the physical non-standard

3We can also derive a less stringent bound |al| ≤ 1 from (4.2.4) just by exploiting the fact that
Im (al) ≤ |al|. However, here we consider the stronger bound (4.2.5) which can be deduced by a
graphical consideration of (4.2.4).
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Goldstone boson ϕh (EHSG model). We take into account normalization factors 1/
√

2
for identical fields in the initial and final states of the scattering processes. More
explicitly, the block-diagonal scattering matrix MH1H2

15×15 can be written as

MH1H2
15×15 =

AH1H2
6×6

BH1H2
4×4

CH1H2
5×5

 , (4.2.9)

with the submatrix

AH1H2
6×6 =



Cφ4
C
φ2ϕ2s√

2

C
φ2ϕ2

h√
2

C
H2
1φ

2
√

2

C
H2
2φ

2
√

2
CH1H2φ2

C
φ2ϕ2s√

2

C
ϕ4s

2

C
ϕ2sϕ

2
h

2

C
H2
1ϕ

2
s

2

C
H2
2ϕ

2
s

2

C
H1H2ϕ

2
s√

2
C
φ2ϕ2

h√
2

C
ϕ2sϕ

2
h

2

C
ϕ4
h

2

C
H2
1ϕ

2
h

2

C
H2
2ϕ

2
h

2

C
H1H2ϕ

2
h√

2
C
H2
1φ

2
√

2

C
H2
1ϕ

2
s

2

C
H2
1ϕ

2
h

2

C
H4
1

2

C
H2
1H

2
2

2

C
H3
1H2√
2

C
H2
2φ

2
√

2

C
H2
2ϕ

2
s

2

C
H2
2ϕ

2
h

2

C
H2
1H

2
2

2

C
H4
2

2

C
H1H

3
2√

2

CH1H2φ2
C
H1H2ϕ

2
s√

2

C
H1H2ϕ

2
h√

2

C
H3
1H2√
2

C
H1H

3
2√

2
CH2

1H
2
2


, (4.2.10)

the submatrix

BH1H2
4×4 =


CH2

1φ
2 CH1H2φ2 0 0

CH1H2φ2 CH2
2φ

2 0 0

0 0 Cφ2ϕ2
s

0
0 0 0 Cφ2ϕ2

h

 , (4.2.11)

and the submatrix

CH1H2
5×5 =


CH2

1ϕ
2
s

CH1H2ϕ2
s

0 0 0

CH1H2ϕ2
s

CH2
2ϕ

2
s

0 0 0

0 0 CH2
1ϕ

2
h

CH1H2ϕ2
h

0

0 0 CH1H2ϕ2
h

CH2
2ϕ

2
h

0

0 0 0 0 Cϕ2
sϕ

2
h

 . (4.2.12)

As a short notation, we introduced the powers of multiply occurring fields in the index
of a quartic scalar self-coupling, with φ = φ± having regard to conservation of electric
charge. A direct calculation of the eigenvalues of MH1H2

15×15 is quite involved and results in
bulky analytic expressions which are unsuitable for our purpose. We therefore introduce
the transformation matrix Uα which converts MH1H2

15×15 into the related scattering matrix

MHχ
15×15 defined in the basis of the original scalar fields H and χ,

(φ+φ−, ϕsϕs/
√

2, ϕhϕh/
√

2, HH/
√

2, χχ/
√

2, Hχ,

φ+H,φ+χ, φ+ϕs, φ
+ϕh, ϕsH,ϕsχ, ϕhH,ϕhχ, ϕhϕs),

(4.2.13)

according to

MH1H2
15×15 = Uα

TMHχ
15×15Uα. (4.2.14)
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In other words, the real-valued block-diagonal matrix Uα transforms the basis vector
(4.2.8) into the basis vector (4.2.13) and can thus be written as follows,

Uα =

A3×3

B5×5

C7×7

 , (4.2.15)

where A3×3 = 13×3 and the submatrices B5×5 and C7×7 are given by

B5×5 =


c2
α s2

α −
√

2sαcα 0 0

s2
α c2

α

√
2sαcα 0 0√

2sαcα −
√

2sαcα c2α 0 0
0 0 0 cα −sα
0 0 0 sα cα

 (4.2.16)

and

C7×7 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 cα −sα 0 0 0
0 0 sα cα 0 0 0
0 0 0 0 cα −sα 0
0 0 0 0 sα cα 0
0 0 0 0 0 0 1


. (4.2.17)

Equipped with (4.2.15)−(4.2.17) it is straightforward to verify that Uα
TUα = 115×15,

i.e. Uα is orthogonal. Note that the normalization factors 1/
√

2 for identical fields
in (4.2.8) and (4.2.13) are crucial in order to find an orthonormal Uα.4 Because Uα
is orthonormal the eigenvalues of MHχ

15×15 are identical to the eigenvalues of MH1H2
15×15.

Therefore, we are free to calculate these from the considerably less complex scattering
matrix MHχ

15×15. More explicitly, we have

MHχ
15×15 =

(
AHχ

5×5

BHχ
10×10

)
, (4.2.18)

with the submatrix

AHχ
5×5 =



Cφ4
C
φ2ϕ2s√

2

C
φ2ϕ2

h√
2

CH2φ2√
2

Cχ2φ2√
2

C
φ2ϕ2s√

2

C
ϕ4s

2

C
ϕ2sϕ

2
h

2

C
H2ϕ2s

2

C
χ2ϕ2s

2
C
φ2ϕ2

h√
2

C
ϕ2sϕ

2
h

2

C
ϕ4
h

2

C
H2ϕ2

h

2

C
χ2ϕ2

h

2
CH2φ2√

2

C
H2ϕ2s

2

C
H2ϕ2

h

2

CH4

2

CH2χ2

2
Cχ2φ2√

2

C
χ2ϕ2s

2

C
χ2ϕ2

h

2

CH2χ2

2

Cχ4

2


, (4.2.19)

and the diagonal submatrix

BHχ
10×10 = diag(CH2χ2 , CH2φ2 , Cχ2φ2 , Cφ2ϕ2

s
, Cφ2ϕ2

h
,

CH2ϕ2
s
, Cχ2ϕ2

s
, CH2ϕ2

h
, Cχ2ϕ2

h
, Cϕ2

sϕ
2
h
).

(4.2.20)

4As indicated in [60] these normalization factors are often ignored in the literature.
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The quartic couplings which determine the non-trivial entries of the scattering matrix
MHχ

15×15 (summarized in the submatrices AHχ
5×5 and BHχ

10×10) are derived from the quartic

interaction terms listed in the last three lines of (3.1.15). The entries of MHχ
15×15 thus

exhibit a very simple structure, in particular in terms of the original parameters λs, λh

and η. The corresponding submatrices (4.2.19) and (4.2.20) provide us with the five
distinct eigenvalues

ec
s =

λs

2
, ec

h =
λh

2
, ec

η = η,

ec
± =

1

4

(
3λs + 2λh ±

√
32η2 + (2λh − 3λs)2

)
,

(4.2.21)

where the upper index c denotes the affiliation with the complex-Φh extension of the
SM. As already mentioned above, the bounds from perturbative unitarity are obtained
from the requirement

|ec
s| , |ec

h| ,
∣∣ec
η

∣∣ , ∣∣ec
±
∣∣ ≤ 8π. (4.2.22)

The same procedure (4.2.8)−(4.2.22) can be performed for the real-Φh extension of the
SM. The two bases are then obtained from (4.2.8) and (4.2.13) by erasing the entries
involving the non-standard Goldstone boson ϕh. Analogously to (4.2.14) we find an
orthogonal matrix which transforms the corresponding 10× 10 scattering matrix from
one basis into the other. Following the same approach we obtain the four distinct
eigenvalues

er
s =

λs

2
, er

η = η, er
± =

1

8

(
6λs + 3λh ±

√
64η2 + 9(λh − 2λs)2

)
, (4.2.23)

where the upper index r denotes the affiliation with the real-Φh extension of the SM.
Again, we require

|er
s|, |er

η|, |er
±| ≤ 8π (4.2.24)

in order to obtain the bounds from perturbative unitarity.

Taking into account (3.1.24), the bounds (4.2.22) and (4.2.24) for the complex-Φh

and real-Φh extensions of the SM can be translated into appropriate constraints for the
non-standard parameters α, MH2 and vh. In the following, we survey these constraints
numerically within the non-standard parameter region |α| ≤ π/6 (cf. Sect. 6.1) and
1 GeV ≤MH2 ≤ 5 TeV.

4.3 Numerical results
In Figs. 4.1a,b the bounds (4.2.22) for the complex-Φh extension (left side) and the
bounds (4.2.24) for the real-Φh extension (right side) are depicted in the plane α and
MH2 for different vh. The red (vh = 100 GeV), orange (vh = 280 GeV), brown (vh = 500
GeV), blue (vh = 1 TeV) and green (vh = 10 TeV) boundary lines represent the upper
bounds for MH2 (i.e. the maximally allowed MH2).

The results for the complex-Φh extension (EHSL and EHSG models) exhibit the
same behaviour as those for the real-Φh extension (EHSD model). It becomes obvious
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(a) (b)

Figure 4.1: Exclusion bounds from tree-level perturbative unitarity for the complex-Φh

extension of the SM (left side) and for the real-Φh extension of the SM (right side) in the
plane α and MH2 for different vh. Excluded regions lie above the displayed boundary
lines. The results on the left apply to the EHSL and EHSG models, the results on the
right apply to the EHSD model.

that smaller vh lead to stronger bounds from perturbative unitarity. For large vh & 10
TeV we obtain the weakest unitarity bounds. In this large-vh region the variation of
the input parameter vh becomes irrelevant. This is because vh only appears in the
denominators of the quartic scalar self-couplings which involve fields carrying non-
standard components. The other non-standard parameters which enter the analysis,
namely α and MH2 , only appear in the numerators of the quartic scalar self-couplings
(cf. App. A.11). Our numerical results show that for vh & 10 TeV the hidden vev is large
enough to sufficiently suppress associated parts in the quartic scalar self-couplings such
that corresponding unitarity bounds are not anymore vh-sensitive. Consequently, the
green exclusion bounds furthermore can be interpreted as the bounds which depict the
maximally allowed MH2 for vh & 10 TeV. Moreover, the consideration above explains
why the bounds from perturbative unitarity become stronger for smaller vh.

A comparison of the exclusion bounds for vh ≤ 1 TeV in Figs. 4.1a,b shows that
stronger bounds from perturbative unitarity are obtained in the complex-Φh extension.
This is what we expect because compared to the latter fewer scattering channels have to
be taken into account in the real-Φh extension. However, comparing the green exclusion
bounds in Figs. 4.1a,b we conclude that in the vh & 10 TeV region constraints from
perturbative unitarity for the parameters α, MH2 and vh are in good approximation
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the same in the EHSL, EHSG and EHSD models. We can explain this observation
by taking a closer look at those quartic scalar self-couplings in the scattering matrix
MH1H2

15×15 which involve the hidden Goldstone boson ϕh and which are thus responsible for
the extra scattering channels we have to consider in the complex-Φh extension. These
couplings are always proportional to at least one power of v−1

h and hence negligible for
sufficiently large vh.

We conclude that for vh = 280 GeV in each of the three models values of MH2 up
to about 1 TeV are allowed by perturbative unitarity for all α. For very small vh = 100
GeV we are even capable to put constraints on moderate MH2 way below the TeV scale.
For larger vh well above the electroweak scale, small mixing angles can compensate for
a non-perturbative blow-up of the quartic couplings such that very large MH2 up to
several TeV cannot be excluded by perturbative unitarity.



Chapter 5
Renormalization

Higher-order calculations are necessary in order to keep up with the precision of present
and future collider experiments. Moreover, the exploration of quantum effects con-
tributing to related physical observables often leads to significant indirect constraints
for the free parameters of a given model. For a meaningful prediction beyond the
tree-graph approximation the theory first has to be renormalized.

Renormalization is required because higher-order Feynman diagrams give rise to
ultraviolet (UV) divergences which, without a proper treatment, spoil the calculations.
The procedure of renormalization basically consists of a suitable redefinition of the
original parameters and fields such that in the end, all the UV divergences are elimi-
nated in the renormalized Green functions and S-matrix elements. In a renormalizable
theory this is achievable at all orders of perturbation theory. For the general proof of
renormalizability of gauge theories we refer to [91,102,103].

The SM is a renormalizable theory and the same holds for the extensions we con-
sider in this work. In the model with an EHS Φh the renormalization of the extended
sector has to be established with care, such that all the UV-divergent standard and
non-standard higher-order contributions are properly absorbed without infringing the
symmetries of the theory. The one-loop renormalization of the EHSD model has already
been discussed in [51]. Furthermore, we refer to [54, 56] where the one-loop renormal-
ization of the real-Φh extension without the ZD

2 symmetry has been constructed.

In this chapter we establish a new complete one-loop renormalization scheme for the
EHSL model such that the limit gh → 0 provides a smooth transition to the renormal-
ized EHSG model. From the latter the renormalized EHSD model is obtained just by
subsequently removing the component field ϕh. Thus, the renormalization scheme we
construct in this chapter enables a convenient comparison of NLO predictions of these
three extensions of the SM. Within the context of Chapter 7 this feature among oth-
ers provides us with a test of gauge invariance regarding our renormalization scheme.
Moreover, our renormalization scheme treats the unphysical sector such that the entire
set of Green functions is properly renormalized.1

1We checked this analytically for every single one-loop vertex function with the help of the
Mathematica packages FeynArts [78] and FormCalc [104].

39
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5.1 Concept of one-loop calculations
In general, the LO relations between observables and the original bare parameters of a
gauge theory are changed by higher-order corrections. Furthermore, beyond the LO the
bare parameters become divergent. These divergent higher-order contributions either
have UV, infrared or collinear origin. Collinear singularities emerge from the vanishing
momentum-squares of external legs which are directly coupled to two internal massless
propagators. Infrared singularities originate from the virtual exchange of certain mass-
less particles (like e.g. photons). At this point, we emphasize that the virtual exchange
of massless ϕh in the EHSG model does not lead to infrared divergences due to the
structure of the corresponding scalar self-couplings. We do not further discuss infrared
and collinear singularities because mass singularities are not important in this thesis.
Here, we are concerned with UV singularities.

The four-momenta of the fields inside the loops of corresponding Feynman diagrams
are not determined by momentum conservation. Consequently, we have to integrate
over all these possible loop momenta − and this integration yields UV-divergent results.
In order to deal with that problem, we first have to make the divergent Feynman
integrals well-defined. This is achieved by adopting a suitable regularization scheme
which restores the original theory in a certain limit. In the following, we restrict
ourselves to the one-loop order for which the entire basis of master integrals is well-
known, together with corresponding analytic solutions.

In the model with an EHS Φh the Lorentz- and gauge-invariant dimensional reg-
ularization scheme [103, 105] is eminently suitable and used throughout this work. In
dimensional regularization we make use of the fact that the emerging UV-divergent
four-dimensional (space-time) loop integrals are convergent if the dimension is reduced
to D = 4− 2ε. Therefore, the dimension of the loop integrals is changed according to
the transformation ∫

d4q

(2π)4 → µ4−D
∫

dDq

(2π)D
, (5.1.1)

where the arbitrary mass scale µ is introduced in order to retain the original mass
dimension of the integrals. Furthermore, some identities have to be modified which
involve the dirac matrices, the Levi-Civita and the metric tensor, such that the Clifford
algebra is valid as well in D dimensions. In the dimensional regularization scheme we
work with the scalar n-point (n = 1, 2, 3, . . . ) one-loop integrals A0, B0, C0, . . . and
with the scalar coefficient functions B1, B00, B11, C1, C2, C00, C11, C12, C22, . . . of the
n-point (n = 2, 3, . . . ) one-loop tensor integrals Bµ, Bµν , Cµ, Cµν , . . . according to the
conventions of [82]. The emerging one-loop integrals are described by these functions
which can be split into terms independent of ε, terms proportional to ε and terms
proportional to 1/ε. In the limit D → 4 the original singularities reappear as

∆ =
1

ε
− γE + log 4π, (5.1.2)

with the constant combination −γE + log 4π (Euler’s constant γE) characteristic for
dimensional regularization. Renormalization consists of properly subtracting these 1/ε
terms by means of a suitable redefinition of the original parameters of the theory.
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We use the method of multiplicative renormalization, where the parameters ci and
fields ψi of the original Lagrangian are replaced by the corresponding bare quantities
ci,0 and ψi,0 according to

ci → ci,0 ≡ Zcici = (1 + δZci)ci = ci + δci, (5.1.3)

and

ψi → ψi,0 ≡
√
Zψiψi =

√
1 + δZψiψi. (5.1.4)

The multiplicative quantities Zci and Zψi in front of the resulting renormalized param-
eters ci and renormalized fields ψi introduce the associated renormalization constants
δci and δZψi into which, finally, the 1/ε terms are absorbed. After the transformations
(5.1.3) and (5.1.4) the bare Lagrangian can be separated into the original part, which
is now written in terms of renormalized ci and ψi, and into the related counterterm
part, which collects the corresponding renormalization constants. The counterterm
part of the bare Lagrangian gives rise to counterterm vertices which extend our set of
Feynman rules and ensure that all Green functions and S-matrix elements are properly
renormalized, i.e. UV finite in the limit ε→ 0. The advantage of multiplicative renor-
malization is that underlying symmetry relations, e.g. the Slavnov-Taylor identities
(3.3.6), also include the corresponding counterterms which provides a deeper insight
into the UV-divergence structure of the theory.

The finite parts of the renormalization constants still have to be fixed. There-
fore, suitable renormalization conditions are imposed on particular renormalized vertex
functions evaluated at specific momenta. Within the scope of this thesis two renor-
malization schemes are used, namely the modified minimal-subtraction (MS) scheme
and the on-shell scheme. In the MS scheme, in addition to the singular 1/ε terms
of the bare parameters and fields just the terms proportional to the constant com-
bination −γE + log 4π are absorbed in the renormalization constants. As a result,
MS-renormalized parameters and fields still depend on the regularization scale µ intro-
duced in (5.1.1) and obey renormalization-group equations [106,107], which determine
the µ running of couplings and masses. This is different in the on-shell scheme, where
further finite parts are absorbed in the renormalization constants such that the on-shell
renormalized fields and parameters are independent of the scale µ. Hence, an advantage
of the on-shell scheme is that it provides a direct relation between the renormalized
parameters and physical observables.

According to the LSZ reduction formula [108–111] (named after Lehmann, Symanzik
and Zimmermann) we furthermore have to take care about a correct normalization of
the involved external wave functions when calculating S-matrix elements beyond the
tree-level approximation. A properly normalized S-matrix element is obtained from the
related renormalized truncated Green function by multiplying the latter with a renor-
malized LSZ factor R̂

1/2
Ψ for each external field Ψ in the process. The wave-function

renormalization constant R̂Ψ is defined by the residue of the renormalized Ψ propagator
at the corresponding physical mass. While we require R̂Ψ = 1 for on-shell renormalized
Ψ, these factors are non-trivial for MS renormalized Ψ.
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5.2 Standard on-shell conditions
The renormalization constants corresponding to the parameters and fields of the stan-
dard parts LG

SM and LF
SM in Lcl

EHS (3.1.1) can be directly adopted from the on-shell
renormalization scheme of the SM [82,83,112–123], following the conventions of [82,83].

We first introduce the renormalized physical parameters MW , MZ , e, mf,i and Vij

with the corresponding bare parameters decomposed as follows,

M2
W,0 = M2

W + δM2
W ,

M2
Z,0 = M2

Z + δM2
Z ,

e0 = e+ δe,

mf,i,0 = mf,i + δmf,i,

(5.2.1)

and
Vij,0 = Vij + δVij. (5.2.2)

Moreover, it is convenient to define the auxiliary renormalized quantities cW and sW
as

cW,0 = cW + δcW , sW,0 = sW + δsW , (5.2.3)

with corresponding renormalization constants determined by

δcW
cW

=
1

2

(
δM2

W

M2
W

− δM2
Z

M2
Z

)
,

δsW
sW

= −c
2
W

s2
W

δcW
cW

, (5.2.4)

according to a first-order expansion in the bare version of (2.1.23).

In first-order approximation the renormalized physical fields W±
µ , Zµ, Aµ, fL

i and
fR
i (cf. Subsect. 2.1.5) are related to the corresponding bare fields as follows,

W±
µ,0 =

(
1 +

1

2
δZWW

)
W±
µ ,(

Zµ,0
Aµ,0

)
=

(
1 + 1

2
δZZZ

1
2
δZZA

1
2
δZAZ 1 + 1

2
δZAA

)(
Zµ
Aµ

)
,

fL
i,0 =

(
δij +

1

2
δZf,L

ij

)
fL
j ,

fR
i,0 =

(
δij +

1

2
δZf,R

ij

)
fR
j .

(5.2.5)

In order to fix the renormalization constants introduced above, we specify first the
renormalized one-particle irreducible (OPI) two-point functions of the standard gauge
bosons and fermions (’t Hooft-Feynman gauge),

Γ̂WW
µν (k) = −igµν

(
k2 −M2

W

)
− igT

µνΣ̂
WW
T (k2)− igL

µνΣ̂
WW
L (k2),

Γ̂abµν(k) = −igµν
(
k2 −M2

a

)
δab − igT

µνΣ̂
ab
T (k2)− igL

µνΣ̂
ab
L (k2),

(a, b = A,Z and MA = 0),

Γ̂fij(k) = i (/k −mi) δij

+ i
[
/kω−Σ̂f,L

ij (k2) + /kω+Σ̂f,R
ij (k2) + (mf,iω− +mf,jω+) Σ̂f,S

ij (k2)
]
,

(5.2.6)
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from which the related renormalized propagators can be obtained by inversion. The
tensors gT

µν and gL
µν are already defined in (2.2.4) and (2.2.5).

In this work the “hat” on top of a given one-loop quantity denotes that it is properly
renormalized, i.e. that the corresponding one-loop counterterm is included. Thus,
e.g. a renormalized one-loop self-energy Σ̂(k2) always can be split into the associated
unrenormalized part Σ(k2) and into the corresponding counterterm part ΣCT according
to

Σ̂(k2) = Σ(k2) + ΣCT. (5.2.7)

In (5.2.6) the lower indices T and L denote the transverse and longitudinal parts of the
standard gauge-boson self-energies ΣWW and Σab, whereas the upper indices L, R and S
characterize the left-handed, right-handed and scalar parts of the fermion self-energies
Σf
ij. In each case the explicit form of ΣCT in terms of basic renormalization constants

can be derived from the Feynman rules specified in Appendix A.

In the on-shell scheme we require that on-shell fields do not mix and that the cor-
responding renormalized masses match the physical ones. Accordingly, the squared
renormalized masses are set to the real parts of the poles of the corresponding renor-
malized (diagonal) propagators and the real parts of the residues of these renormalized
propagators are set to unity. Translating the on-shell renormalization conditions into
corresponding conditions for the fermionic and bosonic OPI two-point functions in
(5.2.6) provides us with the explicit form of the related mass and field renormalization
constants,

δmf,i =
mf,i

2
R̃e
[
Σf,L
ii (m2

f,i) + Σf,R
ii (m2

f,i) + 2Σf,S
ii (m2

f,i)
]
,

δZf,L
ii = −R̃eΣf,L

ii (m2
f,i)

−m2
f,i

∂

∂k2
R̃e
[
Σf,L
ii (k2) + Σf,R

ii (k2) + 2Σf,S
ii (k2)

] ∣∣∣∣
k2=m2

f,i

,

δZf,R
ii = −R̃eΣf,R

ii (m2
f,i)

−m2
f,i

∂

∂k2
R̃e
[
Σf,L
ii (k2) + Σf,R

ii (k2) + 2Σf,S
ii (k2)

] ∣∣∣∣
k2=m2

f,i

,

δZf,L
ij =

2

m2
f,i −m2

f,j

R̃e
[
m2
f,jΣ

f,L
ij (m2

f,j) +mf,imf,jΣ
f,R
ij (m2

f,j)

+
(
m2
f,i +m2

f,j

)
Σf,S
ij (m2

f,j)
]
, i 6= j,

δZf,R
ij =

2

m2
f,i −m2

f,j

R̃e
[
m2
f,jΣ

f,R
ij (m2

f,j) +mf,imf,jΣ
f,L
ij (m2

f,j)

+2mf,imf,jΣ
f,S
ij (m2

f,j)
]
, i 6= j,

(5.2.8)
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and

δM2
V = R̃eΣV V

T (M2
V ), (V = W,Z),

δZV V = −R̃e
∂ΣV V

T (k2)

∂k2

∣∣∣∣
k2=M2

V

, (V = W,Z,A),

δZAZ = −2R̃e
ΣAZ

T (M2
Z)

M2
Z

, δZZA = 2
ΣAZ

T (0)

M2
Z

.

(5.2.9)

Here, R̃e means that the real part of the one-loop integrals in the self-energies is
taken leaving the quark-mixing matrix elements Vij unchanged. As a consequence of
transversality the longitudinal gauge-boson self-energies in (5.2.6) do not play a role in
the fixing of the renormalization constants. According to (5.2.4), with (5.2.9) also the
renormalization constants δcW and δsW are determined.

A further renormalization condition is needed in order to fix the renormalization
constant δe. For this purpose, it is convenient to define the renormalized electric charge
e by the full electron-electron-photon vertex for on-shell external fields in the limit of
vanishing photon momentum (Thomson limit), which results in

δe

e
= −1

2
δZAA −

1

2

sW
cW

δZZA =
1

2

∂ΣAA
T (k2)

∂k2

∣∣∣∣
k2=0

− sW
cW

ΣAZ
T (0)

M2
Z

. (5.2.10)

For completeness we mention that the renormalized quark-mixing matrix V is de-
fined in analogy to (2.1.26) and (2.1.29) by the unitary transformation matrices relat-
ing the renormalized fermionic weak eigenstates to the renormalized fermionic mass
eigenstates. This fixes the renormalization constants δVij in terms of fermionic field
renormalization constants

δVij =
1

4

[(
δZu,L

ik − δZu,L†
ik

)
Vkj −Vik

(
δZd,L

kj − δZd,L†
kj

)]
. (5.2.11)

Note that most of the one-loop renormalization constants specified above depend on
the free non-standard parameters α and MH2 due to the tree-level mixing (3.1.21)
in the scalar sector. As there exist no tree-level couplings of the fields Z ′ and ϕh

to the standard gauge bosons and fermions the explicit expressions of the one-loop
renormalization constants specified within this section are the same for the EHSL,
EHSG and EHSD models.

5.3 Extended sector

In this section we perform the renormalization of the remaining fields and parameters,

which are associated with the Higgs part LΦs/h

EHS (3.1.2), with the non-standard gauge
part LZ′EHSL (3.1.9), with the gauge-fixing part Lfix

EHS (3.2.1), and with the Faddeev-
Popov part Lghost

EHS (3.2.4). This completes the renormalization of the physical and
unphysical sectors of the three EHS models.
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5.3.1 Renormalization transformations

Extended scalar sector

We introduce the entire set of renormalization constants corresponding to the fields

and parameters in LΦs/h

EHS before rotating to the mass-eigenstate basis via (3.1.21).

According to (5.1.4), both Φs and Φh obtain multiplicative field renormalization
constants,

Φs,0 =
√
ZΦsΦs ≡

√
1 + δZHΦs,

Φh,0 =
√
ZΦh

Φh ≡
√

1 + δZχΦh.
(5.3.1)

Hence, in first-order approximation the renormalized scalar fields H, φ±, ϕs, χ and ϕh

are related to the bare fields by

H0 =

(
1 +

1

2
δZH

)
H, φ±0 =

(
1 +

1

2
δZH

)
φ±, ϕs,0 =

(
1 +

1

2
δZH

)
ϕs,

χ0 =

(
1 +

1

2
δZχ

)
χ, ϕh,0 =

(
1 +

1

2
δZχ

)
ϕh.

(5.3.2)

Regarding the EHSD model, the last relation in (5.3.2) involving the field ϕh has to be
dropped.

The renormalized Higgs-potential parameters λs, λh, µ2
s , µ2

h and η are related to
the corresponding bare parameters according to

λs,0 = λs + δλs,

λh,0 = λh + δλh,

µ2
s,0 = µ2

s + δµ2
s ,

µ2
h,0 = µ2

h + δµ2
h,

η0 = η + δη.

(5.3.3)

The minimum of the potential (3.1.5) is shifted by one-loop corrections. In order to
compensate this shift, we introduce the renormalized vevs vs and vh according to

vs,0 = vs + δvs,

vh,0 = vh + δvh.
(5.3.4)

Similarly to (5.3.4) we treat the related one-loop corrections contributing to the tadpole
coefficients of the fields H and χ, specified at lowest order in (3.1.16). Corresponding
renormalization constants are introduced in order to compensate for these one-loop
effects and the renormalized tadpole coefficients tH and tχ are related to the respective
bare coefficients via

tH,0 = tH + δtH , tχ,0 = tχ + δtχ. (5.3.5)
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Performing the renormalization transformation in (3.1.16) according to (5.3.3) and
(5.3.4) in first-order approximation yields

δtH = −1

2
vsv

2
hδη −

1

4
v3

s δλs + vsδµ
2
s − vsvhηδvh −

1

2
λsv

2
s δvs,

δtχ = −1

2
vhv

2
s δη −

1

4
v3

hδλh + vhδµ
2
s − vsvhηδvs −

1

2
λhv

2
hδvh.

(5.3.6)

The renormalized tadpole coefficients tH and tχ again vanish due to the renormalized
minimum conditions (5.3.4).

Next, we consider the bare squared-mass matrixM2
0 of the fields H0 and χ0 which

follows from (3.1.17) after the related renormalization transformation specified by
(5.3.3) and (5.3.4). According to

M2
0 =M2 + δM2, (5.3.7)

it is split into the renormalized squared-mass matrix

M2 =

(
1
2
λsv

2
s ηvsvh

ηvsvh
1
2
λhv

2
h

)
(5.3.8)

(simplified by means of the renormalized minimum conditions) and into the corre-
sponding squared-mass counterterm matrix

δM2 =

(
δM2

11 δM2
12

δM2
12 δM2

22

)
, (5.3.9)

with the first-order entries

δM2
11 = −δµ2

s +
3

4
v2

s δλs +
3

2
vsλsδvs +

1

2
v2

hδη + ηvhδvh,

δM2
12 = ηvsδvh + ηvhδvs + vsvhδη,

δM2
22 = −δµ2

h +
3

4
v2

hδλh +
3

2
vhλhδvh +

1

2
v2

s δη + vsηδvs.

(5.3.10)

At this point, we transform the renormalization constants δZH , δZχ, δtH , δtχ, δM2
11,

δM2
12 and δM2

22 into the related renormalization constants in the mass-eigenstate basis
of the scalar fields. This is simply accomplished with the help of the rotation (3.1.21).
After performing the renormalization transformation in (3.1.21) according to (5.3.2)
the renormalized mass eigenstates H1 and H2 can be separated from the corresponding
bare fields as (

H1,0

H2,0

)
=

(
1 + 1

2
δZH1H1

1
2
δZH1H2

1
2
δZH1H2 1 + 1

2
δZH2H2

)(
H1

H2

)
, (5.3.11)

with (
δZH1H1

δZH2H2

)
=

(
c2
α s2

α

s2
α c2

α

)(
δZH
δZχ

)
, (5.3.12)

and
δZH1H2 = −sαcα (δZH − δZχ) . (5.3.13)
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Inversion of (5.3.12) yields(
δZH
δZχ

)
=

1

1− 2s2
α

(
c2
α −s2

α

−s2
α c2

α

)(
δZH1H1

δZH2H2

)
, (5.3.14)

and hence it is straightforward to replace the original field renormalization constants
δZH and δZχ by the related field renormalization constants δZH1H1 and δZH2H2 in the
mass-eigenstate basis. Equipped with (5.3.13) and (5.3.14) we obtain

δZH1H2 =
sαcα
c2
α − s2

α

(δZH2H2 − δZH1H1) , (5.3.15)

i.e. the non-diagonal entries of the matrix-valued field renormalization constant in
(5.3.11) are determined by a linear combination of the corresponding diagonal en-
tries. Moreover, it follows that the renormalization constants δtH1/2

associated with
the renormalized tadpole coefficients tH1/2

are given by the linear combinations

δtH1 = cαδtH + sαδtχ,

δtH2 = −sαδtH + cαδtχ.
(5.3.16)

The squared-mass counterterm matrix δM2
α in the mass-eigenstate basis is determined

by

δM2
α =

(
δM2

H1
δM2

H1H2

δM2
H1H2

δM2
H2

)
≡
(
cα sα
−sα cα

)
δM2

(
cα −sα
sα cα

)
. (5.3.17)

Taking into account (5.3.6), (5.3.10), (5.3.16) and (5.3.17) the original renormalization
constants δλs, δλh, δµ2

s , δµ2
h and δη can be translated into the renormalization constants

δM2
H1

, δM2
H1H2

, δM2
H2

, δtH1 and δtH2 in the mass-eigenstate basis. Note that in this
scheme the mixing angle α is not explicitly renormalized because it is introduced after
renormalization.

Non-standard gauge sector

Next, we specify the renormalization transformations associated with the non-standard
gauge sector of the EHSL model. Analogously to (5.2.5) and (5.3.2), in first-order
approximation the renormalized field Z ′ is related to the corresponding bare field by

Z ′µ,0 =

(
1 +

1

2
δZZ′Z′

)
Z ′µ. (5.3.18)

The associated renormalized physical parameters, namely MZ′ and gh, are separated
from the related bare parameters as

M2
Z′,0 = M2

Z′ + δM2
Z′ , (5.3.19)

and
gh,0 = gh + δgh. (5.3.20)
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Performing the renormalization transformation in (3.1.30) according to (5.3.4), (5.3.19)
and (5.3.20) in first-order approximation yields

δvh

vh

=
1

2

δM2
Z′

M2
Z′
− δgh

gh

. (5.3.21)

The transition to the global model EHSG is described later.

Gauge-fixing and Faddeev-Popov sector

Finally, we specify the remaining renormalization transformations, namely those of the
gauge-fixing parameters in Lfix

EHS and those of the ghost fields in Lghost
EHS (cf. Sect. 3.2).

The renormalized gauge-fixing parameters ξa (a = A,Z,W,Z ′) and ξ′a (a = Z,W,Z ′)
are related to the corresponding bare parameters as follows,

ξA,0 = ξA

(
1 + δξA

)
,

ξ
(′)
W,0 = ξ

(′)
W

(
1 + δξ

(′)
W

)
,

ξ
(′)
Z,0 = ξ

(′)
Z

(
1 + δξ

(′)
Z

)
,

ξ
(′)
Z′,0 = ξ

(′)
Z′

(
1 + δξ

(′)
Z′

)
,

(5.3.22)

and the field renormalization of the Faddeev-Popov ghosts is introduced in first-order
approximation by(

uZ0
uA0

)
=

(
1 + δZ̃ZZ δZ̃ZA
δZ̃AZ 1 + δZ̃AA

)(
uZ

uA

)
,

u±0 =
(

1 + δZ̃WW

)
u±, uZ

′
0 =

(
1 + δZ̃Z′Z′

)
uZ
′
.

(5.3.23)

Due to ghost-number conservation we do not have to renormalize the corresponding
anti-ghost fields. The renormalized gauge-fixing parameters are again fixed according to
the ’t Hooft-Feynman gauge. Regarding the EHSG and EHSD models, the last relation
in (5.3.22) and in (5.3.23), involving the non-standard gauge-fixing parameters and the
non-standard ghost field, respectively, has to be dropped.

A proper renormalization of the unphysical sector is needed to render all Green
functions described by LEHS (3.2.5) UV finite and to realize the correct form of renor-
malized Slavnov-Taylor identities.

5.3.2 Renormalization conditions

As mentioned in the beginning of this chapter, our aim is to establish the renormal-
ization scheme of the EHSL model such that the limit gh → 0 directly leads us to
the renormalized EHSG model. Note that according to MZ′ = ghvh, for fixed vh the
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Z
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Figure 5.1: One-loop self-energy diagrams in the EHSL model contributing to ΣHiHj ,
i, j ∈ {1, 2}, with non-standard fields only in the internal lines, generic for scalar bosons
S = H1, H2, ϕh. The remaining diagrams only contain pure standard-sector fields in the
internal lines (analogously to the related SM self-energy ΣHH). In the EHSG (EHSD)
model we have to ignore the diagrams involving the fields Z ′ and uZ

′
(Z ′, uZ

′
and ϕh).

limit MZ′ → 0 corresponds to the limit gh → 0.2 In the following, the renormaliza-
tion constants introduced above for the three EHS models are fixed by appropriate
renormalization conditions.

Extended scalar sector

In order to fix the renormalization constants corresponding to the fields and parameters

in LΦs/h

EHS we define the renormalized OPI two-point functions of the mass eigenstates
H1/2 by

Γ̂HiHj(k2) = i
(
k2 −M2

Hi

)
δij + iΣ̂HiHj(k2), i, j ∈ {1, 2}, (5.3.24)

with the diagonal renormalized self-energies

Σ̂HiHi(k2) = ΣHiHi(k2) +
(
k2 −M2

Hi

)
δZHiHi − δM2

Hi
, (5.3.25)

and the non-diagonal renormalized self-energy

Σ̂H1H2(k2) = ΣH1H2(k2) +

[
k2 − M2

H1
+M2

H2

2

]
δZH1H2 − δM2

H1H2
. (5.3.26)

The diagrams contributing to ΣHiHj are depicted in Fig. 5.1.

The diagonal entries of the squared-mass counterterm matrix δM2
α (5.3.17) are

fixed according to the on-shell scheme, i.e. we require that the squared renormalized
masses M2

Hi
are equal to the real parts of the poles of the corresponding propagators,

which leads us to

δM2
Hi

= R̃eΣHiHi(M2
Hi

). (5.3.27)

2A proper replacement of MZ′ by means of the parameters gh and vh according to (3.1.30) is
implied whenever we take the limit gh → 0.
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Next, we consider the case i 6= j in (5.3.24). In order to fix the non-diagonal entries of
δM2

α we require vanishing mixing for on-shell standard-like Higgs bosons H1, i.e.

Γ̂H1H2(M2
H1

)
!

= 0, (5.3.28)

which according to (5.3.26) implies

δM2
H1H2

= ΣH1H2(M2
H1

) +
M2

H1
−M2

H2

2
δZH1H2 . (5.3.29)

For k2 = M2
H1

the field renormalization does not drop out in (5.3.26). Thus, we initially
have to fix the field renormalization of the extended scalar sector in order to completely
determine the squared-mass counterterm matrix δM2

α.

For on-shell renormalized δZHiHi threshold effects of H2 would appear in one-loop
matrix elements with external H1 bosons (and vice versa) due to the underlying mixing.
Therefore, it is more convenient to choose the MS scheme for δZHiHi which provides
us with the renormalization conditions

δZHiHi = −
[

R̃e
∂ΣHiHi(k2)

∂k2

∣∣∣∣
k2=M2

Hi

]∆

. (5.3.30)

The symbol with the outer bracket [ . . . ]∆ denotes that only the ∆-dependent part of
the expression inside is taken, where ∆ is specified in (5.1.2). With (5.3.15), (5.3.27),
(5.3.29) and (5.3.30) for each of the three models both the matrix-valued field renormal-
ization constant in (5.3.11) and the squared-mass counterterm matrix δM2

α in (5.3.17)
are determined.

According to (5.3.4), the renormalization of vs and vh generally is treated inde-
pendently of the associated field renormalization in (5.3.1). As a consequence, in the
three models we are free to fix δtHi by demanding that corresponding one-loop tadpole
contributions vanish, i.e. we require

T̂Hi = THi + δtHi = 0 (5.3.31)

for the renormalized one-point amputated Green functions T̂Hi .

From the corresponding renormalization conditions above it is straightforward to
check that in the limit gh → 0 the renormalization constants δM2

Hi
, δM2

H1H2
, δZHiHi ,

δZH1H2 and δtHi of the EHSL model smoothly turn into the respective ones of the
EHSG model. The explicit expressions of these renormalization constants furthermore
change when switching to the EHSD model since then related virtual-ϕh contributions
have to be dropped. However, since A0(0) = 0 the tadpole renormalization constants
δtHi in the EHSG model are identical to those in the EHSD model.

From (5.3.14) and (5.3.30) we obtain (fermion generation index i)

δZH = − αem

8πM2
W s

2
W

[∑
i

[
3
(
m2
u,i +m2

d,i

)
+m2

l,i

]
−
(
M2

Z + 2M2
W

)]
∆, (5.3.32)
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i.e. in each of the three models δZH is just given by the Higgs-field renormalization
constant of the SM in the MS scheme. In the EHSL model we furthermore obtain

δZχ =
g2

h

8π2
∆ (5.3.33)

in an analogous manner. Hence, we have

lim
gh→ 0

δZχ = 0, (5.3.34)

and we find that the field renormalization constant δZχ is not required in the EHSG
and EHSD models. This is because in the absence of the non-standard gauge sector
no tensor integrals appear in the related χ self-energy which thus has a momentum-
independent UV-divergent part. In the EHSG model the corresponding U(1)Yh Ward
identities (B.2.2)−(B.2.9) specified in Appendix B furthermore show that δZχ = 0 is
implied.

The renormalization constant δvs is already determined by standard on-shell renor-
malization constants,

δvs

vs

=
δsW
sW

+
1

2

δM2
W

M2
W

− δe

e
, (5.3.35)

which follows from the first-order renormalization transformation of (3.1.28) according
to (5.2.1) and (5.2.3). Therefore, the explicit expression of δvs is the same for each
of the three models (cf. Sect. 5.2). The renormalization constant δvh is related to the
non-standard gauge sector of the EHSL model discussed next.

Non-standard gauge sector

In order to fix the renormalization constants related to the non-standard gauge sector
of the EHSL model, we first specify the renormalized OPI two-point function of the Z ′

boson by

Γ̂Z
′Z′

µν (k) = −igµν
(
k2 −M2

Z′
)
− igT

µνΣ̂
Z′Z′
T (k2)− igL

µνΣ̂
Z′Z′
L (k2), (5.3.36)

with the transverse (lower index T) and longitudinal (lower index L) part of the renor-
malized Z ′ self-energy,

Σ̂Z′Z′
T (k2) = ΣZ′Z′

T (k2) +
(
k2 −M2

Z′
)
δZZ′Z′ − δM2

Z′ ,

Σ̂Z′Z′
L (k2) = ΣZ′Z′

L (k2) + k2 (δZZ′Z′ − δξZ′)−M2
Z′δZZ′Z′ − δM2

Z′ .
(5.3.37)

The one-loop diagrams contributing to ΣZ′Z′
T and ΣZ′Z′

L are shown in Fig. 5.2.

For the Z ′ mass renormalization only ΣZ′Z′
T is needed. Requiring that the squared

renormalized mass M2
Z′ is equal to the real part of the pole of the renormalized trans-

verse Z ′ propagator yields

δM2
Z′ = R̃eΣZ′Z′

T (M2
Z′). (5.3.38)
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Z ′

(c)

Figure 5.2: Self-energy diagrams contributing to ΣZ′Z′
T and ΣZ′Z′

L at the one-loop level,
with scalar bosons S = H1, H2, ϕh.

Furthermore, requiring that the real part of the residue of the renormalized Z ′ propa-
gator is equal to unity provides us with

δZZ′Z′ = −R̃e
∂ΣZ′Z′

T (k2)

∂k2

∣∣∣∣
k2=M2

Z′

. (5.3.39)

From the expressions explicit for ΣZ′Z′
T we obtain[

δM2
Z′

M2
Z′

]∆

=
13g2

h

48π2
∆, [δZZ′Z′ ]

∆ = − g2
h

48π2
∆, (5.3.40)

as well as the limits

lim
gh→ 0

δZZ′Z′ = 0, lim
gh→ 0

δM2
Z′ = 0, (5.3.41)

and

lim
gh→ 0

δM2
Z′

M2
Z′

= −s
2
αM

2
H1

+ c2
αM

2
H2

32π2v2
h

, (5.3.42)

for the transition to the global model EHSG.

Next, we discuss how to fix the renormalization constants δvh and δgh. In com-
pliance with (5.3.4) the renormalization constant δvh also appears in the EHSG and
EHSD models. We intend to obtain a proper definition of δvh in the EHSG model
just by taking the limit gh → 0 in (5.3.21). Thus, in the EHSL model it is convenient
to fix δvh according to the MS scheme such that the renormalization constant δvh in
the EHSG model does not contain the UV-finite remnant of δM2

Z′/M
2
Z′ in (5.3.42).

Accordingly, in the EHSL model we fix δvh via

δvh

vh

=
1

2

[
δM2

Z′

M2
Z′

]∆

− δgMS
h

gh

,
δgMS

h

gh

≡
[
δgh

gh

]∆

, (5.3.43)

and in order to get δgMS
h the UV-divergent part of the three-point vertex ΓχZ

′Z′
µν is

calculated at one-loop order from the Feynman diagrams depicted in Fig. 5.3, yielding[
ΓχZ

′Z′
µν

]∆

= − 3M4
Z′

8π2v3
h

gµν ∆. (5.3.44)

The Feynman rules specify the counterterm δΓχZ
′Z′

µν of the corresponding renormalized
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Figure 5.3: One-loop diagrams contributing to the vertex ΓχZ
′Z′

µν , generic for scalar
bosons S1, S2 ∈ {χ, ϕh}.

vertex as follows,

Γ̂χZ
′Z′

µν = ΓχZ
′Z′

µν + δΓχZ
′Z′

µν ,

δΓχZ
′Z′

µν =
2M2

Z′

vh

gµν

[
δM2

Z′

M2
Z′
− δvh

vh

+ δZZ′Z′ +
1

2
δZχ

]
.

(5.3.45)

The requirement that Γ̂χZ
′Z′

µν has to be UV finite together with (5.3.33), (5.3.40) and
(5.3.43)−(5.3.45) yields

δgMS
h

gh

=
g2

h

96π2
∆ (5.3.46)

and
δvh

vh

=
g2

h

8π2
∆, (EHSL model) (5.3.47)

such that
lim
gh→ 0

δvh = 0. (5.3.48)

This result indicates that the renormalization constant δvh is not necessary for the
renormalization of the EHSG and EHSD models.

According to the general discussion on vev renormalization in spontaneously broken
gauge theories [124] the introduction of the independent renormalization constant δvh

is necessary for non-vanishing gh and ξ′Z′ 6= 0 in the EHSL model, since then the
non-standard part of the gauge-fixing Lagrangian (3.2.1) breaks the associated global
U(1)Yh . For vanishing gh, however, the global U(1)Yh of the Lagrangian is restored and
then, δvh is not required anymore. We confirmed that δvh is not needed to restore the
U(1)Yh Ward identities specified in Appendix B. Finally, we have checked analytically
that with the choice

δvh = 0 (EHSG/EHSD model) (5.3.49)
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all the corresponding renormalized one-loop vertex functions are UV finite, both in
the EHSG and in the EHSD model. Therefore, we conclude that the renormalization
conditions (5.3.47) and (5.3.49) are very convenient allowing a smooth transition from
the renormalized EHSL to the renormalized EHSG model.

Gauge-fixing and Faddeev-Popov sector

The bare gauge-fixing part Lfix
EHS,0 is obtained from (3.2.1) by introducing the renormal-

ization transformations for the fields and parameters. The bare gauge-fixing operators
F a

0 (a = A,Z,±, Z ′) are defined such that these absorb all the corresponding one-loop
renormalization constants in Lfix

EHS,0 in first-order approximation. Additionally taking
into account the renormalization transformations of the ghost fields (5.3.23), the bare
Faddeev-Popov part Lghost

EHS,0 is defined analogously to (3.2.4) but with the replacements

δF a(x) → δF a
0 (x), ub(y) → ub0(y), δφc(z) → δφc0(z) and δV c

ν (z) → δV c
ν,0(z). The in-

finitesimal gauge transformations of the bare fields δV c
ν,0 and δφc0 are obtained from

(2.1.32) and (3.1.32) by introducing the corresponding renormalization transforma-
tions. Accordingly, the renormalized vertex functions involving the ghost fields as well
as the renormalized ghost-field propagators are determined as listed in Appendix A.

In linear gauges the gauge-fixing operators and parameters are protected from one-
loop and higher-order corrections as a consequence of the Slavnov-Taylor identities.
Therefore, we do not have to renormalize the gauge-fixing part of the Lagrangian (see
e.g. [83]) and it is convenient to require that Lfix

EHS,0 is equal to (3.2.1) written in terms
of renormalized fields and parameters. This ensures that the usual form of Slavnov-
Taylor identities is realized and fixes the renormalization constants of the standard
gauge-fixing parameters as follows,

δξV = δZV V , (V = A,Z,W ),

δξ′V =
1

2
δZV V −

1

2

δM2
V

M2
V

− 1

2
δZH , (V = Z,W ),

(5.3.50)

and those of the non-standard gauge-fixing parameters as

δξZ′ = δZZ′Z′ , δξ′Z′ =
1

2
δZZ′Z′ −

1

2

δM2
Z′

M2
Z′
− 1

2
δZχ. (5.3.51)

With (5.3.50) and (5.3.51) the poles of the would-be Goldstone-boson propagators
coincide with the corresponding ones of the related gauge bosons also at the one-loop
level.

It remains to determine the field renormalization of the Faddeev-Popov ghosts as
introduced in (5.3.23). According to the on-shell scheme, the related field renormaliza-
tion constants are fixed such that the ghost fields do not mix at k2 = 0 and k2 = M2

Z ,
and such that the real parts of the residues of the corresponding renormalized prop-
agators are equal to one. The counterterm parts of the associated renormalized OPI
two-point functions can be obtained from App. A.6. With the respective ua-ub self-
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energies denoted as Σ̃ab we hence obtain

δZ̃V V = −R̃e
∂Σ̃V V(k2)

∂k2

∣∣∣∣
k2=M2

V

+
1

2
δZV V , (V = A,Z,±),

δZ̃AZ = −R̃e
Σ̃ZA(M2

Z)

M2
Z

+
1

2
δZAZ , δZ̃ZA =

Σ̃AZ(0)

M2
Z

,

(5.3.52)

and

δZ̃Z′Z′ = −R̃e
∂Σ̃Z′Z′(k2)

∂k2

∣∣∣∣
k2=M2

Z′

+
1

2
δZZ′Z′ , (5.3.53)

where δZ̃±± = δZ̃WW and δZ±± = δZWW .

Now that we have introduced and fixed all the one-loop renormalization constants
of the EHSL, EHSG and EHSD models, we refer to the associated list of Feynman rules
which can be found in Appendix A and includes the entire set of one-loop counterterm
vertices.
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Chapter 6
Electroweak precision observables

In order to gain further information about the allowed non-standard parameter space
we here focus on a distinguished set of precision observables which is affected by non-
standard one-loop contributions of the extended Higgs sector. It is commonly known
as the set of electroweak precision observables (EWPOs).

EWPOs are given by the MW − MZ interdependence via GF and the set of ob-
servables at the Z resonance, i.e. line-shape observables like the total Z width ΓZ
and partial widths Γf ≡ Γ(Z → ff ) as well as various asymmetries which contain
the effective electroweak mixing angles. More details on EWPOs can be found e.g.
in [81, 125].

Due to associated one-loop contributions of the fieldsH1 andH2 the EWPOs depend
on the non-standard parameters α and MH2 . At the one-loop level neither Z ′µ nor ϕh

contributes to EWPOs and therefore, the remaining non-standard parameters vh and
MZ′ (or gh) do not appear in this context. The one-loop predictions provided within
this chapter thus apply to the EHSL, EHSG and EHSD models which are here referred
to as EHS models.

For the Z line-shape observables σ0
had (hadronic cross section at the peak), ΓZ ,

Rl = Γhad

Γe
(hadronic width Γhad) and Rb = Γb

Γhad
it turns out that related non-standard

one-loop effects are negligible (considerably smaller than the size of corresponding
experimental ±1σ bounds) in the treated range of α and MH2 (specified in Sect. 6.1).
This is why we do not further discuss these insensitive Z line-shape observables.

It appears that the W -boson mass MW and the effective leptonic mixing angle
sin2 θlep

eff are the EWPOs which are most sensitive to the non-standard one-loop contri-
butions of the EHS models, and in this chapter we provide the corresponding results.
Moreover, we provide the non-standard one-loop prediction for the forward-backward
pole asymmetry of the Z-boson decay into a pair of b quarks A0,b

FB, for which the SM pre-
diction shows about 2.4σ deviation from the corresponding experimentally measured
central value (cf. Tab. 6.2).

Non-standard one-loop contributions to MW have already been studied in the real-
Φh extension of the SM [52]. Here, we perform a similar analysis but take into account

57
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parameter experimental central value reference

MH = MH1 [GeV] 125.09 [19]
MZ [GeV] 91.1876 [79]
mt [GeV] 173.5 [79]
mb [GeV] 4.93 [79]
GF [GeV−2] 1.1663787 · 10−5 [100,101]

(αem)−1 137.035999139 [79]
αs (MZ) 0.1182 [79]
∆αem 0.05907 [126,127]

Table 6.1: Relevant input parameters we use in our calculations. MH denotes the mass
of the SM Higgs boson. For the quarks the pole masses are listed.

an improved implementation of corresponding higher-order SM contributions.1 In [53]
bounds for the parameters α and MH2 have been derived from the full set of electroweak
precision data by taking into account related non-standard one-loop effects in the
propagators of the W and Z boson, but with the associated non-standard one-loop
effects in the couplings of the Z boson to the fermions neglected. Here, we take into
account the complete non-standard one-loop corrections.

At the end of this chapter we present the result for a ∆χ2 analysis which takes into
account our predicted MW , sin2 θlep

eff and A0,b
FB in terms of the model parameters and

depicts associated exclusion bounds of 68% and 95% confidence level in the α −MH2

plane.

6.1 Technical aspects and current experimental status
In order to obtain accurate analytical and numerical results for the observables listed
above, numerous Feynman diagrams have to be calculated. For the generation and sim-
plification of the corresponding analytical expressions we make use of the Mathematica
packages FeynArts [78] and FormCalc [104]. The Mathematica output is then con-
verted into a FORTRAN code which, together with the LoopTools [104] package, allows
us to obtain the numerical results in an efficient way.

Up to now, quantum effects of the extended models beyond the one-loop level have
not yet been calculated. We therefore combine one-loop standard and non-standard ef-
fects with all SM higher-order terms so far known. As there exist no tree-level couplings
between the non-standard scalar fields and the massless gauge fields (cf. Chapter 3)
corresponding one-loop and higher-order QED and QCD contributions can be directly
adopted from the SM.

The important input parameters which are used in our calculations are specified in
Tab. 6.1. Here, mt and mb denote the pole masses of the t and b quark, GF represents
the Fermi constant, αs the strong coupling constant and ∆αem stands for the shift

1For large α and large MH2
this improved implementation has a non-negligible effect such that the

deviation from the related SM prediction for MW becomes furthermore increased by a few MeV.



6.1 Technical aspects and current experimental status 59

observable SM pred. ∆mt ∆MH
∆∆α experiment

MW [GeV] 80.363 ±6 · 10−3 ±5 · 10−4 ±2 · 10−3 80.385± 0.015 [79]

sin2 θlep
eff 0.23151 ±3 · 10−5 ±4 · 10−6 ±4 · 10−5 0.23153± 0.00016 [131]

A0,b
FB 0.103 ±2 · 10−4 ±2 · 10−5 ±2 · 10−4 0.0992± 0.0016 [132]

Table 6.2: Summary of EWPOs investigated in this work. Current experimental central
values and associated ±1σ bounds are listed as well as corresponding SM predictions.
The quantities ∆mt , ∆MH

and ∆∆α point out the particular change in the predicted
observables which stems from a variation of the input parameters mt and MH by
±1 GeV and ∆αem by ±0.0001.

in the electromagnetic fine-structure constant αem induced by QED photon vacuum
polarization. The masses of the remaining fermions are taken from [79] and the entries
of the quark-mixing matrix are set to the FormCalc-8.3 default values.

The current experimental measurements of MW , sin2 θlep
eff and A0,b

FB are summarized
in Tab. 6.2 together with the corresponding SM predictions. The latter incorporate
the input parameters specified in Tab. 6.1 and include the established one-loop and
higher-order contributions. The SM prediction for MW is taken from [128] whereas
the predicted values of sin2 θlep

eff and A0,b
FB are obtained by using the program ZFITTER

[129,130].

6.1.1 Constraints from Higgs signal strengths

Recent measurements of the various Higgs signal strengths at the LHC can be used to
get a quick estimate for the restriction of the mixing angle α to a smaller range than
in (3.1.25).

Here, the Higgs signal strength µ̂i is defined by the total cross section of the process
pp → H1 → Xi (protons p, decay product Xi ∈ SM) predicted by the EHS models,
normalized by the related total cross section predicted by the SM. Hence, we have

µ̂i =
σ(pp→ H1 → Xi)

σ(pp→ H → Xi)SM

=
σ(pp→ H1)

σ(pp→ H)SM

· BR(H1 → Xi)

BR(H → Xi)SM

, (6.1.1)

which in LO approximation simplifies to

µ̂i = c2
α ·

BR(H1 → Xi)LO

BR(H → Xi)SM,LO

. (6.1.2)

From (6.1.2) we can furthermore deduce that

µ̂i = c2
α ·
[

1 +
Γ(H1 → Xns)LO

c2
αΓHtot,LO

]−1

, Xns /∈ Xi, (6.1.3)
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where Γ(H1 → Xns) generically summarizes the potential impact of kinematically al-
lowed non-standard decay modes (cf. Chapter 7) on the total H1 width

ΓH1
tot =

∑
i

Γ(H1 → Xi) + Γ(H1 → Xns), (6.1.4)

and ΓHtot denotes the total width of the SM Higgs boson. In the limit Γ(H1 → Xns)→ 0
we have BR(H1 → Xi)LO = BR(H → Xi)SM,LO and thus µ̂i = c2

α. Here we assume that
experimentally measured deviations from µ̂i = 1 can be related to this factor c2

α.

Taking into account the combined Higgs signal strength analysis of the ATLAS [133]
and CMS [134] collaboration this approach approximately leads us to µ̂i = c2

α & 0.75.
Therefore, we restrict the angle α to the range

−π
6
≤ α ≤ +

π

6
. (6.1.5)

For the second Higgs we assume MH2 > 70 GeV in the numerical analysis of EWPOs.2

Moreover, we do not consider MH2 larger than 1 TeV. Note that according to (6.1.3) the
mixing angle α becomes even more constrained by µ̂i measurements once non-standard
decay modes of H1 become kinematically allowed.

6.2 W -boson mass and muon decay

6.2.1 Theoretical framework

Originally, the muon lifetime τµ has been calculated in the Fermi model. In this
context, the corresponding fermions interact directly at one four-fermion vertex and
the theoretical result can be written as [81]

1

τµ
=
G2

Fm
5
µ

192π3

(
1− 8

m2
e

m2
µ

)
·KQED,

KQED = 1 + 1.810
αem(mµ)

π
+ (6.701± 0.002)

(
αem(mµ)

π

)2

,

(6.2.1)

including the established QED corrections within that model. Here, me and mµ denote
the masses of the electron and muon. Nowadays, the Fermi model is considered to
describe the effective limit of small momentum transfer in the SM. Still, (6.2.1) serves as
the defining equation for the Fermi constant GF which represents the coupling strength
of the effective four-fermion interaction. Including the established QED corrections
specified by KQED we obtain the numerical value listed in Tab. 6.1.

Comparing (6.2.1) with the theoretical result for τµ calculated in the SM (or in its
EHS extensions) and just retaining terms of first order in perturbation theory provides
us with the relation

GF√
2

=
e2

8s2
WM

2
W

[1 + ∆r] . (6.2.2)

2The LEP exclusion limit of MH > 114.4 GeV [135] does not apply to non-standard Higgs bosons
with smaller couplings.
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Figure 6.1: Generic gauge-boson self-energy diagrams, with gauge fields V1, V2, V3, V4 ∈
{A,Z,W±}, scalar bosons S1, S2 ∈ {H1, H2, ϕs, φ

±}, fermions F1, F2 ∈ {νi, li, ui, di},
and ghost fields U1, U2 ∈ {uA, uZ , u±}.

The finite quantity

∆r = 2
δe

e
− c2

W

s2
W

(
δM2

Z

M2
Z

− δM2
W

M2
W

)
+

ΣWW
T (0)− δM2

W

M2
W

+ δvertex+box (6.2.3)

summarizes the electroweak radiative one-loop corrections which are contributing to
the muon decay. The QED corrections are already included in (6.2.1).

In the SM the explicit form of the vertex and box contributions to the muon decay
can be written as [81]

δvertex+box =
2

sW cW

ΣAZ
T (0)

M2
Z

+
αem

4πs2
W

(
6 +

7− 4s2
W

2s2
W

log c2
W

)
. (6.2.4)

In the EHS models we can neglect deviations from the expression on the right-hand side
of (6.2.4). This is because the corresponding non-standard vertex and box contributions
are always proportional to the couplings of H1 and H2 to the electron or muon and
those couplings always contain a factor

me/µ
MW

, multiplied by cα and sα, respectively.
Hence, associated virtual contributions are suppressed no matter if we consider the
standard (α = 0) or the extended scalar sector.

Next, let us have a closer look at the renormalization constants and gauge-boson
self-energies which appear in (6.2.3) and (6.2.4). The corresponding renormalization
constants are defined in (5.2.9) and (5.2.10). Generally speaking, we have to take into
account virtual contributions of the gauge, Higgs, fermion and ghost sector as depicted
in Fig. 6.1. Since there exist no direct couplings of H1 and H2 to the photon field, the
self-energies ΣAA and ΣAZ do not carry any non-standard contributions at the one-loop
level and, according to (5.2.10), the same holds for the renormalization constant δe.

It follows that just the self-energy ΣWW
T (0) and the on-shell renormalization con-

stants δM2
W and δM2

Z defined in (5.2.9) yield non-standard one-loop contributions to
∆r. The related transverse gauge-boson self-energies can be written as

ΣWW
T (k2) = ΣWW

SM (k2) + ΣWW
NS (k2), ΣZZ

T (k2) = ΣZZ
SM(k2) + ΣZZ

NS (k2), (6.2.5)
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Figure 6.2: Non-standard one-loop contributions to the self-energies of the massive
standard gauge bosons, with generic W = W± and φ = φ±.

with ΣWW
SM and ΣZZ

SM comprising the complete SM contributions. The corresponding
non-standard contributions are given by

ΣWW
NS (k2) = c2

α

αem

16πs2
W

(
A0(M2

H1
) + 4M2

WB0(k2,M2
H1
,M2

W )− 4B00(k2,M2
H1
,M2

W )
)

+ s2
α

αem

16πs2
W

(
A0(M2

H2
) + 4M2

WB0(k2,M2
H2
,M2

W )− 4B00(k2,M2
H2
,M2

W )
)

− αem

16πs2
W

(
A0(M2

H) + 4M2
WB0(k2,M2

H ,M
2
W )− 4B00(k2,M2

H ,M
2
W )
)

(6.2.6)
and

ΣZZ
NS (k2) = c2

α

αem

16πs2
W c

2
W

(
A0(M2

H1
) + 4M2

ZB0(k2,M2
H1
,M2

Z)− 4B00(k2,M2
H1
,M2

Z)
)

+ s2
α

αem

16πs2
W c

2
W

(
A0(M2

H2
) + 4M2

ZB0(k2,M2
H2
,M2

Z)− 4B00(k2,M2
H2
,M2

Z)
)

− αem

16πs2
W c

2
W

(
A0(M2

H) + 4M2
ZB0(k2,M2

H ,M
2
Z)− 4B00(k2,M2

H ,M
2
Z)
)
.

(6.2.7)
The explicit expressions of the scalar one-point integral A0(m2), the two-point integral
B0(k2,m2

1,m
2
2) and the scalar coefficient function B00(k2,m2

1,m
2
2) of the two-point ten-

sor integral Bµν(k
2,m2

1,m
2
2) = gµνB00(k2,m2

1,m
2
2) + kµkνB11(k2,m2

1,m
2
2) can be found

in [82]. The last line in (6.2.6) and (6.2.7), respectively, corresponds to the particu-
lar SM Higgs contributions which are properly subtracted. The corresponding non-
standard diagrams are illustrated in Fig. 6.2.

According to the considerations above ∆r can be written as

∆r = ∆rSM(MW ,MH ,mt, . . . ) + ∆rNS(MW ,MH1 ,MH2 , α,mt, . . . ), (6.2.8)

such that ∆rSM summarizes the corresponding SM contributions and ∆rNS takes into
account the associated non-standard one-loop contributions. The dots in (6.2.8) in-
dicate that ∆r furthermore depends on the remaining SM parameters. The quantity
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∆r is sensitive to radiative corrections beyond the one-loop level and as described in
Subsect. 6.2.2 we incorporate the established higher-order SM contributions in ∆rSM.

Rearranging (6.2.2) in a way that s2
W is expressed in terms of the gauge-boson

masses yields

M2
W = M2

Z

(
1

2
+

√
1

4
− αemπ√

2GFM2
Z

(1 + ∆r)

)
. (6.2.9)

Equipped with (6.2.9) the W -boson mass can be predicted in the extended models.
Consequently, by taking into account the experimental bounds for MW we are able to
test the EHS models and to obtain constraints for α and MH2 .

As highlighted in (6.2.8) the quantity ∆r itself depends on MW which is why we
finally solve (6.2.9) iteratively. Let us now demonstrate how we implement the higher-
order SM contributions into our calculation in the improved way.

6.2.2 Implementation of higher-order standard contributions

There exists a simple parametrization [128] for the SM prediction for MW which in-
corporates the relevant one-loop and higher-order contributions [136–157]. For MH ≈
125 GeV the resulting numerical value approximates the solution of (6.2.9) to better
than 0.2 MeV. The input parameters specified in Tab. 6.1 in combination with this
parametrization provide us with the numerical value

MSM
W = 80.363 GeV (6.2.10)

for the predicted SM W -boson mass MSM
W including the established higher orders.

Taking into account (6.2.2), it is straightforward to obtain a numerical value for the
related quantity ∆rSM which summarizes the established one-loop and higher-order SM
corrections, yielding

∆rSM(MSM
W ,MH) =

8GF√
2e2

(
MSM

W

)2

[
1−

(
MSM

W

MZ

)2
]
− 1. (6.2.11)

From ∆rSM we subtract the SM one-loop contributions ∆r1L
SM, calculated according to

(6.2.3) and (6.2.4) with the input of the W -boson mass given by (6.2.10). Finally,
we add the corresponding one-loop contributions of the EHS models. These are also
calculated according to (6.2.3) and (6.2.4) and summarized by the quantity ∆r1L which,
beside the related standard one-loop contributions, contains the contributions from the
non-standard Feynman diagrams listed in Fig. 6.2. Hence, we use

∆r = ∆rSM(MSM
W ,MH)−∆r1L

SM(MSM
W ,MH) + ∆r1L (MW ,MH1 ,MH2 , α) (6.2.12)

in order to solve (6.2.9) iteratively. Note that this approach differs from the one in [52]
by the input of the W -boson mass in ∆r1L

SM.
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Figure 6.3: Predicted MW versus MH2 (left side) and α (right side). In either case the
dashed grey line stands for the corresponding measured central value and the grey area
depicts the associated experimental ±1σ bounds (cf. Tab. 6.2).

6.2.3 Numerical results

In Fig. 6.3a the predicted MW is shown as a function of MH2 for different mixing angles
α as indicated by the lines of black (α = 0), red (α = ±π/32), blue (α = ±π/16), green
(α = ±π/8) and purple (α = ±π/6) color. Hence, the black horizontal line in Fig. 6.3a
represents the corresponding SM prediction. In Fig. 6.3b the predicted MW is shown
as a function of α for different MH2 as indicated by the lines of black (MH2 = 70 GeV),
red (MH2 = 125 GeV), blue (MH2 = 300 GeV), green (MH2 = 750 GeV) and purple
(MH2 = 1 TeV) color.

It can be seen that large |α| in combination with the condition MH2 < MH1 provide
a shift in the predicted MW quite close to the experimentally measured ±1σ band,
whereas for large MH2 > MH1 and α 6= 0 the gap between the predicted MW and
the measured central value increases. Moreover, we can conclude that in the limit
MH2 →MH1 for any mixing angle α the SM prediction is approached. This is because
in this limit we have ΣV V

NS (k2) = 0 (V = W,Z) as can be directly deduced from (6.2.6)
and (6.2.7). Furthermore, Figs. 6.3a,b point out the symmetry of our results under a
change of sign in α.

6.3 Z-pole observables

6.3.1 Theoretical framework

Among the Z boson observables, we focus on the predictions for the representative
examples sin2 θlep

eff and A0,b
FB with the best sensitivity on the extended models. These

observables are part of the EWPOs associated with the Z resonance in e+e− anni-
hilations. In this context, the effective vector and axial couplings gfV and gfA of the
Z boson summarize the relevant one-loop and higher-order electroweak effects to the
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Figure 6.4: Electroweak non-photonic corrections to the process e+e− −→ f f . The
large black blobs represent corresponding renormalized two- and three-point functions.
Box diagrams are negligible at the Z peak [125].

process e+e− −→ f f . The electroweak non-photonic one-loop and higher-order con-
tributions which have to be considered at the resonance are visualized in Fig. 6.4.3 We
ignore related box-diagram contributions as these are negligible (relative contribution
∼ 10−4) around the Z peak [125].

As soon as we neglect the external fermion masses, the Lorentz structure of the
renormalized one-loop vertex functions in the processes depicted in Figs. 6.4c,d can
be reduced to the Lorentz structure of the corresponding tree-level vertices. Since the
fermions into which the Z boson can decay are light, this is a reasonable approximation.
As a result, the one-loop corrections to the vertices can be absorbed in associated
renormalized vector and axial-vector vertex form factors F̂ZfV (s) and F̂ZfA (s) which
generally depend on the center-of-mass energy

√
s. At the resonance, we set s = M2

Z

in F̂ZfV and F̂ZfA . By introducing the effective vector and axial-vector couplings [81]

gfV =

[
vf + 2sW cWQf

Π̂AZ(M2
Z)

1 + Π̂A(M2
Z)

+ F̂ZfV

]
·
(

1−∆r

1 + Π̂Z(M2
Z)

)1/2

,

gfA =
[
af + F̂ZfA

]
·
(

1−∆r

1 + Π̂Z(M2
Z)

)1/2

,

(6.3.1)

and the fermionic neutral-current vertices

Jfµ =
[
gfVγµ − gfAγµγ5

]
·
(√

2GFM
2
Z

)1/2

, (6.3.2)

the corresponding Z-exchange amplitude AfZ can be written as [81]

AfZ =
Jeµ ⊗ Jf,µ

s−M2
Z + is ΓZ

MZ

, (6.3.3)

3Related QED corrections form a gauge-invariant subset [81] and thus can be treated separately.
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Figure 6.5: Generic one-loop vertex diagrams contributing to F̂ZfV and F̂ZfA , with scalar
bosons S1, S2 ∈ {H1, H2, ϕs, φ

±}, fermions F = li, νi, ui, di, vector bosons V = W±, Z,
and W = W±. The cross in (g) denotes the corresponding vertex counterterm.

with the shorthand notation

γµ ⊗ γµ = [veγµue]× [ufγ
µvf ] (6.3.4)

for the bilinear combinations of the spinors uf and vf of the external fermion fields.
Furthermore, we introduce the quantities

Π̂A(s) =
Σ̂AA

T (s)

s
, Π̂AZ(s) =

Σ̂AZ
T (s)

s
, Π̂Z(M2

Z) =
∂ReΣ̂ZZ

T (s)

∂s

∣∣∣∣
s=M2

Z

, (6.3.5)

and the tree-level vector and axial-vector couplings of the Z boson to fermions f ,

vf = I3
f − 2s2

WQf ,

af = I3
f .

(6.3.6)

In the on-shell renormalization scheme we have (cf. Sect. 5.2)

ReΣ̂AZ
T (M2

Z) = Re
∂Σ̂ZZ

T (k2)

∂k2

∣∣∣∣
k2=M2

Z

= 0. (6.3.7)

The small imaginary parts of the self-energies and vertex form factors in (6.3.1) can be
neglected and thus, the effective vector and axial-vector couplings can be simplified to

gfV =
[
vf + F̂ZfV

]
· (1−∆r)1/2 , gfA =

[
af + F̂ZfA

]
· (1−∆r)1/2 . (6.3.8)

In Figs. 6.5 and 6.6 we illustrate the one-loop Zff -vertex diagrams and the fermion
self-energy diagrams which contribute to F̂ZfV and F̂ZfA . The fermion self-energies enter
via the field renormalization of the external fermions which is part of the Zff -vertex
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Figure 6.6: Fermion self-energy diagrams contributing to F̂ZfV and F̂ZfA via the vertex
counterterm depicted in Fig. 6.5g, with scalar bosons S = H1, H2, ϕs, φ

±, fermions
F = li, νi, ui, di, and vector bosons V = W±, Z.

counterterm depicted in Fig. 6.5g. The renormalized vector and axial-vector form
factors read

F̂ZfV = FZfV + δFZfV , F̂ZfA = FZfA + δFZfA , (6.3.9)

with the unrenormalized vertex iTµ
Zff ,

Tµ
Zff =

e

2sW cW

[
FZfV γµ − FZfA γµγ5

]
, (6.3.10)

which summarizes the one-loop contributions to the Zff coupling induced by the
three-point vertex diagrams depicted in Figs. 6.5a−6.5f, and the counterterm

δFZfV = vf
δe

e
+

1

2
vfδZZZ −

vf (s
2
W − c2

W )− 4s2
W c

2
WQf

2s2
W

(
δM2

W

M2
W

− δM2
Z

M2
Z

)
− sW cWQfδZAZ +

(
I3
f − s2

WQf

)
δZf,L − s2

WQfδZ
f,R,

δFZfA = af
δe

e
+

1

2
afδZZZ −

1

2
af
s2
W − c2

W

s2
W

(
δM2

W

M2
W

− δM2
Z

M2
Z

)
+
(
I3
f − s2

WQf

)
δZf,L + s2

WQfδZ
f,R,

(6.3.11)

according to App. A.15.

The quantities δFZfV and δFZfA collect the corresponding one-loop renormalization
constants associated with the on-shell renormalization scheme. The diagonal field
renormalization constants of the fermions δZf,L/R include the non-photonic electroweak
contributions as depicted in Fig. 6.6. Already indicated in Subsect. 6.2.1, δe and δZAZ
have no non-standard contributions at the one-loop level. The important non-standard
contributions to F̂ZfV and F̂ZfA stem from δM2

W/Z and δZZZ in (6.3.11). The effects
originating from the non-standard vertex and self-energy diagrams illustrated in Figs.
6.5 and 6.6 are small due to the suppressed Yukawa couplings. Only for f = b we obtain
some non-negligible non-standard contributions from these diagrams. Note that the
effective vector coupling gfV furthermore gets non-standard contributions from vf since
the quantity sW in (6.3.6) depends on MW .

With the effective vector and axial-vector couplings gfV and gfA including the non-
standard one-loop contributions of the EHS models, we now discuss the related impact
on the predictions for sin2 θlep

eff and A0,b
FB. These two important EWPOs are defined

by [125]

sin2 θlep
eff =

1

4

[
1− geV

geA

]
(6.3.12)
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and

A0,b
FB =

3

4
AeAb, (6.3.13)

with

Af =
2gfVg

f
A

(gfV)2 + (gfA)2
, f = e, b. (6.3.14)

Through the structure of the effective couplings both sin2 θlep
eff and A0,b

FB depend on MW .
Consequently, the value of MW from (6.2.9) with ∆r given by (6.2.12) also enters the
Z observables.

6.3.2 Implementation of higher-order standard contributions

Our one-loop calculations are combined with the associated higher-order SM contribu-
tions for which we apply the program ZFITTER. The latter has the option to use MW

as an input quantity in order to predict the Z-pole observables. From the obtained SM
predictions we subtract the corresponding SM one-loop contributions with the input
of MW given by (6.2.10) and finally, we add the respective one-loop contributions of
the EHS models.

6.3.3 Numerical results

Our numerical results for sin2 θlep
eff and A0,b

FB are illustrated in Figs. 6.7a,b where the
observables are plotted as functions of MH2 for different α as indicated by the lines of
black (α = 0), red (α = ±π/32), blue (α = ±π/16), green (α = ±π/8) and purple
(α = ±π/6) color. Accordingly, the black horizontal lines in Figs. 6.7a,b represent the
corresponding SM predictions. In either case the results are symmetric under a change
of sign in α. The α-dependence disappears in the limit MH2 → MH1 such that the
respective SM prediction is approached.

It can be seen that for parameter combinations consisting of large |α| and large
MH2 , the predicted sin2 θlep

eff can show more than 1σ deviation from the measured value

listed in Tab. 6.2. On the other hand, the predicted sin2 θlep
eff strongly decreases for

large |α| in combination with the condition MH2 < MH1 . However, for MH2 ≥ 70 GeV
we do not pass the lower bound of the measured ±1σ band.

Realizing that the SM prediction for A0,b
FB shows a deviation of more than 2σ from

the measured value listed in Tab. 6.2, it is remarkable that parameter combinations
consisting of large |α| and large MH2 lead to a predicted A0,b

FB which is considerably more
compatible with the experiment. However, this effect is in conflict with the results for
MW and sin2 θlep

eff according to which the non-standard parameter region consisting of
large |α| and large MH2 clearly leads to a larger deviation from the measured values.
The compatibility of the predicted and experimentally measured A0,b

FB becomes worse
in the parameter region MH2 < MH1 with α 6= 0.

Finally, we perform a ∆χ2 analysis combining our non-standard one-loop predic-
tions for MW , sin2 θlep

eff and A0,b
FB. The result is depicted in Fig. 6.8. Displayed in the

α −MH2 plane are the contours of the yellow (∆χ2 ≤ 1) and blue (∆χ2 ≤ 4) areas.



6.3 Z-pole observables 69

1000900800700600500400300200100

2.320

2.319

2.318

2.317

2.316

2.315

2.314

2.313

α = ±π/6
α = ±π/8
α = ±π/16
α = ±π/32

α = 0

sin
2
θ
lep
eff

×
10

MH2 [GeV]

(a)

1000900800700600500400300200100

1.08

1.06

1.04

1.02

1.00

0.98

0.96

α = ±π/6
α = ±π/8

α = ±π/16
α = ±π/32

α = 0

A
0
,b

F
B
×
10

MH2 [GeV]

(b)

Figure 6.7: Predicted sin2 θlep
eff (left side) and A0,b

FB (right side) versus MH2 for various
mixing angles α. In either case the dashed grey line stands for the corresponding
measured central value and the grey area depicts the associated experimental ±1σ
bounds (cf. Tab. 6.2).

Accordingly, these contours represent exclusion bounds of 68% and 95% confidence
level. The solid contours take into account the related parametric uncertainties (ap-
proximated by those specified in Tab. 6.2) as well as the theoretical uncertainties from
missing higher orders: δMW |h.o. ≈ 4 MeV [128], δsin2 θlep

eff |h.o. ≈ 5 · 10−5 [158] and

δA0,b
FB|h.o. ≈ 2.7 · 10−4. Here, A0,b

FB|h.o. is estimated from δsin2 θlep
eff |h.o. by means of Gaus-

sian error propagation in Ae. The dashed contours ignore all these uncertainties. The
point of best fit lies outside of the considered α range (6.1.5) and is thus disfavored by
Higgs observables.

The overall conclusion is that large MH2 generally constrain |α| to be comparatively
small and vice versa. Therefore, Fig. 6.8 underlines the importance of investigating
non-standard quantum effects in SM extensions. Together with the constraints from
electroweak precision data, a substantial part of non-standard parameter space can
be excluded. The exclusion bounds from perturbative unitarity illustrated in Fig. 4.1
provide complementary constraints to the results in Fig. 6.8 from above (for sufficiently
small vh).
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Figure 6.8: Contours of ∆χ2 corresponding to our combined NLO analysis of MW (cf.
Fig. 6.3), sin2 θlep

eff (cf. Fig. 6.7a) and A0,b
FB (cf. Fig. 6.7b) in the EHS models, displayed

in the α −MH2 plane. The solid (dashed) contours of the shown yellow (∆χ2 ≤ 1)
and blue (∆χ2 ≤ 4) areas represent exclusion bounds of 68% and 95% confidence level,
including (excluding) associated theoretical errors.



Chapter 7
Decays of the standard-like Higgs boson

In the SM extensions of the type EHSL, EHSG or EHSD model the predictions for
observables related to decays of the standard-like Higgs boson H1 are in general de-
pendent on the non-standard parameters vh and MZ′ (or gh), especially once the corre-
sponding non-standard decay channels H1 → Z ′Z ′ (EHSL model), H1 → ϕhϕh (EHSG
model) and/or H1 → H2H2 (EHSL, EHSG and EHSD models) become kinematically
allowed. The current experimental uncertainties corresponding to recent measurements
of Higgs-decay observables at the LHC experiments [79,133,134,159] are however still
comparatively large. In the foreseeable future the total width ΓH1

tot of the standard-like
Higgs boson might not become directly observable at the LHC, as well as the corre-
sponding partial widths. However, LHC constraints for the related branching ratios are
expected to become more accurate in the years ahead and potential future lepton and
hadron collider experiments will further improve the experimental precision [160–165].
Therefore, in models with extended Higgs sectors it is generally worth performing a
detailed investigation of the related Higgs-decay observables beyond the LO approxi-
mation.

7.1 Concept and technical aspects
In non-standard parameter regions where non-standard decay modes of H1 are kinemat-
ically forbidden (i.e. for MZ′ > MH1/2 and MH2 > MH1/2) or sufficiently suppressed,
the LO branching ratios of H1,

BR(H1 → Xi) =
Γ(H1 → Xi)

ΓH1
tot

, (7.1.1)

do not differ from those of the SM Higgs boson. This is because a LO partial width
Γ(H1 → Xi)LO for the decay of H1 into the generic SM decay product Xi is just given
by the related SM partial width Γ(H → Xi)LO multiplied by an additional global
factor of c2

α. This factor stems from the respective H1 LO coupling due to the mixing
(3.1.21), and drops out in the branching ratio. As a consequence, in such regions
of non-standard parameters deviations from the SM branching ratios BR(H → Xi)

71
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can only be generated by one-loop and higher-order non-standard effects. It is thus
important to probe whether non-standard quantum contributions may provide a visible
shift in the H1 branching ratios. Based on our renormalization scheme (cf. Chapter 5)
we perform this task at the one-loop level for the first time.1

• We take into account the standard and non-standard NLO contributions to the
significant fermionic two-body partial widths Γ(H1 → bb), Γ(H1 → cc) and
Γ(H1 → ττ).

• We incorporate the dominant non-standard one-loop corrections to the inclusive
decays of H1 into two pairs of on-shell fermions (here denoted as i and j) via the
exchange of two virtual standard vector bosons V = W,Z. These one-loop correc-
tions are summarized by a proper definition of the corresponding effective renor-
malized one-loop H1V V vertices. We provide a new compact analytic formula for
the inclusive four-body partial widths Γ(H1 → V V ) ≡∑i,j Γ(H1 → V V → ij).
It enables a convenient (and basically model-independent) implementation of
such non-standard one-loop corrections in terms of the above-mentioned effective
H1V V vertices. The latter amongst others depend on the two invariant fermion
masses si and sj which are the remaining phase-space integration variables in this
formula. In the end we make use of the CUBA [166] library in order to perform
the final integration over si and sj numerically.

• The partial widths for the loop-induced decays of H1, namely Γ(H1 → AA),
Γ(H1 → AZ) and Γ(H1 → gg) are approximated by the respective SM expres-
sions [167] multiplied with the factor c2

α. Thereby, we neglect associated non-
standard NLO contributions as two-loop effects which are expected to be small
due to the additional suppression by a factor s2

α. For the numerical evaluation of
the SM partial width Γ(H → gg) the FORTRAN package HDECAY [168] (version 6.5)
is used. The latter allows us to effectively implement the corresponding substan-
tial QCD corrections which exhibit a rather complicated analytic structure [169].

• In addition to the decays into pure standard particles we provide first NLO results
for the partial widths Γ(H1 → Z ′Z ′), Γ(H1 → ϕhϕh) and Γ(H1 → H2H2) which
correspond to the possible non-standard decay modes of H1. We survey their
potential impact on the one-loop corrected ΓH1

tot and BR(H1 → Xi). The heavy-
to-light Higgs decay has already been studied at the one-loop level in the EHSD
model [51] and in the real-Φh extension without the ZD

2 symmetry [56,60]. Here,
the partial width Γ(H1 → H2H2) is investigated in the EHSL, EHSG and EHSD
models in order to allow a proper comparison of the related NLO contributions.

• We confirm the validity of the Goldstone-boson equivalence theorem in the non-
standard sector at NLO in perturbation theory − a test of consistency of our

1In [54] the non-standard one-loop contributions to the renormalized Higgs couplings are studied
in the real-Φh extension of the SM without the ZD

2 symmetry. Here, we perform a study of the H1

decay widths and branching ratios in a different and wider class of models.
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renormalization schemes. This is achieved by a comparison of the one-loop cor-
rected widths Γ(H1 → Z ′Z ′) and Γ(H1 → ϕhϕh) in the limit MZ′ → 0 (fixed vh)
both analytically and numerically.

The total width ΓH1
tot including the specified non-standard one-loop contributions is

obtained by properly adding up the contributions from the various partial widths.2

Equipped with all the required building blocks a proper one-loop expansion in (7.1.1) fi-
nally provides us with the one-loop predictions (henceforth also referred to as NLO pre-
dictions) for the branching ratios BR(H1 → Xi), Xi = AA,ZZ,WW, ττ , AZ, gg, bb, cc.

7.2 Theoretical framework

In the following the calculations of the partial widths contributing to ΓH1
tot are described,

with focus on the non-standard one-loop contributions and their incorporation in the
physical observables.

7.2.1 Loop-induced decays

The loop-induced H1 partial widths into AA, AZ, gg can be expressed in terms of the
SM widths Γ(H → AA), Γ(H → AZ) and Γ(H → gg) [167] as follows,

Γ(H1 → AA) = c2
α · Γ(H → AA),

Γ(H1 → AZ) = c2
α · Γ(H → AZ),

Γ(H1 → gg) = c2
α · Γ(H → gg),

(7.2.1)

with the c2
α factors originating from the Higgs mixing (3.1.21). The Feynman diagrams

corresponding to the related LO processes are depicted in Fig. 7.1. The LO contri-
butions to Γ(H1 → AA) and Γ(H1 → AZ) are generated by the diagrams in Figs.
7.1a,b. In Fig. 7.1b only the top quark F = t effectively contributes to the related
partial widths. Virtual contributions from the remaining fermions are negligible due to
strongly suppressed Yukawa couplings. The dominant LO contribution to Γ(H1 → gg)
stems from the case Q = t in Fig. 7.1c. However, here also the bottom quark Q = b
provides a non-negligible virtual contribution. Electroweak non-standard NLO contri-
butions from Γ(H1 → AA), Γ(H1 → AZ) and Γ(H1 → gg) can be neglected as effects
at the two-loop level.

The NLO QCD corrections to Γ(H → AA) and Γ(H → AZ) are implemented
according to [167]. The established QCD corrections to Γ(H → gg) are incorporated
with the help of HDECAY. For more details about the standard parts Γ(H → AA),
Γ(H → AZ) and Γ(H → gg) we refer to [167] and to references therein.

2For the sake of completeness, some small contributions from Γ(H1 → µµ) and Γ(H1 → ss) are
incorporated in ΓH1

tot, too.
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Figure 7.1: Loop-induced decays H1 → AA, H1 → AZ and H1 → gg (generic fermions
F and quarks Q within the loops) at LO.

7.2.2 Two-body decays into fermions

The fermionic two-body partial widths Γ(H1 → ff ) are in general given by

Γ(H1 → ff ) =
1

2MH1

Nf
c

∣∣M(H1 → ff )
∣∣2 LIPSf2 , (7.2.2)

with the related matrix element M(H1 → ff ), the color factor Nf
c and the Lorentz-

invariant phase-space (LIPS) factor

LIPSf2 =
1

8π

√
1− 4

M2
f

M2
H1

, (7.2.3)

which depends on the (generic) final-state fermion masses Mf . For MH1 ≈ 125 GeV
only decays into f = l, q 6= t contribute to ΓH1

tot. Hence, in good approximation we have
LIPSf2 ≈ 1

8π
. At LO the corresponding matrix-element squared reads∣∣M(H1 → ff )LO

∣∣2 = c2
α 2
√

2GFM
2
H1
M2

f . (7.2.4)

Here, the Fermi constantGF has been introduced instead of vs via (3.1.28). Accordingly,
in LO approximation the widths (7.2.2) are given by

Γ(H1 → ff )LO = c2
α Nf

c

GF

4
√

2π
MH1M

2
f . (7.2.5)

The fermionic two-body partial widths are influenced by relevant QED and QCD cor-
rections. These are taken into account by multiplying (7.2.5) with the associated
correction factor

κf = 1 + ∆QED
f + ∆QCD

f . (7.2.6)

The quantity ∆QED
f incorporates the O(αem) corrections from virtual photons and real-

photon bremsstrahlung which we adopt from [170]. The quantity ∆QCD
f for final-state

quarks f = q 6= t incorporates the QCD corrections up to O(α3
s) according to [167].

For decays into quarks the MS scheme is used, and therefore the MS quark masses
evaluated at the scale µ = MH1 have to be taken as input for the partial widths.
Therefore, together with (7.2.6) the MS quark masses Mf = mq(MH1) for f = q and
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Figure 7.2: Generic weak standard and non-standard one-loop H1ff -vertex correc-
tions in the EHS models, with scalar bosons S1, S2 ∈ {H1, H2, ϕs, φ

±}, fermions
F = li, νi, ui, di, and vector bosons V = Z,W . The cross in (g) denotes the corre-
sponding vertex counterterm.

the on-shell lepton masses Mf = ml for f = l = e, µ, τ have to be used as input in
(7.2.5). In practice, contributions from Γ(H1 → ee), Γ(H1 → uu) and Γ(H1 → dd) to
ΓH1

tot can be neglected owing to the Yukawa-coupling suppression.

Next, we incorporate the weak (non-QED) standard and non-standard NLO cor-
rections in (7.2.2). Expanded up to the one-loop order the matrix-element squared can
be written as follows,∣∣M(H1 → ff )

∣∣2 = (R̂H1 −∆r)
∣∣M(H1 → ff )LO

∣∣2
+ 2Re

[
M(H1 → ff )E

1LM(H1 → ff )†LO

]
,

(7.2.7)

with the wave-function renormalization factor

R̂H1 = 1− ReΣ̂H1H1
′
(M2

H1
) (7.2.8)

of the MS-renormalized field H1 (cf. Sect. 5.3), where

Σ̂H1H1
′
(M2

H1
) = ΣH1H1

′
(M2

H1
) + δZH1H1

(7.2.9)

according to (5.3.25) with the usual notation

Σ̂S1S2
′
(M2

S) =
∂Σ̂S1S2(k2)

∂k2

∣∣∣∣
k2=M2

S

. (7.2.10)

The diagrams with non-standard fields in the internal lines contributing to the H1

self-energy in the EHS models are depicted in Fig. 5.1. They introduce a dependence
on the non-standard parameters MH2 , vh and gh which is absent at LO. In (7.2.7) the
quantity ∆r appears as NLO correction related to the use of GF in (7.2.4).
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The one-loop matrix element M(H1 → ff )E
1L contains the remaining weak stan-

dard and non-standard one-loop corrections from the vertex diagrams depicted in Fig.
7.2. Analogously to the calculation of Γ(H → ff ) in the SM [170] these corrections
can be written in a factorized way,

Re
[
M(H1 → ff )E

1LM(H1 → ff )†LO

]
= ReÊf

∣∣M(H1 → ff )LO

∣∣2 , (7.2.11)

summarized by the renormalized quantity

Êf = Ef + δEf , (7.2.12)

which is related to the renormalized H1ff vertex iT̂H1ff via T̂1L
H1ff

= Êf · TLO
H1ff

, with
the vertex counterterm (cf. App. A.16)

δEf =
δMf

Mf

+
1

2
(δZf,R + δZf,L) +

δe

e
− δsW

sW
− 1

2

δM2
W

M2
W

+
1

2
δZH1H1 −

sα
2cα

δZH1H2 .

(7.2.13)

For f = l the generic fermion-mass renormalization constant δMf in (7.2.13) is specified
by the respective mass renormalization constant in (5.2.8) and thus fixed according to
the on-shell scheme. For f = q, however, δMf is defined by the appropriate MS part.

The fermion self-energy diagrams contributing to Êf via δMf and via the diagonal
field renormalization constants δZf,L/R in (7.2.13) are given by those listed in Fig. 6.6
and only involve non-photonic corrections. Note the appearance of the triple Higgs
self-coupling in Fig. 7.2a. The latter induces a vh-dependence in Êf . However, these
effects are suppressed by the associated small Yukawa couplings.

Using the formulas given above, we arrive at the final result

Γ(H1 → ff ) = c2
α Nf

c

GF

4
√

2π
MH1M

2
f

×
[
R̂H1 −∆r + 2ReÊf + ∆QED

f + ∆QCD
f

]
.

(7.2.14)

Alongside the established QED and QCD corrections it takes into account the complete
set of weak standard and non-standard NLO corrections in the EHS models in terms
of the UV-finite quantities R̂H1 , ∆r and Êf , where only R̂H1 may comprise quantum
effects related to the non-standard fields Z ′µ and ϕh.

7.2.3 Four-body decays into fermions

Next, we focus on the fermionic four-body decay processes illustrated in Fig. 7.3. We
consider decays of H1 into the final-state fermion pairs i ≡ fafb and j ≡ fcfd via the
exchange of two virtual vector bosons V = Z,W . The vector bosons are passing on the
squared invariant fermion masses which will be the remaining phase-space integration
variables in our final formula for the related inclusive partial widths.
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Figure 7.3: Four-body decays of H1 into pairs of on-shell fermions i ≡ fafb and j ≡ fcfd
via two virtual vector bosons V = Z,W .

The corresponding Born processes are depicted in Fig. 7.3a. Here, we are particu-
larly interested in the dominant non-standard one-loop contributions to these processes
which stem from the vertex corrections iT̂µν

H1V V
(qi, qj) illustrated by the large black blob

in Fig. 7.3b. The related one-loop H1V V -vertex diagrams are listed in Fig. 7.4. We
furthermore take into account the non-standard one-loop effects from the H1 wave-
function renormalization. The residual non-standard one-loop effects associated with
the processes H1 → ij are either suppressed by small Yukawa couplings or by an addi-
tional power of one of the illustrated V -boson propagators. Note that for MH1 ≈ 125
GeV at least one of the two intermediate vector bosons is off its mass shell.

In general, the partial widths can be written as

Γ(H1 → V V → ij) =
1

2(2π)8MH1

∫
dΠ4 |MV (H1 → ij)|2 , (7.2.15)

with the Lorentz-invariant four-body phase-space integral

∫
dΠ4 =

(∏
l

∫
d3kl
2El

)
δ(4)

(
kH1 −

∑
l

kl

)
, l = a, b, c, d, (7.2.16)

and the corresponding matrix-element squared |MV (H1 → ij)|2. The four-momenta kl
with zero-components El correspond to the respective final-state fermions fl. Moreover,
the four-momentum of the initial state H1 is denoted as kH1 with zero-component EH1 .
The masses of the final-state fermions can be neglected. Accordingly, we work with
k2
l = 0 in the following.

Introducing the squared invariant fermion masses si = q2
i = (ka + kb)

2 and sj =
q2
j = (kc + kd)

2 along with a suitable change of variables in the final-state momenta,
repeatedly exploiting Lorentz invariance and summing over all final-state fermion pairs
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i and j yields

Γ(H1 → V V ) ≡
∑
i,j

Γ(H1 → V V → ij) =

=
π

128(2π)8M2
H1

∑
i,j

smax
i∫

0

dsi

smax
j∫

0

dsj

×
√(

si − sj +M2
H1

2MH1

)2

− si
∫
dΩ̂i

∫
dΩ̂j |MV (H1 → ij)|2 ,

(7.2.17)

with smax
i = M2

H1
, smax

j = (MH1 −
√
si)

2 and

∫
dΩ̂x =

2π∫
0

dφ̂x

π∫
0

dθ̂x sin θ̂x, x = i, j. (7.2.18)

The angles φ̂x and θ̂x are defined in the rest frame of the related fermion pair x.
The Lorentz-invariant matrix-element squared |MV (H1 → ij)|2 is determined by the
model parameters and the explicit form of the final-state four-momenta kl. We choose
to calculate |MV (H1 → ij)|2 in the rest frame of the fermion pair j where

ka/b =

√
si
2


γ ∓ γβ sin θ̂i cos φ̂i
−γβ ± γ sin θ̂i cos φ̂i
± sin θ̂i sin φ̂i
± cos θ̂i

 , kc/d =

√
sj

2


1

± sin θ̂j cos φ̂j
± sin θ̂j sin φ̂j
± cos θ̂j

 , (7.2.19)

with the boost-matrix entries

γ =
EH1 −

√
sj√

si
, β = −

√
E2
H1
−M2

H1

EH1 −
√
sj

(7.2.20)

and

EH1 =
MH1 − si + sj

2
√
sj

. (7.2.21)

At LO we have

|MV (H1 → ij)LO|2 = CV
0 (si, sj)

[
C1,V
ij (kb · kd) (ka · kc)

+C2,V
ij (kb · kc) (ka · kd)

]
,

(7.2.22)

with

CV
0 (si, sj) =

16e6|CH1V V |2
[(si −M2

V )2 +M2
V Γ2

V ] [(sj −M2
V )2 +M2

V Γ2
V ]

(7.2.23)
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Figure 7.4: Generic H1V V -vertex diagrams for standard vector bosons V = Z,W , with
scalar bosons S1, S2, S3 ∈ {H1, H2, ϕs, φ

±}, vector bosons V1, V2 ∈ {A,Z,W}, fermions
F1, F2 ∈ {li, νi, ui, di}, and ghost fields U1, U2 ∈ {uA, uZ , u±}. The cross in (o) denotes
the corresponding vertex counterterm.

and

C1,V
ij =

{
|CZ−

i |2|CZ−
j |2 + |CZ+

i |2|CZ+
j |2, V = Z,

|CW−
i |2|CW−

j |2, V = W,

C2,V
ij =

{
|CZ−

i |2|CZ+
j |2 + |CZ+

i |2|CZ−
j |2, V = Z,

0, V = W.

(7.2.24)

Here, the quantity CV−
x (CV+

x ) denotes the left-handed (right-handed) part of the tree-
level coupling between an internal vector boson V and an external fermion pair x, and
CH1V V is the H1V V tree-level coupling in the vertex ieCH1V V g

µν .3 The propagators of
the internal V bosons incorporate the widths ΓV as effects of higher order according

3The explicit form of these couplings can be found in Apps. A.14, A.15.



80 7. Decays of the standard-like Higgs boson

to the optical theorem, making use of the approximation ImΣ̂V V
T (sx) ≈ ImΣ̂V V

T (M2
V ),

which results in a Breit-Wigner form around the mass shell.

The renormalized vertex correction iT̂µν
H1V V

(qi, qj) illustrated in Fig. 7.3b can be
decomposed as follows,

T̂µν
H1V V

(qi, qj) = eCH1V V [AV(si, sj) q
µ
i q

ν
i + BV(si, sj) q

µ
j q

ν
j

+ CV(si, sj) q
µ
i q

ν
j + DV(si, sj) q

µ
j q

ν
i

+ ÊV(si, sj) g
µν + iδVWFV(si, sj) ε

µνρσqi,ρqj,σ],

(7.2.25)

with δVW = 1 for V = W and δVW = 0 else, in analogy to the SM [171]. The
generic vertex diagrams contributing to (7.2.25) are listed in Fig. 7.4. The quantities
XV(si, sj), X = A,B,C,D,E,F, which summarize the respective (unrenormalized) one-
loop contributions are determined by si, sj and by the related model parameters. Apart
from EV(si, sj) these quantities are all separately UV finite. Furthermore, each of the
quantities introduced in (7.2.25) is infrared finite. This holds even for V = W as a
consequence of the fact that at least one of the two gauge-boson legs is always off
shell. According to the Dirac equation for massless fermions, the terms which are
proportional to AV(si, sj), BV(si, sj) and CV(si, sj) drop out in the one-loop matrix
element MV (H1 → ij)T

1L with the vertex indicated by the large black blob in Fig.
7.3b. Moreover, the term proportional to the Levi-Civita tensor εµνρσ only appears for
V = W .4 The renormalized quantity ÊV(si, sj) in (7.2.25) can be written as

ÊV(si, sj) = EV(si, sj) + δEV , (7.2.26)

with the vertex counterterm (Fig. 7.4o)

δEV =


δe

e
+

2s2
W − c2

W

c2
W

δsW
sW

+
1

2

δM2
W

M2
W

+ δZZZ +
1

2
δZH1H1 −

sα
2cα

δZH1H2 , V = Z,

δe

e
− δsW

sW
+

1

2

δM2
W

M2
W

+ δZWW +
1

2
δZH1H1 −

sα
2cα

δZH1H2 , V = W,

(7.2.27)
which renders ÊV(si, sj) UV finite.

Expanded up to one-loop order the matrix-element squared in (7.2.17) reads

|MV (H1 → ij)|2 = R̂H1 |MV (H1 → ij)LO|2

+ 2Re
[
MV (H1 → ij)T

1LMV (H1 → ij)†LO

]
,

(7.2.28)

where
MV (H1 → ij)T

1L = MV (H1 → ij)D
1L +MV (H1 → ij)E

1L

+ δVWMV (H1 → ij)F
1L

(7.2.29)

takes into account the relevant one-loop contributions summarized by the quantities
DV , ÊV and FV . According to (7.2.25), the ÊV contributions are proportional to the

4It originates from the fermion triangle depicted in Fig. 7.4m with two different types of fermions
inside the loop.
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tensor structure of the corresponding H1V V tree-level vertex such that

Re
[
MV (H1 → ij)E

1LMV (H1 → ij)†LO

]
= ReÊV |MV (H1 → ij)LO|2 , (7.2.30)

with |MV (H1 → ij)LO|2 specified in (7.2.22). We obtain

Re
[
MV (H1 → ij)D

1LMV (H1 → ij)†LO

]
=

1

16
CV

0 Re
[
TrD,V

ij DV
]
, (7.2.31)

and

Re
[
MW (H1 → ij)F

1LMW (H1 → ij)†LO

]
=

1

16
CW

0 Re
[
TrF,W

ij FW
]
, (7.2.32)

with the products of traces (Feynman slash notation)

TrD,Z
ij = Tr

[
/ka/qj

(
CZ−
i ω− + CZ+

i ω+

)
/kbγ

λ
(
CZ−
i ω− + CZ+

i ω+

)†]
× Tr

[
/kc/qi

(
CZ−
j ω− + CZ+

j ω+

)
/kdγλ

(
CZ−
j ω− + CZ+

j ω+

)†]
,

TrD,W
ij = Tr

[
/ka/qjC

W−
i ω−/kbγ

λCW−
i

†]× Tr
[
/kc/qiC

W−
j ω−/kdγλC

W−
j

†]
,

(7.2.33)

and

TrF,W
ij = iεµνρσqj,ρqi,σTr

[
/kaγνC

W−
i ω−/kbγ

λCW−
i

†]
× Tr

[
/kcγµC

W−
j ω−/kdγλC

W−
j

†]
.

(7.2.34)

These products of traces depend on the phase-space angles φ̂i/j and θ̂i/j according

to (7.2.19). In contrast, the quantities DV , ÊV and FV only depend on the invari-
ants si and sj.

5 With (7.2.19)−(7.2.34) we are able to analytically perform the four-
dimensional angular integration in (7.2.17) over the matrix-element squared specified
in (7.2.28). We obtain ∫

dΩ̂i

∫
dΩ̂j ImTrD,V

ij = 0, (7.2.35)

and ∫
dΩ̂i

∫
dΩ̂j ReTrF,W

ij =

∫
dΩ̂i

∫
dΩ̂j ImTrF,W

ij = 0, (7.2.36)

due to the asymmetry of the integrands. Together with (7.2.31) and (7.2.32) we con-
clude that the quantity FV as well as the imaginary part of DV do not contribute to
Γ(H1 → V V ). Thus, we arrive at∫

dΩ̂i

∫
dΩ̂j |MV (H1 → ij)|2 =

=

∫
dΩ̂i

∫
dΩ̂j

[
(R̂H1 + 2ReÊV ) |MV (H1 → ij)LO|2

+
1

8
CV

0 ReDV ReTrD,V
ij

]
=

1

9
π2M6

H1
CV

0 (C1,V
ij + C2,V

ij )
[
IE (R̂H1 + 2ReÊV ) + ID ReDV

]
,

(7.2.37)

5We have (qi + qj)
2 = M2

H1
and hence (qi · qj) = [M2

H1
− si − sj]/2.
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with

IE =
1

M2
H1

[
1− 2

si
M2

H1

− 2
sj
M2

H1

+
s2
i

M4
H1

+
s2
j

M4
H1

+ 10
sisj
M4

H1

]
(7.2.38)

and

ID = 1− 3
si
M2

H1

− 3
sj
M2

H1

+ 3
s2
i

M4
H1

+ 3
s2
j

M4
H1

+ 2
sisj
M4

H1

− s3
i

M6
H1

−
s3
j

M6
H1

+
s2
isj
M6

H1

+
sis

2
j

M6
H1

.

(7.2.39)

According to (7.2.24) the factor (C1,V
ij +C2,V

ij ) in the last line of (7.2.37) is independent
of the remaining integration variables si and sj and hence can be placed in front of the
corresponding integrals in (7.2.17). The residual integrals over the invariant masses
are the same for all i and j. Therefore, we can explicitly perform the sum over the
accessible final-state fermion pairs which yields

∑
i,j

(
C1,V
ij + C2,V

ij

)
=

36

α2
em

(
ΓV
MV

)2

, (7.2.40)

with (quark-mixing matrix V = 13×3 approximation)

ΓW =
3αemMW

4s2
W

, ΓZ =
αemMZ

72s2
W c

2
W

[103− 200c2
W + 160c4

W ]. (7.2.41)

For the SM Higgs boson the NLO results for the partial widths into four fermions
are available e.g. via the code PROPHECY4F [172–174]. Therefore, we explicitly calculate
here the additional non-standard one-loop contributions in the EHS models. Hence, we
have to subtract the related standard one-loop effects. Putting all these steps together,
we obtain (smax

i = M2
H1

, smax
j = (MH1 −

√
si)

2)

Γ (H1 → V V ) =
1

π2

smax
i∫

0

dsiMV ΓV

[(si −M2
V )

2
+M2

V Γ2
V ]

smax
j∫

0

dsjMV ΓV

[(sj −M2
V )

2
+M2

V Γ2
V ]

×
[
ΓVE
(
c2
α + Re∆V

E

)
+ ΓVD Re∆V

D

]
,

(7.2.42)

with the subtracted non-standard form factors

∆V
E = 2[c2

αÊV − ÊV
SM]− [c2

αΣ̂H1H1
′
(M2

H1
)− Σ̂HH ′(M2

H)]− [c2
α∆r −∆rSM] (7.2.43)

and

∆V
D = 2[c2

αDV −DV
SM], (7.2.44)

which summarize the relevant non-standard one-loop contributions of the EHS models,
and with

ΓVE =
1

16
√

2π
GFδ

VM5
H1

IE

√
λ(si, sj,M2

H1
), (7.2.45)
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and

ΓVD =
1

32
√

2π
GFδ

VM5
H1

ID

√
λ(si, sj,M2

H1
). (7.2.46)

Here, we introduce the kinematic function

λ(si, sj,M
2
H1

) = (1− si/M2
H1
− sj/M2

H1
)2 − 4sisj/M

4
H1

(7.2.47)

and the symmetry factor

δV =

{
2, V = W,

1, V = Z.
(7.2.48)

The Fermi constant GF has been introduced according to (6.2.2), which is why the
related quantities ∆r and ∆rSM (cf. Sect. 6.2) appear in (7.2.43) at the given order.
The quantity ∆V

E incorporates the non-standard one-loop contributions which multiply
from the LO integrand in (7.2.42) whereas the quantity ∆V

D comprises the corresponding
effects which originate from the term proportional to qµj q

ν
i in the vertex correction

(7.2.25). Accordingly, the related inclusive LO partial widths Γ (H1 → V V )LO are
contained in (7.2.42) for ∆V

E = ∆V
D = 0, and for α = 0 we recover the result for the SM

Higgs decays in [167].

The final integration over si and sj in (7.2.42) is performed numerically with the
help of the CUBA [166] library and will be done for the numerical analysis in Sect.
7.3. Note that it is straightforward to adjust our (basically model-independent) for-
mula (7.2.42) such that it applies to other models with extended sectors (like e.g. the
two-Higgs-doublet model). All one has to do is to appropriately replace the factors(
c2
α + Re∆V

E

)
and Re∆V

D in (7.2.42). Therefore, non-standard quantum effects corre-
sponding to different models can be explored in the same way.

7.2.4 Two-body decays into massive non-standard scalars

In all considered models, for α 6= 0 and MH2 < MH1/2 the non-standard decay mode
H1 → H2H2 affects the total width and branching ratios of H1. In each of the three
models we have the same H1H2H2 tree-level vertex iCH1H2H2 , with (cf. App. A.10)

CH1H2H2 = −sαcα (M2
H1

+ 2M2
H2

)

[
sα
vs

+
cα
vh

]
. (7.2.49)

Therefore, the LO partial widths for this channel are the same in the three models.
Here, the related NLO contributions are of particular interest. These are generally
different in the three models due to the different field contents entering at the one-loop
level.

In general, the partial width can be written as

Γ (H1 → H2H2) =
1

2

1

2MH1

|M(H1 → H2H2)|2 LIPSH2
2 , (7.2.50)
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including the symmetry factor 1/2, the matrix-element squared |M(H1 → H2H2)|2 and
the phase-space factor

LIPSH2
2 =

1

8π

√
1− 4

M2
H2

M2
H1

. (7.2.51)

With the LO coupling (7.2.49) one obtains

Γ (H1 → H2H2)LO = s2
αc

2
α

(
sα
vs

+
cα
vh

)2 (M2
H1

+ 2M2
H2

)2

32πMH1

√
1− 4

M2
H2

M2
H1

. (7.2.52)

At NLO we have

|M(H1 → H2H2)|2 =

= |M(H1 → H2H2)LO|2
[
1− ReΣ̂H1H1

′
(M2

H1
)− 2ReΣ̂H2H2

′
(M2

H2
)

+ 2ReÊH2 +
sαvs − cαvh

cαvs + sαvh

8M2
H1

+ 4M2
H2

M4
H1

+M2
H1
M2

H2
− 2M4

H2

ReΣ̂H1H2(M2
H2

)

]
.

(7.2.53)

Here, the derivatives of the renormalized diagonal scalar self-energies correspond to the
factors R̂H1 and R̂H2 for the wave-function renormalization, with R̂H1 already specified
in (7.2.8). Analogously, we have

R̂H2 = 1− ReΣ̂H2H2
′
(M2

H2
), (7.2.54)

with

Σ̂H2H2
′
(M2

H2
) = ΣH2H2

′
(M2

H2
) + δZH2H2

(7.2.55)

according to (5.3.25), and the self-energy diagrams in Fig. 5.1. The renormalized
quantity ÊH2 belongs to the renormalized one-loop H1H2H2 vertex iT̂H1H2H2 ,

T̂H1H2H2 = ÊH2 · CH1H2H2 ,

ÊH2 = EH2 + δEH2 ,
(7.2.56)

and takes into account the contributions from the vertex diagrams in Fig. 7.5. The
counterterm part δEH2 stems from the diagram in Fig. 7.5q. We have δEH2 = δCH1H2H2

with the rather lengthy δCH1H2H2 specified in App. A.19. Accordingly, δEH2 depends
on the renormalization constants δtH1 , δtH2 , δvs, δvh, δM2

H1
, δM2

H1H2
, δM2

H2
, δZH1H1 ,

δZH1H2 and δZH2H2 . The term in (7.2.53) with the non-diagonal scalar self-energy
originates from H1−H2 mixing and the tree-level coupling

CH1H1H2 =
sαvs − cαvh

cαvs + sαvh

2M2
H1

+M2
H2

2M2
H2

+M2
H1

· CH1H2H2 . (7.2.57)

We have Σ̂H1H2(M2
H2

) 6= 0 in our renormalization scheme (cf. Sect. 5.3) and correspond-
ing effects are not included in the diagonal LSZ factors of H1 and H2. The counterterm
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Figure 7.5: Generic H1H2H2-vertex diagrams, with scalar bosons S1, S2, S3 ∈
{H1, H2, ϕs, φ

±, ϕh}, fermions F = li, ui, di, vector bosons V = Z,W,Z ′, and ghost
fields U = uZ , u±, uZ

′
. In the EHSG (EHSD) model without the fields Z ′ and uZ

′
(Z ′,

uZ
′

and ϕh). The cross in (q) denotes the corresponding vertex counterterm.

structure of Σ̂H1H2(k2) is already specified in (5.3.26). With Σ̂H1H2(M2
H1

) = 0 (5.3.28)
and (7.2.50)−(7.2.53) we obtain

Γ (H1 → H2H2) = Γ (H1 → H2H2)LO

×
[
1− ReΣ̂H1H1

′
(M2

H1
)− 2ReΣ̂H2H2

′
(M2

H2
) + 2ReÊH2

+
sαvs − cαvh

cαvs + sαvh

8M2
H1

+ 4M2
H2

M4
H1

+M2
H1
M2

H2
− 2M4

H2

ReΣ̂H1H2(M2
H2

)

] (7.2.58)

at the one-loop level.
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7.2.5 Two-body decays into non-standard gauge bosons

In the EHSL model with the local U(1)Yh gauge symmetry and the related Z ′ boson,
once we consider the case MZ′ < MH1/2, we have to take into account the extra
contributions from the non-standard decay channel H1 → Z ′Z ′ to the total width and
branching ratios of H1. The related non-standard partial width is in general given by

Γ (H1 → Z ′Z ′) =
1

2

1

2MH1

|M(H1 → Z ′Z ′)|2 LIPSZ
′

2 , (7.2.59)

with the phase-space factor for the final-state Z ′ bosons,

LIPSZ
′

2 =
1

8π

√
1− 4

M2
Z′

M2
H1

, (7.2.60)

and the corresponding matrix-element squared |M(H1 → Z ′Z ′)|2. With the H1Z
′Z ′

tree-level vertex iCH1Z′Z′g
µν specified by CH1Z′Z′ = 2sαM

2
Z′/vh (cf. App. A.14) one

obtains at LO

|M(H1 → Z ′Z ′)LO|2 = s2
α

M4
H1

v2
h

[
1− 4

M2
Z′

M2
H1

+ 12
M4

Z′

M4
H1

]
, (7.2.61)

and thus the partial width

Γ (H1 → Z ′Z ′)LO = s2
α

M3
H1

32πv2
h

[
1− 4

M2
Z′

M2
H1

+ 12
M4

Z′

M4
H1

]√
1− 4

M2
Z′

M2
H1

. (7.2.62)

Consequently, also the non-standard decay channel H1 → Z ′Z ′ can provide a sizable
contribution for large |α| and small vh.

Next, we investigate the corresponding NLO effects. In our renormalization scheme
these can be summarized by the factor R̂H1 from wave-function renormalization and
by the renormalized one-loop H1Z

′Z ′ vertex iT̂µν
H1Z′Z′ which, analogously to (7.2.25),

can be decomposed as (q2
1 = q2

2 = M2
Z′)

T̂µν
H1Z′Z′(q1, q2) = CH1Z′Z′ [A

Z′qµ1 q
ν
1 + BZ′qµ2 q

ν
2

+CZ′qµ1 q
ν
2 + DZ′qµ2 q

ν
1 + ÊZ′gµν ],

(7.2.63)

and takes into account the one-loop corrections originating from the vertex diagrams
in Fig. 7.6. The vertex counterterm depicted in Fig. 7.6i affects only the form factor

ÊZ′ = EZ′ + δEZ′ ,

δEZ′ =
δM2

Z′

M2
Z′
− δvh

vh

+ δZZ′Z′ +
1

2
δZH1H1 +

cα
2sα

δZH1H2 .
(7.2.64)

The terms with AZ
′
, BZ′ and CZ′ drop out in the corresponding matrix element when

contracted with the polarization vectors. Therefore, in (7.2.63) only the terms DZ′ and



7.2 Theoretical framework 87

H1

Z ′

S1

S2

S3

Z ′

(a)

H1

Z
′

H1/2

Z
′

H1/2

Z
′

(b)

H1

Z ′

ϕh

H1/2

Z ′

Z ′

(c)

H1

Z ′

Z ′

H1/2

ϕh

Z ′

(d)

H1

Z
′

Z
′

H1/2

Z
′

Z
′

(e)

H1

Z ′

S1

S2

Z ′

(f)

H1

Z
′

H1/2

Z
′

Z
′

(g)

H1

Z
′

Z
′

H1/2

Z
′

(h)

H1

Z
′

Z
′

(i)

Figure 7.6: One-loop H1Z
′Z ′-vertex diagrams, generic for scalar bosons S1, S2, S3 ∈

{H1, H2, ϕh}. The cross in (i) denotes the corresponding vertex counterterm.

ÊZ′ have to be considered and the NLO expansion of the matrix-element squared in
(7.2.59) yields

|M(H1 → Z ′Z ′)|2 = R̂H1 |M(H1 → Z ′Z ′)LO|2

+ 2Re
[
M(H1 → Z ′Z ′)T

1LM(H1 → Z ′Z ′)†LO

]
,

(7.2.65)

with

M(H1 → Z ′Z ′)T
1L =M(H1 → Z ′Z ′)D

1L +M(H1 → Z ′Z ′)E
1L, (7.2.66)

where

Re
[
M(H1 → Z ′Z ′)D

1LM(H1 → Z ′Z ′)†LO

]
=

=
4s2

αM
4
Z′

v2
h

[
M2

H1
+
M6

H1

8M4
Z′
− 3M4

H1

M2
Z′

]
ReDZ′

(7.2.67)

and

Re
[
M(H1 → Z ′Z ′)E

1LM(H1 → Z ′Z ′)†LO

]
= |M(H1 → Z ′Z ′)LO|2 ReÊZ′ . (7.2.68)

The LSZ factors of the external Z ′ bosons are unity according to the on-shell renor-
malization (5.3.39). Hence, at one-loop order the width Γ (H1 → Z ′Z ′) can be written
as

Γ (H1 → Z ′Z ′) = Γ (H1 → Z ′Z ′)LO

×
[
R̂H1 + 2ReÊZ′ +

M6
H1
− 6M4

H1
M2

Z′ + 8M2
H1
M4

Z′

M4
H1
− 4M2

H1
M2

Z′ + 12M4
Z′

ReDZ′
]
.

(7.2.69)
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7.2.6 Two-body decays into hidden Goldstone bosons

In the EHSG model the hidden Goldstone bosons ϕh represent physical massless scalar
particles. Consequently, for α 6= 0 the total width of H1 inevitably receives contribu-
tions from the corresponding non-standard decay mode H1 → ϕhϕh and, accordingly,
the H1 branching ratios are affected likewise. In generic form, the partial width asso-
ciated with this process can be written as

Γ (H1 → ϕhϕh) =
1

2

1

2MH1

|M(H1 → ϕhϕh)|2 LIPSϕh
2 , (7.2.70)

with LIPSϕh
2 = (8π)−1 and the related matrix-element squared |M(H1 → ϕhϕh)|2.

With the H1ϕhϕh tree-level vertex iCH1ϕhϕh
from App. A.10 we have

|M(H1 → ϕhϕh)LO|2 = s2
αM

4
H1
/v2

h (7.2.71)

and

Γ (H1 → ϕhϕh)LO = s2
α

M3
H1

32πv2
h

(7.2.72)

in LO approximation. We conclude that Γ (H1 → ϕhϕh) provides major contributions
to ΓH1

tot for large |α| and small vh.

At the one-loop level the matrix-element squared in (7.2.70) can be written as

|M(H1 → ϕhϕh)|2 = |M(H1 → ϕhϕh)LO|2

×
[
1− ReΣ̂H1H1

′
(M2

H1
)− 2ReΣ̂ϕhϕh

′
(0) + 2ReÊϕh

]
.

(7.2.73)

Here, the renormalized quantity Êϕh is introduced along with the renormalized one-loop
H1ϕhϕh vertex iT̂H1ϕhϕh

,

T̂H1ϕhϕh
= Êϕh · CH1ϕhϕh

,

Êϕh = Eϕh + δEϕh ,
(7.2.74)

and summarizes the one-loop contributions originating from the vertex diagrams de-
picted in Fig. 7.7. It is rendered UV finite by the corresponding vertex counterterm,

δEϕh =
sα

vhM2
H1

δtH1 +
cα

vhM2
H1

δtH2 +
δM2

H1

M2
H1

+
cα

sαM2
H1

δM2
H1H2

+
1

2
δZH1H1 +

cαM
2
H2

2sαM2
H1

δZH1H2 ,

(7.2.75)

listed in App. A.10 with the renormalization constants δZχ and δvh set to zero. The
remaining one-loop contributions in (7.2.73) arise from the wave-function renormaliza-
tion factors R̂H1 and

R̂ϕh
= 1− ReΣ̂ϕhϕh

′
(0). (7.2.76)

With the renormalized ϕh self-energy (cf. App. A.5)

Σ̂ϕhϕh(k2) = Σϕhϕh(k2) + sα
δtH1

vh

+ cα
δtH2

vh

(7.2.77)
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Figure 7.7: Generic H1ϕhϕh-vertex diagrams in the EHSG model, with scalar bosons
S1, S2, S3 ∈ {H1, H2, ϕs, φ

±, ϕh}. The cross in (e) denotes the corresponding vertex
counterterm.
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Figure 7.8: Self-energy diagrams of the non-standard Goldstone boson ϕh in the EHSG
model, with scalar bosons S = H1, H2, ϕs, φ

±, ϕh.

we obtain from the diagrams in Fig. 7.8b

Σ̂ϕhϕh
′
(0) = Σϕhϕh

′
(0) =

1

16π2v2
h

(
s2
αM

4
H1
B′0[0, 0,M2

H1
] + c2

αM
4
H2
B′0[0, 0,M2

H2
]
)

=
s2
αM

2
H1

+ c2
αM

2
H2

32π2v2
h

+O(ε),

(7.2.78)

with the notation

B′0[M2,M2
1 ,M

2
2 ] =

∂B0[k2,M2
1 ,M

2
2 ]

∂k2

∣∣∣∣
k2=M2

. (7.2.79)

The NLO-corrected H1 → ϕhϕh partial width is then given by

Γ (H1 → ϕhϕh) = Γ (H1 → ϕhϕh)LO

×
[
1− ReΣ̂H1H1

′
(M2

H1
)− 2ReΣ̂ϕhϕh

′
(0) + 2ReÊϕh

]
.

(7.2.80)

7.2.7 Non-standard gauge bosons in the high-energy limit

As already mentioned in Chapter 4, the Goldstone-boson equivalence theorem (GBET)
provides high-energy relations between amplitudes involving external longitudinally-
polarized vector bosons VL and the corresponding amplitudes with the VL replaced by
the related would-be Goldstone bosons. The GBET arises from BRS symmetry (cf.
Sects. 2.3 and 3.3) and, beyond the LO, receives loop corrections which are likewise
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dictated by BRS invariance (see e.g. [83]). In the EHSL model, for vh 6= 0 the high-
energy limit MZ′/k

0 → 0 (four-momentum k of the Z ′ boson) corresponds to the limit
of a vanishing hidden gauge-coupling constant gh → 0 since MZ′ = ghvh according
to (3.1.30). Hence, for MZ′ → 0 the Z ′ boson decouples from the theory and the
hidden Goldstone boson ϕh (which originally constituted the longitudinal polarization
mode of the Z ′ boson) becomes physical. Recall that in the limit of a decoupled
hidden gauge sector our one-loop renormalized quantized Lagrangian (3.2.5) of the
EHSL model smoothly converges to the one of the EHSG model (cf. Chapters 3 and
5). Consequently, at the one-loop level we expect to observe

lim
MZ′→ 0

Γ (H1 → Z ′Z ′) = Γ (H1 → ϕhϕh) , (7.2.81)

with the non-standard partial widths Γ (H1 → Z ′Z ′) and Γ (H1 → ϕhϕh) specified in
(7.2.69) and (7.2.80) up to one-loop order. Verification at the one-loop level yields a
test of consistency, in particular of gauge invariance of our renormalization scheme.
The crucial step in order to verify (7.2.81) analytically is to explicitly derive the above-
mentioned one-loop GBET-correction factor for the partial width Γ (H1 → Z ′Z ′). We
follow the discussion of the GBET-correction factors for the W and Z bosons in the
SM in [83].

Starting point are the Slavnov-Taylor identities〈
TFZ′(z)FZ′(y)Hphys

1 (x)
〉

c
= 0 (7.2.82)

and 〈
TFZ′(z)Z ′,phys(y)Hphys

1 (x)
〉

c
= 0, (7.2.83)

obtained analogously to [83] from the BRS invariance of the bare EHSL Lagrangian
(3.2.5). The lower index c denotes that the Green functions are connected and the
physical fields Hphys

1 and Z ′,phys have vanishing BRS variations according to (3.3.7).
The identities (7.2.82) and (7.2.83) can be derived from (3.3.6) with the generic-field
products

∏
l ΨIl replaced by uZ

′
FZ′Hphys

1 and uZ
′
Z ′,physHphys

1 , respectively.6 In that re-
gard, we have to take into account the BRS transformation of uZ

′
(3.3.3), the vanishing

BRS variation of the physical fields (3.3.7), and the equation of motion

i

〈
T

δ

δuZ′(x)

∏
l

ΨIl

〉
= −

〈
T
(
sFZ′(x)

)∏
l

ΨIl

〉
(7.2.84)

of the non-standard anti-ghost. By definition, the physical fields already include the
corresponding (properly normalized) wave functions.

The renormalization of the gauge-fixing operators in (7.2.82) and (7.2.83) is irrele-
vant according to (5.3.51). Therefore, it is convenient to directly write FZ′ in terms of

6We refer to [175] for an inductive proof relating to BRS invariance of Green functions involving
arbitrarily many gauge-fixing terms and physical fields.
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Figure 7.9: One-loop diagrams contributing to the self-energy ΣZ′ϕh .

renormalized fields and parameters. Hence, in momentum space (7.2.82) and (7.2.83)
can be written as (the index c is omitted in the following)〈

T [kµ3Z
′
µ(k3) + iMZ′ϕh(k3)][kν2Z

′
ν(k2) + iMZ′ϕh(k2)]Hphys

1 (k1)
〉

= 0 (7.2.85)

and 〈
T [kµ3Z

′
µ(k3) + iMZ′ϕh(k3)]Z ′,phys(k2)Hphys

1 (k1)
〉

= 0, (7.2.86)

with the renormalized gauge-fixing parameters set to unity (’t Hooft-Feynman gauge)
and the incoming momenta kj, j = 1, 2, 3.

Next, the fields in the gauge fixing will be truncated. For this, we need the propa-
gator matrix

GZ′ϕh
µν (k) =

(
gT
µνG

Z′Z′
T (k2) + gL

µνG
Z′Z′
L (k2) kµG

Z′ϕh(k2)

−kνGZ′ϕh(k2) Gϕhϕh(k2)

)
, (7.2.87)

which includes mixing between Z ′ and ϕh (cf. Fig. 7.9). The tensors gT
µν (2.2.4) and

gL
µν (2.2.5) denote the transverse and longitudinal part of the diagonal Z ′ propagator.

In the entries of (7.2.87) the incoming momentum k belongs to the boson associated
with the first field index of the corresponding propagator. These propagators are
introduced by explicitly writing out the ones of the fields in the gauge fixing, and
after some calculation, the identities (7.2.85) and (7.2.86) lead to (underlined fields are
truncated) 〈

T [kσ3Z
′
σ(k3)− iMZ′A

Z′(k2
3)ϕh(k3)]

×[kρ2Z
′
ρ(k2)− iMZ′A

Z′(k2
2)ϕh(k2)]Hphys

1 (k1)
〉

= 0
(7.2.88)

and
kσ3

〈
TZ ′σ(k3)Z ′,phys(k2)Hphys

1 (k1)
〉

− iMZ′A
Z′(k2

3)
〈
Tϕh(k3)Z ′,phys(k2)Hphys

1 (k1)
〉

= 0,
(7.2.89)

where

AZ
′
(k2) =

ik2GZ′ϕh(k2)−MZ′G
ϕhϕh(k2)

MZ′ [GZ′Z′
L (k2)− iMZ′G

Z′ϕh(k2)]
. (7.2.90)

The correction factor AZ
′

can be rewritten in terms of two-point vertex functions. In
order to do so, one more Slavnov-Taylor identity is required, namely〈

TFZ′(x)FZ′(y)
〉

= −iδ(4)(x− y), (7.2.91)
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which follows from the original Slavnov-Taylor identities (3.3.6) with the generic-field
products

∏
l ΨIl replaced by uZ

′
FZ′ . In momentum space, (7.2.91) reads

k2GZ′Z′
L (k2)− 2iMZ′k

2GZ′ϕh(k2) +M2
Z′G

ϕhϕh(k2) = −i. (7.2.92)

The adequate matrix of two-point vertex functions

ΓZ
′ϕh

µν (k) =

(
gT
µνΓ

Z′Z′
T (k2) + gL

µνΓ
Z′Z′
L (k2) kµΓZ

′ϕh(k2)

−kνΓZ
′ϕh(k2) Γϕhϕh(k2)

)
(7.2.93)

is related to (7.2.87) via

GZ′ϕh

µλ (k) ΓZ
′ϕh,λν(k) = i

(
δνµ 0
0 1

)
. (7.2.94)

The identities (7.2.92) and (7.2.94) together form a system of equations which allows
to express the correction factor AZ

′
as

AZ
′
(k2) =

k2 + ΓZ
′Z′

L (k2)

MZ′ [MZ′ − iΓZ
′ϕh(k2)]

. (7.2.95)

With ΓZ
′Z′

L (k2) = −(k2 −M2
Z′)− ΣZ′Z′

L (k2) and ΓZ
′ϕh(k2) = ΣZ′ϕh(k2) we hence obtain

AZ
′
(k2) = 1 + δAZ

′
(k2), δAZ

′
(k2) = −ΣZ′Z′

L (k2)

M2
Z′

+ i
ΣZ′ϕh(k2)

MZ′
, (7.2.96)

in one-loop approximation. The self-energy diagrams contributing to ΣZ′Z′
L and ΣZ′ϕh

are illustrated in Figs. 5.2 and 7.9.

Next, we restrict ourselves to the above-mentioned high-energy limit in which the
longitudinal polarization vectors of the Z ′ bosons can be written as

εµL(k) =
kµ

MZ′
+O

(
MZ′

k0

)
(7.2.97)

and thus become proportional to the associated four momentum. Consequently, in
(7.2.88) and (7.2.89) we are allowed to replace the momenta kρ2 and kσ3 (which are related
to the unphysical vector bosons in the gauge fixing) by ερL(k2)MZ′ and εσL(k3)MZ′ .
Additionally performing the truncation of the physical fields and putting the external
legs on mass shell yields (with R̂Z′ = 1)

R̂
1/2
H1

〈
T [εσL(k3)Z ′σ(k3)−iAZ′(M2

Z′)ϕh(k3)]

×[ερL(k2)Z ′ρ(k2)−iAZ′(M2
Z′)ϕh(k2)]H1(k1)

〉
= 0

(7.2.98)

and
εσL(k3)ερL(k2)

〈
TZ ′σ(k3)Z ′ρ(k2)H1(k1)

〉
=

= iAZ
′
(M2

Z′)ε
ρ
L(k2)

〈
Tϕh(k3)Z ′ρ(k2)H1(k1)

〉
,

(7.2.99)
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up to terms of order O (MZ′/k
0
l ), l = 2, 3. Combined, this leads to the important

relation

−εσL(k3)ερL(k2)
〈
TZ ′σ(k3)Z ′ρ(k2)H1(k1)

〉
=

=
[
AZ

′
(M2

Z′)
]2 〈

Tϕh(k3)ϕh(k2)H1(k1)
〉
,

(7.2.100)

which is exact in the limitMZ′ → 0 where ϕh becomes physical. Here, the physical fields
have already been rewritten in terms of corresponding renormalized mass eigenstates.
Since Σ̂H1H2(M2

H1
) = 0 (cf. Sect. 5.3) Green functions involving external H2 are not

involved in this context.

At the one-loop level we have

lim
MZ′→ 0

[
ΣZ′Z′

L (M2
Z′)

M2
Z′

]
= lim

MZ′→ 0

[
i
ΣZ′ϕh(M2

Z′)

MZ′

]
= −s

2
αM

2
H1

+ c2
αM

2
H2

32π2v2
h

. (7.2.101)

Together with (7.2.96) we hence obtain

lim
MZ′→ 0

[
AZ

′
(M2

Z′)
]

= 1, (7.2.102)

and therefore

lim
MZ′→ 0

[
εσL(k3)ερL(k2)

〈
TZ ′σ(k3)Z ′ρ(k2)H1(k1)

〉EHSL
]

=

= −
〈
Tϕh

phys(k3)ϕh
phys(k2)H1(k1)

〉EHSG
=

= −R̂ϕh

〈
Tϕh(k3)ϕh(k2)H1(k1)

〉EHSG
.

(7.2.103)

In the last line we made the wave-function renormalization R̂ϕh
= 1− ReΣ̂ϕhϕh

′
(0) for

the physical hidden Goldstone bosons explicit according to the conventions above. For
the related LO and NLO matrix elements (7.2.103) yields

lim
MZ′→ 0

M(H1 → Z ′Z ′)EHSL =M(H1 → ϕhϕh)EHSG, (7.2.104)

and together with (7.2.59) and (7.2.70) we finally obtain the limit (7.2.81) for the
corresponding partial widths. The validity of (7.2.81) at NLO is confirmed by our
numerical results (cf. Fig. 7.14) provided in the following section.

7.2.8 Total width and branching ratios

According to (6.1.4) the model-dependent total width ΓH1
tot of the H1 boson is defined

by the sum over the various partial widths. Thereby, the two-body decays of H1 into
very light fermions f = u, d, e can be neglected.7 We include small contributions from
Γ(H1 → µµ) and Γ(H1 → ss) (corresponding QCD corrections included by means of
HDECAY) without the associated minuscule NLO corrections from the electroweak sector.

7Corresponding branching ratios are generally smaller than 10−4.
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For f = b, c, τ , however, the partial widths Γ(H1 → ff ) are incorporated as specified
in (7.2.14) and thus take into account the electroweak standard and non-standard NLO
effects.

For a one-loop discussion each partial width is decomposed as follows,

Γ(H1 → Xj) = Γ(H1 → Xj)LO + ∆Γ(H1 → Xj). (7.2.105)

Γ(H1 → Xj)LO takes into account the corresponding LO contributions together with
the established QED and QCD corrections (if required); ∆Γ(H1 → Xj) summarizes
the related weak standard and non-standard one-loop corrections in case. Accordingly,
the total width is written as

ΓH1
tot =

∑
j

Γ(H1 → Xj) = ΓH1
tot,LO + ∆ΓH1

tot, (7.2.106)

with
∆ΓH1

tot =
∑
j

∆Γ(H1 → Xj). (7.2.107)

For the H1 branching ratios (Xi = AA,ZZ,WW, ττ , AZ, gg, bb, cc)

BR(H1 → Xi) =
Γ(H1 → Xi)

ΓH1
tot

, (7.2.108)

the appropriate one-loop expansion is given by

BR(H1 → Xi) =
Γ(H1 → Xi)LO

ΓH1
tot,LO

(
1− ∆ΓH1

tot

ΓH1
tot,LO

)
+

∆Γ(H1 → Xi)

ΓH1
tot,LO

. (7.2.109)

7.3 Numerical results
The following predictions result from the calculations in Sect. 7.2 and take into account
the input parameters specified in Sect. 6.1. The MS quark masses at the scale µ = MH1

(for the two-body decays into quarks) are taken from the Mathematica package RunDec
[176], just like the strong coupling constant at µ = MH1 (for the loop-induced decays).
RunDec incorporates the established QCD corrections [177–183] for the running and
provides us with

αs(MH1) = 0.1128,

mb(MH1) = 2.78 GeV,

mc(MH1) = 0.61 GeV,

(7.3.1)

for the given setting of input parameters.

In Tab. 7.1 we summarize the numerical results for the total width and branching
ratios of the standard scalar H, which constitute the important Higgs observables in
the SM. These are the results obtained in the limit α → 0. Before we show the
corresponding results for α 6= 0 in the EHSL, EHSG and EHSD models, we explore the
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observable SM prediction

BR(H → AA) 23.55 · 10−4

BR(H → AZ) 15.92 · 10−4

BR(H → gg) 80.90 · 10−3

BR(H → bb) 59.25 · 10−2

BR(H → cc) 28.99 · 10−3

BR(H → ττ) 64.33 · 10−3

BR(H → WW ) 20.28 · 10−2

BR(H → ZZ) 26.15 · 10−3

ΓHtot [MeV] 3.958

Table 7.1: Summary of the H1 branching ratios in the SM limit α→ 0 (where H1 = H).
Moreover, the corresponding total width ΓHtot is listed. The predictions include the weak
one-loop and the established QED and QCD corrections according to Sect. 7.2. Due
to off-shell effects, the branching ratios for the decays into W and Z bosons are quite
sensitive to the Higgs mass MH1 = MH .

underlying predictions for the individual H1 partial widths. Afterwards, non-standard
effects to ΓH1

tot and BR(H1 → Xi) will be discussed.

For the numerical analysis we select two scenarios with representative small and
large vh: vh = 280 GeV and vh = 10 TeV. Within the considered range |α| ≤ π/6
(6.1.5) in each of these two scenarios H2 masses MH2 . 1 TeV are compatible with
(tree-level) perturbative unitarity (cf. Chapter 4).8 For even smaller vh . 280 GeV this
would not anymore be the case. Still, we are particularly interested in the potential
enhancement of associated non-standard contributions for small vh because the hidden
vev only appears in the denominators of the corresponding non-standard couplings (cf.
Sect. 4.3). For vh & 10 TeV the partial widths into SM particles do not change anymore
since then associated one-loop effects are sufficiently suppressed.

First, we examine the EHSL predictions for the widths Γ(H1 → Xj) corresponding
to the decays into SM final states Xj = bb, cc, ττ ,WW,ZZ, with MZ′ > MH1/2. Hence,
the following results apply to the scenario where Γ(H1 → Z ′Z ′) = 0. Accordingly, the
potential impact of the non-standard one-loop effects in Γ(H1 → Xj) on ΓH1

tot and
BR(H1 → Xi) can be evaluated in the absence of any non-standard decay modes (at
least for MH2 > MH1/2).

It turns out that the respective (same-vh) one-loop EHSG and EHSD predictions for
Γ(H1 → Xj), Xj = bb, cc, ττ ,WW,ZZ, do not differ in a noteworthy manner from the
EHSL predictions. Maximal relative deviations from the shown EHSL predictions are
smaller than 0.02% and thus hardly visible in the plots. The lowest-order predictions
for these partial widths do not depend on the choice of the specific EHS model. Due to
the absence of tree-level couplings between Z ′, ϕh and the SM particles Xj, the same
holds for the corresponding H1Xj-vertex corrections (cf. Figs. 7.2 and 7.4). At the
one-loop level the model dependence in these partial widths only appears in the wave-

8In the EHSL model this holds at least for sufficiently small MZ′ .



96 7. Decays of the standard-like Higgs boson

function renormalization R̂H1 , but it turns out that these model-dependent effects are
negligible within the considered regions of non-standard parameters. As a consequence,
our EHSL one-loop predictions presented in Subsects. 7.3.1 and 7.3.2 are very similar
to the corresponding predictions of the EHSG and EHSD models.

7.3.1 Two-body decays into fermions

The vh = 280 GeV and vh = 10 TeV EHSL predictions for Γ(H1 → bb), Γ(H1 → ττ)
and Γ(H1 → cc) are depicted in Fig. 7.10 and Fig. C.1 (Appendix C). The partial
widths are shown for 1 GeV ≤ MH2 ≤ 1 TeV and α = ±π/6 for an estimate of the
potential size of the non-standard NLO contributions.

The black-dashed lines (labeled as α = ±π
6
,LO) represent the weak LO predictions

involving the QCD and QED corrections specified by ∆QCD
f and ∆QED

f in (7.2.14). The
black-solid lines (labeled as α = ±π

6
,NLOSM) represent the respective predictions which

additionally comprise the associated weak-standard one-loop contributions, derived
from (7.2.14) for α = 0 and incorporated by rescaling with the global factor c2

α. These
lines are included for comparison with the blue- and red-solid lines in Fig. 7.10 and
Fig. C.1 (Appendix C), which represent the full predictions according to (7.2.14) for
α = −π/6 and α = +π/6, respectively, and thus take into account the corresponding
non-standard one-loop effects.

Regarding the blue- and red-solid lines, the particle thresholds in the vicinity of
MH2 = MH1/2 are clearly visible. It is shown that in contrast to the small-vh region for
large vh = 10 TeV the NLO predictions are symmetric under a sign flip in α. From the
triple Higgs self-couplings (cf. App. A.10) involved in the corresponding NLO terms
(cf. Figs. 5.1 and 7.2) it follows that the vh-dependent parts can provide contributions
which are asymmetric in the sign of α. These contributions are suppressed for large
vh. One-loop diagrams without the triple Higgs self-couplings are symmetric in α.

As an overall result, the non-standard NLO contributions only provide mild correc-
tions of at most −1% on top of the corresponding predictions which only include the
weak-standard NLO contributions (black-solid lines, α = ±π

6
,NLOSM). In all cases,

for vh ≥ 10 TeV and large MH2 ≈ 1 TeV the α = ±π
6
,NLOSM results provide a good

approximation of the corresponding NLO predictions.

7.3.2 Four-body decays into fermions

In the same way we present in Fig. 7.11 our numerical results for the (fermionic four-
body) partial widths Γ(H1 → WW ) and Γ(H1 → ZZ), calculated in the EHSL model
according to the approach presented in Subsect. 7.2.3.

Here, the black-dashed lines indicate the LO results obtained from (7.2.42) with the
input of MW given by (6.2.10). Complementarily, we show the solid-yellow lines which
indicate deviations from these LO results due to the one-loop shift in MW with α and
MH2 (cf. Sect. 6.2) in the LO expressions of the partial widths. Note that the solution
of (6.2.9) is used throughout as input for MW in our one-loop calculations. The blue-
and red-solid lines in Fig. 7.11 (denoted as NLONS) represent our full predictions for
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Figure 7.10: EHSL predictions for the partial widths Γ(H1 → bb) (upper row) and
Γ(H1 → ττ) (lower row) for vh = 280 GeV (left side) and vh = 10 TeV (right side),
with MZ′ = 80 GeV and α = ±π/6.

α = −π/6 and α = +π/6 and thus take into account the non-standard one-loop effects
according to (7.2.42).

In principle, these results can be explained analogously to those of Γ(H1 → ff ).
Again, the symmetry (asymmetry) with respect to the sign of α for large vh (small
vh) becomes apparent and the thresholds near MH2 = MH1/2 are clearly visible. From
the α = ±π

6
,LO prediction for Γ(H1 → V V ) we obtain maximal relative deviations

of about −0.6% (V = W ) or −0.8% (V = Z) for vh = 280 GeV, large MH2 = 1 TeV
and α = −π/6. For vh = 10 TeV these maximal relative deviations amount to about
−0.6% for MH2 ≈ 140 GeV (V = W ) or MH2 ≈ 200 GeV (V = Z). Without the ∆V

D

terms in (7.2.42) the blue- and red-solid lines in Fig. 7.11 receive a global downwards
shift of approximately 0.2% (0.1%) for V = W (V = Z).

In summary, for Xj = bb, cc, ττ ,WW,ZZ the non-standard one-loop corrections to
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Figure 7.11: EHSL predictions for the partial widths Γ(H1 → WW ) (upper row) and
Γ(H1 → ZZ) (lower row) for vh = 280 GeV (left side) and vh = 10 TeV (right side),
with MZ′ = 80 GeV and α = ±π/6.

Γ(H1 → Xj) just provide small contributions at the level of at most −1% relative to
the results obtained by simply rescaling the corresponding SM Higgs partial widths by
the global factor c2

α. In the following three subsections, we survey the numerical results
for the remaining partial widths associated with the non-standard decay modes of H1.

7.3.3 Two-body decays into massive non-standard scalars

In Fig. 7.12 we present our results for the partial width Γ (H1 → H2H2) predicted
according to (7.2.58) in the EHSL, EHSG and EHSD models. The yellow- and black-
solid lines in Figs. 7.12a,b illustrate the LO results for α = −π/6 and α = +π/6.
The blue and red finely-dashed lines in Figs. 7.12a,b represent the α = −π/6 and
α = +π/6 NLO predictions for both the EHSG and EHSD models since the maximal
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Figure 7.12: Predictions for Γ (H1 → H2H2) in the EHSL (L), EHSG (G) and EHSD
(D) models for vh = 280 GeV (left side) and vh = 10 TeV (right side) versus MH2

(upper row) and α (lower row).

relative deviations are tiny and invisible in the given plots (below the per-mille level).
The corresponding one-loop EHSL predictions for MZ′ = 80 GeV are given by the blue-
and red-dashed lines.

The same dash-type coding is used in Figs. 7.12c,d in which the blue, red and
yellow lines represent the predictions obtained for MH2 = 10 GeV, MH2 = 40 GeV and
MH2 = 60 GeV. The additional solid lines (same color coding) in Figs. 7.12c,d display
the associated LO predictions.

In Figs. 7.12a,c we additionally provide the dotted lines which indicate the vh = 280
GeV EHSL one-loop predictions for larger MZ′ = 210 GeV. These show the potential
enhancement of the relative deviations from the corresponding EHSG/EHSD predic-
tions for larger gh = 0.75 (up to almost 25% for α = −π/6 and small MH2). We do
not show such results for vh = 10 TeV where we would have to consider extremely
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heavy MZ′ in order reach sufficiently large gh according to MZ′ = ghvh (3.1.30). For
MZ′ = 80 GeV, the maximal relative deviations from the corresponding EHSG/EHSD
predictions are insignificant for vh = 10 TeV but lie in the range of +1% for vh = 280
GeV. Accordingly, these effects would be even smaller for MZ′ < 80 GeV in Fig. 7.12.

Basically, the specific shapes of the lines in Fig. 7.12 are a consequence of the
interplay between the related phase-space factor LIPSH2

2 (7.2.51) and the absolute value
of the significant LO coupling CH1H2H2 (7.2.49). While LIPSH2

2 increases for smaller
MH2 the absolute value of CH1H2H2 decreases. It is remarkable that the asymmetry in
the prediction for Γ (H1 → H2H2) with respect to the sign in α is more pronounced for
vh = 280 GeV. For the most part this is due to the respective asymmetry in the LO
coupling CH1H2H2 which, for sufficiently large vh, is zero not only for α = 0 but also
for another negative α within the considered range |α| ≤ π/6. The latter is the case
for vh = 10 TeV where the related second zero in Γ (H1 → H2H2) lies comparatively
close to α = 0 (cf. Fig. 7.12d). For vh = 280 GeV, however, this second zero is
obtained for α < −π/6 (cf. Fig. 7.12c) which explains the relatively large suppression
of Γ (H1 → H2H2) in the range of negative α.

Fig. 7.12 demonstrates that the associated non-standard NLO effects in the partial
width Γ (H1 → H2H2) play an important role. The relative differences between the LO
and NLO predictions are larger for vh = 10 TeV in comparison to the case of vh = 280
GeV, but generally of importance.

7.3.4 Two-body decays into non-standard gauge bosons

In the EHSL model, with the local U(1)Yh symmetry and the related Z ′ boson, the
partial width Γ(H1 → Z ′Z ′) is non-zero for MZ′ < MH1/2 and α 6= 0. In Fig. 7.13
we present the NLO predictions for Γ(H1 → Z ′Z ′) calculated according to (7.2.69).
The brown-, yellow-, red- and blue-dashed lines represent the results obtained for
MZ′ = 0.1 GeV, MZ′ = 10 GeV, MZ′ = 40 GeV and MZ′ = 60 GeV. Depending on
whether we have MH2 = 70 GeV or MH2 = 1 TeV as corresponding input these lines
are dashed or fine-dashed.

According to (7.2.69) the width Γ(H1 → Z ′Z ′) is directly proportional to the factor
s2
α which stems from the H1Z

′Z ′ tree-level coupling and explains the strong suppression
of this non-standard decay mode in the small-|α| range. Furthermore, the overall 1/v2

h

suppression in (7.2.69) explains the different orders of magnitude in the predicted
Γ(H1 → Z ′Z ′) for vh = 280 GeV (several 10 MeV) and vh = 10 TeV (several 10 keV).
Accordingly, for small vh close to the electroweak scale the EHSL model is indeed
strongly constrained by the measured Higgs signal strengths (cf. Sect. 6.1). At the
given scales in the plots the MH2-dependence of the corresponding NLO results is
hardly visible. Here, the parameter MH2 first enters at the one-loop level.

Relative to the corresponding LO prediction, with the input vh = 10 TeV our NLO
predicted width Γ(H1 → Z ′Z ′) yields maximal deviations of about +1.7% (+0.9%) for
α = ±π/6 and MH2 = 70 GeV (MH2 = 1 TeV). This holds for all the considered values
of MZ′ . On the contrary, for vh = 280 GeV these maximal deviations more strongly
depend on the parameter MZ′ and have a size of about +2.4% (+0.4%) for α = ±π/6,
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Figure 7.13: NLO predictions for Γ(H1 → Z ′Z ′) versus α for vh = 280 GeV (left side)
and vh = 10 TeV (right side).

MZ′ = 60 GeV and MH2 = 70 GeV (MH2 = 1 TeV). Both for vh = 280 GeV and
vh = 10 TeV we hence obtain the largest NLO contributions for small MH2 = 70 GeV.
For larger MH2 the NLO contributions to Γ(H1 → Z ′Z ′) generally become smaller.
The one-loop contributions from the DZ′ term in (7.2.69) at most yield +0.1% and are
thus negligible.

7.3.5 Two-body decays into hidden Goldstone bosons

In Fig. 7.14 both the EHSL predictions for Γ(H1 → Z ′Z ′) for Z ′ bosons with a very
small mass MZ′ = 0.1 GeV and the related EHSG predictions for Γ (H1 → ϕhϕh) are
depicted as functions of MH2 for comparison. The black-dashed lines indicate the
corresponding LO predictions. The blue- and red-solid lines represent the α = −π/6
and α = +π/6 one-loop predictions, calculated according to (7.2.69) and (7.2.80).

A comparison between the upper and lower row in Fig. 7.14 clearly demonstrates
that our LO and NLO predictions obey the Goldstone-boson equivalence theorem (cf.
Subsect. 7.2.7), i.e. that the limit (7.2.81) is fulfilled by our numerical results, too. Even
in the MH2 = MH1/2 threshold region deviations from (7.2.81) are not visible. Thus,
for MH1 = M exp

H the chosen MZ′ = 0.1 GeV is small enough such that the high-energy
limit as defined in Subsect. 7.2.7 is a very good approximation. We conclude that the
brown-dashed lines in Figs. 7.13a,b can be also interpreted as the one-loop predictions
for Γ (H1 → ϕhϕh) versus α. Accordingly, for small vh also the EHSG model is strongly
constrained by the measured Higgs signal strengths. Analogously to Γ(H1 → Z ′Z ′)
we have a strong suppression of Γ (H1 → ϕhϕh) for small |α| and large vh due to the
global factor s2

α/v
2
h in (7.2.80). For vh = 10 TeV the decay mode H1 → ϕhϕh may just

provide a shift of a few extra keV to the total H1 width ΓH1
tot.
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Figure 7.14: EHSL predictions (α = ±π/6 and MZ′ = 0.1 GeV) for Γ(H1 → Z ′Z ′)
versus MH2 (upper row) and the corresponding EHSG predictions for Γ (H1 → ϕhϕh)
(lower row) for vh = 280 GeV (left side) and vh = 10 TeV (right side).

7.3.6 Total width

Now that we have numerically explored the significant partial widths of H1 let us exam-
ine their combined effect in the total H1 width ΓH1

tot. Numerical results are illustrated in
Fig. 7.15. In the shapes of the depicted lines one discovers the features of the individual
decay channels.

In Figs. 7.15a,b the EHSL predictions are shown for MZ′ = 80 GeV, α = ±π/6 and
MH2 ≥ 70 GeV. These two plots primarily illustrate the potential impact of the non-
standard one-loop corrections in the absence of any non-standard decay modes. The
black-dashed lines illustrate the weak LO predictions, including the specific QCD and
QED corrections in Γ(H1 → Xi), Xi = AA,AZ, gg, fjfj. The solid-yellow lines indicate
deviations from the black-dashed lines due to the one-loop shift in MW with α and MH2

in the LO expressions of Γ(H1 → Xi), Xi = AA,AZ,WW,ZZ. The black-solid lines
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Figure 7.15: Predictions for ΓH1
tot for vh = 280 GeV (left side) and vh = 10 TeV (right

side) versus MH2 (upper row) and α (lower row).

additionally include the weak-standard one-loop contributions derived for α = 0 in
Γ(H1 → ff ), f = b, c, τ . The blue- and red-solid lines represent our full predictions
for α = −π/6 and α = +π/6 and thus incorporate all the discussed non-standard
one-loop effects.

In Figs. 7.15c,d our full one-loop predictions for ΓH1
tot, including the various con-

tributions from the decays into non-standard particles of the EHS models, are shown
as functions of α. The solid (dashed) lines correspond to the input MH2 = 1 TeV
(MH2 = 40 GeV) with the dedicated colors blue, yellow, red and black indicating the
EHSL (MZ′ = 60 GeV), EHSL (MZ′ = 40 GeV), EHSG and EHSD results. The solid
(dashed) lines thus represent the case of zero (non-zero) H1 → H2H2 contributions.
The latter are maximized for MH2 ≈ 40 GeV according to Fig. 7.12. Only the black-
solid lines go together with the one-loop predictions in Figs. 7.15a,b where only decay
modes into SM particles provide non-vanishing contributions.
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With zero contributions from decays into non-standard particles (Figs. 7.15a,b), the
one-loop predictions for ΓH1

tot are likewise symmetric (asymmetric) under a sign flip in α
for vh = 10 TeV (vh = 280 GeV). Then, we overall obtain maximal relative deviations of
about −1.4% (−0.5%) from the respective α = ±π

6
,LO (α = ±π

6
,NLOSM) predictions.

In good approximations, the blue- and red-solid lines in Figs. 7.15a,b furthermore
represent the corresponding EHSD results, and the predictions in Fig. 7.15b also apply
to the respective vh > 10 TeV results.

The different predictions for MH2 = 1 TeV in Fig. 7.15c are well separated due to
the various large contributions from Γ(H1 → Z ′Z ′) and Γ (H1 → ϕhϕh) in the small-vh

region. By contrast, the different predictions for MH2 = 1 TeV in Fig. 7.15d ap-
proximately lie on top of each other. This is because for vh = 10 TeV the related
contributions from Γ(H1 → Z ′Z ′) and Γ (H1 → ϕhϕh) are negligible. Moreover, ac-
cording to the discussion of Fig. 7.12, the model-dependent deviations in the NLO
contributions from Γ (H1 → H2H2) are negligible. Therefore, also the different predic-
tions for MH2 = 40 GeV in Fig. 7.15d share the same curve, and the EHSG predictions
in Figs. 7.15c,d also represent the corresponding MZ′ → 0 EHSL predictions in good
approximation.

In particular the results in Figs. 7.15c,d clarify that in the EHSL, EHSG and EHSD
models quite some regions of non-standard parameters might be excluded by recent
indirect ATLAS and CMS constraints for the Higgs total width, which are typically of
order (5− 10)× ΓHtot [184–186], with ΓHtot specified in Tab. 7.1.

7.3.7 Branching ratios

Finally, we investigate the impact of all the discussed effects on the H1 branching ratios,
providing first NLO predictions for the relevant H1 branching ratios into SM particles
BR(H1 → Xi), Xi = AA,ZZ,WW, ττ , AZ, gg, bb, cc. The corresponding numerical re-
sults can be found as listed below:

BR(H1 → AA): Fig. 7.16, BR(H1 → AZ): Fig. C.2 (Appendix C),

BR(H1 → ZZ): Fig. 7.17, BR(H1 → gg): Fig. C.3 (Appendix C),

BR(H1 → WW ): Fig. 7.18, BR(H1 → bb): Fig. C.4 (Appendix C),

BR(H1 → ττ): Fig. 7.19, BR(H1 → cc): Fig. C.5 (Appendix C).

The branching ratios for decays with priority relevance for precise experimental analyses
are depicted in Figs. 7.16−7.19, further branching ratios are to be found in Appendix
C, Figs. C.2−C.5. These figures are arranged as explained in the following.

The left (right) columns illustrate the results for vh = 280 GeV (vh = 10 TeV) versus
MH2 and α. The plots in the upper rows show the EHSL predictions for MH2 ≥ 70
GeV and MZ′ = 80 GeV and therefore represent the scenario in which decays into
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non-standard particles do not contribute via ΓH1
tot. The plots in the middle rows depict

the results for the same scenario versus α, and in addition show the respective EHSG
results with the non-vanishing contributions from the decayH1 → ϕhϕh for comparison.
Finally, the plots in the lower rows illustrate the results (versus α) for the EHSL,
EHSG and EHSD scenarios with non-vanishing contributions from the various decays
into non-standard particles H1 → Z ′Z ′, H1 → ϕhϕh and H1 → H2H2.

Here, we go through the results for the branching ratio BR(H1 → AA), which only
obtains non-standard one-loop contributions from the total width in the denominator.
The results for the other branching ratios are presented in a uniform manner and their
explanation basically proceeds in the same way. However, note that in contrast to
the branching ratios for the loop-induced decays into Xi = AA,AZ, gg, the branching
ratios for the decays into Xi = ZZ,WW, ττ , bb, cc receive further non-standard one-
loop contributions from the respective partial widths in the corresponding numerators.
These additional corrections are just visible on the scales of the plots in the upper and
middle rows and generally compensate for the non-standard one-loop contributions
from ΓH1

tot in the corresponding denominators.

The black-solid (black-dashed) lines in Figs. 7.16a,b illustrate the weak NLO (LO)
predictions for α = 0 (i.e. the respective SM predictions), which incorporate the as-
sociated QCD and QED corrections. The solid-yellow lines are the related α = ±π/6
LO predictions which furthermore include the one-loop shift in MW with α and MH2 .
Recall that the global factors c2

α in the numerators and denominators of the H1 branch-
ing ratios drop out in the absence of any non-standard decay modes. Therefore, in
Figs. 7.16a,b we could just as well designate the black-dashed and black-solid lines as
α = ±π/6,LO and α = ±π/6,NLOSM in order to indicate the correspondence with the
results for ΓH1

tot in Figs. 7.15a,b. The blue- and red-solid lines in Figs. 7.16a,b illustrate
our full predictions for α = −π/6 and α = +π/6 and hence incorporate all the dis-
cussed non-standard one-loop effects. In the absence of any non-standard decay modes
we obtain maximal deviations from the corresponding α = 0 NLO predictions of about
+0.6% (+0.5%) for vh = 280 GeV (vh = 10 TeV). Analogously to the previous results
for the decays of H1 into SM particles, the blue- and red-solid lines in Figs. 7.16a,b
also represent the corresponding EHSD results in good approximation.

In Figs. 7.16c,d the one-loop predictions for the same scenario are shown as functions
of α for MH2 = 70 GeV (yellow-solid lines), MH2 = 500 GeV (blue-solid lines) and
MH2 = 1 TeV (red-solid lines). One more time these colored-solid lines point out the
symmetry (asymmetry) of the one-loop contributions under a sign flip in α for vh = 10
TeV (vh = 280 GeV) in the absence of non-standard decay modes. The black-solid
lines in Figs. 7.16c,d represent the corresponding SM (α = 0) NLO predictions and
thus correspond to the black-solid lines in Figs. 7.16a,b. Let us re-emphasize that
according to the previous considerations, the so far discussed EHSL predictions for
BR(H1 → AA) also apply to the respective predictions of the EHSD model in good
approximation.

Complementary to the colored-solid lines in Figs. 7.16c,d we provide the dashed
lines which represent the corresponding one-loop EHSG results (same color coding with
respect to the MH2 input). According to Subsect. 7.2.7, these dashed lines furthermore
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represent the respective EHSL one-loop predictions for very small MZ′ (e.g. MZ′ = 0.1
GeV as in Fig. 7.14). Either way, the differences between the same-colored solid and
dashed lines in Figs. 7.16c,d arise due to the extra contributions from one related
non-standard decay mode (H1 → ϕhϕh or H1 → Z ′Z ′). For large vh = 10 TeV
these extra contributions are comparatively small (maximal relative deviations of about
−1.6% from the corresponding solid lines). This is different for vh = 280 GeV where
BR(H1 → AA) receives a drastic suppression even for small |α|. Note that in line
with the results in Figs. 7.13a,b contributions from Γ(H1 → Z ′Z ′) are largest for
vanishing MZ′ . Hence, for larger MZ′ < MH1/2 the corresponding predictions would
lie somewhere in between the respective solid and dashed lines in Figs. 7.16c,d.

In Figs. 7.16e,f we present our one-loop EHSL, EHSG and EHSD predictions for
BR(H1 → AA) analogously to those for ΓH1

tot in Figs. 7.15c,d. The solid (dashed) lines
belong to the input MH2 = 1 TeV (MH2 = 40 GeV) with the blue, yellow, red and
black color coding denoting the EHSL (MZ′ = 60 GeV), EHSL (MZ′ = 40 GeV),
EHSG and EHSD results. Here, the differences between the same-colored solid and
dashed lines are basically generated by the additional decay mode H1 → H2H2 which
is kinematically allowed for MH2 = 40 GeV. Only the EHSD predictions for MH2 = 1
TeV in Figs. 7.16e,f represent results without any contributions from decays into non-
standard particles.

In contrast to the respective results in Fig. 7.16e, the different MH2 = 1 TeV
predictions in Fig. 7.16f can hardly be distinguished on the given plot scale. For vh = 10
TeV the extra suppression of the branching ratio due to the non-standard decay modes
H1 → Z ′Z ′ or H1 → ϕhϕh only plays a minor role. Moreover, the deviations due to the
distinct (model-dependent) one-loop contributions in Γ (H1 → H2H2) are negligible in
that regard. Consequently, also the different predictions for MH2 = 40 GeV in Fig.
7.16f approximately lie on top of each other.

Recent prospects for future collider experiments estimate the measurement accu-
racies of the branching ratios for the significant decay modes of a standard-like Higgs
boson to be somewhere in the region of 5− 10% (future LHC versions) [160, 161] and
1 − 2% (future e+e− colliders TLEP, CLIC and ILC) [162–164]. Therefore, it might
very well be possible that our one-loop predictions for the H1 branching ratios will
some day lead to stringent bounds for the EHSL, EHSG and EHSD models. But
also by taking into account the current signal-strength measurement accuracies (about
10−20% [159]) for the individual Higgs decay channels, considerable constraints for the
free parameters of the three EHS models are obtained by means of our results for the
H1 branching ratios. In particular the EHSG model is almost excluded for vh = 280
GeV, such that only small α are still allowed. According to (6.1.3), the measured
Higgs signal strengths already put strong constraints on the non-standard parameters
once the H1 partial widths into non-standard particles provide contributions of the
size of ΓHtot − and for small vh the contributions from Γ(H1 → H2H2), Γ(H1 → Z ′Z ′)
or Γ(H1 → ϕhϕh) can be significantly larger (cf. Figs. 7.12−7.14). In the absence of
any of these non-standard decay modes, however, it will be extremely difficult to con-
strain the three EHS models via future measurements of the branching ratios of the
standard-like Higgs boson.
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Figure 7.16: Predictions for BR(H1 → AA) in the EHSL, EHSG and EHSD models.
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Figure 7.17: Predictions for BR(H1 → ZZ) in the EHSL, EHSG and EHSD models.
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Figure 7.18: Predictions for BR(H1 → WW ) in the EHSL, EHSG and EHSD models.
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Figure 7.19: Predictions for BR(H1 → ττ) in the EHSL, EHSG and EHSD models.



Chapter 8
Conclusions

After the discovery of a Higgs-like particle by the LHC experiments it is important to
work out if the observed state is exactly the particle predicted by the Standard Model
(SM) Higgs mechanism or if it belongs to a more involved Higgs sector. An extended
Higgs sector might very well play a key role in solving some major open issues in
elementary particle physics.

In this thesis, the extension of the SM Higgs sector by an extra Higgs singlet (EHS)
described by the additional scalar field Φh is investigated. The singlet exclusively
couples to the standard sector via a renormalizable quartic interaction term of the form
(Φs
†Φs)(Φh

†Φh), the Higgs portal, with the standard Higgs doublet Φs in the extended
Higgs potential. Three minimal scenarios are considered in terms of the hidden (non-
standard) symmetry group under which Φh transforms − a local U(1) symmetry with
a complex Φh (EHSL model), a global U(1) symmetry with a complex Φh (EHSG
model), and a discrete Z2 symmetry with a real Φh (EHSD model). In each model
the underlying non-standard symmetry is spontaneously broken by the non-vanishing
vacuum expectation value vh of Φh.

The Z ′ boson is the massive gauge field associated with the spontaneously broken
local hidden U(1) symmetry of the EHSL Lagrangian. It does not mix with the stan-
dard sector owing to an additionally imposed Z2 symmetry. Its mass MZ′ is treated
as a free parameter. In the limit of a vanishing hidden U(1) gauge-coupling constant
the imaginary part of the field Φh (here denoted as ϕh) turns into a physical Goldstone
boson and the Lagrangian of the EHSG model is obtained. The Lagrangian of the
EHSD model then follows just by erasing the hidden Goldstone boson ϕh.

In each of the considered models a mixing between the real part of Φh and the
real part of the neutral component of Φs is generated by the Higgs-portal coupling in
combination with the non-vanishing vh. This mixing is parametrized by the angle α.
Consequently, the associated scalar mass eigenstates H1 and H2 (corresponding masses
MH1 and MH2) have a standard and a non-standard field component. It is assumed
that H1 is the standard-like 125.09 GeV Higgs boson and its mass is fixed accordingly.
The non-standard parameters α, MH2 and vh are treated as free parameters and the
decoupling limit α→ 0 always brings us back to the phenomenology of the SM.
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The extended Lagrangians are surveyed in detail with special emphasis on gauge
invariance and quantization. Bounds for the common parameters α, MH2 and vh are
derived by an analysis of tree-level perturbative unitarity. A comparison of the different
models shows that stronger bounds are obtained for the models with a complex Φh field.

For the calculation of quantum effects in the three models suitable one-loop renor-
malization schemes are developed including also the unphysical sector. These are con-
structed such that the above-mentioned transition from the EHSL Lagrangian to the
EHSD Lagrangian via the EHSG Lagrangian also holds for the corresponding renormal-
ized Lagrangians. This feature allows a convenient comparison of associated one-loop
contributions in the three models. The complete list of Feynman rules is derived as
well as a corresponding FeynArts modelfile for automatic one-loop calculations. The
Feynman rules are presented in the appendix of this work. Ward identities from the
hidden U(1) are derived and also listed in the appendix for checks of consistency of the
renormalization schemes.

In order to test and further constrain the three EHS models precise predictions for
relevant observables accessible in collider experiments are made. One-loop contribu-
tions are combined with known higher-order SM terms where possible.

Considerable indirect constraints for the parameters α and MH2 are obtained from
the non-standard one-loop predictions for electroweak precision observables (EWPOs)
when compared to experimental data. At the one-loop level only the fields H1 and H2

appear and consequently the three models make the same predictions. Explicit results
are provided for the most sensitive EWPOs, the W -boson mass MW , the effective
leptonic mixing angle sin2 θlep

eff and the forward-backward pole asymmetry A0,b
FB of the

Z-boson decay into a pair of b quarks. The outcome of a ∆χ2 analysis illustrates
the corresponding exclusion bounds of 68% and 95% confidence level. In order to get
additional sensitivity to MZ′ and vh a non-standard two-loop calculation would be
required.

With the by now measured Higgs signal strengths and the indirect constraints for
the Higgs total width, precise predictions for observables associated with the decays
of the standard-like Higgs boson H1 become important. At the tree-level and at the
one-loop level the entire spectrum of non-standard parameters in the EHSL, EHSG and
EHSD models enter the predictions for the H1 total width ΓH1

tot and branching ratios
BR(H1 → Xi) = Γ(H1 → Xi)/Γ

H1
tot into SM final states Xi. Two representative settings

of the vh parameter are numerically explored at the one-loop level: small vh = 280
GeV and large vh = 10 TeV.

First weak NLO predictions involving associated non-standard one-loop contribu-
tions are made for the fermionic two-body partial widths into b quarks Γ(H1 → bb),
c quarks Γ(H1 → cc) and τ leptons Γ(H1 → ττ). Moreover, new predictions for the
inclusive four-body partial widths Γ(H1 → V V ) into fermion pairs via the exchange
of two standard gauge bosons V = W,Z are provided. According to a new formula
(which can be easily adjusted in order to apply to other SM extensions) the predictions
for Γ(H1 → V V ) incorporate the dominant non-standard one-loop corrections which
arise from the corresponding H1V V vertices.

The non-standard one-loop contributions to Γ(H1 → bb), Γ(H1 → cc), Γ(H1 → ττ)
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and Γ(H1 → V V ) are mild, at most −1% on top of the results obtained by simply
rescaling the respective SM Higgs widths by the global factor c2

α from the mixing.
This is valid in good approximation in the three considered models and the effects can
become a bit enhanced for vh smaller than 280 GeV.

In the absence of any non-standard decay modes, the LO branching ratios of H1 are
not different from the respective SM Higgs branching ratios. Deviations can only be
generated by non-standard quantum effects − but, as pointed out above, these effects
are relatively small.

In addition to the decays into SM particles, non-standard decay channels can occur
when kinematically allowed: H1 → H2H2, H1 → Z ′Z ′ and H1 → ϕhϕh. New one-loop
results for the partial widths Γ(H1 → H2H2), Γ(H1 → Z ′Z ′) and Γ(H1 → ϕhϕh) are
provided.

In the considered non-standard parameter regions the one-loop effects in the partial
widths Γ(H1 → Z ′Z ′) and Γ(H1 → ϕhϕh) provide maximal contributions of about 2%
relative to the corresponding LO predictions. In the limit MZ′ → 0 the NLO-corrected
Γ(H1 → Z ′Z ′) converges into the NLO-corrected Γ(H1 → ϕhϕh) in compliance with the
Goldstone-boson equivalence theorem. Due to the overall factor s2

α/v
2
h in Γ(H1 → Z ′Z ′)

and Γ(H1 → ϕhϕh) these decay modes are strongly suppressed for large vh or small
|α|. For small vh, however, the decay modes H1 → Z ′Z ′ and H1 → ϕhϕh can provide
significant invisible contributions to the total width ΓH1

tot. In these cases, the dependence
on MH2 is not very pronounced. This changes as soon as the decay mode H1 → H2H2

becomes kinematically allowed.

The contributions to ΓH1
tot from Γ(H1 → H2H2) are likewise larger for smaller vh,

but in contrast to those from Γ(H1 → Z ′Z ′) and Γ(H1 → ϕhϕh) they do not vanish in
the limit of large vh. The partial width Γ(H1 → H2H2) receives substantial one-loop
contributions which are generally model dependent. For an increasing gauge coupling
in the non-standard gauge sector of the EHSL model, specific one-loop effects become
non-negligible in Γ(H1 → H2H2).

Explicit numerical results incorporating all the stated non-standard effects are pro-
vided for ΓH1

tot and BR(H1 → Xi), Xi = AA,ZZ,WW, ττ , AZ, gg, bb, cc (photons A and
gluons g). Together with recent experimental bounds from the Higgs measurements
these can be used to considerably constrain the non-standard parameter ranges in the
EHSL, EHSG and EHSD models.
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Appendix A
List of Feynman rules

In the following we list the Feynman rules of the renormalized EHSL model. From
the latter the Feynman rules of the renormalized EHSG model can be derived in a
simple way, by properly taking the limit gh → 0 after a consistent reintroduction of the
parameter gh according to MZ′ = ghvh. In this limit the corresponding counterterms
behave as explained in Subsect. 5.3.2. A subsequent drop of all rules involving the
hidden Goldstone boson ϕh finally yields the Feynman rules of the renormalized EHSD
model.

According to the procedures specified in Chapter 3 and Chapter 5 the Feynman
rules take into account the renormalization of the unphysical sector. We use the ’t
Hooft-Feynman gauge for the renormalized gauge-fixing parameters. The Feynman
rules are specified in the physical basis. Field renormalization of the Goldstone bosons
ϕs, φ

± and ϕh is denoted by the field-renormalization constants for the SM and non-SM
Higgs multiplets δZH and δZχ. All momenta in the vertices are defined as incoming.
For the standard fields and parameters we adopt the conventions of [82].

A.1 Propagators

Gauge bosons V = A, Z, W±, Z ′:

k
Vµ Vν

=

−igµν
k2 −M2

V

.

Faddeev-Popov ghosts U = uA, uZ , u±, uZ
′
:

k
U U =

i

k2 −M2
U

.

Scalar fields S = H1, H2, ϕs, φ
±, ϕh:

k
S S =

i

k2 −M2
S

.
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Fermion fields F = fi:

k
F F =

i(/k +mF )

k2 −m2
F

.

Corresponding masses:
MuA = MA = 0,

MuZ = Mϕs = MZ ,

Mu± = Mφ± = MW± = MW ,

MuZ′ = Mϕh
= MZ′ ,

mfi = mf,i.

(A.1.1)

A.2 Tadpoles

S
= iC,

with respective values of S and C

H1 : C = δtH1 ,

H2 : C = δtH2 .
(A.2.1)

A.3 V V counterterms

V1,µ, k V2,ν
= −igµν [C1k

2−C2]+ikµkνC3,

with respective values of V1, V2, C1, C2 and C3

W+W− : C1 = δZWW , C2 = M2
W δZWW + δM2

W , C3 = δZWW ,

ZZ : C1 = δZZZ , C2 = M2
ZδZZZ + δM2

Z , C3 = δZZZ ,

AZ : C1 =
δZAZ + δZZA

2
, C2 =

M2
Z

2
δZZA, C3 =

δZAZ + δZZA
2

,

AA : C1 = δZAA, C2 = 0, C3 = δZAA,

Z ′Z ′ : C1 = δZZ′Z′ , C2 = M2
Z′δZZ′Z′ + δM2

Z′ , C3 = δZZ′Z′ .

(A.3.1)
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A.4 SV counterterms
S, k Vµ

= ikµC,

with respective values of S, V and C

φ±W∓ : C = ±MW

2

(
δZWW + δZH +

δM2
W

M2
W

)
,

ϕsZ : C = −iMZ

2

(
δZZZ + δZH +

δM2
Z

M2
Z

)
,

ϕsA : C = −iMZ

2
δZZA,

ϕhZ
′ : C = −iMZ′

2

(
δZZ′Z′ + δZχ +

δM2
Z′

M2
Z′

)
.

(A.4.1)

A.5 SS counterterms
S1, k S2

= i[C1k
2−C2],

with respective values of S1, S2, C1 and C2

H1H1 : C1 = δZH1H1 , C2 = δM2
H1

+M2
H1
δZH1H1 ,

H1H2 : C1 = δZH1H2 , C2 =
1

2
M2

H1
δZH1H2 +

1

2
M2

H2
δZH1H2 + δM2

H1H2
,

H2H2 : C1 = δZH2H2 , C2 = δM2
H2

+M2
H2
δZH2H2 ,

ϕsϕs : C1 = δZH , C2 = −cαδtH1

vs

+
sαδtH2

vs

,

ϕhϕh : C1 = δZχ, C2 = −cαδtH2

vh

− sαδtH1

vh

,

φ+φ− : C1 = δZH , C2 = −cαδtH1

vs

+
sαδtH2

vs

.

(A.5.1)
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A.6 UU counterterms

U1, k U2
= i[C1k

2−C2],

with respective values of U1, U2, C1 and C2

uAuA : C1 = δZ̃AA −
1

2
δZAA, C2 = 0,

uZuZ : C1 = δZ̃ZZ −
1

2
δZZZ , C2 = M2

Z

(
δZ̃ZZ −

1

2
δZH

)
+

1

2
δM2

Z ,

uZuA : C1 = δZ̃AZ −
1

2
δZAZ , C2 = 0,

uAuZ : C1 = δZ̃ZA −
1

2
δZZA, C2 = M2

ZδZ̃ZA,

u±u± : C1 = δZ̃WW −
1

2
δZWW , C2 = M2

W

(
δZ̃WW −

1

2
δZH

)
+

1

2
δM2

W ,

uZ
′
uZ
′
: C1 = δZ̃Z′Z′ −

1

2
δZZ′Z′ , C2 = M2

Z′

(
δZ̃Z′Z′ −

1

2
δZχ

)
+

1

2
δM2

Z′ .

(A.6.1)

A.7 FF counterterms

F1, k F2
= i[CL/kω−+CR/kω+−C−S ω−−C+

S ω+],

with respective values for F1, F2, CL, CR, C−S and C+
S

fjfi :



CL =
1

2
(δZf,L

ij + δZf,L†
ij ),

CR =
1

2
(δZf,R

ij + δZf,R†
ij ),

C−S =
1

2
mf,iδZ

f,L
ij +

1

2
mf,jδZ

f,R†
ij + δijδmf,i,

C+
S =

1

2
mf,iδZ

f,R
ij +

1

2
mf,jδZ

f,L†
ij + δijδmf,i.

(A.7.1)
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A.8 V V V couplings

V3,ρ, k3

V2,ν , k2

V1,µ, k1
= −ieC[gµν(k2−k1)ρ+gνρ(k3−k2)µ+gρµ(k1−k3)ν ],

with respective values for V1, V2, V3 and C

AW+W− : C = 1 +
δe

e
+ δZWW +

1

2
δZAA −

1

2

cW
sW

δZZA,

ZW+W− : C = −cW
sW
×
[
1 +

δe

e
− 1

c2
W

δsW
sW

+ δZWW +
1

2
δZZZ

]
+

1

2
δZAZ .

(A.8.1)

A.9 V V V V couplings

V3,ρ

V4,σ

V1,µ

V2,ν

= ie2C[2gµνgσρ−gνρgµσ−gρµgνσ],

with respective values for V1, V2, V3, V4 and C

W+W+W−W− : C =
1

s2
W

×
[
1 + 2

δe

e
− 2

δsW
sW

+ 2δZWW

]
,

W+W−ZZ : C = −c
2
W

s2
W

×
[
1 + 2

δe

e
− 2

1

c2
W

δsW
sW

+ δZWW + δZZZ

]
+
cW
sW

δZAZ ,

W+W−AZ : C =
cW
sW
×
[
1 + 2

δe

e
− 1

c2
W

δsW
sW

+ δZWW +
1

2
δZZZ +

1

2
δZAA

]
− 1

2
δZAZ −

1

2

c2
W

s2
W

δZZA,

W+W−AA : C = −
[
1 + 2

δe

e
+ δZWW + δZAA

]
+
cW
sW

δZZA.

(A.9.1)
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A.10 SSS couplings

S1

S3

S2

= ieC,

with respective values for S1, S2, S3 and C (explicit expressions of the corresponding
counterterms δCH1H1H1 , δCH1H1H2 , δCH1H2H2 and δCH2H2H2 are specified in App. A.19)

H1H1H1 : C = −
3M2

H1

(
ec3α

2sWMW
+ s3α

vh

)
e

× [1 + δCH1H1H1 ] ,

H1H1H2 : C = −
cα
(
2M2

H1
+M2

H2

)
sα

(
sα
vh
− ecα

2sWMW

)
e

× [1 + δCH1H1H2 ] ,

H1H2H2 : C = −
cα
(
M2

H1
+ 2M2

H2

)
sα

(
cα
vh

+ esα
2sWMW

)
e

× [1 + δCH1H2H2 ],

H2H2H2 : C =
3

2
M2

H2

(
s3
α

sWMW

− 2c3
α

evh

)
× [1 + δCH2H2H2 ],

H1ϕsϕs : C = − cαM
2
H1

2sWMW

×
[
1− δvs

vs

+
cα

vsM2
H1

δtH1 −
sα

vsM2
H1

δtH2 +
δM2

H1

M2
H1

−sα
cα

δM2
H1H2

M2
H1

+
1

2
δZH1H1 −

sαM
2
H2

2cαM2
H1

δZH1H2 + δZH

]
,

H2ϕsϕs : C =
sαM

2
H2

2sWMW

×
[
1− δvs

vs

+
cα

vsM2
H2

δtH1 −
sα

vsM2
H2

δtH2 +
δM2

H2

M2
H2

−cα
sα

δM2
H1H2

M2
H2

+
1

2
δZH2H2 −

cαM
2
H1

2sαM2
H2

δZH1H2 + δZH

]
,

H1ϕhϕh : C = −sαM
2
H1

evh

×
[
1− δvh

vh

+
sα

vhM2
H1

δtH1 +
cα

vhM2
H1

δtH2 +
δM2

H1

M2
H1

+
cα
sα

δM2
H1H2

M2
H1

+
1

2
δZH1H1 +

cαM
2
H2

2sαM2
H1

δZH1H2 + δZχ

]
,

(A.10.1)
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H2ϕhϕh : C = −cαM
2
H2

evh

×
[
1− δvh

vh

+
sα

vhM2
H2

δtH1 +
cα

vhM2
H2

δtH2 +
δM2

H2

M2
H2

+
sα
cα

δM2
H1H2

M2
H2

+
1

2
δZH2H2 +

sαM
2
H1

2cαM2
H2

δZH1H2 + δZχ

]
,

H1φ
+φ− : C = − cαM

2
H1

2sWMW

×
[
1− δvs

vs

+
cα

vsM2
H1

δtH1 −
sα

vsM2
H1

δtH2 +
δM2

H1

M2
H1

−sα
cα

δM2
H1H2

M2
H1

+
1

2
δZH1H1 −

sαM
2
H2

2cαM2
H1

δZH1H2 + δZH

]
,

H2φ
+φ− : C =

sαM
2
H2

2sWMW

×
[
1− δvs

vs

+
cα

vsM2
H2

δtH1 −
sα

vsM2
H2

δtH2 +
δM2

H2

M2
H2

−cα
sα

δM2
H1H2

M2
H2

+
1

2
δZH2H2 −

cαM
2
H1

2sαM2
H2

δZH1H2 + δZH

]
.

(A.10.2)

A.11 SSSS couplings

S1

S2

S3

S4

= ie2C,

with respective values for S1, S2, S3, S4 and C (explicit expressions of the corresponding
counterterms δCS1S2S3S4 are specified in App. A.20)

H1H1H1H1 : C =

(
3s4

α

(
(c2
α − 1)M2

H1
− c2

αM
2
H2

)
e2v2

h

−3c3
α

(
M2

H1
−M2

H2

)
s3
α

esWvhMW

−3c4
α

(
c2
α

(
M2

H1
−M2

H2

)
+M2

H2

)
4s2

WM
2
W

)
× [1 + δCH1H1H1H1 ],

(A.11.1)
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H1H1H1H2 : C =

(
3cαs

3
α

(
(c2
α − 1)M2

H1
− c2

αM
2
H2

)
e2v2

h

−3 (2c2
α − 1) c2

α

(
M2

H1
−M2

H2

)
s2
α

2esWvhMW

+
3c3
αsα

(
c2
α

(
M2

H1
−M2

H2

)
+M2

H2

)
4s2

WM
2
W

)
× [1 + δCH1H1H1H2 ],

H1H1H2H2 : C =

(
3c2
αs

2
α

(
(c2
α − 1)M2

H1
− c2

αM
2
H2

)
e2v2

h

−cα (6c4
α − 6c2

α + 1)
(
M2

H1
−M2

H2

)
sα

2esWvhMW

−3c2
αs

2
α

(
c2
α

(
M2

H1
−M2

H2

)
+M2

H2

)
4s2

WM
2
W

)
× [1 + δCH1H1H2H2 ],

H1H2H2H2 : C =

(
3c3
αsα

(
(c2
α − 1)M2

H1
− c2

αM
2
H2

)
e2v2

h

+
3 (2c2

α − 1) c2
α

(
M2

H1
−M2

H2

)
s2
α

2esWvhMW

+
3cαs

3
α

(
c2
α

(
M2

H1
−M2

H2

)
+M2

H2

)
4s2

WM
2
W

)
× [1 + δCH1H2H2H2 ],

H2H2H2H2 : C =

(
−3c4

α

(
(1− c2

α)M2
H1

+ c2
αM

2
H2

)
e2v2

h

−3c3
α

(
M2

H1
−M2

H2

)
s3
α

esWvhMW

−3s4
α

(
c2
α

(
M2

H1
−M2

H2

)
+M2

H2

)
4s2

WM
2
W

)
× [1 + δCH2H2H2H2 ],

H1H1ϕsϕs : C =

(
−cα

(
M2

H1
−M2

H2

)
s3
α

2esWvhMW

−c
2
α

(
(2c2

α − 1)
(
M2

H1
−M2

H2

)
+M2

H1
+M2

H2

)
8s2

WM
2
W

)
× [1 + δCH1H1ϕsϕs ],

(A.11.2)
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H1H1ϕhϕh : C =

(
−s

2
α

(
(2c2

α − 1)
(
M2

H2
−M2

H1

)
+M2

H1
+M2

H2

)
2e2v2

h

−c
3
α

(
M2

H1
−M2

H2

)
sα

2esWvhMW

)
× [1 + δCH1H1ϕhϕh

],

H2H2ϕsϕs : C =

(
−c

3
α

(
M2

H1
−M2

H2

)
sα

2esWvhMW

−s
2
α

(
(2c2

α − 1)
(
M2

H1
−M2

H2

)
+M2

H1
+M2

H2

)
8s2

WM
2
W

)
× [1 + δCH2H2ϕsϕs ],

H2H2ϕhϕh : C =

(
−c

2
α

(
(2c2

α − 1)
(
M2

H2
−M2

H1

)
+M2

H1
+M2

H2

)
2e2v2

h

−cα
(
M2

H1
−M2

H2

)
s3
α

2esWvhMW

)
× [1 + δCH2H2ϕhϕh

],

H1H2ϕsϕs : C =

(
cαsα

(
cα
(
M2

H1
−M2

H2

)
(ecαvh − 2sWMW sα) + evhM

2
H2

)
4es2

WvhM2
W

)
× [1 + δCH1H2ϕsϕs ],

H1H2ϕhϕh : C =

(
cαsα

(
(c2
α − 1)M2

H1
− c2

αM
2
H2

)
e2v2

h

+
c2
α

(
M2

H1
−M2

H2

)
s2
α

2esWvhMW

)
× [1 + δCH1H2ϕhϕh

],

ϕsϕsϕsϕs : C =
3
(
c2
α

(
M2

H2
−M2

H1

)
−M2

H2

)
4s2

WM
2
W

× [1 + δCϕsϕsϕsϕs ],

ϕhϕhϕhϕh : C = −3
(
c2
α

(
M2

H2
−M2

H1

)
+M2

H1

)
e2v2

h

× [1 + δCϕhϕhϕhϕh
],

ϕsϕsϕhϕh : C = −cα
(
M2

H1
−M2

H2

)
sα

2esWvhMW

× [1 + δCϕsϕsϕhϕh
],

φ+φ−φ+φ− : C =
c2
α

(
M2

H2
−M2

H1

)
−M2

H2

2s2
WM

2
W

× [1 + δCφ+φ−φ+φ− ],

ϕsϕsφ
+φ− : C =

c2
α

(
M2

H2
−M2

H1

)
−M2

H2

4s2
WM

2
W

× [1 + δCϕsϕsφ+φ− ],

ϕhϕhφ
+φ− : C = −cα

(
M2

H1
−M2

H2

)
sα

2esWvhMW

× [1 + δCϕhϕhφ+φ− ],

(A.11.3)
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H1H1φ
+φ− : C =

(
−cα

(
M2

H1
−M2

H2

)
s3
α

2esWvhMW

−c
2
α

(
(2c2

α − 1)
(
M2

H1
−M2

H2

)
+M2

H1
+M2

H2

)
8s2

WM
2
W

)
× [1 + δCH1H1φ+φ− ],

H1H2φ
+φ− : C =

(
c2
α

(
M2

H1
−M2

H2

)
sα (ecαvh − 2sWMW sα)

4es2
WvhM2

W

+
cαM

2
H2
sα

4s2
WM

2
W

)
× [1 + δCH1H2φ+φ− ],

H2H2φ
+φ− : C =

(
s2
α

(
− (2c2

α − 1)
(
M2

H1
−M2

H2

)
−M2

H1
−M2

H2

)
8s2

WM
2
W

−c
3
α

(
M2

H1
−M2

H2

)
sα

2esWvhMW

)
× [1 + δCH2H2φ+φ− ].

(A.11.4)

A.12 V V SS couplings

S1

S2

V1,µ

V2,ν

= ie2gµνC,

with respective values for V1, V2, S1, S2 and C

W+W−H1H1 : C =
c2
α

2s2
W

×
[
1 + 2

δe

e
− 2

δsW
sW

+ δZWW + δZH1H1 −
sα
cα
δZH1H2

]
,

W+W−H2H2 : C =
s2
α

2s2
W

×
[
1 + 2

δe

e
− 2

δsW
sW

+ δZWW + δZH2H2 −
cα
sα
δZH1H2

]
,

W+W−H1H2 : C = −sαcα
2s2

W

×
[
1 + 2

δe

e
− 2

δsW
sW

+ δZWW +
1

2
δZH1H1+

+
1

2
δZH2H2 −

sα
2cα

δZH1H2 −
cα
2sα

δZH1H2

]
,

(A.12.1)
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W+W−ϕsϕs : C =
1

2s2
W

×
[
1 + 2

δe

e
− 2

δsW
sW

+ δZWW + δZH

]
,

W+W−φ+φ− : C =
1

2s2
W

×
[
1 + 2

δe

e
− 2

δsW
sW

+ δZWW + δZH

]
,

ZZφ+φ− : C =
(s2
W − c2

W )2

2c2
W s

2
W

×
[
1 + 2

δe

e
+

2

c2
W (s2

W − c2
W )

δsW
sW

+δZZZ + δZH +
2sW cW
s2
W − c2

W

δZAZ

]
,

AZφ+φ− : C =
s2
W − c2

W

sW cW
×
[
1 + 2

δe

e
+

1

c2
W (s2

W − c2
W )

δsW
sW

+
1

2
δZZZ +

1

2
δZAA +

s2
W − c2

W

4sW cW
δZZA

+
sW cW
s2
W − c2

W

δZAZ + δZH

]
,

AAφ+φ− : C = 2×
[
1 + 2

δe

e
+ δZAA + δZH

]
+
s2
W − c2

W

sW cW
δZZA,

ZZH1H1 : C =
c2
α

2c2
W s

2
W

×
[
1 + 2

δe

e
+ 2

s2
W − c2

W

c2
W

δsW
sW

+δZZZ + δZH1H1 −
sα
cα
δZH1H2

]
,

ZZH2H2 : C =
s2
α

2c2
W s

2
W

×
[
1 + 2

δe

e
+ 2

s2
W − c2

W

c2
W

δsW
sW

+δZZZ + δZH2H2 −
cα
sα
δZH1H2

]
,

ZZH1H2 : C = − sαcα
2c2
W s

2
W

×
[
1 + 2

δe

e
+ 2

s2
W − c2

W

c2
W

δsW
sW

+ δZZZ +
1

2
δZH1H1

+
1

2
δZH2H2 −

sα
2cα

δZH1H2 −
cα
2sα

δZH1H2

]
,

ZZϕsϕs : C =
1

2c2
W s

2
W

×
[
1 + 2

δe

e
+ 2

s2
W − c2

W

c2
W

δsW
sW

+ δZZZ + δZH

]
,

AZH1H1 : C =
c2
α

2c2
W s

2
W

1

2
δZZA,

AZH2H2 : C =
s2
α

2c2
W s

2
W

1

2
δZZA,

AZH1H2 : C = − sαcα
2c2
W s

2
W

1

2
δZZA,

(A.12.2)
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AZϕsϕs : C =
1

2c2
W s

2
W

1

2
δZZA,

W±Zφ∓H1 : C = − cα
2cW

×
[
1 + 2

δe

e
− δcW

cW
+
δZWW

2
+
δZH1H1

2
+
δZZZ

2

− sα
2cα

δZH1H2 +
cW
sW

δZAZ
2

+
1

2
δZH

]
,

W±Zφ∓H2 : C =
sα

2cW
×
[
1 + 2

δe

e
− δcW

cW
+
δZWW

2
+
δZH2H2

2
+
δZZZ

2

− cα
2sα

δZH1H2 +
cW
sW

δZAZ
2

+
1

2
δZH

]
,

W±Aφ∓H1 : C = − cα
2sW

×
[
1 + 2

δe

e
− δsW

sW
+
δZWW

2
+
δZH1H1

2
+
δZAA

2

− sα
2cα

δZH1H2 +
sW
cW

δZZA
2

+
1

2
δZH

]
,

W±Aφ∓H2 : C =
sα

2sW
×
[
1 + 2

δe

e
− δsW

sW
+
δZWW

2
+
δZH2H2

2
+
δZAA

2

− cα
2sα

δZH1H2 +
sW
cW

δZZA
2

+
1

2
δZH

]
,

W±Zφ∓ϕs : C = ∓ i

2cW
×
[
1 + 2

δe

e
− δcW

cW
+
δZWW

2
+
δZZZ

2

+
cW
sW

δZAZ
2

+ δZH

]
,

W±Aφ∓ϕs : C = ∓ i

2sW
×
[
1 + 2

δe

e
− δsW

sW
+
δZWW

2
+
δZAA

2

+
sW
cW

δZZA
2

+ δZH

]
,

Z ′Z ′H1H1 : C = 2

(
MZ′sα
evh

)2

×
[
1 + δZZ′Z′ +

δM2
Z′

M2
Z′

−2
δvh

vh

+ δZH1H1 +
cα
sα
δZH1H2

]
,

Z ′Z ′H2H2 : C = 2

(
MZ′cα
evh

)2

×
[
1 + δZZ′Z′ +

δM2
Z′

M2
Z′

−2
δvh

vh

+ δZH2H2 +
sα
cα
δZH1H2

]
,

(A.12.3)
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Z ′Z ′H1H2 : C = 2sαcα

(
MZ′

evh

)2

×
[
1 + δZZ′Z′ +

δM2
Z′

M2
Z′
− 2

δvh

vh

+
1

2
δZH1H1 +

1

2
δZH2H2 +

1

2sαcα
δZH1H2

]
,

Z ′Z ′ϕhϕh : C = 2

(
MZ′

evh

)2

×
[
1 + δZZ′Z′ +

δM2
Z′

M2
Z′
− 2

δvh

vh

+ δZχ

]
.

(A.12.4)

A.13 V SS couplings

S2, k2

S1, k1

Vµ

= ieC(k1−k2)µ,

with respective values for V , S1, S2 and C

AϕsH1 : C = − icα
2cW sW

1

2
δZZA,

AϕsH2 : C =
isα

2cW sW

1

2
δZZA,

ZϕsH1 : C = − icα
2cW sW

×
[
1 +

δe

e
+
s2
W − c2

W

c2
W

δsW
sW

+
1

2
δZH1H1

+
1

2
δZZZ −

sα
2cα

δZH1H2 +
1

2
δZH

]
,

ZϕsH2 : C =
isα

2cW sW
×
[
1 +

δe

e
+
s2
W − c2

W

c2
W

δsW
sW

+
1

2
δZH2H2

+
1

2
δZZZ −

cα
2sα

δZH1H2 +
1

2
δZH

]
,

Aφ+φ− : C = −
[
1 +

δe

e
+

1

2
δZAA +

s2
W − c2

W

2sW cW

1

2
δZZA + δZH

]
,

Zφ+φ− : C = −s
2
W − c2

W

2cW sW
×
[
1 +

δe

e
+

1

c2
W (s2

W − c2
W )

δsW
sW

+
1

2
δZZZ +

2sW cW
s2
W − c2

W

1

2
δZAZ + δZH

]
,

(A.13.1)
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W±φ∓H1 : C = ∓ cα
2sW

×
[
1 +

δe

e
− δsW

sW
+

1

2
δZWW

+
1

2
δZH1H1 −

sα
2cα

δZH1H2 +
1

2
δZH

]
,

W±φ∓H2 : C = ± sα
2sW

×
[
1 +

δe

e
− δsW

sW
+

1

2
δZWW

+
1

2
δZH2H2 −

cα
2sα

δZH1H2 +
1

2
δZH

]
,

W±φ∓ϕs : C = − i

2sW
×
[
1 +

δe

e
− δsW

sW
+

1

2
δZWW + δZH

]
,

Z ′ϕhH1 : C = −isαMZ′

evh

×
[
1 +

1

2
δZZ′Z′ +

1

2

δM2
Z′

M2
Z′
− δvh

vh

+
1

2
δZH1H1 +

cα
2sα

δZH1H2 +
1

2
δZχ

]
,

Z ′ϕhH2 : C = −icαMZ′

evh

×
[
1 +

1

2
δZZ′Z′ +

1

2

δM2
Z′

M2
Z′
− δvh

vh

+
1

2
δZH2H2 +

sα
2cα

δZH1H2 +
1

2
δZχ

]
.

(A.13.2)

A.14 SV V couplings

V2,ν

V1,µ

S
= iegµνC,

with respective values for S, V1, V2 and C

H1W
+W− : C =

MW cα
sW

×
[
1 +

δe

e
− δsW

sW
+

1

2

δM2
W

M2
W

+
1

2
δZH1H1

+δZWW −
sα
2cα

δZH1H2

]
,

(A.14.1)
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H2W
+W− : C = −MW sα

sW
×
[
1 +

δe

e
− δsW

sW
+

1

2

δM2
W

M2
W

+
1

2
δZH2H2

+δZWW −
cα
2sα

δZH1H2

]
,

H1ZZ : C =
MW cα
sW c2

W

×
[
1 +

δe

e
+

2s2
W − c2

W

c2
W

δsW
sW

+
1

2

δM2
W

M2
W

+
1

2
δZH1H1

+δZZZ −
sα
2cα

δZH1H2

]
,

H2ZZ : C = −MW sα
sW c2

W

×
[
1 +

δe

e
+

2s2
W − c2

W

c2
W

δsW
sW

+
1

2

δM2
W

M2
W

+
1

2
δZH2H2 + δZZZ −

cα
2sα

δZH1H2

]
,

H1ZA : C =
MW cα
sW c2

W

1

2
δZZA,

H2ZA : C = −MW sα
sW c2

W

1

2
δZZA,

φ±W∓Z : C = −MW
sW
cW
×
[
1 +

δe

e
+

1

c2
W

δsW
sW

+
1

2

δM2
W

M2
W

+
1

2
δZWW

+
1

2
δZZZ +

cW
sW

1

2
δZAZ +

1

2
δZH

]
,

φ±W∓A : C = −MW ×
[
1 +

δe

e
+

1

2

δM2
W

M2
W

+
1

2
δZWW

+
1

2
δZAA +

sW
cW

1

2
δZZA +

1

2
δZH

]
,

H1Z
′Z ′ : C =

2sαM
2
Z′

evh

×
[
1 + δZZ′Z′ +

δM2
Z′

M2
Z′
− δvh

vh

+
1

2
δZH1H1 +

cα
2sα

δZH1H2

]
,

H2Z
′Z ′ : C =

2cαM
2
Z′

evh

×
[
1 + δZZ′Z′ +

δM2
Z′

M2
Z′
− δvh

vh

+
1

2
δZH2H2 +

sα
2cα

δZH1H2

]
.

(A.14.2)
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A.15 V FF couplings

F2

F1

Vµ
= ieγµ(C−ω−+C+ω+),

with respective values for V , F1, F2, C+ and C−

γfifj :



C+ = −Qf ×
[
δij

(
1 +

δe

e
+

1

2
δZAA

)
+

1

2

(
δZf,R

ij + δZf,R†
ij

)]
+ δijg

+
f

1

2
δZZA,

C− = −Qf ×
[
δij

(
1 +

δe

e
+

1

2
δZAA

)
+

1

2

(
δZf,L

ij + δZf,L†
ij

)]
+ δijg

−
f

1

2
δZZA,

(A.15.1)

Zfifj :



C+ = g+
f ×

[
δij

(
1 +

δg+
f

g+
f

+
1

2
δZZZ

)
+

1

2

(
δZf,R

ij + δZf,R†
ij

)]
− δijQf

1

2
δZAZ ,

C− = g−f ×
[
δij

(
1 +

δg−f
g−f

+
1

2
δZZZ

)
+

1

2

(
δZf,L

ij + δZf,L†
ij

)]
− δijQf

1

2
δZAZ ,

(A.15.2)

W+uidj :



C+ = 0,

C− =
1√
2sW

×
[
Vij

(
1 +

δe

e
− δsW

sW
+

1

2
δZWW

)
+ δVij

+
1

2

∑
k

(
δZu,L†

ik Vkj + VikδZ
d,L
kj

)]
,

W−djui :



C+ = 0,

C− =
1√
2sW

×
[
V†ji

(
1 +

δe

e
− δsW

sW
+

1

2
δZWW

)
+ δV†ji

+
1

2

∑
k

(
δZd,L†

jk V†kj + V†jkδZ
u,L
ki

)]
,

(A.15.3)
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W+νilj :


C+ = 0,

C− =
1√
2sW

δij ×
[
1 +

δe

e
− δsW

sW
+

1

2
δZWW +

1

2

(
δZν,L†

ii + δZ l,L
ii

)]
,

W−ljνi :


C+ = 0,

C− =
1√
2sW

δij ×
[
1 +

δe

e
− δsW

sW
+

1

2
δZWW +

1

2

(
δZ l,L†

ii + δZν,L
ii

)]
.

(A.15.4)

Here, g±f and δg±f are given by

g+
f = −sW

cW
Qf , δg+

f = −sW
cW

Qf

[
δe

e
+

1

c2
W

δsW
sW

]
,

g−f =
I3
f − s2

WQf

sW cW
, δg−f =

I3
f

sW cW

[
δe

e
+
s2
W − c2

W

c2
W

δsW
sW

]
+ δg+

f ,

(A.15.5)

and the vector- and axial-vector couplings of the Z boson can be written as follows,

vZf =
1

2

(
g−f + g+

f

)
=
I3
f − 2s2

WQf

2sW cW
(A.15.6)

and

aZf =
1

2

(
g−f − g+

f

)
=

I3
f

2sW cW
. (A.15.7)
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A.16 SFF couplings

F2

F1

S
= ie(C−ω−+C+ω+),

with respective values for S, F1, F2, C+ and C−

H1fifj :



C+ = − cα
2sWMW

×
[
δijmf,i

(
1 +

δe

e
− δsW

sW
+
δmf,i

mf,i

−1

2

δM2
W

M2
W

+
1

2
δZH1H1 −

sα
cα

1

2
δZH1H2

)
+

1

2

(
mf,iδZ

f,R
ij + δZf,L†

ij mf,j

)]
,

C− = − cα
2sWMW

×
[
δijmf,i

(
1 +

δe

e
− δsW

sW
+
δmf,i

mf,i

−1

2

δM2
W

M2
W

+
1

2
δZH1H1 −

sα
cα

1

2
δZH1H2

)
+

1

2

(
mf,iδZ

f,L
ij + δZf,R†

ij mf,j

)]
,

(A.16.1)

H2fifj :



C+ =
sα

2sWMW

×
[
δijmf,i

(
1 +

δe

e
− δsW

sW
+
δmf,i

mf,i

−1

2

δM2
W

M2
W

+
1

2
δZH2H2 −

cα
sα

1

2
δZH1H2

)
+

1

2

(
mf,iδZ

f,R
ij + δZf,L†

ij mf,j

)]
,

C− =
sα

2sWMW

×
[
δijmf,i

(
1 +

δe

e
− δsW

sW
+
δmf,i

mf,i

−1

2

δM2
W

M2
W

+
1

2
δZH2H2 −

cα
sα

1

2
δZH1H2

)
+

1

2

(
mf,iδZ

f,L
ij + δZf,R†

ij mf,j

)]
,

(A.16.2)
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ϕsfifj :



C+ = i
1

2sWMW

2I3
f ×

[
δijmf,i

(
1 +

δe

e
− δsW

sW
+
δmf,i

mf,i

−1

2

δM2
W

M2
W

+
1

2
δZH

)
+

1

2

(
mf,iδZ

f,R
ij + δZf,L†

ij mf,j

)]
,

C− = −i 1

2sWMW

2I3
f ×

[
δijmf,i

(
1 +

δe

e
− δsW

sW
+
δmf,i

mf,i

−1

2

δM2
W

M2
W

+
1

2
δZH

)
+

1

2

(
mf,iδZ

f,L
ij + δZf,R†

ij mf,j

)]
,

(A.16.3)

φ+uidj :



C+ = − 1√
2sWMW

×
[
Vijmd,j

(
1 +

δe

e
− δsW

sW
+
δmd,j

md,j

−1

2

δM2
W

M2
W

+
1

2
δZH

)
+δVijmd,j +

1

2

∑
k

(
δZu,L†

ik Vkjmd,j + Vikmd,kδZ
d,R
kj

)]
,

C− =
1√

2sWMW

×
[
mu,iVij

(
1 +

δe

e
− δsW

sW
+
δmu,i

mu,i

−1

2

δM2
W

M2
W

+
1

2
δZH

)
+mu,iδVij +

1

2

∑
k

(
δZu,R†

ik mu,kVkj +mu,iVikδZ
d,L
kj

)]
,

(A.16.4)
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φ−djui :



C+ =
1√

2sWMW

×
[
V†jimu,i

(
1 +

δe

e
− δsW

sW
+
δmu,i

mu,i

−1

2

δM2
W

M2
W

+
1

2
δZH

)
+δV†jimu,i +

1

2

∑
k

(
δZd,L†

jk V†kimu,i + V†jkmu,kδZ
u,R
ki

)]
,

C− = − 1√
2sWMW

×
[
md,jV

†
ji

(
1 +

δe

e
− δsW

sW
+
δmd,j

md,j

−1

2

δM2
W

M2
W

+
1

2
δZH

)
+md,jδV

†
ji +

1

2

∑
k

(
δZd,R†

jk md,kV
†
ki +md,jV

†
jkδZ

u,L
ki

)]
,

(A.16.5)

φ+νilj :



C+ = − ml,i√
2sWMW

δij ×
[
1 +

δe

e
− δsW

sW
+
δml,i

ml,i

+
1

2
δZH

−1

2

δM2
W

M2
W

+
1

2

(
δZν,L†

ii + δZ l,R
ii

)]
,

C− = 0,

(A.16.6)

φ−ljνi :



C+ = 0,

C− = − ml,i√
2sWMW

δij ×
[
1 +

δe

e
− δsW

sW
+
δml,i

ml,i

+
1

2
δZH

−1

2

δM2
W

M2
W

+
1

2

(
δZ l,R†

ii + δZν,L
ii

)]
.

(A.16.7)
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A.17 V UU couplings

U2

U1, k1

Vµ
= iek1,µC,

with respective values for V , U1, U2 and C

Au±u± : C = ±
[
1 +

δe

e
+

1

2
δZAA −

1

2
δZWW + δZ̃WW −

cW
2sW

δZZA

]
,

Zu±u± : C = ∓cW
sW
×
[
1 +

δe

e
− 1

c2
W

δsW
sW

+
1

2
δZZZ

−1

2
δZWW + δZ̃WW −

sW
2cW

δZAZ

]
,

W±u±uZ : C = ±cW
sW
×
[
1 +

δe

e
− 1

c2
W

δsW
sW

+ δZ̃ZZ −
sW
cW

δZ̃AZ

]
,

W±uZu∓ : C = ∓cW
sW
×
[
1 +

δe

e
− 1

c2
W

δsW
sW

+
1

2
δZWW

−1

2
δZZZ + δZ̃WW +

sW
2cW

δZZA

]
,

W±u±uA : C = ∓
[
1 +

δe

e
+ δZ̃AA −

cW
sW

δZ̃ZA

]
,

W±uAu∓ : C = ±
[
1 +

δe

e
+

1

2
δZWW −

1

2
δZAA + δZ̃WW +

cW
2sW

δZAZ

]
.

(A.17.1)

A.18 SUU couplings

U2

U1

S
= ieC,

with respective values for S, U1, U2 and C

H1u
ZuZ : C = − cαMZ

2sW cW
×
[
1 +

δe

e
+
s2
W − c2

W

c2
W

δsW
sW

+
1

2
δZH1H1

−1

2
δZH + δZ̃ZZ −

sα
2cα

δZH1H2

]
,

(A.18.1)
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H2u
ZuZ : C =

sαMZ

2sW cW
×
[
1 +

δe

e
+
s2
W − c2

W

c2
W

δsW
sW

+
1

2
δZH2H2

−1

2
δZH + δZ̃ZZ −

cα
2sα

δZH1H2

]
,

H1u
ZuA : C = − cαMZ

2sW cW
δZ̃ZA,

H2u
ZuA : C =

sαMZ

2sW cW
δZ̃ZA,

H1u
±u± : C = −cαMW

2sW
×
[
1 +

δe

e
− δsW

sW
+

1

2
δZH1H1

− sα
2cα

δZH1H2 + δZ̃WW −
1

2
δZH

]
,

H2u
±u± : C =

sαMW

2sW
×
[
1 +

δe

e
− δsW

sW
+

1

2
δZH2H2

− cα
2sα

δZH1H2 + δZ̃WW −
1

2
δZH

]
,

ϕsu
±u± : C = ∓iMW

2sW
×
[
1 +

δe

e
− δsW

sW
+ δZ̃WW

]
,

φ±uZu∓ : C =
MZ

2sW
×
[
1 +

δe

e
− δsW

sW
+ δZ̃WW

]
,

φ±u±uZ : C =
s2
W − c2

W

2sW cW
MW ×

[
1 +

δe

e
+

1

(s2
W − c2

W )c2
W

δsW
sW

+δZ̃ZZ +
2sW cW
s2
W − c2

W

δZ̃AZ

]
,

φ±u±uA : C = MW ×
[
1 +

δe

e
+ δZ̃AA +

s2
W − c2

W

2sW cW
δZ̃ZA

]
,

H1u
Z′uZ

′
: C = −sαM

2
Z′

evh

×
[
1 + δZ̃Z′Z′ +

1

2
δZH1H1 +

1

2

δM2
Z′

M2
Z′

−δvh

vh

− 1

2
δZχ +

cα
2sα

δZH1H2

]
,

H2u
Z′uZ

′
: C = −cαM

2
Z′

evh

×
[
1 + δZ̃Z′Z′ +

1

2
δZH2H2 +

1

2

δM2
Z′

M2
Z′

−δvh

vh

− 1

2
δZχ +

sα
2cα

δZH1H2

]
.

(A.18.2)
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+
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−
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×
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×
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( c3 α
v
h
−

3
c
α
(s

2 α
−

1
)v

h
+

4
s
3 α
v
s
)+
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×
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+
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+
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×

2

2
M

2 H
1

+
M

2 H
2

+
δ
M

2 H
2
×

1

2
M

2 H
1

+
M

2 H
2

−
δ
M

2 H
1
H

2
×

(( c
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−
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=
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×
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+
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+
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×
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+
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+
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×
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×
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Appendix B
U(1)Yh Ward identities

Here we list a set of Ward identities resulting from the case of a global U(1)Yh symmetry
of the (quantized) Lagrangian LEHS (cf. Chapter 3). It consists of relations between
scalar n-point vertex functions ΓX1...Xn with n ≤ 5 and Xi = H1, H2, ϕs, ϕh, φ

±. These
generally apply to the EHSG model − but also to the EHSL model if the global
U(1)Yh is unbroken.1 Our renormalization scheme does not introduce any symmetry-
restoring counterterms (cf. Chapter 5). As a consequence, at the one-loop order all
these Ward identities separately apply to the respective renormalized vertex functions,
unrenormalized vertex functions and vertex counterterms.

B.1 Conventions
Under the infinitesimal global U(1)Yh transformation δθh = Yh

2
δθYh the scalar fields

behave as

δH1(x)

δθh

= sαϕh(x),
δϕs(x)

δθh

=
δφ±(x)

δθh

= 0,

δH2(x)

δθh

= cαϕh(x),
δϕh(x)

δθh

= −vh − sαH1(x)− cαH2(x),

(B.1.1)

according to (3.3.4). Due to the global U(1)Yh symmetry the variation of the corre-
sponding vertex functional Γ (H1, H2, ϕs, ϕh, φ) under δθh vanishes, i.e.

S(Γ) =
δΓ

δθh

=

∫
d4x

{
sαϕh(x)

δΓ

δH1(x)
+ cαϕh(x)

δΓ

δH2(x)

− [vh + sαH1(x) + cαH2(x)]
δΓ

δϕh(x)

}
= 0.

(B.1.2)

After the appropriate functional differentiation of S(Γ) the fields are set to zero which
is denoted by the label φ = 0. Consequently, we obtain various relations between

1Note that we fix the non-standard gauge parameters of the EHSL model according to the ’t
Hooft-Feynman gauge (cf. Sect. 3.2) such that here the associated global U(1)Yh

is broken.
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different vertex functions

ΓX1...Xn(x1, . . . , xn) =
δ(n)Γ

δX1(x1) . . . δXn(xn)

∣∣∣∣
φ=0

(B.1.3)

in configuration space. The relations listed below are obtained by subsequently trans-
forming to momentum space. Here, the momenta are assigned according to the nota-
tion Γabc ...(pa, pb, pc, . . . ). Moreover, we use the short notation p1...m = −∑m

i=1 pi. All
momenta are considered as incoming.

B.2 Relations between vertex functions

Relations involving n-point functions with n > 5 are omitted since these are indepen-
dent of the related counterterm structure at the one-loop level. The same holds for
relations which do not involve any of the existing tree-level vertex functions.

δS(Γ)

δϕh(a)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH1(0)− cαΓH2(0) + vhΓϕhϕh
(0, 0), (B.2.1)

δ2S(Γ)

δH1(a)δϕh(b)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH1H1(−p, p)− cαΓH1H2(−p, p) + sαΓϕhϕh
(−p, p) + vhΓϕhH1ϕh

(0,−p, p),

(B.2.2)

δ2S(Γ)

δH2(a)δϕh(b)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −cαΓH2H2(−p, p)− sαΓH2H1(−p, p) + cαΓϕhϕh
(−p, p) + vhΓϕhH2ϕh

(0,−p, p),

(B.2.3)
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δ3S(Γ)

δH1(a)δH1(b)δϕh(c)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH1H1H1(p12, p1, p2)− cαΓH1H1H2(p12, p1, p2) + sαΓH1ϕhϕh
(p12, p1, p2)

+ sαΓϕhH1ϕh
(p12, p1, p2) + vhΓϕhH1H1ϕh

(0, p12, p1, p2),

(B.2.4)

δ3S(Γ)

δH1(a)δH2(b)δϕh(c)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH1H2H1(p12, p1, p2)− cαΓH1H2H2(p12, p1, p2) + cαΓH1ϕhϕh
(p12, p1, p2)

+ sαΓϕhH2ϕh
(p12, p1, p2) + vhΓϕhH1H2ϕh

(0, p12, p1, p2),

(B.2.5)

δ3S(Γ)

δH2(a)δH2(b)δϕh(c)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH2H2H1(p12, p1, p2)− cαΓH2H2H2(p12, p1, p2) + cαΓH2ϕhϕh
(p12, p1, p2)

+ cαΓϕhH2ϕh
(p12, p1, p2) + vhΓϕhH2H2ϕh

(0, p12, p1, p2),

(B.2.6)

δ3S(Γ)

δϕs(a)δϕs(b)δϕh(c)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓϕsϕsH1(p12, p1, p2)− cαΓϕsϕsH2(p12, p1, p2) + vhΓϕhϕsϕsϕh
(0, p12, p1, p2),

(B.2.7)

δ3S(Γ)

δϕh(a)δϕh(b)δϕh(c)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓϕhϕhH1(p12, p1, p2)− sαΓϕhH1ϕh
(p12, p1, p2)− sαΓH1ϕhϕh

(p12, p1, p2)

− cαΓϕhϕhH2(p12, p1, p2)− cαΓϕhH2ϕh
(p12, p1, p2)− cαΓH2ϕhϕh

(p12, p1, p2)

+ vhΓϕhϕhϕhϕh
(0, p12, p1, p2),

(B.2.8)
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δ3S(Γ)

δϕh(a)δφ+(b)δφ−(c)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH1φ+φ−(p12, p1, p2)− cαΓH2φ+φ−(p12, p1, p2) + vhΓϕhϕhφ+φ−(0, p12, p1, p2),

(B.2.9)

δ4S(Γ)

δH1(a)δH1(b)δH1(c)δϕh(d)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH1H1H1H1(p123, p1, p2, p3)− cαΓH1H1H1H2(p123, p1, p2, p3)

+ sαΓH1H1ϕhϕh
(p123, p1, p2, p3) + sαΓH1ϕhH1ϕh

(p123, p1, p2, p3)

+ sαΓϕhH1H1ϕh
(p123, p1, p2, p3) + vhΓϕhH1H1H1ϕh

(0, p123, p1, p2, p3),

(B.2.10)

δ4S(Γ)

δH1(a)δH1(b)δH2(c)δϕh(d)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH1H1H2H1(p123, p1, p2, p3)− cαΓH1H1H2H2(p123, p1, p2, p3)

+ cαΓH1H1ϕhϕh
(p123, p1, p2, p3) + sαΓH1ϕhH2ϕh

(p123, p1, p2, p3)

+ sαΓϕhH1H2ϕh
(p123, p1, p2, p3) + vhΓϕhH1H1H2ϕh

(0, p123, p1, p2, p3),

(B.2.11)

δ4S(Γ)

δH1(a)δH2(b)δH2(c)δϕh(d)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH1H2H2H1(p123, p1, p2, p3)− cαΓH1H2H2H2(p123, p1, p2, p3)

+ cαΓH1H2ϕhϕh
(p123, p1, p2, p3) + cαΓH1ϕhH2ϕh

(p123, p1, p2, p3)

+ sαΓϕhH2H2ϕh
(p123, p1, p2, p3) + vhΓϕhH1H2H2ϕh

(0, p123, p1, p2, p3),

(B.2.12)
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δ4S(Γ)

δH2(a)δH2(b)δH2(c)δϕh(d)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH2H2H2H1(p123, p1, p2, p3)− cαΓH2H2H2H2(p123, p1, p2, p3)

+ cαΓH2H2ϕhϕh
(p123, p1, p2, p3) + cαΓH2ϕhH2ϕh

(p123, p1, p2, p3)

+ cαΓϕhH2H2ϕh
(p123, p1, p2, p3) + vhΓϕhH2H2H2ϕh

(0, p123, p1, p2, p3),

(B.2.13)

δ4S(Γ)

δH1(a)δϕs(b)δϕs(c)δϕh(d)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH1ϕsϕsH1(p123, p1, p2, p3)− cαΓH1ϕsϕsH2(p123, p1, p2, p3)

+ sαΓϕhϕsϕsϕh
(p123, p1, p2, p3) + vhΓϕhH1ϕsϕsϕh

(0, p123, p1, p2, p3),

(B.2.14)

δ4S(Γ)

δH2(a)δϕs(b)δϕs(c)δϕh(d)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH2ϕsϕsH1(p123, p1, p2, p3)− cαΓH2ϕsϕsH2(p123, p1, p2, p3)

+ cαΓϕhϕsϕsϕh
(p123, p1, p2, p3) + vhΓϕhH2ϕsϕsϕh

(0, p123, p1, p2, p3),

(B.2.15)

δ4S(Γ)

δH1(a)δϕh(b)δϕh(c)δϕh(d)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH1ϕhϕhH1(p123, p1, p2, p3)− cαΓH1ϕhϕhH2(p123, p1, p2, p3)

− sαΓH1ϕhH1ϕh
(p123, p1, p2, p3)− cαΓH1ϕhH2ϕh

(p123, p1, p2, p3)

− sαΓH1H1ϕhϕh
(p123, p1, p2, p3)− cαΓH1H2ϕhϕh

(p123, p1, p2, p3)

+ sαΓϕhϕhϕhϕh
(p123, p1, p2, p3) + vhΓϕhH1ϕhϕhϕh

(0, p123, p1, p2, p3),

(B.2.16)
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δ4S(Γ)

δH2(a)δϕh(b)δϕh(c)δϕh(d)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH2ϕhϕhH1(p123, p1, p2, p3)− cαΓH2ϕhϕhH2(p123, p1, p2, p3)

− sαΓH2ϕhH1ϕh
(p123, p1, p2, p3)− cαΓH2ϕhH2ϕh

(p123, p1, p2, p3)

− sαΓH2H1ϕhϕh
(p123, p1, p2, p3)− cαΓH2H2ϕhϕh

(p123, p1, p2, p3)

+ cαΓϕhϕhϕhϕh
(p123, p1, p2, p3) + vhΓϕhH2ϕhϕhϕh

(0, p123, p1, p2, p3),

(B.2.17)

δ4S(Γ)

δH1(a)δφ+(b)δφ−(c)δϕh(d)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH1φ+φ−H1
(p123, p1, p2, p3)− cαΓH1φ+φ−H2

(p123, p1, p2, p3)

+ sαΓϕhφ+φ−ϕh
(p123, p1, p2, p3) + vhΓϕhH1φ+φ−ϕh

(0, p123, p1, p2, p3),

(B.2.18)

δ4S(Γ)

δH2(a)δφ+(b)δφ−(c)δϕh(d)

∣∣∣∣
φ=0

= 0 :

−→ 0 = −sαΓH2φ+φ−H1
(p123, p1, p2, p3)− cαΓH2φ+φ−H2

(p123, p1, p2, p3)

+ cαΓϕhφ+φ−ϕh
(p123, p1, p2, p3) + vhΓϕhH2φ+φ−ϕh

(0, p123, p1, p2, p3).

(B.2.19)

As already mentioned, these identities apply to the renormalized and unrenormalized
vertex functions. Consequently, we obtain relations between the corresponding vertex
counterterms and between the associated renormalization constants. The renormaliza-
tion constant δvh drops out in each of these relations. Remarkably enough, the identi-
ties (B.2.2)−(B.2.9) imply that δZχ = 0 is required in the renormalization scheme of
the EHSG model. The transition (5.3.34) from the local to the global here generally
follows from symmetry. This can be deduced by introducing the explicit expressions of
the corresponding vertex counterterms according to Apps. A.10, A.11, A.19 and A.20
whilst taking into account (5.3.12) and (5.3.13).



Appendix C
Appended numerical results

In this appendix, further numerical results for the H1-decay observables are collected, in
completion of those discussed in Chapter 7. We refer to the latter for more information
about the interpretation of the following results.

10.90.80.70.60.50.40.30.20.1

866

864

862

860

858

856

854

852

α = +π
6 ,NLO

α = −π
6 ,NLO

α = ±π
6 ,NLOSM

α = ±π
6 ,LO

vh = 280 GeV, MZ′ = 80 GeV, EHSL

Γ
(H

1 →
cc)[M

eV
]×

10
4

MH2 [TeV]

(a)

10.90.80.70.60.50.40.30.20.1

866

864

862

860

858

856

854

852

α = +π
6 ,NLO

α = −π
6 ,NLO

α = ±π
6 ,NLOSM

α = ±π
6 ,LO

vh = 10 TeV, MZ′ = 80 GeV, EHSL

Γ
(H

1 →
cc)[M

eV
]×

10
4

MH2 [TeV]

(b)

Figure C.1: EHSL predictions for the partial width Γ(H1 → cc) for vh = 280 GeV (left
side) and vh = 10 TeV (right side), with MZ′ = 80 GeV and α = ±π/6.
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Figure C.2: Predictions for BR(H1 → AZ) in the EHSL, EHSG and EHSD models.
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Figure C.3: Predictions for BR(H1 → gg) in the EHSL, EHSG and EHSD models.
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Figure C.4: Predictions for BR(H1 → bb) in the EHSL, EHSG and EHSD models.
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Figure C.5: Predictions for BR(H1 → cc) in the EHSL, EHSG and EHSD models.
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[131] M.W. Grünewald. Combined electroweak analysis. J. Phys. Conf. Ser. 110, p.
042008, 2008, hep-ph/0709.3744.

[132] LEP Electroweak Working Group, ALEPH Coll., CDF Coll., D0 Coll., DELPHI
Coll., L3 Coll., OPAL Coll., SLD Coll., SLD Electroweak and Heavy Flavour
Groups and Tevatron Electroweak Working Group. Precision Electroweak Mea-
surements and Constraints on the Standard Model. 2010, hep-ex/1012.2367.

[133] ATLAS Collaboration. Study of the Higgs boson properties and search for high-
mass scalar resonances in the H → ZZ∗ → 4` decay channel at

√
s = 13 TeV

with the ATLAS detector. 2016.

[134] CMS Collaboration. Measurements of properties of the Higgs boson and search
for an additional resonance in the four-lepton final state at

√
s = 13 TeV. 2016.

[135] R. Barate and others. Search for the Standard Model Higgs boson at LEP. Phys.
Lett. B565, pp. 61-75, 2003, hep-ex/0306033.

[136] A. Djouadi and C. Verzegnassi. Virtual very heavy top effects in LEP/SLC
precision measurements. Phys. Lett. B195, pp. 265-271, 1987.

[137] A. Djouadi. O(ααs) vacuum polarization functions of the standard-model gauge
bosons. Nuovo Cim. A100, pp. 357-371, 1988.

[138] B.A. Kniehl. Two-loop corrections to the vacuum polarizations in perturbative
QCD. Nucl. Phys. B347, pp. 86-104, 1990.

[139] F. Halzen and B.A. Kniehl. ∆r beyond one loop. Nucl. Phys. B353, pp. 567-590,
1991.

[140] B.A. Kniehl and A. Sirlin. Dispersion relations for vacuum-polarization functions
in electroweak physics. Nucl. Phys. B371, pp. 141-148, 1992.

[141] B.A. Kniehl and A. Sirlin. Effect of the tt threshold on electroweak parameters.
Phys. Rev. D47, pp. 883-893, 1993.

[142] A. Djouadi and P. Gambino. Electroweak gauge boson self-energies: Complete
QCD corrections. Phys. Rev. D49, pp. 3499-3511, 1994, hep-ph/9309298. [Er-
ratum: Phys. Rev. D53, p. 4111, 1996].

[143] L. Avdeev, J. Fleischer, S. Mikhailov and O. Tarasov. O(αα2
s) correction to the

electroweak ρ parameter. Phys. Lett. B336, pp. 560-566, 1994, hep-ph/9406363.
[Erratum: Phys. Lett. B349, p. 597, 1995].
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