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A Method to Identify the Nonlinear Stiffness
Characteristics of an Elastic Continuum Mechanism

Bastian Deutschmann!, Tong Liu'-?, Alexander Dietrich!, Christian Ott!, and Dongheui Lee!+?

Abstract—The humanoid robot David is equipped with a novel
robotic neck based on an elastic continuum mechanism (ECM).
To realize a model-based motion control, the six dimensional
stiffness characteristics needs to be known. The paper presents
an approach to experimentally identify the stiffness characteristic
using a robot manipulator to deflect the ECM and measure the
Cartesian wrenches and Cartesian poses with external sensors. A
three-step process is proposed to establish Cartesian wrench and
pose pairs experimentally. The process consists of a simulation
step, to select a good model, a second step that extracts effective
poses from workspace which are sampled experimentally and
the third step, the pose sampling procedure in which the robot
drives the ECM to these effective poses. A full cubic polynomial
regression model is adopted based on simulation data to fit the
stiffness characteristics. To extract the poses to be sampled in
the experiments, two different approaches are evaluated and
compared to ensure a well-posed identification. The identification
process on the hardware is performed by using Cartesian
impedance and inverse kinematics control in combination to
comply with the physical constraints imposed by the ECM.

Index Terms—Model Learning for Control,
Joint/Mechanism, Soft Material Robotics

Compliant

I. INTRODUCTION

N recent years, humanoid robotic systems have been

equipped with passively compliant mechanical elements
which enables the robot to dynamically interact with the
environment. Based on this design principle, the DLR robot
David (see Fig. 1) has been developed. In [1], an elastic
continuum mechanism (ECM) is introduced which serves as
a neck or spine for David. The ECM consists of a silicone
structure which is deformed by a rigid platform at the top
end at which the tendon actuation is attached. This is a
common actuation scheme among such mechanism, e.g. [2],
[3], and it enables the neck to rotate about all Cartesian
axis, see Fig.1. In [4], a model-based controller is designed
based on a simplified model of the system, assuming that the
system can be modeled as a rigid-body, the head, on top of
a nonlinear Cartesian spring. This nonlinear Cartesian spring
should embody the stiffness characteristics of the ECM that
can be described by the mapping from a Cartesian pose to a
Cartesian wrench. Other control approaches are also feasible
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Fig. 1. The neck of the DLR robot David [1] and its motion capabilities

such as linear, robust controllers [5], impedance controllers [6]
or model-based observers for online state estimation such as
Kalman Filters. All mentioned alternatives desire the nonlinear
stiffness characteristics or the linearized stiffness matrix of
the ECM. State-of-the-art methods that describe the stiffness
characteristic of an ECM are often based on continuum me-
chanical beam models [7], [8] and are solved using finite dif-
ferences. This approach tends to consume much computation
time, e.g. [8] states 28 min for 1s of simulation. The SOFA
framework [9] uses the finite element method to simulate the
deformation of general soft structures under external loading
such as continuum robots and 23 ms for a computation cycle is
reported for a beam-like structure [10]. Another possibility is
to apply reduced models that approximate the behavior of the
mechanism. For example, the kinematic assumption that the
mechanism deforms with constant curvature is used [11], [12].
Recently, model-free techniques are studied to approximate
the mapping of a continuum mechanisms between its task
space and the associated actuator configuration. This mapping
is identified based on experiments in which the mechanism is
driven to several positions in the workspace by the actuation
system. Positions in the actuation space and the associated
workspace are recorded based on which the mapping is trained.
By using a neural network for the mapping, [13] proved
to be computationally efficient compared to a model from
nonlinear beam theory and [14] extended the neural network
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Fig. 2. Overview of the three subsequent steps incorporated in the proposed method to identify the stiffness characteristic. Step 1. corresponds to Sec. II,

step 2. corresponds to Sec. III and step 3. corresponds to Sec. IV.

approach to cover possible redundancies. Another model-
free technique is task-parametrized Gaussian mixture models
which was successfully applied by [15] in the same context.
The main drawbacks that hinder the discussed methods to be
used in the present application are as follows: On the one
hand, the control cycle of the hardware is 1kHz [1]. Thus
the computational costs of continuum mechanical models are
to high. An improvement is expected when using the SOFA
framework [9], however a Dirichlet boundary value problem
would be necessary to embody the stiffness characteristics,
i.e. the mapping from Cartesian pose to Cartesian wrench,
which will increase the computational demands even more.
On the other hand, the proposed experimental procedures to
identify the model-free approaches incorporate only reachable
configurations of the actuated mechanism. This yields that the
model is not valid in cases of external disturbances.

In this work, we want to establish a model-free approach for
the class of continuum mechanisms, that are actuated by a rigid
platform whilst no distributed loading along the mechanism
is introduced. The mapping should take the Cartesian pose
p € R® of the rigid platform as an input to compute the
associated Cartesian wrench h € IR® of the ECM resisting this
deformation. The main contribution of this paper is to present
a novel method to experimentally identify aforementioned
mapping. The basic idea is to move the ECM tip pose to
predefined static poses. At each pose, an external camera
system measures this pose whereas a force torque sensor
measures the wrench at the tip. The essential difference to
previous works [13]-[15] is that these poses cover more than
reachable space of the actuation system to incorporate also
poses induced by additional external disturbances. The three-
step process of Fig. 2 is proposed, which consists of

1) a simulation to generate a large set of training poses C
which allows to find a suitable mapping from p to h,

2) an experimental design procedure to select a minimum
set of informative poses D from the large set C,

3) and an efficient implementation of the experimental
procedure to consecutively sample the poses of D whilst
unwanted configuration for the ECM are avoided. As
no analytical model of the workspace of the ECM
is available, the transitions between subsequent poses
cannot be predicted online.

In the third step, a robotic manipulator is connected to the

tip of the mechanism similar to [14] to enable an automatic
execution of the experimental procedure. However as the
method relies on external sensors for pose and wrench sensing,
any 6DOF positioning device would also be feasible. As an
example, a polynomial mapping will be employed in the
following as it increases the computational efficiency which
would be an advantage against e.g. models from nonlinear
beam theory. Furthermore, the stiffness matrix K (p) € R®*¢
can be derived analytically which is very useful to study the
stiffness behavior of the mechanism in the workspace or for
interaction control tasks where a specific stiffness is required.

II. SIMULATION

In this work, a nonlinear mapping from p to h

shall be identified based on an experimental procedure.
The 6 components of h = (hy,hs,hs, ha, hs, he)T € R®
are (fz, fy, f2, Tz, 7y, 7-) and the 6 components of p are
(x,v,%,05,6,,0.). The pose p describes the position and
orientation of the top frame respecting the reference frame in
the base of the mechanism. The wrench is exerted at the top
frame respecting the reference frame in the base. The location
of the respective frames is illustrated in Fig. 3.
The simulation covers two fundamental steps for the proposed
method as illustrated in Fig. 2. First, a training data set C
of wrench-pose pairs is generated to cover the desired space
of the mapping. Second, a model is selected and trained
to evaluate the fitting accuracy which is also the basis of
the model-based experimental design in section III-A. A full
cubic-polynomial model is applied in this work although other
mappings, such as a neural network or a Gaussian process
regression, are applicable as well.

A. Generating the Training Set

A set of 1700 admissible wrenches H = {h € R®} is
randomly generated to cover well the reachable workspace
of the ECM and compute the respective pose, summarized in
the training set C. To simulate the deformation of the ECM,
a static FEM model based on [16] is utilized which takes a
Cartesian wrench as input. The generated set C is used to train
and select the full cubic polynomial model.
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B. Polynomial Model

Linear, quadratic and cubic relationships between p and
each wrench component h; for j = 1...6 are studied using
the formula

N )
hy = (x')" B, + €, ey

where h; denotes the ¢-th observation of hj, ﬁj is a vector
containing all polynomial coefficients to be estimated for the
j-th wrench component, 6;- denotes the i-th observation error
of the j-th wrench component and (z%)” € IR" denotes
the regressor-row containing the information of the i-th pose
observation. Depending on the polynomial order, =’ takes
different forms.

Supposing p' = (z',y",2,6%,0! 61)" denotes the i-th obser-
vation of pose, for the linear case we have

=1 2 ¢y 2 0L 0, )T eR, (2
for the quadratic case we have
gi=(1 & ¢ - 6 ()2 iy 0
C(y)? oy @7 e R®, (3)
and for the cubic case we have
p=(l g @)y (0
S @Ry (00T e R @)
In general, the regressor row (x%)7 has dimension

k= (dZ") € R where n (= 6 in this case) is the number
of independent variables and d € R is the polynomial degree.
Stacking N > k € IR observations of h; into vector form
yields

h @ i
h; (z?) €5
= . B, + . 4)
By (@) N
—_——
h; X €;

where X € RYV** is the regressor matrix and €; € RY is
the vector of residuals for the wrench component j. Equation
(5) represents a general regression problem and the coefficients
B; can be computed directly.
In the present case, the polynomial regression suffers from
a near collinearity problem, meaning that (x‘)7 are almost
linearly dependent and therefore X is badly conditioned.
To judge the presence of near collinearity, the condition
number x(X) € R of the regressor [17] is computed to
k(X) > 5 x 10%, which is problematic. Possible solutions to
overcome the problem of collinearity are utilize normalization
approaches [18] or orthogonal polynomials [19]. Furthermore,
the concept of "Ridge Regression” [20], or the Principal
Component Regression” (PCR) [21] could be applied. The
PCR together with the normalization approach proves to be
the most effective reduction technique in the present case to
reduce (X)) essentially. Within the normalization, the data is
restricted to [-1, 1]. As the PCR utilizes a threshold b € R to
decide the presence of collinearity, different b will be evaluated
in the next paragraph.

TABLE I Top Frame

RANGE OF EACH WRENCH COMPONENT

[N] fa Sy fz
max 30 100 100
min —110 —100 —100
[Nm] Tx Ty Tz &
max 5 5 5
min -5 -5 -5

Reference Frame

Fig. 3. Coordinate
frames of the ECM

C. Fitting Results

The set of admissible wrenches, i.e. the input of the FEM
simulation, are defined as the region

H=1{h R hpin <h < hpu} (6)

The components of k4, and h,,;, are given in Table 1. The
maximum and minimum values are chosen to ensure that the
training set C covers well the reachable workspace of the ECM

To evaluate the accuracy of the polynomial model, 300 data
pairs from C are randomly chosen to serve as the test set. The
rest is utilized to compute the coefficients 3;. For comparison,
the relative error of the wrench component h; is defined

hj — h;
hy

€rel = (7N
where ﬁj and h; denote the estimated and the observed value
of the polynomial model.

The 1-degree polynomial model (linear regression) and the
2-degree polynomial display large prediction errors whereas
the 3-degree polynomial model provide a fit with a very low
root mean square error (RMSE), see Table II. The 3-degree
polynomial ordinary regression has a condition number of ,
which can be further reduced by using PCR. In the lower part
of Table II, three different thresholds b are compared regarding
their effect on k(X ) and the prediction accuracy. An ordinary
least square estimation is represented by b = 0. As b increases,
the prediction error grows but the regression becomes better
conditioned.

The relative error distribution of each h; by using PCR (with
threshold 0.1) onto a 3-degree polynomial regression model is
depicted in Fig. 4. The vertical axis represents the amount of
prediction points referred to a prediction error level. Most of
the predicted wrench components have a relative error less
than 0.1. The points with relative error beyond the interval [-
0.2, 0.2] are not displayed as they are located in a small range
around zero (from -2N to 2N for forces and from -0.2 Nm
to 0.2Nm for torques) and the absolute deviation of both is
also in an acceptable range (smaller than 1N for the force
prediction and 0.05 Nm for the torque prediction).

III. EXPERIMENTAL DESIGN

The design of experiments (DoE) is a technique to extract
the important information from a set of collected data [22].
If a model of the process that relates the collected data is
known, a model-based design can be set up and the important
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TABLE II
COMPARING THE PREDICTION ERROR OF DIFFERENT POLYNOMIAL
DEGREES & PCR WITH DIFFERENT THRESHOLDS

RMSE [N] RMSE [Nm]
degree d [z fy o T Ty T2 | K(X)
1 227 5.1 55 04 0.2 0.2 18.0
2 0.9 45 46 00 0.1 0.1 426.6
3 0.4 01 01 00 0.0 0.0 9325
threshold b (d = 3) fz fy f- T Ty 7. | k(X)
0.0 0.4 01 01 00 0.0 0.0 9325
0.1 0.4 02 02 00 00 0.0 464
0.5 0.7 09 09 00 01 0.1 105

information are selected based on some optimality criteria of
the information matrix [23]. For the case that no model is
given for the process, a model-free design can be used which
selects data pairs that span the experimental region as widely
as possible with a uniform coverage. The present work studies
a polynomial regression problem. Thus, a model-based and
a model-free design method in the context of regression is
studied in the following.

A. Model-based Design

Different model-based design criteria are discussed in [22].
In this paper, the commonly used D-optimality is applied
which is defined as follows':

max det i ()T = max det M. ®)
X ; (@) X

The matrix M € R™ " is denoted the information matrix
[24] and by solving (8), n € IR regressor rows x* are chosen
such that an accurate identification of the parameters can be
achieved. In general, n > k, which means that the number of
observed poses must be larger than the number of parameters.
The result of the D-optimal design is a subset D consisting of
n poses out of C. As the experimental region, i.e. the desired
workspace of the ECM, cannot be expressed by a continuous
function, optimization methods like [25] which provide the
optimal design directly, cannot be applied. Therefore, the
Fedorov’s Exchange Algorithm (EA) [26] is applied to select
the n poses that achieve the D-optimality. The basic idea of
the EA is to repeatedly search for candidate poses in C which
improves (8) by exchanging this candidate pose with a certain
poses in the design set D.

B. Model-free Design

Here the maximin-distance design is studied [27] that aims
to select a subset D from the training set C such that the
minimum distance between design poses are maximized,

max min d(p', p? 9

axmin (p',p), ©)

where p® denotes a certain pose in D, and d(p',p?) =
||lpt — p?|| denotes the Euclidean distance between two poses.
To solve the maximin-distance optimal design problem, an
algorithm is utilized which is similar with the EA: The basic

Here, the D-optimality criterion is simplified according to [22]
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idea is to randomly choose n poses as the initial design set D.
Then, a pose p* from the remainder of C is randomly chosen
and the algorithms checks, if (9) can be increased by replacing
a certain pose p’ in D with p*. For details see [28].

C. Performance of the Design Algorithms

For the DoE, n = 200 poses have been selected. To
compactly compare the results for this desired number of
poses, the relative errors for 7, and 7. are depicted as they
exhibit the highest model errors in the former simulation, see
Fig. 4. The fitting results are displayed in Fig. 5 using D-
optimal design and the maximin-distance criterion over 300
random poses from the training set C. Most of the testing
points feature a relative error within the interval [-0.2, 0.2].
The other points are located in a small interval around O
(from -2N to 2N for the force prediction and from -0.1 Nm
to 0.1 Nm for the torque prediction) similar to Sec. II-C.

In conclusion, two approaches for the DoE are introduced
and compared. The model accuracy resulting in the simulation
for both approaches is equally good with a little advantage of
the D-optimality which justifies their use for the experimental
identification.
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IV. EXPERIMENTS

In this section, the components of the experimental setup
will be introduced. Then, the control and the pose-planning
strategy of the robot manipulator are discussed. Afterward,
the experimental fitting results are presented.

A. Experimental Setup

A robot manipulator (here: KUKA LWR 4+ with a JR3

force-torque-sensor (FTS) mounted at the end-effector) is
connected to the top of the ECM, see Fig. 6. A marker target,
which is to be detected by the camera, is fixed between the top
of the ECM and the FTS to measure the associated deflection
of the ECM.
The FTS is a six-DOF sensor based on foil strain gauges. In
our experiment, we chose the version 100M40A3, it enables
a standard force measurement range from -200N to 200N in
y, z directions and from -400 N to 400N in z direction, and
torque measurement about all axes from -20 Nm to 20 Nm. To
accurately track the target at the ECM, the K-series optical
measurement systems [29] is used. The measurement system
is equipped with a camera (three lenses), infrared LEDs
and Space-Probe, which also has 9 LEDs. The measurement
system can accurately localize the LEDs within its workspace
with an accuracy of 37 ym.

B. Practical Issues

1) Pose Measurement and Calibration: The poses are ob-
tained by measuring the positions of the LEDs on the marker
target and transforming them into the ECM reference frame.
To eliminate unintended camera movements during the ex-
periments compromise calibrated transforms, a second marker
target is rigidly fixed near the ECM. To avoid systematic
errors in the pose measurement, it is essential that the constant
transformations from the marker targets to the desired ECM
top frame and ECM reference frame are carefully calibrated.

2) Wrench Measurement and Calibration: In the simula-

tion, the wrench data refers to the wrench exerted on the ECM
top respecting the ECM reference frame, while the wrench
data measured in the experiment is the one applied at the
origin of the FTS frame. Thus, the measured wrenches need
to be transformed using adjoint transformations [30] based on
a constant, calibrated transformation.
The FTS shows offsets in each measured direction. These
offsets drift during the experiments, which is supposed to be
related to the temperature of the sensor, and result in non-
constant biases of the measurement. The timing characteristic
of these offsets are studied and a linear compensation law is
adopted between the measured offsets before and after each
experiment to reduce their influence.

C. Implementation of the Experimental Procedure

As described earlier, the implementation of the pose sam-
pling process for the experiment needs to be carefully executed
as configurations that may damage the mechanism or impose
unwanted behaviors need to be avoided. For the implementa-
tion, the following considerations are made:

Robot Manipulator e~

Force-Torque-Sensor e-
Marker Target -

Elastic Continuum e
Mechanism

Reference Frame o—’%

Fig. 6. Experimental setup

1) Comparison of Planning Strategies: One possible plan-
ning strategy is to start from the poses close to the initial
configuration to those relatively far away from the initial
position. After reading the wrench data in one pose the
robot moves directly to the next pose. This scheme saves
experimental time but it requires knowledge about the path
between different configurations. Since the transition between
two configurations could cause an unexpected behavior, the
path between the poses needs to be designed rigorously.
Another possibility is to return to the initial configuration after
each sampling. This scheme is relatively easy to implement
and there is no need to concern about the transitions among
the poses. Only the transition from the initial configuration
to each sample pose needs to be considered. Since the initial
configuration is a pose without any deflection, the transition
from it to each sample pose is easier to handle than the one
among two poses.

2) Comparison of Control Strategies: One strategy is to

plan a Cartesian trajectory from the initial pose to the desired
pose. The joint space trajectory is calculated the robot is
controlled in joint position control mode. In this case each
sampled pose requires a specifically designed smooth trajec-
tory such that the ECM can reach the desired pose without
unexpected behavior.
Since deflecting the ECM is an interaction between the
robot manipulator and the environment, the impedance control
seems to be appropriate in this case. The robot is firstly con-
trolled in Cartesian impedance control mode [31] and deflects
the ECM towards the desired pose. Due to the controlled
compliance, the resulting pose of the ECM differs from the
desired pose. After the ECM is stabilized near the desired pose,
the control mode therefore switches to joint position control
[31], to drive the ECM from the stabilized pose to the desired
pose to ensure that the all poses from D are reached. Since
the ECM is already close to the desired pose at that moment,
an unexpected motion of ECM can be excluded during the
position control mode. The different trajectories in impedance
control and joint position control are depicted in the right of
Fig. 7.

Based on the above considerations, the experimental pro-
cedure can be described by Fig. 7 and the video attached to
the present paper. After a pose to be sampled of D has been
selected, the robot drives the ECM from its initial, straight
pose in the impedance control mode towards this pose along
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Fig. 7. Block diagram of the implemented procedure to illustrate the subsequent steps during the experiment which can be seen in the attached video also.
Right: Example of a measured pose trajectory for the position y and the angle 6, to examine the different stages while reaching a desired pose.

the planned Cartesian trajectory 2. After the termination of
the Cartesian trajectory interpolator, the inverse kinematics
is solved from the current pose to the goal and the robot is
driven in joint position controlled mode to reach the desired
pose. During the movement from initial pose to the goal, the
joint positions of each time instance are recorded and saved
in a stack. After reaching the goal the measurements of the
pose and the wrench are logged and then the robot returns to
the initial pose in joint position control mode in which the
desired trajectory are the joint positions saved in the stack.
This sequence will be repeated until every pose in D has
been visited. To eliminate the effect of measurement noise,
the logging of measurements lasts for 200 ms and the mean
values of pose and wrench are taken.

D. Experimental Results

In the experiments, the minimum data sets D obtained using
the D-optimal design and the maximin design (see III-A, III-B)
(see ITI-C) were sampled. To evaluate the fitting results of each
data set, one of them is chosen as the training set to identify
the polynomial coefficients whereas the other one serves as
the testing set to compute the relative errors, and vice versa.

1) Fitting Results using D-optimal Design: Fig. 8 exhibits
the histogram of e,.; (7) within the interval [-0.5, 0.5].
The relative errors of all the torque components and fy,
f» are mainly distributed in [-0.1, 0.1]. Compared to these
components, f, has a flatter distribution of relative error.

The data points with relative error beyond the interval [-
0.5, 0.5] are plotted in the Actual-vs-Predicted in Fig. 9. They
are mainly distributed in [-5N, 5N] for f,, f. and in [-
0.4Nm, 0.4Nm] for the torques. Compared to f, and f.,
fz has a larger absolute prediction error. As the regressor
is ill-conditioned (x(X) = 12744), a PCR is utilized. Table
8 displays the condition number and the RMSE of each
wrench component with different thresholds. The threshold
b = 0.1 offers a good trade-off between condition number and
prediction performance.

2) Fitting Results using Maximin-distance Design: Fig. 10
displays the histogram of the relative error within the interval
[-0.5, 0.5]. Analogous to the case of the D-optimal design,
the relative errors of all the torque components and f,, f. are

2A simple point-to-point motion is concerned and a cubic polynomial
timing law is chosen.

TABLE III
THE PREDICTION ERROR OF PCR WITH DIFFERENT THRESHOLDS USING
EXPERIMENTAL DATA OF BOTH DESIGN METHODS

D-optimal design

RMSE [N] RMSE [Nm]
threshold fx Iy f= Tx Ty T k(X))
0.0 126 0.62 062 003 006 006 | 12744
0.1 1.26 089 072 0.03 0.06 0.07 | 153.26
0.5 383 319 381 0.10 025 0.27 25.57
Maximin-distance design
RMSE [N] RMSE [Nm]
threshold Sz fy Iz Tz Ty T k(X))
0.0 1.58 0.76 0.63 0.03 008 0.07 | 21291
0.1 1.53 099 085 0.03 0.08 0.01 | 142.67
0.5 356 3.17 516 0.12 036 025 29.13
o 100
-
£ s0r -
o 0 I a —n mmll
-0.6 -0.4 -0.2 0 0.2 0.4 0.6
crel [-]
o 100 T
I8
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0
ercl [l

Fig. 8. Histogram of e,..; computed with 200 testing poses of each wrench
component using experimental data of D-optimal design.

mainly distributed in [-0.1, 0.1], whereas the relative error of
fz spreads more widely.

Similar to the D-optimal case, the data points with relative

error beyond the interval [-0.5, 0.5] are located from -5N
to 5N for f, and f, with absolute errors lie within [-1.5N,
1.5N], while the points of f, have larger absolute errors. The
points of torques, whose relative error beyond [-0.5, 0.5], are
distributed between [-0.5 Nm, 0.5 Nm]. Analogously, we solve
the ill-conditioned problem with PCR with b = 0.1. The results
are shown in Table III.
In summary, the poses of both design methods yield poly-
nomial models with similar accuracy which leads to the
conclusion that the poses of the experiments do not yield an
ill-posed problem and the identified models represent a good
fit of the stiffness characteristics of the ECM.
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Fig. 10. Histogram of e,..; computed with 200 testing poses of each wrench
component using experimental data of maximin-distance design.

E. Computational Efficiency

As stated in the motivation, a primary goal of the identified
mapping is to be computationally efficient for the use in real
time control. To investigate the computational efficiency, 100
pose-wrench pairs are randomly selected from C, see Section
II-C, and are used as input of the polynomial model and the
FEM model, respectively. The required computational time of
each model is measured and Fig. 11 depicts the histogram of
the computation time, which states that the polynomial model
is at least 200 times faster than the FEM model.

F. Cartesian Stiffness Matrix

The Cartesian stiffness matrix of the ECM can be derived
analytically from the identified polynomial models by the
partial derivative K = oh/dp € IR®*®. Considering that K
is based on the measurement data, the matrix might not be
perfectly symmetric because of the measurement uncertainty
or anisotropic effects of the material. A symmetric Cartesian
stiffness matrix can be derived from the relationship

1 1
K = §(K+KT) + i(K_ KT) = Ksym + Kgew- (10)

Specifying a certain pose, the corresponding symmetric and
skew-symmetric sub matrix can be obtained. To check whether
the symmetric matrix is dominant, the ratio of ||Kyyl2 to
|| K||2 can be taken and Fig. 12 displays the histogram of this
ratio of each pose measured in the experiments. It shows that
all of them are greater than 0.95, indicating the dominance of
the symmetric matrix.

As an example, the symmetric Cartesian stiffness matrix of
the initial configuration is calculated to
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Fig. 11. Histograms of the computational time used by the FEM model (left)
and the polynomial model (right) computed with 100 randomly selected poses
from C.

S
o

w
o

number of points [-]
= 3

0
0.96

0.97
proportion of the symmetric matrix [-]

098 0.99 1

Fig. 12. Histogram of the proportion of the symmetric matrix computed with
300 testing poses from the experiment.
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—14 179 43 0 -1 16
Y

As expected, the diagonal elements %=3461 N/m and
%:3468 N/m are almost equal because of the symmet-
ric structure of the ECM. Analogously, %:16 Nm/rad and
%de =16 Nm/rad are also equal. Compared to the %—J;/ and %,
the diagonal element %:24585 N/m is significantly greater,
indicating a larger translational stiffness along the x direction
(compression). However, the fourth element (%Tg =4 Nm/rad)
is smaller in comparison with the fifth and sixth diagonal
elements, which implies that twisting of the ECM is easier
compared to bending in the initial configuration. The off-
diagonal elements (%—’;:179N and %:-178 N) are signifi-
cant, indicating a strong coupling between the translational
displacement and the torque around the axis perpendicular to
the displacement direction. This seems physically reasonable
as e.g. for a planar bending of a beam-like structure, the

applied torque induces a translational shear motion.

V. CONCLUSION AND FUTURE WORK

In this work, a novel experimental method is introduced that
identifies the mapping from a Cartesian pose to a Cartesian
wrench of an ECM. The mapping is set up by using cubic
multivariate polynomials in a workspace that is larger than
the reachable space by the actuation system to account for
configurations which are induced by external disturbances. The
basic idea of the method is to deflect the ECM to different
static configuration and measure pose-wrench data pairs at
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each configuration. Three consecutive steps are presented to
perform the identification. In the first step, a large data set of
training poses is generated using a FEM-model that displays
the deformation of the ECM. In the second step, the experi-
mental design is carried out which essentially reduces the large
data set of training poses to a minimum set that needs to be
sampled experimentally. In the third step, a robot manipulator
is used to automatically drive the ECM to the poses of the
minimum set whereas unwanted configurations of the ECM
are avoided by a control strategy using an impedance control
and a position control scheme. The experimental results of the
mapping are evaluated by a hold-out validation that yields a
maximum root mean square error of 3.8 N in the forces and
0.27 Nm in the torques whereas the polynomial model with an
average computation time of 0.3 ms was tested to be at least
200 times faster compared with the FEM-model tested on the
same computer.

As stated in the introduction, the proposed method is only ap-
plicable for mechanisms that are actuated by a rigid platform at
their tip end. To extend the method to e.g. pneumatically driven
mechanisms, the actuation system needs to be incorporated in
the experiment. For this extension, an attached robot could be
used that follow the mechanism to a desired pose and perturb
it subsequently. However, the number of input parameters will
change and thus a polynomial model might not be suitable.
Other topics for future works are to employ statistical mea-
sures in the decision-making process for the number of exper-
imentally sampled poses in Sec.III or the fitting performance
of an investigated model in Sec. II-C. Moreover, other types of
model-free mappings could be used and tested in step 2 such
as neural networks or Gaussian process regression. In these
cases, the experimental design should be carried out by the
model-free approach, see Sec. III-B, as an information matrix
can not be computed.
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