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Zusammenfassung

Die elektrisch detektierte magnetische Resonanz (EDMR) ist eine viel-
seitige Messmethode, welche es erlaubt, den Ladungsträgertransport
in organischen und anorganischen Halbleitern zu untersuchen.
Durch ihre hohe Sensitivität eignet sie sich besonders für die Cha-
rakterisierung von dünnen Schichten, die in herkömmlichen Spin-
resonanzmessungen nicht genug Signal-zu-Rausch-Abstand auf-
weisen. Durch die hohe Empfindlichkeit zur Untersuchung dünner
Schichten ist es möglich, neben den in der Magnetresonanz ge-
bräuchlichen Hohlraum- und dielektrischen Resonatoren planare
Strukturen für die Anregung der Spinresonanz zu verwenden.

Solche Strukturen können entweder planare Resonatoren oder
ebenfalls planare, breitbandige Mikrowellenleiter sein, welche über
einen weiten Frequenzbereich funktionieren. Beide erlauben auf-
grund ihrer Dimensionen die Erzeugung von Mikrowellenfeldern,
die die Intensität der Felder in einem herkömmlichen Mikrowellen-
resonator bei weitem übersteigen. Zusätzlich bieten breitbandige
Strukturen den Vorzug, dass die Mikrowellenfrequenz und damit
die in der Messung verwendeten Magnetfelder frei gewählt werden
können. Durch geschickte Wahl der Frequenz, beziehungsweise des
Resonanzmagnetfeldes, ist es möglich, überlappende Resonanzen
zu trennen, falls sich deren g-Faktoren unterscheiden und sie des-
wegen eine abweichende Skalierung mit dem externen Magnetfeld
aufweisen.

Allerdings haben planare Strukturen nicht nur Vorteile. So ist
die Homogenität des von den planaren Strukturen erzeugten Mi-
krowellenmagnetfeldes deutlich schlechter als von herkömmlichen
Mikrowellenresonatoren, was sich auf die Qualität der durch die
Mikrowellenpulse induzierten Spinrotationen auswirkt. Je nach
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Homogenität des Feldes weisen bereits nominelle Rotationen um
180◦ eine so breite Verteilung der effektiven Drehwinkel innerhalb
des studierten Spin-Ensembles auf, dass der Kontrast des Experi-
ments auf wenige Prozent einbricht.

Aus der Kernspinresonanz sind adiabatische und numerisch opti-
mierte Pulse (sog. optimal control-Pulse, kurz oc-Pulse) bekannt, die
Inhomogenitäten des dort verwendeten Radiofrequenzmagnetfeldes
kompensieren. Entsprechend optimierte Mikrowellenpulse sollten
es somit ermöglichen, mit planare Mikrowellenstrukturen trotz ihrer
Inhomogenität Experimente mit hohen Drehwinkeln und gleichzeitig
hohen Fidelitäten durchzuführen. Um adiabatische und oc-Pulse
für die EDMR einsetzen zu können, wurde zunächst ein Messauf-
bau konstruiert, der es erlaubt, diese beiden Pulstypen sowohl für
Mikrowellen- als auch Radiofrequenzpulse zu verwenden. Dieser Auf-
bau gestattet die Durchführung breitbandiger EDMR-Experimente
(2 GHz bis 18 GHz) und elektrisch detektierte Kernspinresonanzex-
perimente für Radiofrequenzen um 4 MHz unter Verwendung dieser
adiabatischen und oc-Pulse. Dabei verbessern diese Pulse die Si-
gnalintensität um das bis zu 1,7-Fache für Proben, die eine hohe
Mikrowellenmagnetfeldinhomogenität aufweisen. Im Fall einer nied-
rigeren Inhomogenität zeigt sich die Überlegenheit dieser Pulse bei
Experimenten mit hohen Drehwinkeln oder mit komplizierteren
Pulssequenzen, wie zum Beispiel dem Hahn-Echo. In dieser Arbeit
konnte durch die Anwendung von oc-Pulsen eine um 38 % höhere
Signalintensität erreicht werden.

Diese Verbesserungen ermöglichen die Modifikation des Messauf-
baus für ortsabhängige EDMR-Experimente, wobei sowohl die An-
regung der Spinresonanz als auch die Erzeugung des nötigen Feld-
gradienten über die planaren Mikrowellenstrukturen erfolgt. Mit für
die EDMR typischen Proben wird eine probenabhängige Auflösung
von 1.5 µm erreicht. Dies erlaubt es die grundlegenden physikali-
schen Prozesse in der verwendeten Metall-Halbleiter-Metall Struktur
nachzuvollziehen und darauf aufbauend Hinweise für die Opti-
mierung der Kontaktstruktur für EDMR Messungen abzugeben.
Basierend auf der erreichten Auflösung wird gezeigt, wie ortsauf-
gelöste EDMR für die Messung der Elektronenwellenfunktion von
Phosphor-Donatorelektronen in Silizium mit einer Auflösung von
0.5 Å verwendet werden könnte.

iv



In einem kurzen Exkurs wird die elektrische Detektion des Stick-
stoff-Fehlzellen-Komplexes (NV) in Diamant untersucht. Hier ist es
uns möglich, die elektrische Detektion mit der kohärenten Manipu-
lation des NV-Spins zu kombinieren und an kleinen Ensemblen zu
demonstrieren. Mit Hilfe einer Monte-Carlo-Simulation wird gezeigt,
dass diese Methode mindestens die Sensitivität der bisher üblichen
optischen Detektionsmethoden erreicht und damit die elektrische
Detektion eines einzelnen NV-Spins ermöglichen sollte. Damit stellt
die elektrische Detektion einen vollwertigen Ersatz der optischen
Detektion dar. Dies sollte den Bau kompakter NV-basierter Mess-
geräte ermöglichen, die nicht auf komplexe konfokale Messmethoden
zurückgreifen müssen.
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1
Introduction

Electrically detected magnetic resonance (EDMR) [1] is a versatile
method to characterize point defects and charge transport in inor-
ganic and organic semiconductors [2–9]. Due to its high sensitivity
it allows for the detection of ensembles with as few as 50 spins
in spin-pair-based readout processes [10] and of single electron or
nuclear spins when single electron transistors are used for readout
[11]. The prototype spin pair investigated in the present work is
formed by an unsaturated paramagnetic silicon dangling bond at
the Si/SiO2 interface between Si and its native surface oxide to-
gether with a 31P donor electron in close vicinity to the interface [3].
The characteristic signature of the dangling bond spin is the Pb0
center with an anisotropic g-factor of g‖ = 2.0018 and g⊥ = 2.0081
[12]. The g-factor of the phosphorus donor is ge = 1.9985 with a
hyperfine interaction with the 31P nucleus of A = 117.53 MHz and
a nuclear g-factor gn = 2.2601 [13]. This leads to an overlap of
one of the hyperfine-split phosphorus resonances and the dangling
bond resonances at X-band frequencies which hampers experiments
performed on these resonances.

The use of broadband microwave delivery structures can miti-
gate e.g. the problems caused by this overlap and allows for multi-
frequency or frequency-swept spin resonance experiments which
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1 Introduction
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Figure 1.1: Spin projection onto the z-axis as a function of the off-
resonance ∆ν0 and the Rabi frequency ν1 for a rectangular pulse
(panel a)), an adiabatic pulse (panel b)) and an optimal control
pulse (panel c)) for a single spin 1/2. The horizontal yellow lines
mark the variation in ν1 acting on a spin ensemble under a mi-
crowave stripline. The vertical yellow lines depict the optimization
goal of the optimal control pulse in ∆ν0. d) Color code of the
z-projection.

would otherwise require the use of several resonators and multiple
cool-down cycles. Broadband microwave striplines have been used
successfully for continuous wave (cw) EDMR experiments [14–16]
and for pulsed experiments on single spin devices [17, 18]. However,
in contrast to resonator-based EDMR experiments these structures
exhibit significant inhomogeneities of the microwave magnetic field
B1, which are relevant for pulsed EDMR (pEDMR) experiments on
ensembles as can be seen in the effect of a rectangular 16-ns-long
microwave π-pulse on a single spin 1/2. Figure 1.1 a) plots the spin
projection onto the z-axis after such a pulse as a function of its
off-resonance ∆ν0 and its Rabi frequency ν1. Here, the yellow hori-
zontal lines mark the variation in ν1 acting on an ensemble under
a typical microwave antenna used during this work. Especially at
the borders of this variation the fidelity of the pulse is significantly
reduced. This situation quickly deteriorates if more than one pulse
is used in an experiment.

Nuclear magnetic resonance (NMR) experiments with surface
coils [19–22] and recent experiments on superconducting coplanar
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waveguide resonators [23], to name but a few, have demonstrated
the capability of adiabatic pulses to correct such B1-inhomogeneities.
Figure 1.1 b) depicts the spin projection onto the z-axis after an
adiabatic BIR-4 π-pulse [22]. Compared to the rectangular pulse,
this pulse has a huge region along the ν1-axis in which it shows a
good fidelity, but this improvement is the result of a very significant
increase of the length of the pulse. It has a pulse length of 1.6 µs,
which is longer than the 16-ns-long rectangular pulse by a factor
of 100. Depending on the lifetime of the particular spin ensemble,
this may or may not be a problem. In the case of the spin pair used
in this work, it is already too long, since the coherence time T2 of
the 31P ensemble is on the order of 10 µs when the illumination is
switched off [24], which means that, independent of the fidelity of
the pulses, the signal has decayed to 1/e already after about six
pulses.

Optimal control pulses [25–41], which are basically pulse se-
quences formed by concatenating rectangular pulses with varying
amplitude and phase, can improve this situation by limiting the
optimization region to the particular linewidth and Rabi frequency
distribution of the ensemble (horizontal and vertical yellow lines in
figure 1.1 c)). The resulting optimized pulses are much shorter (pulse
length in this example: 300 ns) than adiabatic pulses and show a
very good fidelity across the optimization region (c.f. figure 1.1 c)).
Apart from this, optimal control pulses can also be tweaked to per-
form operations at very high control fields B1, which is difficult with
conventional microwave pulses, due to the break-down of the rotat-
ing wave approximation [38], or to enforce a specific spin movement,
e.g. as if unwanted spin-spin interactions are switched off [30].

To gain access to these pulses and the wealth of applications
which they offer, we designed a broadband microwave setup with
the ability to use arbitrarily shaped microwave and radio frequency
pulses and tested both adiabatic and optimal control pulses for
the use in pulsed EDMR experiments. We show that our setup
and the broadband antennas designed for it work as intended over
the desired microwave frequency range from 2 GHz to 18 GHz and
for typical NMR frequencies at a few megahertz. We are able to
generate adiabatic and optimal control pulses and successfully
implement them in more complicated pulse sequences like those
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1 Introduction

used in electron nuclear double resonance measurements (ENDOR).
These pulses improve the signal intensity in our experiments by a
factor of up to 1.7 for samples with a high B1-inhomogeneity. For
samples with lower B1-inhomogeneity the advantages of optimal
control pulses come into play for large rotation angles, e.g. 16π. We
find that they provide an up to 25 % better signal than adiabatic
pulses long after the signal generated by rectangular pulses has
completely decayed.

We then use these optimal pulses and a slightly modified broad-
band antenna to implement position-dependent EDMR measure-
ments, which allow us to pinpoint the source of the EDMR signal in
the investigated devices with an accuracy of at least 1.5 µm. Using
this information, we suggest optimizations to the finger structure,
which is currently used in EDMR experiments for the electrical
contacts, and estimate the maximal possible resolution for position-
dependent EDMR measurements.

In a small digression, we finally look into the electrical read-out
of the NV- center in diamond and expand the method of electrical
read-out to coherent pulsed microwave excitation on ensembles as
small as 130 spins. Using a Monte-Carlo simulation we show that
single spin read-out should be possible with at least the sensitivity
of the optical detection which is normally used.

This thesis is structured as follows. In chapter 2 we discuss the
theoretical basics of the time-dependent evolution of spin states,
our read-out process, the pulse sequences used in our experiments,
the principles of magnetic resonance imaging and adiabatic and
optimal control pulses. We introduce our setup in chapter 3. The
discussion includes the design of the microwave hardware, a short
overview of the stripline structures and the calibration of the setup.
We demonstrate in chapter 4 that the constructed spectrometer
works as intended over the microwave frequency range from 2 GHz
to 18 GHz and for radio frequency pulses, before we turn to the
comparison of rectangular, adiabatic and optimal control pulses in
chapter 5. Afterwards, we use these pulses for magnetic resonance
imaging experiments (chapter 6). We compare the performance of
rectangular and optimal control echoes for imaging, determine the
spatial resolution of our setup and estimate the maximal resolu-
tion possible with such an imaging setup. Finally, in chapter 7,
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we explore the electrical read-out of NV- centers in diamond and
summarize this thesis in chapter 8.
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2
Electrically detected magnetic

resonance in a nutshell

In this chapter we discuss the theoretical basis of electrically de-
tected magnetic resonance (EDMR) measurements. Section 2.1
introduces the spin Hamiltonian and the spin-dependent recombina-
tion mechanism. Afterwards, section 2.2 deals with the description
of the evolution of the spin state on the Bloch sphere in the lab and
in the rotating frame. We employ this picture to describe the effects
of the pulse sequences primarily utilized in this work (section 2.3)
before we apply the Hahn echo sequence (section 2.3.3) to magnetic
resonance imaging (section 2.4). Finally, we introduce the concepts
behind adiabatic and optimal control pulses, and how they improve
the fidelity of each pulse in a sequence (section 2.5).

2.1 EDMR on the
31

P-Pb0 spin pair

EDMR employs a spin-dependent recombination mechanism to de-
tect the microwave-induced transitions between two Zeeman-split
energy levels of a spin in an external magnetic field. If the inci-
dent microwave radiation meets the resonance condition, a photon
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2 Electrically detected magnetic resonance in a nutshell

changes the state of the spin and the spin-dependent recombination
leads to a quenching of the current through the semiconductor. This
change is detected e.g. by a fast analog-to-digital converter. For the
phosphorus donors in silicon which are studied in this work, the
energy levels corresponding to its spin Hamiltonian in an external
magnetic field are discussed in section 2.1.1. Afterwards, we treat
the spin-dependent recombination mechanism used in this work in
more detail (section 2.1.2).

2.1.1 Phosphorus donor spin Hamiltonian

Following reference 42 the spin Hamiltonian that describes phos-
phorus donors in silicon subjected to an external magnetic field
~B0 = B0~ez is

H = geµeSzB0 − gnµnIzB0 + A~S ·~I. (2.1)

The first two terms are caused by the Zeeman interaction of the
electron spin ~S and the nuclear spin~I with the external magnetic field
~B0. Their respective g-factors and the electron or nuclear magnetons
are ge = 1.9985 [13], gn = 2.2632 [43], µe = 9.274 · 10−24 J T−1

and µn = 5.0508 · 10−27 J T−1. In the third term the Fermi contact
interaction is represented by the isotropic hyperfine constant A

~
=

117.5 MHz [44]. In this description, the weak interaction between
the phosphorus donor electron spin and the readout partner of the
spin pair (coupling strength between 25 kHz and 3 MHz [45]) as well
as the weak interaction of the electron spin with the 29Si spin bath
(coupling strength smaller than 4 MHz [13, 46]) are neglected. Due
to the random distribution of coupling strengths in these two cases,
which are caused by the random distribution of distances between
the donor and both dangling bond electron as well as 29Si nuclear
spins, their contribution results in a broadening of the phosphorus
donor resonance.

To solve the Hamiltonian 2.1, it is written in the product basis
of the electron and the nuclear spins |s,ms, i, mi〉 = |s,ms〉 × |i, mi〉
and the eigenstates

∣∣∣Ej〉 with their corresponding eigenvalues Ej
are calculated. Here, s and i are the spin quantum numbers for
the electron and the nuclear spin, respectively. ms and mi are the
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2.1 EDMR on the 31P-Pb0 spin pair
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Figure 2.1: Numerically calculated eigenenergies (in frequency units)
as a function of the external magnetic field B0. The allowed
electron spin-flip transitions are depicted by two blue arrows and
the green arrow represents the zero-field splitting A. On the right
hand side the eigenenergies are labeled with the corresponding
eigenstates in the high field limit.

corresponding secondary spin quantum numbers. In general, the
eigenstates are a mixture between the different basis vectors

∣∣∣Ej〉 =

s∑
ms=−s

i∑
mi=−i

cjms,mi
|s,ms〉 × |i, mi〉 (2.2)

with the mixing constant cjms,mi
. Figure 2.1 plots the numerically

calculated eigenenergies (in frequency units) as a function of the
external magnetic field B0. The two allowed electron spin-flip tran-
sitions (∆ms = ±1) are depicted by the two blue arrows. For low
magnetic fields, the eigenstates split into a triplet state and a singlet
state which are separated in energy by A (green arrow). In the limit of
high magnetic fields, when the energy due to the Zeeman interaction
is much greater than the energy due to the hyperfine interaction, the
eigenstates are approximately equal to the basis states as indicated
by the labels on the right of figure 2.1. This is true for the microwave
frequencies which our setup generates (2 GHz to 18 GHz) and allows
us to treat the evolution of the electron spin state independently
from the evolution of the nuclear spin.
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2 Electrically detected magnetic resonance in a nutshell
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Figure 2.2: Position space band structure of phosphorus-doped sili-
con close to the silicon-dioxide-covered surface. The phosphorus
and dangling bond states are colored blue and red, respectively.
a) Above band gap illumination (red arrow) excites valence band
electrons into the conduction band. If the phosphorus-dangling
bond spin pair is in a parallel configuration, the phosphorus
electron is forbidden to enter the dangling bond due to the Pauli
principle until a (random) spin flip happens. This configuration
has a lifetime of τp. b) Resonant microwave irradiation (turquoise
arrow) lifts the Pauli blockade. c) Phosphorus-dangling bond
spin pair in an antiparallel configuration. This state decays on a
timescale of τap after which the empty phosphorus state catches
an electron from the conduction band and the dangling bond state
catches a hole from the valence band.

2.1.2 Spin-dependent recombination

The spin-dependent recombination used in this work employs the
spin pair formed by a phosphorus electron spin in the vicinity of
a dangling bond at the surface. The spin pair is sketched in the
band structure in figure 2.2. If it is in a parallel spin configuration,
recombination of the electron from the donor to the dangling bond
is Pauli forbidden and can only take place after the spin is flipped.
This leads to two distinct rates for the transition of the electron
from the phosphorus to the dangling bond because a random spin
flip has to precede the recombination for parallel spin pairs. These
rates are 1/τap and 1/τp for spin pairs in an antiparallel and a
parallel configuration, respectively [5] and we will call τap and τp the
antiparallel and parallel recombination times from here on. Using
resonant microwave (MW) excitation the Pauli blockade can be lifted
by flipping one of the spins involved (c.f. figure 2.2 b)) which leads
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2.1 EDMR on the 31P-Pb0 spin pair

to increased recombination (c.f. figure 2.2 c)) and a quenching of the
(photo-)current through the sample which in turn can be detected
electrically.

In order to achieve a good signal-to-noise ratio, the temperature T
should be below 12 K [47]. At this temperature, the timescale for ran-
dom phosphorus donor electron spin flips approaches microseconds
[48] which is close to the antiparallel recombination time τap = 16 µs
[5] in our samples. This diminishes the difference between τap and τp,
which we use for the EDMR detection and consequently reduces the
signal intensity until the signal is virtually gone at T = 18 K [47]. To
measure a current at these temperatures it is necessary to illuminate
the sample with above band gap light to generate electrons and holes
in the conduction and the valence band, respectively (c.f. figure 2.2
a)). During illumination, electrons from the conduction band enter
empty phosphorus donor states. Depending on the state of the
spin pair the donor electron will either recombine on a time scale
of τap for antiparallel spins or live for a time of about τp = 1 ms
(T = 5 K) [5]. This difference in recombination times leads to spin
pairs predominantly in the parallel state after a time of 400 µs [5]
for the typically used illumination powers. This sets the minimal
illumination time to initialize the spin pairs.

In the case of constant illumination a resonant ESR pulse trans-
forms the parallel spin pair into an antiparallel one, which recom-
bines on the timescale of 16 µs and the empty donors refill from the
conduction band. The resulting current transient is then propor-
tional to the spin state after the pulse [49].

For pulsed illumination, dark-times Tdark of suitable length (τp �
Tdark ≥ 3τap) are inserted after the light pulse and the microwave
pulse, respectively. This is illustrated in figure 2.3 a), where light
pulses are colored red and microwave pulses are depicted by a
black square. After the first light pulse, which initializes the spin
pairs, all remaining antiparallel spin pairs (figure 2.3 c)) recombine
(Tdark ≥ 3τap) and all electrons in the conduction band decay into
the valence band. Due to the much longer lifetime of parallel spin
pairs τp � Tdark (figure 2.3 b)) most of the parallel spin pairs remain
intact. A microwave pulse then transforms those remaining parallel
spin pairs. During the following waiting time Tdark, all the spin pairs
which became antiparallel after the microwave pulse, will recombine.
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2 Electrically detected magnetic resonance in a nutshell

TP

νMWLED

a)

b)

c)

Tdark Tdark

ΔQ

Figure 2.3: a) Basic EDMR pulse sequence using pulsed light illumi-
nation. LED pulses are colored red and (rectangular) microwave
pulses are depicted by the black rectangle. The pictogram at
the beginning of the second light pulse illustrates the current
transient due to the light pulse. Panel b) shows the temporal
development of spin pairs with parallel spins after the first light
pulse, panel c) that of antiparallel pairs.

Since there are no electrons left in the conduction band, ionized
states will not be refilled. This results in ionized donors proportional
to the amount of antiparallel spin pairs after the first light pulse
and after the ESR pulse. During the readout light pulse, these
empty states are filled with conduction band electrons resulting
in the desired quenching of the current through the sample. This
slightly changes the current transient due to the light pulse, which
is depicted in the pictogram at the beginning of the second light
pulse.

Irrespective of the method of illumination, the EDMR signal ∆Q
is extracted from the current transient through boxcar integration
over this transient.

2.2 The rotating frame

The time evolution of any quantum object is governed by the time-
dependent Schrödinger equation [50]. However, to describe the
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2.2 The rotating frame

a) b) c)
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Figure 2.4: a) Magnetization (blue arrow) precessing around ~B0 (green
arrow) on the Bloch sphere. b) Magnetization (blue arrow) in a
rotating frame which rotates with the Larmor frequency of the
spin (ω0 = ωL). c) Magnetization (blue arrow) precessing around a
resonant ~B1 (red arrow) in the rotating frame.

behavior of an ensemble of spins, the Bloch equations [51], which
describe the motion of the magnetization ~M caused by the magnetic
moments ~µ of the spins in the ensemble in a classical picture, can
be used, too.

In this section, we give a brief introduction to the motion of
~M caused by constant and oscillatory magnetic fields which is
visualized on the Bloch sphere. The north pole of the Bloch sphere
represents the state spin up or a magnetization parallel to the
external field while the south pole describes the state spin down
or a magnetization antiparallel to the field. Magnetizations in the
x-y-plane or coherent superpositions of the spin states up and down
lie on the x-y-plane of the Bloch sphere.

The Bloch equation to describe the spin movement in vector
notation as first written down in reference 51 is

d~M
dt

= γ ~M × ~B − Mx~ex +My~ey
T2

+
(M0 −Mz)~ez

T1
. (2.3)

In this equation γ =
gµe
~

is the gyromagnetic ratio of the spin, where
~B is the time-dependent three-dimensional external magnetic field,
M0 is the equilibrium magnetization along z and the decay times T2
and T1 describe the decay of the magnetization in the x-y-plane and
along ~ez, respectively.
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2 Electrically detected magnetic resonance in a nutshell

For the following treatment we will ignore the decay terms. A
constant magnetic field ~B0 = B0~ez results in

d
dt

Mx

My

Mz

 = γB0

 My

−Mx

0

 . (2.4)

This describes a precession around the z-axis with a rotation fre-
quency of ωL = γB0 which is also called the Larmor frequency of
the spin (c.f. figure 2.4 a)). To simplify the mathematical treatment
of more complex time-dependent magnetic fields, we change the
reference frame from the laboratory frame (denoted by x, y and z)
to a rotating frame (denoted by x ′, y′ and z′) which rotates with a
frequency ω0 around ~ez, so that

~ex ′ = cos (ω0t)~ex + sin (ω0t)~ey, (2.5)
~ey′ = − sin (ω0t)~ex + cos (ω0t)~ey (2.6)

and ~ez′ = ~ez. (2.7)

The movement of ~M in the rotating frame is then described by [52](
d~M
dt

)
rot

=

(
d~M
dt

)
lab
− ~M × ~Ω, (2.8)

with ~Ω = ω0~ez. In the case of the static magnetic field this yields(
d~M
dt

)
rot

= (ωL − ω0) · (~M × ~ez) , (2.9)

which results in a constant magnetization ~Mrot in the rotating frame
if ωL = ω0 (c.f. figure 2.4 b)). If the rotating frame does not match the
Larmor frequency, the movement of the spin in the rotating frame
appears to be due to a reduced magnetic field ∆ω

γ along ~ez which can
be seen by rewriting equation 2.9 as(

d~M
dt

)
rot

= γ ~M ×
(
∆ω

γ
~ez

)
(2.10)

with ∆ω = ωL − ω0. In the rotating frame, a constant magnetic field
~B1 in the x ′-y′-plane leads to a precession in the same way as the
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2.3 Pulse sequences

magnetization precesses around the external magnetic field in the
laboratory frame (c.f. figure 2.4 c)). The precession frequency or
Rabi frequency therefore is ωR = γB1 and a certain rotation angle
Θ is achieved by turning on this field for a specific time TP. The
resulting angle for resonant spins is calculated through

Θ =

Tp∫
t=0

ωR (t) dt. (2.11)

In the laboratory frame, this magnetic field corresponds to a circu-
larly polarized oscillating magnetic field which follows directly from
applying the three-dimensional rotation matrix (e.g. [53])(~B1

)
lab = B1

(
cos (ω0t + φ)~ex + sin (ω0t + φ)~ey

)
. (2.12)

A change in the phase φ of this oscillating magnetic field is equal to
a rotation of ~B1 in the rotating frame and therefore allows to set the
angle of ~B1 in the x ′-y′-plane.

Finally, apart from a few experiments [54–56], the microwaves,
which are used for spin resonance experiments, are typically linearly
polarized. Since every linearly polarized wave can be expressed by
two circularly polarized waves this leads to one component which
can be expressed as in equation 2.12 and one component with
the opposite rotation direction (counter-rotating). This component
rotates with two times ω0 in the rotating frame. If the precession
frequency of ~M due to this field is small compared to ω0, small
changes caused by this rotating field will be reversed when the
direction of the field is inverted after a π-rotation and the counter-
rotating field can be neglected (rotating wave approximation). For
large ~B1-amplitudes, this no longer holds true and the effects of the
counter-rotating field have to be considered [57].

2.3 Pulse sequences

Through changes in the amplitude, phase and length of a microwave
pulse spin rotations can reach any point on the Bloch sphere.
By using a combination of different pulses, it is possible to measure
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2 Electrically detected magnetic resonance in a nutshell

TP

νMWA νMW

N

νMW

Figure 2.5: Basic pulse sequence, where either the pulse frequency
νMW, the pulse length TP, the pulse amplitude A or the number
of pulse repetitions N is changed during an experiment. The
lightness differences of the pulse depict either a changing pulse
length or the varying number of repetitions.

the intrinsic width of a resonance [58], the lifetime of a spin state
[47], the coupling between different spin species [45] and many more
properties of the spin system at hand.

In this section we give a brief overview over the sequences which
are employed most frequently in this thesis, namely the sequence
utilized for Rabi oscillation measurements and magnetic field sweeps
(section 2.3.1), the Ramsey sequence (section 2.3.2) and the Hahn
echo sequence (section 2.3.3). All sequences in this section can be
used with and without pulsed illumination. Since the only difference
between sequences using pulsed and continuous illumination is
the addition of light pulses and the shift of the current detection
from following the final microwave pulse to following the readout
light pulse we concentrate on the spin evolution and ignore the light
pulsing scheme to simplify the discussion.

2.3.1 Basic pulse sequence

The basic pulse sequence is composed of only one microwave pulse
of which either the pulse frequency νMW (or the static magnetic
field B0), the pulse length TP, the pulse amplitude A or the number
of times the pulse is repeated N (which corresponds to the total
length of all microwave pulses) is changed during an experiment.
This sequence is employed for magnetic field (c.f. section 4.1) and
frequency sweeps (c.f. section 5.1) to measure the ESR spectrum of a
given sample and for pulse length sweeps to obtain Rabi oscillations
(c.f. sections 4.2, 5.1 and 6). Figure 2.5 plots this sequence.
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2.3 Pulse sequences

There exist at least four different ways to implement a lock-in
procedure [59] to increase the signal-to-noise-ratio with this se-
quence.

Firstly, the microwave pulse can be switched off during every other
sequence (amplitude cycling) so that subtracting the transients of
the different sequences yields the difference between the effect of the
pulse and the unmanipulated system.

Secondly, by shifting the pulse frequency to a far off-resonant
frequency for every other sequence (frequency cycling), the same
effect is achieved. This has the advantage that heating effects during
both sequences are roughly the same, but effects due to microwave
crosstalk might not be filtered out completely because they may
depend on the microwave frequency.

Thirdly, instead of shifting the frequency a shift of the external
magnetic field in every other sequence (e.g. with the help of mod-
ulation coils) also achieves that the microwave pulse is or is not
in resonance [60]. This procedure is able to filter out possible mi-
crowave crosstalk, but might be influenced by induction effects from
the magnetic field modulation. This approach was not tested in this
work.

Lastly, the rotation angle of some pulses (e.g. BIR-4, c.f. section
2.5.1.2) can be switched by changing e.g. the phase φ during the
pulse. A lock-in method based on such pulses is able to effectively fil-
ter the microwave-induced crosstalk, does not suffer from induction
and is therefore employed whenever possible.

Apart from that, lock-in methods based on amplitude or frequency
cycling work satisfactorily if pulsed illumination is used, because
the readout is separated in time from the microwave pulse. This is
not true for continuous illumination where the crosstalk severely
changes the current transient and only phase cycling methods yield
adequate results.

2.3.2 Ramsey pulse sequence

The Ramsey sequence is the EDMR equivalent to the measurement
of a free induction decay (FID) in NMR and ESR [58]. It can be
employed to measure the dephasing time T ∗2 due to interactions both
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2 Electrically detected magnetic resonance in a nutshell
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b) c) d)

-π/2

B1

B1

Figure 2.6: a) Sketch of the Ramsey sequence. Two π/2-pulses are
separated by a evolution time τ. b) The first π/2-pulse excites the
spins from ~ez onto ~ey′. c) During the time τ the spins dephase due
to local B0-inhomogeneities. d) The second π/2-pulse projects the
spins from the x ′-y′-plane back onto ~ez for readout.

from 29Si and the dangling bond readout partner [58] or to obtain
the true linewidth through Fourier transform spectroscopy [61].

The Ramsey sequence consists of two π/2-pulses separated by
an evolution time τ (figure 2.6 a)). The first π/2-pulse excites the
spin state into the x ′-y′-plane (figure 2.6 b)). During the evolution
time, the spins in the sample precess according to their resonance
frequency, which varies due to e.g. local inhomogeneities of the
external magnetic field caused by the microscopic surroundings of
the spin. This leads to a spreading (so-called dephasing) of the spins
in the x ′-y′-plane (figure 2.6 c)). Since EDMR is only sensitive to
polarizations, a second π/2-pulse projects the spins in the x ′-y′-
plane back onto the z-axis [58] (figure 2.6 c)) similar to optically
detected magnetic resonance (ODMR) experiments [62, 63] and other
pEDMR [47] experiments.

By sweeping τ during the Ramsey experiment the dephasing of
the signal during the evolution time is reconstructed and a Fourier
transform will yield the true linewidth if the excitation and projection
pulse have a bandwidth which exceeds the linewidth.

Due to the two pulse nature of the experiment the phase of the
second pulse can be switched by π at every other sequence (phase
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2.3 Pulse sequences

cycling), which reverses the rotation direction of the projection pulse.
This yields a total rotation by π or by 0 for successive sequences
which can be employed as a lock-in [59] to increase the signal-to-
noise ratio.

Due to this simple lock-in implementation, a variation of this
sequence is used to benchmark the performance of π/2-pulses in
this work (c.f. section 5). In this sequence, τ is set to zero and
the excitation pulse is replaced by the pulse being evaluated. By
sweeping the number of duplicates N of this pulse, rotations with an
angle Θ = N ·π/2 are achieved while the lock-in technique guarantees
a flat baseline simplifying the analysis of the pulse performance.

2.3.3 Hahn echo sequence

The Hahn echo sequence [64] is the basic building block of many
pulse sequences. Apart from decay measurements determining T2
(e.g. [47, 63]), it is utilized in magnetic resonance imaging [52], to
measure the coupling strength between spins in the electron spin
echo envelope modulation (ESEEM) experiment (e.g. [45] and [65]),
as a building block of the Davies ENDOR sequence [66] and in a
swap gate, which transfers coherences between two coupled spins
[67].

The Hahn echo sequence adds a refocusing π-pulse, which per-
forms a π-rotation around ~ex ′, between the excitation and projection
pulse of the Ramsey sequence (figure 2.7 a)). The effect of this pulse
is to reverse the relative position of the spins in the x ′-y′-plane with
respect to ~ey′ (figure 2.7 d)). Therefore, the phase gained by each
spin during the first evolution time τ1 (figure 2.7 c)) is rewound
during the second evolution time τ2 (figure 2.7 e)).

If τ1 and τ2 are equal, this leads to collinear spins at the beginning
of the projection pulse (figure 2.7 f)) and a total rotation angle of
2π of the experiment. This results in a minimum of the signal,
because the phosphorus-dangling bond spin pair is left in its initial
parallel state. For unequal evolution times, the rewinding effect
is not complete which results in dephased spins at the beginning
of the projection pulse. In the case of hugely different τ1 and τ2,
the dephasing results in a uniform distribution of the spins on the
x ′-y′-plane and therefore half the spin pairs are in an antiparallel
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Figure 2.7: a) Sketch of the echo sequence. The echo sequence inserts
a π-pulse between the two π/2-pulses of the Ramsey sequence
separating the evolution time τ into two evolution times τ1 and
τ2. b) The first π/2-pulse excites the spins from ~ez onto ~ey′. c)
During the first evolution time τ1 the spins dephase due to local
B0-inhomogeneities. d) The refocusing π-pulse rotates the spins
around ~ex ′ by π and therefore reverses the spins relative position
to ~ey′. e) During the second evolution time τ2 the spins precess
around ~ez due to local B0-inhomogeneities. Since their relative
positions to ~ey′ are reversed, this compensates the dephasing
during τ1 if τ1 = τ2. f) The second π/2-pulse projects the spins
from the x ′-y′-plane back onto ~ez for read-out.

state after the projection pulse, which results in an increased signal
compared to the case τ1 = τ2.

Phase cycling works in a similar fashion to the Ramsey sequence
with the only difference being the total rotation angle which alter-
nates between 0 and 2π. Since this sequence is widely used in ESR,
we employ it to benchmark the performance of different pulses in a
sequence.
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2.4 Magnetic resonance imaging

2.4 Magnetic resonance imaging

Magnetic resonance imaging (MRI) [68, 69] has revolutionized the
imaging of the human body for medical applications (e.g. [70, 71]).
The same method can be applied to ESR [72, 73], EDMR [60] and
ODMR [74, 75] with a resolution of up to 3 nm [74].

MRI uses the dependence of the Larmor frequency ωL on the ex-
ternal magnetic field B0 together with a spatially constant magnetic
field gradient ~G = G~ez to encode the position of a certain spin in
the sample in a phase Φ which is then measured with either induc-
tive, electrical or optical detection. The following one-dimensional
derivation follows the discussion in reference 52 and describes the
method of phase encoding for a gradient ~Gx = Gx~ez along ~ex . It is
easily adjusted to two or three dimensions by applying additional
gradients ~Gy = Gy~ez and ~Gz = Gz~ez along ~ey and ~ez, respectively.

A gradient ~Gx along ~ex , which can either be constant or varying in
time, results in a magnetic field dependence

~B0 (x) = (B0 + Gxx)~ez. (2.13)

If we assume a rotating frame with ω0 = γB0 this yields a position-
dependent precession ∆ω (x) in the rotating frame of

∆ω (x) = γGxx. (2.14)

For a rectangular pulsed Gx with a pulse length TP a spin at position
x acquires a phase Φ during the length of the gradient pulse

Φ (x) = γGxxTP = 2πkxx (2.15)

with kx =
γGxTP

2π
. (2.16)

For a single spin a measurement of this phase would directly yield
its position x, but in an ensemble the magnetizations of all the spins
add up so that the phase cannot be extracted directly. In this case
it is necessary to measure the total magnetization ~M (x) to find the
phase.

Since the gradient only causes an additional phase just the mag-
netization M⊥ (x) perpendicular to ~B0 holds the position information.
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2 Electrically detected magnetic resonance in a nutshell

Therefore, M⊥ (x) can be described by using complex numbers and
the phase Φ (x). It reads as

M⊥ (x) = Mx (x) + iMy (x) = |M⊥ (x)| e−iΦx . (2.17)

The total signal S (kx) is then the integral over all magnetizations

S (kx) =

∫
M⊥ (x) dx =

∫
|M⊥ (x)| e−iΦxdx =

∫
|M⊥ (x)| e−2πikxxdx,

(2.18)

which is effectively the Fourier transform of |M⊥ (x) |. Therefore, a
measurement of S (kx) in k-space followed by a Fourier transform
will yield |M⊥ (x) |. Since only a limited number of kx can be measured
during an acquisition, |M⊥ (x) | is calculated through the discrete
Fourier transform [76] and the field of view f is determined by the
Nyquist sampling theorem to

f =
1

∆kx
, (2.19)

with ∆kx the discrete distance between two k-space values. The max-
imal spatial resolution ∆x of |M⊥ (x) | is determined by the number
N of k-space values and the field of view f to

∆x =
f

N
=

1
N∆kx

. (2.20)

To ease the requirements on the gradient strength, the gradient is
recorded from −kmax to kmax yielding an achievable resolution of

∆x =
1

2kmax
=

2π
2γGmaxTP

=
h

2gµeGmaxTP
. (2.21)

In MRI, typically, gradient pulses are inserted into the free pre-
cession times in a Hahn echo [60, 73–75] (figure 2.8 a)). The
corresponding gradient pulse sequence is displayed in figure 2.8
b). The arrows indicate the gradient direction and the gradient
table depicts the variation of Gx which is needed to build the k-
space image. To increase the resolution, a gradient pulse can be
inserted into both free precession times as is shown in figure 2.8 b).
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Figure 2.8: a) Sketch of the echo sequence used for MRI. The projec-
tion pulse cycles between a phase of 0◦ and 90◦ corresponding to a
rotation around ~ex ′ or ~ey′ to measure the complex response of the
echo to the gradient pulses. b) Gradient pulses inserted into the
evolution times τ1 and τ2 of the echo sequence. The gradient table
symbolizes the sweeping of the gradient strength. The direction
of the gradient (depicted by the arrows) is switched between the
first and the second pulse to avoid an unwinding of the induced
phase.

To avoid unwinding the phase accumulated during the first pulse
the gradient direction must be opposite in both precession times
(black arrows).

For the Fourier transformation a complex k-space signal is nec-
essary. In MRI, this information is contained in the amplitude and
phase of the induction signal, but EDMR cannot measure phases
in the x ′-y′-plane directly. To extract the phase information from
EDMR measurements, it is necessary to measure the gradient echo
twice. One sequence, where all pulses have the same rotation an-
gle, yields the real part of the k-space image, while a sequence
where the rotation angle of the projection pulse is changed by 90◦

(e.g. by adding a phase of φ = 90◦ to the pulse) allows to measure
its imaginary part [60].

In NMR the method of frequency encoding is commonly employed
to speed up the MRI acquisition. It places the gradient at the
point of echo acquisition [52] which results in a modulation of the
echo due to the spatial distribution of the spins. Similar to the
method of phase encoding, the spatial distribution is obtained by a
Fourier transformation of the echo signal. Since induction detection
allows the acquisition of an echo in one shot, this enables the
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Figure 2.9: Magnetization on the Bloch sphere (blue arrow) and cor-
responding driving field B1 (red arrow) for resonant spins with
the correct driving strength (panel a)), for resonant spins with an
increased B1 (panel b)) and for off-resonant spins (panel c)).

acquisition of the spatial information along one axis with only one
measurement. Unfortunately, this method does not yield the same
improvements in EDMR and ODMR, because both detection methods
cannot measure the full echo in one shot, but need to reconstruct it
with projection pulses. Therefore, frequency encoding does not offer
any improvement over phase encoding and we accordingly chose
phase encoding for the measurements in this work.

2.5 Shaped pulses

The pulse sequences discussed up to now (sections 2.3.1, 2.3.2, 2.3.3
and 2.4) rely on rectangular microwave pulses with well defined
phases Φ. As an example, figure 2.9 a) displays the resulting
magnetization (blue arrow) and the corresponding driving field B1
(red arrow) on the Bloch sphere after such a pulse.

A B1-inhomogeneity will result in different rotation angles (as
shown exemplarily for higher B1 in figure 2.9 b)) for spins experi-
encing different B1-fields. Off-resonance effects, e.g. from different
couplings to surrounding spins, will tilt the rotation axis, because
the magnetic field as seen by the spins contains not only the com-
ponent caused by the microwaves, but also a component due to
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the detuning (as shown exemplarily for ∆ω > 0 in figure 2.9 c)).
In the best case these deviations only cause a quenched amplitude
of the respective experiment (c.f. sections 4.3, 4.4, 5.3 and 5.4). In
the worst case, they result in wrong measurement results (c.f. sec-
tions 6.1.5 and 6.3).

These problems led to the development of composite [77], adiabatic
[78] and optimal control pulses [25, 27, 30, 33] for nuclear magnetic
resonance (NMR) which are able to counter the adverse effects of
B1-inhomogeneities and off-resonance excitation. In the following
sections we discuss the design principles behind adiabatic (section
2.5.1) and optimal control pulses (section 2.5.2). Composite pulses,
which are constructed by concatenating rectangular pulses with
selected phases and amplitudes, are effectively a subclass of the
optimal control pulses and are therefore not discussed here.

The adiabatic and optimal control pulses used in this work can be
sorted in two basic categories: point-to-point and universal rotation
pulses. Universal rotation pulses, similar to rectangular pulses, have
a rotation axis and angle around which all spins rotate. Therefore,
these pulses can easily replace all rectangular pulses. In contrast,
point-to-point pulses transform a spin from a given starting point
to a specific endpoint on the Bloch sphere. Spins that do not lie
on the intended starting point will end up at seemingly random
positions depending on their position in the B1-off-resonance space.
In general, point-to-point pulses are simpler because they do not
need to fulfill as many boundary conditions, but they can only
replace specific pulses with fixed start and end position of the spins.

In pEDMR experiments, the excitation pulse can be replaced
by a point-to-point pulse because the starting position along the
z-axis and the end position in the x ′-y′-plane are known. The
same argument is true for projection pulses, which transform the
projection along e.g. the x ′-axis onto the z-axis. However, refocusing
pulses only work due to the rotation around a certain axis and can
therefore only be replaced by a universal rotation pulse.

2.5.1 Adiabatic Pulses

Adiabatic pulses use the fact that an off-resonance pulse produces
a magnetic field along ~ez in the rotating frame (c.f. equation 2.10).
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2 Electrically detected magnetic resonance in a nutshell

To describe adiabatic pulses we employ a rotating frame, which
rotates with the frequency of the pulse and instantly follows any
frequency changes during the pulse (accelerated rotating frame).
Vector addition yields the resulting effective magnetic field ~B1,eff in
this accelerated rotating frame

~B1,eff =


B1
0
∆ω
γ

 , (2.22)

around which the spins precess during a microwave pulse. The
basic idea behind adiabatic pulses is to align this effective magnetic
field parallel or antiparallel to the spins and gradually change it
during the pulse. If these changes happen slowly compared to
the precession, the spins will follow the movement of the effective
magnetic field, which results in the intended spin rotation [78].

2.5.1.1 Point-to-point pulses

We employ two types of point-to-point pulses in this work. They
are either transformations from ~ez to −~ez (also called adiabatic
full passage or AFP) or from ~ez into the x ′-y′-plane (adiabatic half
passage or AHP). We will describe the AHP first.

To perform an AHP, ~B1,eff has to travel from ~ez to the x ′-y′-plane.
We choose the x ′-axis as an endpoint without loss of generality.
To achieve this movement we start with the microwave frequency
detuned by ∆ω and B1 reduced to nearly zero. The resulting ~B1,eff is
(c.f. equation 2.22)

~B1,eff =


B1 ≈ 0

0
∆ω
γ

 ≈ ∆ω

γ
~ez. (2.23)

By gradually increasing B1 to B1,max and reducing ∆ω, ~B1,eff moves
from ~ez to ~ex ′ until the rotating frame rotates with the Larmor
frequency of the spin and ∆ω = 0 which results in

~B1,eff =


B1,max

0
∆ω
γ ≈ 0

 ≈ B1,max~ex ′. (2.24)
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Figure 2.10: a) Amplitude of an AHP pulse as a function of the nor-
malized pulse time t/TP. b) Frequency offset of an AHP pulse as a
function of the normalized pulse time t/TP. c) Movement of the
magnetization (blue arrow) due to the effective magnetic field ~B1,eff
(red arrow). The trajectory of the magnetization is depicted by the
blue dots.

Figure 2.10 plots the amplitude (panel a)) and offset curve (panel b))
which yield this transformation for the example of a tanh amplitude
modulation and a tan frequency modulation as a function of the
normalized pulse time t/Tp. The modulation functions are

B1 (t) = B1,max · tanh
(
ζ
(
1 − t/Tp

))
(2.25)

∆ω (t) = ∆ωmax ·
tan

(
κt/Tp

)
tan κ

. (2.26)

Here, the constants ζ and κ specify the form of the amplitude and
phase modulation, respectively. B1,max is the maximum microwave
field, ∆ωmax is the maximum detuning and Tp is the length of the
pulse.

To optimize the parameters of those two modulation functions,
the adiabaticity η which relates the change of the angle α between
~B1,eff and ~ez with the precession frequency ωeff = γB1,eff

η =
ωeff
dα
dt

(2.27)

is maximized. It is a measure of the quality of an adiabatic pulse
and has to fulfill η � 1 to ensure that the spins follow B1,eff.
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Figure 2.11: a) Amplitude of an AFP pulse as a function of the nor-
malized pulse time t/TP. b) Frequency offset of an AFP pulse as a
function of the normalized pulse time t/TP. c) Movement of the
magnetization (blue arrow) due to the effective magnetic field ~B1,eff
(red arrow). The trajectory of the magnetization is depicted by the
blue dots.

This is shown in figure 2.10 c) which plots the magnetization (blue
arrow), ~B1,eff (red arrow) and the trajectory of the magnetization (blue
dots) on the Bloch sphere.

Any component of the spin which is not parallel to ~ez at the
beginning of the pulse will also precess around ~B1,eff, but the end
position will in general depend on B1 and result in an arbitrary end
position for each spin in an ensemble. Apart from the adiabaticity,
this pulse has to fulfill a second condition which follows directly from
equation 2.24. For any ensemble with a linewidth ∆ωl in frequency
space the z-component of equation 2.24 cannot be zero for all spins.
In order to achieve ∆ω/γ ≈ 0 for all spins, B1 has to be much larger
than ∆ωl/γ so that ~B1,eff is approximately collinear with ~ez for most of
the spins in the ensemble although a small off-resonance component
remains.

An AFP pulse does not stop at the resonance condition, but adjusts
the frequency up to −∆ω which results in

~B1,eff =


B1 ≈ 0

0
∆ω
γ

 ≈ −∆ω

γ
~ez (2.28)

at the end of the pulse if B1 is reduced to zero. Figure 2.11 plots the
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amplitude (panel a)) and offset curve (panel b)) using the modulation
functions 2.25 and 2.26, respectively, which yield this transfor-
mation as a function of the normalized pulse time t/Tp. If η � 1,
the spins will follow this movement from ~ez to −~ez as is shown in
figure 2.11 c).

Any spin parallel or antiparallel to ~B1,eff will follow this movement
throughout the pulse. In contrast to the AHP, there are no further
conditions if the frequency sweep is large enough compared to the
linewidth ∆ωl, because the end position of the spins does not depend
on the exact detuning ∆ω as long as it is large enough for equation
2.28 to hold. Similar to the AHP, any spin component perpendicular
to ~B1,eff at the beginning of the pulse will end up at seemingly random
positions depending on its B1 and off-resonance condition. Therefore,
both the AHP and AFP are point-to-point pulses and cannot rotate
a spin around a certain axis.

2.5.1.2 Universal rotation pulses

In order to construct a universal rotation pulse from a point-to-point
pulse, the more or less arbitrary rotation around ~B1,eff has to be
canceled. There exist many different pulses which achieve this by
concatenating AHPs in different ways [20, 22, 79]. In this work we
will use the so called BIREF-1 and the BIR-4 pulses. An extensive
comparison between further pulse shapes for universal rotation
pulses can be found in references 20, 78 and 79.

To reverse the phase which the spins pick up due to the precession
around ~B1,eff during an AHP, the BIREF-1 pulse [79] concatenates
two AHPs, where the second is time-reversed and has an amplitude
function which is inverted compared to the first AHP. The resulting
amplitude and frequency offsets as a function of the normalized
pulse time t/TP are plotted in figure 2.12 a). Their effect on the
movement of a magnetization initially along ~ez (blue arrow) and a
magnetization initially along ~ex ′ (fading green arrows) due to the
effective magnetic field ~B1,eff is plotted in figure 2.12 b) and c) for the
first and second AHP, respectively. The amplitude inversion after the
first AHP leads to a precession around ~B1,eff during the second AHP
whose direction of rotation is reversed (c.f. rotation direction of the
fading green arrows in figure 2.12 b) and c)) and thus unwinds the
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2 Electrically detected magnetic resonance in a nutshell

a) b) c)

x' y'
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Figure 2.12: a) Amplitude and frequency offset of the BIREF-1 pulse
as a function of the normalized pulse time t/TP. b) Movement
of the magnetization for a magnetization initially along ~ez (blue
arrow) and a magnetization initially along ~ex ′ (fading green arrows)
due to the effective magnetic field ~B1,eff (red arrow) during the first
AHP pulse. The trajectory of the magnetization initially along ~ez
is depicted by the blue dots. c) The same as panel b) but for the
second AHP pulse.

phase accumulated during the first AHP. The spin transformation of
this pulse can be reconstructed by following the movement of ~B1,eff.
To do this, we use spins initially aligned along ~ex ′, ~ey′ and ~ez.

For a spin aligned along ~ez this pulse is basically an AFP. The
spin follows ~B1,eff during the first AHP until ~B1,eff and the spin are
aligned along ~ex ′ (c.f. blue arrow in figure 2.12 b)). The reversal of
the amplitude changes the orientation between the spin and ~B1,eff
from parallel to antiparallel or vice versa. Since the spin will also
follow the movement of an antiparallel ~B1,eff, the movement of ~B1,eff
rotates the spin from ~ex ′ to −~ez resulting in a π-rotation (figure 2.12
c)). The reversal of ~B1,eff from parallel to antiparallel will only work
satisfactorily, if ~B1,eff is nearly parallel to ~ex ′ after the first AHP. Any
off-resonance effects will result in an incomplete reversal of ~B1,eff
since the direction of the off-resonance component of ~B1,eff does
not change. Therefore, this pulse also has to fulfill the condition
B1 � ∆ωl

γ similarly to an AHP.
Spins along ~ex ′ and ~ey′ will precess on a plane perpendicular to

~B1,eff (fading green arrows in figure 2.12 b) and c)). Since their
precession on this plane is reversed during the second AHP we can
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a) b) c)

ΔΦ ΔΦ

AHP AHP AHP AHP AHP AHPAFP AFP AFP

Figure 2.13: Amplitude (panel a)), frequency offset (panel b)) and phase
(panel c)) of a BIR4 pulse as a function of the normalized pulse
time t/TP. Here, the phase is defined by the integral over the offset
∆ω in the case of the two AHP pulses. The phase of the AFP pulse
is shifted by a phase ∆Φ.

ignore the precession and treat them as if they keep their relative
position on this plane constant throughout the pulse. Both the first
and second AHP rotate the plane by π/2 around ~ey′ (figure 2.12 b)
and c)) and therefore realize a total rotation of π. Since the spins
initially aligned parallel to ~ex ′ and ~ey′ keep their relative position
on this plane, this causes a π-rotation for the spin along ~ex ′ and
no rotation for the spin along ~ey′. Therefore, this pulse performs
a π-rotation around ~ey′ as is expected of a π universal rotation
pulse. It is possible to analogously achieve π/2 universal rotations
by differently concatenating two AHPs [20].

The BIR-4 pulse [22] concatenates two AHP pulses and one AFP
pulse (concatenated from two AHPs) and can be set to any rotation
angle by an additional phase ∆Φ which is applied to the AFP. Fig-
ure 2.13 plots the amplitude (panel a)), frequency offset (panel b))
and phase (panel c)) of a BIR-4 pulse as a function of the normalized
pulse time t/TP. Between the first AHP and the AFP and again
between the AFP and the second AHP the frequency is inverted. This
reverses the overall rotation direction of the spins similar to the
BIREF-1 pulse (c.f. figure 2.12 b) and c)) and ensures the fact that
any rotation around ~B1,eff acquired by the pulse before the frequency
inversion is reversed by the pulse after the frequency inversion.
Therefore, we can again ignore the precession around ~B1,eff during
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2 Electrically detected magnetic resonance in a nutshell

this analysis. ~B1,eff starts along ~ex ′ at the beginning of the pulse
and is rotated to −~ez during the first AHP. At the beginning of the
following AFP ~B1,eff jumps to ~ez and rotates from ~ez back to −~ez. The
angle of this rotation is governed by the additional phase Φ of the
AFP pulse. After the AFP, ~B1,eff jumps to ~ez again from where it
travels back to ~ex ′. To analyze the behavior of the pulse, we will
again resort to three spins initially aligned along ~ex ′, ~ey′ and ~ez.

Due to the adiabaticity of the pulse, the spin along ~ex ′ which is
initially parallel to ~B1,eff will follow the movement of ~B1,eff through
the pulse. This leads to a transformation of the spins from ~ex ′ to −~ez
during the first AHP, an inversion of the spin from −~ez to ~ez during
the AFP and a transformation from ~ez to ~ex ′ during the second AHP.
All these transformations result in a spin parallel to ~ex ′ which was
the initial state suggesting that ~ex ′ is the rotation axis of the pulse.

Since we can ignore the precession, the movement of the spins
initially orthogonal to ~B1,eff can be modeled by simple rotations R~n (�)
around ~n by the angle �. The first AHP rotates by π/2 around ~ey′,
the AFP rotates by π around ~n defined by

~n =

sin (Φ)
cos (Φ)

0

 (2.29)

and the second AHP again rotates by π/2 around ~ey′. Hence, the
resulting rotation by an angle � around the axis ~s is defined by the
concatenation of the rotations during the AHP and AFP pulses

R~s (�) = R~ey′ (π/2) R~n (π) R~ey′ (π/2) . (2.30)

To simplify this expression, the rotation matrices are evaluated at
their respective rotation angle and rotation axis and the matrix
multiplication is carried out. Using the trigonometric double angle
relations we find

R~s (�) =

1 0 0
0 cos (2 (π − Φ)) − sin (2 (π − Φ))
0 sin (2 (π − Φ)) cos (2 (π − Φ))

 . (2.31)

This is a rotation by � = 2 (π − Φ) around ~s = ~ex ′ and allows to
adjust the rotation angle � by a simple change in the phase jump Φ.
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2.5 Shaped pulses

Compared to the BIREF-1 pulse this degree of freedom comes at
the cost of a two-fold increased pulse length. For samples with a
short T2 time adiabatic universal rotation pulses, which have a fixed
angle of rotation and therefore a shorter pulse length, can improve
the signal by reducing effects due to decoherence of the spins.

2.5.2 Optimal control pulses

Optimal control pulses are pulses optimized by using optimal control
theory [25–41]. In optimal control theory [80], a cost function
J (x (t) , u (t) , t) is minimized to find the most suitable trajectory x (t)
using a set of controls u (t). This trajectory may be e.g. the shortest,
the fastest or the most energy efficient one depending on the cost
function. A control could be e.g. an external force on the subject.

In the case of microwave pulses for EDMR, the trajectory is that
of the magnetization M (t) and the controls are the amplitude and
phase or the x- and y-component of B1. For computation an optimal
control pulse of length TP is split into short segments of length ∆t
over which the control inputs are kept constant [25]. This length ∆t
can either be the time step of the pulse generating hardware or any
of its discrete multiples. Apart from this it is also possible to use
analytical functions for the control and optimize e.g. the parameters
of a frequency sweep or the amplitudes of a discrete sine series [40].

Initially the controls are set to random values or a guessed pulse
shape and the magnetization is propagated from its initial Minitial
state to a final state Mfinal by applying the specific pulse. With
this final state and the target state Mtarget, an optimal control cost
function which utilizes the scalar product between ~Mfinal and ~Mtarget

J =
〈
~Mfinal, ~Mtarget

〉
= ~Mfinal · ~Mtarget (2.32)

is constructed.1 This specific cost function will result in an optimized
point-to-point pulse because it only depends on the initial and the
final state. To optimize universal rotation pulses it has to be adjusted
to include e.g. rotation operators [32]. A detailed discussion can be
found in references 32, 34 and 35.

1This cost function is the most simple form and has to be expanded if boundary conditions are
to be included.
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2 Electrically detected magnetic resonance in a nutshell

A finite-differences-based gradient algorithm could be used to
optimize the cost function, but it would require to calculate the
gradient for all N pulse segments resulting in 2N evaluations of J.
Since N can easily reach the order of 1000 and since each evaluation
of J requires an additional propagation of ~M per iterated pulse shape,
this becomes rather quickly computationally expensive.

Optimal control theory provides an efficient way to evaluate this
gradient through the cross product of ~M (t) and the costate vector
~λ (t), which can be understood as the vector Lagrange multiplier to
the Bloch equation [25, 26, 31]

dJ
dBeff (t)

= ~M (t) × ~λ (t) . (2.33)

Here, the costate vector ~λ (t) is the back-propagation of ~Mtarget un-
der the influence of the current realization of the microwave pulse.
Therefore, the evaluation of the gradient only requires the propa-
gation of ~Minitial and the back-propagation of ~Mtarget which greatly
reduces the computational cost for the optimization (gradient as-
cent pulse engineering (GRAPE) [25]). In order to construct pulses
which work over a region of offsets ν0 and Rabi frequencies ν1,
~M (t) × ~λ (t) is calculated for each combination of ν0 and ν1 and the
mean

〈
~M (t) × ~λ (t)

〉
is used during optimization [25].

Depending on the step ∆t used in the discretization of the pulse,
the calculated optimal control pulses can exhibit a huge bandwidth
over which they may disturb other spins. To circumvent this prob-
lem, unwanted frequency components can be filtered out during
the optimization which limits the (final) bandwidth of the pulse [32].
Apart from this a further optimization of optimal control pulses in a
sequence is possible by allowing subsequent pulses to correct for
errors introduced by earlier pulses. These pulses are called coopera-
tive optimal control pulses and are able to significantly reduce the
length of each individual pulse in a sequence [37]. This method can
also be applied to phase cycles [31], where pulses in different cycles
correct the errors made in earlier cycles, but such cooperative phase
cycles were not used in this work.
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EDMR setup for arbitrarily shaped

pulses

This chapter introduces the EDMR setup for arbitrarily shaped
pulses. We start with a short introduction into the theoretical basics
of pulse generation and the propagation of microwave and DC pulses
in our setup (section 3.1). Afterwards the actual pEDMR setup with
the pulse generation and pulse delivery on the sample is discussed
(section 3.2) before we treat the effects and remedies of non-ideal
spectrometer behavior (section 3.3).

3.1 Theoretical basics

3.1.1 Complex baseband representation

This section follows reference 81. The pulses applied in this work
have a bandwidth of less than 100 MHz at carrier frequencies νC
in the gigahertz range. This type of waveform is called a passband
signal sP and can be written as

sP (t) =
√

2 (I (t) cos (2πνCt) − Q (t) sin (2πνCt)) . (3.1)

35



3 EDMR setup for arbitrarily shaped pulses

Here, I (t) and Q (t) are real valued functions and νC is typically
chosen to lie in the center of the passband signal. The factor of√

2 is arbitrary and simplifies the notation. The complex baseband
representation of this signal is then defined as

s (t) = I (t) + iQ (t) , (3.2)

which can be connected to sp (t) by

sp (t) = Re
(√

2s (t) e2πiνCt
)
. (3.3)

Since the fast oscillating term e2πiνCt is known for all times t, all
the information of the signal resides in s (t) and we can limit the
treatment of the pulses to the complex baseband. For a better un-
derstanding, the functions I (t) and Q (t) are related to the amplitude
A (t) and the phase Φ (t) of the passband signal by the relations

A (t) =
√
I2 (t) + Q2 (t), (3.4)

Φ (t) = arctan
Q (t)
I (t)

, (3.5)

I (t) = A (t) cos Φ (t) (3.6)
and Q (t) = A (t) sin Φ (t) . (3.7)

Passband pulses are generated from I (t) and Q (t) using equation
3.1. If the passband signal is known, the complex baseband signal
is obtained by multiplying sp (t) with cos (2πνCt) or sin (2πνCt) and
removing the frequency components at 2νC:
√

2sp (t) cos (2πνCt) = I (t) + Q (t) (cos (4πνCt) − sin (4πνCt)) (3.8)
≈ I (t) (3.9)

−√2sp (t) sin (2πνCt) = Q (t) + I (t) (sin (4πνCt) − cos (4πνCt)) (3.10)
≈ Q (t) . (3.11)

3.1.2 IQ mixer

Both the conversion from the complex baseband to the passband
(upconversion) and from the passband to the complex baseband
(downconversion) are carried out by an IQ mixer. Figure 3.1 shows

36



3.1 Theoretical basics

IF
LO RF

IF
LO RF
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Q
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cos(2πνCt)

-sin(2πνCt+Φ)

aI · I(t) · cos(2πνCt)

-aQ · Q(t) · sin(2πνCt+Φ)

Figure 3.1: Schematic drawing of an IQ mixer consisting of a 90◦

coupler, two mixers and a combiner. The IQ mixer imperfections
LO leak-through, amplitude imbalance and phase imbalance are
shown in red.

a schematic drawing of such an IQ mixer. The microwave carrier
νC, which is input to the LO port, passes a 90◦ coupler to generate
the cosine and sine terms in equation 3.1. If the mixer is used as
an upconverter, the baseband signal is fed into the I and Q port
where it is multiplied with the respective LO terms. The results
of both multiplications are added in a combiner and the resulting
passband signal is output to the RF port. If the IQ mixer is used
as a downconverter, the RF port acts as the input for the passband
signal. The combiner splits the signal evenly between the respective
mixers for the I and Q ports where the passband signal is multiplied
with the sine or cosine term and the resulting signal is output at the
respective port. To obtain a baseband signal this output has to be
low-pass-filtered to cut out the high frequency terms in equations
3.9 and 3.11.

As a component, the IQ mixer deviates from the ideal behavior
of equation 3.1. Firstly, due to non-ideal isolation between the
LO, RF and IF ports of the actual mixers, the LO input can leak
into the IF or RF port (red arrows in figure 3.1). This leads to an
unmodulated signal with a frequency νC in addition to the desired
passband signal. Secondly, because of runtime differences in the
I and Q channels as well as imperfections in the 90◦ coupler, the
phase between the I and Q ports can deviate by an angle Φ from 90◦.
Lastly, the ratio g = αI/αQ between the gains for the I (αI) and the Q
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3 EDMR setup for arbitrarily shaped pulses

(αQ) ports may differ. Both these latter imperfections are called IQ
imbalances and will lead to a distortion of the generated waveform.

3.1.3 Single sideband upconverter

The IQ mixer imperfections discussed in 3.1.2 will lead to aberrations
which all coincide with νC if I (t) and Q (t) have DC components. By
replacing I (t) and Q (t) in equation 3.1 with equations 3.6 and 3.7
and using Φ (t) = Φ + 2πνIFt, which shifts the DC I and Q signal by
νIF in frequency, we find

sp (t) = A (t) cos (2π (νC + νIF) t + Φ) (3.12)

after some trigonometric transformations. Therefore the IQ mixer
generates a signal at νC + νIF. If the I and Q inputs are interchanged,
the resulting passband signal will be at νC − νIF.

To generate the I (t) and Q (t) signal needed for single sideband
upconversion, the I and Q inputs of the IQ mixer are fed by two
arbitrary waveform generator (AWG) channels or from one AWG
channel in combination with a 90◦ coupler1. Any IQ imbalances
result in a signal at νC − νIF for a passband signal at νC + νIF and
vice versa [82]. We will call this signal the unwanted sideband from
here on.

Since the passband signal resides at νC + νIF, the LO leakage
is at νC and the unwanted sideband is at νC − νIF, all effects are
easily discerned from each other. For convenience, the magnitude
of the LO leak-through and of the unwanted sideband are expressed
comparing their power Punwanted to the power of the wanted sideband
Pwanted by

suppression = 10 log10

(
Punwanted

Pwanted

)
. (3.13)

If the imbalances do not change a lot over the bandwidth of a
pulse and if there are no ESR resonances at the frequencies of the
LO leak-through and at the frequency of the unwanted sideband,
the use of single sideband upconversion might render the correction

1The 90◦ coupler allows to use only one AWG channel if the correction of LO leak-through and IQ
mixer imbalances is not necessary.
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of these errors unnecessary. This, however, is not necessarily the
case and we will treat the correction of such imperfections in the
next section.

3.1.4 Correction of IQ mixer imperfections

We use the fact that the different imperfections show up at dif-
ferent frequencies to calibrate the IQ mixer and compensate the
signals I (t) and Q (t) in order to minimize the effects of the different
imperfections.

The LO leak-through of the up- and downconverter can be canceled
by applying DC offsets to the I (t) and Q (t) function [83]. To find the
right DC offset for each function, the LO leak-through is measured,
while one of the DC offsets is varied. When a minimum is found, the
procedure is repeated for the other function.

The effect of IQ imbalances can be described by the method in
reference 82. Their effect on the modulated m (t) and demodulated
d (t) complex baseband signal in vector notation, ignoring leak-
through or DC offsets, can be modeled by

m̃ (t) = M m (t) (3.14)
and d̃ (t) = D d (t) (3.15)

with the matrices M and D defined by

M =

[
gM cos (ΦM/2) sin (ΦM/2)
gM sin (ΦM/2) cos (ΦM/2)

]
(3.16)

and D =

[
gD cos (ΦD/2) gD sin (ΦD/2)

sin (ΦD/2) cos (ΦD/2)

]
, (3.17)

respectively. Here gM, gD, ΦM and ΦD denote the gain imbalance
and the phase imbalance for the modulator and demodulator, re-
spectively. If those matrices are known, their effects can be reversed
by multiplying the modulated or demodulated signal with the corre-
sponding inverse matrix. To find the values of g and Φ it is either
possible to measure the amplitude of the unwanted sideband while
successively sweeping g and Φ until a minimum is found or the
method presented in reference 82 can be used.
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3 EDMR setup for arbitrarily shaped pulses

We will now briefly describe this method here. It uses microwaves
from a single tone source which are downconverted by the IQ mixer
under calibration. The resulting output from the I and Q ports is
sampled by a fast oscilloscope and Fourier transformed to obtain a
complex baseband representation of the signal. The phase imbalance
ΦD and the gain imbalance gD of the demodulator will result in a
signal which does not only contain the desired sideband, generated
by the single tone source, but also the unwanted sideband. If the
gain and phase imbalance are small, the relative sideband ratio
SD = W ∗2/W1, where W ∗2 is the complex conjugated amplitude of the
unwanted sideband and W1 is the amplitude of the desired sideband,
is used to estimate ΦD and gD, according to

gD =
1 + Re (SD)
1 − Re (SD)

(3.18)

and ΦD = −2 arctan (Im (SD)). (3.19)

To calibrate the modulator the calibrated demodulator is used to
measure the power spectrum

PM =

∣∣∣∣∣V2

V1

∣∣∣∣∣2 =
g2

M + 1 − 2gM cos (ΦM)
g2

M + 1 + 2gM cos (ΦM)
(3.20)

generated by the wanted (V1) and unwanted (V2) sideband. By
adjusting gM by a known quantity and remeasuring the power
spectrum, we get two equations with two unknown values, which
can be solved to obtain gM and |ΦM|. To find the sign of ΦM, the
power spectrum is measured both for the positive and the negative
phase correction values and the value, which results in the better
sideband suppression, is used.

In general, LO leak-through and IQ imbalances can be frequency-
dependent and may vary slightly in time so that the calibration
process has to be repeated at least for each new LO frequency and
for each new measurement campaign.

3.1.5 Impulse Response

Every electric circuit will have some imperfections which will alter
its response from the intended behavior. Ideally, these deviations
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are predictable so that the input can be altered to account for those
deviations. If an electric circuit is linear and time invariant, its
behavior can be modeled by linear system theory [84]. By using
the impulse response hP (t), which is the response of the system
to a Dirac delta function δ (t), the reaction of the system yP (t) to
any excitation can be obtained by the convolution of the impulse
response hP (t) with the excitation xP (t):

yP (t) = (xP ∗ hP) (t) =

+∞∫
−∞

hP
(
t − t′) xP

(
t′
)

dt′. (3.21)

This equation can be translated to the complex baseband where it
reads as [81]

y =
1√
2

(x ∗ h) (t) , (3.22)

with the complex baseband representations y (t), x (t) and h (t) of
the passband functions yP (t), xP (t) and hP (t), respectively. The
in-phase and quadrature-phase components of y are

yI (t) = (xI ∗ hI) (t) − (
xQ ∗ hQ

)
(t) (3.23)

and yQ (t) =
(
xI ∗ hQ

)
(t) +

(
xQ ∗ hI

)
(t) , (3.24)

which are depicted graphically in figure 3.2. Here, hI (t) and hQ (t)
are the in-phase and quadrature-phase components of the impulse
response. The black arrows depict the direction in which hI (t) and
hQ (t) are measured of the device under test (DUT). To obtain hI (t)
or hQ (t), the modulator is excited with xI (t) or xQ (t) while the other
input is terminated and both yI (t) and yQ (t) are recorded. This
results in two measurements for each hI (t) and hQ (t), which allows
to detect e.g. runtime differences or IQ imperfections (c.f. section
3.3.3, where we discuss the experimental realization).

3.1.6 Maximum-length-sequence-based impulse response

measurement

For discrete-time impulse response measurements the Dirac delta
function is replaced by a Kronecker delta. Since measurements using
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Figure 3.2: Measurement scheme for the baseband impulse response
using two IQ mixers. The black arrows depict the direction in
which hI and hQ are measured for the device under test (DUT).
The connections to the LO port of the IQ mixers are left out for
clarity.

a single Kronecker delta excitation are very susceptible to noise,
there exist numerous ways to measure the impulse response with
other methods [85–88]. Reference 88 uses a sampling oscilloscope
to measure the generated pulse at its upconverted frequency so that
an IQ mixer for downconversion and its calibration is not required.
Unfortunately, the jitter of the AWG trigger is too high in our setup
so that we cannot employ this method. If the system exhibits strong
nonlinearities, an exponentially swept sine measurement [87] can
separate the linear response from the different order harmonics at
the cost of a preringing of the impulse response [89]. The maximum
length sequence (MLS)-based method in reference 85 does not have
this disadvantage [89], but produces additional distortion peaks if
the system contains nonlinearities [90].

Apart from these methods, a measurement of the system transfer
function, using a vector network analyzer (VNA) and a Fourier trans-
formation of this transfer function, will yield the impulse response.
This impulse response, however, will not contain the impulse re-
sponse of the AWG, which has an important influence on the system
impulse response (c.f. section 3.3.3). In reference 91 the magni-
tude of the system transfer function is obtained through nutation
experiments at different frequencies. This has the advantage that
the transfer function is directly measured by spins, but does not
yield the phase component of the frequency transfer function, which
makes it impossible to calculate the full impulse response from the
magnitude-only transfer function.
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The setup in this work is optimized to work in its linear region
(c.f. section 3.3.1) so that any advantages of the swept sine method
with respect to nonlinearities are outweighed by its distortion of the
impulse response. Furthermore, the effects of small nonlinearities
on the MLS measurement, e.g. caused by the ADC in the measuring
oscilloscope, can be counteracted [90] so that the MLS method seems
to be the most suitable method.

In the following, we shortly describe the ideas behind the maximum
length sequence measurement. A maximum length sequence m with
N elements is a binary sequence [92] generated by a linear feedback
shift-register (LFSR) [93] whose characteristic polynomial is primitive
[92, 94]. To account for the discrete measurement due to the ADC
sampling frequency, equation 3.21 is reformulated in its cyclic
discrete form [84]

y [k] = (x ∗ h) [k] =

N−1∑
i=0

x [i]h[(k − i)N]. (3.25)

Here k and i are the discrete representations of the time t. x and h
represent the system input and the impulse response, respectively.
The integral is replaced by the sum over x and h. To simplify the
notation, )N denotes the modulo N operation. Additionally, the
discrete cyclic cross correlation can be calculated as [84]

ρab [k] =
1
N

N−1∑
i=0

a∗ [i] b [(k + i)N] (3.26)

and can be represented by a convolution using [84]

ρab [k] =
1
N

(â∗ ∗ b) [k] (3.27)

with â∗ [k] = a∗ [−k]. Both operations assume that the input arrays
are of the same length. Usually, the impulse response is short
compared to the excitation and has to be zero padded to reach the
length of the excitation. The key property of a MLS m is its cyclic
autocorrelation function [95]

ρmm [k] =

+1, if k = 0
− 1
N , if k , 0

. (3.28)

43



3 EDMR setup for arbitrarily shaped pulses

For large N this approximates an ideal Kronecker delta δ [k]. If we
use a MLS as the excitation of our system and cross correlate the
system response with the MLS, we find

ρmy [k] =
1
N

(m∗ ∗ y) [k] (3.29)

=
1
N

(m∗ ∗ (m ∗ h)) [k] (3.30)

=
1
N

((m∗ ∗m) ∗ h) [k] (3.31)

≈ (δ ∗ h) [k] (3.32)
≈ h [k] . (3.33)

Therefore, by using the associativity of the convolution together
with equation 3.28 we find that the cross correlation of the system
response with the MLS approximately yields the system impulse
response. Since this operation uses the discrete cyclic convolution
and cross correlation, two conditions have to be met. Firstly, the
impulse response must be shorter than the play time of the MLS.
Secondly, since periodic signals are assumed, the system needs to
be excited with at least one period of the MLS before starting the
actual measurement to drive the system in a steady state at the
beginning of the actual measurement.

For an increasing bit length n of the LFSR, the cross correlation
operation scales with p2 for p = 2n−1 [94] which can quickly become
large. If the computation time grows too large, the cross correlation
can be calculated by using the similarities between the MLS matrix
and the Hadamard matrix, which reduces the amount of operations
to p log2 (p) [94].

3.2 Hardware

In this section, the setup for pulsed electrically detected magnetic
resonance is discussed. The sections 3.2.2, 3.2.4, 3.2.5 and 3.2.6
are based on reference 96.
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Figure 3.3: Overview of the pEDMR setup.

3.2.1 Overview of the setup

For a successful pEDMR experiment a measurement setup has to
provide a method to set a static magnetic field, generate pulsed
microwave and radio frequency radiation, deliver it to the sample to
be investigated and detect the spin-dependent current through the
sample (c.f. chapter 2). Furthermore, for measurements on silicon
dopants, the sample needs to be cooled (T ≈ 5 K) and illuminated
with above band gap light (c.f. section 2.1.2).

In figure 3.3 the setup used throughout this thesis is sketched
schematically. A water-cooled electromagnet (e.g. Bruker B-E 25),
which is controlled by a Hall sensor (Bruker B-H 15), generates
the external magnetic field B0. The cryostat (Oxford CF-935) with
a window for illumination purposes resides in between the pole
caps of the electromagnet. It controls the sample temperature
with the help of liquid helium and a computer-controlled heater
(Cryogenic Control Systems Model 32B). The sample is mounted on
a sample holder which places it behind the cryostat window. It is
connected to the microwave and radio frequency pulse generation
(c.f. sections 3.2.5, 3.2.6 and 6.1.8) with a semi-rigid coaxial cable
with 2.92 mm connectors approved for cryogenic applications (SHF
TCRG219G/SUS). The connections for the current measurements
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3 EDMR setup for arbitrarily shaped pulses

(c.f. section 3.2.4) are built by off-the-shelf coaxial cables. Both
the microwave transmission line and the current measurement
cables are mounted in a sealed glass fiber rod, which sits inside a
Swagelock vacuum feed-through mounted into the cryostat with a
KF50 vacuum flange [97]. For the pulsed illumination a red LED
(Thorlabs M625L3) controlled by a laser diode driver with pulsing
capabilities (Thorlabs LDC210C) is used.

3.2.2 Antenna structures

A stripline structure to excite spin resonance has to fulfill the follow-
ing requirements [18]:

• The amplitude of the oscillating magnetic field B1 has to be
big enough to yield pulse durations shorter than the spin
dephasing time T ∗2 of the spins to be studied.

• The residual electric field has to be kept as small as possible.

In addition to these requirements, the homogeneity of the B1-field
should be as high as possible to reduce the dephasing in the spin
ensembles studied. This excludes downscaling of the antennas to
the nanometer scale to achieve the highest possible B1 conversion
factors, since this reduces the size of the spin ensemble or results
in higher B1-inhomogeneities in larger samples.

3.2.2.1 Sample structure

The basic sample structure for all samples used in this work is the
same. They are made from pieces of silicon-on-insulator wafers
with a 20-nm-thick phosphorus-doped Si top layer with natural
isotope composition and a doping concentration of 3 · 1016 cm−3,
9 · 1016 cm−3 or 3 · 1017 cm−3 on top of a 2.5-µm-thick nominally
undoped Si layer grown by chemical vapor deposition. For EDMR
measurements a measurement geometry is defined by subsequent
photolithography, electron-beam evaporation and lift-off steps. Fig-
ure 3.4 depicts the layer structure of our samples, whose optimiza-
tion is described in detail in section 3.2.2.2. On top of the silicon-
on-insulator wafer DC contacts, consisting of 20 nm chromium and
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antenna
substrate

BCBdc contact

block

dc contact

Figure 3.4: Sketch of the phosphorus-doped silicon sample including
the silicon semiconductor (black), metalizations for measurement
fingers and microwave delivery (yellow) and the BCB isolation
layer (transparent).

80 nm gold, define the area through which the spin-dependent cur-
rent is measured. These contacts are insulated from the microwave
delivery structure, consisting of 50 nm of chromium and 500 nm of
gold, by a hard-baked layer of benzocyclobutene-based photoresist
(BCB). Depending on the sample, a gold block of the same thickness
as the microwave delivery structure concentrates the generated mi-
crowave B1-fields into the gap between microwave antenna and block
(c.f. section 3.2.2.2). The DC contacts and the microwave delivery
structure are connected to a sample holder made of Rogers RO3010
printed circuit board, using aluminum wire bond connections.

3.2.2.2 Simulation of the microwave excitation

The optimization of stripline structures for single spin experiments
has been extensively covered [18, 97]. This section summarizes
and expands on the results of reference 97 on optimal stripline
structures for spin ensembles. For this we simulated the electric
and magnetic fields at stripline shorts using the software COMSOL
4.3a. The simulation volume was set to a cube with an edge length
of 2 cm and perfectly conducting walls. For the silicon sample a
cuboid of the dimensions 15 mm×4 mm×0.35 mm positioned in the
center of the simulation volume was used. On top of the sample the
stripline structure was defined by a perfect electric conductor with
infinitely small thickness. The electromagnetic wave was excited by
a lumped port with a voltage amplitude of 2 V which corresponds to
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3 EDMR setup for arbitrarily shaped pulses

a microwave power of 40 mW in microwave lines with an impedance
of 50 Ω.

Figure 3.5 shows slices through the sample at a frequency of
10 GHz for five simulated structures either 2 µm (panels a), b) and
c)) or 20 nm below the stripline structure (d) and e)) depicting either
B1z (a), b) and e)) or B1x (c) and d)). In the following, the structures
will be called a to e according to their panel labels. The red squares
in figure 3.5 a) and b) depict the area where a contact structure
such as interdigit fingers would be placed for EDMR experiments
with a B1-inhomogeneity as obtained from the simulation of less
than ±5 %. In figure 3.5 c) the area exactly beneath the short has
a similar B1-inhomogeneity of less than ±10 %. In structure d the
short width is reduced from 20 µm in structure c to 5 µm. Although
fabrication of a contact structure beneath the short is still possible
for this reduced width, e.g. using electron beam lithography, it would
increase fabrication complexity significantly. Therefore, structure e
is intended to be used as microwave delivery and contact structure
at the same time. That is why an additional metalization 5 µm in
front of the 5-µm-wide short is added (‘‘block’’ in figure 3.4). The area
beneath the short and the gap between stripline structure and the
additional contact in figure 3.5 e) have a higher B1-inhomogeneity
of up to ±50 %.

All B1-amplitudes obtained from the simulation quoted below have
been divided by a factor of two since for magnetic resonance only one
of the two circularly polarized fields contributes to the spin manipu-
lation in the rotating wave approximation. The average B1-amplitude
inside the indicated measurement area is 0.02 mT for structure a
and 0.01 mT for structure b, which results in expected microwave
power-to-B1 conversion factors of 0.1 mT

√
W−1 and 0.05 mT

√
W−1,

respectively, leading to a power requirement of 13 W and 50 W for
50 ns π-pulses, typical for standard commercial pulsed X-band re-
sonators. The average B1-amplitude inside the measurement area
underneath the short of structure c is 0.14 mT, corresponding to a
conversion factor of 0.7 mT

√
W−1 and a theoretical power require-

ment of 260 mW for a 50 ns π-pulse. By reducing the short width
from 20 µm in structures a, b and c to 5 µm in structure d, the
average B1-field exactly beneath the short can be increased by a
factor of four. With the metal contact in front of the short, a similar
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3 EDMR setup for arbitrarily shaped pulses

average B1-amplitude of 0.58 mT can also be reached in the gap
between the short and the contact. The corresponding conversion
factor of 2.9 mT

√
W−1 should allow for 50 ns π-pulse times with a

power of only 15 mW.
As expected, the simultaneous simulation of the electric field (data

not shown) shows that it is smallest at the short where the magnetic
field exhibits a maximum and the electric field has a node. Therefore,
to reduce the influence of electric fields, the same close proximity
of the short and the contact structure already deduced from the
optimization of the conversion factor is desirable.

3.2.3 Sample holder

The sample holder fixes the sample mechanically and provides
the interface from the coaxial microwave cable to the coplanar
stripline geometry of the sample. It consists of a 640-µm-thick
Rogers RO3010 microwave printed circuit board, which carries
a 17-µm-thick copper sheet. The microwave transmission lines
are defined from this sheet by photolithography and a subsequent
etching process with a hydrochloric acid and hydrogen peroxide
solution. To increase the mechanical stability, this substrate is
glued to a thin fiberglass sheet with an epoxy-based adhesive. We
discuss the basic components of the sample holder below. For
imaging experiments, this basic design is adjusted so that it allows
to route the microwave and gradient pulses through the different
antennas on the sample.

All microwave-related parts of the sample holder transmission
line are optimized so that they have an impedance of 50 Ω to reduce
reflections. The basic sample holder geometry is sketched in fig-
ure 3.6. All transmission line traces are shown in a coppery color
and bond wire connections are depicted with black lines. On the left
side the sample holder starts with a Rosenberger 02K243-40ME3
connector (yellow outline), which connects the sample holder to the
microwave line with a 2.92 mm connector. For the length of the
center pin, the central coplanar waveguide (CPW) line is widened
to ease soldering. In order to improve the microwave transmission
this solder connection is thoroughly cleaned with acetone and iso-
propanol [98]. Afterwards, the CPW dimensions are tapered to the
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connector

CPW

sample

CPS

CPW to CPS

transition

solder pad

solder pad

Figure 3.6: Schematic drawing of the sample holder used in this work.
All transmission line traces are in a coppery color and the bond
connections are shown with black lines.

dimensions which correspond to 50 Ω without the connector. For
the optimization of the transmission line dimensions, including the
connector center pin and solder, please see references 98 and 99.
In order to change the transmission line geometry from a CPW to
a coplanar stripline (CPS), we use a modified transition from refer-
ence 100. This CPS is connected to the sample with the help of at
least four wire bond connections to ensure a good high frequency
transmission [98] . Measured in a back-to-back configuration, this
sample holder has less than 4.5 dB insertion loss for frequencies
up to 18 GHz, which suggests a loss of less than 2.25 dB for an
individual sample holder. The solder pads used for the photocurrent
measurement provide the space for a solder joint of a thin wire and
are connected to the sample with the help of wire bond connections.

3.2.4 Detection circuit

The current through the sample is amplified by a custom-built
symmetric transimpedance amplifier (Elektronik Manufaktur Mahls-
dorf) with switchable high (1 kHz, 5 kHz or 10 kHz) and low pass
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Figure 3.7: Microwave pulse generation setup consisting of an AWG for
pulse generation, IQ mixers to convert the pulse from baseband to
microwave frequencies, a broadband amplifier and an oscilloscope
for pEDMR and pulse measurements.

filters (5 µs, 2 µs or <1 µs) and an amplification from 1 · 104 V A−1 to
2 · 107 V A−1. The resulting voltage is sampled by the oscilloscope
(Agilent DSO9254A) and sent to the measurement computer for
further processing.

3.2.5 Microwave pulse generation

There are two slightly different approaches to ESR spectrometers
with pulse shaping capabilities in the literature [35, 88, 101, 102].
We use the approach of [101] where pulses are generated at an
intermediate frequency of νIF = 250 MHz and an IQ mixer is used as
a single sideband upconverter. This method has the advantage that
local oscillator (LO) leak-through with the frequency νLO can be set to
a non-resonant frequency and that IQ mixer imbalances show up at
νLO − νIF (unwanted sideband) (c.f. section 3.1.2) which is chosen to
be non-resonant, too. If it is not possible to choose a non-resonant
frequency for those two unwanted effects, a calibration, e.g. with
the method presented in [82] or by minimizing the ESR signal found
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at the frequencies of the LO or the unwanted sideband (c.f. section
3.3.2), reduces their magnitude significantly.

A schematic drawing of the microwave pulse setup is shown in
figure 3.7. The AWG (Agilent 81180B, sample rate set to 4 GS s−1)
generates the in-phase and quadrature-phase parts of the pulse
at an intermediate frequency of 250 MHz. The pulses are damped
to suppress reflections and to adjust their power so that they do
not drive the IQ mixer in the nonlinear regime when the AWG is
at its maximum output power. Afterwards, the pulses are single-
sideband-upconverted by an IQ mixer (Marki MLIQ0218L or Hittite
HMC 0092) whose local oscillator (LO) port is fed by a microwave
source (Agilent E8257D) through a -3 dB splitter (Marki PD0R618)
for coherent up- and downconversion. The power of the upconverted
pulses is adjusted so that the pulsed broadband gallium nitride
microwave amplifier (Microsemi AML218P4011, saturation power
Psat=39 dBm for frequencies from 2 to 18 GHz) is used in its linear
regime up to a nominal amplifier output power of Pmax = 25 dBm
(c.f. section 3.3.1). The isolators (MCLI IS-10, IS-19 and IS-293)
at the input and at the output of the broadband power amplifier
suppress reflections. With the 20 dB coupler (Marki C20-0226) a
small part of the pulse power is split off for coherent downconversion
and pulse analysis. The pulses in the analysis path are damped to
the IQ mixer input level and the downconverted pulses are recorded
by an oscilloscope (Agilent DSO9254A, sample rate set to 4 GS s−1).
The bulk of the pulse power reaches a broadband diplexer (SHF
DX-45) where the microwave pulses can be combined with radio
frequency pulses or gradient pulses. These pulses are routed to the
sample via a coaxial cable and the sample holder discussed above.
To keep the effects of reflections on the impulse response minimal,
all cables are as short as possible.

3.2.6 Radio frequency pulse generation

Although radio frequency (RF) pulses could be synthesized directly,
a similar setup to the microwave pulse generation was used since

2Depending on the experiment. The Hittite mixer was used for all measurements in chapter 4,
while the Marki mixer was used in all other experiments because of its larger LO bandwidth.

3The choice of isolator depends on the microwave frequency.
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Figure 3.8: a) RF setup consisting of an AWG for pulse generation, a
pulsed radio frequency source and a mixer to combine both pulses.
The resulting RF pulses are low-pass-filtered to cut the unwanted
sideband, amplified and damped to set the output power. A 20 dB
coupler allows to measure the resulting pulse. b) Simplified RF
setup consisting of an AWG for pulse generation, a pulsed RF
amplifier and a 20 dB coupler for pulse measurements.

it enables frequency sweeps without pulse recalculations. This is
necessary, because the AWG used for the RF setup (Chase DA14000)
does not allow sequencing and the reprogramming of its memory
takes up to a few seconds. In addition, this configuration allows
to isolate the AWG output from the rest of the circuit by pulsing
the radio frequency LO source output, which reduces the effect of
noise generated by the AWG on the detection circuit during readout.
Figure 3.8 a) shows this RF pulse setup. The NMR pulses, modulated
with a frequency of 150 MHz for mixing with the RF local oscillator,
are synthesized by the AWG (Chase DA14000, sample rate 4 GS s−1),
damped to set the pulse power and filtered (MiniCircuits SLP 200+
and SHP 50+) to suppress reflections and remove synthesization
artifacts. Afterwards, the pulses are mixed with the pulsed radio
frequency from the RF source (Agilent E4421B) yielding a pulse with
the target frequency and a pulse in an unwanted sideband which is
filtered by a low pass filter (MiniCircuits SLP 100+). A RF amplifier
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(ENI 3200L) lifts the pulse power to 200 W which is subsequently
damped to the desired pulse power. A 20 dB coupler (MiniCircuits
ZFBDC20-61HP+ or ZFBDC20-62HP+) splits the RF into a path for
pulse analysis and a path leading to the broadband diplexer. In the
analysis path a further attenuator reduces the pulse power to safe
levels for the oscilloscope.

With the use of a pulsed amplifier (TOMCO BT00250) and a AWG
with faster waveform upload (PXDAC4800, sample rate 1.2 GS s−1)
the RF pulse generation can be vastly simplified as is shown in
figure 3.8 b). Here, the AWG directly synthesizes the RF pulses which
are low pass filtered to remove discretization artifacts, damped to
adjust the AWG output level to the RF amplifier input levels, amplified
by the RF amplifier and damped again to adjust their power to the
desired pulse power.

3.3 Calibration

The microwave components which make up the EDMR spectrometer
are not ideal. At every connection between two components there are
reflections due to e.g. impedance mismatch. Some of the components
(e.g. IQ mixers, amplifiers) exhibit a nonlinear behavior through
some parts of their operating range. The relation between the I
and Q port of the IQ mixer may deviate in amplitude, the nominal
90◦ angle between I and Q and all the components in general may
show a frequency-dependent behavior in their amplitude and phase
response. All these effects influence the microwave pulses so that
the pulse, which finally acts on the spins, may deviate from the
intended pulse. In this section, these effects are examined and
different solutions to mitigate their influence on the spin rotation
are discussed.

3.3.1 Spectrometer nonlinearities

Power amplifier nonlinearities and their correction are an ongoing
area of research in the field of telecommunication. There are many
different methods to predistort signals to ensure a linear output
of the amplifier [103–105]. The simplest method to circumvent
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a) b)

6 dB back off

Figure 3.9: a) Power at the output of the IQ mixer as a function of
the AWG output power for one channel. The red curve is a linear
fit with a forced slope of 1. b) Power at the output of the power
amplifier as a function of the AWG output power for one channel.
The red curve is a linear fit with a forced slope of 1 and the black
lines mark the Plinear, P1 dB, P2 dB and P3 dB points.

nonlinearities is to stay 6 dB below the 1 dB compression point of
the power amplifier. This may seem rather excessive, but e.g. GaN-
based microwave broadband power amplifiers are available up to
output powers of 50 W and the stripline antennas used in this work
have a high conversion factor. This allows us to employ this simple
method to avoid nonlinearities.

In order to later operate the IQ mixers and the power amplifier
in their linear region, we first measured the output power of the IQ
mixers and the broadband amplifier with a calibrated microwave
diode as a function of the AWG output power of one channel. Fig-
ure 3.9 shows the measurement results for the IQ mixer (panel a))
and the power amplifier (panel b)) in double logarithmic plots. In
both cases, a linear fit with a slope of 1 is plotted in red.

The measurement and the linear fit in figure 3.9 a) match very
well which implies that the IQ mixer is linear throughout the output
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region of the AWG. This is achieved by inserting 6 dB attenuators
between the AWG and the IQ mixer I and Q ports, which basically
perform a 6 dB power back-off so that the IQ mixer behaves linearly
throughout the dynamic range of the AWG. The increased variance
at low input powers can be accounted to the limited sensitivity of
the oscilloscope.

For the nonlinearity measurement of the power amplifier a second
amplifier was inserted between the IQ mixer and the power amplifier.
This additional amplifier is operated in its linear region and allows
us to drive the power amplifier into nonlinear operation. The power
amplifier 1 dB compression point P1 dB lies at an input power of
−0.5 dBm. Therefore, according to the 6 dB back-off rule, the linear
region should end around Pin = −6.5 dBm, which is the case here.
Therefore, up to an output power of about 25 dBm, the amplifier can
be used without any nonlinear effects.

3.3.2 IQ mixer calibration

Apart from nonlinearities, which we avoid by the 6 dB back-off from
the 1 dB compression point, the effects of LO leak-through and IQ
imbalance, as discussed in section 3.1.2, deteriorate the output
signal. They might be mitigated by the single sideband upconversion
scheme employed to generate the microwave pulses in this work
if the bandwidth of the pulses is below the intermediate frequency
(c.f. section 3.3.2.2). Nevertheless, it is necessary to know the
impact of IQ imperfections on the modulated and demodulated
signal for the measurement of a system impulse response or for
predistortion schemes. In the following sections, we will present
different calibration processes for the IQ mixers either using pEDMR
measurements, a spectrum analyzer or a single tone source and
discuss their advantages as well as disadvantages.

3.3.2.1 Calibration with EDMR measurements

The LO leak-through and the IQ imbalances lead to additional fre-
quency components at νLO and at νLO − νIF, respectively (c.f. section
3.1.2). This will result in additional pEDMR spectra at their corre-
sponding magnetic fields. In order to measure these spectra, we
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Figure 3.10: a) Pulse sequence employed during the optimization.
b) pEDMR spectrum for an LO frequency of 14 GHz and an IF
frequency of 250 MHz measured with microwave pulses with a
length of 4000 µs before and after IQ imperfection calibration. For
better visibility, we removed a linear background by subtracting a
straight line. c) pEDMR signal amplitude for a magnetic field of
504.5 mT as a function of the I channel DC voltage with zeroed
Q channel DC voltage. d) pEDMR signal amplitude as a function
of the Q channel voltage using the optimal I channel voltage of
28 mV. e) pEDMR signal amplitude for a magnetic field of 492 mT
as a function of ΦM for gM = 0. f) pEDMR signal amplitude as a
function of gM (ΦM = 6.9◦).

used the pulse scheme depicted in figure 3.10 a). Here, the constant
illumination increases the signal-to-noise ratio and the omission
of a lock-in-scheme allows to measure the LO leak-through signal,
which would be suppressed otherwise.

The contributions of the LO leak-through and the unwanted side-
band are at least damped by 20 dB compared to the wanted sideband.
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Therefore, we use a 4000-µs-long microwave pulse for a Rabi fre-
quency of 30 MHz to enhance the pEDMR spectrum for the unwanted
sideband and LO leak-through. Instead, to reduce the loss of signal
due to T ∗2, an increased microwave power could be used to achieve
shorter pulses whenever the sample allows it.

The measurements in this section were performed on a Marki
MLIQ0218L mixer. The red curve in figure 3.10 b) shows a mag-
netic field sweep for νLO = 14 GHz and νIF = 250 MHz. Apart from
the desired pEDMR spectrum around 510 mT, highlighted by the
4.2 mT hyperfine line splitting of the two 31P resonances, we see
a spectrum with a reduced amplitude around 500 mT due to the
LO leak-through and at 490 mT, which is caused by the IQ mixer
imbalances. For the LO leak-through calibration the magnetic field
is set to the most intense feature in that part of the spectrum and
the DC offsets of the I and the Q channels are varied subsequently.
To remove any microwave-induced background signals this measure-
ment is repeated for two off-resonant fields and the resulting signal
is subtracted by the linear interpolation of those off-resonant signals.
Figure 3.10 c) shows the pEDMR amplitude at B0 = 499 mT as a
function of the I channel bias UI which has a clear minimum around
a voltage of 28 mV. Using this bias voltage, the same experiment for
the Q channel (c.f. figure 3.10 d)) yields a minimum of the pEDMR
signal for a bias voltage of UQ = −36 mV. The pEDMR spectrum
after this LO leak-through optimization (blue graph in figure 3.10 b))
does not exhibit any contribution due to the LO leak-through and a
measurement with a spectrum analyzer indicates a reduction of the
LO leak-through by 30 dB.

The same method can be applied to the IQ imbalances by sweeping
ΦM (c.f. figure 3.10 e)) and gM (c.f. figure 3.10 f)) to minimize their
contributions to the pEDMR spectrum. While the ΦM sweep shows a
minimum at B0 = 490 mT for an angle of ΦM = 6.9◦, the signal of the
gM sweep vanishes in the noise floor so that the pEDMR spectrum
after imbalance correction (c.f. green curve in figure 3.10 b)) was
measured with gM = 1. It does not show any contributions by IQ
imbalances, as was the case for the LO leak-through optimization. A
measurement with a spectrum analyzer shows a reduction of 40 dB.
In contrast to the LO leak-through, depending on the severity of
the imbalances, the contributions to the mirror image amplitude
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3 EDMR setup for arbitrarily shaped pulses

from gM and ΦM may not be independent [82]. Therefore, it might be
necessary to record more than two sweeps to achieve a substantial
reduction in the mirror image amplitude. Furthermore, if the skew
between the I and the Q channels is high, ΦM may strongly depend
on the intermediate frequency so that it becomes necessary to
determine gM and ΦM at two frequencies mirrored around νLO to
determine the skew and repeat the optimization with an adjusted
skew. This would result in at least nine measurements for the IQ
imbalances and two measurements to optimize LO leak-through,
which may not be feasible, if the signal-to-noise ratio of the sample
is too low.

3.3.2.2 Calibration using a spectrum analyzer

If the signal-to-noise ratio of the sample is too low or a substantial
skew between the I and the Q channels is present, the different
frequency components of the microwave caused by the IQ imbalance
and LO leak-through can be determined with a spectrum analyzer
instead of the pEDMR measurements used in the previous section4.
The measurements in this section were performed on the same
Marki MLIQ0218L mixer. Figure 3.11 a) shows the microwave
power as a function of the microwave frequency νC at the output
of the uncalibrated IQ mixer (red), the IQ mixer calibrated by the
pEDMR sweep method (blue) and the IQ mixer calibrated with
the help of a spectrum analyzer (green). Similar to the previous
section, the correction values are found by sweeping either the I
and Q channel DC offset or ΦM and gM until their corresponding
frequency contributions are minimal. The resulting suppression
after the optimization is −50 dB and −65 dB, respectively, which is
significantly higher than the suppression achieved by the pEDMR
calibration. To detect a skew between the I and the Q channel,
this procedure is repeated for many intermediate frequencies νIF.
Figure 3.11 b) plots ΦM as a function of νIF (red dots). A linear fit of
ΦM has a slope of m = 5.3 ◦GHz−1, which corresponds to a skew of
15 ps. This value is in between two possible skew correction steps
of the AWG. Therefore, both values were tried and a correction value

4This measurement requires a suitable CW microwave output of the AWG.

60



3.3 Calibration

a) b)

c)

d)

fLO + fIF

fLO - fIF

fLO

fcalib

Figure 3.11: a) Microwave power as a function of the microwave fre-
quency νC at the output of the IQ mixer without calibration (red),
calibrated by the pEDMR sweep method (blue) and calibrated
with the help of a spectrum analyzer (green). b) ΦM as a function
of the intermediate frequency before (red) and after (blue) skew
correction. The linear fit which was used for the skew correction is
plotted in red. c) gM as a function of the intermediate frequency νIF
before (red) and after (blue) skew correction. d) Suppression of the
unwanted sideband as a function of the intermediate frequency
using the values of gM and ΦM found with the pEDMR calibration
(red) and for the median of gM and ΦM determined from panels
b) and c) (blue). The intermediate frequency used in the pEDMR
calibration fcalib is marked with the vertical black line.

of 10 ps was chosen, because it resulted in a virtually constant ΦM
throughout the IF frequency range (blue squares in figure 3.11 b)).
The amplitude imbalance gm (c.f. figure 3.11 c)) also depends on νIF,
but does not depend on whether there is a skew correction (red dots)
or not (blue squares).

Since adiabatic and optimum control pulses can span frequency
ranges up to a gigahertz [35, 102], the quality of the IQ correction
as a function of νIF is of interest. Figure 3.11 d) plots the sideband
suppression as a function of νIF for the correction values found
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3 EDMR setup for arbitrarily shaped pulses

with pEDMR measurements (red dots) and for the median values
ΦM = 7.19◦ and gM = 1.013 (blue squares). The skew-corrected
calibration outperforms the pEDMR-detected calibration for interme-
diate frequencies which are far away from the intermediate frequen-
cies used for the pEDMR calibration (fcalib marked by the vertical
black line). This is due to the omission of the skew-correction for
the pEDMR measurements because of the amount of measurements
necessary for this and has the effect that additional imbalance effects
are generated by the skew. For pulses with a bandwidth around
100 MHz the difference is rather small so that a correction including
the skew does not significantly improve the unwanted sideband
suppression.

For the case without skew correction the sideband suppression
varies between −48 dB and −40 dB for a pulse with a bandwidth of
250 MHz centered around νIF = 125 MHz. With the help of equation
3.13 we can estimate the amplitude variation of the wanted sideband
in this region. Assuming that the total pulse power Ptotal = Punwanted +

Pwanted stays the same independent of νIF, equation 3.13 can be
rewritten as

Pwanted =
Ptotal

1 + 10
suppression

10
. (3.34)

For better readability we denote the wanted sideband power for a
suppression of −40 dB and −48 dB with Pw (−40 dB) and Pw (−48 dB),
respectively. By dividing Pw (−40 dB) by Pw (−48 dB) we find for the
power ratio rP ≈ 0.999 92. Since P ∝ B2

1 the B1-ratio is rB1 =√
rP ≈ 0.999 96 and the variation of B1 over the whole bandwidth is

4.2 · 10−5. This is well below the 12 bit resolution of the AWG, which
is at best 2.4 · 10−4. Therefore, a skew correction is only necessary,
if the pulse bandwidth centered around νIF exceeds 2νIF and the
wanted and unwanted sidebands overlap.

3.3.2.3 Calibration using a single tone source

For impulse response measurements, which employ two IQ mix-
ers for up- and downconversion, both IQ mixers have to be cali-
brated (c.f. section 3.3.3). The methods which have been discussed
up till now only calibrate the upconverter, not the downconverter.
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3.3 Calibration

quantity gD ΦD gM ΦM
value 0.98 3.1◦ 0.99 3.8◦

Table 3.1: Mean correction values for the demodulating and modulat-
ing mixers (Hittite HMC 009).

To calibrate the downconverter we chose the method presented in
reference 82, which is briefly explained in section 3.1.2. To speed
up these measurements, we wrote a software which automatically
calibrates the receiver and the modulator for νIF between −500 MHz
and 500 MHz, calculates the skew for both the modulator and the
demodulator and finds the mean values for gD, gM, ΦD, ΦM and the
I and Q channel DC offsets.

We will shortly present the results of this method using the exam-
ple of modulating and demodulating Hittite HMC-009 mixers, which
have a higher skew than Marki MLIQ0218L mixers used before and
therefore show the effects of the calibration more clearly. Here, we
find a skew of 60 ps for the demodulating IQ mixer and a skew of
40 ps for the modulating IQ mixer by fitting a linear function to the
measured ΦM and ΦD values. The mean values for gD, gM, ΦD and
ΦM are noted in table 3.1. This correction achieves a similarly high
suppression in the pEDMR signal compared to the pEDMR detected
method (data not shown) with the benefit of the additional skew
correction for a measurement time of under a minute. The effects
of the skew correction on the impulse response are discussed in
section 3.3.3.

3.3.3 Spectrometer impulse response

Ideally, the system transfer function is measured from the AWG
to the location of the spins. In reference 35 a pick-up coil in the
stray field of the resonator is used for this purpose in a conven-
tional EPR spectrometer. This pick-up coil is made with a standard
coaxial microwave cable which has its outer conductor and isolation
removed and its inner conductor soldered to the outer conductor.
The impulse response of the pick-up coil and of the receiving hard-
ware is assumed to be negligible and therefore it is ignored. The
microwave transmission used in this work, which consists of a
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3 EDMR setup for arbitrarily shaped pulses

a) b) c)

Figure 3.12: a) Impulse response of the system measured with an
uncalibrated IQ mixer using a MLS excitation at the I port (blue
lines) and the Q port (red lines). For all three panels, the hQ part
of the impulse response is shifted up by 3 s−1 compared to the
hI part. b) Impulse response of the system measured with a fully
corrected IQ mixer using a MLS excitation at the I port (blue lines)
and the Q port (red lines). c) Comparison of the system impulse
response (blue lines) with the impulse response of the AWG only
(red lines).

coaxial cable in the sample stick, the sample holder and the sample
itself, is conceptually similar to the pick-up coil in reference 35.
We have demonstrated that both the sample [97] and the sample
holder [98] have very flat system responses over the frequency range
up to 18 GHz. Therefore, we neglect the impulse response of the
microwave transmission to the stripline short, too, and measure the
impulse response from the AWG through the microwave setup to
the oscilloscope via a 20 dB coupler (c.f. figure 3.7). The IQ mixers
(Marki MLIQ0218L or Hittite HMC 009) and the oscilloscope (Agilent
DSO9254A) both have a bandwidth of 3.5 GHz per channel, which
is much larger than the 1 GHz bandwidth per channel of the AWG,
and are ignored for this reason.

Figure 3.12 a) plots the in-phase hI (t) and quadrature-phase hQ (t)
components of the passband impulse response measured with the
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3.3 Calibration

MLS method without IQ mixer calibration. As described in section
3.1.5, we can use an excitation at the I port while the Q port is
terminated and vice versa to redundantly measure the impulse
response. The blue lines in figure 3.12 show the impulse response
obtained with an MLS excitation at the I port, while the red lines show
the impulse response for a MLS excitation at the Q port. We again
use a Hittite HMC 009 mixer for up- and downconversion, because
the larger skew allows us to see the effects of an uncalibrated IQ
mixer more clearly. The main part of the impulse response resides
in hI (t) which has a rise time of 0.4 ns, a full width at half maximum
of also roughly 0.4 ns and is fully decayed after about 5 ns. Both
hI (t) and hQ (t) show a time shift between the graphs for the I
excitation and the Q excitation. By comparing the rising and the
falling flanks we find shifts of about 60 ps and 100 ps for hQ (t) and
hI (t), respectively. These shifts have the same order of magnitude as
the combined baseband skew found in section 3.3.2.3. The situation
is significantly improved by the IQ mixer calibration discussed in
section 3.3.2.3 as can be seen in figure 3.12 b). Here, the impulse
responses measured with I and Q excitation agree very well for hI (t)
and hQ (t). If a Marki MLIQ0218L mixer is used instead of the Hittite
HMC 009 mixer for up- and downconversion, the skew correction is
not necessary due to its much lower skew (c.f. section 3.3.2.2).

To elucidate the cause of this impulse response, we measured the
impulse response of the AWG directly connected to the oscilloscope.
This results in a purely in-phase impulse response since there is no
physical connection between the I excitation and Q detection and
vice versa. To compare this impulse response to the measurement
from figure 3.12 b) it was rotated in the complex plane by an angle
of 160◦. Figure 3.12 c) shows the resulting impulse response after
the rotation (red lines) together with the impulse response from
figure 3.12 b) (blue lines). Apart from minor differences during the
decay and differences due to a shift of the discretization caused by
the different run-times of the signal, they are very similar. Therefore,
the impulse response of the whole microwave system is dominated
by the impulse response of the AWG and cannot be substantially
improved without exchanging the AWG.

We will discuss the effects of this impulse response on the optimal
control pulses used in this thesis in detail in chapter 5. However,
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3 EDMR setup for arbitrarily shaped pulses

the fact that the impulse response has decayed completely after
about 8 ns implies that pulses which have a bandwidth well below
125 MHz should not be affected. A Fourier transformation of the
impulse response reveals a total bandwidth of about 2 GHz.
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4
Broadband pulse shaping

capabilities of the setup

In this chapter we test the capabilities of the EDMR setup for arbi-
trarily shaped pulses. The ability to generate and deliver shaped
pulses in the frequency range of 2 GHz to 18 GHz is evaluated with
pEDMR sweeps of Gaussian pulses in section 4.1. Afterwards, we
perform Rabi measurements on different stripline structures, com-
pare the fabricated structures with the simulation and identify the
most promising stripline structure for subsequent experiments (sec-
tion 4.2). To further test the pulse shaping capabilities, we use the
BIR-4 pulse to improve the fidelity of rotations up to 2π (section 4.3)
and implement a fully adiabatic electron nuclear double resonance
experiment (section 4.4). This chapter is based on reference 96.

4.1 Broadband capabilities

We first investigate the broadband capabilities of the microwave
antennas via Gaussian pulses exhibiting good selectivity [106]. The
full pulse sequence used for this is shown at the top of figure 4.1.
The illumination via a light-emitting diode (LED) is depicted in red
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4 Broadband pulse shaping capabilities of the setup

and the Gaussian microwave pulse is shown in black. The EDMR
response in the form of the charge ∆Q is obtained through boxcar
integration over the current transient after the pulse [5, 49].

Figure 4.1 depicts EDMR spectra for pulse frequencies νMW from
2.5 GHz to 17.5 GHz in steps of 1 GHz measured with a single Gaus-
sian pulse with a standard deviation of 60 ns truncated symmet-
rically to a total pulse length of 400 ns, which results in a FWHM
of 32 MHz in the frequency domain. The ordinate displays the nor-
malized charge ∆Q while the static magnetic field B0 shifted by
(hνMW) / (gPµe) with Planck’s quantum h and the Bohr magneton
µe is plotted on the abscissa. This allows a direct comparison of
the hyperfine-split 31P electron resonances at different microwave
frequencies, because they remain at a magnetic field of ±2.1 mT (ver-
tical red lines) in this representation. In contrast, the resonances
corresponding to the different orientations of the dangling bond read-
out partner Pb0 (green and blue line) seem to move with increasing
microwave frequency due to their slightly different g-factors. Figure
4.1 clearly demonstrates that pulsed EDMR spectra can be obtained
with the antenna structures studied here over the whole range of mi-
crowave frequencies between 2 GHz and 18 GHz compatible with the
broadband microwave power amplifier. All spectra show a similar
signal-to-noise ratio.

4.2 Performance comparison of broadband

antennas

In order to experimentally verify the conversion factors of the different
antenna structures introduced in section 3.2.2 and to compare them
to the simulations, Rabi experiments with square microwave pulses
have been performed on the high field phosphorus resonance for all
structures. The microwave power in each case was set so that the
length of each π-pulse is about Tπ = 50 ns corresponding to a B1 of
about 0.35 mT. Since the total pulse times are short compared to
the T2 of the system [47], the Rabi experiments have been performed
under constant illumination. The corresponding pulse sequence is
shown in figure 4.2 together with the results obtained on structures
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LED
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Figure 4.1: Broadband pulsed EDMR spectra of Si:P for microwave
frequencies from 2.5 GHz to 17.5 GHz. The EDMR signal intensity
∆Q is plotted versus the magnetic field B0 shifted by (hνMW) / (gPµe)
to align the spectra with respect to the 31P resonances for different
frequencies. The red lines mark the hyperfine-split phosphorus
resonances, the blue and green lines follow the two dangling bond
resonances observed for the sample oriented with [110] parallel to
B0.
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ΔQ

 

LED

TP

Figure 4.2: Square-pulse-driven Rabi oscillations for structures a, b,
c and e measured by EDMR with continuous illumination of the
sample at a microwave frequency of 9 GHz for structures a and b
and 6.5 GHz for structures c and e. The normalized EDMR signal
intensity ∆Q after the MW pulse is plotted versus the pulse length
Tp.

a, b, c and e where the EDMR signal intensity ∆Q is plotted as a
function of the length TP of the pulse. The data for each structure
are fitted with

y = ARabi · cos
(
2π
T2π
· Tp

)
· exp

(
− Tp

τdeph

)
+ y0, (4.1)

with the Rabi oscillation period T2π and the dephasing time τdeph.
This corresponds to a Lorentzian distribution of the B1-fields un-
der the assumption that the g-factor distribution is small in com-
parison with the B1-inhomogeneity and can be neglected. The
half width at half maximum of the B1-distribution can then be
calculated as ∆B1 = ~/(gµeτdeph). Used microwave powers PMW,
Rabi oscillation periods T2π, the relative dephasing times τdeph/T2π,

70



4.2 Performance comparison of broadband antennas

structure a b c e
PMW [W] 25 320 1.6 0.1
T2π [ns] 91 112 113 102
τdeph/T2π 1.44 0.50 0.35 0.30
∆B1/B1 0.11 0.32 0.46 0.59
B1/
√
PMW

[
mT/

√
W

]
0.08 0.02 0.25 1.09

Table 4.1: Microwave powers, Rabi oscillation periods, relative de-
phasing times, B1-field inhomogeneities and conversion factors
obtained from the Rabi oscillations in figure 4.3 a) for structures
a, b, c and e.

relative B1-inhomogeneities ∆B1/B1 and the conversion factors
B1/
√
PMW are listed in table 4.1 for the four antennas.

Only structures c and e exhibit a large enough conversion factor
to generate π-pulses which are shorter than the T ∗2 of our spin en-
semble when using the 10 W broadband amplifier. For the use of the
other structures, more powerful amplifiers such as traveling wave
tube amplifiers are necessary. The relative increase of conversion
factors from structure b to structures c and e are predicted very
well by the simulation (c.f. section 3.2.2.2), although all measured
conversion factors are roughly 9 dB lower than the simulated factors.
A factor of 3 dB can be attributed to the microwave lines leading to
the sample. The remaining difference of 6 dB might stem from the as-
sumption of perfect electric conductors for the simulated microwave
structure, from the fact that no substrate conductivity was included
in the simulation and from reflections at the bond connection be-
tween sample holder and sample. In contrast to this, structure
a deviates from this scheme with a measured conversion factor
that is equal to the simulated conversion factor if the microwave
lines are considered. The minimum relative B1-inhomogeneity of
±11 % calculated from the fit is big compared to the relative B0-
inhomogeneity of about ±0.1 % resulting from the linewidth [58]
so that the assumption taken in equation 4.1 is warranted. A B1-
inhomogeneity of ±5 % as calculated for structures a and b should
at least result in a τdeph/T2π of 3.2. Both structures a and b do
not quite reach this value with measured values of τdeph/T2π = 1.44
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4 Broadband pulse shaping capabilities of the setup

(structure a) and 0.5 (structure b). The same difference is found for
structure c, where the measured τdeph/T2π = 0.35 is smaller than
the predicted ratio of 1.6. For structure e, where the measured and
calculated ratios for τdeph/T2π are 0.30 and 0.32, respectively, perfect
agreement is found. This behavior might be caused by the omission
of the measurement structures in the simulation of structures a, b
and c in contrast to that of structure e, where the microwave delivery
itself is used as measurement structure. Since structure e allows
to reduce the pulse power to such an extent that the broadband
amplifier can even be used in its linear region (c.f. section 3.3.1),
all further measurements in chapters 4 and 5 are performed with
structure e.

4.3 Pulse shaping capabilities

Using the fit to the Rabi oscillations of structure e we can estimate
the negative impact of the dephasing on the modulation depth. At
the end of a π-pulse, the modulation depth exp

(
−Tp/τdeph

)
is already

reduced to 16 % while the modulation depth for a 2π-pulse is a
mere 2.4 % of the initial EDMR signal intensity. To circumvent the
observed effects of the inhomogeneity we use the BIR-4 pulse de-
scribed in section 2.5.1.2. We use a pulse time Tp of 400 ns for each
adiabatic half passage at an amplitude B1,max of 1.4 mT (the maxi-
mum amplitude which can be generated avoiding non-linearities)
and a frequency sweep amplitude ∆ωmax of 2π · 25 MHz. Due to an
increased T2 of the donor electron spin in the dark in our samples,
the EDMR experiment is conducted using pulsed light. To increase
the signal-to-noise ratio, the lock-in technique, where sequences
with resonant pulses (frequency νon) and with off-resonant pulses
(frequency νoff) follow each other and are subtracted from one an-
other, is used (c.f. section 2.3). With κ = 0.6 and ζ = 1.45, which
were found by maximizing the adiabaticity η (c.f. section 2.5.1) for
each half passage, we find a maximum adiabaticity of η = 136.
This adiabaticity is extremely high compared to e.g. the adiabaticity
which already yields good results in our ENDOR experiments (c.f.
section 4.4) and suggests that the pulse here uses either a higher
than necessary B1 or a pulse length which is longer than needed.
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LED

ΔQ

50 μs 100 μs

 νON or νOFF

Figure 4.3: Effect of a BIR-4 pulse on the EDMR signal ∆Q as a
function of the rotation angle �. The pulse sequence used for
the study of the BIR-4 universal rotation is plotted on top. The
microwave is applied in the dark, the EDMR is measured during
the transient induced by the optical refill pulse. The red line
depicts the expected dependence of the EDMR signal intensity ∆Q
for a BIR-4 pulse with varying �.

Since B1 is dictated by the linewidth of the resonance (c.f. section
2.5.1.2), shorter pulses, e.g. with Tp = 200 ns, can be built (c.f. sec-
tion 5.3). The full pulse sequence is shown in figure 4.3 where the
microwave amplitude evolution during the pulse is again depicted by
the amplitude and the frequency evolution through the brightness
gradient.

Figure 4.3 plots the measured ∆Q as a function of the rotation
angle � of the BIR-4 pulse. The measured data is fitted with ∆Q =

ABIR4 · cos � which is the expected angular dependence of the 31P-Pb0
pair recombination on the rotation or rather nutation angle of one
of the spin pair constituents. The EDMR amplitude when using the
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4 Broadband pulse shaping capabilities of the setup

BIR-4 sequence in figure 4.3 is the same as the one determined via
a fit to equation 4.1 for the square-pulse-driven Rabi oscillations
of the same structure e in figure 4.2. Therefore, within the errors
of the fits, the BIR-4 pulse is able to achieve arbitrary rotations
from −2π to 2π for the whole spin ensemble, effectively removing
the drawbacks of B1-inhomogeneity from the broadband samples.

4.4 ENDOR capabilities of the system

To further demonstrate the broadband capability of the delivery
system we turn to electron nuclear double resonance experiments
(ENDOR), using the same antenna and adiabatic pulses for the
excitation of the ESR as well as the NMR transitions. We apply a
modified Davies ENDOR sequence for EDMR [107] based on the
difference between the lifetimes of the parallel (τp = 1 ms) and the
antiparallel (τap = 16 µs) [5]) state of the phosphorus-dangling bond
spin pair to generate a polarization of the ionized nuclear donors.
The pulse sequence, which was adapted to use adiabatic full passage
pulses for both the ionization and the readout, is shown in figure 4.4
a). RF pulses are depicted by amplitude- and frequency-modulated
sines. For the following discussion we will focus on the high-field
hyperfine-split phosphorus electron spin resonance with a nuclear
spin quantum number of mI = −1

2 labeled νPH in figure 4.4 b). (The
experiment would work the same way if performed on the mI = +1

2
resonance νPL.)

At the start of the experiment, the light is switched off and during
the following 50 µs the charge carriers in the bands recombine and
the current through the sample settles to zero. All antiparallel
donor/dangling bond spin pairs recombine as well. An adiabatic full
passage pulse on the mI = −1

2 resonance transforms the remaining
donor/dangling bond spin pairs with parallel spin orientation and a
mI = −1

2 of the phosphorus nucleus into the short-lived antiparallel
state. For the next 100 µs these spin pairs also recombine leading
to an ensemble of ionized nuclear spins initialized to the mI = −1

2
state (c.f. figure 4.4 c)). Now, NMR on the ionized ensemble can
be performed (c.f. figure 4.4 d)) and will lead to a net polarization
of all donor nuclear spins depending on the rotation angle of the
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4 Broadband pulse shaping capabilities of the setup

NMR pulse. Thereafter, the light is switched on for 400 µs to allow
the recapture of charge carriers at ionized donors [5]. With the
full passage ESR readout pulse, the population of the mI = −1

2
state is measured (c.f. figure 4.4 e)). After the readout pulse, the
experiment is paused for the time Tdepol to allow for the light-induced
depolarization of the generated nuclear spin polarization, which
takes about 100 ms [108].

EDMR relies on the symmetry of a spin pair for its high sensitivity.
However, this leads to strong nuclear hyperpolarization [108], which
makes the analysis of the effects of adiabatic pulses in ENDOR
somewhat difficult. If the ionization pulse is switched between the
mI = −1

2 and the mI = +1
2 resonances at every other sequence while

the readout pulse is kept on the mI = −1
2 resonance, the generated

polarization should switch between themI = −1
2 andmI = +1

2 nuclear
spin states, resulting in an alternation of ∆Q which can be used for
lock-in detection. While this lock-in signal will still exhibit some
polarization effects, the polarization now mostly depends on the
fidelity of the RF pulse and therefore allows for at least qualitative
comparisons between different pulses without the need of a light-
induced reset of the nuclear polarization.

All measurements in this section were performed at a B0-field
of 234.75 mT, which allows us to address both the high-field and
the low-field 31P resonance (c.f. figure 4.1). This B0 results in
the microwave frequencies νPH = 6.5 GHz and νPL = 6.617 GHz.
We use a power of 50 mW for all RF pulses. Figure 4.5 depicts
nuclear Rabi oscillations driven by square RF pulses with a frequency
of 4.0246 MHz after the MW ionization pulse. The measurement
was performed using the lock-in technique discussed in the last
paragraph with a Tdepol of 2 ms. The ENDOR signal intensity ∆Q is
plotted versus the length Tp of the RF pulse. Since the polarization
effects distort the Rabi oscillation, equation 4.1 cannot be used to
fit the data in a satisfying way. The red line in figure 4.5 therefore
is a fit of equation 4.1 to the data using τdeph/T2π from the electron
Rabi measurements of structure e. Assuming that the maximum
in figure 4.5 at 100 µs corresponds to a π-pulse, we find a B1-field
of 0.29 mT and obtain a conversion factor of 1.3 mT

√
W−1 close to

the conversion factor for the microwave frequencies of 1.1 mT
√

W−1.
The dephasing of the nuclear Rabi oscillation is qualitatively similar
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4.4 ENDOR capabilities of the system

TP

Figure 4.5: Square-RF-pulse-driven nuclear Rabi oscillation for an
RF power of 50 mW. The red line is a fit to the data using the
dephasing times obtained from the electron Rabi oscillations
shown in figure 4.2 a).

to the electron case, which is to be expected, because the same
antenna and donor/dangling bond ensembles were used.

In figure 4.6 a) the ENDOR signal intensity ∆Q, measured using
the lock-in technique with a Tdepol of 2 ms, is plotted versus the
center frequency νRF of an adiabatic full passage NMR pulse which
is concatenated from two adiabatic half passages described in equa-
tions 2.25 and 2.26. For the adiabatic full passage the parameters
κ = 0.62 and ζ = 8.6, found by optimizing the adiabaticity for a fre-
quency sweep amplitude ∆ωmax = 2π · 8.6 kHz and a pulse length of
100 µs per adiabatic half passage, were used. With B1,max = 0.29 mT
this results in an adiabaticity of η = 2.2.

To test the dependence of the full passage amplitude on the
adiabaticity, ENDOR spectra using full passage pulses where the
adiabaticities were varied by changing κ and ζ have been recorded.
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4 Broadband pulse shaping capabilities of the setup

a) b)νRF η

νRF (MHz)

Figure 4.6: a) ENDOR spectrum using an adiabatic full passage NMR
pulse as indicated on the top. b) ENDOR signal amplitude ∆Q for
adiabatic full passage pulses with different adiabaticities η. The
dashed red line indicates the ENDOR ∆Q for a 100 µs-long square
RF pulse.

The maximum ENDOR amplitude ∆Q plotted versus the adiabaticity
is shown in figure 4.6 b). The red horizontal line depicts the per-
formance of a square π-pulse from figure 4.6 a). As can be seen
from figure 4.6 b), for adiabaticities higher than 2, ∆Q saturates.
Compared to a rectangular π-pulse, the signal intensity is increased
by a factor of 1.5.

As was the case for the electrons, we also concatenated four
adiabatic half passages to form BIR-4 RF pulses to realize universal
rotation pulses for the nuclear spin. The length of each half passage
was 400 µs and we used the parameters κ = 1.09 and ζ = 8.61 which
were optimized for a pulse time of 400 µs and a sweep width of ∆ω =

2π · 8.4 kHz at a B1,max = 0.29 mT resulting in an adiabaticity factor
of η = 13. Compared to the BIR-4 pulse on the ESR resonances, the
required power is much smaller due to the small NMR linewidth of
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β

Figure 4.7: ENDOR signal ∆Q as a function of the rotation angle �
of a BIR-4 pulse for depolarization times Tdepol of 2 ms (green
rectangles) and 100 ms (black dots). The expected dependence of
the EDMR signal on the rotation angle � is shown in red.

290 Hz [107]. Similar to the nuclear Rabi measurements, the lock-
in-detected BIR-4 pulse shows polarization when short relaxation
times Tdepol = 2 ms are used (c.f. green squares in figure 4.7, which
shows the ENDOR signal ∆Q as a function of the rotation angle � of
the BIR-4 pulse). By increasing the time Tdepol to 100 ms, every new
experiment starts with a much reduced hyperpolarization of the 31P
nuclei, and the expected response to the BIR-4 pulse is recovered
(black dots).

4.5 Summary and outlook

We have demonstrated here the capabilities of pulsed broadband
EDMR using shaped pulses for a frequency range from 4 MHz to
18 GHz. The high conversion factor of ≈1.1 mT

√
W−1 allows to
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4 Broadband pulse shaping capabilities of the setup

generate 50-ns-long π-pulses for ESR with a microwave power of
≈100 mW, which is well below the amplifier 1 dB compression point
of the broadband amplifier. We furthermore demonstrated the de-
livery of shaped pulses to the broadband antennas as well as the
realization of full adiabatic inversion pulses and BIR-4 universal
rotation pulses for both ESR and NMR, ultimately achieving electri-
cally detected ENDOR with adiabatic pulses only. We will now use
these capabilities to compare the performance of adiabatic and opti-
mal control pulses (chapter 5) and to implement micro-coil-based
magnetic resonance imaging where the design of the microwave
excitation with stripline antennas results in a B1-inhomogeneity of
up to ±50 % (chapter 6).

80



5
Optimal control pulses for

magnetic resonance

Optimal control pulses designed by e.g. gradient ascent pulse en-
gineering have shown to be a versatile tool in nuclear magnetic
resonance (NMR) to design pulses with increased excitation band-
width [25], compensate for spectrometer imperfections like radio
frequency amplitude inhomogeneities [33] or heteronuclear decou-
pling [30], to name but a few. The higher gyromagnetic ratios and
shorter coherence times usually found in electron spin resonance
require the pulses in ESR to be shorter (tens of nanoseconds rather
than microseconds) and at higher frequencies (gigahertz instead of
megahertz) compared to NMR pulses. Therefore, shaped adiabatic
or optimal control pulses have not been used in ESR until recently,
when arbitrary waveform generators with a high enough bandwidth
became available. Since then, for ESR, adiabatic [91, 102, 109–113]
and optimal control pulses [35] have mainly been used for their
increased excitation bandwidth compared to rectangular pulses. In
the field of optically detected magnetic resonance (ODMR), optimal
control pulses were used to increase the fidelity of spin entanglement
[39], for sensitive magnetic field measurements [36, 40] and for qubit
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5 Optimal control pulses for magnetic resonance

control beyond the rotating wave approximation [38]. In this chapter
we explore the use of optimal control pulses for pulsed electrically
detected magnetic resonance to compensate for effects introduced by
the frequency space1 resonance linewidth (∆ν0) and by microwave
field (∆ν1) inhomogeneities. Using the characterization of the spec-
trometer obtained in section 3.3.3 and the specific properties of our
spin pair (section 5.1) we can simulate the effect of arbitrary pulses
on our system (section 5.2). We compare these simulations with
measurements for universal rotation pulses (optimal control, BIR-4
and rectangular, section 5.3) and echo decays built from universal
rotation optimal control pulses, cooperatively optimized [37] optimal
control, adiabatic and rectangular pulses (section 5.4).

5.1 Sample characterization

To avoid the problems caused by a resonator [35, 88] and for the free
choice of the operating frequency, we again use a stripline antenna
similar to structure e, but with a separate finger structure beneath
the gap between short and block, for the microwave excitation [14,
18, 96] (c.f. section 3.2.2). Figure 5.1 b) shows a frequency-swept
pEDMR spectrum shifted by the resonance frequency of the low-
frequency 31P resonance (νlow = 14.25 GHz) and a simultaneous fit
of five Lorentzians (green curve). The spectrum was measured using
Gaussian π-pulses with a sigma of 144 ns for an external magnetic
field of B0 = 511.6 mT. At this magnetic field, the hyperfine-split
low-frequency 31P resonance (red curve) is separated from its dan-
gling bond readout partners (blue curves) and the high-frequency
31P resonance (red curve) by about 100 MHz. The resonance (ma-
genta) centered between both 31P resonances might either stem from
conduction band electrons [114] or exchange-coupled phosphorus
electron spins [115].

For optimal control pulse optimization we need to determine both
the linewidth of the 31P resonance as well as the ν1-inhomogeneity
caused by our antenna structure. From the fit we find the instrumen-
tally broadened FWHM linewidth of the low frequency 31P resonance

1We employ a frequency-space linewidth instead of the magnetic field linewidths used in the last
chapter because this simplifies the comparison of experimental results and pulse simulations.
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TP

νMWLED
50 μs 100 μs

ΔQ
b)

a)

ν0 - vlow (MHz)

Figure 5.1: a) Pulse sequence used for the measurements. b)
Frequency-swept spectrum of Si:P for a magnetic field of 511.6 mT
shifted by the resonance frequency of the low-frequency 31P res-
onance νlow. A combined fit of five Lorentzian lines is plotted in
green. Its parts are color-coded as follows: red corresponds to
the hyperfine-split 31P resonance, blue is used for the different
Pb0 orientations and magenta represents the conduction band
electron or exchange-coupled phosphorus resonance. The opti-
mization region and the cut-off region for optimal control pulses
are depicted by vertical lines in green and red, respectively.

to be 8.3 MHz. Knowing this, we set the ∆ν0 optimization window
to ±10 MHz (vertical green lines in figure 5.1 b)), which allows us
to coherently manipulate at least 75 % of the resonance. It is pos-
sible to increase this window at the cost of either pulse fidelity or
pulse playtime. Unfortunately, for pEDMR it is insufficient to only
optimize the pulse over this bandwidth. In addition, the pulse has
to leave the readout partner untouched. To achieve this, we cut off

83



5 Optimal control pulses for magnetic resonance

TP

νMWLED
50 μs 100 μs

c)
ΔQ

b)

a)

Figure 5.2: a) Pulse sequence used for the measurements. b) Excerpt
of Rabi oscillations measured on the low-frequency 31P resonance
with a fit of an exponentially decaying cosine (red line). c) Real
part of the Fourier transform of the fully-decayed Rabi oscillations
measured on the low-frequency 31P resonance. The optimization
region for optimal control pulses is depicted by the green vertical
lines.

all pulse components with a frequency higher than ±40 MHz (red
vertical lines in figure 5.1 b) during the optimization. This results in
smooth pulses similar to the ones optimized in reference 40.

In order to determine our optimization window for the ν1-inhomo-
geneities, we measured Rabi oscillations using rectangular pulses.
Figure 5.2 b) shows an excerpt of the Rabi oscillations in ∆Q as
a function of the rectangular pulse length TP. The red line is a
fit of equation 4.1 with a Rabi frequency of νRabi = 32 MHz and
a dephasing constant of τdeph = 72 ns. Following the argument
in reference 96, the full width at half maximum (FWHM) of the
resonance can be estimated from τdeph to be ∆ν1 = 4.4 MHz. For a
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5.2 Simulation and measurement of ∆ν0-ν1-maps

more thorough analysis, we transform these oscillations, which were
measured up to pulse lengths where they vanish in the background
noise, perform a complex rotation by 60◦ to account for the missing
zero value and take the real part (c.f. figure 5.2 c)). With a fit of a
Lorentzian (red line in figure 5.2 c)) we find ∆ν1 = 4.9 MHz. Here
we chose a rather large window of ±10 MHz (vertical green lines in
figure 5.2 c) to be able to use the pulses for other structures with a
higher ν1-inhomogeneity, too (c.f. section 4.2). For this particular
sample, a reduction of the ν1-window could be used to calculate
shorter pulses or generate pulses with a higher fidelity.

5.2 Simulation and measurement of ∆ν0-ν1-maps

Having characterized our system, we now perform a comparison be-
tween simulations and measurements for the example of an optimal
control universal rotation π/2-pulse with a length of 300 ns. It was
optimized using the constraints shown in figure 5.1 c) and figure 5.2
c) using the GRAPE algorithm (c.f. section 2.5.2). Since pEDMR is
sensitive to polarizations as opposed to coherences we concatenate
two π/2-pulses to obtain an effective π-rotation or no net rotation
which we use in alternating sequences (cycles) to generate a lock-in
effect [59]. The corresponding sequence is shown in figure 5.3 a),
where the height of the depicted shapes encodes the amplitude and
the brightness encodes the phase throughout the pulse. Its borders
are depicted by vertical red lines.

We use this sequence to map the response of the pulse to offsets
in both ν0 and ν1 using a simulation of the spin movement during
the pulse and pEDMR measurements. Figure 5.3 b) shows the
simulated z-projection after the pulse as a function of the ν0-offset
∆ν0 and ν1. Here, a value of -0.5 corresponds to no rotation of the
spin during both cycles and a value of 0.5 reflects the situation in
which the cycle with the effective π-pulse results in a rotation by π
and the cycle with the 0-pulse leaves the spins in their initial state.
The green horizontal and vertical lines depict the optimization goals
of the pulse, which are fully met by the optimized pulse.

For a more realistic simulation, we include the system impulse
response determined in section 3.3.3 in figure 5.3 c). Figure 5.3
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LED
50 μs 100 μs

±π/2π/2

d)

c)

e)

b) ΔQ

a)

Figure 5.3: a) Pulse sequence used for all measurements and simu-
lations in this figure. The amplitude and phase of the optimal
control pulse are depicted by its height and brightness, respec-
tively. Pulse borders are marked with green vertical lines. b)
Simulated subtracted map of the spin z-projection for two cycles
using an effective π- and 0-pulse. c) z-projection from panel b)
simulated including the impulse response shown in figure 3.7. d)
z-projection from panel c) convoluted with the ν1-widths found in
figure 5.2 and a ν0-width determined by Fourier transforming the
FID. e) Map of z-projection measured on the low-frequency 31P
resonance.

b) and c) are virtually identical. This is expected, because the
system impulse response has a bandwidth of around 2 GHz, which
is much larger than the 80 MHz bandwidth of our pulse. Therefore,
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LED
50 μs 100 μs

±π/2x or yπ/2

c)b) ΔQ

a)
τ

Figure 5.4: a) Pulse sequence used for the FID detection. b) Real and
imaginary part of the FID. c) Real part of the Fourier-transformed
FID. The fit of a Lorentzian function is shown in red.

in contrast to reference 35, we can ignore the system impulse
response for all further pulse optimizations.

To be able to compare measurement and simulation, we have
to include the ν0- and ν1-distributions of our system. Since the
ν0-distribution extracted from the spectrum is instrumentally broad-
ened, we measured a FID (c.f. section 2.3.2) by using pulses with an
optimization window of 20 MHz and Fourier transformed the result.
Figure 5.4 b) plots the real and imaginary part of the FID measured
with x and y projection pulses, respectively, as a function of the
inter-pulse distance τ. The non-vanishing imaginary part is probably
due to a slight detuning between the actual resonance frequency and
the microwave pulse frequency and the resulting Fourier transform
(figure 5.4 c)) shows a slight deviation from zero for this reason. The
fit of a Lorentzian2 to this peak yields a ν0-distribution FWHM of

2As can be seen from figure 5.4, the shape of the resonance is not completely described by a
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∆ν0 = 6.8 MHz (indeed smaller than the ∆ν0 = 8.3 MHz determined
from figure 5.1), which should allow the optimal control pulse to
work on 79 % of the ν0-distribution. It is also possible to obtain this
information by Fourier transforming a spin echo, which results in
the same distribution (data not shown).

By using a two-dimensional convolution of the simulation shown
in figure 5.3 c) with the normalized ν0- and ν1-distributions we arrive
at the map shown in figure 5.3 d). The z-projection does not reach
−0.5 but has a minimum of −0.44, which corresponds to 88 % of
the total value. This percentage is higher than the expected 79 %,
because the pulse fidelity does not drop to zero instantaneously
outside of the optimization window.

For comparison we measured the pEDMR signal ∆Q as a function
of the AWG channel voltage, which is proportional to the square root
of the channel output power and accordingly proportional to ν1, and
as a function of the external magnetic field. To obtain the ν1-axis, we
take the Rabi measurements shown in figure 5.2 b) and transform the
channel voltages to nutation frequencies. The values of the ν0-axis
were calculated with the help of the phosphorus g-factor gp. Since
pEDMR does not yield absolute values, we scaled the measurement
to the simulation in figure 5.3 d) by using a far off-resonance field
as the zero value and adjusting the maximal pEDMR value so that
it is equal to the simulated maximum. Figure 5.3 e) shows the
resulting map measured on the low frequency 31P resonance, which,
apart from noise, shows a high agreement between simulation and
measurement. This comparison was made for all pulses used in this
work and shows a similarly high consistency between measurement
and simulation in each case.

5.3 Adiabatic and optimal control universal

rotation pulses

We use this understanding of our system to study the performance of
optimal control universal rotation π/2- and π-pulses in comparison

Lorentzian. This is due to the interaction of the 31P electron spin with surrounding 29Si nuclear
spins [116].
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5.3 Adiabatic and optimal control universal rotation pulses

to their adiabatic and rectangular counterparts. Again, for the
optimal control pulses we apply the optimization goals determined
from figure 5.1 b) and figure 5.2 c) and employ pulses with a length
of Tp = 300 ns. For the adiabatic pulse we choose the BIR-4 [22]
universal rotation pulse because it allows us to easily switch its
rotation angle from π/2 to π without the need to re-optimize the
pulse (c.f. section 2.5.1.2). A pulse length of Tp = 200 ns results in
a total play time of the BIR-4 sequence of 800 ns. The parameters
ν1,max = 30 MHz, ∆ωmax = 2π · 72.9 MHz, ζ = 10 and κ = 0.7 were
found by optimizing each value using pEDMR measurements and
pulse simulations. The resulting minimum adiabaticity [78] is
η = 21. These rather high values are needed to ensure the off-
resonance fidelity of the adiabatic pulse which is limited by the
maximal possible nutation frequency ν1 in comparison with the
resonance linewidth ∆ν0 (c.f. section 2.5.1.2). For the rectangular
pulses the pulse times of 8 ns and 16 ns result in a π/2- and a
π-pulse, respectively.

We first study the performance of universal rotation π/2-pulses.
To gain an understanding of the performance of each of those
pulses with respect to our ν0- and ν1-distributions, we plot the
simulated 95 % fidelity line for two concatenated universal rotation
π/2-pulses, using phase-cycling on the second π/2-pulse. These
fidelities include the impulse response but not the convolution with
the ν0- and ν1-distributions. Instead, we indicated the goals used in
the optimal control pulse optimization with vertical and horizontal
green lines. Here, the rectangular pulse (black line) does not reach
these goals. It has both a worse ν0-bandwidth and a worse response
to ν1-inhomogeneities compared to the BIR-4 pulse (red line) and the
optimal control pulse (blue line). The BIR-4 pulse is equal or better
than the optimal control pulse with respect to ν1-inhomogeneities,
but it does not reach the ν0-bandwidth of the optimal control pulse,
which is even greater than the ν0-bandwidth of the optimization
window. Therefore, we expect the optimal control pulse to perform
better than the rectangular and BIR-4 pulse in the measurements
because it shows a robustness to ν1-inhomogeneities that is high
enough for the studied ensemble and can even address off-resonant
spins which lie outside the ν0-optimization window, which only
contains 79 % of the spin ensemble.
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LED
50 μs 100 μs

ΔQ

±π/2
N·π/2a)

b) c)

Figure 5.5: a) Pulse sequence used in panel c). b) Simulated 95 %
fidelity circumference for two concatenated rectangular, adiabatic
or optimal control universal rotation π/2-pulses using phase-
cycling on the second π/2-pulse. The optimization goals are
indicated by the horizontal and vertical green lines. c) EDMR
signal amplitude after N concatenated rectangular, adiabatic or
optimal control universal rotation π/2-pulses followed by a rect-
angular π/2 projection pulse. Darker colors depict the simulated
effect of the respective concatenated pulse.

We now compare the performance of each pulse at its optimal
point of the ∆ν0-ν1-map for N concatenated pulses with N ≤ 30 in
figure 5.5 c). The pulse sequence we employ for this is sketched in
figure 5.5 a). A phase-cycled rectangular π/2-pulse, right after the
concatenated pulses, is used for readout to filter out an ensemble
with a low nutation frequency that is also present in our sample
and would otherwise interfere with the measurements. According
to the simulations, this results in a slightly reduced amplitude
of 95 % and 90 % in the case of the BIR-4 and optimal control
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5.3 Adiabatic and optimal control universal rotation pulses

measurements, respectively. To combine the measured (dots) and
simulated (lines) data, we multiply the simulated difference for
N = 1 and N = 3 for the case of the optimal control pulses with a
constant so that it equals the measured difference and adjust all
other simulations with the same constant. Since the simulation
does not include T1- and T2-effects, the simulated data is multiplied
with a stretched exponential A · exp

(− (t/τ)n
)
, whose parameters

(τ = 9 µs and n = 0.7) were found by fitting this exponential to the
echo decay measurements shown in figure 5.7 c). This leads to a
very high agreement between the simulations and the measurement
for each case.

If we compare the amplitudes for all three pulse types, the rect-
angular pulse (black and gray) performs best, because it has the
shortest duration while the adiabatic (blue and turquoise), and to a
lesser extent the optimal control pulse (red and orange), suffer from
decoherence because of their respective lengths. For higher rotation
angles, the situation reverses, as the measurement using rectangular
pulses deteriorates due to the ensemble ν0- and ν1-inhomogeneities,
which leads to a faster decay than that caused by the decoherence.
As an example, due to its shorter length and greater bandwidth,
the measured amplitude is 29 % higher in the optimal control case
than the BIR-4 amplitude for the rotation from 14π to 15π. We
tried to shorten the BIR-4 pulse to counteract this behavior, but
did not find a shorter BIR-4 realization that outperformed the BIR-4
measurements shown here.

In the case of universal rotation π-pulses, the 95 % ∆ν0-ν1-fidelity-
maps (figure 5.6 b) for a single amplitude-cycled rectangular, adia-
batic or optimal control pulse show a similar behavior as the maps
for the two phase-cycled concatenated π/2-pulses. The main dif-
ference can be found for the rectangular pulse which has a wider
ν0-bandwidth than two concatenated π/2-pulses. This is not ex-
pected since both the single π-pulse and the two concatenated
π/2-pulses have the same length of 16 ns. This difference is caused
by the sequence where the second π/2-pulse has a phase of 180◦,
which results in no net rotation. The ν0-bandwidth over which this
sequence achieves its desired rotation angle is smaller than the
ν0-bandwidth of the sequence with a resulting π-rotation and thus
results in a reduced ν0-bandwidth of the phase-cycled sequence.
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LED
50 μs 100 μs

ΔQ

π or 0
N·πa)

b) c)

Figure 5.6: a) Pulse sequence used in panel c). b) Simulated 95 %
fidelity circumference for one rectangular, adiabatic or optimal
control universal rotation π-pulse using amplitude cycling. The
pulse optimization goals are indicated by the horizontal and verti-
cal green lines. c) EDMR signal amplitude after N concatenated
rectangular, adiabatic or optimal control universal rotation π-
pulses followed by a rectangular π-pulse. Darker colors depict
the simulated effect of the respective concatenated pulse.

The performance of the pulses in the ∆ν0-ν1-fidelity-maps is re-
flected in the measurements for concatenated π-pulses (figure 5.6 c),
for which we use the adjusted pulse sequence as shown in figure 5.6
a). Again, we use a rectangular pulse for readout to suppress the
ensemble with a low nutation frequency. As was the case for the
π/2-pulses, we have a very good agreement between the simulations
and the measurements. In contrast to the π/2 results, the gains
of the adiabatic and optimal control pulses compared to the rect-
angular pulse are much higher for a given rotation angle, since we
only need one pulse for a π-rotation so that even for the difference
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5.4 Adiabatic and optimal control Hahn echo sequence

between a π- and 2π-rotation, the optimal control pulse outperforms
the rectangular pulse. The difference between the BIR-4 and optimal
control pulse for the rotation from 14π to 15π is 18 %.

5.4 Adiabatic and optimal control Hahn echo

sequence

Using these optimal control π- and π/2-pulses, we build an Hahn
echo sequence (c.f. section 2.3.3) to compare the characteristics of
optimal control to adiabatic and rectangular pulses in a sequence.
The corresponding sequence is shown in figure 5.7 a). Since signifi-
cant ν1-inhomogeneities are present in the sample, ν1-insensitive
pulses are necessary. Therefore, we use an adiabatic half pas-
sage for the excitation, a BIREF-1 [20] pulse for refocusing and a
time-reversed adiabatic half passage for the projection of the echo
onto the z-axis for the adiabatic sequence. The BIREF-1 pulse
is used to shorten the total sequence length, because we do not
need the adjustable rotation angle of the BIR-4 pulse. All adiabatic
half passages have a length of 400 ns resulting in a total length of
1.6 µs and a minimal η = 76 for the parameters ν1,max = 30 MHz,
∆ωmax = 2π · 34 MHz, κ = 0.2 and ζ = 3. As was the case for the
adiabatic universal rotation pulses, we tried to shorten their length
but could not improve the results of the adiabatic echo. For the
rectangular echo, we again use π/2- and π-pulses with a length of
8 ns and 16 ns, respectively. The echo using optimal control pulses
is built from the universal rotation π/2- and a π-pulses introduced
in the last sections. Since the universal rotation pulses suffered
from decoherence in the previous experiments, a shorter optimal
control echo built by replacing the two universal rotation excitation
and projection pulses with point-to-point pulses, could lead to larger
amplitudes. We take this approach one step further and use a
cooperatively optimized [37] optimal control echo sequence which
halves the lengths of the individual pulses (TP = 150 ns) compared
to the universal rotation optimal control pulses.

The simulated results of all four pulse sequences are plotted
in the 95 % ∆ν0-ν1-map shown in figure 5.7 b) which exhibits a
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b) c)

LED
100 μs

ΔQ

±π/2π π/2

sequence time

τ1 τ2

a)

rectangular 

cooperative 

optimum control 

50 μs

Figure 5.7: a) Pulse sequence used in panels b) and c). b) Simulated
95 % fidelity circumference for a phase-cycled echo sequence built
from rectangular, adiabatic, universal rotation optimal control or
cooperatively optimized optimal control pulses. The goals used
for the optimal control optimization are plotted in green. c) Echo
decay measurements for the echo sequences simulated in b). A fit
of a stretched exponential for each decay is shown as a line.

similar behavior to the maps in figure 5.5 b) and figure 5.6 b).
Remarkably, even though the cooperatively optimized sequence is
much shorter than the echo sequence built from universal rotation
pulses, its robustness to ν1-inhomogeneities is considerably higher.
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5.4 Adiabatic and optimal control Hahn echo sequence

Therefore, shorter cooperatively optimized sequences should be
possible, but even a sequence with 75-ns-long pulses might only
improve upon the total amplitude by 5 % for the T2 times present in
our system.

To be able to compare the different echo sequences despite their
different pulse lengths, we measured an echo decay for each se-
quence. Figure 5.7 c) plots the pEDMR signal ∆Q as a function of
the total length of each sequence. The decays for all sequences are
fitted simultaneously with one stretched exponential where only the
amplitude is adjusted individually. The resulting parameters are
n = 0.7, T2 = 9 µs, Arectangular = 1.10, Aadiabatic = 1.35, Aoc ur = 1.35
and Acoop = 1.52 for the rectangular, adiabatic, optimal control and
cooperatively optimized optimal control sequence, respectively. If
we compare these amplitudes, we find that both the adiabatic and
universal rotation optimal control echo improve upon the rectangu-
lar sequence by about 23 % and the cooperatively optimized pulse
enhances the echo signal by 38 % for equal sequence lengths. For a
different sample with a higher ν1-inhomogeneity (pink dots) the im-
provement of the cooperatively optimized echo sequence compared to
the rectangular sequence is greater than 50 %. These improvements
are higher than the values found by the simulation (not shown),
which predicts gains of 25 %, 8 % and 4 % for the sample character-
ized in section 5.1 using the cooperatively optimized, optimal control
and adiabatic echoes, respectively.

The cause for this behavior can be found in the properties of each
sequence at the ν0-frequencies of the readout partners. Figure 5.8
a) and b) plot the ∆ν0-ν1-map for one cycle of the rectangular and
the cooperatively optimized sequence, respectively. The frequency,
at which either the dangling bond resonances or the high-frequency
phosphorus resonance will also be excited by the pulse, is marked
by the black vertical line. Here, the rectangular pulse produces
significant rotations at the dangling bond resonances while the
cooperatively optimized sequence, as well as the echoes built from
universal rotation pulses and adiabatic pulses, do not excite ro-
tations at those frequencies. Since the simulations do not take
the readout partner into account, we observe larger amplitudes for
the adiabatic and optimal control sequences than predicted by the
simulation.
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Figure 5.8: a) Simulated ∆ν0-ν1-map of the z-projection for a rectan-
gular echo and the cooperatively optimized optimal control echo
b). The onset of the dangling bond resonances is marked by
the vertical black line. c) Echo amplitude ∆Q for a cooperatively
optimized echo with a sequence length of 1.5 µs as a function of
the AWG channel power Pin. The vertical black lines mark the
1 dB, 2 dB and 3 dB amplifier compression points P1 dB, P2 dB and
P3 dB, respectively. The horizontal green and black lines show the
results for the rectangular and the cooperatively optimized echo
in the linear region for a sequence length of 1.5 µs.

To complete the picture, we now study the behavior of the cooper-
atively optimized optimal control echo in the presence of nonlineari-
ties by gradually increasing the nonlinearity up to a compression of
4.5 dB. At each measurement point, the power for the cooperatively
optimized echo was adjusted with a variable attenuator inserted after
the power amplifier so that the echo amplitude was maximal. The
resulting amplitudes ∆Q are plotted in figure 5.7 c) as a function of
the AWG channel power Pin. The vertical black lines mark the 1 dB,
2 dB and 3 dB amplifier compression points P1 dB, P2 dB and P3 dB,
respectively. The horizontal green and black lines show the results
for the rectangular and the cooperatively optimized echo in the linear
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region for a sequence length of 1.5 µs. Up to a compression of 2 dB,
the difference between the nonlinearly distorted optimal control
echo and the echo in the linear regime is minimal, which renders
predistortion schemes like those presented in references 103 and
105 unnecessary for all but the most demanding applications.

5.5 Summary and outlook

In summary, we have demonstrated the use of optimal control
pulses for pEDMR with stripline antennas. The pulses, tailored
to the specific needs of the system, show a distinct improvement
over rectangular pulses and even outperform adiabatic pulses. By
using cooperatively optimized pulses we were able to reduce the
total sequence length of a Hahn echo sequence so that it clearly
outperforms the shortest possible rectangular echo. This length
makes it usable for systems with very short T2 times e.g. for the
31P-Pb0 system without pulsed illumination [47] or in the readout
echo of the ENDOR sequence as demonstrated in reference 117.
Furthermore, the use of optimal control theory opens up e.g. pattern
pulses [28] which could be useful for systems with a small distance
between the resonances of the readout partners as e.g. in reference 9.
These pulses allow for sharp transitions in ν0 and can correct for
ν1-inhomogeneities whereas more traditional sinc pulses can create
equally sharp ν0-profiles but do not correct for ν1-inhomogeneities.
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6
EDMR imaging using magnetic field

gradients

Although EDMR is widely used to characterize point defects and
charge transport in inorganic and organic semiconductors [2, 4, 6–8],
the spatial origin of the EDMR signal is not well understood. With
the help of DEER distance measurements Suckert et al. [45] were
able to pinpoint the main contribution to the EDMR signal of 31P-Pb0
spin pairs to a region between 14 nm and 20 nm below the surface
of the semiconductor. However, these experiments did not provide
any lateral resolution. For measurements on samples, where the
current is recorded only through two contacts, as is the case for the
structures c, d and e in figure 3.5, the spatial origin of the signal
becomes important for the placement of the measurement structure
with respect to the microwave antenna. This can be seen by the
Rabi measurements on structure e (c.f. section 3.2.2.2) for voltages
of 4 V and −4 V which are plotted in figure 6.1 a) and b), respectively.
Despite being measured on the same sample without any changes to
the measurement setup or the sample itself, both the Rabi frequency
and the dephasing of the Rabi oscillations are considerably different.
A fit of equation 4.1 to the data (red lines) yields values of 28 ns
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6 EDMR imaging using magnetic field gradients

a) b)

Figure 6.1: Rabi oscillations measured on structure e with a bias
voltage of 4 V (panel a)) and −4 V (panel b)). The red curves are a
fit of equation 4.1.

and 71 ns for the oscillation periods and dephasing times of 63 ns
and 76 ns, respectively. Since these differences cannot stem from
changes in the setup or the sample, the spin resonance experiment
must address different ensembles which are subject to different
B1 fields depending on the bias voltage. In all likelihood, these
differences are caused by spatially separated ensembles which see
a different B1 due to different distances between the ensemble and
the microwave antenna.

At the moment there are three approaches for position-dependent
EDMR. The method developed by Katz et al. [60] uses pulsed mag-
netic field gradients similar to magnetic resonance imaging to gen-
erate a Fourier transform of the spin density in the sample. The
actual image is then recovered through the inverse Fourier trans-
form (c.f. section 2.4). Klein et al. [118] contact the sample locally
with conductive atomic force microscopy (cAFM) and record the
spin-dependent current from the cAFM tip to a back contact. This
method has the severe drawback that its current stability is limited
by the quality of the contact between the sample and the cAFM
tip [119], which makes it particularly unsuitable for the long term
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6.1 Modifications to the measurement setup for gradient field generation

measurements required for high resolutions. Lastly, tunneling-
based concepts for position-dependent EDMR are discussed [120,
121], but no measured spin-dependent signal is published up till
now. Therefore, at the moment, imaging using gradients appears
to be the most promising candidate for position-dependent EDMR
measurements with a high spatial resolution.

In this chapter we discuss modifications to the microwave setup
necessary for Fourier transform imaging (section 6.1) and the results
of Fourier transform imaging experiments on the interdigit contact
structure introduced in this section. We use these modifications
for a first basic implementation of echo-based imaging using rect-
angular pulses (section 6.2). This experiment is improved by the
use of a cooperatively optimized optimal control echo (section 6.3)
and corrections for the B0-nonlinearities caused by our implementa-
tion of the gradient field generation (section 6.4). Afterwards, the
measurement results are interpreted using the band structure of a
metal-semiconductor-metal (MSM) structure (section 6.5) and we
work out the resolution of the current experiment and its theoretical
limits under optimal conditions (section 6.6). Finally, we recommend
changes to the typical interdigit contact structures used for pEDMR
experiments based on the results obtained in this work (section 6.7).

6.1 Modifications to the measurement setup for

gradient field generation

In addition to the spatially and temporally constant external mag-
netic field ~B0 = B0~ez and the time-dependent but ideally spatially
constant microwave magnetic field ~B1 (t) = B1~ey, Fourier transform
imaging introduces a temporally and spatially varying magnetic
field ~Bgradient (~x, t) = Bgradient (~x, t)~ez to encode the position of the
spins in an ensemble. Ideally, this additional time- and position-
dependent ~Bgradient (x, t) can be described by a spatially constant
gradient ~G (t), so that the external magnetic field is transformed to
~B0 (x) =

(
B0 +

(
~G (t) · ~x

))
~ez.

Traditionally, magnetic gradient fields for imaging experiments
are generated by coils in a Maxwell or Golay configuration [60, 122].
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6 EDMR imaging using magnetic field gradients

These coils have the advantage that their gradient field is approx-
imately spatially constant, but they need pulse gradient drivers
which are able to provide pulses with a voltage of hundreds of volts
to induce a current which is high enough for imaging experiments
with the desired resolution [122]. These coils dissipate significant
amounts of heat so that the cooling power of the used cryostat limits
the achievable resolution. Another approach, applied until now only
to spatially resolved ODMR, uses microcoils [74], which are able
to generate much higher gradient fields for a given current at the
expense of gradient field uniformity.

6.1.1 Dissipation-limited resolution

To estimate the limits to the resolution caused by the dissipation of
heat inside the gradient coils we assume that the power dissipated
into the cryostat is solely given by the ohmic losses of the coils
Pmax = I2R · N , which is determined by the resistivity R of the coils,
the number of coils N and the current necessary to achieve the
desired gradient fields. The current I is determined by the efficiency
e of the coils, which is defined to be e = G/I with G being the
magnetic field gradient. Since the gradient pulse will only be active
for a time TP during a sequence of length tseq, the maximal power
during the gradient pulse can be much higher than the mean cooling
power of the cryostat Pmean = Pmax · TP/tseq. For a given rectangular
gradient and a desired resolution of ∆x, we can extract the required
gradient from equation 2.21

G =
h

2gµe∆xTP
. (6.1)

With those relations we can express the minimal resolvable feature-
size in one-dimensional imaging

∆x =
h

2gµe

√
RN

PmeantseqTP

1
e
. (6.2)

The coils used by Shtirberg et al. [122] have radii between 1.4 mm
and 1.8 mm, a resistivity of R = 0.55 Ω and efficiencies between
e = 2.7 T m−1 A−1 and e = 4.66 T m−1 A−1. For a 1-µs-long gradient
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6.1 Modifications to the measurement setup for gradient field generation

pulse, a sequence length of 1 ms and a three-dimensional (N = 3)
acquisition of phosphorus donor electron spins in silicon, we find
∆x = 270 nm for this setup if all the cooling power of the cryostat
can be used.

The g-factor g depends on the spin species and cannot be changed
while the number of coils N depends on the dimensionality of the
sample at hand and will be fixed for this reason, too. The resistivity
R is usually given by the geometry and material of the coils and Pmean
is determined by the cryostat. Changing the values tseq and TP has a
small effect because of their square root dependence so that only the
efficiency e remains as a viable variable to increase the resolution.
As is the case with the stripline antennas for the microwave B1-field
excitation, reducing the volume of the gradient field will increase
the efficiency. Through the use of gradient ‘‘microcoils’’, which are
basically two coplanar conductors placed at a distance of 100 µm,
Arai et al. [74] indeed achieve a resolution of 3 nm for pulsed gradient
imaging on nitrogen vacancy centers at room temperature.

6.1.2 Efficiency of gradient microcoils

To estimate the efficiency of a microcoil arrangement, we use the
magnetic field Bgradient generated by two infinitely long and infinitely
thin parallel current carrying wires (which we will call antennas) in
the plane of the antennas as a function of the position x between
the antennas for a current I and an antenna-to-antenna distance d
of

Bgradient (x) =
µ0I

2π

(1
x
− 1
d − x

)
. (6.3)

By differentiating equation 6.3 with respect to x, inserting x = d/2
and dividing by I we find the gradient efficiency e half way between
both antennas to be

e (d/2) =
4µ0

πd2 . (6.4)

For the antenna-to-antenna distance of 100 µm used in reference 74
this results in an efficiency of e = 160 T m−1 A−1 and therefore a
resolution gain by a factor of 60 compared to the coils used by
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6 EDMR imaging using magnetic field gradients

Figure 6.2: Magnetic field Bgradient as a function of the position x
between two microcoils (positioned at x = ±50 µm) for a current
of 1 A, an antenna-to-antenna distance of 100 µm and a field of
view of 50 µm (red line). A linear function between the extremal
values of Bgradient is plotted in green.

Shtirberg et al. [122]. This results in a reduction of the feature-size
to ∆x = 4.6 nm if all other parameters remain roughly the same as
before. Unfortunately, similar to the B1-inhomogeneity of stripline
microwave antennas, this improvement in ∆x is achieved at the
cost of a non-uniform gradient G (x) which results in a nonlinear
Bgradient (x). Figure 6.2 plots Bgradient as a function of x for an antenna-
to-antenna distance of 100 µm and a field of view of f = 50 µm (red
line). As can be seen by comparing Bgradient with the linear function
(green line)

l (x, f ) = m (f ) · x (6.5)

with m (f ) =
Bgradient (f/2) − Bgradient (−f/2)

f
(6.6)

which is found by connecting the Bgradient values for x = 25 µm and
x = 75 µm, this Bgradient deviates strongly from the optimal linear
behavior which is desired for phase-encoded MRI.
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6.1 Modifications to the measurement setup for gradient field generation

Figure 6.3: Simulated image of three 10-µm-wide patches centered
at x = −18 µm, 0 µm and 18 µm using the spatially non-uniform
gradient described by equation 6.3 (red lines) and the same pa-
rameters as figure 6.2. For comparison, the undistorted image is
plotted in green.

6.1.3 Effects of B0-nonlinearities on images acquired with MRI

To estimate the effects of a nonlinear Bgradient (x) in our samples
we simulate a gradient echo for a one-dimensional MRI acquisition
and describe the deviation from the linear behavior by a constant
gradient G and an error function ϸ (x), which contains all the non-
linear effects, so that

Bgradient (x) = G · (x + ϸ (x)) . (6.7)

For simplicity, we resort to rotations on the Bloch sphere instead
of solving the time-dependent Hamiltonian. The echo sequence is
implemented by a π/2- and π-rotation about the y-axis. ±π/2-pulses
around the x- and y-axis form the projection pulses necessary to
measure the complex gradient signal with phase cycling (c.f. section
2.4). A position-dependent rotation multiplied with the absolute
gradient strength around the z-axis is inserted between the excitation
and refocusing pulse for the gradient simulation. To form the MRI
signal for a given value in the k-space, these steps are executed for
all spins in the sample and the results are added up. To implement
phase cycling, we use alternating sequences with a +π/2- and a
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6 EDMR imaging using magnetic field gradients

−π/2-projection-pulse and the difference between those experiments
becomes the corresponding k-space value. This process is repeated
for all k-space values to construct a k-space image. In order to
reduce leakage, the k-space image is multiplied with a Blackman-
Harris window and the result is Fourier-transformed using the fast
Fourier transform (FFT) algorithm to obtain the image in position
space.

In red, figure 6.3 plots the simulated effect of the non-linear
Bgradient (x) described by equation 6.3 on the image of three 10-
µm-wide patches centered at x = −18 µm, 0 µm and 18 µm. For
comparison, the undistorted image is plotted in green. The spatially
varying gradient results in an image which is warped in x-direction by
a few µm and whose amplitudes deviate strongly from the amplitudes
obtained in the ideal case. These deviations are high compared to the
theoretical resolution of a few nm and will render gradient microcoils
unfeasible if they remain uncorrected. By reducing the field of view
to smaller values such as 15 µm, which would reduce the error to
less than 1 % [74], this situation can be improved. However, this
approach is not viable if the size of the field of view is fixed, e.g. due to
the current measurement structure, because an increased antenna-
to-antenna distance, which would have the same beneficial effect
as reducing the field of view, comes at the cost of a quadratically
reduced gradient.

6.1.4 Correction of B0-nonlinearities for MRI

Instead of adjusting the field of view or increasing the antenna-
to-antenna distance, deviations from the linear behavior can be
corrected by the method presented in this section. If the position-
dependence of a nonlinear Bgradient (x) is known, the distortions to
an MRI image due to these nonlinearities can be corrected by a shift
and an amplitude correction [123]. We will shortly introduce this
method here. All the equations are for the one-dimensional imaging
performed later, but can easily be expanded to three-dimensional
corrections [123]. Since we use an echo-based imaging method
instead of the FID-based method in reference 123 the equations
were adjusted to reflect that.
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6.1 Modifications to the measurement setup for gradient field generation

We again express

Bgradient (x) = G · (x + ϸ (x)) (6.8)

by a constant gradient G and an error function ϸ (x). This error
function transforms the Fourier transform equation 2.18 to

F (G) =

∫
C (x) eiγtG(x+ϸ(x))dx. (6.9)

To bring this equation back to its original form as shown in equation
2.18 we introduce the coordinate transformation

x ′ = x + ϸ (x) (6.10)

and dx ′ =

(
1 +

∂ϸ (x)
∂x

)
dx. (6.11)

This transformation corresponds to a shift of the coordinates in the
image so that any deviations introduced by the nonlinearity are
counteracted and yields

F (G) =

∫
C′

(
x ′

)
eiγtGx

′
dx ′ (6.12)

if we define

W (x) = 1 +
∂ϸ (x)
∂x

(6.13)

and C′
(
x ′

)
=
C (x)
W (x)

. (6.14)

Therefore, a nonlinearity in Bgradient (x) which can be expressed by a
constant gradient G and the deviation from the ideal behavior ϸ (x)
will result in a shifted image C′ (x ′) with amplitudes which deviate
from the expected amplitudes by W (x). To obtain the undistorted
image from the warped image C′ (x ′), it has to be shifted according
to the error function ϸ (x) (equation 6.10) and must be multiplied
with the amplitude distortion function W (x) (equation 6.13).

The shift (or error function) and amplitude distortion functions
that are necessary to recover an undistorted image according to
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6 EDMR imaging using magnetic field gradients

Figure 6.4: Error function ϸ (x, f ) and amplitude distortion function
W (x, f ) for the nonlinear gradient Bgradient (x) from equation 6.3
using the parameters introduced in figure 6.2.

equations 6.10 and 6.13 are

ϸ (x, f ) =
Bgradient (x) − l (x, f )

m (f )
(6.15)

and W (x, f ) =
B′gradient (x)

m (f )
, (6.16)

respectively. They are plotted in figure 6.4 for the nonlinear gradient
introduced in equation 6.3. The shift distortion function has a
maximum of 2.6 µm at x = −15.5 µm and at x = 15.5 µm, which
is large compared to the theoretical resolution. In addition to the
shift, the intensity of the uncorrected image varies by more than a
factor of two from its minimum at x = 0 µm to its maximum at the
edges of the field of view. By using these correction functions, the
simulated, distorted image depicted by the red lines in figure 6.3 can
be corrected to the undistorted image depicted by the green lines in
figure 6.3.
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Figure 6.5: a) Magnetic field B1 generated by one stripline antenna for
a field of view of 50 µm as a function of the position x within the
two stripline antennas used for gradient generation. The position
used for B1 calibration is marked with the vertical red line. b)
Image of three 10-µm-wide patches centered at x = −18 µm,
0 µm and 18 µm with (red lines) and without (green lines) B1-
inhomogeneities.

6.1.5 Effects of B1-inhomogeneities on images acquired with

MRI

Since we also intend to use the gradient microcoils for the excitation
of the spin signal, the spins will see a highly inhomogeneous B1-field
in addition to the B0-nonlinearity. This B1-inhomogeneity has an
effect on the resulting image, too, because the calibration for π/2-
and π-pulses only holds for a small region. To estimate the effects of
B1-inhomogeneities we again assume infinitely long current-carrying
wires. Since we do not want to generate a gradient for the B1-field,
we chose to generate the B1-field with only one wire.1 The resulting

1Theoretically, using both stripline antennas in a Helmholtz configuration would be possible.
However, this is impractical due the dimensions of the sample holder, which is greater than the
wavelength of the microwave radiation and would cause significant phase deviations between
the microwave signals in both stripline antennas.
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6 EDMR imaging using magnetic field gradients

B1 as a function of the position x for a current I is known to be

B1 (x) =
µ0I

2π
1
x
. (6.17)

Figure 6.5 a) plots B1 (x) for a field of view of 50 µm as a function of
the distance x from the current-carrying coil. It varies by a factor
of three between its highest and its lowest value. The effects of
this inhomogeneity were simulated using a gradient echo which
was calibrated to the B1-field at x = −12.5 µm. This will yield a
B1-inhomogeneity of ±50 %. To simulate the position-dependent
B1-field we adjusted the simulation introduced in section 6.1.3 by
multiplying the rotation angles induced by the microwave pulses
with a factor depending on the position of the simulated spin. The
resulting image is plotted in figure 6.5 b). Again, the green line shows
the undistorted image and the image which is distorted due to the B1-
inhomogeneities is depicted in red. Its most prominent feature is a
peak with a width of one data point at x = 0 µm which is not present
in the undistorted image. Apart from this, the B1-inhomogeneity
does not warp the image but it has a pronounced effect on its
amplitudes. This amplitude deviation could be corrected with a
similar approach as for the B0-nonlinearities, but the amplitude of
the peak at x = 0 µm is huge compared to the other features and
amplitude corrections will be at the expense of the signal-to-noise
ratio. A much simpler approach to correct the B1-inhomogeneities
are adiabatic (c.f. chapter 2.5.1) or optimal control (c.f. chapter 2.5.2)
pulses with a B1-width high enough to cover the whole field of view.
We will use the latter below.

6.1.6 Sample structure for electrically detected MRI

The spin system in our phosphorus-doped silicon samples is ef-
fectively two-dimensional because of the small height of 20 nm of
the doping layer compared to the typical lateral feature sizes of
about 10 µm. Therefore, only a two-dimensional imaging system is
necessary. It can be constructed from two microcoil arrangements
rotated by an angle of 90◦ as in reference 74. To test the appli-
cability of the microcoils for pEDMR imaging, a one-dimensional
imaging was developed. Figure 6.6 a) shows the basic structure of
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Figure 6.6: a) Sketch (not to scale) of the phosphorus-doped silicon
sample used for one-dimensional imaging including the silicon
semiconductor (black) and the metalizations for measurement
contacts and antennas (yellow). The current IB1 (red arrow), which
generates the B1-field, only flows through the upper antenna
while the current IG (green arrows), which generates the gradient
field, runs through both the upper and the lower antenna. b)
Microwave B1 (red) and gradient G (green) magnetic fields with
their respective effective fields Geff and B1,eff due to the angle �
between the sample normal and the external magnetic field B0
(blue).

the sample used in the imaging system. Here, the silicon sample is
colored black and the metalizations for the interdigit measurement
structure and microwave transmission lines are shown in a yellow
color. In contrast to the structure shown in figure 3.4, a BCB layer
is not necessary, because the antennas do not overlap the current
measurement structure. The microwave B1-field is generated by
the current IB1 flowing through the upper antenna. For the gradi-
ent field, a current IG which runs through both the upper and the
lower antenna is necessary. The electrical measurement structure
consists of 3 parallel 10-µm-wide contacts with an overlap of 60 µm
and a total length of 100 µm placed at a distance of 10 µm. They
cover a 50-µm-wide field of view for the 10-µm-thick antennas with
an antenna-to-antenna distance of 100 µm. The interdigit contacts
are connected by 50-µm-wide conductors which extend to the edge
of the sample where they are connected to the sample holder with
wire bonds.
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6 EDMR imaging using magnetic field gradients

To excite transitions between the spin eigenstates, an oscilla-
tory B1-field must be orthogonal to the external magnetic field B0.
Furthermore, the gradient field G necessary for imaging has to be
collinear to B0. Since the same antennas are used to generate B1
and G, both B1 and G are parallel and cannot fulfill both conditions.
To resolve this conflict, the sample normal is rotated by an angle
90◦ − � with respect to B0 as is shown in figure 6.6 b). Now, both B1
and G have a component orthogonal and parallel to B0, which results
in an effective B1,eff orthogonal to B0 and an effective Geff parallel to
B0. The effective fields are related to B1 and G by B1,eff = cos (�)B1
and Geff = sin (�)G, respectively. Depending on the experimental
parameters, the angle � can be chosen to favor either B1,eff or Geff.
For an angle of � = 45◦ both B1,eff and Geff are reduced by 1/

√
2

which results in a diminished efficiency of e = 113 T m−1 A−1 for an
antenna-to-antenna distance of 100 µm.

6.1.7 Modifications to the sample holder

For imaging experiments it is necessary to route the microwave
signal IMW through one of the antennas on the sample while the low-
frequency gradient current IG has to pass both antennas in order to
generate the gradient field (c.f. section 6.3). This is achieved by two
additions to the basic sample holder which are sketched in figure 6.7.
Here, the path of the microwave and gradient signals are depicted
with red and green lines, respectively. Firstly, a low pass filter
with a cutoff frequency of 1 GHz prevents microwaves from entering
the second gradient antenna while the low-frequency gradient can
pass unimpeded [124]. Secondly, the DC blocks inserted in the
outer part of the CPW stop all signals with a frequency of less than
2 GHz and force them into the CPS structure which guides them
through the second antenna. At the microwave frequency of about
10 GHz, determined by the traveling wave tube amplifier used in our
imaging experiments, a sample holder with just the outer DC block
measured in a back-to-back configuration introduces about 2 dB
of insertion loss [124]. The additional bond connections between
the outer conductors of the CPW before and after the DC block are
intended to suppress unwanted transmission modes [125].
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Figure 6.7: Schematic drawing of the sample holder used for imag-
ing experiments. All transmission line traces are in a coppery
color and the bond connections are shown with black lines. The
microwave and gradient signals are depicted with red and green
lines, respectively.
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Figure 6.8: Gradient pulse setup consisting of an AWG for pulse gener-
ation, a power amplifier with low output impedance and a voltage
divider for pulse measurements.

6.1.8 Modifications to the pulsing setup for gradient

generation

Since our setup uses a pair of microwave antennas to generate the
gradient field, which have a much better conversion factor than
conventional gradient coils (c.f. section 6.1) and therefore don’t
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need high power gradient pulse drivers, a much simpler setup than
presented in reference 73 can be used. A schematic drawing of the
gradient field setup is presented in figure 6.8. Similar to the RF
pulse generation, an AWG (Signate PXDAC 4800) generates a gradient
pulse. This pulse is attenuated to adjust its level to the maximal
input power of the amplifier (Tabor A10160, output impedance 2.5 Ω,
bandwidth 45 MHz, peak output voltage 34 V into 50 Ω, peak output
current 1 A). The resulting pulse passes a voltage divider composed
of a 1 Ω and a 7 Ω resistor, which allows for the measurement of the
pulse shape with the help of an oscilloscope. Afterwards, the pulse
enters the low frequency arm of the diplexer shown in figure 3.7
which routes the pulse to the sample holder.

6.2 Imaging with rectangular pulses

We start the discussion with a complex k-space image which was
recorded of the sample discussed in section 6.1.6 with the gradient
echo sequence shown in figure 2.8. The π/2- and π-pulse lengths
were calibrated with Rabi measurements (not shown) to τπ/2 = 16 ns
and τπ = 32 ns, respectively. We use a total sequence length of
1.234 µs and gradient length of 1 µs split into two 500-µs-long
gradient pulses during the first and second free evolution time of
the echo and sample 64 k-space values.

The real (red) and imaginary (blue) part of this complex k-space
image are plotted in figure 6.9 a). The nominal abscissa values
knominal were calculated with formulas 2.21 and 6.4 from the AWG
output voltage amplitude of 0.2 V, used to generate the gradient
pulses, using the fixed amplification of 10 of the gradient amplifier,
an angle between the sample normal and B0 of 45◦ and a total
resistance of the setup of 12.5 Ω, which is caused by the voltage
divider in the setup (8 Ω c.f. section 6.1.8), the internal resistance
of the amplifier (2.5 Ω) and by the sample resistance of 2 Ω. Since
we do not know the exact field of view of our measurement at this
point, distortions due to the B0-nonlinearity are not corrected.

Both the real and the imaginary part show oscillations which have
a maximal amplitude for knominal = 0 µm−1 and decay completely so
that there is no discernible signal for knominal = 0.2 µm−1. Therefore,
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6.2 Imaging with rectangular pulses

a) b)

Figure 6.9: a) pEDMR signal ∆Q acquired with a gradient echo se-
quence using an x projection pulse (red) or a y projection pulse
(blue) as a function of knominal for a bias voltage of −0.5 V. b) Real
part of the Fourier transform of the complex valued signal shown
in a). The assumed positions of the measurement contacts are
depicted by the yellow sketch in the background of the plot and
the positions where the contacts should be on the nominal x-scale
are marked with red boxes.

a further increase of the gradient strength will not yield a higher
resolution because the resolution is already limited by the waveform
of the k-space image. The real and the imaginary part show a non-
zero background although the gradient echo was measured using
phase cycling [59]. This is probably caused by the B1-inhomogeneity
present in the sample (c.f. section 6.1.5).

A Fourier transform of this k-space image yields the position
space image whose signal is completely contained in the real part
of the Fourier transform which is plotted in figure 6.9 b). It has
five distinct peaks at the nominal abscissa values xnominal = −19 µm,
−6 µm, 0 µm, 4.5 µm and 15.5 µm. The peak at xnominal = 0 µm is
only one data point wide and is caused by the non-zero offset in the
k-space signal.

115



6 EDMR imaging using magnetic field gradients

This leaves four peaks which can be assigned to the three contacts
if we assume that the signal is only generated in the space between
the contacts and outside of the interdigit contact structure. We will
discuss this assumption in more detail in section 6.5. To illustrate
this, a two-dimensional sketch of the interdigit contact structure is
drawn in yellow in the background of the plot at the positions where
we expect the contacts to be. For clarity, we have added a symmetry-
rescaled x-scale on top of figure 6.9 b). These symmetry-rescaled
positions deviate strongly from the positions where the contacts
should be on the nominal x-scale, which we have marked with red
rectangles in figure 6.9 b).

There are three possible causes for this difference. Firstly, due to
the B0-nonlinearity, the measured peaks are shifted compared to
their true position. Secondly, the actual gradient strength could be
weaker than calculated and therefore the values on the abscissa are
wrong. Thirdly, if the origin of the peaks at −19 µm and at 15.5 µm
is outside of the interdigit contact structure (total width 50 µm) as
indicated in figure 6.9 b), the field of view has to be greater than the
50 µm defined by the outer edges of the contacts.

6.3 Imaging with optimal control pulses

To remove the aberrations in the image caused by the B1-inhomo-
geneity, a new cooperative optimal control echo (c.f. section 2.5.2)
was calculated. It exhibits an increased relative ν1-bandwidth of
±50 % around a lower mean ν1-frequency of 20 MHz compared to
the pulses shown in the last chapter, while the ν0-bandwidth of
20 MHz remains unchanged. Its simulated z-polarization is plotted
in figure 6.10 as a function of ∆ν0 and ν1 and meets the optimization
goals (horizontal and vertical green lines) very well.

Using this pulse sequence a complex k-space image (c.f. figure 6.11
a)) was recorded with the same settings as in section 6.2 with
the exception of the total sequence length which was adjusted to
2.234 µs to accommodate the length of the optimal control echo
of 450 ns. Here, the background for knominal = ±0.5 µm−1 is much
closer to zero than in figure 6.9 a) and the total amplitude of the
image has increased by a factor of two.

116



6.4 Correction of Bgradient-nonlinearities

z-
p

ro
je

c
tio

n

Figure 6.10: Simulated z-projection after the cooperatively optimized
echo for imaging experiments as a function of ∆ν0 and ν1. The
vertical and horizontal green lines depict the goals used during
optimization.

The position space image (c.f. green plot in figure 6.11 b)) is again
obtained by Fourier transforming the k-space image. Compared
to the image measured in section 6.2 (c.f. blue plot in figure 6.11
b)) it has a much smaller peak at x = 0 µm, which is possibly
due to the better robustness of the optimal control pulse to B1-
inhomogeneities. That this peak does not vanish completely may
either be caused by parts of the ensemble which lie outside of
the 50-µm-wide field of view and therefore have an even higher
inhomogeneity than assumed during the pulse optimization or by
other spin-independent signals which are not completely filtered by
the echo sequence. The amplitude of the inner peaks increases by a
factor of two while the amplitude of the outer peaks is three times
higher than those in the image captured with rectangular pulses.
Therefore, for all further experiments the cooperatively optimized
echo was used.
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6 EDMR imaging using magnetic field gradients

a) b)

Figure 6.11: a) pEDMR signal ∆Q acquired with a gradient echo se-
quence using an x projection pulse (red lines) or a y projection
pulse (blue) as a function of the gradient knominal for a bias voltage
of −0.5 V. b) Real part of the Fourier transform of the complex
valued signal obtained with an optimal control echo sequence
shown in b) (green line) and that obtained by an echo sequence
with rectangular pulses from figure 6.9 a) (blue line).

6.4 Correction of Bgradient-nonlinearities

We now turn to the correction of Bgradient-nonlinearities. This requires
an exact knowledge of the field of view f , because the strength of
the nonlinearity depends on it. In the case of the sample introduced
in section 6.1.6, we use two measurements with a bias voltage of
0.5 V and −0.5 V to determine f .

Figure 6.12 shows the real part of the Fourier-transformed image
for both voltages as a function of the calculated position in red and
blue, respectively. Both images were measured with an increased
gradient (AWG output voltage amplitude of 0.3 V, gradient length
of 1.1 µs and 128 gradient points). To simplify the analysis, the
amplitude of the graph for 0.5 V was reduced by a factor of two.

The positions of the two outer peaks do not depend on the bias
voltage while the inner two peaks shift slightly. We will have a closer
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6.4 Correction of Bgradient-nonlinearities

Figure 6.12: Real part of the Fourier-transformed k-space image for
a bias voltage of 0.5 V (red) and −0.5 V (blue). The vertical green
lines show the xcontact, nominal used for the nonlinearity correction.

look at this behavior in section 6.5. At the moment, only the regions
which do not show a signal are important, because if we continue to
assume that the EDMR signal is only generated in the space between
the interdigit contacts, we can use the sharp edges of the peaks
(vertical green lines in figure 6.12) to find a relationship between
the photolithography-defined contact positions and the positions
on the nominal x-scale. The values of the photolithography-defined
contact edges xcontact and their counterparts on the nominal x-scale
xcontact, nominal are listed in table 6.1.

xcontact (µm) −25 −15 −5 5 15 25
xcontact, nominal (µm) −15.5 −7.8 −3.2 1.9 6.5 12.3
fit result (µm) −15.0 −7.9 −3.1 1.2 6.0 13.1

Table 6.1: Finger edges as defined by the photolithography process
xcontact, as measured using the nominal x scale xcontact, nominal and
as calculated from the fit of equation 6.19.
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6 EDMR imaging using magnetic field gradients

a) b)

Figure 6.13: a) ϸ (x, f ) (red) and W (x, f ) as a function of the position
x. b) Shift- and amplitude-corrected version of figure 6.12 a).

To translate from the photolithography-defined positions xcontact
to the measured positions xcontact, nominal, we use

xcontact, nominal = g (xcontact, f, d, fm) (6.18)

=
fnominal

f
· (xcontact + d + ϸ (xcontact + d) , f ) . (6.19)

The shift d accounts for any displacement of the interdigit con-
tacts from their intended position due to alignment errors during
the manufacturing and ϸ (x + d, f ) (c.f. equation 6.15) distorts the
position according to the Bgradient-nonlinearities. To account for
slight deviations in the calculated positions caused by differences
between the calculated and the actual gradient, the resulting posi-
tions are stretched or compressed by the ratio of the nominal and
fitted field of view fnominal and f , respectively. To determine f and d
we fit g (x, f, d, fnominal) to the nominal positions xcontact, nominal using
a Levenberg-Marquardt algorithm. This results in f = 77.4 µm and
d = −0.9 µm for the nominal field of view fnominal = 80 µm which
produces a nice fit to the measured positions (c.f. table 6.1). An
alignment error of −0.9 µm is in agreement with optical microscope
images which do not show a deviation between the lithography
markers used for the antennas and the interdigit contact structure.
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6.5 Physical interpretation

The resulting field of view agrees well with the calculated field of
view and hence confirms our estimation of the magnetic field gradient.
The distortion functions ϸ (x, f ) and W (x, f ), which correspond to
the shift and the amplitude-deviation of the uncorrected image,
are plotted in figure 6.13 a). Due to the large field of view, the
corrections with a maximal shift of 11.7 µm and amplitude variations
from 0.4 to 3.8 are rather large compared to those caused by the
intended field of view of 50 µm. Using these distortion functions,
we can transform the positions and amplitudes of figure 6.12 a) to
recover the undistorted image shown in figure 6.13 b). Here, xcorrected
is the transformed xnominal obtained by the application of ϸ (x, f ).
The relative heights between the inner and outer peaks deviate
significantly from those in figure 6.12 since the outer peaks are
amplified considerably by the correction. Unfortunately, this is also
true for the noise in the outer regions of the image, which increases,
too. All further measurements in this section are corrected for the
Bgradient-nonlinearity using the field of view and shift determined
here.

6.5 Physical interpretation

In order to elucidate the origins of the EDMR signals, images were
recorded for different bias voltages. Figure 6.14 plots Bgradient-
nonlinearity-corrected excerpts of the real parts of Fourier-trans-
formed k-space images for bias voltages of 1 V (blue), 0.5 V (red)
and 0.25 V (green) for positive (panels a) and b)) and negative bias
(panels c) and d)). To ease the comparison, all images were normal-
ized and the figures which depict the inner peak around x = 10 µm
(figure 6.14 a) and c)) as well as the images corresponding to the
outer peak starting at x = 25 µm (figure 6.14 b) and d)) are plotted
above each other. Since the images are symmetrical, we only display
the peaks corresponding to x ≥ 0.

For all images the width of the region which exhibits a signal
increases with higher absolute bias voltages. If the bias voltage is
reversed, the position of the areas with signal in figure 6.14 b) and d)
do not change significantly whereas the position of the signal shifts
substantially from figure 6.14 a) to figure 6.14 c).
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Figure 6.14: Excerpts of the real parts of Fourier-transformed
k-space images for the bias voltages of 1 V (blue), 0.5 V
(red) and 0.25 V (green) for positive (panels a) and b)) and
negative bias (panels c) and d)). The images a) and c) display the
inner peak around x = 10 µm whereas the images b) and d) depict
the outer peak starting at x = 25 µm. All images are normalized
and the respective bias directions are depicted with the black +

and − signs. e) Sketch of the interdigit contact structure includ-
ing the bias applied to the contacts depicted with + and − signs
and a graphical representation of the Schottky diode depletion
zones around the contact in red and blue. Band diagram of a
metal-semiconductor-metal structure without f) and with bias
g). Electrons and holes are depicted by full and empty circles,
respectively. An incident photon is shown in red. h) Location of
the band diagram along one of the arrows in panel e). Panels f)
and g) are adapted from [126].

At the Schottky contacts of our device, there exists a depletion
zone in the region around the contact. Figure 6.14 e) shows the
interdigit contact structure with a representation of this depletion
zone. For clarity, the depletion zones are colored red and blue
depending on the bias of the contact to which they belong and
the numbered black arrows indicate possible pathways for the
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6.5 Physical interpretation

electrons and holes between the cathode and the anode. Along
these arrows the band structure of our device is that of a metal-
semiconductor-metal (MSM) photodetector [126]. In the case of
no applied bias voltage (c.f. figure 6.14 f)), the Fermi levels EF of
the metal contact and the semiconductor align, which leads to an
upward band bending of the conduction and the valence band at the
junctions between the semiconductor and the metal. If a bias Ubias
is introduced between the contacts (c.f. figure 6.14 g)), the energy of
the anode is reduced with respect to the cathode by qUbias, where
q is the elementary charge of an electron. This will increase the
depletion width Wreverse of the reverse-biased Schottky junction and
decrease the width Wforward of the forward-biased Schottky junction.

Depending on the bias voltage and the built-in voltage of the
junctions there are three distinct scenarios. If the combined width of
the two Schottky junctions is smaller than the distance between the
electrodes, the band structure is essentially the one of figure 6.14 f)
with a superimposed slope [127]. In the regime between the reach
through voltage Urt, where the combined width of both depletion
regions equals the distance between the electrodes (c.f. figure 6.14
g)), and the flat band voltage Ufb, which is the bias voltage that leads
to a vanishing depletion width of the forward-biased junction, the
slope of the bands at the reverse-biased junction decreases until it
vanishes. Bias voltages which are even higher increase the overall
slope of the bands resulting in a more or less homogeneous slope
throughout the device. We can exclude this situation from the
discussion, because a homogeneous slope rules out the position-
dependence of the observed signal. Rather, we have to discuss the
regime before the flat-band condition is reached.

The spin-dependent recombination observed in our samples in-
volves electrons from the conduction band which are trapped at
phosphorus donors. Recombination of those charge carriers is only
relevant when they are not majority carriers. This is the case in
the large reverse-biased depletion zone, where the charge carriers
present are photoexcited. In contrast, in the flat region of the n-type
doped semiconductor, electrons are the majority carriers. The same
is effectively true in the forward-biased narrow depletion zone at the
opposite Schottky contact. Therefore, we can immediately under-
stand that the 31P-Pb0 recombination is only observed in our spatially
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6 EDMR imaging using magnetic field gradients

resolved electrically detected MRI at the reverse-biased Schottky con-
tact and that the region of spin-dependent recombination increases
with increasing width of that depletion zone.

With this position dependence in mind, we turn back to the
assignment of the signals to positions in our interdigit contact
structure. We can exclude current paths number one and three
(c.f. figure 6.14 e)), because any changes under a voltage increase
or reversal will happen parallel to our antenna and should not
change the image for this reason. For current path number four any
changes due to a reversal of the bias voltage will be perpendicular
to the imaging direction, because the depletion region changes from
contact a to contact b or vice versa. Hence, it can’t be responsible
for the change from figure 6.14 a) to c). An increase in bias will
result in a larger depletion region and should therefore result in
a signal over a larger region. This fits the changes in figure 6.14
b) and d) which are therefore attributed to current path number
four. Only current path number two will change the position of the
depletion region under a bias reversal and can therefore be assigned
to figure 6.14 a) and c). Therefore, the assumption that the signal
originates from current path number two and number four made in
section 6.2 is valid.

Under the assumption that the width of the signal in figure 6.14 a)
and c) represents the width of the depletion region, we can estimate
the amount of ionized donors N+

D and the built-in voltage Ubi of the
Schottky junction. To find the depletion width WD as a function
of the bias voltage Ubias, we use the Fourier-transformed k-space
images of the inner peak for different bias voltages as shown in
figure 6.15 a) and b). The value for WD is then extracted from the
onset and termination of the EDMR signal (vertical black lines in
figure 6.15 a) and b)) and plotted in figure 6.15 c). The depletion
width of a Schottky junction is [126]

WD =

√
2ϸS

qN+
D

(
Ubi − Ubias − kT

q

)
(6.20)

with the permittivity of the material ϸS, the elementary charge q,
the Boltzmann constant k and the temperature T . Since most of
the voltage drop will occur over the reverse-biased junction [127],
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6.6 Determination of the imaging resolution

a) b) c)

Ubias =

Figure 6.15: Fourier-transformed k-space images of the inner peak
for the bias voltages of 2 V (pink), 1 V (blue), 0.5 V (red) and 0.25 V
(green) for positive (a) and negative bias (b). The vertical black
lines mark the assumed width of the depletion region for each bias
voltage. c) Depletion width WD as a function of the bias voltage
Ubias. A fit of equation 6.20 is plotted in red.

we ignore the voltage drop over the forward-biased junction and
assume that the bias voltage equals the voltage drop over the reverse-
biased junction. A fit of this equation to WD yields the built-in
voltage Ubi and the density of ionized donors N+

D. The result Ubi =

0.42 V strongly depends on the chosen values for the onset and the
termination of the signal and is therefore only a rough guess. In
contrast, N+

D = 3.3 · 1013 cm−3 doesn’t change much under the same
variations. However, this model assumes a homogeneously doped
MSM device. In contrast, we investigate a system where the doping
and the monitored recombination are only present in a 20-nm-thick
surface layer. It is therefore not surprising that the quantitative
results obtained are difficult to interpret.

6.6 Determination of the imaging resolution

Due to the high nonlinearity of the gradient field, the resolution of
the gradient image cannot be extracted from the discretization ∆x of
the Fourier transform in figure 6.13 c) because of the rather drastic
warping of the image. To estimate the achievable resolution, we

125



6 EDMR imaging using magnetic field gradients

a) b)

B g
ra

d
ie

nt
 (

m
T)

B g
ra

d
ie

nt
 (

m
T)

Figure 6.16: Simulation of the magnetic field B0 as a function of the
position between the gradient antennas for an antenna width of
10 µm and an antenna height of 0.5 µm. The antenna-to-antenna
distance is 100 µm for panel a) and 10 µm for panel b).

calculate the gradient at x = 0 µm, which is the smallest gradient
in the image. From the amplitude correction function (c.f. equation
6.16) we find that the deviation of the true gradient from the linear
gradient is W (x = 0 µm, f = 77.4 µm) = 0.4 in our structure so
that we overestimate G (x = 0 µm) by a factor of 2.5 and the true
resolution at the center of the image is 1.54 µm instead of the
resolution of the Fourier transform discretization ∆x = 0.614 µm.
The resulting efficiency is e = 47.5 T m−1 A−1 for a current of 222 mA
and at a sample angle of 45◦ (c.f. section 6.1.6). This is 42 % of the
expected efficiency (c.f. section 6.1).

The sample in the sample holder has a resistance of R = 2 Ω, which
will yield a maximal resolution of ∆x = 17 nm for this efficiency
using equation 6.2 (Pmean = 1 W, t = 1 µs, tseq = 1 ms, N = 1). To
achieve this resolution, a current of 8.4 A would be necessary. For
comparison, our single stripline antennas can survive microwave
pulses with a power of 200 W for a duration of 10 µs at a repetition
rate of 2 ms, which corresponds to a mean current of 2 A through
a 1 Ω antenna as calculated with the Thevenin theorem [128]. The
gradient pulse necessary for these resolutions delivers about 17
times the power but for a tenth of the duration of the microwave
pulse, so that an antenna might survive this, but barely.
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6.6 Determination of the imaging resolution

If we stay within the limits of this setup, a maximal current of
I = 1.0 A obtainable with the power amplifier yields a resolution
of ∆x = 0.34 µm for the same gradient pulse lengths of 1.1 µs as
used in the experiment. A lower antenna-to-antenna distance of
e.g. 10 µm should result in an increased efficiency and hence a
resolution which is higher by a factor of 100 if infinitely thin and
infinitely long wires are assumed. This approximation will only
hold if the dimensions of the antenna are scaled proportional to
the antenna-to-antenna distance, which will partially diminish the
resolution gains due to a higher antenna resistance.

However, electrostatic simulations with the software package
COMSOL show that it is not necessary to change the dimensions of
the antenna when the antenna-to-antenna distance is reduced. For
the dimensions of the antenna structure used in these experiments,
the simulated magnetic field (c.f. figure 6.16 a)) has an efficiency of
87 T m−1 A−1 at an angle of 45◦. This value is slightly smaller than
the efficiency of 113 T m−1 A−1 predicted by the calculation assuming
infinitely long wires. If we compare these values to the measured
efficiency in this section, we find that our setup reaches 55 % of
the simulated value. For a reduced antenna-to-antenna distance of
10 µm the magnetic field simulations (c.f. figure 6.16 b)) show that
the efficiency increases to 3.8 kT m−1 A−1 if the dimensions of the
single antennas remain the same. If we factor in that our setup’s
efficiency reaches 55 % of the simulated value, this should result in a
resolution of 7.8 nm for a current of 1 A and a gradient pulse length of
1.1 µs without any negative effects on the gradient linearity compared
to the higher antenna-to-antenna distance. Since these parameters
result in a mean dissipated power of about 1 mW (for a sequence
length of Tseq = 2.234 ms and a total antenna resistance of 2 Ω), the
thermal budget of 1 W is not used and the resolution will improve
linearly with the gradient length. A sample with a longer coherence
time (e.g. [8, 11]) should allow for gradient pulses with a length of
up to 500 µs (limited by the T2-time of the sample) and a resolution
of 0.16 Å (Pmean = 1 W, Tseq = 2.234 ms). This resolution is a factor
of 200 higher than the resolution demonstrated in reference 74.

Such a high resolution will require a sensitivity close to single
shot-single spin readout to keep the measurement time within realis-
tic limits. For phosphorus donors in silicon, reference 129 achieves

127



6 EDMR imaging using magnetic field gradients

this goal with a single electron transistor (SET). This transistor
has read-out fidelities higher than 90 %, but requires temperatures
around T = 200 mK, which are generated in a dilution fridge. Dilu-
tion fridges reach a cooling power of up to 500 µW (Oxford Triton
Cryofree). Since the cooling power cannot be used completely to
counter the effects of the gradient coils, we estimate that a possi-
ble imaging system would have a thermal budget of 10 µW for the
dissipation by the gradient coils. The resistivity of one aluminum
microwave antenna with a cross section of 100 nm2 and a length
of 500 nm is about 1 Ω [18]2, if we assume that the cryogenic con-
ductivity of aluminum is lowered by a factor of 3.5 compared to its
room temperature value [18]. We choose an antenna-to-antenna
distance of 1 µm, which is large enough to place the SET and its
connections within the antennas [18]. With a gradient length of
t = 1 µs and a sequence length of t = 1 ms this will result in a
resolution of ∆x = 4.6 Å. Even if the conditions are tightened so that
the thermal power has to stay below 10 µW throughout the gradient
sequence, a gradient pulse with a length of t = 293 µs will yield
a resolution of 0.5 Å, which is about a tenth of the silicon lattice
constant and should allow to map the EDMR signal with atomic
precision. It requires 3.24 million acquisitions to cover an area
of interest of about 90 nm times 90 nm [129] with this resolution.
Assuming 100 acquisitions at each k-space value and a sequence
time of 1 ms this will require a total acquisition time of 90 h, which
appears experimentally feasible.

6.7 Improvements to the current measurement

interdigit structures

With the results from section 6.5 we can optimize the dimensions
of the interdigit current measurement structures used to contact
the sample for future experiments. Firstly, since the area beneath
the contact doesn’t exhibit much signal, it should be reduced as
far as possible. A contact width of about 1 µm can be reliably

2Aluminum should be superconducting at these temperatures, but the current densities used in
our experiments are well above the critical current densities for this material.
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a) b) c)

Ubias =
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Figure 6.17: a) Normalized Fourier-transformed k-space images of the
inner peak for bias voltages of 2 V (pink), 1 V (blue), 0.5 V (red) and
0.25 V (green) using positive bias. b) Mean contact efficiency as a
function of the finger-to-finger distance dFF for the bias voltages
of 1 V (blue line) and 0.5 V. c) Mean contact efficiency including
the shading effect of 1-µm-wide contact fingers as a function of
dFF. For comparison, the effect of a 10-µm-wide contact at a bias
voltage of 1 V is plotted in black.

fabricated with UV lithography [130] so that this is the optimal width
if electron beam lithography is not available or desired. The intensity
of the EDMR signal is maximal for bias voltages of 0.5 V and 1 V
(c.f. figure 6.17 a) so that the experiment should run within these
parameters. Secondly, to optimize the distance d between interdigit
contacts, we estimate the efficiency of the contact as follows: First,
the plots in figure 6.17 a) are normalized to their shared maximum
at x ≈ 6 µm, because we assume this is the maximal achievable
signal intensity. We assign a local efficiency of 1 to this position.
Afterwards we calculate the mean ‘‘contact efficiency by integrating
from x = 5 µm up to a theoretical contact-to-contact distance dFF.
The resulting dependency of the contact efficiency on dFF are plotted
in figure 6.17 b) for the bias voltages of 1 V and 0.5 V. They show
distinct maxima for dFF = 3.5 µm and dFF = 6 µm, respectively.
Since no signal is generated beneath the contacts, we have to take
the non-zero width of the contacts into account and multiply this
efficiency by the geometric efficiency g = dFF

dFF+1 µm of the contacts.
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This slightly changes the total efficiency (c.f. figure 6.17 c) and the
respective maxima for a bias of 0.5 V and 1.0 V shift to dFF = 4 µm
and dFF = 6 µm, respectively. Therefore, the optimal contact-to-
contact distance lies in this region and should increase the signal by
about a factor of 2 when compared to the typical configuration with
10-µm-wide fingers at a distance of 10 µm (black line in figure 6.17).

6.8 Summary and outlook

In summary, we have demonstrated the use of planar gradient ‘‘coils’’
for position-dependent EDMR measurements inside a cryostat with
a sample-limited resolution of 1.54 µm, which could be increased to
0.34 µm without changes to our setup if a sample requires this res-
olution. Effects due to gradient nonlinearity and B1-inhomogeneity
were effectively removed by analytical corrections to the measured
data and the use of an optimal control echo for detection. This has
allowed us to measure the position-dependent EDMR signal for the
interdigit contact structures typically used in EDMR experiments
and to construct a model which explains these features with the
band structure of an MSM photodetector. Based on these results, we
propose a new geometry for interdigit contact structures with a con-
tact width of 1 µm and a contact-to-contact-distance of 5 µm which
should double the signal compared to the contact structures used up
to now. Single spin detection via electrical measurements has been
reached by Morello et al. [129]. Using the approach investigated
here, mapping the EDMR signal in their sample geometry seems
feasible, and should therefore allow to measure the phosphorus
donor electron wave function with a resolution of 0.5 Å.
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7
EDMR of nitrogen vacancy centers

in diamond

With its long coherence time [131] and optical fluorescence detection
[132], the nitrogen vacancy center NV- in diamond is a promising
candidate for quantum applications. These features have enabled
its use, e.g. as a quantum sensor for magnetic fields [133, 134]
and temperature [135], for scanning-probe spin imaging [136] and
structure determination [137]. However, the spin readout, which
has been optical until now, has drawbacks: it is highly inefficient,
requiring several 100 repetitions for a single spin readout, and cum-
bersome, because it requires the use of a confocal microscope in
combination with an avalanche photodetector. Electric spin readout
appears attractive to surmount these limitations. It could enable
access to NV- centers in dense arrays, with a spacing limited by the
few-nm-small feature size of electron beam lithography [138] rather
than the optical wavelength. It might, moreover, provide a way to
read out other spin defects [139–141], potentially including opti-
cally inactive ones. Two methods for electric readout of NV- centers
have been demonstrated, based on non-radiative energy transfer
to graphene [142] and direct photoionization of the NV- centers in
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the diamond host crystal (photocurrent detection of magnetic reso-
nance, PDMR) [143]. Both methods, however, have until now only
been used with cw spin manipulation and have therefore remained
limited to NV- detection. Here, we introduce a scheme based on both
pulsed spin manipulation and pulsed photoionization to truly read
out the spin state of NV- centers electrically after coherent control
and demonstrate it on small ensembles. We employ this scheme to
establish a quantitative model of photoionization, simulate the read-
out efficiency and predict that under optimized conditions pulsed
electric readout could outperform optical fluorescence detection.
This chapter is based on reference 1441.

7.1 The NV center

The NV center is a point defect in the diamond lattice where a
substitutional nitrogen atom and a vacancy are neighbors [145,
146]. In its uncharged state NV0 it consists of five electrons of
which three can be attributed to the dangling-bonds of the silicon
vacancy and two correspond to two of the five valence electrons of
the nitrogen atom, which are not in a covalent bond to surrounding
carbon atoms. Of these five electrons, only one electron remains
unpaired resulting in a total spin of S = 1

2. This spin should be
detectable using ESR, but only an excited state of the NV0 has
been measured using ESR to our knowledge [147]. However, the
negatively charged NV- center, which consists of six electrons in
total [148, 149], can be detected using ESR. Depending on the Fermi
level, the NV center is in either of those two charge states [150,
151] and can be switched from NV- to NV0 using green illumination
[152–154]. In NV- the additional electron forms a spin triplet state
with the formerly unpaired electron resulting in a total spin of S = 1.
Its Hamiltonian

H = geµe~S~B0 + D
(
S2
z −

1
3
S (S + 1)

)
+ ~SÂ~I (7.1)

contains a Zeeman interaction, a zero-field splitting due to fine-
structure effects and a hyperfine coupling to surrounding nuclei.
D is the zero-field splitting parameter, Â is the hyperfine tensor

1© 2017 American Physical Society.
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and the quantization axis z is aligned along the NV- center’s axis.
Effects due to electric fields and strain are ignored in this description
because they are not studied within the scope of this work. The
zero-field splitting leads to different energies for the eigenstates
corresponding to mS = 0 and mS = ±1 if no magnetic field is present.
Under the influence of an external magnetic field ~B0 the energy
levels for mS = ±1 will split up. For low magnetic fields, where we
can assume the quantization axis to still lie along the NV- center’s
axis, this additional splitting depends on the projection of ~B0 onto
the NV- center’s axis and hence results in different shifts according
to the NV- center’s four possible orientations within the diamond
lattice.

In addition to these spin states which we subsume as the optical
ground state 3A2, there exists an optically excited triplet state 3E.
Optical transitions between these states are spin conserving. How-
ever, a decay from the 3E to the 3A2 state is also possible through
a non-radiative additional state 1A [148, 149]. This non-radiative
decay is also called inter-system crossing (ISC) and is not spin
conserving. It is this ISC which enables the optical and electrical
readout of the NV- center which we will discuss in the next section.

7.2 Spin-dependent photoionization

The spin-dependent photoionization cycle can be understood as two
two-photon processes, whose spin dependence relies on the NV-’s
inter-system crossing (ISC) which is also key to the classic optical
readout (figure 7.1 a) to e)) [143]. A first photon (green arrows)
triggers shelving (black arrow) of NV- centers in spin state |2〉 (cor-
responding to the mS = ±1 spin quantum numbers of NV-) into the
long-lived metastable singlet state |5〉 by this ISC. Since shelving pro-
tects this state from further laser excitation, absorption of a second
photon preferentially ionizes NV- centers prepared in spin state |1〉
(corresponding to mS = 0) into the conduction band (CB), creating a
spin-dependent photocurrent (blue arrow) proportional to the popu-
lation of the mS = 0 state. Microwave pulses (red arrow) increasing
the mS = ±1 population will then lead to a resonant reduction of
the photocurrent. Two further photons re-charge the NV0 center
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photon 2 photons 3 & 4

|4⟩

3A2

3E

ESR

|3⟩
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Figure 7.1: Spin-dependent photoionization of NV- centers used for
the electrical readout of its spin state. In panels a) to d) the
horizontal black lines represent the NV- center’s states and the
energy levels of the conduction (CB) and valence band (VB). The
blue and red dots represent electrons (filled dots) and holes (empty
dots). Transitions between energy levels are depicted by arrows.
They are color-coded in green, red, blue and black for optical
excitation, microwave excitation, drift in an electric field or non-
radiative decay, respectively. e) Pulse sequence used for the spin-
dependent photoionization. The microwave and light pulse are
depicted by the black and green boxes, respectively. A microwave
pulse switches the NV- center from state |1〉 to state |2〉 or vice
versa (panel a)). During the light pulse, a first photon excites the
NV- center from 3A2 to 3E (panel b)). A second incident photon
ionizes the NV- center if it has not decayed back to 3A2 or into
|5〉 (panel c)). The spin-dependent readout is enabled by the fact
that NV- centers in state |4〉 have a higher probability to decay
into state |5〉 than those in state |3〉, which leads to a higher
ionization probability for state |3〉. After ionization, the NV0 center
is re-charged to the NV- center by a two-photon process (panel d)).

into its negative charge state by excitation of the NV0 (photon 3)
and capture of an electron (photon 4) from the valence band (VB)
[152]. For further discussion we will use the label 3A2 for the optical
ground state consisting of states |1〉 and |2〉 and 3E for the optically
excited states |3〉 and |4〉.
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microwave wire

interdigit contacts

532 nm laser

diamond

NV centers

 

5 V

I

Figure 7.2: Schematic drawing of the sample and the measurement
setup. A focused 532 nm laser photoionizes NV- centers inside of
a N-doped diamond. To measure a current through the sample a
bias voltage is applied to the Ti/Au interdigit contacts situated on
top of the diamond. A nearby wire excites transitions between the
NV- center’s states if a resonant microwave current runs through
the wire.

7.3 Sample geometry

Our spin readout experiments are performed in a photoconductor
(figure 7.2). We illuminate a N-doped diamond (Element 6, grown by
chemical vapor deposition, [N] < 1 ppm, [NV] ≈ 10 ppb) with a green
laser (wavelength 532 nm) pulse generated by a Nd:YAG laser and an
acousto-optic modulator (AOM) and observe the resulting photocur-
rent between two interdigit Schottky contacts, biased with 5 V. The
contacts (finger width 5 µm, finger-to-finger distance 10 µm) consist
of a 10-nm-thick titanium and a 80-nm-thick gold layer, deposited
on the diamond surface after cleaning it in a H2SO4/H2O2 mixture
and an oxygen plasma treatment. The photocurrent through the
sample is measured by using a transimpedance amplifier (amplifica-
tion 1 GV A−1, bandwidth 10 Hz). Depending on the measurement
we use a 5x, a 10x or a 100x objective, with numeric apertures of
0.15, 0.30 and 0.80 and diffraction limited NV- ensemble sizes of
100000, 6500 and 130, respectively. The microwave with frequency
νMW is delivered to the sample using a wire next to the contacts.
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√√

Figure 7.3: a) Pulsed electrically detected magnetic resonance spec-
trum for B0 ‖ 〈111〉 . b) Rabi oscillations in the contrast ∆I/I
(symbols) with fit of an exponentially decaying cosine (line). The
inset shows the frequency of Rabi oscillations (symbols) measured
at different microwave powers and a linear fit (line). The pulse
sequence used for the measurements is shown on top.

7.4 Pulsed EDMR experiments

We first demonstrate that coherent control can be detected elec-
trically. To excite ESR transitions, the pulse sequence starts with
a microwave pulse with power PMW and varying duration TP (top
of figure 7.3 a) and b)). This initializes the spin of the NV- 3A2
ground state. After a brief delay, an optical excitation pulse follows
(10x objective, light power of 210 mW). Furthermore, an external
magnetic field of B0 = 8.1 mT is applied to the sample parallel to
one of the {1 1 1} axes via a permanent magnet so that only one
crystallographic NV- direction can be addressed.

Figure 7.3 a) shows the pEDMR spectrum obtained under these
conditions, monitoring the DC current through the interdigit contact
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structure. In contrast to previous pEDMR experiments, where the
spin dependence of comparatively slow recombination or hopping
processes is monitored via a boxcar integration of the current tran-
sients [5, 9, 49, 155, 156] (c.f. chapter 2), the much faster pulse
sequence repetition possible due to the fast photoionization and
spin state initialization allows this vastly simpler approach. On a
background photocurrent level of I = 84 pA resonant decreases of
the photocurrent are observed at νMW = 2.643 GHz and 2.818 GHz,
corresponding to one {1 1 1} orientation parallel to the B0 field and
three off-axis {1 1 1} orientations, respectively. The resonant change
of the current of ∆I = −1.5 pA at 2.643 GHz corresponds to a relative
spin-dependent current change (contrast) of ∆I/I = −1.8 %.

Rabi oscillations are observed in ∆I/I when the length TP of the
microwave pulse is changed, adjusting the waiting time Twait to keep
the repetition time Trep constant (figure 7.3 b)). That Rabi oscillations
are indeed obtained is demonstrated by the inset of figure 7.3
b), where the characteristic linear dependence of the oscillation
frequency νRabi on

√
PMW and, therefore, on the microwave magnetic

field B1 is observed. The Rabi oscillations exhibit an effective de-
phasing time of 600 ns, in accordance with other results on diamond
with natural isotope composition [157, 158]. In all experiments
represented in figure 7.3 b) to d) ∆I/I was determined by cycling the
microwave frequency between the resonant νMW = 2.643 GHz and
two non-resonant frequencies 2.61 GHz and 2.68 GHz [59].

The pulsed electrical detection scheme developed here allows to
detect spin echoes, e.g. by using the pulse sequence depicted on top
of figure 7.4 a) and b). As in the case of optically detected magnetic
resonance (ODMR) [62, 63] and other pEDMR [47] experiments,
the corresponding Hahn echo sequence needs to be extended by a
final π/2-pulse, which projects the coherence echo to a polarization
accessible to electrical readout.

Figure 7.4 a) shows the echo in ∆I/I as a function of the evolution
time τ2 for a fixed evolution time τ1. At τ1 = τ2 the total microwave
pulse applied equals a nutation of 2π, so that the contrast is mini-
mal, in full agreement with figure 7.3 b). For τ2 significantly smaller
or longer than τ1, no coherence echo is formed and the final π/2-
projection pulse leads to an equal distribution of spin states which
do or do not favor photoionization [47, 159]. Indeed, a maximum
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Figure 7.4: a) Spin echo measurement (symbols) with fit of a Gaussian
(line). b) Echo decay measurement showing the first ESEEM
oscillation. The pulse sequence used for the measurements is
shown on top. Tπ is the length of a π-pulse.

∆I/I of −0.7 % is observed for τ1 � τ2 or τ1 � τ2, in reasonable agree-
ment with the contrast for π/2-pulses found in the Rabi oscillation
experiment.

Finally, these echo experiments can also be performed as a func-
tion of total evolution time τ1 + τ2 with τ1 = τ2, giving access, e.g. to
decoherence and to weak hyperfine interaction via electron spin
echo envelope modulation (ESEEM). Figure 7.4 b) shows an echo
decay experiment on the 2.643 GHz resonance where the oscillation
is caused by ESEEM [65].

Summing up, the experiments shown in figure 7.3 and figure 7.4
clearly demonstrate that all fundamental coherent experiments can
be performed on the NV- center with the electrical readout scheme
developed here.
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Figure 7.5: a) Contrast ∆I/I for a π-pulse as a function of the pulse
length Tion of the ionization pulse for different ionization pulse
powers Pion. b) ∆I/I as a function of the pulse length Treset of an
additional reset pulse for different reset pulse powers Preset. The
pulse sequence used is shown on top of the figure. c) Photocurrent
through the sample as a function of the laser power. The green
line is a fit of a polynomial of degree two, the red line is a fit of a
linear function.

7.5 Pulse sequence optimization

We now turn to study the contrast that can be obtained by pulsed
electric readout. We therefore place ourselves at B0 = 0, where
all four NV- orientations merge into a single resonance at νMW =

2.87 GHz, and where we can essentially flip NV- with all orientations
into state |2〉 by a microwave π-pulse. Under these conditions we
study the readout contrast as a function of both the duration Tion
and intensity Pion of the readout light pulse (figure 7.5 top), keeping
the illumination as homogeneous as possible by widening the laser
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beam with the 5x objective (figure 7.5 a)). For each power we find an
optimum pulse length between a regime of too short pulses, where
the ionization of NV- mostly takes place on a timescale faster than the
shelving process, and too long pulses, where mostly NV- contribute
to the current which have lost their spin information by a decay
through the ISC or by a preceding ionization. Optimizing Pion and
Tion for the sample studied, we reach an optimum contrast of −14 %
for Pion = 100 mW. As will be discussed below, this value is probably
limited by ionization of background substitutional nitrogen donors
N0

s [143, 160].
The pulse powers and lengths optimal for readout may not be

optimal for NV- initialization and conversion of NV0 to NV-. Therefore
in figure 7.5 b), we introduce a second laser pulse to separate the
ionization process from the NV- initialization. Here ∆I/I is plotted
against the reset pulse length Treset for different reset pulse powers
Preset. Small Preset improve ∆I/I for increasing Treset. The optimal
Preset = 3.1 mW leads to a maximal ∆I/I of −17 % which is reached
for Treset ≥ 3 µs. For higher Preset the reset pulse itself starts to ionize
the NV- centers, which decreases ∆I/I.

7.6 Monte-Carlo simulation

We can quantitatively reproduce these observations by a Monte-Carlo
model of the NV- center’s optical cycle together with photoionization
and recharging of the NV0 (figure 7.6 a)) using the partial lifetimes
of reference 161. The excitation time t from the 3A2 ground state
of the NV- to its 3E excited state, the characteristic time a · t of the
ionization process and the lifetime of the ionized state tNV0 are used
as parameters in the simulation.

Following reference 162 the photocurrent through the diamond
sample is I = eGg, with the elemental charge e, the charge carrier
generation rate G and the photoconductive gain g. Since the charge
carrier generation rate is not constant throughout the measurement,
we replace G by its mean

G =
1
Tion

∫ Tion

0
G (t) dt =

N

Tion
, (7.2)
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with N the number of charge carriers generated during Tion. To
account for a background current Ib, originating from the ionization
of N0

s , we add a generation of further electrons with a rate GN0
s

= b/t.
Microwave pulse imperfections yielding a mixture between |1〉 and
|2〉 at the start of the experiment are described by a parameter p
multiplied with the contrast curve. The contrast then becomes

∆I

I
= p

I|2〉 − I|1〉
I|1〉 + Ib

= p
G |2〉 − G |1〉
G |1〉 + GN0

s

= p
N|2〉 − N|1〉
N|1〉 +

bTion
t

, (7.3)

where the subscripts |1〉 and |2〉 denote the value for the initial states
|1〉 and |2〉, respectively.

The values for N|1〉 and N|2〉 are calculated by a Monte-Carlo simu-
lation using the algorithm sketched in figure 7.6 b). At the start, the
time t is set to zero and the state of the NV- is initialized either to |1〉
or |2〉. Then, we set the auxiliary variable ∆t, which keeps track of
the time until a transition happens, to zero and calculate a random
number r ∈ [0,1). This number is compared with the probability pd
for a decay during the time of a simulation step tstep.

To find pd we start with the definition of an exponential decay of a
quantity M with the lifetime τ and the decay rate κ

dM
dt

= −κM = −1
τ
M, (7.4)

which can be reordered to yield

−dM
M

=
dt
τ

= pd. (7.5)

−dM
M can be interpreted as the ratio of centers, which decay in the

time dt, or the probability pd for a single specimen to decay in dt.
Since the simulation progresses in discrete steps tstep, dt is replaced
with tstep for all calculations. If r > pd, ∆t is increased by tstep and a
new random number r is generated. This process continues until
r ≤ pd, at which point a new state for the NV is chosen with the help
of another random number r ∈ [0,1) according to the probability
pnew state to end up in a specific decay channel from the current state.
This probability is calculated by comparing the partial decay rate
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Figure 7.6: a) Level scheme and transition times [161] used for the
Monte-Carlo simulation. b) Flow chart of the numerical simulation.
c) Test of the Monte-Carlo simulation for a single decay channel
with a decay constant of τ = 15 ns. The red curve is a fit of
equation 7.8.
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κnew state into this state with the total decay rate κtotal

pnew state =
κnew state

κtotal
. (7.6)

Afterwards, the time t is increased by ∆t. If t is greater than
the maximal runtime of the simulation tmax, the simulation ends.
Otherwise, the simulation checks if the transition from the initial
state to the new state excites a photon, electron or hole and adds
one count in the respective photon, electron or hole array at the
position t if applicable and jumps back to the instruction where ∆t
is set to zero. Since this is a statistical process, the simulation is
repeated up to tmax several times. To find N|i〉 we take the sum over
the electron and hole arrays ei and hi corresponding to the initial
state i according to

N|i〉 (t) =

t∑
j=0

1
2

(ei [j] + hi [j]) . (7.7)

The factor 1
2 accounts for the fact that blocking contacts will only

generate a current corresponding to the elemental charge if an
electron and a hole are generated and leave the device [162].

In order to verify this algorithm, we tested it on a decay of one
species with only one decay channel and no excitation pathways.
This should result in the well-known exponential decay. We chose
a lifetime of τ = 15 ns and the simulation was repeated 1000 times.
Figure 7.6 c) plots the number of decays during one step tstep as a
function of the time t. Since the number of decays is proportional to
the amount of non-decayed centers, it should follow an exponential
curve, too. The red line is a fit of

y (t) = A · e− tτ (7.8)

to the simulation and yields τ = 14.9 ns, which is in very good
agreement with the intended lifetime and therefore confirms the
validity of the algorithm.

We now use this algorithm inside of a Nelder-Mead simplex fitting
algorithm to fit the simulated contrast to the data presented in
figure 7.5 for the three laser powers of 53 mW, 100 mW and 230 mW.
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Figure 7.7: a) Contrast ∆I/I as a function of the length of the ioniza-
tion pulse Tion for three pulse powers taken from figure 7.5 and
simultaneous fit of the Monte-Carlo simulation (black lines). b)
Simulated charge carrier generation rates G|1〉 and G|2〉 plotted as a
function of the time during the ionization pulse Tion for the initial
states |1〉 and |2〉, respectively. The black line depicts a constant
background charge carrier generation rate GN0

s
originating from

substitutional nitrogen donors.

Wherever possible, we use the lifetimes published by Robledo et al.
[161] (c.f. figure 7.6a). This leaves us with the fit parameters a, b,
p, tNV0 and tfit of which a, b, p and tNV0 are used globally for all fits,
while t = tfit · 100 mW/Pion is scaled according to the laser powers
Pion. The turn-on-time of the AOM is simulated by linearly increasing
Pion during the first 50 ns of the pulse. To keep the complexity of
the simulation down we use only one tNV0 for all three fits, which
overestimates the generated photocurrent for small laser powers
and vice versa.

Figure 7.7 a) compares ∆I/I and the fit of the Monte-Carlo simula-
tion, which are in very good agreement. We find tfit = 22 ns, a = 1.1,
b = 0.19, p = 0.75 and tNV0 = 10 ns. A t in the range of tens of ns is
in agreement with the onset of a saturation in the cw photocurrent
at Pion = 100 mW (c.f. figure 7.5 c)) which we expect to happen at the
point where the excitation time from 3A2 to 3E reaches the partial
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Figure 7.8: a) Simulated ∆I/I as function of Tion for different Pion under
optimal conditions. b) Sensitivity ηpEDMR as a function of Tion for
different Pion under optimal conditions. ηODMR marks the typical
ODMR sensitivity.

lifetime for the transition from 3E to 3A2. p < 1 is probably caused
by the limited pulse fidelity at B0 = 0, since differently oriented
NV- centers have different Rabi frequencies.

The model and the parameters determined allow us to simulate
the charge carrier generation dynamics in our sample during a
laser pulse. Figure 7.7 b) shows the charge carrier generation rate
G|1〉(t) and G|2〉(t) for Pion = 100 mW. The horizontal line depicts
a background current originating from N0

s at GN0
s

= 8.6 µs−1. For
times longer than 400 ns all spin-dependent signal is lost and the
system is in a steady state with G̃|1〉 = G̃|2〉 = 4.5 µs−1, each at about
1/2 the charge carrier generation rate originating from N0

s . For
Tion = 150 ns we find N|1〉 = 1.0, N|2〉 = 0.6 and a N0

s background of
1.3 by integration over the curves, again indicating that the contrast
is limited by N0

s ionization.

7.7 Possible sensitivity

In order to explore the sensitivity of the electrical detection of NV- we
simulate ∆I/I without a background current Ib, with instantaneous
AOM turn-on, and assuming a flawless pulse fidelity p = 1. Figure

145



7 EDMR of nitrogen vacancy centers in diamond

7.8 a) plots ∆I/I simulated under these conditions versus Tion. Again,
∆I/I has an optimal Tion for each Pion. The most notable difference
is the maximal ∆I/I of −46 % which is predicted for Pion = 21 mW.

However, we expect maximum sensitivity to be obtained for rather
different optical pulse conditions. A sensitivity η is usually defined
by

η =
1

SNR
· N√

∆f
, (7.9)

with the signal-to-noise ratio SNR, the number of spins N and the de-
tection bandwidth ∆f of the particular experiment [163]. For ODMR
we find the SNR using Poissonian statistics, where the difference in
photoluminescence (PL) counts ∆cts = cts|1〉 − cts|2〉 for the different
initial states is divided by the shot noise generated by the number
of counts

√
cts|1〉 of the bright initial state |1〉. For pEDMR we use

the difference in the current ∆I divided by the sum of the shot noise
generated by the total current

√
2eI∆f [164] and the amplifier input

noise δIamp ·
√

∆f . Thus we find

ηODMR =

√
N

c
√
ctssingle∆f

=

√
N

c
√
ratesingle

and (7.10)

ηpEDMR =

√
2eIsingleN + δIamp

cIsingle
, (7.11)

where the subscript single denotes the corresponding value for a
single NV- center, c is the contrast of the respective measurement
and ratesingle is the effective count rate of the measurement.

Figure 7.8 b) plots the simulated sensitivity ηpEDMR at a sequence
repetition rate of 500 kHz and for δIamp = 0.2 fA

√
Hz−1 versus Tion.

For each Pion the sensitivity decreases (i.e. improves) with longer
Tion because of the increased Isingle and c for longer Tion. After reach-
ing an optimal value ηpEDMR increases again since the decrease
in c cancels the effects of the higher currents. The expected op-
timal sensitivity of 0.008 spins

√
Hz−1 for pEDMR is not reached

for the Pion corresponding to the maximum contrast but rather for
170 mW < Pion < 230 mW and Tion ≈ 200 ns.

For comparison we estimate the sensitivity for a typical ODMR
experiment on a single NV- center with a count rate of 100 kcts/s
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Figure 7.9: a) NV- photoluminescence intensity map. b) Photolumi-
nescence intensity map for a single NV- using the same spatial
dimensions as panel a) and multiplied by 100 to fit into the color
coding of a). c) Current map for a bias voltage of 5 V. d) Current
map for a bias voltage of −5 V. The position of the finger structure
in a) and c) is depicted in gray.

and a contrast of 30 %. With a typical integration time over the
fluorescence of 300 ns and a shot repetition time of 1/ (500 kHz) =

2000 ns, the effective count rate becomes 15 kcts/s. Therefore
ηODMR = 0.027spins√

Hz
, which is marked by the black horizontal line in

figure 7.8 b). This value is a factor of 3 worse than the simulated
sensitivity of the electrical detection. Hence, replacing the optical
detection with electrical detection should not come at a reduced
sensitivity.

7.8 Position-dependent current

Finally, to gain insight on the spatial origin of the photocurrent,
simultaneous photoluminescence intensity and photocurrent mea-
surements were performed. Figure 7.9 a) depicts the color-coded
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NV- photoluminescence intensity map of the diamond sample using
a 100x objective and continuous illumination with a laser power
of 1.2 mW (corresponding to 30 mW with the 5x objective). The
approximate location of the contacts is indicated. A maximum PL
intensity of 1.6 Mcts/s is observed. It originates from approximately
130 NV- centers, as demonstrated via PL measurements on a single
NV- (confirmed via a Hanbury Brown-Twiss experiment) using the
same optics and laser power which yields a count rate of 12 kcts/s
as shown in the inset of figure 7.9 b).

Figure 7.9 c) shows the simultaneously measured photocurrent
map. The generation of photocurrent in our metal-semiconductor-
metal (MSM) photoconductor occurs only near to one contact and
is limited to a depth of 10 µm below the sample. This limitation to
ensembles which are at most 10 µm below the surface is probably
caused by the distance between the electrodes of 10 µm, which leads
to a nearly vanishing electric field 10 µm below the surface (simula-
tion data not shown). The position dependence of the photocurrent
along the lateral x-axis is caused by the MSM contacts in a similar
way as in our position-dependent pEDMR experiments in section 6.5.
Notably, the position of optimal photocurrent generation changes
to the opposite metal contact when the bias voltage is reversed (c.f.
figure 7.9 d)) as we would expect from the results in section 6.5.

We can use these measurements to put the sensitivity found
in section 7.6 in absolute numbers: Using a 100x objective and
Pion = 1.2 mW, a CW photocurrent of I = 32 pA is generated in our
sample. With our estimation of 130 NV- in the focal volume, a
single NV- appears to generate a current of Isingle = 240 fA under
these illumination conditions. Simulations under the correspond-
ing power of 30 mW for the 5x objective predict Isingle = 580 fA so
that the photoconductive gain in our samples is g = 0.35 < 1, as
expected for a metal-semiconductor-metal photodetector. Under
the optimized conditions given above (Pion = 170 mW, 5x objective,
500 kHz repetition rate, g = 0.35, Tion = 200 ns, Ib = 0, p = 1), a
single NV- should exhibit a ∆I = 54 fA for Isingle = 190 fA, which
should be easily measurable.
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7.9 Summary and outlook

In summary, using a combination of pulsed photoionization and
pulsed spin manipulation, we have demonstrated electrical readout
of the coherent control of an ensemble of NV- centers. With the help
of a Monte-Carlo simulation we have improved our understanding
of the photoionization dynamics and find that single-spin (multi-
shot) detection should be feasible electrically, possibly with a higher
sensitivity than optically. These results motivate a range of further
studies, in particular into the relative benefits of photoconductors
with ohmic or Schottky contacts and into more advanced photoion-
ization schemes using different photon energies [154, 160, 165].
Furthermore, EDMR based on photoionization should be transfer-
able to other defects and other host materials such as SiC [139–141],
which might allow even easier integration of electrical spin readout,
e.g. with bipolar device structures.
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8
Summary

The main goal of this thesis was the examination of shaped pulses for
pulsed electrically detected magnetic resonance. In order to achieve
this goal a spectrometer capable of broadband shaped microwave
(tested for frequencies ranging from 2 GHz to 18 GHz), radio fre-
quency (tested around 4 MHz) and gradient pulse excitation (tested
from DC to about 2 MHz) was built. To make full use of this setup
broadband microwave structures were designed, which work very
satisfactorily over at least this frequency range. Both the setup and
the microwave structures were tested over their whole frequency
range using shaped microwave pulses and show a good signal-
to-noise ratio as well as high enough conversion factors so that
all standard pEDMR experiments, including demanding ENDOR
experiments, can easily be performed.

The functionality of adiabatic and optimal control pulses depends
on their specific amplitude and phase functions during the pulse. To
ensure that the shape of the pulse as seen by the spins is as intended,
the setup was calibrated. This includes the characterization and
elimination of IQ mixer imperfections as well as the determination
of the system’s nonlinearities mostly caused by the broadband
amplifier. Due to the high conversion factor of our stripline antennas,
we were able to reduce the microwave power of the pulses to about
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100 mW, which lies well within the linear region of our 10 W amplifier.
This allowed us to use linear system theory and measure the impulse
response, which has a bandwidth of about 2 GHz. Since the pulses
used in this work have at most a bandwidth of 100 MHz, the impulse
response can be neglected, which simplifies the calculation of optimal
control pulses.

With this knowledge, we implemented and compared adiabatic
and optimal control pulses using pulse trains, which concatenate
N universal rotation pulses. Depending on the B1-inhomogeneity
of the sample, a single adiabatic BIR-4 pulse improves the EDMR
signal intensity of a π-pulse by a factor of up to 1.7 compared
to a rectangular pulse. For samples with a high B1-homogeneity
improvements are found only for high rotation angles. Here, in
pulse train experiments, adiabatic and optimal control pulses show
EDMR signals for rotation angles of at least 16π, whereas the
signal generated by rectangular pulses is completely gone after an
8π rotation. At these rotation angles, the optimal control pulses
outperform the adiabatic pulses due to their shorter length by 29 %
and 18 % for π/2- and π-pulses, respectively.

To evaluate the usefulness of adiabatic and optimal control pulses
for pulse sequences, an echo sequence was implemented using
those pulses. Due to its total sequence length, the adiabatic echo
performs worse than the rectangular echo for experiments where
a short echo is required, but has a 23 % higher amplitude in echo
decay experiments. An echo sequence built from optimal control
universal rotation pulses shows roughly the same improvement in
decay experiments and is slightly better than rectangular pulses if
a short echo is required due to the shorter length of the individual
pulses compared to adiabatic ones. Using cooperatively optimized
optimal control pulses, which allow to shorten the pulse lengths of
each individual pulse in an echo sequence by at least a factor of two,
we were able to improve the amplitude in decay experiments by 38 %
with respect to the rectangular echo. For a sample with a higher
B1-inhomogeneity this value was increased to 50 %. To conclude,
depending on the B1-inhomogeneity of the samples, adiabatic and
optimal control pulses can improve the signal by a factor of up to
1.7 in experiments with single pulses and also in more sophisticated
sequences.
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Taking into account the results of the antenna optimization and
the successful implementation of adiabatic and optimal control
pulses we modified our setup and microwave structures to enable
magnetic resonance imaging. Using MRI, we determine the spatial
origin of the pEDMR signal in the Au/Cr finger structures typically
used in our experiments with a resolution of at least 1.5 µm. We use
this information to identify the physical processes which contribute
to the signal formation in the framework of a metal-semiconductor-
metal structure and suggest improvements to the finger structure,
which could increase the measured signal by a factor of two. For
samples with finer details, our setup should be able to resolve
features as small as 0.34 µm and promises resolutions of up to 0.5 Å
for isotopically purified samples in combination with single-shot and
single-spin EDMR detection via a single electron transistor.

In a short digression, the electrical spin readout of NV- centers is
demonstrated. Combining pulsed photoionization with a continuous
current measurement we are able to detect coherent spin motions of
ensemble sizes down to 130 NV- centers. We optimized the parame-
ters of the readout and simulated the NV- center’s dynamics during
a light pulse with a Monte-Carlo simulation. These simulations sug-
gest that the electrical detection should be able to read out a single
NV- center and even outperform the conventional optical detection,
which makes it a suitable candidate for the use in NV--center-based
metrology applications where an optical readout using a confocal
microscope is cumbersome.
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[40] T. Nöbauer, A. Angerer, B. Bartels, M. Trupke, S. Rotter, J.
Schmiedmayer, F. Mintert, and J. Majer, Physical Review
Letters 115, 190801 (2015).

[41] T. E. Skinner, N. I. Gershenzon, M. Nimbalkar, W. Bermel,
B. Luy, and S. J. Glaser, Journal of Magnetic Resonance 216,
78 (2012).

[42] C. Poole, Electron spin resonance (John Wiley & Sons, Hobo-
ken, 1967).

[43] N. J. Stone, Atomic Data and Nuclear Data Tables 90, 75
(2005).

[44] M. Steger, T. Sekiguchi, A. Yang, K. Saeedi, M. E. Hayden,
M. L. W. Thewalt, K. M. Itoh, H. Riemann, N. V. Abrosimov,
P. Becker, and H.-J. Pohl, Journal of Applied Physics 109,
102411 (2011).

[45] M. Suckert, F. Hoehne, L. Dreher, M. Kuenzl, H. Huebl, M.
Stutzmann, and M. S. Brandt, Molecular Physics 111, 2690
(2013).

[46] E. B. Hale and R. L. Mieher, Physical Review 184, 739 (1969).

[47] H. Huebl, F. Hoehne, B. Grolik, A. R. Stegner, M. Stutz-
mann, and M. S. Brandt, Physical Review Letters 100, 177602
(2008).

[48] P. R. Cullis and J. R. Marko, Physical Review B 11, 4184
(1975).

[49] C. Boehme and K. Lips, Physical Review B 68, 245105 (2003).

[50] D. J. Griffiths, Introduction to quantum mechanics (Pearson
Prentice Hall, Upper Saddle River, 2005).

[51] F. Bloch, Physical Review 70, 460 (1946).

[52] M. A. Bernstein, K. F. King, and K. J. Zhou, Handbook of MRI
pulse sequences (Elsevier Academic Press, London, 2004).

158

http://dx.doi.org/10.1038/ncomms4371
http://dx.doi.org/10.1038/ncomms4371
http://dx.doi.org/10.1103/PhysRevLett.115.190801
http://dx.doi.org/10.1103/PhysRevLett.115.190801
http://dx.doi.org/10.1016/j.jmr.2012.01.005
http://dx.doi.org/10.1016/j.jmr.2012.01.005
http://dx.doi.org/10.1016/j.adt.2005.04.001
http://dx.doi.org/10.1016/j.adt.2005.04.001
http://dx.doi.org/10.1063/1.3577614
http://dx.doi.org/10.1063/1.3577614
http://dx.doi.org/10.1080/00268976.2013.816796
http://dx.doi.org/10.1080/00268976.2013.816796
http://dx.doi.org/10.1103/PhysRev.184.739
http://dx.doi.org/10.1103/PhysRevLett.100.177602
http://dx.doi.org/10.1103/PhysRevLett.100.177602
http://dx.doi.org/10.1103/PhysRevB.11.4184
http://dx.doi.org/10.1103/PhysRevB.11.4184
http://dx.doi.org/10.1103/PhysRevB.68.245105
http://dx.doi.org/10.1103/PhysRev.70.460


[53] W. B. Heard, Rigid body mechanics: mathematics, physics and
applications. (WILEY-VCH, Weinheim, 2006).

[54] J. J. Henderson, C. M. Ramsey, H. M. Quddusi, and E. del
Barco, Review of Scientific Instruments 79, 074704 (2008).

[55] M. Mrazek, J. Mlynarczyk, D. S. Rudnicki, and W. Gawlik,
Applied Physics Letters 107, 013505 (2015).

[56] I. Kan, Y. Soeno, T. Roppongi, and Y. Nozaki, Applied Physics
Letters 110, 202404 (2017).

[57] F. Bloch and A. Siegert, Physical Review 57, 522 (1940).

[58] J. Lu, F. Hoehne, A. R. Stegner, L. Dreher, M. Stutzmann,
M. S. Brandt, and H. Huebl, Physical Review B 83, 235201
(2011).

[59] F. Hoehne, L. Dreher, J. Behrends, M. Fehr, H. Huebl, K. Lips,
A. Schnegg, M. Suckert, M. Stutzmann, and M. S. Brandt,
Review of Scientific Instruments 83, 043907 (2012).

[60] I. Katz, M. Fehr, A. Schnegg, K. Lips, and A. Blank, Journal
of Magnetic Resonance 251, 26 (2015).

[61] M. J. Duer, Introduction to solid-state NMR spectroscopy (Wiley-
Blackwell, Oxford, 2004).

[62] W. G. Breiland, C. B. Harris, and A. Pines, Physical Review
Letters 30, 158 (1973).

[63] L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F.
Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, Sci-
ence 314, 281 (2006).

[64] E. L. Hahn, Physical Review 80, 580 (1950).

[65] P. L. Stanwix, L. M. Pham, J. R. Maze, D. Le Sage, T. K. Yeung,
P. Cappellaro, P. R. Hemmer, A. Yacoby, M. D. Lukin, and
R. L. Walsworth, Physical Review B 82, 201201 (2010).

[66] E. R. Davies, Physics Letters A 47, 1 (1974).

[67] J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar,
B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager,
and S. A. Lyon, Nature 455, 1085 (2008).

[68] P. C. Lauterbur, Nature 242, 190 (1973).

159

http://dx.doi.org/10.1063/1.2957621
http://dx.doi.org/10.1063/1.4923252
http://dx.doi.org/10.1063/1.4983778
http://dx.doi.org/10.1063/1.4983778
http://dx.doi.org/10.1103/PhysRev.57.522
http://dx.doi.org/10.1103/PhysRevB.83.235201
http://dx.doi.org/10.1103/PhysRevB.83.235201
http://dx.doi.org/10.1063/1.4704837
http://dx.doi.org/10.1016/j.jmr.2014.11.008
http://dx.doi.org/10.1016/j.jmr.2014.11.008
http://dx.doi.org/10.1103/PhysRevLett.30.158
http://dx.doi.org/10.1103/PhysRevLett.30.158
http://dx.doi.org/10.1126/science.1131871
http://dx.doi.org/10.1126/science.1131871
http://dx.doi.org/10.1103/PhysRev.80.580
http://dx.doi.org/10.1103/PhysRevB.82.201201
http://dx.doi.org/10.1016/0375-9601(74)90078-4
http://dx.doi.org/10.1038/nature07295
http://dx.doi.org/10.1038/242190a0


Bibliography

[69] A. N. Garroway, P. K. Grannell, and P. Mansfield, Journal of
Physics C: Solid State Physics 7, L457 (1974).

[70] F. Schneider and G. R. Fink, eds., Funktionelle MRT in psy-
chiatrie und neurologie (Springer, Berlin, 2007).

[71] V. Hombach, Kardiovaskuläre magnetresonanztomographie
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