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Abstract

Environmental metagenomic studies are a rich source for unraveling genetic diversity of yet un-

known and mostly unculturable microbes, with terabytes of short read sequencing data already

publicly available. The growth rate of such data has been increasing steadily, driven by the expo-

nential increase in throughput, which has been outperforming Moore’s law by two-fold in the last

decade. To date, the main bottleneck is not the generation but rather the analysis of sequence data.

To address this analysis bottleneck we propose three novel methods: (1) MMseqs, a fast and

sensitive clustering method, (2) MMseqs2, a fast and sensitive homology search method, and (3)

Linclust, the first sequence clustering algorithm whose runtime scales linearly with the number of

sequences and independently of the number of clusters obtained.

Clustering is the process of assigning sequences to distinct groups based on similarity. Thus,

clustering serves as a means to discover biological connections or define families of homologous

sequences. Furthermore, clustering can speed up downstream analysis considerably by reducing

highly similar sequences to a single sequence. MMseqs is a sensitive all-against-all search-based

clustering tool that can cluster huge protein sets with high sensitivity. Current fast state-of-the-art

clustering methods lack sensitivity below 50% while MMseqs detects similarities at 30% sequence

identity. We show that our method is not only more sensitive but also faster than other state-of-

the-art methods.

Homology search is widely used in life science research to infer the functions and structures of

the novel protein sequences by identifying significant similarities to known sequences. Sensitive

methods such as BLAST/PSI-BLAST are too slow to handle huge data sets. Fast methods trade

sensitivity for runtime speed, leading to many missed annotations. To address this dilemma, we

developed MMseqs2, a successor to MMseqs, which is as sensitive as BLAST but 35 times faster.

Moreover, MMseqs2 is the first fast iterative profile search tool with even higher sensitivity than

that of PSI-BLAST at 400 times the speed. MMseqs2 also supports fast reverse profile searches,

which we used to annotate 1.1 billion metagenomic protein sequences in 8.3 hours on a single 28

core computer. The speed and sensitivity of MMseqs2 makes it a powerful tool to annotate protein

sequences in the era of big data.

State-of-the-art sequence clustering methods scale in O(NK) where N is the input set size and K

is the amount of clusters. Since K is often close to N, these methods follow a nearly quadratic

runtime complexity. Linclust is the first algorithm that overcomes this quadratic runtime and

runs in linear time O(N). Linclust can cluster protein sets down to 50% sequence identity three

to four orders of magnitude faster than other methods. We clustered 1.6 billion protein sequences

from about ∼2200 metagenome and metatranscriptome assemblies down to 50% sequence identity

using Linclust, which took 10 hours on a single server with 28 cores. The near quadratic run time

of state-of-the-art methods would make this analysis nearly infeasible.





Zusammenfassung

Daten aus metagenomischen Studien sind eine reichhaltige Quelle für Informationen über genetis-

che Diversität. Viele Terabyte an Sequenzdaten dieser Studien sind öffentlich frei verfügbar und

wachsen stetig an. Der Grund für das schnelle Wachstum sind die exponentiell abnehmenden

Kosten und der stetig steigende Durchsatz der Sequenzierungsverfahren. Technische Innovatio-

nen in diesem Feld haben das Moore’sche Gesetz in den letzten zehn Jahren um ein Zweifaches

übertroffen. Aktuell ist nicht mehr die Erzeugung, sondern die Analyse der Sequenzdaten der

größte Zeit- und Kostenfaktor.

In dieser Arbeit stellen wir drei neue Methoden der Analyse metagenomisher Daten vor, die

schneller und somit kostengünstiger sind als bisherige Methoden: (1) MMseqs, eine schnelle

und sensitive Clustering-Methode, (2) MMseqs2, eine schnelle und sensitive Methode zur Suche

nach homologen (verwandten) Sequenzen und (3) Linclust, den ersten Sequenz-Clustering-

Algorithmus, dessen Laufzeit linear mit der Anzahl der Sequenzen und unabhängig von der An-

zahl der Cluster wächst.

Clustering teilt Sequenzen in biologisch verwandte Gruppen ein. MMseqs ist ein sensitives

Clustering-Tool, dass hierfür alle Sequenzen der gegebenen Menge miteinander vergleicht und

diese dann auf Grundlage der ermittelten paarweisen Sequenzidentität in Gruppen einteilt. MM-

seqs kann Sequenzähnlichkeiten von bis zu 30% der paarweisen Sequenzidentität erkennen, wobei

es bis zu 2500 Mal schneller ist, als vergleichbare Clustering-Methoden.

Suche nach homologen Sequenzen ist in den Biowissenschaften ein fundamentaler Baustein zur

Vorhersage der Funktion eines Proteins. Viel genutzte sensitive Such-Methoden, wie PSI-BLAST

und BLAST, sind zu langsam, um viele Suchen in einer großen Datenbank durchführen zu können.

Gleichzeitig sind andere schnelle Methoden nicht sensitiv genug und können viele Sequenzen

somit nicht zuordnen. MMseqs2 ist 35 Mal schneller als BLAST und weist eine ähnliche Empfind-

lichkeit der Suche auf. Die Profil-basierte Suche in MMseqs2 ist ähnlich empfindlich wie PSI-

BLAST und etwa 400 Mal schneller. Wir konnten damit 1,1 Milliarden metagenomischer Protein-

sequenzen in 8,3 Stunden auf einem Computer mit 28 Kernen zu bekannten Sequenzen zuordnen.

Ein großes Problem für das Clustering der metagenomischen Sequenzdaten stellt die Laufzeit

der derzeit verfügbaren Clustering-Algorithmen dar. Aktuelle Methoden skalieren mit einer

Laufzeitkomplexität von O(NK), wobei N die Anzahl der analysierten Sequenzen und K die re-

sultierende Anzahl der Cluster darstellt. Hiermit ergeben sich fast quadratische Laufzeiten, da

K oft eine ähnliche Größenordnung wie N hat. Linclust ist der erste Clustering-Algorithmus,

dessen Laufzeit linear in N und unabhängig von K ist. Linclust kann Proteinsequenzen mit

bis zu 50% Sequenzidentität einem Cluster zuweisen und ist dabei drei bis vier Größenordnun-

gen schneller als andere vergleichbare Methoden. Wir haben 1,6 Milliarden Proteinsequenzen

von ∼2200 Metagenom- und Metatranscriptom-Assemblierungen mit Linclust in 10 Stunden auf

einem einzelnen Server mit 28 Kernen auf 50% Sequenzidentität geclustert. Mit anderen Metho-

den wäre diese Analyse aufgrund der quadratischen Laufzeit nahezu unmöglich gewesen.
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Chapter 1

Introduction

1.1 Next generation sequencing and the rise of metagenomics

The human genome project started in 1990 and released the first human draft genome in

2001 (IHGSC 2001). DNA extraction and sequencing depended heavily on human labor.

The genome was split into 150 kilobase-long fragments and each fragment was then se-

quenced using shotgun Sanger sequencing (Sanger, Nicklen, and Coulson 1977). Retrieving

this genetic information was a billion dollar effort. Eighteen years later, thanks to advances

in sequencing technology, these costs dropped to 1,000$ per genome. (Hayden 2014a; Hay-

den 2014b). During the last decade, costs and throughput of next-generation sequencing

have dropped two-fold each year – twice faster than computational costs decreased (Lander

2009) – thus, reducing sequencing costs by several orders of magnitude. The human labor

costs involved in sequencing also became negligible. As a result, in the last years, we had a

massive increase of DNA sequence data generation (Muir et al. 2016).

Aside from human genetics, the rapid development of sequencing opened up various

new fields in biology, like metagenomics (Desai et al. 2012). In metagenomics, DNA is

sequenced directly from the environment, allowing us to study the vast majority of mi-

crobes that cannot be cultivated in-vitro (Rappe and Giovannoni 2003). Since the year

2006, there is an exponential increase of publications (see Figure 1.2) containing the word

“metagenome” in the life sciences publication index PubMed (McEntyre and Lipman 2001).

Metagenomic studies impact various fields, finding links between human health and mi-

crobial communities on skin, gut, or the reproductive system. They enrich our understand-

ing of ecology and climate: 50 % of oxygen produced on earth originates from plankton

communities (Field et al. 1998). They enable the discovery of new enzymes for biotechnol-

ogy (Levin et al. 2017), such as new CRISPR systems (Burstein et al. 2016), and of novel

bioactive natural drug compounds, such as an anti-HIV compound (Smith et al. 2018), or

novel antibiotics (Banik and Brady 2010). They aid in the detection of missing evolutionary

links between archaea and eukaryotes (Zaremba-Niedzwiedzka et al. 2017) and offer ways

to study prehistoric diets of the Homo neandertaler (Weyrich et al. 2017).
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1. Introduction

Fig. 1.1. Sequencing price per megabase is falling faster than computing power is in-
creasing. The cost to sequence a base pair is dropping faster than Moore’s Law. Moore’s Law
describes a technology trend in which the number of transistors in microprocessors double ap-
proximately every two years. Therefore, at least for well parallelizable problems, the available
computational power doubles every two years. Sequencing costs of second and third genera-
tion sequencing technology are halving faster than computational power is doubling, with an
ever increasing gap. The graphic was taken from the NHGRI Genome Sequencing Program
(Wetterstrand 2017).

These studies depend heavily on high throughput sequencing and only became feasible

with the introduction of next generation sequencing in 2005 (Margulies et al. 2005) . Esti-

mates are claiming that to sequence the genomes of all bacteria present in a single gram of

soil terabases of sequencing data would be needed (Rodriguez-R and Konstantinidis 2014b;

Rodriguez-R and Konstantinidis 2014a; Howe et al. 2014). This is due to the high genomic

diversity; estimates for the number of distinct genomes in a single gram of soil range from

the thousands (Delmont et al. 2011) to even tens of millions (Gans, Wolinsky, and Dunbar

2005).

Since the effort to sequence every microbial environment is too large for a single labora-

tory to handle, consortiums were started to work on different microbial environments. The

focus of the NIH Human Microbiome Project (Peterson et al. 2009) is to characterise the

human microbiome. The TARA Oceans Consortium (Karsenti 2015) sails around the globe,

sampling and sequencing the oceans. The Earth Microbiome Project (Gilbert, Jansson, and

Knight 2014) aims to characterise all microbial life on earth.
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1. Introduction

These enormous efforts have resulted in hundreds of thousands of metagenomes and

tens of billions of putative genes and protein sequences (Wilke et al. 2016; Markowitz

et al. 2014). The metagenomic sample data sets hosted by the European Bioinformatics

Institute (EBI) had an eightfold increase from 2015 to 2016, from 8000 samples to over

75 000 samples (Cook et al. 2018). The EBI estimates it will be using over an exabyte of

storage in the year 2022 at the current sequencing rate, compared to around 120 petabytes

of metagenomic samples it is hosting now.

Fig. 1.2. Since the introduction of next generation sequencing technology, metagenomic
studies are flourishing. The figure shows a time series of published papers containing the
word “metagenomic”, extracted from PubMed using Medlinetrend (Corlan 2018). Metage-
nomic studies depend heavily on high throughput sequencing methods. Indeed, the introduction
of the first next generation sequencer GS20 (Margulies et al. 2005) was in 2005 followed by an
exponential increase in publications from 2006.

As computing and storage costs are now dominating metagenomics (Scholz, Lo, and

Chain 2012; Prakash and Taylor 2012), the need for fast and sensitive analysis methods is

greater than ever. One of the major bottlenecks in computational analysis are the cluster-

ing (Li et al. 2012) and homology search steps (Scholz, Lo, and Chain 2012). Clustering

protein sequences can considerably reduce the redundancy of sequence sets and costs of

downstream analyses and storage (Sikic and Carugo 2010). Homology search (Pearson

2013) is used to infer biological attributes, such as common function from evolutionary

related sequences, also called homologous sequences.
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1. Introduction

In this thesis I propose methods for fast and sensitive clustering and homology search

techniques. They can help close the gap between sequencing and analysis costs and address

this need. The next chapter will introduce and explain the state of the art in homology search

and clustering of protein sequences.

1.2 Homology Search

Homology search is the backbone of bioinformatics. It is often used to infer or predict

function (Rost 2002), taxonomy (Huson et al. 2007), phylogeny (Huerta-Cepas et al. 2011),

secondary (Rost and Sander 1993; Jones 1999) and tertiary structure (Söding 2005), cellular

localization (Goldberg et al. 2014), single point mutation effect strength (Bromberg and

Rost 2007; Ng and Henikoff 2003), or protein interactions (Snel et al. 2000). Homology can

be detected by comparing a novel sequence against a database of known reference sequences

like the NR (Pruitt, Tatusova, and Maglott 2007), PFAM (Finn et al. 2016), UniProt (Bairoch

et al. 2005; Apweiler et al. 2004), UniRef (Suzek et al. 2007), KEGG (Kanehisa and Goto

2000), PDB (Kouranov et al. 2006), EggNOG (Jensen et al. 2007) or Uniclust (Mirdita et al.

2016).

G1SJM8_2 YTSAGVSVTVQ----ELFRVPVLRASSPLPLQEGSAVTLSCETKLLPDSPPLRLYFS

Q8R142_1 YTSAGVSITVKAFPLELFTTPVLRASV---FPEGSLVTLNCETNLLLQRPGLQLYFS

Fig. 1.3. Visualization of a pairwise sequence alignment of two homologous sequences. An
alignment contains exact matches or substitutions (also called point mutations), and deletions
or insertions (represented by the dash character “-”). This alignment has a sequence identity
of 61.4 %, since 35 out of 57 aligned residues including gaps are identical. A local align-
ment does not necessarily include all residues from the sequences that are aligned. In such
cases, an important attribute of the alignment is the ”length overlap”, which is computed by
(alignment end position − alignment start position)/sequence length. In the example depicted
above, the length overlap is 100% since all residues of both sequences are included in the
alignment.

Pairwise alignments (as shown in figure 1.3) are the basic building blocks of homol-

ogy search. An alignment between two sequences can be used to measure the evolutionary

distance by assessing the substitutions, insertions and deletions that occurred over time.

Figure 1.3 shows a pairwise alignment of a query and a target sequence. A simple measure

for closeness would, for example, be sequence identity. It is the fraction of exact matching

residues divided by the alignment length. A low sequence identity implies a long evolution-

ary distance.
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1. Introduction

Substitution matrices

Substitution matrices are used to describe the evolutionary distance of two amino acids.

The computation of such matrices usually relies on some data from which the tendency

of each amino acid to mutate to another (joint probability) can be estimated as well as the

occurrence of each amino acid (independent probability). Most substitution matrices such as

PAM (Dayhoff and Schwartz 1978) and BLOSUM (Henikoff and Henikoff 1992) are given

as the log of the odds ratio between the estimated joint probability and the independent

probabilities of the amino acids.

The most used protein substitution matrix is the BLOSUM matrix family (BLOcks SUb-

stitution Matrix), which estimates the frequencies of amino acid substitutions from pair oc-

currences in alignments. BLOSUM matrices are denoted as BLOSUMXX, where XX is the

sequence identity threshold that is used to filter the alignments. For example, BLOSUM50

is the BLOSUM matrix created by alignments with sequence identity of 50% and above.

Equation 1.1 describes how to compute a BLOSUM log odds substitution matrix. The

indices i and j describe the residues in the alignment, p is the background frequency, and

Mi, j is the probability of transition from i to j.

S i, j = log
piMi, j

pi p j
= log

Mi, j

p j
= log

Observed Frequency
Expected Frequency

(1.1)

A reduced substitution matrix groups amino acids by similarity. This means that the

alphabet describing the residues of each sequence has less characters than the customary

20 letters. Working in a reduced alphabet can increase the speed of methods or increase

the sensitivity for homology search. Several reduction schemes have been proposed over

the years (Murphy, Wallqvist, and Levy 2000; Li et al. 2003; Edgar 2004; Peterlongo et al.

2008).

Sequence alignment

A pairwise alignment can be thought of as a table in which each row refers to a single

sequence and each column contains homologous characters with respect to the common

ancestor of the sequences (Kumar and Filipski 2007). The number of possible alignments

between a pair of sequences is vast and thus algorithms to compute a single (optimal under

specific criteria) alignment were proposed. One pioneering algorithm is due to Levenshtein

(Levenshtein 1966). His algorithm computed an edit distance between a pair of sequences.

Edit distance measures the edits needed to transform one sequence into another. This al-

gorithm, which was originally designed as an error correction method for binary signals,

considers three single-character edit operations: substitution, deletion and insertion.

Equation 1.2 presents the Levenshtein score computation, which minimizes the number

of edits (operations) to transform one sequence (indexed by i) to another (indexed by j). If

the character at position i is equal to j, then this is considered a match, if not - a mismatch.
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1. Introduction

The runtime of optimization is O(N2), where each of the aligned sequences is of length N.

Backurs and Indyk (2014) (Backurs and Indyk 2014) prove that O(n2−ε) is also the lower

bound of this problem, iff. P , NP.

M(i, j) = min


M(i − 1, j − 1) + 0 Match
M(i − 1, j − 1) + 1 Mismatch
M(i − 1, j) + 1 Deletion
M(i, j − 1) + 1 Insertion

(1.2)

Equation 1.2: Levenshtein algorithm to compute the edit distance between two sequences.
Every edit (Mismatch/Deletion/Insertion) is penalized with a cost of 1.

Later, Needleman and Wunsch (1970) (Needleman and Wunsch 1970) introduced an

optimal global alignment algorithm to the field of computational biology. The Needleman-

Wunsch dynamic programming equation 1.3 is based on a principle similar to the Leven-

shtein algorithm. The difference lies in the consideration of substitutions and an arbitrary

gap penalty function f . Compared to computing the edit distance, the Needleman-Wunsch

algorithm maximises the score, though Sellers showed (Sellers 1974) that finding the max-

imum or minimizing the edit distance is equivalent.

M(i, j) = max


M(i − 1, j − 1) + w(ai, b j) Match or Mismatch

max1≤k≤i{M(i − k, j) + f (k)} Deletion
max1≤l≤ j{M(i, j − l) + f (l)} Insertion

 , 1 ≤ i ≤ m, 1 ≤ j ≤ n

(1.3)

Equation 1.3: Needleman-Wunsch global alignment algorithm optimally maximizes the
matching score between two sequences. Match/Mismatch are expressed by a substitution
function w, Deletions and Insertions are penalized by a function f .

An underlying assumption in computing a global alignment is that the sequences are ho-

mologous to each other from start to end. This assumption is less likely to hold with greater

evolutionary timescales as reflected in reduced global alignment scores. Since, for example,

protein sequence domains can be shuffled, or non-conserved parts can diverge. Therefore,

local alignments are often more biologically relevant. Smith and Waterman (Smith and Wa-

terman 1981) presented a method in 1981 to detect optimal matching subsequences. This

type of alignment is called local alignment. It applies the same dynamic programming

principles as the Needleman-Wunsch algorithm, but it “restarts” the alignment every time

the score becomes negative. It does so by introducing an additional zero value (equation

1.4), resulting in scores that can never be negative. Smith and Waterman have shown that

introducing this change leads to locally optimal solution.

A year later in 1982, Gotoh (Gotoh 1982) introduced a way to model affine gap costs,

that is, choosing the gap open and gap extend penalties independently. Affine gap costs lead

to a higher sensitivity, since a consecutive block of characters that appear in one sequence
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H(i, j) = max


0

H(i − 1, j − 1) + s(qi, t j) Match or Mismatch
maxk≥1{H(i − k, j) + Wk} Deletion
maxl≥1{H(i, j − l) + Wl} Insertion

 , 1 ≤ i ≤ m, 1 ≤ j ≤ n

(1.4)

Equation 1.4: The Smith-Waterman algorithm computes a local alignment between two
sequences. An additional zero condition in the maximisation of the dynamic programming
formula, forces a restart of the alignment, leading to a locally optimal solution.

but not the other are more likely to be a result of a single event than several independent

ones.

Speeding up the Gotoh algorithm

The Gotoh algorithm is the most sensitive sequence-sequence comparison method, since it

computes an optimal solution. Its major drawback is its time complexity of O(N2). Current

protein databases have roughly 108 entries with 350 amino acid residues as the average

entry. Searching an average length protein against these databases would result in roughly

108×350×350 character comparisons. Assuming that each cell can be computed in a single

cycle (in reality it is more than one), running these comparisons on a single 3 GHz CPU

would result in a runtime of more than 60 minutes.

Besides heuristic algorithm optimisation such as banded alignments (Chao, Pearson,

and Miller 1992) hardware optimizations efforts have been made to speed up the Gotoh al-

gorithm (Wozniak 1997; Rognes 2011; Zhao et al. 2013; Farrar 2007; Li, Shum, and Truong

2007; Liu, Maskell, and Schmidt 2009; Manavski and Valle 2008; Rognes and Seeberg

2000; Szalkowski et al. 2008). These solutions often involve Single Instruction Multiple

Data (SIMD) approaches, which are CPU or GPU extensions to process several data units

with a single instruction. The crucial bottleneck is to overcome is the data dependency

among matrix cells in the dynamic programming equations (see figure 1.4).

Seed-and-extend

Between the release of the first Intel Pentium CPU in March 1993 and the last Pentium

III CPU in Juli 2001, the CPU clock speed increased 20 times, from 66 MHz to 1.4 GHz.

Over the same time span the NCBI Genbank increased over 100 times in size from about

100 000 protein sequences to over 10 million. Altschul et al. (Altschul et al. 1990) were

early to recognize the computational issue associated with exact sequence comparisons and

introduced BLAST (Basic Local Alignment Search Tool), a heuristic method to speed up se-

quence searches. BLAST became the most widly adapted search method with currently over

70 000 citations. It introduced for the first time the seed-and-extend technique, which be-

came the standard for heuristic sequence search methods (Buchfink, Xie, and Huson 2015;
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Fig. 1.4. Speeding up the Gotoh algorithm. Solving the data dependency within the dynamic
programing equations is the main challenge for acceleration, to effectively use current hardware
support for processing multiple data units with a single instruction (SIMD). The figure shows
from left to right four possible solutions to solve the data dependency. In each of these solutions
the matrix cells that are computed in parallel are shown with the same color. Diagonalization
(a) of the parallelization was the first approach, chosen by Wozniak (Wozniak 1997). Rognes
and Seeberg (b) proposed to span the vectors along the query sequence (Rognes and Seeberg
2000). Farrar (c) proposed later a striped version which solves the majority of data dependen-
cies (Farrar 2007). In 2011, Rognes (d) used an inter sequence approach (Rognes 2011). In this
approach the data dependencies are completely solved. However the aligned sequences need to
have a similar length. Figure was taken from master thesis (Steinegger 2014).

Hauswedell, Singer, and Reinert 2014; Tan et al. 2012; Zhao, Tang, and Ye 2012; Ye, Choi,

and Tang 2011; Edgar 2010; Kiełbasa et al. 2011).

Seed-and-extend is the idea of a fast detection of single k-mer (short words of length k)

matches, which are then extended to full gapped alignments. The main acceleration of this

heuristic stems from the notion that most targets are not homologous to the query and thus,

computational operations can be saved if those are quickly filtered out. In accordance, the

BLAST algorithm will continue computation only for pairs that meet a minimal similarity

criterion. This criterion is defined as having two non-overlapping matches on the same

diagonal. The k-mer matches in query-target pairs that met this criterion are next extended.

BLAST implemented this seed-and-extend in the following way: First, the seed stage

(or k-mer prefilter) generates a list of all overlapping k-mers from the query sequence. For
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each k-mer, similar k-mers are computed by enumerating all possible k-mers that have a

higher substitution score than the given threshold. All k-mers are indexed as a finite state

machine following the Aho-Corasick algorithm (Aho and Corasick 1975). This query state

machine runs in linear time over all target sequences to detect k-mer matches. BLAST stores

the diagonal on which a k-mer match occurred. The diagonal is defined as i− j, where i is the

k-mer position in the query and j is the position in the target. Afterwards, each sequences

with at least two non-overlapping k-mer matches on the same diagonal are extended. Both

sides (prefix, suffix) of the k-mer match are extended, until the total substitution score of the

extended segment is negative. All extensions above a certain score threshold are saved as

possible hits. If multiple overlapping matches are detected, then these matches are merged

into one alignment.

A 20-30% faster way of seeding was proposed in 2007 (Shiryev et al. 2007). The idea

was to use a reduced alphabet of size 10 and a k-mer length of 7 and using a hash based

index, instead of using a finite state machine. Longer k-mers have a higher specificity and

create therefore less random database matches. While a reduced alphabet increases the

sensitivity of a k-mer. They optimized both alphabet size and k-mer length to achieve a

better signal to noise ratio and therefore avoiding more non-homologous extensions. In this

work we chose to explore the approach of longer k-mers.

Iterative sequence profile searches

The heuristic formulation of BLAST, as described above, is indeed faster than the full Go-

toh computation while being just slightly less sensitive. To increase sensitivity, PSI-BLAST

(Position-Specific Iterated BLAST), a more sensitive albeit slower variant of the algorithm,

was developed. It was the first method to introduce the concept of iterative profile searches

(Altschul et al. 1997). The major difference between BLAST and PSI-BLAST is how simi-

larities between k-mers are computed. Instead of using a normal substitution matrix it uses a

Position Specific Substitutions Matrix (PSSM) which describes the substitution probability

at for each query sequence position. PSI-BLAST also supports iterative searches, where the

position specific substitution matrix is accumulating more information after each iteration.

The first iteration is a normal sequence sequence BLAST search. The input probabilities for

the next iteration are computed from a multiple sequence alignment created from the search

results. Evolving information improves the sensitivity of detecting remotely homologous

proteins. Additional searches are performed as long as new hits are found.

The iterative profile search concept was later applied to more sensitive software, such as

the Hidden Markov Model based tools HMMer (Eddy 2009), which uses profiles as query

or target database or HHblits (Remmert et al. 2011), which searches with profiles through

profile databases represented as multiple sequence alignments.
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Multiple Sequence Alignments

A multiple sequence alignment is performed on more than two sequences at a time. Fig-

ure 1.5 illustrates a multiple sequence alignment of transmembrane proteins. Unlike with

pairwise alignments, finding the optimal multiple sequence alignment was shown to be an

NP-complete problem (Wang and Jiang 1994). Two equally long sequence can be aligned in

O(N2), where N is the length of the sequence. Finding the optimal solution for M sequences

would require O(NM). Thus, proposed solutions to the multiple alignment problem are all

heuristic in nature. One class of solutions are the progressive alignment methods (Hogeweg

and Hesper 1984), which try to make this problem computationally feasible. These meth-

ods first compute a binary guide-tree based on sequence distance and then perform pairwise

sequences alignments, while traversing the tree bottom-up. The progressive approach is

implemented as part of the state-of-the-art algorithms for multiple sequence alignment T-

Coffee (Notredame, Higgins, and Heringa 2000), MAFFT (Katoh et al. 2002), Kalign2

(Lassmann, Frings, and Sonnhammer 2009) and Clustal Omega (Sievers et al. 2011).

G1SJM8_2 YTSAGVSVTVQ----ELFRVPVLRASSPLPLQEGSAVTLSCETKLLPDSPPLRLYFS

Q8R142_1 YTSAGVSITVKAFPLELFTTPVLRASVSSPFPEGSLVTLNCETNLLLQRPGLQLYFS

P12314_2 YTSAGISVTVK----ELFPAPVLNASVTSPLLEGNLVTLSCETKLLLQRPGLQLYFS

H2PZV3_1 YTSAGISVTVK----ELFPAPVLNASVTSPLLEGNLVTLSCETKLLLQRPGLQLYFS

*****:*:**: *** .***.** * **. ***.***:** : * *:****

Fig. 1.5. Multiple sequence alignment of transmembrane proteins. Every line contains is a sin-
gle homologe protein. The last row describes indicates how conserved each sequence column
is, if the column contains only one letter it is marked with a star character *.

The state of the art in search methods

The majority of state of the art homology search methods use the seed-and-extend technique

(introduced in section 1.2). Most of the speedup results from the seed stage. Seeding can

reduce the search space by five to six orders of magnitude, from 108 to just a few hundred

hits that have to be optimally aligned.

Fastest search methods apply common seeding techniques to speed up the homology

search: they use index structures like hashing, suffix arrays or sorted lists to index the k-

mers of the target database instead of the query sequences like BLAST (Altschul et al.

1997). Some index on both the query and the target side (Buchfink, Xie, and Huson 2015;

Hauswedell, Singer, and Reinert 2014).

Some tools increase sensitivity by allowing one or two mismatches in the k-mer

(Hauswedell, Singer, and Reinert 2014; Kent 2002), others employ reduced alphabets

(Buchfink, Xie, and Huson 2015; Hauswedell, Singer, and Reinert 2014; Tan et al. 2012;

Zhao, Tang, and Ye 2012; Ye, Choi, and Tang 2011). Many methods avoid strongly over-
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lapping k-mers by using spacing in the k-mer (Keich et al. 2004). Spaced k-mers are non-

continuous k-mers with positions, which are excluded from the comparison (“don’t care”

positions). The spaced k-mer pattern 1101 would consider the residues at position 0, 1 and

3 in the k-mer comparison, but would disregard the residue at position 2. The following

chapter describes some of the state of the art search methods in detail.

UBLAST

UBLAST and USEARCH are both search algorithms in the USEARCH software suite

(Edgar 2010). USEARCH is designed to detect high similarities while UBLAST aims to

identify remote homologs. UBLAST uses spaced k-mers in a reduced alphabet. The exact

implementation details of the UBLAST algorithm were not made public by its developers.

LAST

LAST (Kiełbasa et al. 2011) is a software for protein and nucleotide alignments. It follows

the seed-and-extend strategy. The seeding uses a suffix array index structure for the target

sequences. A suffix array contains every possible suffix of the database. It is therefore

possible to vary the k-mer length, which is an advantage of the LAST algorithm. Each

position of the query sequence is extended through lookups in the suffix array. Extending

the seeds leads to a higher specificity and therefore reducing the number of target sequence

hits. Each seed is extended until only ≤ m target sequence hits are left containing this suffix,

where m is a parameter which can be adjusted by the user. All m hits are then aligned using

the banded Gotoh alignment. The runtime of LAST for one query is almost independent of

the target database size. However, the sensitivity is not constant. LAST is the only search

tool that guarantees a similar runtime per query at varying database sizes.

RAPsearch2

RAPsearch2 (Zhao, Tang, and Ye 2012) is a seed-and-extend protein search method. It uses

a reduced alphabet of size 10 and stores all overlapping 6-mers in a collision-free hash table.

For each 6-mer of the query, a lookup in the hash table is done, and later extended. All hits

over a certain extension threshold are locally aligned with the Gotoh algorithm.

DIAMOND

DIAMOND (Buchfink, Xie, and Huson 2015) is yet another seed-and-extend approach.

The seeding takes advantage of a double indexing strategy to detect matches. It uses two

lexicographically sorted lists for the query and target sequences of all overlapping spaced

k-mers in a reduced alphabet of size 11. Next, the two lists are accessed co-linearly and

common seeds are detected between query and target. By default, DIAMOND repeats this

seeding strategy for four different spaced k-mer patterns. All matched seeds are extended
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using a hardware accelerated banded alignment algorithm following a similar approach as

SWIPE (Rognes 2011), presented in Figure 1.4 d.

1.3 Sequence Clustering

Clustering is the process of discovering and grouping of structures in data, based on sim-

ilarity measures. The groups of similar objects found are called clusters and the group

assignment process is called clustering.

There are three major clustering types: (1) partitioning clustering, which clusters the

data in a predefined number of clusters k, with k-means (MacQueen 1967) as the most

important representative of this type, (2) hierarchical clustering, which builds a hierarchy

of clusters, for example through linkage, or (3) density-based clustering, which clusters all

elements that are at most ε distant from each other such as DBSCAN (Ester et al. 1996).

In the following text, I use the term “clustering” to refer to density-based approaches.

The relatedness of protein sequences is usually defined by alignment attributes, such as

sequence identity and sequence length overlap between the aligned sequences. Vector clus-

tering methods rely on extracting a set of numerical features to describe each object (data

point) to be clustered and then computing a metric between data points (e.g., Euclidean dis-

tance). However in the protein homology space, the distance between two non-related, or

evolutionary diverged protein sequences cannot be measured sensibly (Rost 1999). There-

fore, classical clustering approaches, such as DBSCAN, are not a good fit for proteins.

Approaches such as greedy incremental clustering became the standard. The set of proteins

to be clustered is compared to an initially empty set of seed sequences. The algorithm tries

to assign each sequence to one of the clusters. If the clustering criteria are fulfilled, then

the sequence will be assigned to this cluster; if the sequence is not accepted by any existing

seed sequence, then the sequence becomes a new seed sequence.

Sequence clustering, next to homology search, became one of the first steps to analyse

large amounts of sequencing data. It can, for example, be used to reduce redundancy, thus

speeding up downstream analysis. This way, highly similar sequences are represented by

a single sequence, the cluster centroid. Clustering can also be used to define new protein

families, especially when clustering at lower sequence identities (often less than 50%). This

clustering is often done down to sequence identities of less than 50%. Each such protein

family can be represented as a multiple sequence alignment, which can be used to create

profile a database to drive homology search (Remmert et al. 2011).

The state of the art in clustering methods

State of the art clustering methods and their runtime.
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Homology Search and Markov Clustering

A popular way to cluster protein sequences is to combine a homology search method with

Markov clustering (Ester et al. 1996). The first step is to perform an all-against-all com-

parison with a given homology search method. The resulting hits of this search describe

a graph. The nodes of this graph are sequences, which are connected by an edge, if they

fulfill the clustering criteria such as sequence identity and sequence length overlap. This re-

sulting similarity graph is clustered by Markov clustering. The quality of this clustering is

high, since the clustering method can use all possible connections (edges) and can therefore

optimize globally.

The most important drawback is the runtime complexity of O(N2), where N is the num-

ber of sequences.

BLASTclust

Another commonly used approach is BLASTclust (Altschul et al. 1990; Altschul et al.

1997), which is part of the BLAST package. BLASTclust uses a connected component

clustering, which operates on a homology graph. The first step is also an all-against-all

search and graph construction. The graph is clustered by iteratively clustering connected

components (subgraphs). All member of the subgraph build a cluster. BLASTclust is prone

to errors since a single wrong edge in the graph could connect clusters of, for example, two

different protein families.

Runtime of BLASTclust is O(N2), where N are the number of sequences.

CD-HIT

CD-HIT was first published in 2001 (Li, Jaroszewski, and Godzik 2001) and further im-

proved in 2002 (Li, Jaroszewski, and Godzik 2002). CD-HIT introduced a greedy clus-

tering approach. It is an incremental clustering. All sequences are sorted by length and

processed one by one. Each sequence is compared against a set of seed sequences, which is

initially empty. The first sequence will automatically become a seed. The next sequence is

compared against the seed set. The sequence will be assigned to the first seed sequence that

fulfills the clustering criteria. If the sequence does not fulfill the criteria to belong to any

of the existing clusters, it becomes a new seed. In addition, CD-HIT offers a more accurate

but slower mode, in which the sequence is not assigned to the first cluster that satisfies the

criteria but rather to the cluster that fulfills the criteria and has the highest sequence identity.

CD-HIT applies a fast k-mer based prefilter followed by a global alignment. The k-mer

size has to be chosen by the user based on the sequence identity of each cluster. The lower

the sequence identity is, the smaller the k-mer length should be. At 50% sequence identity

CD-HIT recommends 2-mers. Smaller k-mer sizes increase the sensitivity of the software

but also increase the runtime significantly, due to non-homologous random matches.

27



1. Introduction

The runtime of CD-HIT is O(NK), where N is the number of sequence and K is the

number of seed sequences.

UCLUST

UCLUST is a clustering method, which is part of the USEARCH package (Edgar 2010).

UCLUST was built to be a faster version of the CD-HIT algorithm. It also follows the

greedy clustering strategy. Its reduced speed is a result of a faster prefilter. UCLUST

uses the USEARCH algorithm. The prefilter sorts hits by frequency of 5-mer occurrence.

Closely related sequences are more likely to share a high fraction same 5-mers. UCLUST

computes a global alignment for the hits in descending k-mer occurrence order util the

clustering criteria is fulfilled. USEARCH is closed source software and the exact imple-

mentation is unknown.

The runtime complexity is O(NK).

kClust

kClust (Hauser, Mayer, and Söding 2013) was designed to cluster sequences with very low

sequence identities. It is the predecessor to MMseqs (Hauser, Steinegger, and Söding 2016)

and shares some concepts. It consists of two stages: the prefilter and the alignment stage.

kClust also implements the greedy clustering algorithm used in CD-HIT (Li, Jaroszewski,

and Godzik 2001). Input sequences are sorted by length and then searched against the

seed sequences. The main difference between CD-HIT and kClust is the prefilter. The

kClust k-mer size of the prefilter is independent of the target sequence identity. kClust

does not only use exact 6-mers, but also computes similar 6-mers based on a substitution

matrix. Considering similar and longer k-mers helps to keep specificity and sensitivity

high. A heuristic is applied to speed up the alignment. The k-mer matches between two

sequences are combined to a gapped alignment using dynamic programming, without the

need to realign the sequences. The major drawback of kClust is the fact that it is missing

support for multiple CPU cores.

The runtime of kClust is O(NK), similar to that of CD-HIT and UCLUST.
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1.4 Overview of this Work

In Chapter 2, I describe MMseqs (Hauser, Steinegger, and Söding 2016), a method to search

and cluster huge protein sets down to 30% sequence identity. It is a flexible software suite,

through its modular architecture. The three core modules of the software are (1) the prefilter,

which scans a target database very fast for potential hits, (2) the striped vectorized Gotoh

alignment and (3) the greedy set cover (Chvatal 1979) clustering module.

In Chapter 3, I describe MMseqs2 (Steinegger and Söding 2017), a new method for

homology search. MMseqs2 builds upon MMseqs and is designed for fast sequence clus-

tering and search for globally alignable sequences. The fast k-mer based prefilter algorithm

of MMseqs2 improved the sequence search sensitivity and speed. The prefilter detects local

double k-mer matches and extends the hits by an ungapped alignment. Through utilizing

the L1 cache to detect the local double matches, it scales nearly linearly with increase of

CPU cores. MMseqs2 is the first fast sequence search method that supports iterative profile

searches. This way, MMseqs2 reaches sensitivity above PSI-BLAST at hundreds of times

its speed.

In Chapter 4, I describe Linclust (Steinegger and Söding 2018), a new method designed

to cluster protein sets in linear time. Previous methods to cluster databases require O(NK)

runtime, where N is the size of protein sequences and K is the number of clusters. For

huge protein sets, this leads to a near quadratic runtime, since K will become very large.

Linclust is the first method that can cluster protein sets in linear time. The major principle

of Linclust is to pick one representative sequence in an early stage to reduce the number of

computations. Linclust runs four orders of magnitude faster than the current state of the art

methods UCLUST and CD-HIT.

In Chapter 5, I present a novel clustered database called Uniclust (Mirdita et al. 2016).

Uniclust contains the clustered databases Uniclust90, Uniclust50 and Uniclust30, which

are clustered versions of the UniProt database at 90%, 50%, and 30% sequence identity

respectively. In that paper we demonstrate that Uniclust produces more consistent clusters

compared to UniRef90 and UniRef50.

In Chapter 6, I present a fast and accurate functional distance measure using sequence

identity and alignment length which we term ”Homology-derived Functional Similarity of

Proteins” (HFSP). HFSP (Mahlich et al. 2018) can annotate enzyme proteins on the fourth

level of the Enzyme Commission category (Bairoch 2000) at a 83% accuracy and reaches a

40-fold speed up over the previously published method HSSP (Rost 2002).

The final chapter, the Chapter 7, summarizes the dissertation and discusses future de-

velopments.
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Steinegger, Martin and Johannes Söding (2018). “Clustering huge protein sequence sets in

linear time”. In: Nature Communications 9.1, p. 2542. doi: 10.1038/s41467-018-

04964-5.

Suzek, B. et al. (2007). “UniRef: comprehensive and non-redundant UniProt reference clus-

ters.” In: Bioinformatics 23.10, pp. 1282–1288. doi: 10 . 1093 / bioinformatics /

btm098.

Szalkowski, A. et al. (2008). “SWPS3 - fast multi-threaded vectorized Smith-Waterman for

IBM Cell/B.E. and x86/SSE2.” In: BMC research notes 1.1, p. 107. doi: 10.1186/

1756-0500-1-107.

Tan, J. et al. (2012). “Tachyon search speeds up retrieval of similar sequences by sev-

eral orders of magnitude.” In: Bioinformatics 28.12, pp. 1645–1646. doi: 10.1093/

bioinformatics/bts197.

Wang, L. and T. Jiang (1994). “On the Complexity of Multiple Sequence Alignment”. In:

Journal of Computational Biology 1.4, pp. 337–348. doi: 10.1089/cmb.1994.1.337.

Wetterstrand, KA (2017). “DNA Sequencing Costs: Data from the NHGRI Genome Se-

quencing Program (GSP)”. In:

Weyrich, L. S. et al. (2017). “Neanderthal behaviour, diet, and disease inferred from an-

cient DNA in dental calculus”. In: Nature 544.7650, pp. 357–361. doi: 10 . 1038 /

nature21674.

Wilke, A. et al. (2016). “The MG-RAST metagenomics database and portal in 2015”. In:

Nucleic Acids Res. 44.D1, pp. D590–D594.

Wozniak, A (1997). “Using video-oriented instructions to speed up sequence comparison.”

In: Computer applications in the biosciences : CABIOS 13.2, pp. 145–50.

36

https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1093/bioinformatics/bti125
https://doi.org/10.1093/bioinformatics/bti125
https://doi.org/10.1038/nbt.3988; https://www.nature.com/articles/nbt.3988#supplementary-information
https://doi.org/10.1038/nbt.3988; https://www.nature.com/articles/nbt.3988#supplementary-information
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1093/bioinformatics/btm098
https://doi.org/10.1093/bioinformatics/btm098
https://doi.org/10.1186/1756-0500-1-107
https://doi.org/10.1186/1756-0500-1-107
https://doi.org/10.1093/bioinformatics/bts197
https://doi.org/10.1093/bioinformatics/bts197
https://doi.org/10.1089/cmb.1994.1.337
https://doi.org/10.1038/nature21674
https://doi.org/10.1038/nature21674


1. Introduction

Ye, Y., J. H. Choi, and H. Tang (2011). “RAPSearch: a fast protein similarity search tool for

short reads.” In: BMC Bioinformatics 12.1, pp. 159+. doi: 10.1186/1471-2105-12-

159.

Zaremba-Niedzwiedzka, K. et al. (2017). “Asgard archaea illuminate the origin of eu-

karyotic cellular complexity”. In: Nature 541.7637, pp. 353–358. doi: 10 . 1038 /

nature21031.

Zhao, M. et al. (2013). “SSW Library: An SIMD Smith-Waterman C/C++ Library for

Use in Genomic Applications”. In: PLoS One 8.12. doi: 10.1371/journal.pone.

0082138.

Zhao, Y., H. Tang, and Y. Ye (2012). “RAPSearch2: a fast and memory-efficient protein

similarity search tool for next-generation sequencing data.” In: Bioinformatics 28.1,

pp. 125–126. doi: 10.1093/bioinformatics/btr595.

37

https://doi.org/10.1186/1471-2105-12-159
https://doi.org/10.1186/1471-2105-12-159
https://doi.org/10.1038/nature21031
https://doi.org/10.1038/nature21031
https://doi.org/10.1371/journal.pone.0082138
https://doi.org/10.1371/journal.pone.0082138
https://doi.org/10.1093/bioinformatics/btr595




Chapter 2

MMseqs: software suite for fast and
deep clustering and searching of
large protein sequence sets

2.1 Introduction

MMseqs (Hauser, Steinegger, and Söding 2016) (Many-against-Many sequence searching)

is a novel algorithm and software to search and cluster large protein sets, containing billion

of sequences, making it capable of handling the volumes of data in metagenomic studies.

MMseqs is a modular software suite consisting of three core modules. The prefilter

module (1) filters rejects most of non-homologous sequences based on their k-mer compo-

sition. It sums up all similar 6-mer scores and estimates homology by applying a z-score

statistic. The local alignment module (2) is an implementation of the striped Gotoh algo-

rithm (Farrar 2007). Module (3) of MMseqs can cluster sequences based on a similarity

graph. In this graph, nodes are sequences and edges are alignments fulfilling clustering cri-

teria, such as a sequence identity threshold and sequence length overlap. The graph is then

clustered by a greedy set cover implementation (Chvatal 1979). This set cover algorithm

creates less clusters than the greedy incremental clustering, as implemented in UCLUST

(Edgar 2010) or CD-HIT (Li and Godzik 2006). This is one of the key advantages cluster-

ing with MMseqs offers over state-of-the-art clustering methods.

The modular architecture of MMseqs allows users creating workflows tailored for spe-

cific clustering and homology search tasks. Specifically, we used this modularity to design

four workflows for the most common tasks. The clustering workflow clusters the input

databases by running modules (1) - (3) with predefined parameters, set based on experi-

ences clustering the Uniprot (Apweiler et al. 2004), which reflect an average case. The

second, cascaded clustering, clusters the input database incrementally in multiple steps, in-

creasing the clustering sensitivity in each step. The third workflow compares protein sets

to each other by running modules (1) and (2). Finally, the fourth workflow is an updat-
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ing workflow. It takes a new version of the database that was clustered and a previously

clustered database together with its clustering result and updates the clustering by deleting

deprecated sequences and adding new sequences to the existing clusters.

In our homology search benchmarks, MMseqs proved to be much more sensitive and 4

to 30 times faster than UBLAST (Edgar 2010) and RAPsearch2 (Zhao, Tang, and Ye 2012).

MMseqs can cluster large databases down to 30% sequence identity at around 2000 times

the speed of BLASTclust (Altschul et al. 1990) and is more sensitive than CD-HIT (Li and

Godzik 2006) or UBLAST (Edgar 2010).

Maria Hauser and Martin Steinegger performed the research and programming, Maria

Hauser, Martin Steinegger and Johannes Söding jointly designed the research and wrote the

manuscript.
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Abstract

Motivation: Sequence databases are growing fast, challenging existing analysis pipelines. Reducing

the redundancy of sequence databases by similarity clustering improves speed and sensitivity of it-

erative searches. But existing tools cannot efficiently cluster databases of the size of UniProt to 50%

maximum pairwise sequence identity or below. Furthermore, in metagenomics experiments typic-

ally large fractions of reads cannot be matched to any known sequence anymore because searching

with sensitive but relatively slow tools (e.g. BLAST or HMMER3) through comprehensive databases

such as UniProt is becoming too costly.

Results: MMseqs (Many-against-Many sequence searching) is a software suite for fast and deep

clustering and searching of large datasets, such as UniProt, or 6-frame translated metagenomics

sequencing reads. MMseqs contains three core modules: a fast and sensitive prefiltering module

that sums up the scores of similar k-mers between query and target sequences, an SSE2- and

multi-core-parallelized local alignment module, and a clustering module.

In our homology detection benchmarks, MMseqs is much more sensitive and 4–30 times faster

than UBLAST and RAPsearch, respectively, although it does not reach BLAST sensitivity yet. Using

its cascaded clustering workflow, MMseqs can cluster large databases down to �30% sequence

identity at hundreds of times the speed of BLASTclust and much deeper than CD-HIT and

USEARCH. MMseqs can also update a database clustering in linear instead of quadratic time. Its

much improved sensitivity-speed trade-off should make MMseqs attractive for a wide range of

large-scale sequence analysis tasks.

Availability and implementation: MMseqs is open-source software available under GPL at https://

github.com/soedinglab/MMseqs

Contact: martin.steinegger@mpibpc.mpg.de, soeding@mpibpc.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

During the last 8 years, sequencing costs have come down from 10

000 000$ to less than 1000$ for a human genome at 30 times

coverage (http://www.genome.gov/sequencingcosts). As a conse-

quence, protein sequence databases such as the UniProt (Bairoch

et al., 2005) database have been growing by a factor of 2 every two
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years (Apweiler et al., 2004), leading to longer search times, inflated

and redundant results list, large memory requirements and saturating

or decreasing sensitivities for informative sequence matches (Chubb

et al., 2010).

A solution is to compute a representative subset of sequences by

clustering them by their similarity and selecting one representative

per cluster. Such clustering schemes achieve a more even sampling,

leading to better sensitivities in sequence searches (Li et al., 2002;

Park et al., 2000). UniRef provides representative subsets of

UniProtKB clustered at 100%, 90% and 50% sequence identity

(Suzek et al., 2007). Clustering schemes are also used in metagenom-

ics projects to reduce the size and redundancy of the ever larger

amounts of sequence data (Sunagawa et al., 2015).

Several tools for clustering protein sequence databases have been

developed. BLASTclust from the NCBI BLAST package is sensitive

but slow. It uses greedy single-linkage clustering based on all-versus-

all blastp searches (Altschul et al., 1990). The fast tools CD-HIT,

(Fu et al., 2012), USEARCH (Edgar, 2010) and kClust (Hauser

et al., 2013) share several similarities. First, they employ the same

incremental, greedy clustering scheme, in which each database se-

quence (the ‘query’) is compared with the representative sequences

of already established clusters. If one of the representative sequences

is sufficiently similar, the query is added to this cluster or otherwise

becomes the representative of a new cluster. Second, all three tools

employ a k-mer word-based similarity prefilter that drastically re-

duces the number of slow but accurate Smith-Waterman alignments.

The prefilters in CD-HIT and USEARCH count the number of com-

mon, identical k-mer words between sequences, with k ¼ 5 or 6 for

USEARCH and k between 2 and 5 for CD-HIT.

To obtain a sufficient number of common k-mers between se-

quences with only 50% residue-wise sequence identity, CD-HIT has

to lower k to 2. But this leads to a high probability � 1=20k for

chance k-mer matches. Therefore, the number of chance matches in

an all-against-all comparison of N sequences of average length L is

around ðNLÞ2=20k, which becomes huge for small k. Since each

chance match costs a constant amount of time to process, short

words lead to an enormous slow-down.

kClust employs a k-mer-based prefilter that can even detect pairs

at 20–30% sequence identity at high speed. To keep the probability

for chance matches low and speed high, it uses long words with k ¼ 6

or 7. But to increase sensitivity at the same time, it detects similar in-

stead of just identical k-mers. For each k-mer in the query sequence,

it computes a list of all k-mers with a BLOSUM62 bit score above

a certain cut-off and finds identical matches to these similar k-mers

in the database sequences. The prefilter then scores each database se-

quence by the sum of similarity scores of similar k-mers.

A further challenge arising from the rapid progress in high-

throughput sequencing is the need for sensitive but fast protein se-

quence search methods. A large fraction of metagenomics reads can-

not be mapped to any known sequence from a cultivated organism

anymore, because it has become too costly to search through the en-

tire UniProt database using a sensitive but slow tool such as

BLASTX (Altschul et al., 1990): It would take approximately 2398

CPU years to search with all 6-frame translated sequences from 2

�109 reads of length 150 nucleotides through the current UniProt

database using BLASTX. Instead, in most projects, much smaller

databases are searched, such as KEGG GENOME (Kanehisa and

Goto, 2000), a collection of high-quality genome sequences, or the

MetaPhlAn (Segata et al., 2012) database of unique clade-specific

marker genes (Human Microbiome Project Consortium, 2012).

This carries the risk of missing some of the most interesting matches,

which do not conform to prior expectations. To address this chal-

lenge, a number of fast protein sequence search tools have been de-

veloped: Tachyon (Tan et al., 2012), PAUDA (Huson and Xie,

2014), PSimScan (Kaznadzey et al., 2013), RAPsearch2 (Zhao et al.,

2012), Lambda (Hauswedell et al., 2014), UBLAST (Edgar, 2010)

and DIAMOND (Buchfink et al., 2015). The latter five, which are

the most sensitive in this list, find exact matches of (spaced) k-mers

and extend the alignment around them.

MMseqs addresses the need for a clustering and search tool that

is both fast and sensitive enough to be able to detect sequence

matches down to �30% residue-wise sequence identity. While it

uses the same core prefiltering algorithm as kClust, it has various

important advantages: (i) Its organization into modules (prefiltering,

alignment, clustering) and workflows increases flexibility and facili-

tates future extensions. (ii) Its search workflow can perform se-

quence searches. With a speed 1000 times faster than BLAST it finds

similarities down to 30% sequence identity and is much more sensi-

tive than similarly fast search tools. (iii) Its cascaded clustering

workflow achieves much deeper clustering than kClust in a shorter

time. (iv) Its database updating workflow adds sequences to a previ-

ously clustered set in linear time, obviating the need for frequent

reclustering in quadratic time. (v) MMseqs is implemented highly ef-

ficiently, using SIMD (single-instruction-multiple-data) instructions

to vectorize time-critical loops. (vi) It is parallelized using OpenMP

to run on multi-core CPUs (vii) To save memory, the database can

be divided into several parts and processed consecutively. (viii) Its

prefilter uses a novel Z-score statistic for higher sensitivity and a

score correction for compositionally biased sequence regions. (ix) It

offers the greedy set cover algorithm for clustering, in addition to

the simple, incremental algorithm used by kClust, USEARCH and

CD-HIT, enabling deeper clusterings. (x) It performs exact Smith-

Waterman alignment based on the striped SIMD algorithm (Farrar,

2007) instead of the approximate k-mer dynamic programming al-

gorithm developed for kClust.

2 Methods

MMseqs contains three core modules: (i) The prefilter module com-

putes a k-mer-based similarity score between all sequences from the

‘query’ set with all sequences from the ‘target’ set. (ii) The alignment

module can read prefiltering results and computes Smith-Waterman

alignments between query-target pairs that pass a prefilter Z-score

threshold. (iii) The clustering module reads in the results of the

alignment module, for which a sequence set must have been com-

pared to itself (query set ¼ target set), and groups sequences into

clusters, using user-specified thresholds on sequence similarity,

alignment coverage and E-value. In addition to the modules, three

workflows for sequence searching, clustering and updating a cluster-

ing facilitate the most common tasks for the non-expert.

2.1 Prefilter module
2.1.1 Prefilter score

The prefilter module is crucial for the speed and sensitivity of

MMseqs as it needs to reduce the number of sequences to be aligned

with the relatively slow Smith-Waterman algorithm from millions to

tens or hundreds per each query sequence while compromising sensi-

tivity as little as possible. For each query sequence it computes a raw

prefilter similarity score with each target sequence. This prefilter

score Spref is the sum of similarity scores for all pairs of k-mer words

(x, y) whose similarity score Skðx; yÞ—evaluated with the
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BLOSUM62 (Henikoff and Henikoff, 1992) substitution matrix—

surpasses a minimum score threshold Smin:

Sprefðquery; targetÞ ¼
X

x2query;y2target;Skðx;yÞ�Smin

Skðx; yÞ: (1)

This score, first introduced with kClust, has a fundamental ad-

vantage over the prefiltering score used in CD-HIT and USEARCH,

which counts the number of identical k-mers: We can increase the

sensitivity of the search while still maintaining relatively high speci-

ficity of the k-mer matches by lowering the minimum similarity

threshold Smin while keeping the word length fixed and high (e.g.

k ¼ 6). In contrast, to maintain a sufficient number of k-mer

matches in homologous sequence pairs with low similarity, CD-HIT

needs to shorten k down to 2, thereby loosing specificity of k-mer

matches and thus incurring dramatically increased run times.

2.1.2 Z-score

The expected ‘background score’ for a pair of non-homologous se-

quences of lengths Lq and Lt is proportional to the number of ex-

pected chance k-mer matches, which is roughly proportional to the

number of k-mers in the target sequence, Lt � kþ 1. We subtract

the expected background score from the raw prefilter score to im-

prove the discrimination of true and false positives. Since some

queries tend to generate more chance k-mers than others, we esti-

mate the expected background score by acquiring match statistics

on a small, randomly sampled subset of target sequences for each

query sequence prior to the actual search. To account for the vari-

ance of the background score we divide the background-corrected

score by the expected standard deviation, assuming a Poisson distri-

bution for the number of k-mer matches. These results in the final

prefilter Z-score (see Supplemental Material).

2.1.3 Local compositional bias correction

Sequence regions with biased amino acid composition, such as trans-

membrane helices, coiled coils or disordered regions, may cause arti-

ficially elevated rates of chance k-mer matches between unrelated

proteins, leading to high-scoring false positive sequence matches. To

reduce this risk, we add to the k-mer score Skðx; yÞ a correction
Xjþk

i¼jþ1
DSiðxiÞ that depends on the amino acids xi composing the

query k-mer x. DSiðxiÞ is minus the average BLOSUM62 score be-

tween xi and the amino acids within 620 residues from xi (except xi

itself) plus
X20

a¼1
f ðaÞSðxi; aÞ, the expected BLOSUM62 score of xi

with a random amino acid a assuming background frequencies f(a).

Thus, amino acids that are similar to amino acids enriched in

the local sequence neighbourhood receive lower scores (see

Supplemental Material).

2.1.4 Core algorithm

For each query sequence (for-loop 1 in Fig. 1) and each overlapping k-

mer x in the query (for-loop 2), a list of similar k-mers and their scores,

LsimðxÞ ¼ fðy; Skðx; yÞÞ : Skðx; yÞ > Sming, is generated (orange box in

Fig. 1). For each similar k-mer y (loop 3), we look up in a precomputed

index table (blue box) the list LIDsðyÞ of target sequence IDs that con-

tain the k-mer y (green box). In the most time-critical, innermost loop

4, we add Skðx; yÞ to the score of each of the target sequences

t 2 LIDsðyÞ: SprefðtÞþ ¼Skðx; yÞ.
The index table is computed by the prefilter module prior to the

actual search. It consists of the 21k lists LIDsðyÞ of target sequence

IDs, one list for each of 21k k-mers y (green box) and an array of

21k pointers to the lists (black box). The 21st letter X represents un-

known amino acids.

After having processed all k-mers of a query, we extract the

small fraction of target sequences with non-zero scores by checking

in parallel using SSE2 instructions if any of the 8 short integer scores

differs from 0. This manual vectorization speeds up extraction by

around 8-fold. IDs of sequences with non-zero scores are written

into a list and final Z-scores are computed.

2.1.5 Time complexity

Let us define Nq, Nt, Lq and Lt as the numbers of sequences in the

query and target sets and their average lengths, respectively. Let lsim
¼ Ex½jLsimðxÞj� denote the average length of the lists of similar k-mers,

and let lIDs ¼ Ey½jLIDsðyÞj� be the average length of the lists of

target IDs. It can be estimated as lIDs ¼ NtLt=20k, since the target set

contains approximately NtLt k-mers distributed over 20k k-mers. The

total time for the prefilter is then approximately

Tpref � NtLtTindex þNqLqlsimðTsim þ lIDsTmatchÞ þNqNtTextract:

(2)

The first term is the time to build the index table, NqLqlsimTsim is

the time for generating the lists LsimðxÞ. The term NqLqlsimlIDsTmatch

¼ NqLqNtLtlsim=20k describes the contribution of adding the k-mer

similarity scores to the target sequence scores in the innermost loop,

which dominates the runtime when searching large databases with

intermediate or high sensitivity. NtTextract is the time to extract for

each query the target sequences with the most significant scores.

It is desirable to choose k and Smin such that the average list

length lIDs � NtLt=20k does not drop below 1, because otherwise

much time is lost in generating lists of similar k-mers that do not

lead to a k-mer match. We should therefore choose k ¼ 7 for NtLt

� 5� 207 � 6� 109 and k ¼ 6 below that limit. Here, we have

used k ¼ 6 throughout, and, when setting k ¼ 7, further improve-

ments in sensitivity-speed trade-off are possible for large databases

such as UniProt (for which NtLt � 2� 1010).

The main parameter to control the sensitivity-speed trade-off in

MMseqs is the minimum k-mer score Smin, which determines the

average length lsim. This trade-off can be set by the MMseqs sensitiv-

ity parameter S using option ‘-s hSi’.

Fig. 1. Core prefiltering algorithm. The algorithm computes for all query-tar-

get sequence pairs the score in Eq. (1). See Section 2.1 for details
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The prefilter is the time-limiting module for searching and clus-

tering large databases. It can run on multiple cores (Supplementary

Fig. S1) thanks to OpenMP parallization of for-loop 1 in Figure 1

(Supplementary Fig. S2).

2.1.6 Memory requirements

The index table requires 21k � 16B (bytes) to store the array

of pointers and the list lengths, which amounts to 654 MB for k ¼ 6.

The dominating contribution however is to store the lists of sequence

IDs in the index table. Each ID is encoded with 4 B, which sums up

to a total of NtLt � 4B. For the UniProtKB containing Nt ¼ 54M se-

quences of average length Lt � 350 we need around 70 GB of main

memory.

To run MMseqs with a much smaller main memory, the prefilter

module can split the target set into equal-sized chunks, only one of

which needs to be held in main memory at a time. After all chunks

have been processed the results are combined to yield the same re-

sults as if done in a single search. This can come at a cost in run time

if the average list length lIDs drops below �5 (see Section 11.1 of

user guide for details).

2.2 Alignment module
This module computes exact, unbounded Smith-Waterman align-

ments with affine gap penalties for all query-target sequence pairs

that pass a user-specified prefilter Z-score. We extended the striped

SIMD algorithm (Farrar, 2007) by adding a back-tracing procedure

to extract the optimal aligments. We keep the three dynamic pro-

gramming matrices in memory (using 2 B per cell) and trace back

from the cell of maximum score by choosing the previous cell whose

score is equal to the score in the current cell minus its match score

minus gap penalties if applicable. The trace-back stops when it ar-

rives at a cell with score 0. The alignments are multi-core parallel-

ized using OpenMP over the loop of query-target pairs to be

aligned.

2.3 Clustering module
This module clusters the sequences based on user-specified criteria:

sequence identity, E-value (to ensure homology) and alignment

coverage. A high coverage threshold (0.8 is default in MMseqs) is

critical to ensure that all proteins within one cluster have a very

similar domain structure. Otherwise, two unrelated families of sin-

gle-domain proteins composed of domain A or B, respectively, could

get clustered together with proteins each containing both domains A

and B, leading to a corrupted sequence cluster.

The greedy set-cover algorithm chooses at each step the sequence

with the most remaining neighbours. Neighbours are sequences

that satisfy the user-specified clustering criteria. The ‘representative’

sequence and its neighbours are added to a new cluster, removed

from the remaining sequences and the next best representative se-

quence is picked until all sequences belong to one cluster. MMseqs

also offers the greedy incremental clustering algorithm implemented

in CD-HIT, USEARCH and kClust.

The time and memory requirements of clustering are typically

much lower than for the other two modules. The time and memory

complexity are both OðNtKÞ where K is the average number

of neighbours per sequence.

A stand alone version of our set-cover implementation is avail-

able at https://github.com/martin-steinegger/setcover.

Fig. 2. MMseqs workflows are designed to facilitate the most frequent use cases: (A) batch sequence searching with one query set through a target set, (B) clus-

tering a set of sequences by similarity and other criteria starting from the raw sequence file, (C) an efficient cascaded clustering procedure for deep clustering

and (D) updating a clustering of a sequence set by adding new sequences and deleting deprecated sequences
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2.4 Workflows
2.4.1 Sequence search workflow

This workflow searches with each sequence in the query set through

all sequences in the target set by running prefilter and alignment

modules (Fig. 2A). It outputs an ffindex database with one file of

search results per query sequence. (See Supplementary Material for

an explanation of the ffindex file format.)

2.4.2 Clustering workflow

The clustering workflow clusters sequences starting from a raw se-

quence file of input sequences (Fig. 2B). It first performs an all-ver-

sus-all sequence comparison using the prefilter and alignment

modules (with query ¼ target set) and then runs the clustering mod-

ule on the results.

The clustering workflow also implements a powerful three-step

cascaded clustering (Fu et al., 2012; Suzek et al., 2007; Fig. 2C).

In the first step, the sequences (blue) are clustered using the basic

clustering workflow with a fast but low-sensitivity setting (option ‘–

s 1’). The representative sequences from this clustering (R1) are then

used as input set (red dots) for a second clustering step with inter-

mediate speed and sensitivity. The resulting representative sequences

(R2) are clustered with high sensitivity in the third step. Finally,

all sequences in the input set are assigned to one of the clusters of

the third clustering step through the intermediate cluster assign-

ments, yielding results formatted as if the clustering had been done

in a single step.

Cascaded clustering achieves better sensitivity at comparable

speeds. Also, in contrast to single-step clustering it can generate clus-

ters that are much larger than the maximum number of reported se-

quence matches. This threshold is set to 300 by default to keep the

maximum size of the results files manageable.

2.4.3 Updating workflow

It has become impractical to frequently update clustered versions of

large sequence databases, such as UniRef (Suzek et al., 2007), due to

the quadratic scaling of the runtime with the number of sequences.

Our updating workflow can update an existing clustering in linear

time and with stable cluster identifiers by adding new sequences and

deleting deprecated ones that are no longer contained in the new

database version.

The updating workflow takes as input a clustering of a previous

version of a sequence set (‘query DB’) and a new version of the se-

quence set (Fig. 2D). The workflow deletes sequences from the clus-

ters that do not appear in the new sequence set anymore (grey disk,

grey crossed-out dot) and compares the newly added sequences

(black) to the sequences in the current clusters (blue) using the

prefilter and alignment modules. A new sequence is added to the

cluster with the most similar representative sequence that satisfies

all specified criteria (e.g. E-value, alignment coverage, similarity).

Those new sequences that do not get recruited to any existing cluster

are then clustered amongst themselves and the resulting clusters are

added to the clustering.

3 Results

3.1 Sensitivity and speed of protein searches
3.1.1 Benchmark dataset

We downloaded the sequences of the SCOP/ASTRAL database ver-

sion 1.75 (Murzin et al., 1995) filtered to 25% maximum pairwise

sequence identity (Chandonia et al., 2004) (‘SCOP25’) and removed

sequences from the nonstandard class e, folds b.67–b.70 and those

with inserted domains. Taking each of the 7616 sequences in this set

as a query, we searched for homologous sequences in the uniprot20

database (version 03/2013) using a single search iteration of

HHblits (Remmert et al., 2012) with default parameters (E-value

threshold 0.001). The resulting multiple sequence alignments of the

query with its matched sequences were filtered using HHblits op-

tions ‘–qid 30 –id 80 –diff 50’, which ensured a minimum sequence

identity of 30% to the query, low redundancy, and a maximum of

50 sequences per query. The sequences passing the filtering were

labeled with the same SCOP family as the query sequence and

pooled into a set of 283406 sequences (‘scop25db set’). We created

a query fragment set by sampling one randomly chosen fragment of

50 residues length from each of the 7616 sequences in SCOP25.

3.1.2 Benchmarked tools

We compared SWIPE (Rognes, 2011), an exact, vectorized imple-

mentation of Smith-Waterman alignment, gapped BLAST (Altschul

et al., 1997), MMseqs with high and low sensitivity setting, ‘–s 7’

(MMseqs-sens) and ‘–s 4’ (MMseqs-fast), respectively, DIAMOND

and DIAMOND-sens (Buchfink et al., 2015), UBLAST (Edgar,

2010) and RAPsearch2 (Zhao et al., 2012). For the ROC5 analysis,

we needed to encourage the tools to report at least 5 false positives.

We therefore set the E-value threshold to 10 for all tools, and we

increased the maximum number of reported matches to 1000 for all

tools except UBLAST, since UBLAST does not have such a limit.

The detailed command line options are listed in the Supplementary

Material.

3.1.3 Speed measurements

Since there is a trade-off between speed and sensitivity, measuring

the speed is important to get the complete picture. Because the size

of our scop25db set is too small to extrapolate to the speeds for

searching large sequence sets such as UniProt, we measured the

speed by searching with the full-length and fragments query sets

through the UniProtKB with 54.79 M sequences. We specified 16

cores for all tools and measured the time to build the index structure

of the database and the times to complete the search with the 7616

query sequences (Table 1). The searches were run on all 16 cores of

a server with two 2.7 GHz Intel Xeon E5-2680 CPUs and 128 GB

RAM.

3.1.4 Searching with short peptide reads

First, we wanted to assess the ability of fast sequence search tools to

find nontrivial homologous matches for short peptide fragments of

Table 1. Times in minutes for building the database index, for

searching with 7616 fragments of length 50 through the UniProtKB

(55 M sequences) and searching with 7616 full-length SCOP se-

quences through UniProtKB

Search times Build db

index

Search with

SCOP25

Search with

fragments

SWIPE 36 min 3214 min (1.7) 1487 min (3)

BLAST 36 min 5712 min (1) 4815 min (1)

MMseqs-sens 77 min 11 min (520) 5 min (960)

MMseqs-fast 77 min 6 min (950) 3 min (1600)

DIAMOND-sens 15 min 59 min (100) 49 min (100)

DIAMOND 15 min 19 min (300) 16 min (300)

UBLAST 67 min 46 min (120) 19 min (250)

RAPsearch 131 min 96 min (60) 66 min (70)

Values in parenthesis give the speed-up relative to BLAST.
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length 50, a length that is typical of hypothetical protein fragments

derived from Illumina short read sequences of 150–200 nucleotides.

We created a query fragment set by sampling one random frag-

ment of 50 residues length from each of the scop25 sequences,

searched with each query fragment the scop25 set and analyzed the

results using a standard ROC5 analysis (Söding and Remmert,

2011): Each matched sequence that came from the same SCOP fam-

ily as the query fragment was considered a true positive match, each

match from a different SCOP fold was considered a false positive,

all other matches were ignored. For each query fragment, the area

under the curve (AUC) of the receiver operating characteristic

(ROC) curve up to the fifth false positive match (AUC5) was calcu-

lated (e.g. when all true positives in the scop25db set are found be-

fore the first false positive this yields an AUC5 of 1.0).

The cumulative distribution of the 7616 AUC5 values in Figure 3A

reflects the sensitivity of a tool, e.g. the area under this curve is the

average AUC5 over all queries.

SWIPE is more sensitive than BLAST and both are substantially

more sensitive than the other tools. MMseqs-sens is by far the most

sensitive of the fast tools even though it is 500 time faster than

BLAST while the DIAMOND, UBLAST and RAPsearch are only

300, 124 and 59 times faster than BLAST. MMseqs-sens is, some-

what surprisingly, about 12% more sensitive than MMseqs-fast

while only being twice slower. The strongest differences are

observed for the most difficult cases, as is evident from the fraction

of true positive pairs found before the fifth false positive match,

plotted for different sequence identity bins (as determined by

SWIPE) (Fig. 3B). MMseqs-sens is 8 times faster than UBLAST and

16 times faster than RAPsearch2 but finds 22% more homologs

than UBLAST and 15% more than RAPsearch2. MMseqs-sens de-

tects 44% more TP than DIAMOND while being 1.7 times faster.

3.1.5 Searching with full-length SCOP25 sequences

We then repeated the same analysis as before using the full-length

sequences in SCOP25 (average length ¼ 166 residues). Figure 3C

shows the results of the AUC5 analysis for this query set. All tools

achieve better performance, since the longer query sequence contain

more information to link them to their homologs. The tools’ per-

formance relative to each other is similar as before, although the

performance gap between UBLAST and MMseqs-fast has closed.

Again, the increased sensitivity of MMseqs-sens over UBLAST and

RAPsearch2 is most apparent at low sequence identities (Fig. 3D).

3.2 Clustering performance
We used the scop25db set containing 283 406 sequences together

with the SCOP25 set of 7616 sequences described above to test the

ability of clustering tools to cluster similar sequences together.

These single-domain sequences are on average about half as long as

full-length sequences. However, since we demand the alignments to

cover at least 80% of the longer sequence, the problem of non-tran-

sitivity that one faces when clustering multi-domain sequences is

largely precluded. We therefore expect this dataset to yield results

approximately comparable to those we would obtain when cluster-

ing multi-domain sequences.

Figure 3E compares three variants of MMseqs clustering with

each other: simple one-step clustering with the greedy algorithm

also used by CD-HIT and USEARCH (‘MMseqs greedy’), one-step

clustering using the greedy set-cover algorithm (‘MMseqs set

cover’), three-step cascaded clustering using the greedy set-cover al-

gorithm at each step (‘MMseqs 3-step’) and three-step cascaded

clustering with high sensitivity (‘–s 7’ instead of ‘–s 4’, ‘MMseqs-

sens 3-step’). We performed clustering runs with five different min-

imum sequence identity thresholds, 0.3, 0.4, 0.5, 0.6, 0.7, and

Fig. 3. Sensitivity of sequence search tools and clustering performance. (A) AUC5 analysis for short peptide queries: Each of 7616 query fragments of length 50

sampled from SCOP25 was searched against the 283 406 sequences of the scop25db set and the area under the ROC curve up to the fifth false positive match

(AUC5) was computed. A true positive (TP) match is from the same SCOP family, a false positive (FP) match from a different SCOP fold. The plot shows the cumu-

lative distribution of AUC5 scores for the 7616 queries. The numbers in the legend indicate the search speed relative to BLAST. (B) Fraction of true positives found

for sequence identity bins [0.3,0.4[, [0.4,0.5[, [0.5,0.6[ and [0.6,0.7[. (C, D) Same as A and B, respectively, but using the full length sequences in SCOP25 as queries.

Numbers of clusters for various versions of MMseqs (E) and other tools (F) obtained by clustering the scop25db set with 291 022 sequences
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compared the performance reflected by the number of clusters found

at the given threshold.

Clearly, the greedy set-cover algorithm performs much better

than the simple greedy algorithm, even though its speed is compar-

able. Not surprisingly, the more sensitive sequence comparisons

in MMseqs-sens 3-step lead to deeper clustering in comparison

with MMseqs 3-step. The 3-step cascaded clustering improves over

1-step clustering by a remarkable margin both in terms of sensitivity

and speed. The reason is that reducing the number of sequences

from, say, N0 to N1 speeds up the following clustering step by

ðN0=N1Þ2. In other words, in single-step clustering all true-positive

sequence pairs are detected at the maximum level of sensitivity,

which is costly, whereas in cascaded clustering most sequence pairs

are detected at a lower and faster sensitivity level.

We compared MMseqs 3-step and MMseqs-sens 3-step with

popular tools for clustering protein sequence sets: BLASTclust from

the BLAST NCBI package (Altschul et al., 1990), CD-HIT, (Fu et al.,

2012), kClust (Hauser et al., 2013) and USEARCH (Edgar, 2010;

Fig. 3F). Since all tested tools compute either an exact Smith-

Waterman local alignment or a banded version, their E-values are ei-

ther worse or very similar to the E-value for the best Smith-Waterman

alignment. For this reason, all clustering tools produce clusterings

with a similarly low number of false positive pairs, i.e. non-homolo-

gous sequence pairs within the same cluster (see Supplementary Table

1). We can therefore assess the sensitivity of the clustering tools

through the number of clusters they produce at a given maximum se-

quence identity per cluster and by the speed of clustering. A speed

comparison on the clustered dataset does not make sense since it is

too small for a meaningful speed benchmark. The results on clustering

quality therefore have to be viewed in the context of the clustering

speeds measured on the full UniProt database (Supplementary Table

S1) For all tools a minimum coverage threshold of the longer se-

quence of 0.8 was used, and all tools except the unparallized kClust

and USEARCH were told to use 16 cores. (See Supplementary

Material for the command-line options.)

All clustering tools except CD-HIT are faster than BLASTclust

by a factor of 1000 or more at all clustering thresholds. For

high clustering thresholds, the tools achieve similar sensitivity, as it

is simple to find the pairs with high sequence similarities. For a

low threshold of 0.3, differences become quite dramatic. Usearch pro-

duces 3.5 times more clusters than MMseqs 3-step while running at

similar speed, MMseqs-sens 3-step and BLASTclust beat USEARCH

in clustering depth by a factor 7. Remarkably, MMseqs-sens 3-

step reaches sensitivities similar to BLAST over the entire range of

thresholds despite being hundreds of times faster (See Supplementary

Table. 2).

To gain a more detailed view of the clustering results of the vari-

ous tools, Supplementary Figure S3 shows the cumulative size distri-

butions of clusters for threshold of 0.3, corresponding to the

leftmost point in Figure 3F. These distributions quite closely reflect

the different performances of the underlying sequence similarity

searches.

To test the updating workflow in Figure 2D, we randomly div-

ided the scop25db sequence set into 10 equally sized parts, clustered

the first part by cascaded clustering and then successively updated

it using the second, third etc. up to the tenth part of the sequence

set. Supplementary Figure S4 compares the size distribution of the

resulting clusters with the size distribution obtained by applying cas-

caded clustering with default parameters to scop25db. The ten-step

updating resulted in slightly fewer and larger clusters.

Finally, we measured the speed and number of clusters obtained

when clustering the UniProt database with 54 790 250 sequences

down to various sequence identities. We clustered UniProt with

MMseqs and USEARCH, the only two tools that are able to cluster

such a large database down to the sequence identities of 50% and

below. USEARCH requires 11 days and 2 hours for the clustering

and produces 9 822 910 clusters, i. e. an average of 5.5 sequences

per cluster. MMseqs requires 8 days and 17 hours for the clustering

and produces 6 374 156 clusters, i. e. an average of 8.5 sequences

per cluster. From an estimate of the runtime of BLASTclust, this is

2000 times faster than BLASTclust (see Supplementary Material

Section 2.3 and Table S1 for full results).

4 Discussion and outlook

The core of MMseqs is its prefiltering algorithm, to which it owes

its favourable combination of high speed and sensitivity. In contrast

to most fast search tools, MMseqs does not follow the seed-and-

extend paradigm. Instead of depending on a local high similarity,

MMseqs’ prefilter aggregates evidence for the homology of sequence

pairs over their entire length, explaining its success. But this algo-

rithm also makes the prefilter inherently less sensitive to detect short

local similarities in relatively long sequences. Since most pairwise

alignments above 30% sequence identity will be homologous over

most of their length, this is not a severe limitation yet.

In the future, we have plans to improve the sensitivity of the pre-

filter enough to reach sensitivities of BLAST at several hundred

times their speed. This will only be possible with a prefiltering algo-

rithm that scores alignment similarities in a more local way and by

eliminating the random memory accesses in the innermost loop. We

are also working on extending MMseqs to profile searches and to

nucleotide sequence comparisons.

We hope that MMseqs will be able to facilitate and improve the

analysis of large sequence sets as produced by massive genome

sequencing and metagenomics experiments.
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1 SENSITIVITY AND SPEED OF SEQUENCE
SEARCHES

Our goal was to compare the performance and the speed of MMseqs with
various other fast tools for protein sequence searching: SWIPE, BLAST,
UBLAST, RAPsearch2 and DIAMOND.

For tools that had a limit on the maximum number of matches report, we
increased this limit to ensure that at least five false positive will be listed for
each query. This is necessary for the calculation of ROC5 values,

All searches were made on a computer with 128 GB RAM and two 8-core
Intel Xeon E5-2680 CPUS with 2.70GHz.

MMseqs We used only the prefiltering module and the alignment module
of MMseqs for the protein search. We tested two different sensitivities in the
prefiltering module, s = 4 (default setting) and s = 7. Besides, we set the
maximum prefiltering list length to 1000 using --max-seqs 1000, and
the Z-score threshold to 10.0 using --z-score-thr 10.0 in order to
increase the length of the result lists for each query. The alignment module
is run with the maximum e-value threshold 10.0 using -e 10.0 and the
alignment coverage is switched off using -c 0.0. Both modules use all 16
cores of the machine by default.

Smith-Waterman alignments with SWIPE We use the SSSE3-, multi-
core-paralellized Smith-Waterman alignment calculation with SWIPE. In
order to get many database matches for a query, we set the e-value to 100
using -e 100.0 and the number of sequence descriptions and sequence
alignments to 1000 using -v 1000 -b 1000. Additionally, swipe is
instructed to use all the 16 cores of the machine with -a 16.

BLAST We ran BLAST using -e 10.0 and -v 1000 -b 1000 in
order to increase the number of results, and with -a 16 to parallelize the
calculation.

UBLAST We ran UBLAST with -evalue 10.0 option. Therefore,
UBLAST outputs all significant alignments regardless of the sequence
identity and alignment coverage. UBLAST uses all available cores per
default. Since UBLAST does not have an option to set the maximum number
of results shown, we presume that it does not have such a limit.

RAPsearch We ran RAPsearch with with -z 16 option to paralellize the
calculation, and with -e 10.0 and -v 1000 -b 1000 options.

∗These authors contributed equally to this work.
†to whom correspondence should be addressed: soeding@mpibpc.mpg.de

DIAMOND We ran DIAMOND with -e 10.0 option, with --threads
16 option to paralellize the calculation, and with --max-target-seqs
1000 option.

2 SEQUENCE CLUSTERING PERFORMANCE
We benchmarked the ability of MMseqs, blastclust, CD-HIT, kClust and
USEARCH to cluster sequences based on their global similarity. We
benchmarked the clustering performance with different sequence identity
thresholds in the range [0.3 : 0.7] in 0.1 increments. All tools were
instructed to only merge sequences that had an alignment covering at least a
fraction of 0.8 of the residues of both sequences.

All clustering runs (except clustering of UniProt) were made on a
computer with 128 GB RAM and two 8-core Intel Xeon E5-2680 CPUS
with 2.70GHz. The UniProt was clustered on a computer with 512 GB RAM
and four 8-cores CPUs (Intel Xeon CPU E5-4620, 2.20GHz).

2.1 Parameters of tested tools
MMseqs We use the clustering workflow for calculating the clustering
of the database. We tested simple and cascaded (option --cascaded)
clustering each with sensitivity 4 and 7 (-s 4 and -s 7) respectively.
For each sensitivity, we set the target clustering sequence identity using the
option --id and values from 0.3 to 0.7 in 0.1 increments.

blastclust Blastclust is the clustering software in the BLAST package. We
set the number of used cores to 16 with the option ‘-a16‘, length coverage
threshold to 0.8 using -L 0.8 and the minimum sequence identity in the
clusters with the option -S and values from 30 to 70 in 10 increments.

CD-HIT We set the minimum alignment coverage of the longer sequence
to 80% with the -aL 0.8 option and the number of threads used for the
calculation to 16 with the -T 16 option. The minimum possible clustering
sequence identity in CD-HIT is 0.4. For the clustering down to the different
minimum sequence identities in the range [0.4 : 0.8], we used the option -c
for the sequence identity setting and adjusted the k-mer word length with
the option -n. For the sequence identity 0.4 the word length was set to 2, for
the sequence identity 0.5 to 3, for the sequence identity 0.6 to 4 and for the
sequence identity 0.7 to 5.

kClust We used the -s option to set the minimum sequence identity in
the cluster. According to kClust recommendations, we set -s to 1.12, 1.73,
2.33, 2.93, 3.53, and 4.14 for the sequence identities 0.3, 0.4, 0.5, .06,

c© Oxford University Press 2015. 1

2. MMseqs: software suite for fast and deep clustering and searching of large protein
sequence sets

49



Maria Hauser et al

#clusters #seqs
per

cluster

#corrupted
clusters

MMseqs s=4
greedy clustering

85 780 3.4 1

MMseqs s=4 set
cover

60 915 4.7 1

MMseqs s=4 3-step 41 173 7.0 3
MMseqs s=7

greedy clustering
41 572 7.0 3

MMseqs s=7 set
cover

29 801 9.7 2

MMseqs s=7 3-step 22 541 12.9 1
blastclust 21 890 13.3 1
CD-HIT 114 386 2.5 260
kClust 91 681 3.2 1

USEARCH 157 981 1.8 11

Table 1. Clustering results on the protein database consisting of SCOP25
and related UniProtKB sequences. Sequences put into the same cluster, but
stemming from different folds are considered to be false positives.

and 0.7, respectively. Since kClust is single-threaded, we did not use any
parallelization options.

USEARCH We ran USEARCH with -cluster fast option and set the
minimum sequence identity in a cluster to 50% with --id option to values
from 0.3 to 0.8 in 0.1 increments. We set the query and target sequence
coverage in USEARCH to 0.8 using the options -query_cov 0.8 and
-target_cov 0.8.

2.2 Cluster quality
We benchmarked the clustering quality by clustering the protein clustering
benchmark dataset with the clustering tools MMseqs-sens and MMseqs-fast
each with three clustering algorithms (greedy clustering as used in CD-HIT
and kClust, set cover and 3-step cascaded clustering), blastclust, CD-HIT,
kClust and USEARCH. We clustered the dataset down to 30% sequence
identity with each tool, except for CD-HIT, where we used the minimum
possible sequence identity threshold of 40%. We use the same method
to define false positive sequence pairs as in the other protein search and
clustering benchmarks. A cluster is considered as corrupt if it contains at
least one false positive sequence pair.

All methods except CD-HIT produce clusters of very high quality with a
negligible number of sequences assigned to a cluster by mistake. CD-HIT
produced 260 corrupted clusters due to an occasional error in the calculation
of the sequence identity. Cascaded clustering and default straight-forward
clustering in MMseqs uses set-cover as the default clustering algorithm. We
compared the performance of set-cover and the greedy clustering, as used by
kClust. Table 1 demonstrates that set-cover performs much better.

2.3 Clustering of the UniProt database
We clustered the UniProt database version containing 54 790 250 sequences
with MMseqs and USEARCH, the only two tools that are able to cluster
such a large database down to sequence identities of 50% or lower. MMseqs
is able to use all 32 cores for the clustering procedure, while USEARCH is
able to only use one core.

We use MMseqs cascaded clustering workflow (option --cascaded)
with default settings to evaluate the clustering procedure.

In USEARCH, we set the lowest sequence identity of clusters to
50%, since it is the lowest recommended value corresponding to the

time #clusters
blastclust 58y ?
MMseqs 8d 17h 6 374 156
USEARCH 11d 2h 9 822 910

Table 2. UniProtKB clustering results: Time and number of clusters for
BLAST, MMseqs and USEARCH. kClust, BLAST and kClust times are
estimated.

documentation (option --id 0.5). We only want to have sequences
with pairwise global similarity in one cluster, so we set the query
and target sequence coverage in USEARCH to 0.8 using the options
-query_cov 0.8 and -target_cov 0.8.

BLAST is much too slow to cluster the UniProtKB database. We
estimated the runtime of BLAST clustering using a BLAST run with a
small query set against the whole UniProtKB database, and extrapolated the
measured runtime to the clustering of the whole UniProtKB database using
an all-against-all comparison. We extrapolated that clustering based on all-
against-all BLAST using all 32 cores would need about 58 years based on
run times for BLAST searches of the UniProt database.

MMseqs requires 8 days and 17 hours and 118 G of memory for the
clustering procedure. It produces 6 374 156 clusters, i. e. an average of 8, 5

sequences per cluster. USEARCH, on the other hand, requires, for the same
job, 11 days and 2 hours and 42 GB of memory, while it produces 9 822 910
clusters, i. e. an average of 5, 5 sequences per cluster. The results are shown
in Table 2.

Although MMseqs is parallelized and uses all 32 cores of the computer
and USEARCH is single-threaded, USEARCH runs almost as fast.
This is in part explained by the efficiency of the greedy agglomerative
clustering algorithm used by USEARCH, which reduces the total number
of comparisons from N2

seqs to NclusNseqs, where Nseqs is the number
of sequences in the database and Nclues is the number of representative
sequences, i.e., the number of clusters in the clustered database. However,
loosing a factor Nseqs/Nclues in speed over the simple greedy algorithm is
more than counterbalanced by the possibility to parallelize the set-cover
clustering and by its superior clustering performance in comparison to the
simple greedy algorithm.

3 PREFILTERING ALGORITHM DETAILS

3.1 Prefilter Z-score
Expected prefiltering scores between non-homologous sequences will be
proportional to the product of both their lengths, since there is a small but
non-negligible probability for any pair of query-target k-mers to attain a
similarity score above the k-mer cut-off score. It makes sense to correct for
the score expected from such background k-mer matches by subtracting it
from the actual score. The background score may also depend on the amino
acid distribution of the query sequence and on whether it contains regions
with strongly biased amino acid composition, as these regions can cause
many k-mer matches with unrelated sequences containing similarly biased
regions.

Instead of simply estimating the background score from the product of the
lengths of query and target sequences, we measure the expected k-mer score
of the query sequence per column of a target sequence. For that purpose, we
can assume that the overwhelming majority of the database sequences are
not homologous to a given query sequence.

For each query, perform a calibration search through a database of
100 000 randomly sampled target sequences, whose sum of lengths

sumL =
N∑

t=1

(Lt − k + 1)

2
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we recored. We then sum up all prefiltering scores for query sequence q with
the database,

sumS =
N∑

t=1

Sqt ,

where N is the database size, Lt is the length of the database sequence t
and Sqt is the prefiltering score of the query sequence q with a database
sequence t. Then, the expected chance prefiltering score between q and a
target database sequence t is

S0 = (Lt − k + 1)
sumS

sumL

We also correct for the lower score relative dispersion at high lengths by
dividing S0 by the estimate of its standard deviation. We assume that the
number of k-mer matches is Poisson-distributed, and the standard deviation
of the score should therefore be proportional to the square root of the number
of expected k-mer matches, which is

nmatch ≈ (Lt − k + 1)
sumS

sumL
/Smatch ,

where Smatch is the expected score per chance k-mer match. Under the
assumption that the number of k-mer matches is Poisson-distributed, the
standard deviation of the chance score of the query sequence with a database
sequence t is

σS =
√
nmatch Smatch

=

√
(Lt − k + 1)

sumS

sumL
Smatch

Therefore, the offset- and scale-corrected score Zqt for a query sequence q
and a database sequence t is

Zqt =
Sqt − S0

σS
.

We are interested in all sequence pairs, where Zqt > Zthr , i. e. the
prefiltering score should fulfill the condition

Sqt ≥ Zthr σS + S0

≥ Zthr

√
(Lt − k + 1)

sumS

sumL
Smatch + (Lt − k + 1)

sumS

sumL
.

Calculating the offset- and scale-corrected score threshold for each pair q,
t would slow down the retrieving of prefiltering results. Since the threshold
value Zthr σS + S0 depends only on the length of the database sequence t
for a fixed q, the database sequences are ordered by length, the threshold is
calculated once and recalculated only if the length of the next sequence falls
below 95% of the reference sequence length.

The statistical analysis of the scores gets unreliable for small databases
of fewer than 100 000 sequences, since in this case there will not be enough
sequences to calculate the expected score and the standard deviation reliably.
We use pseudo-counts to make the estimate of S0 and σS robust. We
define the size of the pseudo-database as 100 000 with an average sequence
length 350 (average sequence length in UniProtKB) and an average sequence
composition. We estimate k-mer match probability and set the score of
a chance k-mer match Smatch to be slightly above the k-mer similarity
threshold. k-mer match probability estimation is explained in detail in
section Automatic sensitivity setting. Then, we calculate nmatch, sumS

and sumL by adding the pseudo counts to the empirical counts.

3.2 Amino acid local composition bias correction
Some sequences have regions of low complexity with an amino acid
composition that differs considerably from the background amino acid
distribution assumed in the amino acid substitution matrix. Low complexity
regions of a sequence can lead to high prefiltering scores sequences
containing similarly biased low complexity regions. To alleviate this effect,
we correct for the local compositional bias in the sequences by assigning

lower scores to the matches of locally frequent amino acids. We examine
d = 20 amino acids on both sides of the the amino acid xi at position i in
the sequence. Score correction ∆Si at position i is

∆Si(xi) = − 1

2d

i+d∑

j=i−d,j 6=i

S(xi, xj) +

20∑

a=1

f(a)S(a, xi)

where S(xi, xj) is the amino acid substitution score between amino acids
xi and xj , and f(a) is the background frequency of the amino acid a. Then,
the final corrected score Sc for the match of xi with another amino acid yj
is

Sc(xi, yj) = S(xi, yj) + ∆Si(xi)

Therefore, amino acids that are less frequent in the window ±d around
the sequence position i than the background frequency of this amino acid
contribute more to the score, and the more frequent less.

4 PARALLELIZATION WITH OPENMP

Fig. 1. Parallelization scheme of the prefilter module using OpenMP.

The parallelization approach of the prefiltering and alignment modules is
shown in Fig. 1 . Parts of the query sequence set are matched against the
database in parallel. Each thread writes to its own output database. In the
end, all results are merged into one output database.

We benchmarked the multicore scaling performance of the MMseqs
prefilter module with the dataset used in the speed measurements. We tested
the run time behavior with five different threads settings 1, 2, 4, 8 and 16

3
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shown in Fig. 2. The prefilter performance scales nearly linearly up to 4
threads. Beyond this the performance scales sublinearly because of the high
amount of random memory accesses to the loops 3 and 4 of Figure 1.

Fig. 2. Multithread scaling of the MMseqs prefilter.. Runtime in seconds
for the MMseqs prefilter to run 7616 query sequences against 54 790 250
sequences on different threads setting.

5 CLUSTERING RESULTS

Fig. 3. Cumulative cluster size distributions of blastclust, MMseqs,
kClust, CD-HIT, usearch for a clustering threshold of 0.3, corresponding
to the leftmost point in Fig. 3F.

Fig. 4. Cumulative cluster size distribution after ten updating steps
versus after a single cascaded clustering, using the parameter -s 7.

4
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Chapter 3

MMseqs2 enables sensitive protein
sequence searching for the analysis of
massive data sets

3.1 Introduction

The dramatic drop in sequencing costs is leading to the creation of huge metagenomics and

metatranscriptomics data sets transforming agricultural, microbiological, biotechnological

and medical research. One of the main goals in such studies is to annotate the function of

the Open Reading Frames (ORFs) predicted from these data sets. However, state-of-the-art

sensitive homology-based functional annotation tools are not applicable to the size of such

data sets due to their severe speed and cost limits. Therefore fast search tools much less

sensitive than BLAST (Altschul et al. 1990) are commonly used for the homology searches.

In viral metagenomics data sets for example, 65% to 90% of sequences cannot be annotated

at all.

In this manuscript we present the software package MMseqs2 (Steinegger and Söding

2017) that addresses this need. In profile searches, it is hundreds of times faster than BLAST

yet 50% more sensitive. It is the first fast search method to support iterative sequence profile

searches and to dramatically surpass BLAST in sensitivity.

We showed that MMseqs2 consistently outperforms other state of the art search methods

like BLAST (Altschul et al. 1990), PSI-BLAST (Altschul et al. 1997), LAST (Kiełbasa et

al. 2011), Rapsearch2 (Zhao, Tang, and Ye 2012), DIAMOND (Buchfink, Xie, and Huson

2015), UBLAST (Edgar 2010) and SWIPE (Rognes 2011) in sensitivity and speed. The

MMseqs2 benchmark uses full length protein sequences instead of single domain proteins

(Murzin et al. 1995). We previously have shown in the evaluation of MMseqs, that using

full length proteins helps to estimate errors occurring through alignments with regions of

biased amino acid compositions. MMseqs2 therefore not only enables the metagenomics

community to annotate a much higher fraction of sequences. More than that, we believe,
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it will open up new analysis strategies of the entire protein sequence space, allowing us

to link homologous sequences across all metagenomic and genomic data sets, in order to

systematically cluster even remotely homologous proteins and better annotate and order the

known protein universe.

Martin Steinegger performed the research and programming, Martin Steinegger and

Johannes Söding jointly designed the research and wrote the manuscript.
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fast tools detect only exact k-mer matches9–12, 
MMseqs2, like MMseqs and BLAST, finds 
k-mer matches between similar k-mers. This 
similar-k-mer matching allows MMseqs2 
to use a large word size k = 7 without losing 
sensitivity, by generating a large number of 
similar k-mers, ~600 to 60,000 per query 
k-mer, depending on the similarity setting 
(Fig. 1b, orange frame). For MMseqs2’s 
speed it was crucial to have found a way 
(explained in Supplementary Fig. 1 and the 

MMseqs2 enables sensitive protein sequence 
searching for the analysis of massive data sets
To the Editor: The throughput of DNA 
sequencing has increased much faster than 
computational speed in the past decade,  and 
sensitive-sequence searching has become 
the main bottleneck in the analysis of 
large metagenomic data sets. We therefore 
developed MMseqs2 (https://github.com/
soedinglab/mmseqs2), which improves 
on current search tools over the full range 
of speed-sensitivity trade-off, achieving 
sensitivities better than PSI-BLAST at more 
than 400 times its speed.

As a result of the drop in sequencing costs 
by four orders of magnitude since 2007, 
many large-scale metagenomic projects are 
being performed, each producing terabytes 
of sequences with applications in medical, 
biotechnological, microbiological, and 
agricultural research1–4. A central step in 
the computational analysis is the annotation 
of open reading frames by searching for 
similar sequences in the databases from 
which to infer function. In metagenomics, 
computational costs now dominate 
sequencing costs5–7, and protein searches 
typically consume >90% of computational 
resources7, even though the sensitive but 
slow BLAST8 has mostly been replaced by 
much faster search tools9–12. But the gains 
in speed come at the expense of lower 
sensitivity. Because many species found in 
metagenomics and metatranscriptomics 
studies are not closely related to any 
organism with a well-annotated genome, the 
fraction of unannotatable sequences is often 
as high as 65–90%2,13, and the widening gap 
between sequencing and computational costs 
quickly aggravates this problem.

To address this challenge, we developed 
MMseqs2, a parallelized, open-source 
software suite. Compared to its predecessor 
MMseqs14, it is much more sensitive, 
supports iterative profile-to-sequence 
and sequence-to-profile searches, and 
offers much enhanced functionality 
(Supplementary Table 1).

MMseqs2 searching is composed 
of three stages (Fig. 1a): a short word 

(‘k-mer’) match stage, vectorized ungapped 
alignment, and gapped (Smith–Waterman) 
alignment. The first stage is crucial for the 
improved performance. For a given query 
sequence, it finds all target sequences that 
have two consecutive similar-k-mer matches 
on the same diagonal (Fig. 1b). Consecutive 
k-mer matches often lie on the same 
diagonal for homologous sequences (if no 
alignment gap occurs between them) but are 
unlikely to do so by chance. Whereas most 

Figure 1  MMseqs2 searching in a nutshell. (a) Three increasingly sensitive search stages find similar 
sequences in the target database. (b) The short word (k-mer) match stage detects consecutive similar-k-
mer matches occurring on the same diagonal. The diagonal of a k-mer match is the difference between 
the positions of the two similar k-mers in the query and in the target sequence. The pre-computed 
index table for the target database (blue frame) contains for each possible k-mer the list of the target 
sequences and positions where the k-mer occurs (green frame). Query sequences/profiles are processed 
one by one (loop 1). For each overlapping spaced query k-mer (loop 2), a list of all similar k-mers is 
generated (orange frame). The similarity threshold determines the list length and sets the trade-off 
between speed and sensitivity. For each similar k-mer (loop 3) we look up the list of sequences and 
positions where it occurs (green frame). In loop 4 we detect consecutive double matches on the same 
diagonals (magenta and black frames). For details, see Supplementary Methods.
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a benchmark using unscrambled or single-
domain query sequences (Supplementary 
Figs. 4–7, 9 and 10).

Searches with sequence profiles are 
generally much more sensitive than simple 
sequence searches, because profiles contain 
detailed, family-specific preferences for each 
amino acid at each position. We compared 
MMseqs2 to PSI-BLAST (Fig. 2b,c) using 
two to four iterations of profile searches 
through the target database. As expected, 
MMseqs2 profile searches were much faster 
and more sensitive than BLAST sequence 
searches. But MMseqs2 was also considerably 
more sensitive than PSI-BLAST, despite being 
433 times faster at three iterations. This is 
partly due to its effective suppression of high-
scoring false positives and more accurate 
E-values (Fig. 2d and Supplementary Fig. 7).

The MMseqs2 suite offers workflows for 
various standard-use cases of sequence and 
profile searching and clustering of huge 
sequence data sets, and includes many utility 
scripts. We illustrate its power with three 
application examples.

In the first example, we tested MMseqs2 for 
annotating proteins in the Ocean Microbiome 

Supplementary Methods) to eliminate the 
random memory access in the last line of the 
innermost loop 4 (magenta frame). 

The critical insight for the prefilter 
performance was to combine the double-
match criterion with making k-mers as long 
as possible, which required finding similar 
and not just exact k-mers. This effectively 
bases our decision on up to 2 × 7 = 14 
residues instead of just 2 × 3 in BLAST or 12 
letters on a size-11 alphabet in DIAMOND.

MMseqs2 is parallelized on three levels: 
time-critical parts are manually vectorized, 
queries can be distributed to multiple cores, 
and the target database can be split into 
chunks distributed to multiple servers. 
Because MMseqs2 needs no random memory 
access in its innermost loop, its runtime 
scales almost inversely with the number of 
cores used (Supplementary Fig. 2).

MMseqs2 requires 13.4 GB plus 7 bytes per 
amino acid to store the database in memory, 
or 80 GB for 30.3 M sequences of length 342. 
Large databases can be searched with limited 
main memory by splitting the database 
among servers, at very moderate loss of speed 
(Supplementary Fig. 3).

We developed a benchmark with full-
length sequences containing disordered, low-
complexity and repeat regions, because these 
regions are known to cause false-positive 
matches, particularly in iterative profile 
searches. We annotated UniProt sequences 
with structural domain annotations from 
SCOP15, 6,370 of which were designated 
as query sequences and 3.4 M as database 
sequences. We also added 27 M reversed 
UniProt sequences, thereby preserving low 
complexity and repeat structure16. The 
unmatched parts of query sequences were 
scrambled in a way that conserved the local 
amino acid composition. A benchmark 
using only unscrambled sequences gave 
similar results (Supplementary Figs. 4–7). 
We defined true-positive matches to have 
annotated SCOP domains from the same 
SCOP family; false positives match a reversed 
sequence or a sequence with a SCOP domain 
from a different fold. Other cases are ignored.

Figure 2a shows the cumulative distribution 
of search sensitivities. Sensitivity for a single 
search is measured by the area under the 
curve (AUC) before the first false-positive 
match, that is, the fraction of true-positive 
matches found with better E-value than 
the first false-positive match. MMseqs2 in 
sensitive mode (MMseqs2-sens) reaches 
BLAST’s sensitivity while being 36 times faster. 
MMseqs2 is as sensitive as the exact Smith–
Waterman aligner SWIPE17, compensating 
some unavoidable loss of sensitivity due to its 

heuristic prefilters by effectively suppressing 
false-positive matches between locally biased 
segments (Fig. 2d and Supplementary Fig. 
4). This is achieved by correcting the scores of 
regions with biased amino acid composition 
or repeats, masking such regions in the 
k-mer index using TANTAN18, and reducing 
homologous overextension of alignments19 
with a small negative-score offset (Fig. 2d 
and Supplementary Fig. 7). All tools except 
MMseqs2 and LAST have reported far too 
optimistic E-values (Supplementary Fig. 8). 
For example, in 6,370 searches DIAMOND 
reported 69,211 false-positive matches with 
E-values below 10–3 (versus 0.637 expected) 
in 5% of the searches (versus 0.1% expected), 
while MMseqs2 produced 54 false-positive 
matches in only 0.1% of the searches 
(Supplementary Table 2). In automatic 
functional annotation pipelines, such 
unreliable E-values will lead to an increased 
fraction of false annotations.

In a comparison of AUC sensitivity and 
speed (Fig. 2b), MMseqs2 with four sensitivity 
settings (red) showed the best combination of 
speed and sensitivity over the entire range of 
sensitivities. Similar results were obtained with 

Figure 2  MMseqs2 pushes the boundaries of sensitivity-speed trade-off. (a) Cumulative distribution 
of AUC sensitivity for all 6,370 searches with UniProt sequences through the database of 30.4 M full-
length sequences. Higher curves signify higher sensitivity. Legend: speed-up factors relative to BLAST, 
measured on a 2 × 8 core 128 GB RAM server using a 100 times duplicated query set (637,000 
sequences). Times to index the database have not been included. MMseqs2 indexing takes 7.1 min 
for 30.3 M sequences of avg. length 342. (b) Average AUC sensitivity versus speed-up factor relative 
to BLAST. White numbers in plot symbols: number of search iterations. (c) Same analysis as in a, for 
iterative profile searches. (d) False-discovery rates for sequence and profile searches. Colors: as in a 
(top) and c (bottom). The command line parameters of all tools are listed in Supplementary Table 3.

BLAST
MMseqs2 sens
SWIPE

MMseqs2 4 IT
MMseqs2 3 IT
PSI-BLAST 3 IT
PSI-BLAST 2 IT
PSI-BLAST 4 IT
MMseqs2 2 IT

MMseqs2
DIAMOND sens
UBLAST
SWORD sens
RAPseach2
MMseqs2 fast
LAST sens
MMseqs1
DIAMOND
MMseqs2 faster
LAST

Speedup Speedup

Pro�le search1
90

117
0.3
0.5
0.2
170

36
0.6
256
653
56
15
69

4,874
505
714

3,988
106,970
44,769Fr

ac
tio

n 
of

 q
ue

rie
s

0.75 0.75

0.5 0.5

0.25 0.25

0 0
0 .25 .5 .75 1.0

AUC up to the �rst false positive
0 .25 .5 .75 1.0

AUC up to the �rst false positive

a

b d

c

BLAST

105

10–5

104

10–4

10–4

103

10–3

10–3

102

10–2

10–2

10–2

101

101

10–1

10–1

100

100

S
p

ee
d

up

Fa
ls

e 
d

is
co

ve
ry

 r
at

e

0.1 0.2 0.3 0.4 0.5 0.6

E-value thresholdAverage AUC up to the �rst false positive

More sensitive

Fa
st

er

Sequence search

Pro�le search

MMseqs2 faster
LAST

DIAMOND
MMseqs2 fast

DIAMOND sens MMseqs2
pro�leMMseqs2

MMseqs

LAST sens

RAPsearch2

SWORD

UBLAST

MMseqs2 sens

BLAST33,600 hours
on 2×8 CPU cores

PSI-BLASTSWIPE
2

2 3

34

4

CORRESPONDENCE

3. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data
sets

56



NATURE BIOTECHNOLOGY   ADVANCE ONLINE PUBLICATION	 3

AUTHOR CONTRIBUTIONS
M.S. developed the software and performed the data 
analysis. M.S. and J.S. conceived of and designed 
the algorithms and benchmarks and wrote the 
manuscript.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Martin Steinegger & Johannes Söding

Martin Steinegger and Johannes Söding 
are in the Quantitative and Computational 
Biology group, Max-Planck Institute for 
Biophysical Chemistry, Göttingen, Germany. 
Martin Steinegger is in  the Department for 
Bioinformatics and Computational Biology, 
Technische Universität München, Garching, 
Germany. 
e-mail: johannes.soeding@mpibpc.mpg.de

Published online 16 October 2017; doi:10.1038/
nbt.3988

1.	 Sunagawa, S. et al. Science 348, 1261359 (2015).
2.	 Afshinnekoo, E. et al. Cell Syst. 1, 72–87 (2015).
3.	 Howe, A.C. et al. Proc. Natl. Acad. Sci. USA 111, 

4904–4909 (2014).
4.	 Franzosa, E.A. et al. Nat. Rev. Microbiol. 13, 360–

372 (2015).
5.	 Scholz, M.B., Lo, C.C. & Chain, P.S. Curr. Opin. 

Biotechnol. 23, 9–15 (2012).
6.	 Desai, N., Antonopoulos, D., Gilbert, J.A., Glass, E.M. 

& Meyer, F. Curr. Opin. Biotechnol. 23, 72–76 
(2012).

7.	 Tang, W. et al. in IEEE International Conference on 
Big Data, 56–63 (IEEE, 2014).

8.	 Altschul, S.F. et al. Nucleic Acids Res. 25, 3389–
3402 (1997).

9.	 Edgar, R.C. Bioinformatics 26, 2460–2461 (2010).
10.	Kiełbasa, S.M., Wan, R., Sato, K., Horton, P. & 

Frith, M.C. Genome Res. 21, 487–493 (2011).
11.	Zhao, Y., Tang, H. & Ye, Y. Bioinformatics 28, 125–

126 (2012).
12.	Buchfink, B., Xie, C. & Huson, D.H. Nat. Methods 12, 

59–60 (2015).
13.	Hurwitz, B.L. & Sullivan, M.B. PLoS One 8, e57355 

(2013).
14.	Hauser, M., Steinegger, M. & Söding, J. Bioinformatics 

32, 1323–1330 (2016).
15.	Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. 

J. Mol. Biol. 247, 536–540 (1995).
16.	Karplus, K., Barrett, C. & Hughey, R. Bioinformatics 

14, 846–856 (1998).
17.	Rognes, T. BMC Bioinformatics 12, 221 (2011).
18.	Frith, M.C. Nucleic Acids Res. 39, e23–e23 (2011).
19.	Frith, M.C., Park, Y., Sheetlin, S.L. & Spouge, J.L. 

Nucleic Acids Res. 36, 5863–5871 (2008).
20.	Jensen, L.J. et al. Nucleic Acids Res. 36, D250–

D254 (2008).
21.	Finn, R.D. et al. Nucleic Acids Res. 44 D1, D279–

D285 (2016).
22.	Steinegger, M. & Söding, J. Preprint at bioRxiv 

https://dx.doi.org/10.1101/104034 (2017).
23.	Eddy, S.R. PLOS Comput. Biol. 7, e1002195 (2011).

Reference Gene Catalog (OM-RGC)1. The 
speed and quality bottleneck is the search 
through the eggNOGv3 database20. The 
BLAST search with E-value cutoff 0.01 
produced matches for 67% of the 40.2 M OM-
RGC genes1. We replaced BLAST with three 
MMseqs2 searches of increasing sensitivity 
(Supplementary Fig. 11). The first MMseqs2 
search in fast mode detected matches 
for 59.3% of genes at E ≤ 0.1. (E ≤ 0.1 
corresponds to the same false-discovery rate 
as E ≤ 0.01 in BLAST, Fig. 2d). The sequences 
without matches were searched with default 
sensitivity, and 17.5% had a significant match. 
The last search in sensitive search mode 
found matches for 8.3% of the remaining 
sequences. In total, we obtained at least one 
match for 69% of sequences in OM-RGC, 3% 
more than BLAST in 1% of the time (1,520 vs. 
162,952 CPU hours; Shini Sunagawa, personal 
communication).

In the second example, we sought to 
annotate the remaining 12.3 M unannotated 
sequences using profile searches. We merged 
the UniProt database with the OM-RGC 
sequences and clustered this set with 
MMseqs2 at 50% sequence identity cut-off. 
We built a sequence profile for each remaining 
OM-RGC sequence by searching through this 
clustered database and accepting all matches 
with E ≤ 0.001. With the resulting sequence 
profiles, we searched through eggNOG, 
and obtained at least one match for 3.5 M 
(28.3%) profiles with E < 0.1 . This increased 
the fraction of OM-RGC sequences with 
significant eggNOG matches to 78% with an 
additional CPU time of 900 h. In summary, 
MMseqs2 matched 78% of sequences to 
eggNOG in only 1.5% of the CPU time that 
BLAST needed to find matches for 67% of the 
OM-RGC sequences1.

In the third example, we annotated a non-
redundant set of 1.1 billion hypothetical 
protein sequences with Pfam21 domains. 
We predicted these sequences with an 
average length of 134 amino acids in ~2,200 
metagenome and metatranscriptome data 
sets22. We searched with each sequence 
through the 16,479 Pfam31.0 sequence 
profiles held in 16 GB of memory of a single 

2× 14-core server using sensitivity setting 
-s 5. Supplementary Figure 12 explains the 
adaptations to the k-mer prefilter and search 
workflow. The entire search took 8.3 h, or 
0.76 ms per query sequence per core and 
resulted in 370 M domain annotations with 
E-values < 0.001. A search of 1,100 randomly 
sampled sequences from the same set with 
HMMER3 (ref. 23) through Pfam took 10.6 
s per sequence per core, almost 14,000 times 
longer, and resulted in 514 annotations with 
E < 0.001, in comparison to 415 annotations 
found by MMseq2. A sensitivity setting 
of -s 7 brings the number of MMseqs2 
annotations to 474 at 4,000 times the speed 
of HMMER3.

In summary, MMseqs2 closes the cost and 
performance gap between sequencing and 
computational analysis of protein sequences. 
Its sizeable gains in speed and sensitivity 
should facilitate the analysis of large data sets 
and even the entire genomic and metagenomic 
protein sequence space at once. MMseqs2 
source code is available in Supplementary 
Source Code and at mmseqs.org and at 
https://doi.org/10.5281/zenodo.839602. A 
compressed tar file containing all databases, 
evaluation tools, tested method binaries 
(excluding UBLAST), and benchmark 
scripts is available at http://wwwuser.
gwdg.de/~compbiol/mmseqs2/mmseqs2-
benchmark.tar.gz. 

Editor’s note: This article has been peer-reviewed.

Note: Any Supplementary Information and Source Data 
files are available in the online version of the paper 
(http://dx.doi.org/10.1038/nbt.3988).
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Supplementary Methods
Overview. MMseqs2
(Many-against-Many sequence
searching) is a software suite to search
and cluster huge protein sequence sets.
MMseqs2 is open source GPL-licensed
software implemented in C++ for Linux
and Mac OS. At the core of MMseqs2 is
its sequence search module. It searches
and aligns a set of query sequences
against a set of target sequences.
Queries are processed in three
consecutive stages of increasing
sensitivity and decreasing speed (Fig.
1a): (1) the fast k-mer match stage
filters out 99.9 % of sequences, (2) the
ungapped alignment stage filters out a
further 99 %, and (3) the accurate,
vectorized Smith-Waterman alignment
thus only needs to align ∼ 10−5 of the
target sequences.

MMseqs2 builds on our MMseqs
software suite8, designed for fast
sequence clustering and searching of
globally alignable sequences. The k-mer
match stage of MMseqs2, which is
crucial for its improved sensitivity-speed
trade-off, has been developed from
scratch, profile-to-sequence and
sequence-to-profile searching capabilities
have been developed, and many other
powerful features and utilities have been
added (see Supplemental Table S2
for an overview of differences).

The software is designed to run on
multiple cores and servers and exhibits
nearly linear scalability. It makes
extensive use of single instruction
multiple data (SIMD) vector units which
are part of modern Intel and AMD
CPUs. For older CPUs without AVX2
support, MMseqs2 falls back to SSE4.1
instructions throughout with minimal

speed loss.

k-mer match stage. Most fast
methods follow a seed-and-extend
approach: a fast seed stage searches for
short-word (“k-mer“) matches which are
then extended to a full, gapped
alignment. Since the k-mer match stage
processes all sequences, it needs to be
much faster than the subsequent stages.
Its sensitivity is therefore crucial for the
overall search sensitivity. In contrast to
BLAST and SWORD21, most fast
methods index the database k-mers
instead of the query sequences, using
hashes or suffix arrays, and a few index
both to streamline random memory
access during the identification of k-mer
matches13;9;2. To increase the seeds’
sensitivity, some methods allow for one
or two mismatched positions12;9, others
employ reduced alphabets20;23;9;2. Many
use spaced k-mer seeds to reduce spatial
clustering of chance matches9;2.

Whereas most other tools use only
single, exact k-mer matches as seeds, the
k-mer match stage of MMseqs2 detects
double, consecutive, similar-k-mer
matches occurring on the same diagonal
i− j. i is position of the k-mer in the
query and j is the position of the
matching k-mer in the target sequence.
This criterion very effectively suppresses
chance k-mer matches between
nonhomologous sequences as these have
a probability of only
∼ 1/(Lquery + Ltarget) to have coinciding
diagonals. In contrast, consecutive
k-mer matches between homologous
sequences lie on the same diagonal if no
alignment insertion or deletion occurred
between them. A similar criterion is

used in the earlier, two-hit 3-mer seed
strategy of BLAST1. (The new version
reverts to a single-hit strategy but uses
6-mers on a reduced size-15 alphabet
instead of 3-mers.17.)

The double k-mer match criterion
effectively bases our decision to trigger
the next search stage on 11 to 14 amino
acids (depending on the number of
common residues between seeds) instead
of just 2× 3 in BLAST or 12 letters on a
size-11 reduced alphabet in DIAMOND.
(Even though DIAMOND uses 4 seed
patterns with 12 letters, it takes
independent decisions for each of the
patterns.) The information content in
each of the reduced-alphabet letters is
3.0 in contrast to 4.2 bits for the full
20-letter amino acid alphabet.

Query sequences are searched one by
one against the target set (Fig. 1b, loop
1). For each k-mer starting position in
the query (loop 2) we generate a list of
all similar k-mers (orange frame) with a
Blosum62 similarity above a threshold
score. Lower threshold scores (option
--k-score <int>) result in higher average
numbers of similar k-mers and thereby
higher sensitivity and lower speed. The
similar k-mers are generated with a
linear-time branch-and-bound
algorithm7.

For each k-mer in the list of similar
k-mers (loop 3), we obtain from the
index table (blue frame) the list of target
sequence identifiers target_ID and the
positions j of the k-mer (green frame).
In the innermost loop 4 we go through
this list to detect double k-mer matches
by comparing the current diagonal i−j
with the previously matched diagonal for
target_ID. If the previous and current

1
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diagonals agree, we store the diagonal
i−j and target_ID as a double match.
Below, we describe how we carry out this
computation within low-level, fast CPU
cache without random memory access.

Minimizing random memory
access. Due to the increase in the
number of cores per CPU and the
stagnation in main memory speeds in
the last decade, main memory access is
now often the chief bottleneck for
compute-intensive applications. Since it
is shared between cores, it also severely
impairs scalability with the number of
cores. It is therefore paramount to
minimize random memory accesses.

We want to avoid the random main
memory access to read and update the
value of diagonal_prev[target_ID] in
the innermost loop. We therefore merely
write target_ID and the diagonal i− j
serially into an array matches for later
processing. Because we write linearly
into memory and not at random
locations, these writes are automatically
buffered in low-level cache by the CPU
and written to main memory in batches
with minimal latency. When all k-mers
from the current query have been
processed in loop 2, the matches array is
processed in two steps to find double
k-mer matches. In the first step, the
entries (target_ID, i−j) of matches are
sorted into 2B arrays (bins) according to
the lowest B bits of target_ID, just as
in radix sort. Reading from matches is
linear in memory, and writing to the 2B

bins is again automatically buffered by
the CPU. In the second step, the 2B

bins are processed one by one. For each
k-mer match (target_ID, i−j), we run
the code in the magenta frame of Fig.
1b. But now, the diagonal_prev array
fits into L1/L2 CPU cache, because it
only needs ∼N/2B entries, where N is
the number of target database
sequences. To minimize the memory
footprint, we store only the lowest 8 bits
of each diagonal value in
diagonal_prev, reducing the amount of
memory to ∼N/2B bytes. For example,
in the 256 KB L2 cache of Intel Haswell

CPUs we can process a database of up
to 256K× 2B sequences. To match L2
cache size to the database size, MMseqs2
sets B = ceil(log2(N/L2_size)).

Index table generation. For the
k-mer match stage we preprocess the
target database into an index table. It
consists of a pointer array (black frame
within blue frame in Fig. 1b) and k-mer
entries (green frame in Fig. 1b). For
each of the 21k k-mers (the 21st letter X
codes for "any amino acid") a pointer
points to the list with target sequences
and positions (target_ID, j) where this
k-mer occurs. Prior to index generation,
regions of low amino acid compositional
complexity are masked out using
TANTAN (see Masking low-complexity
regions)4.

Building the index table can be done
in multithreaded fashion and does not
require any additional memory. To that
end, we proceed in two steps: counting
of k-mers and filling entries. In the first
step each thread counts the k-mers, one
sequence at a time. All threads add up
their counts using the atomic function
__sync_fetch_and_add. In the second
step, we allocate the appropriately sized
array for the k-mer entries. We
transform the k-mer count array into an
offset table. Each thread picks a new
sequence from the database, parallelized
by OpenMP using #pragma omp
parallel for, and processes all k-mers
in the sequence. Each k-mer is now
written into the entry array. We can
prevent two threads writing into the
same position pointed to by the offset
pointer by fetching and incrementing it
at the same time using the atomic
__sync_fetch_and_add instruction.
Building the index table file for 3× 107

sequences takes 7.1 minutes on 2× 8
cores.

Memory requirements. The index
table needs 4 + 2 bytes for each entry
(target_ID, j), and one byte per residue
is needed to store the target sequences.
For a database of NL residues, we
therefore require NL× 7 B. The pointer

array needs another 21k × 8 B. The
target database set can be split into
arbitrary chunk sizes to fit them into
memory (see Parallelization).

Ungapped alignment stage. A fast,
vectorized algorithm computes the scores
of optimal ungapped alignments on the
diagonals with double k-mer matches.
Since it has a linear time complexity, it
is much faster than the Smith-Waterman
alignment stage with its quadratic time
complexity. The algorithm aligns 32
target sequences in parallel, using the
AVX2 vector units of the CPU. To only
access memory linearly we precompute
for each query sequence a matrix with
32 scores per query residue, containing
the 20 amino acid substitution scores for
the query residue, a score of −1 for the
letter X (any residue), and 11 zero
scores for padding. We gather bundles of
32 target sequences with matches on the
same diagonal and also preprocess them
for fast access: We write the amino acids
of position j of the 32 sequences
consecutively into block j of 32 bytes,
the longest sequence defining the
number of blocks. The algorithm moves
along the diagonals and iteratively
computes the 32 scores of the best
alignment ending at query position i in
AVX2 register S using
S = max(0, Smatch + Sprev). The
substitution scores of the 32 sequences
at the current query position i in AVX2
register Smatch are obtained using the
AVX2 (V)PSHUFB instruction, which
extracts from the query profile at
position i the entries specified by the 32
bytes in block j of the target sequences.
The maximum scores along the 32
diagonals are updated using
Smax = max(Smax, S). Alignments above
15 bits are passed on to the next stage.

Vectorized Smith-Waterman
alignment stage. We extended the
alignment library of Mengyao et al.22,
which is based on Michael Farrar’s
stripe-vectorized alignment algorithm3,
by adding support for AVX2 instructions
and for sequence profiles. To save time
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when filtering matches, we only need to
compute the score and not the full
alignment. We therefore implemented
versions that compute only the score
and the end position of the alignment, or
only start and end position and score.

Amino acid local compositional
bias correction. Many regions in
proteins, in particular those not forming
a stable structure, have a biased amino
acid composition that differs
considerably from the database average.
These regions can produce many
spurious k-mer matches and high-scoring
alignments with non-homologous
sequences of similarly biased amino acid
distribution. Therefore, in all three
search stages we apply a correction to
substitution matrix scores developed for
MMseqs8, assigning lower scores to the
matches of amino acids that are
overrepresented in the local sequence
neighborhood. Query sequence profile
scores are corrected in a similar way:
The score S(i, aa) for amino acid aa at
position i is corrected to Scorr(i, aa) =
S(i, aa)− 1

40
∑i+20

j=i−20,j 6=i S(j, aa) +
1

Lquery

∑Lquery
j=1 S(j, aa).

Masking low-complexity regions.
The query-based amino acid local
compositional bias correction proved
effective, particularly for
sequence-to-sequence searches. However,
for iterative profile sequence searches a
very low level of false discovery rate is
required, as false positive sequences can
recruit more false positives in
subsequent iterations leading to
massively corrupted profiles and search
results in these instances. We observed
that these cases were mainly caused by
biased and low-complexity regions in the
target sequences. We therefore mask out
low-complexity regions in the target
sequences during the k-mer matching
and the ungapped alignment stage. We
use TANTAN4 with a threshold of 0.9%
probability for low complexity.

Iterative profile search mode. The
first iteration of the profile-to-sequence
search is a straightforward MMseqs2
sequence-to-sequence search. We then
realign all matched sequences with
E-values below the specified inclusion
threshold (option --e-profile
<value>, default value 0.1). At this
stage, we add a score offset of −0.1 bits
per matched residue pair to the scores of
the substitution matrix to avoid
homologous overextensions of the
alignments, a serious problem causing
many false positives in iterative profile
searches5;6. In all further iterations, we
remove from the prefilter results
sequences that were previously included
in the profile and align only the newly
found sequence matches. From the
search results we construct a simple star
multiple sequence alignment (MSA) with
the query as the master sequence. We
filter the multiple sequence alignment
with 90% maximum pairwise sequence
identity and pick the 100 most diverse
sequences using C++ code adapted from
our HH-suite software package15. As in
HH-suite, we compute position-specific
sequence weights1, which ensure that
MSAs with many matched segments that
stretch only part of the query sequence,
as occurs often for multidomain proteins,
are treated appropriately. We add
pseudocounts to the amino acid counts
of each profile column as described for
HHsearch18. All matches included in the
profile or achieving an E-value in the
last iteration below the value given by
-e <value> are displayed.

Sequence-to-profile search mode.
To enable searching a target profile
database, we made four changes to the
search workflow (Supplementary Fig.
S11): (1) We generate a k-mer index
table for the target database by looping
over all profiles and all k-mer positions
and adding all k-mers to the index that
obtain a profile similarity score above
the threshold. Lower score thresholds
lead to more k-mers and higher
sensitivity. (2) We only look for the
exact query k-mers in the index table.

The former loop 3 is omitted. (3) The
ungapped alignment for each matched
diagonal is computed between the query
sequence and the target profile’s
consensus sequence, which contains at
each column the most frequent amino
acid. (4) The previous step produced for
each query sequence s a list of matched
profiles p with score Ssp > 15bit.
However, the gapped alignment stage
can only align profiles with sequences
and not vice versa. We therefore
transpose the scores Ssp in memory and
obtain for each profile p all matched
sequences, {s : Sps > 15bit}, which we
pass to the gapped alignment stage.
Finally, the results are transposed again
to obtain for each query sequence a list
of matched profiles.

Algorithmic novelty in MMseqs2.
MMseqs2 builds upon many powerful
previous ideas in the sequence search
field, such as inexact k-mer matching1,
finding two k-mers on the same
diagonal1, or spaced k-mers13. In
addition to carefully engineering every
relevant piece of code for maximum
speed, we introduce with MMseqs2
several novel ideas that were crucial to
the improved performance: (1) the
algorithm to find two consecutive,
inexact k-mer matches (Fig. 1b); (2) the
avoidance of random memory accesses in
the innermost loop of the k-mer match
stage (Supplementary Fig. S1); (3)
the use of 7-mers, which is only enabled
by the fast generation of similar k-mers
(∼ 60 000 per k-mer in sensitive mode);
(4) iterative profile-sequence search
mode including profile-to-sequence
vectorized Smith-Waterman alignment;
(5) sequence-to-profile search mode; (6)
the introduction of a fast, vectorized
ungapped-alignment step (Fig. 1a); (7)
a fast amino acid compositional bias
score correction on the query side that
suppresses high-scoring false positives.

Parallelization. Due to the
stagnation in CPU clock rates and the
increase in the number of cores per
CPU, vectorization and parallelisation
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across multiple cores and servers is of
growing importance for highly
compute-intensive applications. Besides
careful vectorization of time-critical
loops, MMseqs2 is efficiently parallelized
to run on multiple cores and servers
using OpenMP and message passing
interface (MPI).

OpenMP threads search query
sequences independently against the
target database and write their result
into separate files. After all queries are
processed, the master thread merges all
results together.

To parallelize the time-consuming
k-mer matching and gapless alignment
stages among multiple servers, two
different modes are available. In the
first, MMseqs2 can split the target
sequence set into approximately
equal-sized chunks, and each server
searches all queries against its chunk.
The results from each server are
automatically merged. Alternatively, the
query sequence set is split into
equal-sized chunks and each server
searches its query chunk against the
entire target set. Splitting the target
database is less time-efficient due to the
slow, IO-limited merging of results. But
it reduces the memory required on each
server to NL× 7B/#chunks + 21k × 8 B
and allows users to search through huge
databases on servers with moderate
memory sizes. If the number of chunks is
larger than the number of servers,
chunks will be distributed among servers
and processed sequentially. By default,
MMseqs2 automatically decides which
mode to pick based on the available
memory on the master server.

MMseqs2 software suite. The
MMseqs2 suite consists of four
simple-to-use main tools for standard
searching and clustering tasks, 37 utility
tools, and four core tools ("expert
tools"). The core tool
mmseqs prefilter runs the first two
search stages in Fig. 1a, mmseqs align
runs the Smith-Waterman alignment
stage, and mmseqs clust offers various
clustering algorithms. The utilities

comprise format conversion tools,
multiple sequence alignment, sequence
profile calculation, open reading frame
(ORF) extraction, 6-frame translation,
set operations on sequence sets and
results, regex-based filters, and statistics
tools to analyse results. The main tools
are implemented as bash-scripted
workflows that chain together core tools
and utilities, to facilitate their
modification and extension and the
creation of new workflows.

Design of sensitivity benchmark.
Some recent new sequence search tools
were only benchmarked against short
sequences, using BLAST results as the
gold standard10;9;2;23. Short matches
require fairly high sequence identities to
become statistically significant, making
BLAST matches of length 50 relatively
easy to detect. (For a sequence match to
achieve an E−value < 0.01 in a search
through UniProt requires a raw score of
∼ 40 bits, which on 50 aligned residues
translates to a sequence identity
& 40%). Because long-read,
third-generation sequencing technologies
are becoming widespread, short-read
technologies are improving read lengths,
and ORFs and putative genes in
metagenomics are commonly predicted
from assembled contigs, we constructed
a benchmark set using full-length queries
and database sequences, not just
sequences of structured domains as
usually done. Including disordered
regions, membrane helices, and other
low-complexity regions is important
since they often give rise to false-positive
sequence matches, particularly in
iterative sequence searches.

Because we cannot use BLAST or
SWIPE16 as gold standard if we want to
compare other tools with them, we use
evolutionary relationships that have
been determined on the basis of
structures as gold standard. SCOP14 is
a database of protein domains of known
structure organised by evolutionary
relationships.

We defined true positive matches to
have annotated SCOP domains from the

same SCOP family, false positives match
a reversed sequence. In the first
benchmark version matches to a
sequence with a SCOP domain from a
different fold except the beta propellers
(which are known to be homologous19)
are also conside--red false positives.
Other cases are ignored. -- The false
discovery rate (FDR) For a single search
is computed as FDR = FP/(FP + TP),
where TP and FP are the numbers of
true and false positive matches below a
cutoff score in that search. To prevent a
few searches with many false positives
from dominating the FDR, we computed
the FDR for all searches as arithmetic
mean over the single-search FDRs.

We measure the sensitivity of search
tools using a receiver operating
characteristic (ROC) analysis19. We
search with a large set of query
sequences through a database set (see
next paragraph) and record for each
query the fraction of true positive
sequences detected up to the first false
positive. This sensitivity is also called
area under the curve 1 (AUC1). We
then plot the cumulative distribution of
AUC1 values, that is, the fraction of
query sequences with an AUC1 value
larger than the value on the x-axis. The
more sensitive a search tools is the
higher will its cumulative distribution
trace lie. We do not analyse only the
best match for every search in order to
increase the number of matches and to
thereby reduce statistical noise.

Benchmark set. The
SCOP/ASTRAL (v. 1.75) database was
filtered to 25% maximum pairwise
sequence identity (7616 sequences), and
we searched with each SCOP sequence
through the UniRef50 (06/2015)
database, using SWIPE16 and, for
maximum sensitivity, also three
iterations of HHblits. To construct the
query set, we chose for each of the 7616
SCOP sequences the best matching
UniRef50 sequence for the query set if
its SWIPE E-value was below 10−5,
resulting in 6370 query sequences with
7598 SCOP-annotated domains. In the
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first version of the benchmark (Fig. 2),
query sequences were shuffled outside of
annotated regions within overlapping
windows of size 10. This preserves the
local amino acid composition while
precluding true positive matches in the
shuffled regions. In the second version of
the benchmark, query sequences were
left unchanged (Supplementary Fig.
S3, S4, S5, S6).

To construct the target database, we
selected all UniRef50 sequences with
SWIPE or HHblits E−value < 10−5 and
annotated them with the corresponding
SCOP family, resulting in 3 374 007
annotations and a median and average
number of sequences per SCOP family of
353 and 2150, respectively. Since the
speed measurements are only relevant
and quantitative on a database of
realistic size, we added the 27 056 274
reversed sequences from a 2012 UniProt
release. Again, the reversion preserves
the local amino acid composition while

ruling out true positive matches11. We
removed the query sequences from the
target database and removed queries
with no correct matches in the target
database from the query set.

Benchmarking. We evaluated results
up to the 4000th match per query
(ranked by E-value) and, for tools with
an upper limit on the number of
reported matches, set this limit via
command line option to 4000. The
maximum E-value was set to 10 000 to
detect at least one false positive and to
avoid biases due to slightly different
E-value calculations. Because the
MMseqs2 prefilter is already very
sensitive and returns proper E-values,
the Smith-Waterman alignment stage is
not needed in the "fast" and "faster"
versions. Program versions and calls are
found in the Supplemental Table S3.

All benchmarks were run on a single
server with two Intel Xeon E5-2640v3

CPUs (2× 8 cores, 2.6 GHz) and 128GB
memory. Run times were measured
using the Linux time command, with
the target database (70GB, 30.4M
sequences) on local solid state drives.
Since some search tools are
speed-optimized not only for large target
databases but also for large query sets,
we duplicated the query set 100 times
for the runtime measurements, resulting
in 637 000 query sequences. For the
slowest tools, SWIPE, BLAST and
RAPsearch2, we scaled up the runtime
for the original query dataset 100-fold.

Data availability. Parameters and
scripts for benchmarking are deposited
at https://bitbucket.org/martin_
steinegger/mmseqs-benchmark.

Code availability. The source code
and binaries of the MMseqs2 software
suite can be download at
https://mmseqs.org.
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Supplementary Figures and Tables

Figure S 1: Eliminating random memory access during k-mer match stage in MMseqs2 Numbers in this figure are
represented in hexadecimal notation (e.g. 0xFF is equal to 255 in decimal). After the end of loop 2 (Fig. 1B), the matches
array on the left, containing single k-mer matches between the query sequence and various target sequences, is processed in two
steps to find double k-mer matches. In the first step, the entries (target_ID, i−j) of matches are sorted into 2B arrays (bins)
according to the lowest B bits of target_ID. Here, for illustration purposes, we set B = 8. In the second step, the 2B bins are
processed one by one. For each k-mer match (target_ID, i−j), we run the code in the magenta frame of Fig. 1B. But now,
the diagonal_prev array fits into L1/L2 CPU cache, because it only contains ceil(N/2B) entries, where N is the number of
sequences in the target database.
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Figure S 2: Multi-core scaling of MMseqs2 Runtimes of MMseqs and MMseqs2 searches in fast and default sensitivity
using 1, 2, 4, 8 and 16 threads on a 2 × 8 core server with 128 GB main memory. Theoretically optimal scaling is indicated as
a dashed black line for each method. We searched with 6370 full length protein queries against 30 Mio. UniProt sequences. On
16 cores, MMseqs achieves 58% and MMseqs2 85% of their theoretical maximum performance interpolated from the single core
measurement. The improvement in scaling behaviour from MMseqs to MMseqs2 is owed to minimizing random main memory
accesses, as explained in Fig. S1.
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Figure S 3: Runtime of MMseqs2 against the UniProt at different sensitivity and database split settings. We
measured the search time with query sets of 10 000 and 100 000 sequences through the UniProt database (Release 2017_03 with
80 204 488 sequences) using four sensitivity settings (faster, fast, default, and sensitive) and splitting the database into 1, 2,
and 4 chunks. Runtimes for Refseq/Genbank (Release March 3, 2017 with 81 027 309 sequences) are very similar. The memory
consumption of the index table for the split levels of 1, 2, and 4 was 190GB, 101GB, and 57GB respectively. All searches ran on
a 2×14-core server with 768GB main memory.
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Figure S 4: False discovery rate versus E-value threshold in version 2 of the sequence search sensitivity benchmark using
unshuffled query sequences. Colors are the same as in Fig. 2a
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Figure S 5: Sequence searching sensitivity assessment with unshuffled query sequences. Cumulative distribution
of area under the curve (AUC) sensitivity for all 6324 queries in version 2 of the sequence search sensitivity benchmark using
unshuffled query sequences. Higher curves signify higher sensitivity.
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Figure S 6: Sequence profile searching sensitivity assessment with unshuffled query sequence profiles. Cumulative
distribution of area under the curve (AUC) sensitivity for all 6324 unshuffled query sequences in version 2 of the sequence search
sensitivity benchmark using unshuffled query sequences. Higher curves signify higher sensitivity. Higher curves signify higher
sensitivity. 2 IT: 2 search iterations etc.
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Figure S 7: False discovery rate versus E-value threshold in version 2 of the sequence profile search sensitivity benchmark using
unshuffled query sequences.
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Figure S 8: Accuracy of reported E-values. The expected number of false positives is the E-value threshold times the
number of searches, E × 6324. The observed number of false positives is the total number of false positives below the E-value
threshold in all 6324 searches. If E-values were accurate, observed and expected numbers of false positives would coincide
(diagonal grey line). LAST and MMseqs2 report the most accurate E-values. The false positives shown were obtained with
version 2 of the sequence search sensitivity benchmark. Colors are the same as in Fig. 2a.
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Figure S 9: Sequence searching sensitivity assessment with single-domain SCOP sequences. Cumulative distribution
of area under the curve (AUC) sensitivity for all 7616 single domain SCOP sequences. Higher curves signify higher sensitivity.
AUC up to the first false positive is the fraction of true positive matches found with better E-value than the first false positive
match.
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Figure S 10: False discovery rate versus E-value threshold for the single-domain SCOP sequence search sensitivity benchmark.
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Figure S 11: Workflow for fast and deep annotations of the Ocean Microbiome Reference Gene Catalog (OM-RGC) using
MMseqs2.
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Figure S 12: Algorithmic changes to perform fast sequence profile searches using MMseqs2. We precompute all
similar k-mers above a similarity threshold for each target profile and store them into the index table. For each query sequence
we run over its overlapping, spaced k-mers (loop 2) and look up in the index table (blue frame) only the exact same k-mer. At
the ungapped alignment stage we use the target profile consensus sequence. We transpose the results, i.e., we exchange the role
of query and target in the results and then, as the last step, align the profiles against all query sequences and transpose back.
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Feature MMseqs MMseqs2 Remark
Iterative profile sear-
ches

no yes Iterative profile searches increase sensitivity far
beyond the sensitivity of BLAST

Sequence-to-profile
searches

no yes Protein sequences can be annotated very fast by
searching through databases of profiles, e.g. for
Pfam, eggNOG, or PDB

k-mer match stage Sums up similarity
scores of similar 6-
mers between pairs of
sequences

Finds consecu-
tive double 7-mer
matches on the same
diagonal

MMseqs aggregates scores of spurious matches
across all possible Lquery×Ltarget start positions.
OK for global alignment, but suboptimal for lo-
cal similarities. MMseqs2’s consecutive double-
diagonal k-mer match criterion suppresses most
spurious matches and also works well for local
similarities.

Fast gapless align-
ment stage

no yes (AVX2 / SSE2) Increases sensitivity-versus-speed trade-off by al-
lowing MMseqs2 to evaluate more matches from
the k-mer matching stage while still reducing the
number of Smith-Waterman alignments

Multicore scalability Speed-up for 16 cores
is 9.3-fold

Speed-up for 16 cores
is 13.7-fold

MMseqs2 minimizes random memory access by
better utilizing low-level CPU caches (Supple-
mentary Figures S1, S2)

Suppression of false
positive matches

Compositional bias
score correction on
query side in k-mer
match stage

Compositional bias
score correction on
query and target side
in all three stages

MMseqs2 eliminates high-scoring false positives
much more effectively than MMseqs

Clustering methods simple greedy strat-
egy

Simple greedy set-
cover, single-linkage
with depth cut-off

MMseqs2 has an option to reassign cluster mem-
bers to the best representative

Utility scripts 3 37 (see MMseqs2
userguide on GitHub)

MMseqs2 has added utility tools for format con-
version, multiple sequence alignment, sequence
profile calculation, ORF extraction, 6-frame
translation, operations on sequence sets and re-
sults, regex-based filters, and statistics tools to
analyse results

Distribution of jobs
on computer cluster

no yes MMseqs2 uses Message Passing Interface

Split target database
among servers

no yes Allows MMseqs2 to search or cluster arbitrarily
large databases with limited memory

SIMD parallelization SSE2 AVX2 (SSE4.1 if no
support for AVX2)

AVX2 has two-fold higher parallelism and is
therefore faster

Lines of code 10 000 30 000 A large proportion of the MMseqs code has been
rewritten from scratch and considerably modified
for better performance.

Table S 1: Comparison between MMseqs and MMseqs2.
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Method Fractions of queries con-
taining a false positive
with E-value < 10−3

Number of reported false positive matches with E-
value< 10−3 (Expected number = 6370 × 10−3 =
0.637)

MMseqs2 sens 0.001 39
MMseqs2 0.001 54
MMseqs2 fast 0.002 126
MMseqs2 faster 0.001 9
UBLAST 0.107 380807
DIAMOND 0.050 69211
DIAMOND sens 0.067 124906
LAST sense 0.001 7
LAST 0 0
BLAST 0.022 1313
RAPsearch2 0.044 141665
SWORD sens 0.131 676566
MMseqs1 0.159 537403
SWIPE 0.124 788356
MMseqs2 2 IT 0.013 6202
MMseqs2 3 IT 0.024 44270
MMseqs2 4 IT 0.031 94747
PSI-BLAST 2 IT 0.253
PSI-BLAST 3 IT 0.294 1.01498e+06
PSI-BLAST 4 IT 0.299 1.13397e+06

Table S 2: Analysis of high-scoring false positive matches in 6370 searches with UniProt sequences through a database of 30
million UniProt-derived sequences. For most tools, a seemingly significant E-value (e.g. smaller than 0.001) is not a strong
indication of a homologous relationship. In automatic functional annotation pipelines, such unreliable E-values will lead to an
increased fraction of false annotations. But note that even unreliable E-values can work very well for ranking matches within a
single search, and the quality of ranking matches within a single search is what is measured by the AUC1 sensitivity.
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Method Version Database Command
MMseqs2 2.0 createindex -k 7 search --k-score (95 | 85) -e 10000.0
(normal | sense) --max-seqs 4000
MMseqs2 2.0 createindex -k 7 prefilter --k-score (140 | 115 )
(very fast | fast) --max-seqs 4000
MMseqs 1.0 fasta2ffindex --z-score-thr 10.0 -s 4 --max-seqs 4000 -c 0.0 -e 10000.0
SWIPE 2.0.11 makeblastdb -dbtype prot -e 10000.0 -a 16 -v 4000 -b 4000
RAPsearch2 2.23 makeblastdb -dbtype prot -v 4000 -z 16 -e 4 -t a -b 0
UBLAST 7.0.1090 -makeudb_ublast -threads 16 -evalue 10000.0 -ublast
SWORD sens commit

fcb2117
-t 16 -a 4000 --evalue 10000

LAST last-712 lastdb -cR01 -p -v -P 16 -u3 -D100
LAST sens last-712 lastdb -cR01 -p -v -P 16 -m 4000 -u3 -D100
DIAMOND sens 0.7.9.58 diamond makedb --max-target-seqs 4000 --evalue 10000.0 -t /dev/shm

--threads 16 ( --sensitive)
BLAST 2.2.31+ makeblastdb -dbtype prot -num_descriptions 4000 -num_alignments 4000

-num_threads 16 -evalue 10000.0
PSI-BLAST 2.2.31+ makeblastdb -dbtype prot -num_descriptions 4000 -num_alignments 4000

-num_threads 16 -num_iterations (2,3,4)
MMseqs2 profile 2.0 createindex -k 7 --num-iterations (2,3,4) -k 7 -s 5.7 -e 10000.0

--max-seqs 4000 --use-index

Table S 3: Program versions and command line parameters of tools used in the benchmark.
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Chapter 4

Clustering huge protein sequence sets
in linear time

4.1 Introduction

Publicly available metagenomics data sets at repositories such as IMG/M (Markowitz et al.

2014), MG-RAST (Wilke et al. 2016) or the Sequence Read Archive (Leinonen et al. 2011)

contain tens of billions of gene sequences. These data sets have been analysed separately

within each study. Ideally, these data sets should be examined together cross data set. This

would enable us for example, to handle rare sequences and compute more accurate func-

tional clusters. But the huge amount of data makes it challenging to integrate data sets

across many metagenomics studies.

In this manuscript we describe an algorithm and software suite that can cluster huge

protein sequences sets orders of magnitude faster than has been possible with current tools.

Linclust is the first general, linear-time sequence clustering algorithm, with O(N) instead

of O(NK) time complexity, where N is the input set size and K is the number of clusters.

With this tool, we could cluster 1.6 billion protein sequences, extracted from about 2200

metagenomes and metatranscriptomes, within half a day on a single 24 CPU core server.

Metaclust, the resulting clustered database is the largest publicly available protein set. The

Linclust algorithm and the Metaclust data sets will find many applications in protein struc-

ture prediction, homology searching and sequence annotation.

In addition, we combined Linclust and MMseqs2 search-based clustering into a single

workflow. The MMseqs2/Linclust workflow first clusters with Linclust and then performs

3 cascaded clustering steps using MMseqs2 sequence searching. This combined workflow

scales linearly with the number of input sequences. 61 million sequences are clustered about

30 times faster than with the previous, pure MMseqs2 search-based clustering and achieves

similar sensitivity.

We benchmarked Linclust against the state of the art clustering tools CD-HIT (Li and

Godzik 2006), UCLUST (Edgar 2010) and MMseqs (Hauser, Steinegger, and Söding 2016)
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and also against sequence search tools RAPsearch2 (Zhao, Tang, and Ye 2012), DIAMOND

(Buchfink, Xie, and Huson 2015) and MASH (Ondov et al. 2016). At 50% sequence iden-

tity, Linclust clusters 123 million sequences 2000 faster than UCLUST, 610 faster than

MMseqs, 4000 faster than CD-HIT, 1200 faster than DIAMOND, 59 000 faster than MASH,

20 000 than RAPsearch2.

Such fast clustering abilities is expected to be useful in metagenomics, where usually

less than half of all predicted proteins have identifiable similarity with a functionally an-

notated protein (Sunagawa et al. 2015). We believe Linclust will prove to be an enabling

technology to exploit the tremendous value of the many publicly available metagenomic

and metatranscriptomic data sets.

Martin Steinegger performed the research and programming, Martin Steinegger and

Johannes Söding jointly designed the research and wrote the manuscript.
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Metagenomic datasets contain billions of protein sequences that could greatly enhance
large-scale functional annotation and structure prediction. Utilizing this enormous
resource would require reducing its redundancy by similarity clustering. However,
clustering hundreds of million of sequences is impractical using current algorithms
because their runtimes scale as the input set size N times the number of clusters K,
which is typically of similar order as N , resulting in runtimes that increase almost
quadratically with N . We developed Linclust, the first clustering algorithm whose
runtime scales as N , independent of K. It can also cluster datasets several times
larger than the available main memory. We cluster 1.6 billion metagenomic sequence
fragments in 10 hours on a single server to 50% sequence identity, > 1000 times faster
than has been possible before. Linclust will help to unlock the great wealth contained in
metagenomic and genomic sequence databases. (Open-source software and Metaclust
database: https://mmseqs.org/).

In metagenomics, DNA is sequenced directly from the
environment, allowing us to study the vast majority of
microbes that cannot be cultivated in-vitro [1]. During
the last decade, costs and throughput of next-generation
sequencing have dropped two-fold each year, twice faster5

than computational costs. This enormous progress has re-
sulted in hundreds of thousands of metagenomes and tens
of billions of putative gene and protein sequences [2, 3].
Therefore, computing and storage costs are now dominat-
ing metagenomics [4, 5, 6]. Clustering protein sequences10

predicted from sequencing reads or pre-assembled contigs
can considerably reduce the redundancy of sequence sets
and costs of downstream analysis and storage.

CD-HIT and UCLUST [7, 8] are by far the most widely
used tools for clustering and redundancy filtering of protein15

sequence sets (see [9] for a review). Their goal is to find a
representative set of sequences such that each of the input
set sequences is represented well enough by one of the K
representatives, where "well enough" is quantified by some
similarity criteria.20

Like most other fast sequence clustering tools, they use
a fast prefilter to reduce the number of slow pairwise se-
quence alignments. An alignment is only computed if two
sequences share a minimum number of identical k-mers
(substrings of length k). If we denote the average proba-25

bility by pmatch that this happens by chance between two
non-homologous input sequences, then the prefilter would
speed up the sequence comparison by a factor of up to
1/pmatch at the expense of some loss in sensitivity. This
is usually unproblematic: if sequence matches are missed30

(false negatives) we create too many clusters, but we do

∗ soeding@mpibpc.mpg.de

not lose information. In contrast, false positives are costly
as they can cause the loss of unique sequences from the
representative set.

CD-HIT and UCLUST employ the following greedy in-35

cremental clustering approach: each of the N input se-
quences is compared with the representative sequences of
already established clusters. When the sequence is similar
enough to the representative sequence of one of the clus-
ters, that is, the similarity criteria such as sequence iden-40

tity are satisfied, the sequence is added to that cluster.
Otherwise, the sequence becomes the representative of a
new cluster. Due to the comparison of all sequences with
the cluster representatives, the runtimes of CD-HIT and
UCLUST scale as O(NK), where K is the final number of45

clusters. In protein sequence clustering K is typically of
similar size toN (see for example Fig. 2c) and therefore the
total runtime scales almost quadratically with N . The fast
sequence prefilters speed up each pairwise comparison by
a large factor 1/pmatch but cannot improve the time com-50

plexity of O(NK). This almost quadratic scaling results
in impractical runtimes for a billion or more sequences.

Here we present the sequence clustering algorithm Lin-
clust, whose runtime scales as O(N), independent of the
number of clusters found. We demonstrate that it pro-55

duces clusterings of comparable quality as other tools that
are orders of magnitude slower and that it can cluster over
a billion sequences within hours on a single server.

RESULTS

Overview of Linclust. The Linclust algorithm is ex-60

plained in Figure 1 (for details see Methods and Figure
5). As in previous methods, we reduce the number of pair-
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FIG. 1. Overview of linear-time clustering algorithm.
(1) For each sequence Linclust selects m k-mers (with the low-
est hash function values). It sorts the k-mers alphabetically
in quasi-linear time to find the groups of sequences sharing a
k-mer (colored sets) and (2) it selects the longest sequence per
k-mer group as centre. (3,4) It compares each sequence (in
three consecutively slower and more sensitive steps) only with
the centre sequences it shares a k-mer with, not with all se-
quences it shares a k-mer with. It therefore needs to compute
at most m comparisons per sequence and mN in total. Pairs
that pass the clustering criteria are linked by an edge. (5) The
sequences are clustered in time O(mN) using a greedy incre-
mental algorithm that finds clusters whose members all have
an edge with a representative sequence. For a more details see
Figure 5.

wise comparisons by requiring the sequences to share at
least one identical k-mer substring. A critical insight to
achieve linear time complexity is that we need not align65

every sequence with every other sequence sharing a k-mer
(see steps 3,4). We reach similar sensitivities by selecting
only a very small subset of sequences as centre sequences

(colored dots) and only aligning sequences to the centre
sequences with which they share a k-mer. Linclust thus70

requires less than mN sequence comparisons with a small
constant m (default value 20), instead of the ∼NKpmatch
comparisons needed by UCLUST, CD-HIT and other tools.

In most clustering tools, the main memory size severely
limits the size of the datasets that can be clustered.75

UCLUST, for example, needs 10 bytes per residue of the
representative sequences. Linclust needs m × 16 bytes
per sequence, but before running it automatically checks
available main memory and if necessary splits the table
of mN lines into chunks such that each chunk fits into80

memory (Supplemental Fig. S1 and Methods). It then
processes the chunks sequentially. In this way, Linclust
can cluster sequence sets that would occupy many times
its main memory size at almost no loss in speed.

85

Linclust and Linclust/MMseqs2 workflows. We
integrated Linclust into our MMseqs2 (Many-versus-Many
sequence searching) software package [10], and we test
two versions of Linclust in our benchmark comparison:
the bare Linclust algorithm described in Figure 1 (simply90

named "Linclust"), and a combined four-step cascaded
clustering workflow ("Linclust/MMseqs2"). In this work-
flow, a Linclust clustering step is followed by one (above
60% sequence identity) or three (≤ 60%) clustering steps,
each of which clusters the representative sequences from95

the previous step by performing an increasingly sensitive
all-against-all MMseqs2 sequence search followed by the
greedy incremental clustering algorithm. We also include
in our benchmark our original MMseqs clustering tool [11].

100

Runtime and clustering sensitivity benchmark. We
measure clustering runtimes on seven sets: the 61 522 444
sequences of the UniProt database, randomly sampled sub-
sets with relative sizes 1/16, 1/8, 1/4, 1/2, and UniProt
plus all reversed sequences (123 million sequences). Each105

tool clustered these sets using a minimum pairwise se-
quence identity of 90%, 70% and 50%. Sequence identity
was defined similarly for all three tools. The three tools
use somewhat different strategies to try to ensure that only
proteins with the same domain architecture are clustered110

together (see Methods: Clustering criteria).
At 50% identity, Linclust clusters the 123 million se-

quences 10 times faster than Linclust/MMseqs2 and, by
extrapolation, 2300 times faster than UCLUST, 720 times
faster than MMseqs, 4600 times faster than CD-HIT, 1600115

times faster than DIAMOND [12], 69 000 times faster than
MASH [13] , and 26 000 times faster than RAPsearch2
[14] (Fig. 2a,b). At 90% identity, Linclust still clusters
these sequences 570 times faster than MMseqs, 100 times
faster than UCLUST, 62 times faster than CD-HIT, and120

4.5 times faster than Linclust/MMseqs2.
At 90 % sequence identity threshold, we determined how

the runtimes scale with the input set size N by fitting a
power law (T ∼ aN b) to the measured runtimes. Runtimes
scale very roughly quadratically for UCLUST (N1.62) and125
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FIG. 2. Linclust and Linclust/MMseqs2 manifest
unique linear scaling of runtime with sequence set size.
(a) Runtime versus input set size on linear scales. The plotting
symbols indicate the sequence identity threshold for clustering
of 90%, 70% and 50%. The curves are fits with a power law,
bNa. For comparison, we include runtimes of all-against-all
searches using sequence search tools DIAMOND, RAPsearch2,
and MASH. Runtimes were measured on a server with two In-
tel Xeon E5-2640v3 8-core CPUs and 128 GB RAM. (b) Same
as (a) but on log-log scales. (c) Average number of sequences
per cluster at 90%, 70% and 50% sequence identity. Larger
average cluster sizes imply higher sensitivities to detect similar
sequences.

CD-HIT (N2.75 ) whereas they grow only linearly for Lin-
clust/MMseqs2 (N0.94) and Linclust (N1.01). The speed-
ups due to Linclust’s Hamming distance stage and the un-
gapped alignment filter are analyzed in Supplemental Fig-
ure S2.130

To assess the clustering sensitivity, we compare the av-
erage size of clusters: a deeper clustering with more se-
quences per cluster implies a higher sensitivity to detect
similar sequences. All three tools produce similar numbers
of clusters at 90% and 70% sequence identity (Fig. 2c).135

Importantly, despite Linclust’s linear scaling of the run-
time with input set size, it manifests no loss of sensitiv-
ity for growing dataset sizes. At 50%, Linclust produces
13% more clusters than UCLUST. But we can increase
Linclust’s sensitivity simply by selecting more k-mers per140

sequence. By increasing m from 20 to 80, Linclust takes
only 1.5 to 2 times longer but attains a sensitivity similar
to UCLUST (pink in Fig. 2a-c, Supplemental Fig. S4).

To estimate the fraction of missed sequence pairs that
could have been clustered together, we examined the145

distribution of sequence identities between representative
cluster sequences (Fig. 3a-c). For each clustering run, we
searched with BLAST [15] a random sample of 1 000 rep-
resentative sequences against all representative sequences
of the clustering. We show the cumulative distribution of150

sequence identities for the best matches that satisfy the
minimum coverage threshold of 90% used in the clustering
runs. This coverage threshold is favorable for UCLUST
since its own coverage criterion is less strict (see Methods,
”Clustering criteria”). Due to the heuristic prefiltering155

methods employed by all tools, none produces a perfect
clustering. This limitation is seen most clearly at 50%
sequence identity (Fig. 3c), for which Linclust/MMseqs2,
UCLUST, Linclust-m80 and Linclust miss 2%, 10%,
16% and 28% of sequence pairs satisfying the clustering160

threshold.

Cluster consistency analysis. We measure the quality
of the clusterings produced by the tools by analyzing the
homogeneity of the functional annotation of the sequences165

in the clusters [16]. We assess Gene Ontology (GO) anno-
tations [17] (Fig. 4a,b) and Pfam domain annotations [18]
(Fig. 4c) provided by the UniProt database. For each of
these annotations, we averaged two score variants over all
clusters, "mean" and a "worst". The "mean" ("worst")170

score for a cluster is the mean (minimum) annotation sim-
ilarity score between the representative sequence and all
other cluster members, as described in [16].

Overall, the consistencies of cluster annotations are
similar for all tools, which is not surprising since they175

all use exact Smith-Waterman alignments and similar
acceptance criteria (Supplemental Fig. S3, Methods).
However, Linclust/MMseqs2 and Linclust clusterings have
better consistencies than UCLUST and CD-HIT accord-
ing to purely experimentally derived GO annotations180

(Fig. 4a) and according to Pfam domain annotations
(Fig. 4c). This might be either due to a stricter mini-
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FIG. 3. Cumulative distance distribution between rep-
resentative sequences. We clustered the test set of 123 mil-
lion sequences at three different sequence identity thresholds (a-
c at 50%, 70% and 90%, respectively). For each clustering, we
randomly sampled 1 000 representative cluster sequences, com-
pared them to all representative sequences of the clustering, and
plotted the fraction whose best match (excluding self-matches)
with minimum sequence coverage of 90% had a sequence iden-
tity above the x-value. The y-value at the clustering threshold
(dashed line) is the fraction of false negatives, pairs of sequences
whose similarity was overlooked by the clustering method.

FIG. 4. Cluster consistency of GO molecular func-
tional and Pfam annotations. (a) Cluster annotation con-
sistency of GO functional annotations inferred from experi-
ments (EXP_F). "Mean" and "worst" refers to the mean and
the minimum annotation similarity between each representative
sequence and all other cluster members . Plotting symbols indi-
cate the sequence identity threshold for clustering. CD-HIT was
only run at 90% sequence identity due to run time constraints.
Linclust-m80 was only run at 50% sequence identity. (b) Same
as (a) but using manually and computationally assigned func-
tional GO annotations. (c) Consistency of Pfam annotation
from the representative sequences to the cluster members.
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mum coverage criterion in Linclust or due to its slightly
different definition of sequence similarity, which translates
the sequence identity threshold into an approximately185

equivalent threshold for the similarity score of the local
alignment divided by the maximum length of the two
aligned segments (Methods: Clustering criteria). This
similarity measure is more appropriate than sequence
identity to cluster together sequences with conserved190

functions, as it also accounts for gaps and for the degree
of similarity between aligned residues. The cluster con-
sistencies of all tools are similar when GO annotations
based on computational predictions are included (Fig. 4b).

195

Clustering 1.6 billion metagenomic sequences. As
a demonstration of Linclust’s ability to cluster huge sets,
we applied it to cluster 1.59 billion protein sequence frag-
ments predicted by Prodigal [19] in 2200 metagenomic and
metatranscriptomic datasets [3, 20, 21] downloaded mainly200

from the Joint Genome Institute. We clustered these se-
quences with a minimum sequence identity of ≥ 50% and
minimum coverage of the shorter sequence of 90% (Meth-
ods: Clustering criteria), producing 424 million clusters in
10 hours on a 2× 14-core server.205

Our Metaclust database of 424 million representative
sequences will improve the sensitivity of profile sequence
searches by increasing the diversity of the underlying mul-
tiple sequence alignments. It will thereby raise the frac-
tion of annotatable sequences in genomic and metagenomic210

datasets [6, 21]. It could also increase the number protein
families for which reliable structures can be predicted de
novo, as shown by Ovchinnikov et al. [22], who used an
unpublished dataset of 2 billion metagenomic sequences.
Metaclust should also allow us to predict more accurately215

the effects of mutations on proteins [23].

DISCUSSION

Clustering a set of N items is challenging when both N
and the number of clusters K are large, due to the time
complexity of existing clustering algorithms. Hierarchical220

agglomerative clustering approaches have a time complex-
ity of O(N2 logN) [24], others with a predefined number
of clusters such as K-means or expectation maximization
clustering have complexity O(NK). When both N and
K are in the tens of millions, traditional approaches are225

impracticably slow. Driven by the need to cluster huge
datasets in the era of big data, most work has focused on
reducing the proportionality constant.

One example is the widely used canopy clustering algo-
rithm [25]. The items are first preclustered into overlap-230

ping sets (canopies) based on a fast approximate similarity
measure. Canopies could be biological sequences sharing
the same k-mer or documents sharing a keyword. Some
traditional clustering algorithm is run on all items, but
with the restriction that slow, exact similarities are only235

computed between items belonging to the same canopy.

Similar to the k-mer prefilter used in CD-HIT, UCLUST,
kclust and MMseqs [8, 11, 26, 27], the preclustering reduces
the number of comparisons by a large factor F using the
slow, exact measure, but the time complexity of the ex-240

act distance calculation O(N2/F ) is still quadratic in N .
Linear-time clustering algorithms, using for instance hash-
ing techniques, have been proposed [28, 29]. But like the
preclustering step in canopy clustering or Linclust’s pre-
filter to find k-mer matches, these algorithms are only ap-245

proximate. If falsely clustered pairs are costly (e.g. for re-
dundancy filtering), pairwise links need to be verified with
the exact similarity measure, which still requires quadratic
time complexity. In contrast, Linclust’s linear time com-
plexity of O(mN) includes verification of all edges between250

items using the exact distance measure.
Linclust can be trivially generalized to cluster any items

for which a set of m keys per item can be defined such that
(1) items belonging to a cluster are likely to share at least
one of their keys and (2) items not belonging to a cluster255

are unlikely to share a key (see Methods, Optimal k-mer
length). For clustering documents the keys could be all
m =

(
n
k

)
subsets of the n keywords of size k, for example

[28]. To achieve a high sensitivity, we could select as centre
of the group of items sharing a key the member with the260

largest sum of sizes of groups it belongs to. In this way,
the centre items are able to pull together into the same
cluster many items from different groups.

We perform the clustering in step 5 of Figure 1 with the
greedy incremental clustering, because it always chooses265

the longest sequence as the cluster representative. It en-
sures that the representative sequences, being the longest
sequence in each cluster, are likely to contain all protein
domains of all cluster members. Our rule in step 2 to
choose the longest protein sequence per k-mer group as its270

centre is well-suited to achieve large clusters, because the
longest sequences tend to be selected as centres of most of
the k-mer groups they belong to, and these long sequences
therefore have edges to most sequences they share k-mers
with.275

As far as we know, Linclust is the only algorithm that
could run on datasets of billions of items resulting in bil-
lions of clusters, overcoming the time and memory bot-
tlenecks of existing clustering algorithms. Linclust could
therefore be useful for many other applications. We have280

recently extended Linclust to nucleotide sequences. We are
also working on a version to cluster D-dimensional vectors,
which could be used, for instance, for metagenomic bin-
ning to cluster contigs by their coverage profiles across D
metagenomic samples [30].285

In summary, we hope the Linclust algorithm will prove
helpful to exploit the tremendous value in publicly avail-
able metagenomic and metatranscriptomic datasets. Lin-
clust should lead to considerable savings in computing re-
sources in current applications. Most importantly, it will290

enable previously infeasible large-scale analyses.
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METHODS

The Linclust algorithm consists of the following steps (Fig-
ure 1):

295

(1) Generating the table of k-mers. We transform the
sequence set into a reduced alphabet of 13 letters to increase
the number of k-mer matches and hence the k-mer sensitivity
at a moderate reduction in selectivity (see subsection ”Reduced
amino acid alphabet”). The k-mer length is chosen as described300

in subsection ”Optimal k-mer length” and is typically between
10 and 14.

For each sequence, we extract m k-mers, as described in
"Selection of k-mers". Increasing m from its default value
of 20 (option –kmer-per-seq) increases the sensitivity at the305

cost of a moderately decreasing speed (Supplemental Fig. S4).
We store each extracted k-mer index (8 bytes), the sequence
identifier (4 bytes), its length (2 bytes), and its position j in
the sequence (2 bytes) in a table with mN lines. Therefore,
Linclust has a memory footprint of mN × 16 bytes.310

(2) Finding exact k-mer matches. We sort this table by
the k-mer index using the in-place sort from the OpenMP
template library (http://freecode.com/projects/omptl). The
sorting has a quasi-linear time complexity of O(mN log(mN))315

and typically takes less than 10% of the total runtime. The
sorting groups together sequences into blocks of lines that
contain the same k-mer. For each such k-mer group we select
the longest sequence as its centre sequence. We overwrite the
position j with the diagonal i− j of the k-mer match with the320

centre sequence, where i is the position of the group’s k-mer in
the centre sequence. We further overwrite the k-mer index by
the centre sequence identifier and resort the mN lines of the
table by the centre sequence identifier. The k-mer match stage
results file has one entry for each centre sequence identifier325

containing the list of identifiers of sequences that share a k-mer
with the centre sequence. If a sequence shares multiple k-mer
matches with a centre sequence, we keep only the entry with
the lowest diagonal i− j.

330

(3a) Hamming distance pre-clustering. For each k-mer
group we compute the Hamming distance (the number of
mismatches) in the full amino acid alphabet between the
centre sequence and each sequence in the group along the
stored diagonals i − j . This operation is fast as it needs335

no random memory or cache access and uses AVX2/SSE4.1
vector instructions. Members that already satisfy the specified
sequence identity and coverage thresholds on the entire
diagonal are removed from the results passed to step 3b and
are added to the cluster of their centre sequence after step 5.340

(3b) Ungapped alignment filtering. For each k-mer
group we compute the optimal ungapped, local alignment
between the centre sequence and each sequence in the group
along the stored diagonals i − j, using one-dimensional345

dynamic programming with the Blosum62 matrix. We filter
out matches between centre and member sequences if the
ungapped alignment score divided by the length of the diagonal
is very low. We set a conservative threshold, such that the
false negative rate is 1%, i.e., only 1% of the alignments350

below this threshold would satisfy the two criteria, sequence
identity and coverage. For each combination on a grid

{50, 55, 60, . . . , 100}⊗ {0, 10, 20, . . . , 100}, we determined these
thresholds empirically on 4 million local alignments sampled
from an all-against-all comparison of the UniProt database [31].355

(4) Local gapped sequence alignment. Sequences that
pass the ungapped alignment filter are aligned to their centre
sequence using the AVX2/SSE4.1-vectorized alignment module
with amino acid compositional bias correction from MMseqs2360

[10], which builds on code from the SSW library [32]. Se-
quences satisfying the specified sequence identity and coverage
thresholds are linked by an edge. These edges (neighbor
relationships) are written in the format used by MMseqs2 for
clustering results.365

(5) Greedy incremental clustering. This algorithm was
already implemented for MMseqs [11]. Briefly, the file with
the validated directed edges from centre sequences to member
sequences is read in and all reverse edges are added. The list370

of input sequences is sorted by decreasing length. While the
list is not yet empty, the top sequence is removed from the
list, together with all sequences still in the list that share an
edge with it. These sequences form a new cluster with the top
sequence as its representative.375

Reduced amino acid alphabet. We iteratively con-
structed reduced alphabets starting from the full amino
acid alphabet. At each step, we merged the two letters
{a, b} → a′ = (a or b) that conserve the maximum mutual380

information, MI =
∑A

x,y=1 p(x, y) log2 (p(x, y)/p(x)/p(y)).
Here A is the new alphabet size, p(x) is the probability of
observing letter x at any given position, and p(x, y) is the
probabilities of observing x and y aligned to each other. These
probabilities are extracted from the Blosum62 matrix. When a385

and b are merged into a′, for example, p(a′) = p(a) + p(b) and
p(a′, y) = p(a, y) + p(b, y). The default alphabet with A = 13,
which performed well over all tested clustering sequence
identities from 50% to 100%, merges (L,M), (I,V), (K,R), (E,
Q), (A,S,T), (N, D) and (F,Y).390

Optimal k-mer length. For optimal results and efficiency,
the majority of the sequences in k-mer groups should be
homologous to their centre sequence. In other words, the
k-mers have to be specific enough for the size of the database,395

with larger databases requiring larger k. To automatically set
a good value of k, a very conservative condition is to limit
to 1 the expectation value EFP of the number of sequences
per k-mer group that are not homologous to their centre
sequence. EFP is equal to the number mN of k-mers selected400

in the entire sequence set times the probability pmatch for
one of those k-mers to match the k-mer of the k-mer group
by chance. If the k-mers were not preselected by their hash
function values, this probability would be approximately
1/Ak

eff, where 1/Aeff =
∑A

a=1 p
2
a is the probability for two405

letters from the reduced alphabet of size A to match by chance
(1/8.7 for A = 13) and pa is the frequency of letter a in the
database. Due to the preselection, only a fraction ∼ m/L
of the entire set of k-mers is used, where L is the average
sequence length. Therefore, the probability of two selected410

k-mers to match by chance is L/(mAk
eff). The condition for

the k-mer specificity is 1 ≥ EFP = mNL/(mAk
eff) = NL/Ak

eff,
and hence we demand k ≥ blog(NL)/ log(Aeff)c =: kspec. In
Linclust, we set k = max{kspec, kseqid}, with kseqid = 14 for a
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FIG. 5. Linear-time clustering algorithm. Steps 1 and 2 find exact k-mer matches between the N input sequences that are
extended in step 3 and 4. (1) Linclust selects in each sequence the m (default: 20) k-mers with the lowest hash function values,
as this tends to select the same k-mers across homologous sequences. It uses a reduced alphabet of 13 letters for the k-mers and
sets k between 10 and 14 depending on the sequence set size and the sequence identity threshold. It generates a table in which
each of the mN lines consists of the k-mer, the sequence identifier, and the position of the k-mer in the sequence. (2) Linclust
sorts the table by k-mer in quasi-linear time, which identifies groups of sequences sharing the same k-mer (large shaded boxes).
For each k-mer group, it selects the longest sequence as centre. It thereby tends to select the same sequences as centre among
groups sharing sequences. (3) It merges k-mer groups with the same centre sequence together ( 1©: red + cyan and 5©: orange +
blue) and compares each group member to the centre sequence in two steps: by global Hamming distance and by gapless local
alignment extending the k-mer match. (4) Sequences above a score cut-off in step 3 are aligned to their centre sequence using
gapped local sequence alignment. Sequence pairs that satisfy the clustering criteria (e.g. on the E-value, sequence similarity, and
sequence coverage) are linked by an edge. (5) The greedy incremental algorithm finds a clustering such that each input sequence
has an edge to its cluster’s representative sequence. Note that the number of sequence pairs compared in steps 3 and 4 is less
than mN , resulting in a linear time complexity.

sequence identity clustering threshold ≥ 90% and kseqid = 10415

otherwise to ensures slightly higher efficiency for high sequence
identities, for which longer k-mers are sufficiently sensitive.

Selection of k-mers. To be able to cluster two sequences to-
gether we need to find a k-mer in the reduced alphabet that420

occurs in both. Because we extract only a small fraction of
k-mers from each sequence, we need to avoid picking different
k-mers in each sequence. Our first criterion for k-mer selec-
tion is therefore to extract k-mers such that the same k-mers
tend to be extracted from homologous sequences. Second, we425

need to avoid positional clustering of selected k-mers in order
to be sensitive to detect local homologies in every region of a
sequence. Third, we would like to extract k-mers that tend
to be conserved between homologous sequences. Note that we

cannot simply store a subset of Ak m/L k-mers to be selected430

due to its sheer size.
We can satisfy the first two criteria by computing hash values

for all k-mers in a sequence and selecting the m k-mers that
obtain the lowest hash values. Since appropriate hash functions
can produce values that are not correlated in any simple way435

with their argument, this method should randomly select k-
mers from the sequences such that the same k-mers always tend
to get selected in all sequences. We developed a simple 16-bit
rolling hash function with good mixing properties, which we can
compute very efficiently using the hash value of the previous k-440

mer (Supplemental Fig. S5).
In view of the third criterion, we experimented with

combining the hash value with a k-mer conservation score
Scons(x1:k)=

∑k
i=1 S(xi, xi)/k. This score ranks k-mers x1:k by
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the conservation of their amino acids, according to the diagonal445

elements of the Blosum62 substitution matrix S(·, ·). We scaled
the hash function with a rectified version of the conservation
score: hash-value(x1:k)/max {1, Scons(x1:k)− Soffset}. Despite
its intuitive appeal, we did not succeed in obtaining significant
improvements and reverted to the simple hash function.450

Clustering datasets that don’t fit into main memory.
Linclust needs m × 16 bytes of memory per sequence. If the
computer’s main memory is too small, Linclust automatically
splits the k-mer array into C equal-sized chunks small enough455

to fit each into main memory (Supplemental Fig. S1). For
each chunk index c ∈ {0, . . . , C − 1} we run Linclust steps
1 and 2 (Figure 5) normally but extract only k-mers whose
numerical index modulo C yields a rest c. This way each
of the C runs builds up a k-mer table with only about460

mN/C lines instead of mN , and hence each run needs C
times less memory. Each run writes out a file with all found
k-mer groups, and afterwards all C files are merged into a
single file such that k-mer groups are sorted by ascending
centre IDs. Finally, Linclust steps 3 to 5 are performed as usual.465

Parallelization and supported platforms. We used
OpenMP to parallelize all stages except the fast step 5 and
SIMD instructions to parallelize step 3 and step 4. Linclust
supports Linux and Windows, Mac OS X and CPUs with470

AVX2 or SSE4.1 instructions.

Clustering criteria. Linclust/MMseqs2 and Linclust has
three main criteria to link two sequences by an edge: (1) a
maximum E-value threshold (option -e [0,∞[) computed ac-475

cording to the gap-corrected Karlin-Altschul statistics using the
ALP library [33]; (2) a minimum coverage (option -c [0,1],
which is defined by the number of aligned residue pairs di-
vided by either the maximum of the length of query/centre and
target/non-centre sequences (default mode, --cov-mode 0), or480

by the length of the target/non-centre sequence (--cov-mode
1), or by the length of the query/centre (--cov-mode 2); (3)
a minimum sequence identity (--min-seq-id [0,1]) with op-
tion --alignment-mode 3 defined as the number of identical
aligned residues divided by the number of aligned columns in-485

cluding internal gap columns, or, by default, defined by a highly
correlated measure, the equivalent similarity score of the local
alignment (including gap penalties) divided by the maximum of
the lengths of the two locally aligned sequence segments. The
score per residue equivalent to a certain sequence identity is490

obtained by a linear regression using thousands of local align-
ments as training set (Fig. S2 in [27]).

The sequence identity in UCLUST is defined as number of
identical residues in the pairwise global alignment divided by
the number of aligned columns including internal gaps. Due to495

the global alignment, no explicit coverage threshold is needed.
CD-HIT defines sequence identity as the number of identical
residues in the local alignment divided by the length of the
shorter sequence. Therefore, sequence coverage of the shorter
sequence must be at least as large as the sequence identity500

threshold.

Tools and options for benchmark comparison. Linclust
and Linclust/MMseqs2 (commit 5e21868) used the commands
mmseqs linclust --cov-mode 1 -c 0.9 --min-seq-id 0.9505

and mmseqs cluster --cov-mode 1 -c 0.9 --min-seq-id

0.9 for 90%, respectively, and --min-seq-id 0.7 or
--min-seq-id 0.5 for 70% and 50%. The minimum coverage
of 90% of the shorter sequence was chosen to enforce global
similarity, similar to UCLUST and CD-HIT. CD-HIT 4.6 was510

run with the parameters -T 16 -M 0 and -n 5 -c 0.9, -n 4
-c 0.7, and -n 3 -c 0.5 for 90%, 70% and 50% respectively.
UCLUST (7.0.1090) was run with --id 0.9, 0.7, 0.5, for
RAPsearch2 (2.23) we used -z 16, for DIAMOND (v0.8.36.98)
option --id 0.5, and for MASH (v2.0) -s 20 -a -i -p 16.515

Runtimes were measured with the Linux time command.

Functional consistency benchmark. We evaluated the
functional cluster consistency based on Gene Ontology (GO)
annotations of the UniProt knowledge base. We carried out520

three tests: one based on (1) experimentally validated GO an-
notations, (2) general functional GO annotations (mostly in-
ferred from homologous proteins) and (3) Pfam annotations.
The UniProt 2016_03 release was clustered by each tool at
90%, 70% and 50% sequence identity level and then evaluated.525

For CD-HIT we computed only the clustering at 90% sequence
identity because of run time constraints. For each cluster, we
computed the ’worst’ and ’mean’ cluster consistency scores, as
described earlier [16]. These cluster consistency scores are de-
fined respectively as the minimum and the mean of all pairwise530

annotation similarity scores between the cluster’s representa-
tive sequence and the other sequences in the cluster.

GO annotations often annotate the whole sequence. We
used the Pfam annotations of the UniProt to check local
consistence of clusters (Fig. 3c). We compared the Pfam535

domain annotation of the representative sequence against all
cluster members. If the member had the exact same domain
annotation as the representative sequence we counted it as
correct (value=1) and otherwise as false (value=0).

540

Clustering. We downloaded ∼1800 metagenomic and ∼400
metatranscriptomic datasets with assembled contigs from the
Joint Genome institute’s IMG/M archive [3] and NCBI’s Se-
quence Read Archive [20] (ftp://ftp.ncbi.nlm.nih.gov/sra/
wgs_aux) using the script metadownload.sh from https://545

bitbucket.org/martin_steinegger/linclust-analysis. We
predicted genes and protein sequences using Prodigal [19] re-
sulting in 1,595,926,152 proteins.

We clustered the 1.59 million sequence fragments with
Linclust using the following acceptance criteria: (1) the550

minimum sequence identity is 50%, using the score-per-
column similarity measure described in Clustering criteria,
(2) the shorter of the two sequences has at least 90% of
its residues aligned, and (3) the maximum E-value is 10−3

(default) (Linclust options: --min-seq-id 0.5 --cov-mode555

1 -c 0.9 --cluster-mode 2). The clustering step found
424 million cluster within 10 hours on a server with two 14-
core Intel Xeon E5-2680 v4 CPUs (2.4 GHz) and 762 GB RAM.

Metaclust protein sequence sets. The Meta-560

clust database is available as FASTA formatted file at
https://metaclust.mmseqs.org/.

Code availability. Linclust has been integrated into our
free GPLv3-licensed MMseqs2 software suite [10]. The565

source code and binaries for Linclust can be download at
https://github.com/soedinglab/mmseqs2.
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Data availability. All scripts and benchmark data including
command-line parameters necessary to reproduce the bench-570

mark and analysis results presented here are available at https:
//bitbucket.org/martin_steinegger/linclust-analysis.
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Figure S 1. Splitting the database into chunks For each chunk index c ∈ {0, . . . , C − 1} we run Linclust steps 1
and 2 (Figure 1) normally but extract only k-mers whose numerical index modulo C yields a rest c. This way each of
the C runs builds up a k-mer table with only about mN/C lines instead of mN , and hence each run needs C times less
memory. Each run writes out a file with all found k-mer groups (sequence ID, diagonal). The diagonal is i − j of the
k-mer match, where i is the position of the groups k-mer in the centre sequence and j the position in the other sequence.
Afterwards all C files are merged into a single file such that k-mer groups are sorted by ascending centre IDs. Finally,
Linclust steps 3 to 5 are performed as usual.
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Figure S 2. Contribution of Hamming distance pre-clustering and gapless local alignment filter steps to
the decrease of the Linclust runtime Double-logarithmic plot of runtimes versus sequence set size illustrating the
contribution of runtime decrease for the Hamming distance pre-clustering and ungapped alignment filtering stage.
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Figure S 3. Equivalence of two sequence identity measures. Number of clusters obtained at 50% sequence
identity for Linclust with two different sequence identity definitions: (1) the default definition (”Linclust”), based on
the local alignment score divided by the maximum length of the two aligned sequence segments; and (2) the fraction of
identical residues in the alignment relative to the number of aligned columns including gaps (”Linclust seqid”). Both
measures produce very similar numbers of clusters.
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Figure S 4. Influence of the number m of k-mers extracted per sequence. Double-logarithmic plot of runtimes
versus cluster size. Through the parameter m, the number of k-mers selected per sequence, the user can set the trade-off
between sensitivity and speed. At m = 80 the runtime of Linclust increases by a factor of 1.66 over the default setting
m = 20 while producing 8% fewer clusters. At m = 80 , Linclust generates only 7% more clusters than UCLUST while
still being much faster.
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// (c) 2017 Johannes Soeding & Martin Steinegger, Gnu Public License version 3

// Rotate left macro: left circular shift by numbits within 16 bits

#define RoL(val, numbits) (val << numbits) ^ (val >> (16 - numbits))

// Transform each letter x[i] to a fixed random number RAND[x[i]]

// to ensure instantaneous mixing into the 16 bits

// Do XOR with RAND[x[i]] and 5-bit rotate left for each i from 1 to k

unsigned circ_hash(const int * x, unsigned length){

short unsigned RAND[21] = {0x4567, 0x23c6, 0x9869, 0x4873, 0xdc51, 0x5cff, 0x944a, 0x58ec,

0x1f29, 0x7ccd, 0x58ba, 0xd7ab, 0x41f2, 0x1efb, 0xa9e3, 0xe146,

0x007c, 0x62c2, 0x0854, 0x27f8, 0x231b}; // 16 bit random numbers

short unsigned h = 0x0;

h = h^ RAND[x[0]]; // XOR h and ki

for (int i = 1; i < length; ++i){

h = RoL(h, 5);

h ^= RAND[x[i]]; // XOR h and ki

}

return h;

}

// Rolling hash variant for previous hash function:

// Computes hash value for next key x[0:length-1] from previous hash value

// hash( x[-1:length-2] ) and x_first = x[-1]

unsigned circ_hash_next(const int * x, unsigned length, int x_first, short unsigned h){

short unsigned RAND[21] = {0x4567, 0x23c6, 0x9869, 0x4873, 0xdc51, 0x5cff, 0x944a, 0x58ec,

0x1f29, 0x7ccd, 0x58ba, 0xd7ab, 0x41f2, 0x1efb, 0xa9e3, 0xe146,

0x007c, 0x62c2, 0x0854, 0x27f8, 0x231b}; // 16 bit random numbers

// undo INITIAL_VALUE and first letter x[0] of old key

h ^= RoL(RAND[x_first], (5*(length-1)) % 16);

// circularly permute all letters x[1:length-1] to 5 positions to left

h = RoL(h, 5);

// add new, last letter of new key x[1:length]

h ^= RAND[x[length-1]];

return h;

}

Figure S 5. k-mer hashing function implemented in C.
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Chapter 5

Uniclust databases of clustered and
deeply annotated protein sequences
and alignments

5.1 Introduction

Uniclust is a collection of three clustered and multiple sequence alignment databases to

be designed as a resource for highly sensitive protein sequence analysis. The first three,

Uniclust90, Uniclust50, Uniclust30, are generated from the UniProt sequence database by

clustering sequences together that have more than 90%, 50% and 30% maximum pairwise

sequence identity, respectively. We compared the clustering qualities of our databases with

those of Uniref90 and Uniref50 (Suzek et al. 2007) using three scores, which measure the

coherence of keyword annotations, GO annotations (Gene Ontology Consortium 2015) and

protein names among the sequence members of clusters. The Uniclust90 and Uniclust50

create more consistent clusters compared to the Uniref databases. The improved quality of

clustering over the Uniref (Suzek et al. 2007) is owed to a new clustering tool, MMseqs2

(Steinegger and Söding 2017), which is much more sensitive and faster than CD-HIT (Li

and Godzik 2006), the tool used for clustering the UniRef database.

The sequences in Uniclust are annotated with our highly sensitive HHblits homology

search tool for matches to Pfam (Finn et al. 2016) and SCOP (Murzin et al. 1995) domains

and to protein sequences from the PDB (Kouranov et al. 2006) database. The high sensi-

tivity of HHblits (Remmert et al. 2011) affords a deeper annotation than seen in UniProt,

which uses the less sensitive HMMER3 (Eddy 2009) software for annotation with PFAM,

SUPERFAMILY (Wilson et al. 2007) and other databases. Whereas in Uniprot only 73.4%

and 51.1% of sequences are annotated as containing a match to Pfam or CATH (Orengo

et al. 1997), in Uniclust 82.1%, 74.6% and 66.2% of sequences are annotated by a match to

the Pfam, PDB, and SCOP database, respectively.

Our server also offers the Uniboost30, Uniboost20 and Uniboost10 databases of multi-
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ple sequence alignments, which are obtained by adding local sequence matches from profile

searches to the multiple sequence alignments of each Uniclust30 cluster. These databases

are supported by the new release of HH-suite3 and will allow us to improve the sensitivity

of HHblits searches by between 20% and 50% on a standard SCOP20 benchmark set (to

be published). These alignment databases might also become very useful as a resource for

(deep) machine-learning applications that benefit from training on massive amounts of la-

beled / annotated sequence profiles. HHblits can detect 90% of all Uniprot Pfam annotation

on a clan level and 3.5 times more novel annotations.

The Uniclust server provides access to an interactive cluster visualizations. It provides a

rich interface for browsing alignments and summaries of taxonomic composition, keywords

and protein existence evidence. All databases (Uniclust 90/50/30), Uniboost 30/20/10) and

the visualisation can be accessed at http://uniclust.mmseqs.com/

Lars von den Driesch performed the evaluation. Milot Mirdita developed the webserver,

Lars von den Driesch, Milot Mirdita, Clovis Galiez, Maria Martin, Martin Steinegger and

Johannes Söding jointly designed the research. Lars von den Driesch, Milot Mirdita, Clovis

Galiez, Martin Steinegger and Johannes Söding wrote the manuscript.
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ABSTRACT

We present three clustered protein sequence
databases, Uniclust90, Uniclust50, Uniclust30 and
three databases of multiple sequence alignments
(MSAs), Uniboost10, Uniboost20 and Uniboost30,
as a resource for protein sequence analysis, func-
tion prediction and sequence searches. The Uniclust
databases cluster UniProtKB sequences at the level
of 90%, 50% and 30% pairwise sequence identity.
Uniclust90 and Uniclust50 clusters showed better
consistency of functional annotation than those of
UniRef90 and UniRef50, owing to an optimised clus-
tering pipeline that runs with our MMseqs2 software
for fast and sensitive protein sequence searching
and clustering. Uniclust sequences are annotated
with matches to Pfam, SCOP domains, and proteins
in the PDB, using our HHblits homology detection
tool. Due to its high sensitivity, Uniclust contains 17%
more Pfam domain annotations than UniProt. Uni-
boost MSAs of three diversities are built by enriching
the Uniclust30 MSAs with local sequence matches
from MMseqs2 profile searches through Uniclust30.
All databases can be downloaded from the Uniclust
server at uniclust.mmseqs.com. Users can search
clusters by keywords and explore their MSAs, tax-
onomic representation, and annotations. Uniclust is
updated every two months with the new UniProt re-
lease.

INTRODUCTION

The number of protein sequences in public databases such
as UniProt (1) or GenBank (2) is growing fast, in part due
to various large-scale genomics projects (3–5). The rapid

growth makes it attractive for many applications to work
with representative subsets, in which the representatives
are computed by clustering similar sequences together and
choosing only a single representative per cluster. Apart from
saving computational resources, the more even coverage of
sequence space of such clustered databases can improve the
sensitivity of sequence similarity searches (6–8).

The popular UniProt Reference Clusters (UniRef) (9)
consist of three databases that are generated by cluster-
ing the UniProtKB sequences in three steps using the CD-
HIT software (10): UniRef100 combines identical UniPro-
tKB sequences and fragments with 100% sequence identity
into common entries. UniRef90 sequences are obtained by
clustering UniRef100 sequences together that have at least
90% sequence identity and 80% sequence length overlap,
and UniRef50 clusters together UniRef90 sequences with at
least 50% sequence identity and 80% sequence length over-
lap.

Here, we introduce the Uniclust sequence databases
which, like UniRef, are clustered, representative sets of
UniProtKB sequences at three different clustering lev-
els. But whereas UniRef relies on the CD-HIT software
for the clustering, we use our software suite MMseqs2
(github.com/soedinglab/mmseqs2, Steinegger & Söding, to
be published). The following characteristics make Uniclust
databases unique and useful: First, the sensitivity of MM-
seqs2 for distantly homologous sequences allows us to clus-
ter the UniProtKB down to 30% sequence identity. Second,
we have developed a cascaded clustering workflow within
MMseqs2 in order to produce sequence clusters that are
as compact and functionally homogeneous as possible. As
a result, Uniclust90 and Uniclust50 clusters show higher
functional consistency scores than UniRef90 and UniRef50
at similar clustering depths, respectively. Third, we provide
deep annotation of Uniclust sequences with Pfam (11) and
SCOP (12) domains, and matches to PDB sequences (13)
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using HH-suite, our remote homology detection software
suite. The sensitivity of HH-suite allows us to annotate 17%
more Pfam domains than UniProt, which uses InterPro
and HMMER3 for these annotations. Fourth, we provide
the MSAs of all Uniclust clusters as well as the three Uni-
boost databases with MSAs of different diversity levels that
are obtained by enriching Uniclust30 clusters with local se-
quence matches.

MATERIALS AND METHODS

We developed an open-source bash pipeline (github.com/
soedinglab/uniclust-pipeline) to generate all data described
here: the Uniclust clusterings, cluster summary head-
ers, domain annotations for sequences, and the Uniboost
databases of multiple sequence alignments. We provide the
pipeline scripts as a supplementary archive file to avoid clut-
tering the descriptions here with command line options and
other details irrelevant for the understanding.

Uniclust clustering pipeline

The Uniclust clusters contain all sequences in the UniProt
knowledge base (UniProtKB), the union of the Swiss-Prot
and TrEMBL databases. Sequences longer than 14 000
amino acid residues are split into multiple individual en-
tries to limit memory usage and improve compatibility with
other tools. (This affects 352 sequences in the 2016 03 re-
lease.) Once a year we will cluster these sequences from
scratch as described in the following.

In order to cluster together sequences of ≥30% pairwise
sequence identity, we need high sensitivity, yet the enor-
mous number of pairwise comparisons (on the order of
(107)2) requires very high speed at the same time. We devel-
oped a cascaded clustering workflow in MMseqs (14) that
uses three clustering steps with progressively increasing sen-
sitivity and decreasing speed.

The first step consists of an extremely fast redundancy
filtering that can cluster sequences of identical length and
100% overlap (‘mmseqs clusthash’). It reduces each se-
quence to a five-letter alphabet, computes a 64 bit CRC32
hash value for the full-length sequences, and places se-
quences with identical hash code that satisfy the sequence
identity threshold into the same cluster. This step is run with
a threshold of 90% and reduces the 61 million sequences of
UniProtKB 2016 03 down to 40 million clusters in ∼20 min
on a single 16-core node.

Similar to the UniRef100 clustering, we cluster fragments
of sequences together with their full-length sequences. We
add sequences to a cluster if they have at least 90% sequence
identity to the representative sequence and are also covered
by at least 95% of their length, without regard to the $E$-
value.

In the first cascaded clustering step, in which we gener-
ate the Uniclust90 sequence set, we use the simple greedy
clustering strategy of CD-HIT (10) that was already part of
MMseqs. We assign a sequence to a cluster if it has at least
90% sequence identity with the representative sequence of
the cluster and a sequence length overlap of 90% of the
shorter of the two sequences. Similar to the UniRef100 clus-
tering, to cluster fragments of sequences together with their

full-length sequences we also add sequences to a cluster if
they have at least 90% sequence identity to the representa-
tive sequence and are also covered by at least 95% of their
length, without regard to the E-value.

In the third step, we generate the Uniclust50 and Uni-
clust30 clustering both directly from the sequences in Uni-
clust90, using a 50% or 30% sequence identity threshold, re-
spectively, and a minimum sequence length overlap of 80%.
A high minimum overlap ensures that all proteins within
one cluster have the same or a very similar domain struc-
ture and is also an effective criterion to achieve functional
homogeneity (15). We avoided the cascaded clustering ap-
proach of generating Uniclust30 from Uniclust50 because
we found this resulted in slightly inferior clustering quality
to the direct approach.

In addition to the simple greedy clustering, we imple-
mented affinity propagation, depth-n single linkage clus-
tering, and the classic greedy set-cover algorithm in MM-
seqs2 and compared the clustering qualities. We found that
the cluster compactness for all algorithms could be further
improved by passing over all sequences after the clustering
and reassigning each to the cluster whose representative se-
quence is most similar to it. The greedy set-cover algorithm
with sequence reassignment gave best results and is there-
fore used in the final clustering step. The three-step cluster-
ing took 5 days on 10 nodes with two Intel Xeon E5-2640
v3 CPUs and 128GB main memory each.

Updating Uniclust. We will update the Uniclust databases
every two months following the new UniProt release. To
keep the cluster identifiers stable between updates, we do
not recluster from scratch but instead update the clustering
incrementally, add new sequences to existing clusters, create
new clusters, and remove deprecated sequences (14). We em-
ploy the updating workflow ‘mmseqs clusterupdate’ in the
MMseqs2 package for that purpose, which has the added
advantage of running in linear time instead of quadratic in
the number of sequences. To avoid excessive computational
demands, we recompute the MSAs and sequence annota-
tions only during the reclustering step once per year and
for major UniProt releases.

Consensus sequences and representative sequences. We pro-
vide two FASTA-formatted files for each of the Uniclust
databases (see section Files for Download). One contains
the representative sequences and the other the consensus se-
quences of each cluster. Consensus sequences are computed
by running ‘mmseqs result2profile’. The headers of the con-
sensus sequence summarize the annotations of the cluster’s
member sequences with the top five non-redundant descrip-
tions, giving precedence to Swiss-Prot over TrEMBL anno-
tations and a low rank to descriptions containing hypothet-
ical, unknown etc.

Uniboost MSAs

For many applications such as secondary structure predic-
tion, more diverse MSAs produce more accurate results.
Due to the stringent sequence length overlap criterion that
ensures functional homogeneity of the Uniclust30 clusters,
they contain only 6 sequences on average. We therefore
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enrich the Uniclust30 MSAs with local sequence matches
to boost their diversity. We add local alignment matches
through highly sensitive iterative profile-sequence homol-
ogy searches using four iterations of MMseqs2 through the
database of Uniclust30 consensus sequences.

The resulting MSAs are filtered to adjust the diversity: Se-
quences with a BLOSUM62 score per aligned residue to the
consensus sequence of less than 0.0, 0.5 and 1.1 are removed
from the MSAs of the Uniboost10, Uniboost20, and Uni-
boost30 databases, respectively. These values were heuristi-
cally found to correspond to 10%, 20% and 30% sequence
identity.

Deep domain annotations

We first annotate Uniclust30 MSAs with matches to Pfam-
A, SCOP domains, and to the PDB structure database,
using our remote homology detection software HHblits,
which is based on pairwise comparison of profile hidden
Markov models (HMMs). Hence, we compute HMMs for
Uniclust30 clusters from the corresponding Uniboost10
MSAs and search the Pfam-A, SCOP, and pdb70 databases
of the HH-suite (16). These profile HMM databases are au-
tomatically kept up to date by our HH-suite server (e.g.
weekly for the PDB).

To avoid multiple annotations of a region with matches
to the same database, the pipeline processes matches in the
order of increasing E-value. It accepts matches as annota-
tion if their E-value is <0.01 and the database match over-
laps by <10% of its aligned residues with already annotated
regions.

The pipeline annotates UniProt sequences by transfer-
ring annotations of Uniclust30 MSAs to their member
sequences. We need to ensure that the annotation refers
to a region of the member sequence that is homologous
to the annotated consensus sequence of the cluster. We
therefore only transfer the cluster annotation to the mem-
ber sequence if the E-value for the subalignment Esubali is
less than 0.01: Esubali = Edomain + K ∗ length consensus ∗
eλssubali < 0.01. Here Edomain is the HHblits E-value of the
domain match, ssubali is the BLOSUM62 score of the pair-
wise subalignment between the consensus sequence and
the member sequence overlapping the database match, and
the term including ssubali is an E-value computed with the
Karlin-Altschul statistic (17).

Webserver

To investigate specific clusters and get familiar with the
information contained in the Uniclust and Uniboost
databases, we have set up a web server that offers interac-
tive features using modern web standards and framework
such as the D3.js visualization toolkit (18).

The server can perform a full-text search for keywords
and sequence identifiers of over a hundred biological
databases linked to UniProt entries. Searches will give a list
of clusters as result, each linking to a cluster page.

The cluster page shows (Figure 1): (i) an interactive BioJS
alignment viewer (19), which displays our Pfam, SCOP, and
PDB annotations as colored bars on top; (ii) an expand-
able taxonomic tree (20) of the species represented in the

Figure 1. Visualization of a cluster with the multiple sequence alignment
including domain annotations, the taxonomic tree for the species of the
cluster’s member sequences, domain annotations, summary of sequence
annotation keywords, and protein evidence values.
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cluster, in which the user can select sequences in the align-
ment viewer above; (iii) a list of annotations with links to the
matched PDB, SCOP and Pfam entries; (iv) keywords oc-
curring most frequently in the annotations; (v) a summary
of protein evidence codes. Once a cluster is accessed, the
URL will be stable and permanently available.

In the example of Figure 1, the keyword summary indi-
cates that many member sequence are annotated as zinc fin-
gers involved in transcription regulation. By following the
links of the Pfam and SCOP domains they are revealed to
be zinc finger domains.

Cluster evaluation

In order to compare the functional homogeneity of the se-
quences within the same cluster, we developed scores that
assess the consistency of Gene Ontology terms, keyword an-
notations, and protein names within the clusters. For each
of these three annotation types, we defined a ‘worst’ and
a ‘mean’ annotation consistency score. These are, respec-
tively, the minimum and the mean of all pairwise annota-
tion similarities between the representative sequence and
any other sequence in the cluster. (We checked that the same
results are obtained if we compare with a randomly picked
sequence per cluster instead of the representative one.) This
gives us 2 × 3 scores. We also compute the average score
over the three annotation types (Figure 2B).

We now explain how the evaluation procedure computes
the annotation similarities between two sequences for the
three annotation types. Since there are often several Gene
Ontology and keyword annotations per protein, we need
similarity scores that compare the lists of annotations of
two proteins.

Gene Ontology score. The Gene Ontology (21) is a widely
used system to describe the functions of genes. It consists of
three parts, to classify biological processes, cellular compo-
nents in which a protein occurs, and their molecular func-
tions. For each of these three categories, the GO annota-
tions are organised into a hierarchical, multi-branch tree.
The similarity between two Gene Ontology terms a and b is
computed as proposed in (22): sim(a, b) = 2 log P(LCA(a,
b))/(log P(a) + log P(b)), where P(a) is the probability of a
protein to be annotated with a and LCA(a, b) (LCA for Last
Common Ancestor) is the most specific annotation node in
the ontology tree that contains both a and b as child nodes.

Many proteins have multiple GO-term annotations. To
obtain a GO annotation similarity value sim(x, y) be-
tween two proteins x and y with lists of GO annotations
A(x) and A(y), we follow (23) and define the similarity
between an annotation a of one protein with the anno-
tation Ay of another, sim(a, Ay) := max {sim(a, b): b ∈
Ay} and using it, we define the annotation similarity be-
tween proteins x and y: sim(x, y) = (

∑
a∈Ax

sim(a, Ay) +∑
b∈Ay

sim(Ax, b))/(|Ax| + |Ay|). Note that this similarity
takes values between 0 and 1 and equals 1 if and only if Ax
= Ay.

Keyword score. Most keywords with which UniProt pro-
teins are annotated were originally defined manually by
database curators. They are automatically transferred to

Table 1. Statistics of Uniclust databases

Database Clusters Singletons
Average cluster
size

Uniclust90 30.9 M 23.8 M 2.0 (5.4)
Uniclust50 13.5 M 9.6 M 4.6 (13.4)
Uniclust30 9.7 M 7.0 M 6.3 (19.8)

Average cluster sizes are for all clusters and, in parentheses, for non-
singleton clusters.

homologous proteins according to various rules developed
within UniProt (1). The keyword annotation similarity be-
tween two proteins x, y with keyword lists Kx and Ky is de-
fined in the exact same way as the GO annotation similar-
ity while defining sim(a, b) = I(a = b), with indicator func-
tion I( · ). This yields sim(x, y) = 2|Kx∩Ky|/(|Kx| + |Ky|).
The keywords in the UniProt knowledge base describe func-
tional features in categories such as molecular function, do-
main, biological process, ligand and cellular component.
We ignore keyword categories technical term and coding
sequence diversity, and keywords provided by the UniProt
automatic annotation team that do not describe biological
functions.

Protein name score. We compute the Levenshtein string
edit distance between the protein name from the ‘recom-
mended name’ section and normalise by the length of the
longer protein name to get a similarity between 0 and 1. The
calculation ignores protein name entries starting with the
words uncharacterized, putative, potential, probable, inac-
tive, likely, and unknown. Additionally, we remove the un-
informative word ‘protein’ from the names.

RESULTS AND DISCUSSION

Statistics

Table 1 shows statistics for the release 2016 03 of the Uni-
clust databases, which is based on the UniProt 2016 03 with
61 522 041 sequences of 325 amino acids average length.

Clustering quality

To assess the functional homogeneity of the clusters we
evaluated the mean and worst sequence identities over all
clusters as measures of cluster compactness. We computed
those through Clustal Omega distance matrices by running
‘clustalo –distmat-out=distance-matrix –percent-id –full –
full-iter’ on all clusters. If a cluster contains more than ten
sequences we sample ten random sequences for the distance
matrix. Figure 2A shows these mean and worst cluster com-
pactness values. Despite the UniRef using sequence identity
and Uniclust using score-per-aligned-residue pair as simi-
larity criterion during clustering, the Uniclust clusters have
higher mean and minimum sequence identities.

Additionally to the cluster compactness we computed the
annotation consistency for all clusters with respect to the
Gene Ontology annotation of member sequences, the key-
word consistency and the protein name consistency of each
cluster’s member sequences (Materials and Methods). For
each annotation type we analysed the worst and the average
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Figure 2. (A) Sequence identities averaged over all clusters of Uniclust30, Uniclust50, Uniclust90, UniRef50 and UniRef90. We compute the mean and
worst sequence identity between all possible pairs of sequences in a cluster. If a cluster contains more than ten sequences we sample ten sequences to compute
the sequence identities. (B) Annotation consistency scores averaged over all clusters of Uniclust30, Uniclust50, Uniclust90, UniRef50 and UniRef90. We
compute the mean and worst annotation consistency between the representative sequence and all other cluster members for Gene Ontology annotations
(top-left), protein names (top-right) keywords (bottom-left), and the average of the former three (bottom-right). (C) Total Pfam annotation count difference
between Uniclust and UniProt. (D) Comparison of the fraction of proteins in ten model organisms with Pfam annotations in Uniclust and in UniProt.

annotation similarity between the reference sequence and
the other cluster members. This analysis was performed on
the Uniclust 2016 03 and UniRef 2016 03 releases based on
the same version of UniProt with N = 61 522 041 sequences
of 325 amino acids average length.

The y-axis in Figure 2B shows the consistency scores av-
eraged over all clusters versus the number of clusters for
Uniclust30, Uniclust50, Uniclust90 (red, left to right) and
UniRef50, and Uniref90 (blue, left to right). Unsurprisingly,
the lower the sequence identity threshold and the deeper the
clustering, the fewer clusters are produced and the lower the
annotation consistency scores get.

The mean scores of all annotation types show that the an-
notation consistencies of Uniclust90 and Uniclust50 clus-
ters are markedly superior on average than to those of the
corresponding UniRef databases.

The ‘worst’ annotation similarity per cluster is sensitive
to the inclusion of even very few bad, functionally divergent
sequences in the clusters. These ‘worst’ consistency scores
are still quite high even for the Uniclust30, showing that the
clustering produces highly pure clusters.

Note that an annotation similarity <1 between two se-
quences does not exclude the two sequences to have identi-
cal molecular functions but could simply be a consequence
of one of the sequences being better annotated than the
other. In this light, the cluster consistency scores are quite
satisfactory. On the other hand, though, it is clear that many
automatic annotations have been transferred on the basis
of sequence similarity, which means that functional homo-
geneity might also be overestimated. However, such effects

affect all clusterings in the same way and should there-
fore not invalidate the benchmark comparison. We further
discuss in the supplementary material the evaluation us-
ing only GO EXP F annotations, whose sparsity leads to
a weak evaluation of the cluster consistencies.

Annotation depth

Figure 2C compares the number of annotations of Uniclust
and UniProt. Uniclust sequences contain 70 290 625 Pfam
annotations, whereas UniProt sequences are annotated with
59 918 684 Pfam domains. We analysed the overlap of Uni-
clust and Pfam annotations by counting how many of the
overlapping Uniclust and UniProt Pfam domain annota-
tions belonged to the same Pfam family clan. On a clan level
Uniclust and UniProt share 53 174 656 common annota-
tions, while Uniclust contains 17 115 969 sequence annota-
tions not shared by UniProt, and UniProt sequences have 6
744 028 annotations not present in Uniclust sequences.

This greater annotation depth of Uniclust is reflected in
the fraction of genes with at least one Pfam domain annota-
tion in the proteomes of various model organisms (Figure
2D). For every model organism except for Saccharomyces
cerevisiae, Uniclust can annotate a higher percentage of the
proteome.

Availability of data

In the following we use the generic form uni-
clust## yyyy mm.tar.gz as placeholders for files such
as uniclust30 2016 03.tar.gz. All downloads are available
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under a Creative Commons Attribution-ShareAlike 4.0
International license. We provide the following gzipped tar
files for download:

• uniclust## yyyy mm.tar.gz: This archive contains three
files, which will be updated every two months:

– uniclust## yyyy mm seed.fasta: representative (=seed)
sequences of every cluster in FASTA format

– uniclust## yyyy mm consensus.fasta: consensus se-
quences of every cluster in FASTA. The sequence
header starts with the Uniclust cluster identifier uc##-
yymm-〈number〉, the UniProt accession code of the
representative sequence, the size of the cluster, the up to
five best functional annotations from cluster members,
and UniProt identifiers of all cluster members.

– uniclust## yyyy mm cluster mapping.tsv: tab-separated
list with two columns of UniProt accession codes, the
first for the representative sequence of the cluster, and
the second for the member sequence.

• uniboost## yyyy mm.tar.gz: Uniboost database files in
compressed A3M alignment format, with additional sup-
port files for HH-suite version 3.

• uniclust30 yyyy mm hhsuite.tar.gz: archive containing
Uniclust multiple sequence alignments for all clusters
in a3m format, generated with Clustal Omega (24), and
additional support files for use with legacy HH-suite
version 2 and current version 3.

• uniclust yyyy mm annotation.tar.gz: archive containing
three files with Pfam, SCOP, and PDB annotations, each
formatted as tab-separated lists with nine columns: (1,2)
identifiers for query and target, (3-5, 6-8) domain start
and end-position and total sequence length for both
UniProt and database sequence, (9) HHblits E-value.

CONCLUSION AND OUTLOOK

The Uniclust databases provide functionally homogeneous
clusters of sequences at three clustering depths (90%,
50% and 30% sequence identity), sets of representative se-
quences, MSAs of clusters, and annotations of all sequences
with Pfam, SCOP, and PDB matches. The Uniclust and
Uniboost MSAs are also offered as databases for HHblits,
the most sensitive method for remote protein homology
detection, and the provision of regular updates to these
databases resolves a sore deficiency of HHblits, which was
limited by very irregular and rare database updates. The
MSAs in Uniboost might also prove to be a useful re-
source for (deep) machine-learning applications, which ben-
efit from training on massive amounts of labeled and anno-
tated sequence profiles.

The clustering with our MMseqs2 software currently
takes around five days on 10 × 16 cores, which is sustainable
for the next five to ten years due to the near-ideal scalabil-
ity of MMseqs2. (The Söding lab’s cluster has 640 cores at
this time.) But we are also actively developing both MM-
seqs2 and HHblits to achieve even higher speeds and sen-
sitivities. We expect considerable improvements in the near
future in the sensitivity with which we will detect and anno-
tate structural domains in Uniclust/UniProtKB sequences
using HHblits. Similarly, extending MMseqs2 to profile-
profile searches will improve the sensitivity for building the

Uniboost MSAs, which again will impact the sensitivity of
the domain annotations.

The Uniclust server facilitates profiting from the Uniclust
databases and deep HHblits domain annotations. We hope
that they will become a widely used resource for protein se-
quence analysis.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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suite for fast and deep clustering and searching of large protein
sequence sets. Bioinformatics, 32, 1323–1330.
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lightning-fast iterative protein sequence searching by HMM-HMM
alignment. Nat. Methods, 9, 173–175.

17. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J.
(1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.

18. Bostock,M., Ogievetsky,V. and Heer,J. (2011) D3 data-driven
documents. IEEE Trans. Vis. Comput. Graph., 17, 2301–2309.

19. Yachdav,G., Wilzbach,S., Rauscher,B., Sheridan,R., Sillitoe,I.,
Procter,J., Lewis,S., Rost,B. and Goldberg,T. (2016) MSAViewer:
interactive JavaScript visualization of multiple sequence alignments.
Bioinformatics, doi:10.1093/bioinformatics/btw474.

20. Huerta-Cepas,J., Serra,F. and Bork,P. (2016) ETE 3: reconstruction,
analysis and visualization of phylogenomic data. Mol. Biol. Evol., 33,
1635–1638.

21. Gene Ontology Consortium. (2015) Gene Ontology Consortium:
going forward. Nucleic Acids Res., 43, D1049–D1056.

22. Lin,D. (1998) An information-theoretic definition of similarity. In:
Proc. Fifteenth Int. Conf. Mach. Learn. pp. 296–304.

23. Azuaje,F., Wang,H. and Bodenreider,O. (2005) Ontology-driven
similarity approaches to supporting gene functional assessment. In:
Proc. ISMB’2005 SIG Meet. Bio-ontologies. pp. 9–10.

24. Sievers,F., Wilm,A., Dineen,D., Gibson,T.J., Karplus,K., Li,W.,
Lopez,R., McWilliam,H., Remmert,M., Söding,J. et al. (2011) Fast,
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Maria J. Martin, Johannes Söding, and Martin Steinegger

October 15th, 2016

1 Evaluation with experimentally validated an-
notations

As discussed in the main text, the validation may suffer from circularity, as
UniProt annotations are dominantly transferred on the basis of sequence similarity.
Thereby wrong homology based annotations can overestimate cluster consistency.
The evaluation scores we produce can not and should not be interpreted as an
absolute value of the quality of clusters, as annotations can suffer from errors and
incompleteness. However the consistency scores can be used to compare different
clustering algorithms or parameters of an algorithm. In our case it showed a higher
consistency of Uniclust then UniRef.

Furthermore GO term associated to Uniprot entries are divided in three groups
of evidence codes: experimental evidence codes and computational analysis evi-
dence codes, which are both assigned by curators (denoted EXP_F in the sequel,
with _F consisting only of functional GO annotations), and the automatically as-
signed evidence codes inferred from electronic annotation (IEA). In the main paper,
we performed the evaluation with all evidence codes together, as the EXP_F cov-
erage is very low and if we discard the annotations transferred by homology, there
are significant disparities in the annotations depending on the type of experiment
that has been carried out. As an example, Q5F3B5 and P50148 have 98.6% of
sequence identity but they share a GO score of 0.0.

For sake of completeness, we evaluated the clusters of Uniclust and UniRef
using only the EXP_F annotations. To cope with the disparity of the EXP_F an-
notations we use a procedure slightly different from the evaluation on all proteins.
Specifically, to avoid strong bias depending on the choice of the representative
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sequence of a cluster, we average in each cluster all against all GO score compar-
isons of the protein annotations falling into the EXP_F category (this also includes
self-scores as the clusters have very few proteins with an EXP_F annotation, in
order to be consistent with the extreme situation where one has only one EXP_F
protein per cluster).
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Figure 1: Evaluation with experimentally validated annotations

Note that the validation with only experimental annotation suffers from a very
small coverage of clusters: only 3867 clusters in Uniclust30 include a protein with
a GO EXP_F annotation.
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Chapter 6

HFSP: High speed homology-driven
function annotation of proteins

6.1 Introduction

Homology-derived Functional Similarity of Proteins (HFSP) (Mahlich et al. 2018) is a func-

tional annotation measurement based on sequence identity and alignment length. It builds

upon the previously published HSSP (Rost 2002; Rost 1999; Sander and Schneider 1991)

measure. HFSP can be used in two ways: (1) as a functional similarity measure, which

can be used to define functional distance between two proteins, or (2) to transfer functional

annotations based on a sensitivity threshold.

The study reveals an annotation bias towards well studied proteins. Even highly sim-

ilar proteins, based on sequence identity, could reside on different Enzyme Commission

(Bairoch 2000) (EC) levels. This indicates that the granularity of the EC annotation is not

well balanced and that different evaluation measures are needed.

The performance was evaluated by two benchmark sets based on entries of the manually

curated Swiss-Prot (Bairoch and Apweiler 1999) database, published between the year 2002

and 2017. The MMseqs2 (Steinegger and Söding 2017) profile sequence search was used to

annotate enzymes. The new proposed measure gains a speedup of a factor of 40 over PSI-

BLAST (Altschul et al. 1997), and yields an accuracy of 83% at the fourth EC classification

level when selecting the highest scoring HFSP pair per protein.

HFSP is a fast and accurate method to measure functional distance between two pro-

teins. It will enable large scale functional annotation analysis and help to narrow the search

space of proteins to experimentally analyse.

Yannick Mahlich performed the research, Martin Steinegger adapted MMseqs2. Yan-

nick Mahlich, Burkhard Rost and Yana Bromberg jointly designed the research and wrote

the manuscript.
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Abstract 
Motivation: The rapid drop in sequencing costs has produced many more (predicted) protein se-
quences than can feasibly be functionally annotated with wet-lab experiments. Thus, many computa-
tional methods have been developed for this purpose. Most of these methods employ homology-based 
inference, approximated via sequence alignments, to transfer functional annotations between proteins. 
The increase in the number of available sequences, however, has drastically increased the search 
space, thus significantly slowing down alignment methods. 
Results: Here we describe HFSP, a novel computational method that uses results of a high-speed 
alignment algorithm, MMseqs2, to infer functional similarity of proteins on the basis of their alignment 
length and sequence identity. We show that our method is accurate (83% accuracy) and fast (more 
than 40-fold speed increase over state-of-the-art). HFSP can help correct at least a 20% error in legacy 
curations, even for a resource of as high quality as Swiss-Prot. These findings suggest HFSP as an 
ideal resource for large-scale functional annotation efforts. 
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1 Introduction  
The recent rapid drop in the cost of DNA-sequencing has produced a 

large number of fully sequenced genomes. For prokaryotes, for example, 
this represents a more than six-fold growth (1,400 to 9,000 in Genbank 
(Benson, et al., 2013)) in the last 5 years alone. While this increase in data 
enables many types of research, experimental annotation lags far behind. 

In particular, the speed (or lack thereof) of experimental evaluation and 
validation of protein molecular functionality clearly necessitates compu-
tational approaches. In fact, many methods (Jiang, et al., 2016; Radivojac, 
et al., 2013) have already been developed for this purpose, the vast major-
ity of which rely on transfer of functional annotation by homology 
(Loewenstein, et al., 2009). Mistakes in available annotations (Schnoes, et 
al., 2009), inconsistencies in experiments, as well as simply missing or yet 
unknown functions make these sequence similarity-based methods error- 
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Fig. 1: HFSP precisely predicts functional identity. All Swiss-Prot 2002 protein pairwise alignments were mapped into the sequence identity vs. ungapped alignment length space. In (A) 
protein pairs were differentiated according to identity of their EC level 3 (same EC annotation are green circles; different annotations are red triangles). The HFSP curve (HFSP=0, light 
blue solid line) is shown relative to the HSSP curve (black dashed line). Protein pairs above the curve are predicted to be of same function, pairs below the curve of different function. In (B, 
C) precision (circles) and recall (triangles) in predicting functional identity, at 3rd (blue, solid curve) and 4th (red, dashed curve) EC level for Swiss-Prot 2002. Arrows indicate performance 
at default cutoff of HFSP = 0. In (B) prediction was done using the highest HFSP scoring alignment per protein. In (C) all alignments were used, resulting in significantly worse performance. 

prone (Clark and Radivojac, 2011). Furthermore, organism-focused re-
search interests result in more detailed annotations for a non-random sub-
set of proteins, where homologous proteins of identical functionality in 
another species are often annotated significantly less thoroughly. Evaluat-
ing the performance of computational annotation methods is complicated 
by the absence of large, well curated, and ‘evenly’ functionally annotated 
protein sets, representing the entire breadth of available biomolecular 
functionality.  

Protein sets that are used as benchmarks of prediction employ annota-
tion ontologies, i.e. standardized terms and their relationships. One such 
benchmark set is enzymes with Enzyme Commission (Bairoch, 2000) 
(EC) numbers. EC numbers reflect a four level hierarchy, where each con-
secutive level is a more precise specification of the annotation on the pre-
vious level. For example, enzymes classified as EC:1.1.1.- are oxidore-
ductases (1st level), acting on the CH-OH group of electron donors (2nd 
level), with NAD+ or NADP+ as an electron acceptor (3rd level). The fourth 
and most specific level might then annotate an enzyme as alcohol dehy-
drogenase (EC:1.1.1.1), i.e. reducing the aldehyde group of the molecule. 
Note that dashes (“-“) in EC numbers indicate lack of specificity of 

functional annotation at that level. While EC numbers facilitate compari-
son of functions across enzymes, the annotation specificity at the same EC 
level varies; e.g. the class of serine/threonine protein kinases (EC:2.7.11.-
) contains a category EC:2.7.11.1 (4th level annotation = 1) that collects all 
kinases that are non-specific or whose specificity hasn’t been analyzed to 
date. On the other hand, serine/threonine protein kinases with the 4th level 
annotations between 2 and 32 are very specifically annotated, with each 
category limited to proteins that act on a particular substrate. Using EC 
annotations as a benchmark, thus, comes at the expense of variability in 
annotations even at the same level of the hierarchy. This, in turn, compli-
cates establishing functional similarity of two proteins in a precise and 
balanced manner across the entire enzymatic activity spectrum. 

By definition, using EC annotations also means missing out on non-
enzymatic functionality. Other ontologies, like the molecular function 
branch of Gene Ontology (Ashburner, et al., 2000) (GO) do not have this 
limitation. GO, however, employs a different, even more detailed, strategy 
in defining function than EC. The number of GO annotation levels varies 
by ontology sub-branch. Moreover, one protein can (and likely does) have 
multiple functional GO terms assigned to it (e.g. both copper ion binding 
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Fig. 2: Strong bias in EC distribution.  Different EC categories contain different numbers of proteins with both general (A) EC level 1 and (B) more specific EC annotations. (C) This bias 
is particularly obvious for 3rd level EC categories, with 2.7.11.-, 2.7.10.- and 1.1.1.- being the most prominent (first three bars from right; all ECs with more than 50 proteins are red).

and DNA binding terms describe the function of P53; AmiGo 2.4.6; 
PMID:15358771, PMID:7824276). Thus, comparing GO annotations may 
lead to much stronger distortions of similarity than skewed or even incom-
plete EC numbers. Note that moonlighting (Khan, et al., 2014) proteins, 
i.e. proteins that can be assigned multiple specific functions, further con-
fuse functional similarity metrics.  

As a consequence of the drastic increase in genomic and protein se-
quences in need of annotation, the search space for all computational func-
tion assignment methods has also increased. A centerpiece of much of se-
quence analysis efforts is the BLAST (Altschul, et al., 1990; Altschul, et 
al., 1997) family. We note that with the quasi exponential growth in search 
space, while PSI-BLAST (Altschul, et al., 1997) may still remain viable 
for the analysis of a single protein, large scale evaluations are not time-
feasible. Many methods that reduce runtime while retaining or increasing 
alignment accuracy have been developed over the last years, including ca-
BLASTp (Daniels, et al., 2013), HHblits (Remmert, et al., 2011), and 
MMseqs2 (Steinegger and Soding, 2017). However, replacing (PSI-) 
BLAST in any bioinformatics pipeline with another alignment method re-
quires parameter re-optimization or even a complete method overhaul. 

Existing function prediction methods are very sophisticated, using a va-
riety of inputs (e.g. structure and literature mining) and computational 
techniques (e.g. machine learning). However, here we focused on HSSP 
(Rost, 1999; Rost, 2002; Sander and Schneider, 1991) – a simple distance 
metric that infers protein function and structure similarity from sequence 
identity and alignment length. We optimized HSSP parameters to classify 
protein pairs as functionally identical or different using the results of 
MMseqs2, a lightning-fast alignment method. We found that our newly 
developed HFSP (Homology-derived Functional Similarity of Proteins) 
method is 40-fold faster than HSSP, while retaining HSSP precision in 
annotating enzymatic functionality of proteins (83% accuracy; Figure 1).  

Analyzing existing protein databases with our method, we showed that 
currently available computationally determined annotations in even the 
manually curated Swiss-Prot (The UniProt, 2017) database are incorrect 
for at least a fifth of the cases. We suggest that these errors are likely due 
to loosely defined rules of homology-based propagation of functional an-
notations. With the number of protein sequences in public databases bor-
dering on 100 million and growing, HFSP is well suited to help improve 
the quality of existing and newly assigned functional annotations. 

2 Methods 
Extraction of datasets. We extracted a set of reviewed proteins from 

Swiss-Prot with only one, EC (Bairoch, 2000) annotation per protein 
(complete at all four levels; 214,000 proteins; Swiss-Prot set). The 2002 
(latest) formula for computing the HSSP (Rost, 1999; Rost, 2002) dis-
tances was developed on a combined set of Swiss-Prot (The UniProt, 
2017) and PDB (Berman, et al., 2002) proteins. To validate the perfor-
mance of HSSP reported in (Rost, 1999; Rost, 2002), we extracted pro-
teins from the Swiss-Prot set that had experimental evidence of protein 
existence (e.g. crystal structure, protein detection by antibodies, etc.) and 
an EC annotation in BRENDA (Placzek, et al., 2017). The resulting pro-
teins (Swiss-Prot 2017 set; 7,022 proteins) were further filtered to retain 
entries appearing in the database before January 2002 (Swiss-Prot 2002, 
3,908 proteins). Both Swiss-Prot 2017 and 2002 datasets were extracted 
in October 2017 (Uniprot release 2017_09) and redundancy reduced to 
98% sequence similarity and 98% target sequence coverage with CD-HIT 
(Fu, et al., 2012; Li and Godzik, 2006). Swiss-Prot 2002 contained 3,801 
proteins with 1,481 unique EC annotations and Swiss-Prot 2017 contain-
ing 6,835 proteins with 2,552 unique EC annotations (SOM Data 1).  

Swiss-Prot 2017 was further split into sets containing only prokaryotic 
(Swiss-Protpro 2017, 2,572 proteins) or eukaryotic (Swiss-Proteuk 2017, 
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4,263 proteins) proteins. Finally, we extracted two more Swiss-Prot sub-
sets from: (1) proteins that did not have an EC annotation (293,058 pro-
teins) and (2) proteins with incomplete or multiple EC annotations (48,536 
proteins). 

Aligning proteins. To augment the homology profiles used in align-
ments (by both PSI-BLAST (Altschul, et al., 1997) and MMseqs2), we 
computed alignments of all proteins in our datasets (Swiss-Prot 2002, 
Swiss-Prot 2017, Swiss-Protpro 2017 & Swiss-Proteuk 2017) against pro-
teins in the full (non-reduced) Swiss-Prot (Uniprot release 2017_09). For 
each specific dataset, we then extracted only those alignments, where both 
proteins were present in that set (e.g. both query and target protein in 
Swiss-Prot 2002). 

PSI-BLAST alignments where created with NCBI-BLAST version 
2.2.29+. We ran three iterations of PSI-BLAST (-num_iterations 3). In 
each iteration, top 500 hits (E-value 10-10, -inclusion_ethresh 1e-10) were 
included into the profile. After the third round all alignments that satisfied 
the E-value £ 10-3 threshold (-evalue 1e-3) were considered for evaluation 
of performance.  

MMseqs2 (Steinegger and Soding, 2017) parameters were chosen to 
mirror the PSI-BLAST runs. The alignment-mode (--alignment-mode 3) 
was set to calculate sequence identity between query and target was over 
the full alignment length, i.e. analogous to BLAST. We ran three iterations 
(--num-iterations 3) of alignments including hits with an E-value £ 10-10 
into the generated profile (--e-profile 1e-10). Only alignments of protein 
pairs with and E-value £ 10-3 were reported in the final result (-e 1e-3). 
The sensitivity (-s) cut-off for MMseqs2 prefiltering step was set to 5.6 
(default value).  

It had taken MMseqs2 1,228 CPU hours to complete the alignment of 
our Swiss-Prot enzyme set (214,000 proteins) to the full (non-reduced) 
Swiss-Prot (555,594 proteins). Although MMSeqs2 was exceedingly fast 
for this set, note that it has been optimized to deal with much larger data-
bases and, thus, it did not reach its full potential in speed. In earlier testing 
(Zhu, et al., 2015; Zhu, et al., 2018) with a dataset of ~4.2 million proteins, 
the all-to-all protein alignment time for the MMseqs2 was ~30 thousand 
CPU hours (4.2e6 x 4.2e6 =~ 1.8e13 comparisons in roughly 4 days on 12 
compute nodes with 24 CPUs each). In comparison, creating the same 
PSI-BLAST alignments took ~1.3 million CPU hours (~3 months on 78 
compute nodes with 8 CPUs each). From these numbers, the HFSP speed-
up (using MMseqs2) over HSSP (using PSI-BLAST) was estimated at 
over 40-fold and expected to grow significantly with database size. 

Defining functional identity. Proteins sharing the same EC annotation 
at chosen (3rd or 4th level) were assigned functional identity. For example, 
L-lactate dehydrogenase and D-lactate dehydrogenase have EC assign-
ments 1.1.1.27 and 1.1.1.28 respectively. Thus, at EC level 4, the proteins 
are different, but at EC level 3 they are the same, 1.1.1. 

Retraining HSSP curve with MMseqs2. We used the Swiss-Prot 2002 
proteins and their 3rd EC level annotations to develop the HFSP measure. 
Investigating the protein distribution of EC categories at the 3rd EC level, 
we realized a strong distortion towards a few EC categories with excep-
tionally many associated proteins (Figure 2C). This is in addition to other 
differences between EC categories (Figure 2A,B). To compensate for this 
category bias, we limited the size of EC categories to no more than 50 
proteins (randomly chosen for the 19 larger categories, SOM Table 1). We 
then extracted all MMseqs2 alignments for all Swiss-Prot 2002 protein 
pairs in our set. 

It has been previously shown that using class-balanced training sets is 
beneficial in the development of data driven classification models (Rost 
and Sander, 1993; Wei and Dunbrack, 2013). We therefore balanced the 
results in training to contain equal numbers of protein pairs with the same 
vs. different 3rd level EC annotations.  

We first used cross-validation for training/testing our method; i.e. we 
split the data into ten sets such that no sequence in one set shared more 
than 40% identity with a sequence in another set (CD-HIT clusters). In 
each of in ten rounds of training, one set was retained for testing and the 
other nine were used for training. Note that in each round of cross-valida-
tion, we reintroduced into the testing set those proteins, which were orig-
inally removed for class balancing purposes. We optimized the parameters 
(originally factor=480 and exponent=-0.32; Eqn. 1, SOM Table 2) of the 
2002 HSSP formula (Rost, 2002) to fit a new curve separating protein 
pairs of identical function from those of different functions in the two-
dimensional space of sequence identity (y-axis) and ungapped alignment 
length (alignment length – number of gaps; x-axis). Pairs of same function 
proteins (identical annotation for EC) and a given threshold distance away 
from the curve along the y-axis were true positives (TP). Pairs that did not 
have the same function but were also above the threshold were false pos-
itives (FP). False negatives (FN) were pairs of same function but scoring 
below the threshold. We optimized for F1 score (Eqn. 3) using R’s imple-
mentation of the Nelder-Mead method (Nelder and Mead, 1965), search-
ing for a local optimal F1 score, using combinations of exponents from -
0.3 to -0.9 in steps of 0.05, and factor from 300 to 1,500 in steps of 50. 

	𝐻𝑆𝑆𝑃 = 𝑃𝐼𝐷𝐸 −	*
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HFSP values for protein pairs were calculated using MMseqs2 results; 
Pearson correlation coefficient of HFSP to the HSSP values computed us-
ing PSI-BLAST results for same pairs. For each dataset, we calculated 
precision (i.e. how often a prediction of identical function is correct), re-
call (i.e. how many identical function pairs were correctly identified), and 
the F1 score (Eqn. 2,3) using HSSP and HFSP distance thresholds to de-
termine true/false positives/negatives.  

After evaluation was completed, we retrained as described above, but 
without testing, one HFSP curve on the complete balanced set of Swiss-
Prot 2002 protein pairs for all further use. 

Using HFSP to make function predictions. We used the 6,835 exper-
imentally annotated proteins with 2,552 unique EC annotations of Swiss-
Prot 2017 as the reference database for all further function predictions. 
For every protein, only the highest HFSP-scoring protein match (≥0; ex-
cluding self-matches) was used to annotate function. We thus predicted 
functions of proteins in the complete Swiss-Prot set of enzymes. Curi-
ously, some EC numbers used in Swiss-Prot protein annotation did not 
have any members in the experimentally annotated Swiss-Prot 2017 ref-
erence set. The proteins annotated with these EC numbers (32,201 proteins 
at 4th and 381 proteins at 3rd EC level, respectively) were considered false 
positives by default. Note that we are still unclear about the origins and 
experimental support of these annotations. Additionally, some proteins did 
not produce any alignments, and for others the highest hits did not reach 
our HFSP cutoff=0. For these, no functional assignment could be made. 
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3 Results 

3.1 HFSP scores correlate with HSSP, but are produced 
more than 40-fold faster 

We trained, evaluated, and defined the HFSP (Homology derived func-
tional similarity of proteins; Eqn. 4) as described in Methods. 

 

𝐻𝐹𝑆𝑃 = 𝑃𝐼𝐷𝐸 −	*

100, 𝑓𝑜𝑟	𝐿 ≤ 11

770 ∙ 𝐿
67.99	∙	;<=>?

@
ABBBC

, 𝑓𝑜𝑟	11 < 𝐿	 ≤ 450
28.4, 𝑓𝑜𝑟	𝐿 > 450

 (4) 

HFSP uses MMseqs2 iterative profiles as they have three major ad-
vantages over PSI-BLAST: (1) compositional bias correction to suppress 
high scoring non-homologous alignments, (2) profile computation by only 
considering the 1000 most diverse sequences (PSI-BLAST uses the n 
BEST scoring hits) (3) and realignment to reduce over-extension (Frith, et 
al., 2008); over-extension includes sequences into the profile at the edges 
of the alignment threshold in consecutive iterations. Thus, MMseqs2 
alignments of smaller and more distant proteins tend to be more compact, 
favoring higher sequence identity, and thus leading to slightly higher 
HSSP scores calculated using the original equation (Eqn. 1). These differ-
ences in alignment methods, however, do not significantly affect the HSSP 
scores across the entire spectrum, especially for high sequence identity 
alignments (Pearson correlation coefficient between BLAST-based and 
MMseqs2-based HSSP scores =0.95; Figure 3).  

Fig. 3: HSSP scores derived from MMSeqs2 and PSI-BLAST alignments strongly cor-
relate. HSSP scores derived from PSI-BLAST alignments (x-axis) and MMSeqs2 (y-axis) 
respectively. The histograms display the number of protein pairs in the respective ranges of 
HSSP scores. HSSP scores for both methods highly correlate (Pearson-correlation coeffi-
cient = 0.95).  

3.2 HFSP precisely identifies the 3rd, but not 4th, level of 
EC annotations 

In identifying pairs of proteins sharing the same function at the 4th level 
of EC (Methods), HFSP attained precision of 44.1% ± 3.6 at HFSP 0 and 
recall of 71.5% ± 1.6 (in cross-validation). This disappointing 

performance suggests that the increasing resolution/fine-tuning of experi-
mental molecular function annotation is prohibitive for large-scale com-
putational analyses of proteins; i.e. for any given alignment scoring 
HFSP≥0, it is more likely that the proteins in the alignment are not func-
tionally identical.  

In exploring this problem, we found that many highly sequence similar 
protein pairs of different EC annotations contained homologous proteins 
that were assigned slightly different functionality in different organisms. 
For example proteins from the squalene cyclase family (Interpro: 
IPR018333, Pfam: PF13243 & PF13249) were annotated with different 
ECs; e.g. GERS_RHISY, a germanicol synthase in the red mangrove, is 
assigned EC:5.4.99.34 and has 93% sequence identity (alignment 
length=758) to BAS_BRUGY, a Beta-amyrin synthase of the burma man-
grove, which is annotated as EC:5.4.99.39. This combination of sequence 
identity and alignment length produces an HFSP score of 64.6. At this 
HFSP level protein pairs are predicted to share the same EC annotation at 
4th EC level with a precision of >99%. Note that GERS_RHISY is the only 
EC 5.4.99.34 protein to date. The publication describing its catalytic ac-
tivity (Basyuni, et al., 2007), suggests that GERS_RHISY activity war-
rants a brand new EC number (germanicol synthase), because it primarily 
catalyzes germanicol synthesis. From our perspective, GERS_RHISY 
should additionally carry the beta-amyrin synthase annotation, since beta-
amyrin (and lupeol) are synthesized in addition to germanicol albeit at a 
lower rate. Note that this example also recalls the problem of moonlighting 
proteins. 

The above example reflects the general problem of unbalanced annota-
tion detail of different EC categories at the same level of annotation. For 
example, EC:5.4.99.- is by choice of the Enzyme Commission meant to 
“house” temporarily a collection of enzyme reactions that have yet to be 
more thoroughly categorized. Many members of EC:5.4.99.- fall into the 
same PFAM families, while catalyzing the conversion of the same reactant 
into similar chemical compounds; i.e. the 4th level EC annotations of these 
proteins convey only a small amount of functional difference. However, 
5.4.99.- also contains significantly different proteins catalyzing different 
reactions, where fourth level annotations convey very large differences. 
Note that in this scheme, automated protein function annotation is signif-
icantly limited by lack of awareness of what individual EC numbers rep-
resent; i.e. it is incorrect to assume that the fourth, most precise, level EC 
annotations, across the entire EC system, are similarly defined in terms of 
depth of functional understanding and/or functional distances between 
proteins of the same third level EC. Note, however, that increasing the 
HFSP threshold for calling protein functions identical leads to signifi-
cantly improved precision (if at significant cost to recall). For example, at 
HFSP cutoff = 20, 93% of the protein pairs are correctly annotated to share 
functionality. In other words, protein pairs with higher HFSP score repre-
sent more reliable predictions. This improvement is unsurprising as it is 
due in large part to increasing sequence identity and is very likely reflec-
tive of closer evolutionary relationships between proteins.  

In identifying pairs of proteins sharing the same function at the 3rd level 
of EC, we found that performance improved drastically at the default 
HFSP cutoff = 0. Here, our method attained precision of 96% ± 1.2 at 
HFSP 0 and recall of 64% ± 1.6 (in cross-validation, Figure 1). These re-
sults suggest that in the absence of additional knowledge about an aligned 
protein pair, it is prudent to only accept higher scoring HFSP alignments 
(for 4th digit annotations) or to move up in the required resolution of func-
tional annotation (i.e. to 3rd EC level).  

Finally, we tested HFSP precision and recall on proteins in Swiss-Prot 
2017 that were NOT in Swiss-Prot 2002 (which was used for training of 
the HFSP curve), i.e. proteins that were added to Swiss-Prot after January 
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2002. We found that performance for this subset was similar to the ex-
pected performance at both the 3rd and 4th EC levels (Figure 4), suggesting 
that our measure remains applicable for newly added proteins AND en-
zyme classes (EC numbers).  

Fig. 4: HFSP performs as expected on newly added proteins.  Precision and recall of 
function prediction at (A) 3rd (dark blue) EC level of proteins in Swiss-Prot 2002 and of 
those added since 2002 (Swiss-Prot 2002-2017; light blue) are similar. However, for the 4th 
EC level, the (B) performance on newly added proteins (dark red) is worse than for older 
ones (light red). 

3.3 HFSP performance differs in annotating prokaryotic vs. 
eukaryotic proteins 

We additionally evaluated the HFSP performance in annotating the eukar-
yotic vs. prokaryotic proteins of the entire Swiss-Prot 2017 set (Methods, 
Figure 5A) at the 3rd EC level. At our default cutoff of HFSP = 0, eukary-
otic protein pairs were assigned functional similarity correctly more often 
than prokaryotic ones (precision/recall 96%± 1.5%/62% vs. 
91%±1.5/47%, respectively). Note that there were more eukaryotic pro-
teins in our data than prokaryotic ones, which may have contributed to this 
disparity during HFSP curve optimization. This larger number of proteins 
can be explained by the eukaryotes (1) trending towards bigger proteomes 
and, perhaps more importantly, (2) making up a bigger fraction of model 
organisms, which are better studied. Curiously, at the 4th EC level this 
trend was reversed, i.e. precision was better for prokaryotes than for eu-
karyotes (precision/recall 62%/55% vs. 42%/79%, respectively, Figure 

5B). This observation may potentially be due to a smaller number of ho-
mology-confusing multi-domain proteins in prokaryotes. It may also re-
flect a lower enzymatic diversity of prokaryotic proteins in our set: 1,522 
distinct EC annotations in eukaryotes vs. 1,403 in prokaryotes. Whether 
this difference is due to actual diversity or a result of experimental bias 
remains unclear. 

3.4 HFSP accurately predicts unknown protein function at 
all EC levels 

There is a conceptual difference between annotating functionality of an 
unknown protein and measuring functional similarity of two proteins. That 
is, in assigning ONE specific protein function to a newly obtained amino 
acid sequence is not the same as relying on homology to identify proteins 
sharing the similar functionality in a particular database. To use HFSP as 
a method of function prediction we proposed simply relying on the “high-
est hit”; we have previously shown that this approach is best for transfer-
ring functional annotations with HSSP (Zhu, et al., 2018) and suggest that 
similar logic should apply here. 

Fig. 5: Differing annotation performance for prokaryotic and eukaryotic proteins at 
3rd and 4th EC level.  (A) For the 3rd EC level at default cutoff of HFSP = 0, eukaryotic 
protein pairs are assigned functional similarity correctly more often than prokaryotic ones. 
However, for high thresholds, i.e. higher precision at the expense of recovered protein pairs, 
performance is similar. (B) Performance is better for prokaryotes than eukaryotes at the 4th 
EC level. 

6. HFSP: High speed homology-driven function annotation of proteins
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By mapping the highest HFSP match (at cutoff = 0 and excluding self-
hits) for the experimentally annotated proteins of the Swiss-Prot 2017 set, 
we were able to correctly identify the 4th level EC function of 4,668 (~83% 
of 5,647) proteins. As expected, the numbers were higher for the 3rd level 
EC (5,425 of 5,647 proteins, 96%). Note that this performance is the upper 
limit of actual HFSP performance, as Swiss-Prot 2002, on which our 
method was developed, is a subset of Swiss-Prot 2017. Also note that (1) 
625 proteins in our Swiss-Prot 2017 set did not reach our HFSP cutoff=0 
and (2) 563 proteins did not align to any others in our set. Of these, 645 
proteins (291 and 354, respectively) proteins were unique in our set; i.e. 
there was no other protein with the same EC number at 4th EC level. Thus, 
1,188 proteins in our set (~17% of 6,835 in the set) could not be assigned 
function at all – ~8% due to HFSP limitations and ~9% due to the absence 
of homologs. 

3.5 Functional annotations even in manually curated data-
bases are often incorrect 

We applied the highest HFSP hit measure to evaluate EC annotations in 
the entire Swiss-Prot set (Methods) on the basis of their alignment to our 
experimentally annotated Swiss-prot 2017 set. We estimate that 142,831 
of the 214,000 Swiss-Prot enzymes (67%) are correctly annotated at the 
4th level of EC (Figure 6). Curiously, 32,201 (15%) of the enzymes in 
Swiss-Prot had no corresponding 4th level ECs (381 3rd level ECs) in 
Swiss-Prot 2017, raising questions as to the accuracy of these annotations. 
Another 4,937 are deemed wrongly annotated (highest hit at HFSP≥0 has 
a different EC number). While these proteins may indeed be assigned 
wrong functionality, this may also be due to error in HFSP assignments at 
this level (17% false positives at this cutoff, as described above for the 
Swiss-Prot 2017 experimentally-annotated set). A more interesting find-
ing, however, is that 34,031 (19%) of the proteins in this set could not be 
annotated at all by HFSP, whether due to lack of alignments (17,519 pro-
teins) or HFSP highest hits unable to reach the cutoff (16,512 proteins). 
These 19% of proteins that could not be annotated represent a more than 
two-fold higher number than expected (~8% as described above for the 
Swiss-Prot 2017 set). We, thus, suggest that the Swiss-Prot EC annota-
tions of many of these 34,031 proteins, a sixth of the total number of an-
notations, are incorrect. 

3.6 Identifying proteins of new functionality is simplified 
with HFSP 
One problem of function transfer by homology methods is their ina-

bility to identify proteins of completely novel, i.e. not found in the refer-
ence database, functionality. Note that sequence similar proteins are also 
likely functionally similar, but are clearly not necessarily functionally 
identical. To evaluate how HFSP deals with proteins of novel functional-
ity, we extracted a set of proteins from Swiss-Prot 2017, where no other 
protein in our set had the same 4th EC level annotation (‘unknown’ func-
tionality). These ‘unknown’ proteins, i.e. assigned to a 4th EC level cate-
gory, which appear just once in our set, are a minority (19%; 1,317 of 
6,835 proteins), albeit a significant one. We asked if we could in advance 
identify these ‘unknown’ proteins, for which prediction of function could 
not be made, rather than making incorrect predictions.  

We separated function predictions for the 6,835 proteins in Swiss-
Prot 2017 into three subsets (1) ‘unknown’, as described above, and (2) 
correctly and (3) incorrectly predicted ‘known’, i.e. proteins with 4th EC 
level annotations containing more than one protein. We then compared the 
highest hit HFSP score distributions for all three sets (Figure 7). HFSP  

Fig. 6: More proteins in Swiss-Prot enzyme could not be assigned to function than 
expected. Function predictions for proteins in Swiss-Prot 2017 (Reference, purple) and all 
proteins in Swiss-Prot with EC annotation complete on all four levels that either share an 
EC with proteins in Reference (light teal) or not (dark teal). 

scores for correctly annotated proteins with known functionality appear to 
come from a mixture of two distributions. These are likely to be evolu-
tionarily distant (peak of the distribution at HFSP = ~20) vs. close (peak 
at HFSP = ~65) homologs. The peak of the distribution of ‘unknown’ pro-
tein scores is obviously different from either (HFSP = ~2). However, the 
distribution of incorrect predictions for ‘known’ proteins closely follows 
the ‘unknowns’ (Fig. 7A and SOM Fig. 2A, B). Combined, ‘known incor-
rect’ and ‘unknown’, make up less than 10% of all predictions at HFSP≥14 
(false discover rate, FDR=9.6%), whereas between the default cut-off and 
HFSP=14 (0≤HFSP<14) this fraction is nearly 40%. Despite the fact, that 
at this threshold only ~6% of all predictions are of ‘unknown’ origin, these 
are still 30% of all ‘unknown’ proteins; similarly ~3% of all predictions, 
but 29% of all ‘known incorrect’ proteins are at HFSP≥14. These obser-
vations suggest that while we can not differentiate incorrect predictions 
from missing-reference ones, HFSP handles new protein function, as well 
as that which it has already seen, with higher scores indicating more reli-
able/correct annotations.   

Given the vast number of proteins that yet have to be functionally 
annotated (e.g. TrEMBL is currently approaching 109 million proteins), 
the number of potential EC functionalities missing from our reference set, 
as well as the understanding that the total number of enzymes among the 
un-annotated proteins may not mirror the Swiss-Prot distribution (where 
~47% of all proteins are annotated enzymes including those with incom-
plete and multiple EC annotations), we suspect that accurately estimating 
the HFSP cutoff at which the FDR would fall below some threshold, e.g. 
5% (currently at HFSP≥28), is not possible. For example, given the current 
distribution of scores, 29% of 1,384 ‘unknowns’ and incorrect ‘knowns’ 
present at HFSP≥14 make up only 407 proteins. If we were annotating 
tens of millions of proteins, however, this error rate can be expected to 
produce hundreds of thousands of annotations. On the other hand, given 
the limited size of our reference database, we can not necessarily expect 
that the true positive findings would grow accordingly.  
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Fig. 7: HFSP is robust to previously unseen enzymatic functionality.  (A) Proteins with 
no known homologs – approximated by investigating experimentally annotated proteins 
which fall into a EC category unique to the protein (orange) – show on average smaller 
highest scoring HFSP hits than proteins with existing homologs (green – correct predic-
tions, blue – incorrect predictions). Of all predictions at HFSP score ≥ 14, less than 10% of 
proteins with “unknown” and “known” but falsely predicted function where observed  (B, 
bottom panel): Highest HFSP score predictions for different protein subsets of the non-
reduced Swiss-Prot: (i) experimentally verified enzymes (reference - purple), (ii) enzymes 
with EC annotation complete on all 4 levels that are not experimentally verified (complete 
EC - teal), (iii) enzymes with incomplete EC annotation or multiple EC annotations (in-
complete & multiple EC – black) and (iv) proteins that are not annotated as enzymes (no 
EC – red); note that for most proteins with no EC annotation there were no matched to the 
reference database (268,857 proteins, 91%; B, top panel). 

 
We further predicted EC annotation for all Swiss-Prot (555,594 pro-

teins in October 2017, Figure 7B). Importantly, the majority (91%) of the 
non-enzymes (no EC annotations; 293,058 proteins) did not generate any 
matches to our reference database. Of the remaining non-enzymes, 21% 
(4,987 proteins) scored at HFSP ≥0, making up 3% of all predictions (false 
positives, 1% for all predictions at HFSP ≥14). Predictions could be made 
for 57% of the enzymes with multiple or incomplete EC annotations 
(27,717 of 48,536 proteins); 53% (14,668 proteins) of these scored at 
HFSP ≥0 and 13% above HFSP ≥14 (3,653 proteins). If these proteins 
were like our ‘unknowns’, we would expect at least twice as many with a 
match at HFSP ≥14. Thus, we suspect, that the enzymes in this set are not 
especially novel and can likely be annotated using HFSP and our reference 
dataset. This further suggests that at least 73% (43% no hits and 30% 

below HFSP=0) of proteins with incomplete or multiple EC annotations 
could be proteins with no homologous sequence in our reference database. 

In light of our findings, we note that without further experimental 
work to elaborate on the functions of the yet-unannotated proteins, even 
the best function prediction methods will soon reach their limits. We sug-
gest that using HFSP cutoffs can help in both more accurately annotating 
protein function and, arguably even more importantly, in identifying new 
frontiers of molecular function exploration. 

4 Conclusion 
While experimental function annotation of proteins is more accurate, com-
putational methods are more readily available for the vast amount of se-
quences currently in our databases. Here we demonstrated that our newly 
developed HFSP (homology-derived functional similarity of proteins) is a 
fast an accurate method applicable to this task.  Applying HFSP to evalu-
ate existing annotations we also highlighted inconsistencies in existing an-
notations of enzymatic activity reported in Swiss-Prot. We thus suggest 
that HFSP provides both a way to (1) enrich functional annotation analysis 
on a large scale, as well as to (2) narrow down the space of proteins of 
interest for further experimental analysis. 
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Chapter 7

Conclusions

Over the course of the last decade, the amount sequencing data has rapidly increased due

to advances in high-throughput sequencing technology. Through these advances, metage-

nomic studies have flourished. Mining the hidden sequence treasures in complex metage-

nomic samples became a computationally challenging task. In this thesis I presented meth-

ods to close the cost gap between data generation and their processing through sequence

search and clustering.

MMseqs introduced cascaded clustering and the greedy set cover algorithm to protein

clustering. It made it feasible to cluster huge protein sets down to 30% sequence identity,

while being fast and more sensitive than state of the art methods. The fast prefilter and

the clustering based on similarity graphs could in the future not only be used for protein

sequences, but also for sequential or vector data. Especially interesting is the possibility

to cluster longitudinal behavioural data, created from animal experiments or tracking data

from humans collected through smart devices. Clustering of similar behaviour could be

linked to diseases, which could be used to create early detection and prevention systems.

Currently, we are working on an extension to cluster gene expression profiles.

MMseqs2: Up until now, methods for homology inference had to trade sensitivity for

speed and no method came close to the sensitivity of BLAST or PSI-BLAST in our bench-

mark. MMseqs2 now finally closes this speed-sensitivity gap. The MMseqs2 algorithm

could also easily be extended to match nucleotide sequences. The prefilter could be adapted

to produce nucleotide k-mers matching the error model of DNA sequencers instead of pro-

tein substitution matrices. This would enable a fast and sensitive error aware matching of

nucleotide reads. Another application would be a general purpose search engine for the de-

tection of similar text fragments containing spelling mistakes. The only changes necessary

would be an increased alphabet size and a spelling error models instead of a protein substi-

tution matrices. Currently, I am working on extensions to support profile-profile searches

by using a 32-state alphabet representing profile columns. This will increase the sensitivity

and speed of searches.
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7. Conclusions

Linclust proposes the first O(N) protein sequence clustering algorithm and implemen-

tation. It can process billions of sequences in a single day on a single server. The approach

can be easily extended to a general purpose clustering algorithm for D-dimensional vector

data. Currently, I am working to extend the algorithm into two areas: (1) the support of

nucleotide sequences and (2) to developing an overlap graph based protein level assembler

(PLASS). The Linclust algorithm enables PLASS to compute the overlap assembly graph

in linear time, instead of near quadratic time.

The new era of data generation calls for fast algorithms. The novel algorithms proposed

in this work will not only help to organise our protein sequence space, but enable previously

infeasible large-scale analyses.
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Appendix A

User Guide

A.1 Introduction

The user guide for MMseqs2 and Linclust follows. It contains a detailed documentation of

this software suite.

Martin Steinegger, Maria Hauser, Milot Mirdita, Lars von den Driesch, Clovis Galiez,

Eli Levy Karin and Johannes Söding wrote the user guide.

A.2 Userguide

MMseqs2 (Many-against-Many searching) is a software suite to search and cluster huge

sequence sets. MMseqs2 is open source GPL-licensed software implemented in C++ for

Linux, Mac OS and Windows. The software is designed to run on multiple cores and servers

and exhibits very good scalability. MMseqs2 reaches the same sensitivity as BLAST mag-

nitude faster and which can also perform profile searches like PSI-BLAST but also 400

times faster.

At the core of MMseqs2 are two modules for the comparison of two sequence sets

with each other - the prefiltering and the alignment modules. The first, prefiltering module

computes the similarities between all sequences in one query database with all sequences

a target database based on a very fast and sensitive k-mer matching stage followed by an

ungapped alignment. The alignment module implements an vectorized Smith-Waterman

alignment of all sequences that pass a cut-off for the ungapped alignment score in the first

module. Both modules are parallelized to use all cores of a computer to full capacity. Due to

its unparalleled combination of speed and sensitivity, searches of all predicted ORFs in large

metagenomics data sets through the entire UniProtKB or NCBI-NR databases are feasible.

This allows for assigning to functional clusters and taxonomic clades many reads that are

too diverged to be mappable by current software.

MMseqs2 clustering module can cluster sequence sets efficiently into groups of similar

sequences. It takes as input the similarity graph obtained from the comparison of the se-
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quence set with itself in the prefiltering and alignment modules. MMseqs2 further supports

an updating mode in which sequences can be added to an existing clustering with stable

cluster identifiers and without the need to recluster the entire sequence set. We are using

MMseqs2 to regularly update versions of the UniProtKB database clustered down to 30%

sequence similarity threshold. This database is available at uniclust.mmseqs.com.

System Requirements

MMseqs2 runs on modern UNIX operating systems and is tested on Linux and OSX. Addi-

tionally, we are providing a preview version for Windows.

The alignment and prefiltering modules are using with SSE4.1 (or optionally AVX2)

and OpenMP, i.e. MMseqs2 can take advantage of multicore computers.

When searching large databases, MMseqs2 may need a lot main memory (see section

memory requirements). We offer an option for limiting the memory usage at the cost of

longer runtimes. The database is split into chunks and the program only holds one chunk in

memory at any time. For clustering large databases containing tens of millions of sequences,

you should provide enough free disk space (˜500 GB). In section Optimizing Sensitivity and

Consumption of Resources, we will discuss the runtime, memory and disk space consump-

tion of MMseqs2 and how to reduce resource requirements for large databases.

Check system requirements

To check if MMseqs2 supports your system execute the following commands, depending

on your operating system: #### Linux

[[ $(uname -m) == "x86_64" ]] && echo "64bit Supported" || echo "64bit Unsupported"

cat /proc/cpuinfo | grep -c sse4_1 > /dev/null \

&& echo "SSE4.1 Supported" || echo "SSE4.1 Unsupported"

cat /proc/cpuinfo | grep -c avx2 > /dev/null \

&& echo "AVX2 Supported" || echo "AVX2 Unsupported"

MacOS

[[ $(uname -m) == "x86_64" ]] && echo "64bit Supported" || echo "64bit Unsupported"

sysctl -a | grep machdep.cpu.features | grep -c SSE4.1 > /dev/null \

&& echo "SSE4.1 Supported" || echo "SSE4.1 Unsupported"

sysctl -a | grep machdep.cpu.leaf7_features | grep -c AVX2 > /dev/null \

&& echo "AVX2 Supported" || echo "AVX2 Unsupported"

Windows The mmseqs.bat script will print a message if its run on an unsupported sys-

tem. On a supported system, it will execute the correct MMseqs2 version and forward all

parameters.
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*

Installation

MMseqs2 can be installed by downloading a statically compiled version, compiling the

from source, using Homebrew or Docker.

Install static Linux version

The following command will download the lastest MMseqs2 version, extract it and set the

PATH variable.

Linux If your computer supports AVX2 use:

wget https://mmseqs.com/latest/mmseqs-static_avx2.tar.gz

tar xvzf mmseqs-static_avx2.tar.gz

export PATH=$(pwd)/mmseqs/bin/:$PATH

If your computer supports SSE4.1 use:

wget https://mmseqs.com/latest/mmseqs-static_sse41.tar.gz

tar xvzf mmseqs-static_sse41.tar.gz

export PATH=$(pwd)/mmseqs/bin/:$PATH

Mac If your computer supports AVX2 use:

wget https://mmseqs.com/latest/mmseqs-osx-static_avx2.tar.gz

tar xvzf mmseqs-osx-static_avx2.tar.gz

export PATH=$(pwd)/mmseqs/bin/:$PATH

If your computer supports SSE4.1 use:

wget https://mmseqs.com/latest/mmseqs-osx-static_sse41.tar.gz

tar xvzf mmseqs-osx-static_sse41.tar.gz

export PATH=$(pwd)/mmseqs/bin/:$PATH

Windows (preview) The latest version is always available on:

https://mmseqs.com/latest/mmseqs-win64.zip

Download and unzip it at a convenient location. Inside you will find the mmseqs.bat

wrapper script, which should be used to substitute all calls to mmseqs in the remainder of

this document, and a bin folder with all dependencies of the MMseqs2 Windows version.

Please always keep the mmseqs.bat script one folder above the bin folder, or it will not be

able to correctly identify its dependencies anymore.

The windows build also contains both the SSE4.1 and the AVX2 version. The

mmseqs.bat script will automatically choose the correct one.
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Compile from source

Compiling MMseqs2 from source has the advantage that it will be optimized to the specific

system, which should improve its performance. To compile MMseqs2 git, g++ (4.6 or

higher) and cmake (3.0 or higher) are needed. Afterwards, the MMseqs2 binary will be

located in build/bin/.

git clone https://github.com/soedinglab/MMseqs2.git

cd MMseqs2

mkdir build

cd build

cmake -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=. ..

make

make install

export PATH=$(pwd)/bin/:$PATH

:exclamation: On MacOS, please install the gcc@7 zlib bzip2 vim cmake pack-

ages from Homebrew, if you want to compile MMseqs2. The default MacOS clang com-

piler does not support OpenMP and MMseqs2 will not be able to run multithreaded. Use

the following cmake call:

CXX="$(brew --prefix)/bin/g++-7" cmake -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=. ..

Windows The windows build process is more involved due to MMseqs2’s dependency on

an installed shell. We use the Cygwin environment and Busybox to provide all necessary

dependencies and bundle them all together. If you want to compile MMseqs2 on your own,

install the following packages from Cygwin:

bash xxd cmake make gcc-g++ zlib-devel libbz2-devel busybox-standalone binutils

Afterwards, use a workflow similar to the util/build windows.sh script to build

MMseqs2 on Windows.

Install with Homebrew

You can install MMseqs2 for Mac OS through Homebrew by executing the following:

brew install mmseqs2

This will also automatically install the bash completion (you might have to execute

brew install bash-completion first). This will also work for Linuxbrew.

Use the Docker image

You can pull the official docker image by running:

docker pull soedinglab/mmseqs2
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If you want to build the docker image from the git repository, execute:

git clone https://github.com/soedinglab/MMseqs2.git

cd MMseqs2

docker build -t mmseqs2 .

Use the BASH command completion

MMseqs comes with a bash command and parameter auto completion by pressing tab. The

bash completion for subcommands and parameters can be installed by adding the following

lines to your $HOME/.bash profile:

if [ -f /Path to MMseqs2/util/bash-completion.sh ]; then

source /Path to MMseqs2/util/bash-completion.sh

fi

*

Getting Started

Here we explain how to run a search for sequences matches in the query database against

a target database and how to cluster a sequence database. Test data (a query and a tar-

get database for the sequence search and a database for the clustering) are stored in the

examples folder.

Search

Before searching, you need to convert your FASTA file containing query se-

quences and target sequences into a sequence DB. You can use the query database

examples/QUERY.fasta and target database examples/DB.fasta to test the search

workflow:

$ mmseqs createdb examples/QUERY.fasta queryDB

$ mmseqs createdb examples/DB.fasta targetDB

These calls should generates five files each, e.g. queryDB, queryDB h and its corre-

sponding index file queryDB.index, queryDB h.index and queryDB.lookup from the

FASTA QUERY.fasta input sequences.

The queryDB and queryDB.index files contain the amino acid sequences, while the

queryDB h and queryDB h.index file contain the FASTA headers. The queryDB.lookup

file contains a list of tab separated fields that map from the internal identifier to the FASTA

identifiers.
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Important: createdb splits long sequences into multiple separate entries automati-

cally. This avoids excessive resource requirements for later steps. The default value is to

split sequences after 32000 residues. The identifiers of the new entries are suffixed with 0

to (n-1) for N splits.

For the next step, an index file of the targetDB is computed for a fast read in. It is

recommend to compute the index if the targetDB is reused for several searches.

$ mmseqs createindex targetDB tmp

This call will create a targetDB.sk6 file. In this file extension the letter s indicates the

use of spaced k-mers and the k6 shows the k-mer size of 6.

Then generate a directory for temporary files. MMseqs2 can produce a high IO on the

file system. It is recommended to create this temporary folder on a local drive.

$ mkdir tmp

Please ensure that in case of large input databases tmp provides enough free space. For

the disk space requirements, see the section Disk Space.

The alignment consists of two steps the prefilter and alignment. To run the search,

type:

$ mmseqs search queryDB targetDB resultDB tmp

Search as standard does compute the score only. If you need the alignment information

add the option “-a”.

Then, convert the result database into a BLAST tab formatted file (option -m 8 in legacy

blast, -outfmt 6 in blast+):

$ mmseqs convertalis queryDB targetDB resultDB resultDB.m8

The file is formatted as a tab-separated list with 12 columns: (1,2) identifiers for query

and target sequences/profiles, (3) sequence identity, (4) alignment length, (5) number of

mismatches, (6) number of gap openings, (7-8, 9-10) domain start and end-position in query

and in target, (11) E-value, and (12) bit score.

Read more about searching here.

Clustering

Before clustering, convert your FASTA database into the MMseqs database (DB) format:

$ mmseqs createdb examples/DB.fasta DB

Then, generate a directory for tmp files:

$ mkdir tmp
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Please ensure that in case of large input databases tmp provides enough free space. For

the disk space requirements, see the section Disk space.

Run the clustering of your database DB by executing the following command. MMseqs2

will return the result database files DB clu, DB clu.index:

$ mmseqs cluster DB DB_clu tmp

To generate a TSV formatted output file from the output file, type:

$ mmseqs createtsv DB DB DB_clu DB_clu.tsv

You can adjust the sequence identity threshold with --min-seq-id and the alignment

coverage with -c and --cov-mode. MMseqs2 will set the sensitivity parameters automatic

based on target sequence identity ( --min-seq-id ), if it is not already specified through

the -s or --k-score parameters.

Sequence information can be added by using createseqfiledb and result2flat can produce

a result.

$ mmseqs createseqfiledb DB DB_clu DB_clu_seq

$ mmseqs result2flat DB DB DB_clu_seq DB_clu_seq.fasta

Read more about clustering here.

Linclust

Linclust is a clustering in linear time. It is magnitudes faster but a bit less sensitive than

clustering.

Before clustering, convert your FASTA database into the MMseqs database (DB) for-

mat:

$ mmseqs createdb examples/DB.fasta DB

Then, generate a directory for tmp files:

$ mkdir tmp

To run linclust the clustering of your database DB by executing the following command.

The result database follows the same format as the clustering format:

$ mmseqs linclust DB DB_clu tmp

To extract the representative sequences from the clustering result call:

mmseqs result2repseq DB DB_clu DB_clu_rep

mmseqs result2flat DB DB DB_clu_rep DB_clu_rep.fasta --use-fasta-header
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Updating a clustered database

It is possible to update previous clustered databases without re-clustering everything from

scratch. Here is an example of how to proceed:

Let’s create an older version of the DB.fasta by trimming out some sequences:

$ cd examples

$ awk '/ˆ>/{seqCount++;} {if (seqCount <= 19000) {print $0;}}' DB.fasta > DB_trimmed.fasta

Now we create the sequence DBs, and cluster the old (trimmed) database:

$ mmseqs createdb DB.fasta DB_new

$ mmseqs createdb DB_trimmed.fasta DB_trimmed

$ mmseqs cluster DB_trimmed DB_trimmed_clu tmp

If you want to update DB trimmed clu with the newer version of your database DB new

$ rm tmp/*

$ mmseqs clusterupdate DB_trimmed DB_new DB_trimmed_clu DB_clusterupdate tmp

DB clusterupdate contains now the fresh clustering of DB new.

Read more about updating cluster here.

*

Overview of Folders in MMseqs

• bin: mmseqs

• data: BLOSUM matrices and the workflow scripts (blastp.sh, blastpgp.sh,

cascaded clustering.sh, linclust.sh, searchtargetprofile.sh,

clustering.sh)

• examples: test data QUERY.fasta and DB.fasta

• util: Contains the Bash parameter completion script.

Overview of MMseqs2 Commands

MMseqs2 contains five workflows that combine the core MMseqs2 modules (prefilter, align,

kmermatcher, rescorediagonal and clust) and several other smaller ones.

Workflows:

• mmseqs search: Compares all sequences in the query database with all sequences

in the target database, using the prefiltering and alignment modules. MMseqs2 search

supports sequence/sequence, profile/sequence or sequence/profile searches.
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• mmseqs cluster: Clusters sequences by similarity. It compares all sequences in the

sequence DB with each other using mmseqs search, filters alignments according to

user-specified criteria (max. E-value, min. coverage,. . . ), and runs mmseqs clust to

group similar sequences together into clusters.

• mmseqs linclust: Clusters sequences by similarity in linear time. It clusteres mag-

nitudes faster than mmseqs cluster but is less sensitive.

• mmseqs clusterupdate: MMseqs2 incrementally updates a clustering, given an

existing clustering of a sequence database and a new version of this sequence database

(with new sequences being added and others having been deleted).

• mmseqs taxonomy Taxonomy assignment by computing the lowest common ances-

tor of homologs.

And the four core modules:

• mmseqs prefilter: Computes k-mer similarity scores between all sequences in the

query database and all sequences in the target database.

• mmseqs kmermatcher: finds exact k-mer matches between all input sequences in

linear time.

• mmseqs align: Computes Smith-Waterman alignment scores between all sequences

in the query database and the sequences of the target database whose prefiltering

scores computed by mmseqs prefilter pass a minimum threshold.

• mmseqs clust: Computes a similarity clustering of a sequence database based

on Smith Waterman alignment scores of the sequence pairs computed by mmseqs

align.

MMseqs2 has more than 30 modules in total. We provide modules for clustering,

searching, alignments, taxonomy, and data transformation. For a complete list of all avail-

able modules, execute mmseqs without arguments.

Description of Workflows

Batch Sequence Searching using mmseqs search

For searching a database, query and target database have to be converted by createdb in

order to use them in MMseqs. The search can be executed by typing:

$ mmseqs search queryDB targetDB outDB tmp
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Fig. A.1. Search workflow

MMseqs2 supports iterative searches which are similar to PSI-BLAST. The following

program call will run two iterations through the database. In the first iteration sequences

are searched against sequence and in the second one profiles are used to search against

sequences.

MMseqs2 will use the output for the first iteration sequence-sequence search to com-

putes a profile (result2profile). The profile will be used as input in the next search iteration.

$ mmseqs search queryDB targetDB outDB tmp --num-iterations 2

This workflow combines the prefiltering and alignment modules into a fast and sensitive

batch protein sequence search that compares all sequences in the query database with all

sequences in the target database.

Query and target databases may be identical. The program outputs for each query se-

quence all database sequences satisfying the search criteria (such as sensitivity).

MMseqs2 can precompute the prefilter index createindex to speed up subsequence

prefilter index read-ins. We recommend to use an index for iterative searches or if a target

database will be reused several times. However reading the index can be bottle neck when

using a network file systems (NFS). It is recommended to keep the index on a local hard

drive. If storing the index file on a local hard drive is not possible and the NFS is a bottleneck

than do not precompute the index. MMseqs2 will compute an index on the fly which reduces

the IO volume by roughly a factor of seven.

The underlying algorithm is explained in more detail in section Computation of Pre-

filtering Scores using mmseqs prefilter, and the important parameter list can be found in

section Search Workflow.

Translated Sequence Searching

The search workflow can handle nucleotide as query or target database. It will trigger a

BLASTX or TBLASTN search respectively. The search detects the open reading frames on
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all six frames and translates them into proteins. As default the minimum codon length of 30

(10 amino acids) is used.

To perform a search a BLASTX or TBLASTN create your database by using createdb.

It can automatically detect if the input are amino acids or nucleotides.

mmseqs createdb ecoli.fna ecoli_genome --dont-split-seq-by-len

mmseqs createdb ecoli.faa ecoli_proteins

A BLASTX like search ca be triggered using the nucleotide database on the query

database side.

mmseqs search ecoli_genome ecoli_proteins alnDB tmp

A TBLASTN like search ca be triggered using the nucleotide database on the target

database side.

mmseqs search ecoli_proteins ecoli_genome alnDB tmp

It is not possible to use nucleotide databases on query and target sides (TBLASTX) of

the search workflow. The following workflow can be used to perform a TBLASTX search:

mmseqs extractorfs genome genome_orfs --longest-orf --min-length 30 --max-length 48000

mmseqs translatenucs genome_orfs genome_orfs_aa

mmseqs translatenucs ecoli_genome ecoli_genome_aa

mmseqs search genome_orfs_aa ecoli_genome alnDB tmp

mmseqs offsetalignment genome_orfs ecoli_genome_aa alnDB alnOffsetedDB

All open reading frames (ORFs) from each six frames can be extracted by using

extractorf. This ORFs are translated into proteins by translatenucleotide. The

tool offsetalignment will offset the alignment position to the orf start position +

alignment start * 3.

Clustering Databases using mmseqs cluster

To cluster a database, MMseqs2 needs a sequence database converted with createdb and

an empty directory for temporary files. Then, you can run the clustering with:

$ mmseqs cluster inDB outDB tmp

and cascaded clustering with:

$ mmseqs cluster inDB outDB tmp --cascaded

The sensitivity of the clustering can be adjusted with the -s option. MMseqs2 will

automatically adjust the sensitivity based on the --min-seq-id parameter, if neither

--cascaded nor -s are provided.
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$ mmseqs cluster inDB outDB tmp

The clustering workflow combines the prefiltering, alignment and clustering modules

into either a simple clustering or a cascaded clustering of a sequence database. There are

two ways to execute the clustering:

• The Simple clustering runs the hashclust and prefiltering, alignment and clustering

modules with predefined parameters with a single iteration.

• Cascaded clustering clusters the sequence database using the as first step linclust and

then prefiltering, alignment and clustering modules incrementally in three steps.

Cascaded Clustering The cascaded clustering workflow first runs linclust, our linear-

time clustering module, that can produce clustering’s down to 50% sequence identity in

very short time.

To achieve lower sequence identities and/or to further improve the resulting clusters, we

continue with three cascaded clustering steps: In the first step of the cascaded clustering the

prefiltering runs with a low sensitivity of 1 and a very high result significance threshold, in

order to accelerate the calculation and search only for hits with a very high sequence iden-

tity. Then alignments are calculated and the database is clustered. The second step takes

the representative sequences of the first clustering step and repeats the prefiltering, align-

ment and clustering steps. This time, the prefiltering is executed with a higher sensitivity

and a lower result significance threshold for catching sequence pairs with lower sequence

identity. In the last step, the whole process is repeated again with the final target sensitivity.

At last, the clustering results are merged and the resulting clustering is written to the output

database.

Cascaded clustering yields more sensitive results than simple clustering. Also, it allows

very large cluster sizes in the end clustering resulting from cluster merging (note that cluster

size can grow exponentially in the cascaded clustering workflow), which is not possible with

the simple clustering workflow because of the limited maximum number of sequences pass-

ing the prefiltering and the alignment. Therefore, we strongly recommend to use cascaded

clustering especially to cluster larger databases and to obtain maximum sensitivity.

Clustering modes All clustering modes transforms the alignment results into an undi-

rected graph. In this graph notation, the verticies represents the proteins, which are con-

nected by an edge. An edge between proteins are introduced if the alignment criteria (e.g.

--min-seq-id, -c and -e) are fulfilled.

Greedy Set cover (--cluster-mode 0) algorithm is an approximation for the NP-

complete optimization problem called set cover.

Greedy set cover removes the node with most connections and all connected nodes.

These forms a cluster and the procedure repeats until all nodes are in a cluster. The greedy
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Fig. A.2. Cascaded clustering
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Fig. A.3. Set Cover clustering

set cover is followed by a reassignment step. Cluster member are assigned to another cluster

centroid if their alignment score was higher.

Connected component (--cluster-mode 1) uses transitive connection to cover more

remote homologs.

In connected component clustering starting at the mostly connected vertex, all vertices

that are reachable in a breadth-first search are members of the cluster.

Greedy incremental (--cluster-mode 2) works analogous to CD-HIT clustering al-

gorithm.

Greedy incremental clustering takes the longest sequence (indicated by the size of the

node) and puts all connected sequences in that cluster, then repeatedly the longest sequence

of the remaining set forms the next cluster.

Linear time clustering using mmseqs linclust

Linclust can cluster sequences down to 50% pairwise sequence similarity and its runtime

scales linearly with the input set size.

Linear-time clustering algorithm. Steps 1 and 2 find exact k-mer matches between the

N input sequences that are extended in step 3 and 4.

(1) Linclust selects in each sequence the m (default: 20) k-mers with the lowest hash

function values, as this tends to select the same k-mers across homologous sequences.

It uses a reduced alphabet of 13 letters for the k-mers and sets k=10 for sequence
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Fig. A.4. Connected component clustering

Fig. A.5. Greedy incremental clustering
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Fig. A.6. Linclust algorithm

identity thresholds below 90% and k=14 above. It generates a table in which each

of the mN lines consists of the k-mer, the sequence identifier, and the position of the

k-mer in the sequence.

(2) Linclust sorts the table by k-mer in quasi-linear time, which identifies groups of se-

quences sharing the same k-mer (large shaded boxes). For each k-mer group, it selects

the longest sequence as centre. It thereby tends to select the same sequences as centre

among groups sharing sequences.

(3) It merges k-mer groups with the same centre sequence together: red + cyan and

orange + blue and compares each group member to the centre sequence in two steps:

by global Hamming distance and by gapless local alignment extending the k-mer

match.

(4) Sequences above a score cut-off in step 3 are aligned to their centre sequence using

gapped local sequence alignment. Sequence pairs that satisfy the clustering criteria

(e.g. on the E-value, sequence similarity, and sequence coverage) are linked by an

edge.

(5) The greedy incremental algorithm finds a clustering such that each input sequence

has an edge to its cluster’s representative sequence. Note that the number of sequence

pairs compared in steps 3 and 4 is less than mN, resulting in a linear time complexity.
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Fig. A.7. Update clustering

Run Linclust Linclust needs a sequence database created by createdb and an empty

directory for temporary files. Then, you can run the clustering with the following command:

$ mmseqs linclust inDB outDB tmp

Increasing the k-mers selected per sequence increases the sensitivity of linclust at a

moderate loss of speed. Use the paramter --kmer-per-seq to set the number of k-mers

selected per sequence. More k-mers per sequences results in a higher sensitivity.

The output format of linclust is the same format as in mmseqs cluster. See section

Clustering Format.

Updating a Database Clustering using mmseqs clusterupdate

To run the updating, you need the old and the new version of your sequence database in

sequence db format, the clustering of the old database version and a directory for the tem-

porary files:

$ mmseqs clusterupdate oldDB newDB oldDB_clustering outDB tmp

This workflow efficiently updates the clustering of a database by adding new and remov-

ing outdated sequences. It takes as input the older sequence database, the results obtained

by this older database clustering, and the newer version of the sequence database. Then

it adds the new sequences to the clustering and removes the sequences that were removed

from the newer database. Sequences which are not similar enough to any existing cluster

will be representatives of new clusters.

Taxonomy assignment using mmseqs taxonomy

By identifying homologs through searches with taxonomy annotated reference databases,

MMseqs2 can compute the lowest common ancestor. This lowest common ancestor is a

robust taxonomic label for unknown sequences.

MMseqs2 implements the 2bLCA protocol (Hingamp et. al., 2013) with --lca-mode

2 (default) for choosing a robust LCA.
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Fig. A.8. 2bLCA protcol

The second search can be disabled with --lca-mode 1. The LCA will then be only

computed through the usual search workflow parameters (--max-accept, -e, etc.).

The LCA implementation is based on the Go implementation of blast2lca software on

GitHub. It implements the LCA computation efficiently through Range Minimum Queries

through an dynamic programming approach.

Prerequisites The taxonomy workflow requires the NCBI taxonomy taxdump.tar.gz. It is

available on the NCBI FTP server:

mkdir ncbi-taxdump && cd ncbi-taxdump

wget ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz

tar xzvf taxdump.tar.gz

cd ..

Provide the path to the extraction location in the mmseqs taxonomy call as the

<i:NcbiTaxdmpDir> parameter.

The workflow further requires a tab-separated mapping <i:targetTaxonMapping>

with every target database identifier mapped to a NCBI taxon identifier. The convertkb

module can generate this mapping for any database with UniProt accessions, such as the

Uniclust, UniRef, and the UniProt itself:

# Turn the target sequences into a MMseqs2 database (this also creates targetDB.lookup)

# Skip this step if you already created a database
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mmseqs createdb target.fasta targetDB

# The targetDB.lookup file should be in the following format:

# numeric-db-id tab-character UniProt-Accession (e.g. Q6GZX4)

# UniRef has a prefixed accession (e.g. UniRef100_Q6GZX4)

# Remove this prefix first:

# sed -i 's|UniRef100_||g' targetDB.lookup

# Download the latest UniProt Knowledgebase:

wget ftp://ftp.expasy.org/databases/.../uniprot_sprot.dat.gz

wget ftp://ftp.expasy.org/databases/.../uniprot_trembl.dat.gz

cat uniprot_sprot.dat.gz uniprot_trembl.dat.gz > uniprot_sprot_trembl.dat.gz

# Generate annotation mapping DB (target DB IDs to NCBI taxa, line type OX)

mmseqs convertkb uniprot_sprot_trembl.dat.gz targetDB.mapping \

--kb-columns OX --mapping-file targetDB.lookup

# Reformat targetDB.mapping_OX DB into tsv file

mmseqs prefixid targetDB.mapping_OX targetDB.mapping_OX_pref

tr -d '\000' < targetDB.mapping_OX_pref > targetDB.tsv_tmp

# Cleanup: taxon format: "NCBI_TaxID=418404 {ECO:0000313|EMBL:AHX25609.1};"

# Only the numerical identifier "418404" is required.

awk '{match($2, /=([ˆ ;]+)/, a); print $1"\t"a[1]; }' targetDB.tsv_tmp > targetDB.tsv

The convertkb module extracts either all or the chosen UniProt Knowledgebase line

types into separate databases, which are indexed by their UniProt accession. By providing

a tab separated mapping file between target database identifiers and UniProt accessions, a

database of UniProt Knowledgebase entries, indexed by their target database identifiers, can

be created. This database is then transformed into a tsv file.

Classification Once the prerequisites are generated, the taxonomy classification can be

executed:

mmseqs taxonomy queryDB targetDB targetDB.tsv ncbi-taxdump queryLcaDB tmp

mmseqs createtsv queryDB queryLcaDB queryLca.tsv

Each line of the result file queryLca.tsv will contain a tab separated list of 1) query

accession, 2) LCA NCBI taxon ID, 3) LCA rank name, and 4) LCA scientific name.

The --lca-ranks parameter can be supplied with a colon (:) separated string of tax-

onomic ranks. For example, --lca-ranks genus:family:order:superkingdom will

resolve the respective ranks of the LCA and return a colon concatenated string of taxa as

the fifth column of the result file.
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Description of Core Modules

For advanced users, it is possible to skip the workflows and execute the core modules for

maximum flexibility. Especially for the sequence search it can be useful to adjust the pre-

filtering and alignment parameters according to the needs of the user. The detailed parame-

ter lists for the modules is provided in section Detailed Parameter List.

MMseqs2 contains three core modules: prefiltering, alignment and clustering.

Computation of Prefiltering Scores using mmseqs prefilter

The prefiltering module computes an ungapped alignment score for all consecutive k-mer

matches between all query sequences and all database sequences and returns the highest

score per sequence.

If you want to cluster a database, or do an all-against-all search, the same database will

be used on both the query and target side. the following program call does an all-against-all

prefiltering:

$ mmseqs prefilter sequenceDB sequenceDB resultDB_pref

sequenceDB is the base name of the mmseqs databases produced from the FASTA

sequence databases by mmseqs createdb, the prefiltering results are stored in the mmseqs

database files resultDB pref andprefilterDB.index.

For sequence search two different input databases are usually used: a query database

queryDB and a target database targetDB, though they can again be identical. In this case,

the prefiltering program call is:

$ mmseqs prefilter queryDB targetDB resultDB_pref

MMseqs2 can handle profiles or protein sequences as input for the queryDB.

The prefilter k-mer match stage is key to the high speed and sensitivity. It detects con-

secutive short words (“k-mer”) match on the same diagonal. The diagonal of a k-mer match

is the difference between the positions of the two similar ‘’k”-mer in the query and in the

target sequence.

The pre-computed index table for the target database (blue frame) contains for each

possible ‘’k”-mer the list of the target sequences and positions where the k-mer occurs

(green frame).

Query sequences/profiles are processed one by one (loop 1). For each overlapping,

spaced query k-mer (loop 2), a list of all similar k-mer is generated (orange frame). The

similarity threshold determines the list length and sets the trade-off between speed and sen-

sitivity. The similiar k-mer list lenght can be controlled with -s.

For each similar k-mer (loop 3) we look up the list of sequences and positions where it

occurs (green frame). In loop 4 we detect consecutive double matches on the same diagonals

(magenta and black frames).
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Fig. A.9. Prefilter

For each consecutive k-mer matches an ungapped alignment is computed. Only the

maximal ungapped alignment score for each target is reported.

Set sensitivity -s parameter The sensitivity of the prefiltering can be set using the -s op-

tion. Internally, -s sets the average length of the lists of similar k-mers per query sequence

position.

• Similar k-mers list length: Low sensitivity yields short similar k-mer lists. Therefore,

the speed of the prefiltering increases, since only short k-mer lists have to be gen-

erated and less lookups in the index table are necessary. However, the sensitivity of

the search decreases, since only very similar k-mers are generated and therefore, the

prefiltering can not identify sequence pairs with low sequence identity.

It is possible to speed best hits searches by stepwise increasing -s. MMseqs2 includes

a workflow for this purpose. How to find the best hit the fastest way

The following graphic shows the average AUC sensitivity versus speed-up factor rela-

tive to BLAST for 637,000 test searches. White numbers in plot symbols give number of

search iterations.

It is furthermore possible to use change the k-mer lengths, which are used in the pre-

filtering. Longer k-mers are more sensitive, since they cause less chance matches. Though

longer k-mers only pay off for larger databases, since more time is needed for the k-mer list

generation, but less time for database matching. Therefore, the database matching should

take most of the computation time, which is only the case for large databases. As default

MMseqs try to compute the optimal k-mer length based on the target database size.
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Fig. A.10. Prefilter sensitivity

Local alignment of prefiltering sequences using mmseqs align

In the alignment module, you can also specify either identical or different query and target

databases. If you want to do a clustering in the next step, the query and target databases

need to be identical:

$ mmseqs align sequenceDB sequenceDB resultDB_pref resultDB_aln

Alignment results are stored in the database files resultDB aln and

resultDB aln.index.

Program call in case you want to do a sequence search and have different query and

target databases:

$ mmseqs align queryDB targetDB resultDB_pref resultDB_aln

This module implements a SIMD accelerated Smith-Waterman-alignment (Farrar,

2007) of all sequences that pass a cut-off for the prefiltering score in the first module. It

processes each sequence pair from the prefiltering results and aligns them in parallel, cal-

culating one alignment per core at a single point of time. Additionally, the alignment calcu-

lation is vectorized using SIMD (single instruction multiple data) instructions. Eventually,

the alignment module calculates alignment statistics such as sequence identity, alignment

coverage and e-value of the alignment.
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Clustering sequence database using mmseqs clust

For calling the stand-alone clustering, you need the input sequence database and a result

database:

$ mmseqs cluster sequenceDB resultsDB_aln resultsDB_clu

Clustering results are stored in the MMseqs database files resultsDB clu and the

index resultsDB clu.index. The clustering module offers the possibility to run three

different clustering algorithms by altering the --cluster-mode parameter. A greedy set

cover algorithm is the default (--cluster-mode 0). It tries to cover the database by as few

clusters as possible. At each step, it forms a cluster containing the representative sequence

with the most alignments above the special or default thresholds with other sequences of

the database and these matched sequences. Then, the sequences contained in the cluster are

removed and the next representative sequence is chosen.

The second clustering algorithm is a greedy clustering algorithm (--cluster-mode

2), as used in CD-HIT. It sorts sequences by length and in each step forms a cluster contain-

ing the longest sequence and sequences that it matches. Then, these sequences are removed

and the next cluster is chosen from the remaining sequences.

The third clustering algorithm is the connected component algorithm. This algorithm

uses the transitivity of the relations to form larger clusters with more remote homologies.

This algorithm adds all proteins to a cluster, that are reachable in a breadth first search

starting at the representative with the most connections.

Output File Formats

MMseqs Database Format

Most MMseqs2 commands use the MMseqs database format. The format is inspired by

ffindex, which was developed by Andreas Hauser. It avoids drastically slowing down the

file system when millions of files would need to be written or accessed, e.g. one file per

query sequence in a many-to-many sequence search. MMseqs databases hide these files

from the file system by storing them in a single data file. The data file <name> contains the

data records, i.e. the contents of the file, concatenated and separated by \0 characters. A

second, index file <name>.index contains for each numerical identifies (corresponding to

the file name) the position of the corresponding data record in the data file.

Each line of the index file contains, separated by tabs, (1) the ID, (2) the offset in bytes

of the data record counted from the start of the data file, and (3) the size of the data record.

The IDs have to be sorted numerically in ascending order, since for accessing a data record

by IDs the matching IDs are found by binary search.

Here is an example for a database containing four sequences:

PSSLDIRL\0GTLKRLSAHYTPAW\0AEAIFIHEG\0YTHGAGFDNDI\0
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The corresponding index file (file extension .index) could look like this.

10 0 9

11 9 15

12 24 10

13 34 12

The index contains four IDs, one for each data record: 10, 11, 12 and 13. The corre-

sponding data records have offset positions 0, 9, 25, 35 and the data record sizes are 9, 15,

10, and 12 respectively.

The MMseqs2 modules createdb and createfasta do the format conversion from

fasta to the MMseqs database format. createdb generates an MMseqs database from a

FASTA sequence database. It assigns each sequence in the FASTA file sequentially a nu-

merical id. Sequences that are longer than 32768 letters are split. createfasta converts

an MMseqs database to a FASTA formatted text file: the sequence headers contain the DB

identifiers preceded by >, and the sequence is extracted from the corresponding data record

of the DB’s data file.

However, for fast access in very large databases it is advisable to use the MM-

seqs database directly without converting it to FASTA format. We provide several tools

at http://github.com/soedinglab/ffindex_soedinglab/ (query, build and apply

function on each entry) to work with MMseqs databases. The binary ffindex get can be

used to directly access single records stored in an MMseqs database.

Prefiltering format

Each data record consists of the prefilter results for one query sequence. The ID is the

database accession code, a numerical identifier (ID) for the query that was sequentially

assigned by createdb.

Each line in a data record reports on one matched database sequence and has the fol-

lowing format (white space = ’�’):

targetID -log(E-value) diagonal

where targetID is the database identifier of the matched sequence, -log(E-value)

is the ungapped negative logarithmic E-value of the match, and diagonal is the diagonal

i-j (i = position in query, j = position in db sequence) on which the match occurs.

Example of a database record for prefiltering:

2 71 0

3 35 0

5 -2 8

The first line describes a match with database sequence 2 on diagonal 0 with a

-log(e-value) of 71 (e-value 1.46e-31).

152

http://github.com/soedinglab/ffindex_soedinglab/


A. User Guide

Alignment format

Each data record consists of the alignment results for one query sequence. The ID if the

queries was sequentially assigned by createdb.

Each line in a data record reports on match, i.e., one database sequence aligned to the

query. It has the following format (white space = ’�’)

targetID alnScore seqIdentity eVal qStart qEnd qLen tStart tEnd tLen [alnCigar]

Here, targetID is the database identifier of the matched sequence, alnScore is the bit

score of the alignment in half bits, seqIdentity is the sequence identity [0:1], eVal is the

e-value of the match, qStart is the start position of the alignment in the query, qEnd is the

end position of the alignment in the query, tStart and tEnd are the start and end positions

in the target (i.e. the database sequence), tLenis the target sequence length, the

optionalalnCigarstring encodes the alignment in compressed format and

is only included in the results if option-a‘ was used in mmseqs2 search. The

numbers preceding the three letters M, I, and D give the number of match positions in a

block aligned without gaps, the number of insertions and of deletions, respectively.

Example data record for alignment results:

2 705 1.000 8.771e-207 0 372 373 0 372 373 373M

5 367 0.595 3.319e-105 29 372 373 21 364 369 52M3I126M3D163M

3 347 0.565 2.722e-99 13 367 373 20 367 373 10M5I53M3I118M1D166M

The first line with targetID 2 is an identity match. The last sequence 3 has a Smith-

Waterman alignment score of 347, the sequence identity 0.565 and the e-value 2.722e-99,

the query start and end position is 13,367 of the total length 373, the target start and end po-

sition is 20,367 of the total length 373, the alignment string is 10M5I53M3I118M1D166M.

Clustering format

Internal cluster format Each data record consists of the IDs of the members of one

cluster. The ID refers to the representative sequence of that cluster, (usually assigned by

createdb).

Each line in a data record contains one ID of a cluster member. The first line of each

data record contains the ID of the representative sequence of that cluster.

Here is an example of a cluster record with 3 cluster members:

2

5

3

The 2 is the ID of the representatives sequence while 5 and 3 are further cluster mem-

bers.
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Cluster TSV format The internal format can be converted to a flat tsv file:

$ mmseqs createtsv sequenceDB sequenceDB resultsDB_clu resultsDB_clu.tsv

The resultsDB clu.tsv file follows the following format:

#cluster-representative cluster-member

ID1 ID1

ID1 ID25

ID1 ID32

ID1 ID10

ID4 ID4

ID4 ID534

All members of the clustering are listed line by line. The first column always contains

the representative sequence, the second contains the cluster member. For the example the

cluster with the representative sequence ID1 contains four members it self and ID25, ID32,

ID10. ID are parsed from the header from the input database (see id parsing from headers).

Cluster Fasta like format The internal format can be converted to a fasta a like format:

mmseqs createseqfiledb DB clu clu_seq

mmseqs result2flat DB DB clu_seq clu_seq.fasta

The resulting fasta a like format file will look like this:

>ID1

>ID1

MAGA....R

>ID25

MVGA....R

>ID32

MVGA....R

>ID10

MVGV....R

>ID4

>ID4

MCAT...Q

>ID534

MCAR...Q

A new cluster is marked by two identical name lines of the representative sequence,

where the first line stands for the cluster and the second is the name line of the first cluster

sequence. It is followed by the fasta formatted sequences of all its members.
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Extract representative sequence To extract the representative of a clustering use the

following commands:

mmseqs result2repseq DB clu clu_rep

mmseqs result2flat DB DB clu_rep clu_rep.fasta --use-fasta-header

The resulting fasta will contain all representative sequences:

>ID1

MAGA....R

>ID4

MCAT...Q

Identifier parsing

MMseqs2 parses identifier from the fasta header when transforming a result DB into a flat

file by using e.g. createtsv, convertalis, . . . ). We support following fasta header types:

Uniclust,

Swiss-Prot,

Trembl,

GenBank,

NCBI Reference Sequence,

Brookhaven Protein Data Bank,

GenInfo Backbone Id,

Local Sequence identifier,

NBRF PIR,

Protein Research Foundation,

General database identifier,

Patents,

NCBI GI

If none of the header supported could be detected than we extract everything from

header start (excluding >) until the first whitespace.

Optimizing Sensitivity and Consumption of Resources

This section discusses how to keep the run time, memory and disk space consumption of

MMseqs2 at reasonable values, while obtaining results with the highest possible sensitivity.

These considerations are relevant if the size of your database exceeds several millions of

sequences and are most important if the database size is in the order of tens of millions of

sequences.

Prefiltering module

The prefiltering module can use a lot of resources (memory consumption, total runtime and

disk space), if the parameters are not set appropriately.
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Memory Consumption For maximum efficiency of the prefiltering, the entire database

should be held in RAM. The major part of memory is required for the k-mer index table of

the database. For a database containing N sequences with an average length L, the memory

consumption of the index lists is (N * L * 7) byte. Note that the memory consumption

grows linearly with the size of the sequence database. In addition, the index table stores the

pointer array and two auxiliary arrays with the memory consumption of aˆk*8 byte, where

a is the size of the amino acid alphabet (default a=20, does not include the unknown amino

acid X) and k is the k-mer size. The overall memory consumption of the index table is

M = (7 * N * L + 8 aˆk) byte

Therefore, the UniProtKB database version of April 2014 containing 55 million se-

quences with an average length 350 needs about 71 GB of main memory.

MMseqs2 will automatically split the target database if the computer has not enough

main memory.

Runtime The prefiltering module is the most time consuming step. It can scale from

minutes in runtime to days by adjusting the sensitivity setting. Searching with 637000

protein sequences against 30 Mio Uniprot seqeunces took around 12 minutes on a 16 cores.

Disk Space The prefiltering results for very large databases can grow to considerable

sizes (in the order of TB) of the disk space if very long result lists are allowed and no strict

ungapped score threshold is set. As an example, an all-against-all prefiltering run on the 25

Mio seqeunces with --max-seqs 300 yielded prefiltering list with an average length of 150

and an output file size of 78 GB. One entry needs roughly 21 byte of space. To compute the

worse case hard disk space usage S use the following formular. N is the Database sequence

size L is --max-seqs.

S = (21 * N * L) byte

Important Options for Tuning the Memory, Runtime and Disc Space Usage

• The option -s controls the sensitivity in the MMseqs2 prefiltering module. The lower

the sensitivity, the faster the prefiltering becomes, though at the cost of search sensi-

tivity. See Set sensitivity -s parameter.

• The option --max-seqscontrols the maximum number of prefiltering results per

query sequence. For very large databases (tens of millions of sequences), it is a

good advice to keep this number at reasonable values (i.e. the default value 300). For

considerably larger values of --max-seqs, the size of the output can be in the range

of several TB of disk space for databases containing tens of millions of sequences.

Changing --max-seqs option has no effect on the run time but can degrade the sen-

sitivity.
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Alignment Module

In the alignment module, generally only the total runtime and disk space are the critical

issues.

Memory Consumption The major part of the memory is required for the three dynamic

programming matrices, once per core. Since most sequences are quite short, the memory

requirements of the alignment module for a typical database are in the order of a few GB.

Runtime The alignment is based on a striped vectorized algorithm which can process

roughly 2 giga cell updates per second (GCUPS). The time to compute the alignment of

two average sized proteins (350 residues) takes roughly 6.0625E-5 seconds on one CPU.

For example computing 23 Mio. alignments on 8 cores takes 2 minutes.

If a huge amount of alignments have to be calculated, the run time of the alignment

module can become a bottleneck. The run time of the alignment module depends essentially

on two parameters:

• The option --max-seqs controls the maximum number of sequences aligned with

a query sequence. By setting this parameter to a lower value, you accelerate the

program, but you may also lose some meaningful results. Since the prefiltering results

are always ordered by their significance, the most significant prefiltering results are

always aligned first in the alignment module.

• The option --max-accept controls the maximum number of alignment results per

query sequence.

• The option --max-rejected defines the maximum number of rejected sequences

for a query until the calculation of alignments stops. A reject is an alignment whose

statistics don’t satisfy the search criteria such as coverage threshold, e-value thresh-

old etc. Per default, --max-rejected is set to INT MAX, i.e. all alignments until

--max-seqs alignments are calculated.

Disk Space Since the alignment module takes the results of the prefiltering module as

input, the size of the prefiltering module output is the point of reference. If alignments are

calculated and written for all the prefiltering results, the disk space consumption is 1.75

times higher than the prefiltering output size.

Clustering Module

In the clustering module, only the memory consumption is a critical issue.
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Memory Consumption The clustering module can need large amounts of memory. The

memory consumption for a database containing N sequences and an average of r alignment

results per sequence can be estimated as

M = (6 * N * r) byte

To prevent excessive memory usage for the clustering of large databases, you should

use cascaded clustering (--cascaded option) which accumulates sequences per cluster in-

crementally, therefore avoiding excessive memory use.

If you run the clustering module separately, you can tune the following parameters:

• --max-seqs parameter which controls the maximum number of alignment results

per query considered (i.e. the number of edges per node in the graph). Lower value

causes lower memory usage and faster run times.

• Alternatively, -s parameter can be set to a higher value in order to cluster the database

down to higher sequence identities. Only the alignment results above the sequence

identity threshold are imported and it results in lower memory usage.

Runtime Clustering is the fastest step. It needs less than an hour for the clustering of the

whole UniProtKB.

Disk Space Since only one record is written per cluster, the memory usage is a small

fraction of the memory usage in the prefiltering and alignment modules.

Workflows

The search and clustering workflows offer the possibility to set the sensitivity option -s and

the maximum sequences per query option --max-seqs. --max-rejected option is set

to INT MAX per default. Cascaded clustering sets all the options controlling the size of the

output, speed and memory consumption, internally adjusting parameters in each cascaded

clustering step.

How to run MMseqs2 on multiple servers using MPI

MMseqs2 can run on multiple cores and servers using OpenMP (OMP) and message pass-

ing interface (MPI). MPI assigns database splits to each servers and each server com-

putes them using multiple cores (OMP). Currently prefilter, align, result2profile,

swapresults can take advantage of MPI. To parallelize the time-consuming k-mer match-

ing and gapless alignment stages prefilter among multiple servers, two different modes are

available. In the first, MMseqs2 can split the target sequence set into approximately equal-

sized chunks, and each server searches all queries against its chunk. Alternatively, the query

sequence set is split into equal-sized chunks and each server searches its query chunk against
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the entire target set. The number of chunks is controlled through the --split parameter.

Splitting the target database is less time-efficient due to the slow, IO-limited merging of

results, but it reduces the memory required on each server to:

((7 * N * L) / #chunks + 21ˆk * 8) byte

Thus, it allows users to search through huge databases on servers with moderate mem-

ory sizes. If the number of chunks is larger than the number of servers, chunks will be

distributed among servers and processed sequentially. By default, MMseqs2 automatically

decides which mode to pick based on the available memory (assume that all machines

have the same amount of memory). Make sure that MMseqs2 was compiled with MPI

by using the HAVE MPI=1 flag (cmake -DHAVE MPI=1 -DCMAKE BUILD TYPE=Release

-DCMAKE INSTALL PREFIX=. ..). Our precomplied static version of MMseqs2 can not

use MPI. To search with multiple server just call the search and add the RUNNER variable.

The TMP folder has to be shared between all nodes (e.g. NFS)

RUNNER="mpirun -np 42" mmseqs search queryDB targetDB resultDB tmp

For clustering just call the clustering. The TMP folder has to be shared between all

nodes (e.g. NFS)

RUNNER="mpirun -np 42" mmseqs cluster DB clu tmp

Frequently Asked Questions

This section describes common questions.

How to set the right alignment coverage to cluster

MMseqs has three modes to control the coverage.

(1) With --cov-mode 0 -c [0.0,1.0] only sequences are clustered that have a se-

quence length overlap greater than X% of the longer of the two sequences. This

coverage mode should be used to cluster full length protein sequences. The multi

domain structure of proteins will be most likely preserved when using a coverage >

80% (-c 0.8).

For example:

q: MAVGTACRPA

t: -AVGTAC---

The coverage of would be 6/10=60%

q: -AVGTAC---

t: MAVGTACRPA
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The coverage of would be 6/10=60%

(2) With --cov-mode 1 -c [0.0,1.0] (target-cov mode) only sequences are clus-

tered that have a sequence length overlap greater than X% of the target sequence.

The target cov mode can be used to cluster protein fragments. To suppress fragments

from becoming representative sequences, it is recommended to use --cluster-mode

2 in conjunction with --cov-mode 1.

For example:

q: MAVGTACRPA

t: -AVGTAC---

The target coverage would be 6/6=100%

q: -AVGTAC---

t: MAVGTACRPA

The target coverage would be 6/10=60%

(3) With --cov-mode 2 -c [0.0,1.0] (query-cov mode) only sequences are clus-

tered that have a sequence length overlap greater than X% of the query sequence.

The query cov mode can be used while searching e.g. to assure a certain level of

coverage.

For example:

q: MAVGTACRPA

t: -AVGTAC---

The query coverage would be 6/10=60%

q: -AVGTAC---

t: MAVGTACRPA

The query coverage would be 6/6=100%

How is MMseqs computing the sequence identity

There are two ways MMseqs can compute the sequence identity, both of which produce

similar results:

(1) When using --alignment-mode 3 mmseqs2 will compute the number of identical

aligned residues divided by the number of aligned columns including columns con-

taining a gap in either sequence.
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Fig. A.11. Relationship between score per column and sequence identity

(2) By default, the sequence identity is estimated from the score per column, i.e., the

local alignment bit score divided by the maximum length of the two aligned sequence

segments. The estimate uses the linear regression function (shown in red below)

between the sequence identity computed as in (1) and the score per column in the

scatter plot:

The score per column is a better measure of the degree of similarity than the actual

sequence identity, because it also takes the degree of similarity between aligned amino

acids and the number and length of gaps into account.

How to restart a search or clustering workflow

MMseqs checks if files are already computed in the tmpDir and skips already computed

results. To restart delete temporary result files from the crashing step that were created by

MMseqs and restart the workflow with the same program call again. You can recognise the

temporary files that should be deleted by their file ending .[0-9]+.

If the job crashed while merging files they can be merged manually using ffindex build

(https://github.com/soedinglab/ffindex soedinglab). For example, if the merge step of the

alignment fails while using 56 threads then the result could be recovered by using the fol-

lowing command.

for i in $(seq 0 55); do ffindex_build -a aln{,.tmp.index} -d aln.$i -i aln.index.$i ; done

LC_ALL=C sort --parallel 28 -n -k 1,1 aln.tmp.index > aln.index
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How to find the best hit the fastest way

MMseqs2 can apply an iterative approach to speed up best-hit-searches. It will start search-

ing with the lowest sensitivity defined with --start-sens and search until the target sen-

sitivity -s is reached. The amount of steps to reach -s can be defined with --sens-steps.

Queries are only used again in the next iteration, if no match could be found that fulfilled

the acceptance criteria in the previous iteration.

For example, the following search performs three search steps with sensitivity -s 1, 4

and 7.

mmseqs search qDB tDB rDB tmp --start-sens 1 --sens-steps 3 -s 7 --max-accept 1

Using this iterative approach can speed up best-hit-searches 4-10 times.

How is MMseqs handling low complexity

MMseqs uses reduces low complexity effects on the query and target database.

Query sequences are handled by an amino acid local compositional bias correction.

In prefilter and alignment stages we apply a correction to substitution matrix scores as-

signing lower scores to the matches of amino acids that are overrepresented in the lo-

cal sequence neighborhood. To switch the compositional bias correction on and off use

--comp-bias-corr.

Target sequences low-complexity regions are masked during the prefilter stage. We

use TANTAN with a threshold of 90% probability for low complexity. Masking can be

controlled with --mask.

How to redundancy filter sequences with identical length and 100% length overlap.

To redundancy filter sequences of identical length and 100% overlap mmseqs clusthash

can be used. It reduces each sequence to a five-letter alphabet, computes a 64 bit CRC32

hash value for the full-length sequences, and places sequences with identical hash code that

satisfy the sequence identity threshold into the same cluster.

Example: cluster sequences at 90% sequence identity

mmseqs clusthash sequenceDB resultDB --min-seq-id 0.9

mmseqs clust sequenceDB resultDB clusterDB

How to add sequence identities and other alignment information to a clustering result.

We can add sequence identities and other alignment information to the clustering result

outDB by running an additional align step:

$ mmseqs align sequenceDB sequenceDB resultDB alignDB -a

$ mmseqs createtsv sequenceDB sequenceDB alignDB align.tsv
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The -a parameter computes the whole backtrace. --alignment-mode 3 could be used

instead if the backtrace is not needed. This would save disk space. The backtrace is however

computed anyway (for the calculation of the sequence identities) and then discarded.

How to run external tools for each database entry

Theapplymodule can be used to call an external tool for each entry of a MMseqs2 database.

It works like the map step from the map/reduce pattern. It calls for every index entry the

specified process with the passed parameters. The process reads the entry data from stdin

and its stdout is written to a new entry in the result database. The tool supports OpenMP

and MPI parallelization for spreading out the job over several compute nodes.

Example: An awk script which takes an alignment result entry from stdin and prints out

all lines with an e-value <0.001 to stdout (Hint: the filterdb module can also solve this

problem, but with less overhead):

mmseqs apply resultDB filteredResultDB -- awk '$4 < 0.001 { print; }'

The apply module exports the MMSEQS ENTRY NAME environment variable into the

called processes. It contains the current database key.

How to manually cascade cluster

It is possible to cluster the representative sequences of an clustering run and merge the

cluDB results with the following workflow.

# first clustering run

mmseqs linclust sequenceDB clu1 tmp1

# create a subset of the sequenceDB only with representative sequences

mmseqs createsubdb clu1 sequenceDB cluSequenceDB

# cluster representative sequences

mmseqs cluster "cluSequenceDB" clu2 tmp2

# merge two clusterings in to one results

mmseqs mergecluster sequenceDB final_clu clu1 clu2

How to create a HHblits database

One can turn the output of a search (or clustering) into a HHblits database. You need to

have HH-suite properly installed with MPI support. The following procedure creates an

HHblits-compatible database “searchMsa” resulting from the enrichment of sequences of

“DBquery” with the sequences of “DBtarget”:

mmseqs search DBquery DBtarget searchOut tmp -a

mmseqs result2msa DBquery DBtarget searchOut searchMsa --compress

mpirun -np 2 cstranslate_mpi -i searchMsa -o searchMsa_cs219 -A /path/to/cs219.lib \

-D /path/to/context_data.lib -x 0.3 -c 4 -I ca3m
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The files /path/to/cs219.lib and /path/to/context data.lib are provided in

the “data” subfolder of your HH-suite installation. The parameters -x 0.3 -c 4 have been

empirically found to perform well.

For creating an HHblits database from a clustering, the procedure is almost the same,

except that you have to create symlinks to the ffindex header and sequence files needed by

HHblits:

mmseqs cluster DB clu tmp

mmseqs result2msa DB DB clu cluMsa --compress

ln -s DB_h cluMsa_header.ffdata

ln -s DB_h.index cluMsa_header.ffindex

ln -s DB cluMsa_sequence.ffdata

ln -s DB.index cluMsa_sequence.ffindex

mpirun -np 2 cstranslate_mpi -i cluMsa -o cluMsa_cs219 -A /path/to/cs219.lib \

-D /path/to/context_data.lib -x 0.3 -c 4 -I ca3m

In the “search” case, those files are generated by MMseqs2, since it needs to merge the

query and the target sequence databases. No merging is done for clustering, since both the

query and target sequence database are the same.

Workflow Control Parameters

Search Workflow

Compares all sequences in the query database with all sequences in the target database.

Usage:
mmseqs search <queryDB> <targetDB> <outDB> <tmpDir> [opts]

Options:
-s [float] Target sensitivity in the range [1:8.5] (default=4).

Adjusts the sensitivity of the prefiltering and influences the prefiltering run time. 1.0

fastest - 8.5 sensitive. The sensitivty between 8 to 8.5 should be as sensitive as BLAST. For

detailed explanation see section Computation of Prefiltering Scores using mmseqs prefilter.

Clustering Workflow

Calculates the clustering of the sequences in the input database.

Usage:
mmseqs cluster <sequenceDB> <outDB> <tmpDir> [opts]

Options:
--cascaded Start the cascaded instead of simple clustering

workflow.

The database is clustered incrementally in three steps and improves the sensitivity of

the clustering greatly compared to the general workflow. For detailed explanation, see the

section Clustering sequence database using mmseqs clust.
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-s [float] Target sensitivity in the range [2:9] (default=4).

Adjusts the sensitivity of the prefiltering and influences the prefiltering run time. For

detailed explanation see section Computation of Prefiltering Scores using mmseqs prefilter.

--min-seq-id [float] list matches above this sequence identity

[0.0:1.0] (default=0.0). Read more about how MMseqs is computing sequence

identity in section How is MMseqs computing the sequence identity.

--cov-mode [int] "0: coverage of query and target, 1: coverage

of target [0:1] (default=0). -c [float] "list matches above this

fraction of covered residues (see cov-mode) [0.0:1.0] (default=0.8).

Read more about coverage is computed at section How to set the right alignment coverage

to cluster

Updating Workflow

Updates the existing clustering of the previous database version with new sequences from

the current version of the same database.

Usage:
mmseqs clusterupdate <oldDB> <newDB> <oldDB clustering> <outDB>

<tmpDir> [opts]

Options:
--sub-mat [file] Amino acid substitution matrix file.

Substitution matrices for different sequence diversities in the required format can be

found in the MMseqs2 data folder.

External Libraries used in MMseqs2

We would also like to thank the developers of the open source librarys used in MMseqs2:

• Striped Smith-Waterman Library

• ALP Library

• TANTAN

• Open MP Template Library

• kseq

• iota

• blast2lca
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Developers Guide

Regression test

To run a search regression test execute the following steps:

# download the runner script run_codeship_pipeline.sh and set permissions

$ wget https://bitbucket.org/martin_steinegger/mmseqs-benchmark/run_codeship_pipeline.sh

$ chmod +x run_codeship_pipeline.sh

# change three varialbes in this file edit the following variables:

# If you dont have AVX2 on the machine just comment all lines containing MMSEQSAVX

BASE_DIR="$HOME/clone/regression_test"

MMSEQSSSE="$HOME/clone/build/src/mmseqs"

MMSEQSAVX="$HOME/clone/build/avx2/src/mmseqs"

# run script and set CI_COMMIT_ID to some non-empty string

# (in our CI system this is automatically set to the git commit).

$ CI_COMMIT_ID="TESTING" ./run_codeship_pipeline.sh

# The script will return an error code != 0 if there is a regression

# in sensitivity of MMseqs2. The error code can be checked with "echo $?".

$ [ $? -eq 1 ] && echo "Error"

It will print a report with sensitivity AUCs it achieved and then error out if it did not

achieve the minimum AUCs. Currently 0.235 for normal sequence searches and 0.331 for

profile searches.

You can also use our Docker images to run this benchmark:

cd mmseqs-folder

docker build -t mmseqs2 .

git clone https://bitbucket.org/martin_steinegger/mmseqs-benchmark.git

cd mmseqs-benchmark

docker build -t mmseqs-benchmark .

The regression test passed, if the second image exits cleanly.

Sanitizers

MMseqs2 can be built with ASan/MSan/UBSan/TSan support by specifying calling:

cmake -DHAVE_SANITIZER=1 -DCMAKE_BUILD_TYPE=ASan ...

Replace ASan with MSan, UBsan or TSan for the other sanitizers. CMake will error

and abort if your compiler does not support the respective sanitizer.

License Terms

The software is made available under the terms of the GNU General Public License v3.0.

Its contributors assume no responsibility for errors or omissions in the software.
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https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/MemorySanitizer
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
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