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Abstract

Graphs are an abstract representation for several structures of interest
in biology, such as vessels or neurons, and they are also well-suited for
describing spatio-temporal behaviour of multiple objects along time. With
the progress of advanced biomedical imaging techniques and an emerging
demand for quantitative methods, computer-aided analysis of biomedical
image data has gained considerable importance. Amongst such analysis
tasks is the estimation of a graph from images or videos. A task we refer to
as graph inference and which can be located at the intersection of the fields
machine learning, computer vision and optimization.

In this thesis, we focus on methods that formulate graph inference as
a two-stage process: First, a hypothesis (super-)graph is constructed from
the observed data and then, a combinatorial optimization problem is solved
to determine the subgraph that best describes the object of interest. With
respect to the application, we address two prominent forms of the graph
inference problem, namely estimation of vessel networks and cell lineage
forests. Specifically, our contributions are as follows. (1) We propose a
probabilistic model for utilizing physiological knowledge obtained from high-
quality data when reconstructing vascular networks. (2) We identify its
underlying optimization problem as minimum cost connected subgraph
problem (MCCSP), devise more efficient constraint generation schemes for
exact algorithms and benchmark them against heuristics on two medical
datasets. (3) We design two primal feasible heuristics and improve the branch-
and-cut algorithm for the moral lineage tracing problem (MLTP), a joint
clustering and tracking formulation for cell lineage tracing. We demonstrate
that they reduce runtime and improve scalability considerably. (4) Finally,
we propose a cell lineage tracing framework for lens-free microscopy (LFM)
videos, combining the MLTP and fully convolutional neural networks (FCNs),
and demonstrate its capabilities to estimate lineages of high quality.
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Zusammenfassung

Graphen sind eine abstrakte Repräsentation für verschiedenste biologische
Strukturen, wie beispielsweise Neuronen oder Blutgefäße, und sind deswei-
teren geeignet um das Verhalten mehrerer Objekte in Raum und Zeit zu
beschreiben. Mit dem Fortschritt biomedizinischer Bildgebungstechnologien
und dem wachsenden Interesse an quantitativen Methodologien haben com-
putergestützte Analysemethoden für biomedizinische Bilddaten zunehmend
an Wichtigkeit gewonnen. Darunter fällt auch das Schätzen von Graphen aus
Bilddaten und Videos, die sogenannte Graphinferenz, welche sich in den Ge-
bieten des maschinellen Lernens, der Bildverarbeitung und der Optimierung
einordnen lässt.

In dieser Thesis liegt der Fokus auf zwei-Phasen Methoden zur Graphin-
ferenz. Als erstes wird ein Hypothesisgraph aus den Bilddaten konstruiert,
um im Anschluss den besten Subgraphen darin mittels kombinatorischer
Optimierung zu bestimmen. Dabei werden zwei weitverbreitete Formen von
Graphinferenzapplikationen adressiert: Das Schätzen von Gefäßnetzwerken
sowie das Tracken von Zellen und deren Abstammung, d.h. sogenannte
Lineage Forests. Im Spezifischen werden die folgenden Beiträge beschrieben:
(1) Ein probabilistisches Modell zur Rekonstruktion von Gefäßnetzwerken,
welches physiologisches Vorwissen berücksichtigen lässt. (2) Dessen unterlie-
gendes Optimierungsproblem wird als minimum cost connected subgraph
problem (MCCSP) identifiziert, wofür effizientere Strategien für exakte
Algorithmen vorgeschlagen und diese mit Heuristiken auf zwei Benchmark-
datensätzen verglichen werden. (3) Für das moral lineage tracing problem
(MLTP), eine joint Clustering und Tracking Formulierung des Zelltracking-
problems, werden die ersten zwei Suchheuristiken designt und der bisherige
branch-and-cut Algorithmus verbessert, was zu wesentlich kürzeren Laufzei-
ten und einer besseren Skalierbarkeit führt. (4) Schliesslich wird ein System
zur Analyse von Zellen in lens-free microscopy (LFM) beschrieben, welches
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das MLTP mit fully convolutional neural networks (FCNs) kombiniert, und
dessen Leistungsfähigkeit zur Schätzung von qualitativ hochwertigen Lineage
Forests empirisch demonstriert wird.
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1

Introduction

Graphs are an abstract representation for several objects of interest in
biology and medicine. Examples include tree- and network-like objects
like neurons or vessels, where the graph’s vertices describe the structure in
terms of its spatial location and the edges their anatonomical connectedness.
Graphs are also well-suited for describing spatio-temporal behaviour: the
trajectories of multiple objects along time can be represented as a graph
of multiple (disjoint) chains. In this case, vertices are associated with an
objects position in space and time and edges identify identical objects along
time. When tracking objects like cells that both move and divide, then
the underlying graph that describes their motion and descendance is again
a special type of graph, namely a forest, and called the cell lineage forest.
Figure 1.1 illustrates how a graph can serve as an abstract representation
of an anatomical structure, in this case vessels. Two more examples are
presented in Fig. 1.2, which depict a vessel network and a cell lineage
forest. Beyond this, graphs are utilized to represent functional networks.
For example in the analysis of brain connectivity, where the vertices are
different regions in the brain and edges describe which regions interact (i.e.
stimulate/inhibit) with each other [2]. The same concept is also employed
in the analysis of regulatory networks that are common subjects of interest
in metabolics [3, 4], genomics [5, 6], or proteomics [7, 8].

Of course, graphs are not only interesting for biological questions. Graph
theory is a longstanding and rich field of mathematics and computer sci-
ence [9, 10]. Its origin is commonly dated back to L. Euler’s solution to
the seven bridges of Königsberg problem in 1736 [11]. Concepts from graph
theory have been transferred to a multitude of disciplines. Examples range
from analysis of social networks [12] or transportation networks [13], to
design, operation and analysis of computer networks [14, 15]. Comprehensive
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1. Introduction

G = (V,E)

Figure 1.1: Example of a graph as abstract representation of an anatomical
structure. The left side illustrates internal carotid and vertebral arteries in
the neck (image source: H. Gray [1, Fig. 513]), whereas the right side depicts
a graph G that represents these arteries abstractly. Its vertices V , drawn
as circles, represent furcations and its edges E indicate vascular segments,
drawn as arrows. Open ends in the illustration are shown as edges with only
one vertex. Smaller vessels are omitted in graph G for simplicity.

review and discussion of graphs and their analysis in different fields can be
found in [16, 17, 18, 19].

Ultimately, analysing the graph of interest is expected to gain quantitative
insights, e.g. into biological processes, and allow the researchers to assess
their hypothesis. However, these graphs are typically observed indirectly as
they are an abstraction for the real-world object of interest. While modern
imaging techniques such as computed tomography (CT), magnetic resonance
imaging (MRI) or optical microscopy and their specialized variants allow
observing a wide range of structures and processes, the obtained data is
typically in the form of 2D or 3D images or a times series of such. Hence,
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1. Introduction

the underlying graph needs to be estimated from the pixel- or voxel-based
information of the acquired images at hand. This estimation is what we
consider graph inference in this thesis.

We focus on methods for graph inference that formulate the task as a
two-stage process. First, a hypothesis graph is constructed from the observed
data. This hypothesis graph contains a multitude of potential graphs, i.e.
single hypotheses. Then, in the second step, the graph that explains the
observations best amongst these hypotheses is determined, which means
solving a combinatorial optimization problem. From a technical point of
view, there are several aspects to such an approach that have to be addressed.
Constructing the hypothesis graph requires robust detectors and models
for translating image evidence into candidate nodes and edges, as well
as a formal encoding of feasible hypotheses that can be built from these
candidates. A model for ranking these hypotheses against each other is
needed to determine whether a given feasible hypothesis fits the observed
data better than another. Finally, an optimization procedure has to be
devised that is able to find the optimal feasible hypothesis (or at least a
reasonably good one) within acceptable time. Besides a potential trade-off
between inference runtime and solution quality, limited available data for
parameter fitting and validation further calls for a carefully chosen model
complexity. Importance and difficulty of each of these aspects depends on
the application. Our work considers two different applications of graph
inference in biomedical image analysis: the reconstruction of curvilinear
structures such as vasculature or neurons, and tracing cell lineage forests
from microscopy videos.

In the next section, we discuss the graph inference problem in more
detail and interpret two main applications of this thesis as graph inference.
Subsequently, we summarize our main contributions in Section 1.2 and
outline the remaining manuscript in Section 1.3.

1.1 Graph Inference

We define graph inference (on an high level of abstraction) as a mapping h
from observations f to a graph G = (V,E):

h : f 7→ G = (V,E) . (1.1)

4



1.1. Graph Inference

In the context of biomedical image analysis, the observations f are typically
images. Vertices V and edges E of the resulting graph will have varying
meaning, depending on the particular application. The graph G might
have additional information associated with vertices and/or edges, such as a
semantic vertex labeling or a continuous weight for each edges strength. We
consider this to be absorbed in V and E at this point for ease of notation.
The term graph inference is used only in few works explicitly, e.g. [22, 23,
24, 25], whereas most use application specific terminology. We will next
discuss different forms of graph inference.

A distinction can be made with respect to the parts of the graph that are
to be inferred, which depends on both application and type of observations.
It might be that the vertices V of the graph G are given, e.g. when they are
observed entities, such as users in a database, while the unknown factor are
(some of) their relationships, i.e. the edges E. In this case, graph inference
is cast as a matrix completion problem, where the matrix to be completed
is the graphs adjacency matrix [26, 27, 28, 24]. A well-known example is
the Netflix challenge [29], where the estimated graph is supposed to serve
as a recommender system, another is the estimation of dependencies in
multivariate statistical analysis [27]. It could also be that both nodes and
edges have to be estimated from the given data. This is typically the case
for estimating vascular networks from image data [20, 30, 31, 32], but also
for more general tasks such as multi-object tracking [33, 34, 35, 36, 37].
Another variation is the case where a subset of both vertices V and edges
E is known, while some of them have to be inferred [22]. In others, an
entire graph is already known and the goal is to determine one or more
subgraphs within it. For example, Qian et al. [38, 39] formulate tasks like
intrusion detection in networks or disease outbreak detection as such a
subgraph inference problem, where they scan the network for subgraphs
with a certain elevated mean statistic. In the same fashion, another work
poses the problem of determining a core network of brain connectivity from
a population of patient scans as subgraph inference problem [40].

The complex nature of estimating a structure such as a graph from
possibly large datasets makes it often necessary to break the mapping
h down into several subfunctions. As mentioned previously, we consider
approaches that can be interpreted as a two-stage process: in the first step, a
set of hypothesis graphs is created. In the second, the most likely hypothesis
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graph is selected. We can write this as a composite mapping

h = h2(h1(f)) , (1.2)

where h1 constucts hypotheses and h2 selects the best (in some sense)
amongst them. In a sense, this interpretation separates the typically highly
domain-specific hypothesis construction – sometimes also referred to as
preprocessing – from more general optimization approaches for selecting
the final hypothesis. This interpretation has the advantage that knowledge
gained in different graph inference tasks can be transferred. For example,
in both the intrusion detection of [38, 39] and the core brain connectivity
network problem of [40], the second part h2 is essentially a minimum cost
connected subgraph problem (MCCSP) – an optimization problem for which
we discuss strategies in Chapter 4. In our work, we will aim at providing
a probabilistic interpretation of the second step. That is, we will discuss
estimators h2(H) of the form

G∗ = h2 (H) = arg max
G∈H

P (G|H,Θ) , (1.3)

where h2 is the maximum a posteriori (MAP) estimate under a probablistic
model denoted by P (G|H,Θ) with parameters Θ, and H are the hypotheses
constructed by h1. We will see that this can be computationally challenging,
which is the reason why parts of this work focus on more efficient and/or
heuristic optimization strategies.

1.2 Summary of Contributions

This thesis is set in the context of graph inference in biomedical image
analysis. We have selected two major graph inference problems that have
received considerable attention in the past due to their relevance for biological
and medical questions: First, the inference of vascular networks or related
curvilinear structures such as neurons, and second, the estimation of cell
lineage forests from microscopy videos.

In the following, we give a brief introduction to the setting of each
publication-based chapter and summarize its content and contributions.
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Chapter 3: Reconstructing Cerebrovascular Networks
under Local Physiological Constraints by Integer
Programming

Cerebrovascular networks are an object of interest in the study of several
diseases. Examples include arteriosclerosis and dilative vascular malforma-
tions, as well as Alzheimer’s and related neuro-degenerative diseases – all of
which are suspected to be related to vascular reformation processes [41, 42].
The task of reconstructing the vascular network, i.e. the graph inference,
from image data such as specialized MRI or CT sequences is thus an im-
portant part of medical image computing. Several works propose methods
to vessel segmentation and tracing, ranging from hand-crafted filters to
machine learning-based approaches [43, 44, 45, 46, 47, 48, 46, 48, 49, 50,
51]. Related literature is also found in the field of neuron tracing [52, 53,
54] or in the context of curvilinear structure detection in general [55, 56,
57, 58, 30]. In contrast to this, far fewer works focus on estimating the
vasculature graph under consideration of its expected topology [59, 60]. A
recent method [30] formulates this task in an integer programming frame-
work, resulting in a combinatorial optimization that determines the best
subgraph within an overconnected hypothesis graph. This method has been
extended or adapted to several variants of the subgraph inference problem.
They include anatomical labeling of vessels [31], artery-vein separation [32],
proofreading of curvilinear detections [61] or, in this chapters work [20], for
transferring statistics from high-resolution to the extraction of networks
from low-resolution datasets.

We contribute a probabilistic model for reconstructing a vascular net-
work from noisy data that allows to incorporate local statistics obtained
from a high-resolution micro computed tomography (µCT) dataset. We
present experiments with µMRA and show that the reconstructed networks
have physiologically more plausible properties than without the transferred
knowledge. To address the computational complexity that comes with the
size of the instances, we propose a scheme to dynamically decompose the
optimization problem into subproblems.
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Chapter 4: The Minimum Cost Connected Subgraph
Problem in Medical Image Analysis

Connectedness constraints are important for the estimation of several objects
of interest from biomedical images, most prominently for complexes of thin,
elongated structures such as vessels or neurons. This type of constraints
find application in [31, 20, 32, 30] for a variety of graph inference tasks
on biomedical data. Imposing these constraints on the subgraph inference
results in an MCCSP, which is known to be NP-hard (a proof by reduction
to the Steiner tree problem [62, Chapter 20] is presented in [63]). It is
thus difficult to optimize in practice and the main cause for extensive
runtimes on certain instances encountered in Chapter 3 [20]. This issue
is particularly problematic if the instance is large, as it is often the case
with volumetric medical image data. Approaches therefore either aim to
reduce the instances size when working with exact solvers, e.g. by using
superpixels [64], by substituting an easier surrogate optimization problem [63,
65] or approximative formulations of the connectedness constraint [66, 67,
68].

In this chapter, we discuss the MCCSP in an integer programming frame-
work. This includes in particular the exact formulation of connectedness
as in [64] as well as the formulation of connectedness along a precomputed
geodesic [66, 67, 68]. We contribute several constraint generation strategies
for a branch-and-cut algorithm, as well as objective-dependent constraints
that reduce the set of feasible solutions without affecting optimal solutions.
These are shown to improve scalability of exact optimization in practice and
thus enable a quantitative benchmark of exact and approximative algorithms
on two medical datasets of vessels and neurons [69, 53], where we identify
the geodesic tree heuristic to be an excellent choice in practice.

Chapter 5: Efficient Algorithms for Moral Lineage
Tracing

Analysis of microscopy videos is a crucial step in gaining a better under-
standing in several fields of biology, including embryonic development [70,
71], tissue formation [72] or metastatic behavior of tumor cells [73]. The
estimation of cell lineage forests from such microscopy videos is therefore
a well-established image analysis problem, which has received considerable
attention [74, 75, 76, 77, 78, 79].
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The task is commonly tackled in two phases: First, individual cells are
detected and/or segmented in every frame and then, in a second phase,
linked to represent displaced cells in the subsequent frames or the two
daughter cells in case of a division. The second step is often cast as an
optimization problem: the minimum cost disjoint arborescence problem
(MCDAP) [80, Chapter 53] or variations of it [81, 82, 83, 84, 85]. Solutions to
this are disjoint trees of detections, implicitly assuming a one to one relation
between detections and cells. A more recently proposed mathematical
abstraction called moral lineage tracing problem (MLTP) [86] formulates
the task as joint-clustering and tracking problem and thereby defines its
feasible solutions as disjoint trees of clusters of detections. It is a hybrid of
the MCDAP and the minimum cost multicut problem (MCMCP), which
is a well-known method for image decomposition [87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98]. As such, it anticipates the possibility that one cell
may yield several detections (or is oversegmented), which is not considered
wrong but are clustered to represent the underlying cell together. The
branch-and-cut algorithm for optimizing the moral lineage tracing problem
(MLTP) proposed in [86], however, is prone to a large number of cuts and
exhibits slow convergence on large instances. Therefore, many applications
of the MLTP in practice are prevented by its high computational cost.

In this chapter, we address this problem. We design two primal feasible
local search heuristics for the MLTP and we improve the original branch-
and-cut algorithm by separating tighter cutting planes. We demonstrate
convergence of our algorithms on the problem instances of [86], solving
two (previously unsolved) instances to optimality and obtaining accurate
solutions orders of magnitude faster. Further, we show improved scalability
on previously inaccessible instances.

Chapter 6: Cell Lineage Tracing in Lens-free
Microscopy Videos

The majority of work on automatic cell lineage tracing focusses on processing
traditional light microscopy videos. However, recent progress in LFM has
rendered it a promising alternative to traditional light microscopy for certain
applications, such as continouos monitoring of experiments with cultured
cells [99, 100, 101]. LFM is a label-free microscopy technique, i.e. no
additional marker like a fluorescent dye is required. Thus, it does not
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Fluorescence LFM

Figure 1.3: A cell culture observed through lens-free microscopy (LFM)
(right) and traditional fluorescence microscopy (left). The central column
shows a detail view of the region indicated with a black rectangle in both
image types. LFM has the advantage of being a label-free technique, thus
avoiding limitations inherent to a fluorescence labeling, such as temporally
limited observation due to photobleaching or the fact that the dye may alter
the cells behaviour. In return, reliable detection and tracking of the cells
in LFM can be more challenging due to the fluctuating shape of the cells
appearance or the superposition of the observed interference patterns in
areas of dense cell population. We address this task in Chapter 6.

suffer from effects such as photobleaching, which makes it is well-suited for
monitoring experiments with cultured cells over an extended period of time.
An example for a cell culture observed by LFM and its corresponding view
with fluorescence microscopy is shown in Fig. 1.3. Due to the nature of LFM
videos, reliable automatic methods are crucial for obtaining the clinically
relevant information on the cell culture dynamics. This chapter’s work aims
at filling this niche and proposes a framework for processing LFM videos.

In particular, we propose a cell detector for LFM images based on fully
convolutional residual networks [102]. Here, the fully convolutional neural
network (FCN) is trained to regress a cell probability map constructed
from cell center annotations. This approach is related to previous work
on learning a distance transformation [57, 103]. We then formulate a
probabilistic model for which the MLTP [86] becomes its MAP estimator
and employ the efficient heuristics of Chapter 5 for solving it. As mentioned
previously, the advantage of this joint clustering and tracking model is that
it explicitly handles multiple detections, which is a frequent mistake due to
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the nature of the cells appearance in LFM. Experiments on several hours of
LFM videos indicate strong performance in terms of various detection and
tracking scores.

1.3 Organization

This a publication-based thesis with the following structure: Chapter 1
introduced to the topic of graph inference in the setting of medical image
analysis, and summarized our contributions. Chapter 2 gives a brief summary
of relevant terminology and key concepts from graph theory, machine learning
and integer linear programming, which are used throughout this manuscript.

Chapter 3 to 6 are composed of four publications [20, 104, 105, 21]
in their original form. They have been published as journal articles or in
peer-reviewed conference proceedings, and are therefore self-contained. Each
of these chapters starts with a summary page, containing the full citation of
the original publication, a short synopsis of the publications content and the
thesis authors contributions. In order to improve the reader’s experience,
the text layout of the publications was harmonized and their bibliographies
have been merged into one single bibliography at the end of this document.

Chapter 7 offers discussion and conclusions over the presented material
and suggest directions for future work. Appendices A and B provide sup-
plementary material to Chapter 4 and 5, respectively. Finally, a complete
list of publications that have been written during the time period of this
doctoral thesis can be found in Appendix C.
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Background

This work draws from graph theory, combinatorial optimization and machine
learning. This chapter aims at giving a concise summary of key concepts
and notation used throughout this thesis, but it is not intended to be
a representative overview of the most important concepts of each field.
For a more complete and in-depth discussion on graph theory, we refer
the interested reader [9, 10]. For a thorough discussion on combinatorial
optimization and integer linear programs (ILPs), we refer to [106, 80, 62],
and to [107, 108, 109, 110, 111] for topics of machine learning.

2.1 Graphs

A graph is defined as a pair G = (V,E) where V is a set and E = {vw :
v, w ∈ V } is a set of pairs from V . We call an element v ∈ V a vertex or
node and an element e = vw ∈ E an edge between vertex v and w. The
graph is called undirected if the edges are unordered pairs and directed
otherwise.

Subgraphs. A graph H = (V ′, E ′) is called a subgraph of G = (V,E) if
V ′ ⊆ V and E ′ ⊆ E.

Paths and cycles. A sequence P = (v0, e0, v1, e1, . . . , ek−1, vk) of ver-
tices vi ∈ V and connecting edges ei = vivi+1 ∈ E is called a v0vk-path. The
vertices v0 and vk are called source and target. If the source and target
vertices are identical v0 = vk, we call P a cycle.

Connectedness. A graph G = (V,E) is called connected if there exists
a path between any two nodes v, w ∈ V in G. Otherwise, it is called
disconnected. A subgraph G′ of G that is connected and maximal is called
connected component of G.
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W
V \W
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t
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Figure 2.1: Left: Illustration of an st-cut C that partitions a graph G =
(V,E) into two subgraphs with vertex subsets W and V \W , separating
the vertices s and t. Right: A vertex separator set S that separates s
from t. We note that the drawn S is the minimum (with respect to |S|)
st-vertex separator set in the example graph G, while the drawn st-cut is
not the minimum cut (with respect to |C|). However, both are minimal:
removing any element from the drawn S or C would result in a loss of their
st-separating property. This terminology will come up in Chapter 4.

Cuts. Given a decomposition of a graph G = (V,E) into two subgraphs
with W ⊆ V and U = V \W , we denote the set of edges C = {uw ∈ E :
u ∈ U ∧w ∈ W} as cut. A cut C that intersects each vw-path in G is called
vw-cut. Figure 2.1 illustrates a cut.

Vertex separator sets. A set of vertices S ⊆ V is called a vertex
separator set of v and w if each vw-path contains at least one vertex in S.
Removing all vertices s ∈ S thus leaves v and w disconnected. An example
of a vertex separator set is given in Fig. 2.1

Trees, chains and forests. A graph T = (V,E) is called a tree if it is
cycle-free and has exactly |E| = |V | − 1. T is called a chain if it is a tree
and each vertex v ∈ V has at most two neighbouring nodes. A graph that
is composed of a set of trees is called a forest.

Bipartite graphs. A graph G = (V,E) is called bipartite if its vertices
can be partitioned into two disjoint sets V = W ∪ U such that ∀uw ∈ E :
u ∈ U ∧ w ∈ W , i.e. all edges connect a vertex of W to a vertex of U .
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2.2 Integer Linear Programming

Integer linear programming (ILP) is a powerful tool to model discrete
and combinatorial optimization problems. An integer linear program (also
abbreviated with ILP) has the following standard form:

min cTx

s.t. Ax ≤ b

x ∈ Zn .

(2.1)

where A ∈ Rm×n, b ∈ Rm define the constraints and c ∈ Rn are the
coefficients of the linear objective function. Finally, the constraint x ∈ Zn

requires integrality of the variables x and render it an ILP. If the integrality
constraints are omitted (or more specifically, replaced with x ∈ Rn), then we
obtain a standard-form linear program (LP). If only a subset of the variables
have a requirement for integrality, then it is called a mixed integer linear
program (MILP). A graphical representation of an ILP with two variables
is given in Fig. 2.2. We call an x that satisfies all constraints feasible, and
we denote the set of feasible x as Ω. For modeling combinatorial problems
with ILPs, the subclass of 0-1-ILPs, where the variables are binary, i.e.
x ∈ {0, 1}n, is of particular interest.

Relaxations and bounds. Given an optimization problem minx∈Ω f(x),
removing a subset of its constraints yields an optimization problem minx∈Ω′ f(x)
called relaxation. Since Ω ⊆ Ω′, the solution x′ to the relaxed problem
gives a lower bound to the original problem with optimal solution x∗, i.e.
f(x′) ≤ f(x∗). A natural relaxation for ILPs is the LP-relaxation, which
simply omits the integrality constraints. Solving the LP-relaxation is a
typical approach to obtain lower bounds for ILPs. Any feasible x′ yields an
upper bound f(x∗) ≤ f(x′) to the optimization problem. A common way to
obtain upper bounds for ILPs are rounding or search heuristics.

Gaps. Given a lower and upper bound flower and fupper, we calculate the

gap as α = |flower−fupper|
|fupper| . The gap is used to certify how good a (preliminary)

solution is (at least). Optimization algorithms typically report the tightest
gap, i.e. the one between the best upper and lower bound. Reaching a
predefined gap is a common termination criterion when solving ILPs.

Optimization algorithms. Solving general ILPs is NP-hard [112]. In
contrast to this, solving LPs is easier. As a consequence, algorithms for
solving generic ILPs rely heavily on LP-relaxations. Polynomial runtime
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xi

xj
−cTx

x∗
x′

Figure 2.2: Illustration of an ILP with two variables xi, xj ∈ {0, 1}. The
feasible set of integral solutions is depicted with a set of ◦, while the feasible
set of its LP-relaxation is shown in blue. The boundaries of the inequalities
Ax ≤ b are drawn as solid black lines. The objective function cTx is shown
in dark blue. x∗ is the optimal solution to the ILP, while x′ is the solution
to its LP-relaxation.

algorithms are known for general LPs, such as the interior point method [113]
or the simplex method [114]. In practice, LPs are widely solved with
the simplex method [114], even though it does not provide a worst-case
polynomial runtime guarantee.

Two families of optimization algorithms for general ILPs are common:
Cutting plane approaches and branch-and-bound approaches. The cutting
plane method starts from a relaxation and then, refines the set of feasible
points by adding additional inequalities, removing fractal points until an
integral solution is obtained. Its use for ILPs goes back to [115], who
introduced a procedure to generate a certain class of such inequalities –
the so-called Gomory cuts. An illustration of a cutting plane is given in
Fig. 2.3. A branch-and-bound algorithm builds a tree of subproblems to
the ILP by splitting them into a set of K subproblems such that Ω =⋃
k∈K Ωk and thus minx∈Ω f(x) = mink∈K (minx∈Ωk

f(x)). Determining
which split to take is called branching step. An example for a split can be
found in Fig. 2.3. By keeping track of lower and upper bounds across the
subproblems, it is possible to discard subbranches of the problem tree if the
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xi

xj
−cTx

Ωleft Ωright

xi ≤ bx′ic

xi ≥ dx′ie

xi

xj

x′

−cTx

Figure 2.3: Two concepts utilized for solving ILPs illustrated on an ILP
with two variables xi, xj ∈ {0, 1}. The feasible set of integral solutions is
depicted with a set of ◦, while the feasible set of its LP-relaxation is shown
in blue. Left: An example of a cutting plane drawn as bold gray line. It
removes fractal solutions (ruled in fine gray lines) from the LP-relaxation.
Cutting plane procedures aim to determine a series of such cutting planes,
until the final relaxation is tight and yields an integral solution. Right:
The same ILP after a split into two subproblems with the feasible sets Ωleft

and Ωright by the inequalities xi ≤ bx′ic and xi ≥ dx′ie respectively. x′ is the
solution to the previous LP-relaxation where x′i had a fractal value. Clearly,
no integral solution was removed and thus, one of the new subproblems has
the same optimal solution as the original ILP. Determining such splits is
done in the branching step in branch-and-bound algorithms.

current best upper bound is better than the lower bound of the particular
subproblem. This is the bounding step. Branch-and-bound methods for ILPs
were introduced in [116]. Modern off-the-shelf solvers like Gurobi [117] or
CPLEX [118] typically implement hybrids of branch-and-bound and cutting
plane algorithms, sometimes called branch-and-cut.

Lazy constraint generation. In the ILP formulation of several com-
binatorial problems, the set of constraints that define all feasible solutions
can be exponentially large. Examples include the subtour-elimination con-
straints for the traveling salesman problem (TSP) [119], cycle-consistency
constraints in the MCMCP [120, 87], or the connectedness constraints in the
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MCCSP [64, 104]. The observation is, however, that for a given instance,
only a subset of these constraints is active at its optimum. This gives raise
to a strategy we call lazy constraint generation: Starting with a relaxation of
the problem without any of the (exponentially-sized) subset of constraints,
it is solved and the outcome checked for violations of the left-out constraints.
If any are found, (some of) the violated constraints are added and the opti-
mization continues. If the current solution does not violate any constraints,
we have obtained a feasible solution. This strategy, of course, relies on being
able to separate violated constraints for a given intermediate solution with
polynomial complexity.

2.3 Machine Learning

Machine learning is concerned with algorithms that learn a mapping, for ex-
ample a classification or a regression function, from a dataset of observations.
The field has a strong overlap with pattern recognition, data mining, artificial
intelligence or statistical learning theory. Well-known learning algorithms
are the support vector machine (SVM) [121], the random forest (RF) [122] or
the neural network (NN) [123, 124] and its more recent variants that employ
the concepts of deep learning [125, 126, 127, 102, 111]. In the recent years,
machine learning techniques have strongly influenced progress in several
fields. Especially in medical image analysis, machine learning methods find
wide application. For example, the majority of the top-performing methods
in recent challenges for segmenting brain tumors [128], liver tumors [129] or
stroke lesion [130] integrate a learning scheme at some stage of the processing
pipeline.

From a high-level perspective, a machine learning algorithm can be seen
as the combination of the following components: a class of hypotheses H,
a loss function L(X , h) and an optimization scheme to determine ĥ ∈ H
such that it minimizes the loss L (approximately) for a given dataset X .
For instance, a possible hypothesis class H for a binary classification is
the set of all hyperplanes in the input space, in which case an appropriate
loss L would be one that is minimized by a hyperplane that separates the
samples of both classes as well as possible. Loss and hypotheses have to be
chosen appropriately to the underlying task (classification problems require
different losses than regression or clustering problems), and an optimization
scheme needs to be appropriate for both L and H. Properties of the training

18



2.3. Machine Learning

set X have to be considered to avoid issues with over- or underfitting.
In practice, selecting one of the established machine learning algorithms
implicitly sets (at least to a certain degree) the choice of hypothesis class H,
loss L and optimization scheme, and can then be fine-tuned by adjusting its
hyperparameters. For example, adding or removing layers in the architecture
of a convolutional neural network (CNN) effectively changes the hypothesis
class H. What is common to almost all algorithms is the distinction of two
phases: the learning and the prediction phase.

Learning. Given a training set X , determine the best hypothesis h ∈ H
with respect to L:

ĥ = arg min
h∈H

L (h,X ) . (2.2)

This is sometimes also referred to as training, fitting, or parameter infer-
ence in the context of probabilistic models. The resulting ĥ is the trained
estimator. The loss L(h,X ) might be difficult to optimize. Thus, several
algorithms rely on approximate or heuristic optimization schemes and will
therefore not guarantee to find the exact optimum of (2.2). Amongst the
most prominent examples are deep NNs, where optimization is done with
stochastic gradient descent (SGD). Ultimately, we are not just interested in
how well the learned model ĥ fits the training data X , but mainly how well it
performs on unseen data, which was not available during the learning phase,
i.e. how well it generalizes. Hence, it is recommended to split the available
dataset X into a training and test set, where the former is used to learn ĥ
and the latter is used to estimate the performance of ĥ on new data. Widely
used variants of this scheme are cross-validation and bootstrapping [131].

Prediction. Given a (fitted) model ĥ and an observation f , we can
predict the associated target x:

x̂ = ĥ(f) . (2.3)

This step is also called inference or estimation. If x is categorial, we call
it a classification and if it is continuous a regression. This step is typically
defined by the considered model classes H during training and usually fast
to evaluate. For example, for a linear SVM, this step is just comprised of
an inner product and a thresholding operation. The target x can even be
a complex structure composed of several inter-dependent variables, e.g. a
labeling of all pixels in an image. In this case, the prediction step itself
can become a (non-trivial) optimization problem [110]. This is common
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in the context of computer vision, where a lot of work has focussed on
such structured prediction problems and its optimization during prediction
time [132, 133]. In fact, graph inference as we consider it in this thesis is
such a structured prediction.
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Reconstructing
Cerebrovascular Networks
under Local Physiological

Constraints by Integer
Programming

This chapter has been published as peer-reviewed journal paper:

M. Rempfler, M. Schneider, G. D. Ielacqua, X. Xiao, S. R. Stock, J. Klohs,
G. Székely, B. Andres, and B. H. Menze. “Reconstructing cerebrovascular
networks under local physiological constraints by integer programming.” In:
Medical Image Analysis 25.1 (2015), pp. 86–94. doi: 10.1016/j.media.

2015.03.008

Synopsis: This work presents an approach to reconstructing vascular net-
works by considering image evidence, connectedness and geometric relation
between vessels. It extends our previous work [134] by a) a probabilistic
model for which we identify an ILP as its MAP estimator, and b) additional
experiments and discussion.

Contributions of thesis author: Model development and implementation,
computational experiments, composition of manuscript.
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3. Reconstructing Cerebrovascular Networks under Local
Physiological Constraints by Integer Programming

Abstract

We introduce a probabilistic approach to vessel network extraction that
enforces physiological constraints on the vessel structure. The method
accounts for both image evidence and geometric relationships between
vessels by solving an integer program, which is shown to yield the MAP
estimate to a probabilistic model. Starting from an overconnected net-
work, it is pruning vessel stumps and spurious connections by evaluating
the local geometry and the global connectivity of the graph. We utilize a
high-resolution µCT dataset of a cerebrovascular corrosion cast to obtain
a reference network and learn the prior distributions of our probabilistic
model and we perform experiments on in-vivo µMRA images of mouse
brains. We finally discuss properties of the networks obtained under
different tracking and pruning approaches.

3.1 Introduction

Many diseases affect general properties of the cerebrovascular network, exam-
ples are arteriosclerosis and dilative vascular malformations changing vessel
shape and diameter, but also Alzheimer’s and related neuro-degenerative
diseases are suspected to affect the general vascularity and global network
properties [41, 42]. Studies investigating such diseases frequently use mouse
models for experiments and commonly acquire in-vivo cerebrovascular im-
agery by means of µMRA. While segmenting and tracing tubular structures
is a longstanding field of interest in medical image computing [44, 45, 46,
48], we approach here the wider – and somewhat neglected [59] – problem of
extracting the full vascular network from image volumes under consideration
of local geometric properties and global constraints of the vascular structure.

Most vessel segmentation techniques rely on tubularity measures or
other vessel enhancement filters [44], and then apply rule-based or learned
decision algorithms to segment the vessels [46, 48, 50]. The network graph
- representing vessels by their centerline, complemented with additional
information such as local radii – can be extracted from binary segmentations
using morphological operators [135, 136], or by tracking vessels directly by
minimal path techniques [43], e.g. by applying a fast marching algorithm
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[49] or a Dijkstra-like scheme [47]. We point the interested reader to [46,
48] for more extensive reviews. In most applications, however, the extracted
graphs need further post-processing: Lu et al. [137], for example, incorpo-
rated discriminative classifiers that examine local geometrical features of
segments into a hierarchical approach for vessel-structure parsing. In order
to deal with imperfections in vascular connectivity of extracted networks,
Kaufhold et al. [138] discussed a supervised learning approach to gap filling
and network pruning, whereas Schneider et al. [139] recently proposed a
generative method for gap in-fill that is guided by a simplified angiogene-
sis model. While segmentation algorithms are likely to enforce expected
local vessel shape and geometry, only few approaches consider both local
properties and global network connectivity when extracting the full network:
Jiang et al. [60] incorporated assumptions about vessel diameters (Murray’s
hypothesis [140]) in a global optimization problem restricted to vascular
trees. Tree shape priors have also been included into the segmentation
of vasculature by [66]. In a different application, Türetken et al. [141]
introduced recently an integer programming approach that evaluates path
coherence and connectivity of general curvilinear structures, such as streets
in remote-sensing images or vessels in confocal image stacks. Starting from
an overconnected graph, they are pruning edges that do not fulfill desired
structural relationships of neighbouring segment pairs using a path classifier
that is trained from annotated 3-D networks.

All of these approaches enforce local coherence within the extracted
network – a general property of the vascular network. More complex local
properties of a structural network, however, can be described by network
motifs [16, 19]. Network motifs are frequently recurring subgraphs, also
called building blocks, that are characteristic for a type of network, such as
bifurcations in vascular networks.

In this paper, we enforce local geometrical properties similar to Jiang et al. [60],
exploring the relevance of two basic motifs of vascular networks, i.e., the
geometrical properties of continuing segment pairs and of vessel bifurcations
and following the idea of pruning of Türetken et al. [141]. We present a
probabilistic model which combines this geometric prior with local vessel
evidence obtained from a segmentation algorithm [50], and show that the
MAP estimate can be computed by an ILP. We learn the global statis-
tic of geometrical properties of the network motifs from a high resolution
dataset. Finally, we identify a more efficient scheme to solve the ILP for large
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I

Graph
Construction

Segmentation

Gover

Network
Optimization

G∗

P (I)

Physiological
Prior

Section 2.1 Section 2.2

Figure 3.1: Workflow: In a first stage (gray box), the image volume I is pro-
cessed so as to obtain an overconnected graph Gover as well as a confidence
measure for vessels such as the confidence map P (I). In the following step,
the network G∗ is extracted from Gover in an optimization scheme that con-
siders both image evidence (according to P (I)) and geometric-physiological
prior knowledge. In this paper, we focus on the network optimization step
(blue), where both image evidence and geometrical relationships of certain
network motifs, namely continuing pairs and bifurcations are considered.

datasets and illustrate its application for reconstructing vascular networks
from in-vivo µMRA images of the mouse brain.

3.2 Methods

In this section, we detail on the proposed vessel network extraction method
that estimates the most probable network under consideration of image
evidence and physiological prior knowledge. As depicted in the workflow
(Fig. 3.1), this method starts from an overconnected network graph Gover.
Hence, we briefly review the applied segmentation framework and skele-
tonization method as used in our experiments.

3.2.1 Vessel Segmentation Method and Construction
of the Overconnected Graph

As a first stage, we transform image intensities into confidence maps by using
the framework of Schneider et al. [142, 50]: In this approach, multiscale
steerable filter templates (SFT) are used as efficient directional filters, offering
features that are invariant with respect to the local vessel direction. An
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oblique random forest (RF) [143], which determines splits by solving a linear
regression with elastic net penalty in each node, is used for a subsequent
classification. The RF assigns each voxel v in an image volume I to a
probability pv ∈ [0, 1], indicating the local presence of a vessel-like structure.

We apply a threshold θ to the probability volume P (I) and skeletonize
the resulting binary volume using distance-ordered homotopic thinning
(DOHT) [135], a method that iteratively removes voxels without altering
the objects topology, to derive a network graph G(θ). We obtain an over-
connected network by generating multiple binary segmentations from P (I)
with different thresholds {θi}, skeletonizing each of them by DOHT to G(θi)
and superposing them into one network Gover({θi}). The resulting network
contains both segments with low confidence (contributed by graphs from
low thresholds θ close to 0), but maintains the high spatial accuracy of a
graph that is generated from conservative thresholds (i.e., with θ close to 1).
Note, however, that any method which generates an overconnected graph
Gover by proposing local vessel connections could be used instead.

3.2.2 Vessel Network Extraction

The goal of our method is to find the most plausible network G∗ out of an
overconnected network graph Gover = (V,E) with edges E = {ei} and given
image evidence P (I). We encode subgraphs of Gover with a set of binary
variables X = {xi} where each xi indicates whether or not the corresponding
segment ei ∈ E is active (i.e. xi = 1). Therefore, we arrive at the equivalent
problem of determining the MAP estimate of x ∈ {0, 1}|E|, for which we
describe a probabilistic model (Sect. 3.2.2) that considers image evidence,
local properties of specific network motifs as well as global connectivity, and
derive an ILP that allows computing the MAP network (Sect. 3.2.2).

Probabilistic Model

We formulate a probabilistic model P (X = x,Ω|I,G) according to Fig. 6.2,
where I is the image evidence, G is the given (overconnected) graph and X
is the set of binary variables denoting subgraphs of G. Ω is the set of all
feasible solutions of x:

Ω = {x ∈ {0, 1}|E| : Ax ≥ b} , (3.1)
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I,G X Ω

Figure 3.2: Probabilistic model. I: Image; G: (overconnected) Graph;
X: Set of binary variables denoting subgraphs of G; Ω: Set of feasible
configurations of x.

with Ax ≥ b being the short notation for all hard constraints that will
be considered such as those enforcing connectivity. This introduces a
probabilistic interpretation, as in [144], of the hard constraints that we
impose on the extracted networks.

According to the given probabilistic model in Fig. 6.2, we arrive at the
posterior distribution for x:

P (X = x|I,G,Ω) ∝ P (Ω|X = x)P (X = x|I,G) . (3.2)

Next, we model P (X = x|I,G) as a Markov random field (MRF):

P (X = x|I,G) =
1

Z

∏
xi∈X

φi (xi; I,G)α
∏

xi,xj∈X:

ei,ej adjacent

6∃ek adjacent to ei∧ej

φi,j (xi, xj; I,G)
∏

xi,xj ,xk∈X:

ei,ej ,ek adjacent

φi,j,k (xi, xj, xk; I,G) ,

(3.3)
where Z is the partition function and φ (.) are the potentials, which are
defined in the following. α > 0 is a parameter to adapt the trade-off between
unary and higher order potentials. For each segment represented by xi, we
set the unary potential:

φi (xi; I,G) =

{
P (xi = 1|Ii, Ei) if xi = 1 ,

P (xi = 0|Ii, Ei) otherwise ,
(3.4)

where P (xi = 1|Ii, Ei) can be understood as image evidence that the segment
xi is part of the underlying vasculature and a valid segment of the network.
The higher-order potentials are chosen as:

φi,j (xi, xj; I,G) =

{
pC,ij if xixj = 1 ,

pT otherwise ,
(3.5)

and

φi,j,k (xi, xj, xk; I,G) =


pB,ijk if xixjxk = 1 ,

pC,ij if xixj = 1 ∧ xixjxk = 0 ,

pT otherwise .

(3.6)
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where pC,ij is the likelihood of ei continuing in ej, pB,ijk the likelihood of a
bifurcation involving ei, ej and ek, and pT represents the possibility that
neither of them occur and the vessel terminates. Note that both binary
and ternary potentials in (3.3) account for the relationships of multiple
segments, hence we can split P (X = x|I,G) into a pure image evidence term
– containing only the unary potentials φi (.) – and a prior term consisting of
both φi,j (.) and φi,j,k (.).

Maximum A Posteriori Estimation by Integer Programming.

So far, we translated the problem of finding the most plausible subnetwork
in Gover into determining the MAP estimate x∗ of (3.2):

x∗ = arg max
x∈X

P (X = x|I,G,Ω) = arg max
x∈X

P (Ω|X = x)P (X = x|I,G) ,

(3.7)
where X = {0, 1}|E| is the set of all configurations of x. In the following,
we are going to derive an ILP to determine x∗. We start by specifying the
likelihood P (Ω|X = x) to be equal for all feasible x and 0 else, i.e.

P (Ω|X = x) ∝
{

1 if x ∈ Ω ,

0 otherwise .
(3.8)

Applying this definition leads to:

x∗ = arg max
x∈X

P (Ω|X = x)P (X = x|I,G) (3.9)

= arg max
x∈Ω

P (X = x|I,G) . (3.10)

From (6.3), the definition of the MRF (3.3), its potentials (3.4) to (3.6)
and the fact that each pseudo-boolean function has a unique multilinear
polynomial form, it follows that the MAP estimate x∗ takes the form of the
integer program:

min
x

J(x) = α
∑
xi∈X

wixi +
∑

xi,xj∈X:

ei,ej adjacent

wijxixj +
∑

xi,xj ,xk∈X:

ei,ej ,ek adjacent

wijkxixjxk , (3.11)

s.t. Ax ≥ b , (3.12)

xi ∈ {0, 1} ∀xi ∈ X , (3.13)
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with the weights wi, wij and wijk derived as

wi = − log
P (xi = 1|Ii, Ei)
P (xi = 0|Ii, Ei)

, (3.14)

wij = − log
pC,ij
pT

, (3.15)

wijk = − log
pB,ijkp

2
T

pC,ijpC,ikpC,jk
. (3.16)

The derivation is given in the appendix.

Computing the Weights

Image Evidence The weights derived from the unary potentials of the
MRF allow us to account for image evidence observed for each segment
represented by xi separately. To infer P (xi = 1|Ii, Ei) from the image
evidence, we average the probabilistic output pv of the classification along
voxels v assigned to the segment ei. We define P (xi = 1|Ii, Ei) = pi and
compute:

wi = − log
pi

1− pi
. (3.17)

Geometric Prior As depicted in Fig. 3.3, we consider two network motifs
and weight them accordingly with the derived wij and wijk. In order to
compute these, we evaluate angles between the involved segments – denoted
with γij and γijk (cf. Fig. 3.3c) – under consideration of their estimated radii
and define:

wij = − log
pC,ij
pT

= − log
P (γij|continue, θ)P (continue|θ)
P (γij|terminate, θ)P (terminate|θ) , (3.18)

wijk = − log
pB,ijkp

2
T

pC,ijpC,ikpC,jk
(3.19)

= − log
P (γijk|branch, θ)P (branch|θ)P (terminate|θ)2∏

(i′,j′)∈2{i,j,k} P (γi′j′ |continue, θ)P (continue|θ) , (3.20)

where θ is the parametric model that encodes physiologically realistic geo-
metric properties of the network motifs in terms of distributions over the
considered geometric features γij and γijk. The probabilities pC,ij, pB,ijk
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Figure 3.3: Illustration of network motifs that are considered by the phys-
iological model and the variables at a potential bifurcation. a) Pairs of
continuing segments and b) triplets that form a bifurcation (illustrated in
red). c) Variables at a potential bifurcation: Segments, e.g. xi, are drawn as
solid black lines, while a pairwise variable yij that represents xi continuing in
xj is depicted by the dark grey overlay (yik and yjk are omitted for clarity).
zijk corresponds to all three adjacent edges in the bifurcation (light grey).
Furthermore, both deviation angles γd (blue) and the inner angle γin (red)
are shown. Radii are estimated perpendicular to the edge direction. In
our experiments, we consider geometric features γijk = (γin, γd1, γd2)ijk for
bifurcations and γij = (γd)ij for continuing segments, while radius estimates
are used to determine the main trunk.

and pT originate from the definitions in (3.5) and (3.6). In this case,
P (γij|continue, θ) describes the likelihood of observing angle γij in a contin-
uing pair, and P (continue|θ) is the prior on how frequent continuing pairs
occur. We will discuss the choice of such a model θ in our experiments
(Sect. 3.3.3) where we fit them to evidence from high-resolution network
data.

Global Connectivity

An essential aspect when extracting vascular networks from noisy or incom-
plete data is to enforce connectivity between the observed components in
the network. In our approach, we enforce this property by hard constraints:∑

xi∈M
xi < |M |+

∑
xj∈N

xj ∀M ⊂ X \ xseed , (3.21)

where M is a set of connected segments and N its neighbourhood. In
other words, a subset M of segments that form one connected structure
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can only be active, if there is an incoming segment (or it is adjacent to
the seed). As there are exponentially many constraints, we follow a lazy
constraint generation approach and iteratively add those which are required
(cf. Sect. 3.2.2).

Linear Formulation

We note that the integer program in (3.11) contains second and third order
relations between variables. To deal with these, we exploit the binary nature
of the variables xi and introduce additional auxiliary variables Y = {yij} and
Z = {zijk} to substitute these products (xixj and xixjxk) in the objective.
A set of linear constraints ties the auxiliary variables to the corresponding
indicator variables {xi} such that yij = xixj and zijk = xixjxk holds for all
feasible solutions:

yij ≤ x ∀x ∈ {xi, xj},∀yij ∈ Y , (3.22)

yij ≥ xi + xj − 1 ∀yij ∈ Y , (3.23)

zijk ≤ x ∀x ∈ {xi, xj, xk},∀zijk ∈ Z , (3.24)

zijk ≥ xi + xj + xk − 2 ∀zijk ∈ Z , (3.25)

which leads to the ILP:

J(x,y, z) = α
∑
xi∈X

wixi +
∑
yij∈Y

wijyij +
∑
zijk∈Z

wijkzijk , (3.26)

s.t. A′(x,y, z) ≥ b′ , (3.27)

xi ∈ {0, 1} ∀xi ∈ X , (3.28)

yij ∈ {0, 1} ∀yij ∈ Y , (3.29)

zijk ∈ {0, 1} ∀zijk ∈ Z , (3.30)

where we summarized the constraints (3.22) to (3.25) together with (3.12)
in (3.27). (x,y, z) is the concatenation of all binary variables to a column
vector of all variables. We can solve the linear problem of (3.26) by a branch
and cut algorithm implemented in libraries such as [118].

Solving the Integer Programming Problem for Large Datasets

The described integer programming problem of (3.26) with the associated
constraints grows quickly for large graphs that result from whole brain scans.
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To tackle this problem, we propose to employ a lazy constraint generation
scheme together with the following approach:

1. Given the variable set X of the ILP, define a graph A = (VA, EA) with
a vertex vi ∈ VA for every xi ∈ X.

2. Add an edge eij to EA if and only if there exists a constraint that
contains both variables xi and xj.

3. Determine the connected components in A. Vertices of each connected
component represent a sub-problem that can be solved independently
– of course with their according constraints.

Whenever a constraint or variable is added, we adjust the graph A dynami-
cally. Then only sub-problems – i.e. variable sets represented by connected
components of A that are affected by the change – need to be solved, speed-
ing up the performance over approaches that solve the complete problem
in every run. Lazy constraint generation is a known concept in integer
programming, which was, for example, already applied to the famous travel-
ling salesman problem [145], whereas the dynamic sub-problem handling is
novelty of our approach. Employing this scheme does not deteriorate the
solutions quality, that is its objective value in terms of the cost function
J(.) in (3.11). However, the solution x∗ is in general not unique and hence,
solutions obtained from different optimizers are not necessarily identical in
terms of the network that they encode.

3.3 Experiments

3.3.1 Image Data

We use four 3-D in-vivo µMRA images of the mouse brain, each of size
248 px× 248 px× 109 px with an isotropic voxel spacing of 60 µm, and a
µCT of a corrosion cast from the cerebral vasculature of a mouse brain with
a volume of 2048 px × 2048 px × 3714 px and a spacing of 2.9 µm. Both
image data types are depicted in Fig. 3.4. All five datasets were acquired
from different animals with one acquisition protocol for all µMRA images.
The µCT is downsampled by a factor of 2 for the subsequent steps.
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(a) (b)

Figure 3.4: (a) Example slice of a whole-brain µMRA dataset, (b) Central
slice of the corrosion cast µCT with a magnified subregion (right). All
images are gray-scale inverted and the blue scalebar is 1 mm.

3.3.2 Preprocessing: Vessel Segmentation and
Graph Construction

We use the described vessel segmentation framework [142, 50] to obtain
an initial segmentation and to construct network graphs. Its parameters,
such as SFT order and scales as well as RF parameters, are adjusted in
a leave-one-out cross-validation using manually annotated ground truth
labels. Probability maps P (I) are binarized for different thresholds θ and
transformed into network graphs using DOHT as discussed in Sect 3.2.1.
We segment and track vessels in both µMRA and the µCT volume. The
non-overconnected results, obtained from single thresholds {0.2, 0.5, 0.9}, –
denoted as alternative below – serve as comparison in the experiments.

3.3.3 Training: Learning the Geometric Prior from
the High Resolution Network

We use the geometrical prior to support bifurcations in our overconnected
graph that are valid with respect to their diameter and relative angle, and
to remove those that are not. To this end, we learn the relative frequencies
of radii and deviation angles of vessel segments from the high resolution
µCT (see Fig. 3.5b for observed angles). We find p(γij|continue,Θ) to be
well represented by an exponential distribution (where γij is the deviation
angle between two continuing vessels), and p(γijk|branch,Θ) to be well
approximated by a multivariate Gaussian (where γijk are the three angles of
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a bifurcation) while Θ is the joint set of parameters of the two distribution
models. Radius estimates are utilized to determine the main trunk in
a bifurcation that serves as the reference for the angles considered here.
An illustration of the angles calculated at every possible bifurcation is
given in Fig. 3.3c. Furthermore, we estimate the relative frequencies of the
discussed network motifs, P (continue|θ), P (branch|θ) and P (terminate|θ).
For this, we take into account that paths in the high-resolution data (n-times
higher spatial resolution) are more frequently sampled due to the higher
spatial resolution, while the number of bifurcation points remains constant.
Hence, for estimating P (continue|θ), we normalize the number of points
sampled along paths by the resolution ratio n between high and low resolution
datasets. Otherwise, P (continue|θ) would be strongly overestimated for the
low-resolution data. Parameters θ are fitted to the distributions observed in
the µCT using the maximum likelihood estimate. The fitted model is then
used to determine weights wij and wijk as in (3.18) and (3.20). Samples of
favourable network motifs according to the learned distributions are depicted
in red in Fig. 3.5c.

3.3.4 Application: Extracting Networks from Low
Resolution µMRA Data

We generate an overconnected graph for each of the µMRA test sets using the
approach described in Sect. 3.2.1 with multiple thresholds θi ∈ {0.2, 0.5, 0.9}.
We select these three thresholds to obtain connections from high-recall
(θ = 0.2), high-precision (θ = 0.9) and trade-off (θ = 0.5) binarizations.
After optimization (with α = 1 and a maximal αmax = α→∞), we compare
the extracted network (opt) to networks obtained from individual thresholds
θ = 0.2, 0.5 and 0.9 (alternative).

We present a sensitivity analysis of the α-parameter of our method in
Fig. 6.4. For large values of α, the image evidence is emphasized (the
network is still connected), while choosing a small value of α prioritizes
geometric weights. Although varying α has limited impact on the scores
that we calculate for our test data, it is recommendable for other problems
to determine the most suitable α depending on the previously applied
processing, namely the segmentation and overconnection stage. If the data
to be processed is expected to contain malformations that are known to form
atypical bifurcations, then it would not be advisable to choose α < 1, unless
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Figure 3.5: (a) Processed network of the corrosion cast µCT; see Fig. 3.4
for scale. (b) Angle histograms computed on the extracted network of
the corrosion cast dataset with inferred distributions (solid). Shown are
deviation angles of continuing segments (green), deviation (blue) and inner
(red) bifurcation angles (see Fig. 3.3c). (c) Favourable configurations of
bifurcations (red) according to the fitted model of the corrosion cast µCT.
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Figure 3.6: Sensitivity study on the weight parameter α performed on two
µMRA datasets. The parameter α has a limited impact with respect to the
depicted scores. Averages are within 5.13 % and 5.45 % for relative vessel
volume, 222 µm and 256 µm average distance and 51.4 % and 51.6 % Dice
(cf. Fig. 3.8).

the prior model had been adapted accordingly. In the following experiments,
we will set α = 1 per default and compute results with αmax – i.e. maximum
emphasis on the image evidence term – for comparison.

Figure 4.5a shows an optimized network, while Fig. 4.5b-c provides
close-up views before and after optimization, respectively. A number of
spurious sprouts and loops are visible that are removed during the process.
Details in Fig. 4.5d-g show differences between the two thresholded and an
optimized network. We find that both thresholded networks (Fig. 4.5e-f)
lose the connection of the large branch (center to top-right), while it is
retained in the optimized network (Fig. 4.5g).

Figure 3.8 reports quantitative measures of global network properties,
such as relative vessel volume, average distance to the next vessel (i.e.
extravascular distance) and Dice score. We calculate both relative vessel
volume and the extravascular distance over a manually annotated brain mask
of 360 mm3. In order to compute Dice scores, we rasterize the networks using
a tubular model of circular shape and compare them with voxel-grained
annotations that were obtained manually on a set of selected slices along
each direction. As a consequence of this rasterization, inaccuracies on the
voxel level are introduced that negatively affect absolute values of the Dice
score, which is already very sensitive for thin structures such as vessels.
Note, however, that all compared strategies are affected by this to the same
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degree. We find the optimized network (opt, α = 1) to always group with the
more favourable of the alternative, which is a low vessel volume, a moderate,
i.e. neither too small nor too large, extravascular distance and a high Dice
score, while each of the alternative approaches provides poor results in at
least one of these scores. The relative vessel volumes vary between 5.2 %
and 6.5 % for our datasets, while [146] reported values from 3.6 % to 4.2 %
and also observed some inter-subject variability. Comparing the result of
our optimization with parameter α = 1 and the maximal choice of αmax, we
observe that both relative vessel volume and Dice score vary only slightly,
while the average distance increases when using αmax, hence resulting in
networks with a decreased vascular density. While the results support the
assumption that combining image evidence with geometric prior benefits
network extraction, it will require analysis on more extensive databases
to quantify the methods robustness in presence of specific pathologies and
malformations.

Comparing the processing time of the proposed solver (Sect. 3.2.2) and a
standard method (IBM ILOG CPLEX V12.51 [118]) as reported in Table 3.1,
we find that our approach of handling subproblems during the optimization
leads to an improvement: runtimes (one run each, on a quadcore CPU,
32 GB RAM) were shorter in three out of four cases, whereas the standard
method took between 44 % and 107 % longer. We find that absolute run
times may vary widely depending on the size of the overconnected graph and
its connectedness as well as parametrization due to the dynamic processing
scheme. For those two datasets that run much longer (# 1 and # 2), we
observe that the number of removed segments is two to three times higher
than for the two others, while the resulting, optimized networks describe
all a very similar vascular volume (as seen in Fig. 3.8). We attribute this
to a situation where the overconnection scheme is not as efficient as for the
two latter datasets and a high number of connections has to be discarded
in the regularization. The relative runtimes indicate that the approach of
partitioning the ILP into independent subproblems yields larger gains on
datasets which required more iterations in the constraint generation, i.e.
had longer absolute runtimes.
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Table 3.1: Runtimes in minutes on different µMRA datesets for our proposed
solving scheme (tilpcc) and an off-the-shelf solver (tcplex). We observe that
our method is faster as the off-the-shelf solver in the majority of cases.

Dataset # 1 # 2 # 3 # 4

tilpcc 2060.6 186.0 18.6 8.8
tcplex 2958.6 385.0 31.6 8.7
tcplex−tilpcc

tilpcc
0.44 1.07 0.70 -0.01

(a)

(b) (c)

(d) (e) (f) (g)

Figure 3.7: Visualisation of the results. (a) Rendered vascular network
extracted with our method (opt, α = 1) (b) Detail view before and (c) after
optimization. Colours change with vessel diameter. (d) Raw image. (e) Ras-
terized DOHT network θ = 0.5 and (f) with θ = 0.9. (g) Postprocessed
network with our method. Note that for the rasterization, a simple tube
model is used and therefore, not a perfect voxel-grained segmentation is to
be expected but rather a qualitative visualization that indicates whether or
not a structure is present in the network model (shown as red overlay).
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Figure 3.8: Comparison between the optimized networks (opt) with α = 1,
αmax = α → ∞ and simple networks obtained at thresholds θ = 0.2, 0.5
and 0.9 (alternative: low = 0.2, mid = 0.5, high = 0.9). Boxplots (median
in red, mean as ?) depict the statistics on all four µMRA datasets. The
gradients (green) to the right of both plots of physiological scores indicate
physiologically plausible ranges (cf. [146]). The Dice score has been com-
puted by comparing voxel-wise annotations with the rasterized the networks
using a simple tube model (negatively affecting absolute Dice values for all
approaches to the same degree). Our regularization (opt, α = 1) always
groups with the more favourable of the alternatives, i.e. it has a small vessel
volume, a moderate average distance and yet an acceptable high Dice score.

3.4 Conclusions

We have introduced a probabilistic approach for extracting vessel networks
and we can compute the MAP estimate efficiently by solving an ILP. We
learned physiological-geometric properties considered in the probabilistic
model from a high-resolution corrosion cast µCT of a murine cerebrovascular
network and applied it to low-resolution, in-vivo µMRA images, leading to
superior extracted networks in terms of macroscopic measures.

Our method can be applied as post-processing step to existing vessel
segmentation pipelines in order to incorporate physiological knowledge for
improved network extraction. As such, it can be combined with other graph
generation methods that are potentially able to overconnect the graph,
such as discussed in [138, 139]. It can be used with any other geometrical-
physiological prior knowledge about properties, for example considering
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vessel shape, length, curvature and flow direction, or a non-parametric
learning as in [137]. Even a spatially-variant prior could be designed and
incorporated to address different vascular properties in certain areas, similar
to the parametric maps used for latent classes in [147, 148]. Furthermore,
higher-order network motifs that occur frequently in vasculature could be
included into the prior model in the same way as bifurcations. It should be
noted, however, that increasing the complexity of the prior model would
likely require a larger database for training.

For future studies, it would be interesting to assess the robustness of
the approach with respect to specific pathologies and abnormalities in the
vascular network. Another direction could be the extension of the algorithm
to jointly infer a subject-specific parametrization of the physiological model
and predict the underlying network.
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Supplement

In Sect. 3.2.2, we found that the MAP estimate x∗ is given by

x∗ = arg max
x∈Ω

P (X = x|I,G) . (3.31)

Here, we are going to derive the cost function from the definition of the
MRF (3.3). We start by using the definitions of the potential functions φ (.),
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(3.4) to (3.6), in the logarithm of P (X = x|I,G):

logP (X = x|I,G) ∝
α
∑
xi∈X

log
(
P (xi = 1|Ii, Ei)xi P (xi = 0|Ii, Ei)1−xi)+

∑
xi,xj∈X:

ei,ej adjacent

6∃ek adjacent to ei∧ej

log
(
p
xixj
C,ij p

1−xixj
T

)

+
∑

xi,xj ,xk∈X:

ei,ej ,ek adjacent

log

pxixjxkB,ijk p
(1−xi)(1−xj)(1−xk)
T

∏
(i′,j′)∈S

p
xi′xj′−xixjxk
C,i′j′

 (3.32)

=α
∑
xi∈X

xi log
P (xi = 1|Ii, Ei)
P (xi = 0|Ii, Ei)

+ logP (xi = 0|I) +
∑

xi,xj∈X:

ei,ej adjacent

6∃ek adjacent to ei∧ej

xixj log
pC,ij
pT

+ log pT

+
∑

xi,xj ,xk∈X:

ei,ej ,ek adjacent

xixjxk log
pB,ijkp

2
T∏

(i′,j′)∈S pC,i′j′
+

∑
(i′,j′)∈S

(
xi′xj′ log

pC,i′,j′

pT

)
+ log pT

 ,

(3.33)

where we applied multilinear representations for pseudo-boolean functions
and S is the set of pairs out of {i, j, k}, i.e. S = 2{i,j,k}. Discarding the
constant terms, rearranging the pairwise terms originating from the ternary
potentials and merging them with the uniquely pairwise terms – which
generates per definition no doubles – then leads to

logP (X = x|I,G) ∝

α
∑
xi∈X

xi log
P (xi = 1|Ii, Ei)
P (xi = 0|Ii, Ei)

+
∑

xi,xj∈X:

ei,ej adjacent

xixj log
pC,ij
pT

(3.34)

+
∑

xi,xj ,xk∈X:

ei,ej ,ek adjacent

xixjxk log
pB,ijkp

2
T

pC,ijpC,ikpC,jk
. (3.35)

Finally, taking the negative logarithm turns the maximization into a mini-
mization:

x∗ = arg min
x∈Ω

− logP (X = x|I,G) (3.36)
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= arg min
x∈Ω

α
∑
xi∈X
− log

P (xi = 1|Ii, Ei)
P (xi = 0|Ii, Ei)

xi +
∑

xi,xj∈X:

ei,ej adjacent

− log
pC,ij
pT

xixj (3.37)

+
∑

xi,xj ,xk∈X:

ei,ej ,ek adjacent

− log
pB,ijkp

2
T

pC,ijpC,ikpC,jk
xixjxk , (3.38)

which is equivalent to the integer program:

min
x

J(x) = α
∑
xi∈X

wixi +
∑

xi,xj∈X:

ei,ej adjacent

wijxixj +
∑

xi,xj ,xk∈X:

ei,ej ,ek adjacent

wijkxixjxk , (3.39)

s.t. Ax ≥ b , (3.40)

xi ∈ {0, 1} ∀xi ∈ X , (3.41)

with the weights given as:

wi = − log
P (xi = 1|Ii, Ei)
P (xi = 0|Ii, Ei)

, (3.42)

wij = − log
pC,ij
pT

, (3.43)

wijk = − log
pB,ijkp

2
T

pC,ijpC,ikpC,jk
. (3.44)
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Abstract

Several important tasks in medical image analysis can be stated in the
form of an optimization problem whose feasible solutions are connected
subgraphs. Examples include the reconstruction of neural or vascular
structures under connectedness constraints.

We discuss the minimum cost connected subgraph (MCCS) problem
and its approximations from the perspective of medical applications.
We propose a) objective-dependent constraints and b) novel constraint
generation schemes to solve this optimization problem exactly by means
of a branch-and-cut algorithm. These are shown to improve scalability
and allow us to solve instances of two medical benchmark datasets to
optimality for the first time. This enables us to perform a quantitative
comparison between exact and approximative algorithms, where we
identify the geodesic tree algorithm as an excellent alternative to exact
inference on the examined datasets.

4.1 Introduction

The minimum cost connected subgraph (MCCS) optimization problem arises
in several medical image analysis tasks, most prominently for segmenting
neural structures [30] or reconstructing vascular networks [20], where the
MAP subgraph under connectedness constraints is inferred. Variations of
this optimization problem have been proposed for anatomical labelling of
vasculature [31] or artery-vein separation [32]. Imposing connectedness
serves as regularizer, suppressing spurious detections and complementing
incomplete observations, and it is often a requirement for further processing
steps, e.g. if the reconstructed vasculature shall be used for biophysical
simulations.

While [30, 20, 31, 32] successfully solve an MCCS problem on heavily
preprocessed, application-specific, sparse graphs, it would also be interesting
to enforce connectedness on both very dense or large grid-graphs, for example
in low-level segmentation tasks (Fig. 6.1, left), for 3D/4D reconstruction
problems (Fig. 6.1, middle and right) or when it is not possible to reliably
reduce the candidate graphs size. In these cases, however, the computational
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Figure 4.1: Examples for the MCCS on grid graphs. Left: Segmentation
of vasculature in retinal images. Middle: Reconstruction of a neuron
from a 3D stack. Excessive disconnected components are shown in red
for better visibility. Right: Delineation of vessels in a digital subtraction
angiography (DSA) time series. The detail views show: raw image (top),
without connectedness (middle) and with connectedness (bottom). Im-
posing connectedness constraints, i.e. requiring an minimum cost connected
subgraph (MCCS), helps to reconnect disconnected terminals and remove
spurious detections without penalizing thin tubular structures.

complexity becomes challenging. In fact, it was shown to be NP-hard in [63].
Nowozin & Lampert [64] propose an exact algorithm that tightens an outer
polyhedral relaxation of the connected subgraph polytope by cutting planes.
However, without guarantee to terminate in polynomial time, it was found
to be too slow to solve typical instances of medical benchmark datasets
to optimality. To this end, two heuristical algorithms were proposed by
Chen et al. [65] and Stühmer et al. [66]. They either use an approximative
formulation of the connected subgraph polytope by means of a precomputed
geodesic shortest path tree [66] or iteratively solve a surrogate problem that
is based on altered weights of the original problem [65]. Both approaches are
fast enough for medical applications and were reported to yield qualitatively
promising results. A quantitative comparison, however, has been prevented
by the prohibitively expensive computation of exact solutions to the MCCS
problem.

In this paper, we revisit the MCCS in an integer linear programming
(ILP) framework for MAP estimation under connectedness constraints. First,
we contribute to the exact optimization by proposing a) objective-dependent
constraints that reduce the size of the polytope and hence, reduce the
number of potential solutions to explore, and b) constraint generation
strategies beyond the standard nearest and minimal separator strategy,
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which we show to have a strong impact on the runtime of the ILP. Both
propositions together enable us to compute the MCCS on several instances
of two medical benchmark datasets – addressing vessel segmentation and
neural fiber reconstruction – to optimality. Our second contribution is a
first quantitative comparison of the exact algorithm and the two heuristics
in terms of runtime, objective function and semantic error metrics.

4.2 Background

We are interested in the most likely binary labeling x ∈ {0, 1}|V | of the
nodes V in the graph G = (V,E). A node i is active if xi = 1. By imposing
connectedness constraints, i.e. x ∈ Ω, the MAP estimate becomes a MCCS
problem:

x∗ = arg max
x∈{0,1}|V |

P (X = x|I,Ω) = arg max
x∈Ω

P (X = x|I) , (4.1)

where I is the image evidence and Ω denotes the set of x that are connected
subgraphs of G. In this section, we discuss two formulations of Ω, the exact
formulation that follows [64] and the geodesic tree formulation of [66].

4.2.1 Exact Connectedness

Following [64], we can describe Ω with the following set of linear inequality
constraints

∀i, j ∈ V, (i, j) /∈ E : ∀S ∈ S(i, j) xi + xj − 1 ≤
∑
k∈S

xk , (4.2)

where S is a set of vertices that separate i and j, while S(i, j) is the collection
of all vertex separator sets for i and j. In other words, if two nodes i and j
are active, then they are not allowed to be separable by any set of inactive
nodes. Thus, a path of active nodes has to exist. In practice, this set
of constraints is too large to be generated in advance. However, given a
labelling x we can identify at least a subset of the violated connectedness
constraints in polynomial time, add them to the ILP and search for a new
feasible solution. This approach is known as lazy constraint generation. In
Section 4.3.2, we detail on identifying and adding these constraints.
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Rooted case. In many medical segmentation problems, it is reasonable to
assume that a root node can be identified aforehand with an application-
specific detector, manually or by a heuristic, such as picking the strongest
node in the largest component. If a known root r exists, it suffices to check
connectedness to the root node instead of all pairs of active nodes. The
constraints in (4.2) then become

∀i ∈ V \ {r}, (r, i) /∈ E : ∀S ∈ S(i, r) xi ≤
∑
k∈S

xk . (4.3)

4.2.2 Geodesic Tree Connectedness

Alternative to the exact description of all connected subgraphs that we
discussed in the previous section, we can formulate a connectedness prior
as in [66] on a geodesic shortest path tree T (G) = (V,A ⊆ E) rooted in r.
Here, T (G) is precomputed based on the unary potentials, i.e. with edge
weights defined as f(i, j) = 1

2
(max(wi, 0) + max(wj, 0)). The set of feasible

solutions is then given by the inequalities:

∀i ∈ V \ {r}, (p, i) ∈ T (G) xi ≤ xp , (4.4)

where p is the parent of i in the geodesic tree T (G). With this set of
constraints, a node i can only be active if his parent p in the geodesic tree is
also active, thus connecting all active nodes to the root r along the branches
of T (G). Advantages of this approach are that only |V | − 1 constraints are
necessary to describe the set of feasible solutions and that the relaxation is
tight. On the other hand, the inequalities of (4.4) describe a strict subset of
(4.3), unless T (G) = G. Hence it might discard an optimal solution that is
feasible in (4.3).

4.3 Methods

Given the probabilistic model P (X = x|I) of (4.1) is a random field overG =
(V,E), we can write its MAP estimator x∗ = arg maxx∈{0,1} P (X = x|I,Ω)
as an ILP. We will assume for the remaining part that P (X = x|I) =
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i∈V P (xi|I), leading to the ILP:

minimize
∑
i∈V

wixi , (4.5)

s.t. x ∈ Ω , (4.6)

x ∈ {0, 1}|V | , (4.7)

where (4.6) are the connectedness constraints, i.e. either (4.3) or (4.4), (4.7)
enforces integrality, and wi are the weights that can be derived as wi =
− log P (xi=1|I)

1−P (xi=1|I) . Higher order terms of the random field can be incorporated
by introducing auxiliary binary variables and according constraints as done
in [20]. Note, however, that [65] reported problem instances with weak or
no pairwise potentials – as we are addressing them here – to be amongst
the most difficult.

4.3.1 Objective-dependent Constraints

Given the problem with unary terms, we observe that, for any connected
component U ⊂ V composed of unfavourable nodes only, i.e. ∀i ∈ U , wi > 0,
it can only be active in the optimal solution if there are at least two active
nodes in its neighbourhood:

∀i ∈ U 2xi ≤
∑

j∈∪k∈Uδ(k)\U
xj , (4.8)

where δ(k) is the set of neighouring nodes to k. In other words, unfavourable
nodes can not form a leaf in the optimal solution (otherwise, removing
the unfavourable nodes would give us a better solution without loosing
connectedness). In the special case of |U| = 1, we can add the constraint
from the beginning. This removes feasible solutions from Ω that are a priori
known to be suboptimal, hence reducing the search space in the optimization
and making it unnecessary to add a large set of separator inequalities.

Higher-order weights. Even though we only define (4.8) for unary weights,
it is possible to adapt the constraint to higher-order models by changing
the condition to wi + minj∈δ(i) wij > 0, provided the pairwise weights wij
are only introduced for neighbouring nodes i, j such that (i, j) ∈ E.
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Figure 4.2: Constraint generation strategies. Illustration of the nearest
separator (left), minimal separator (middle) and k-nearest (right) strategies.
Active nodes are shown in black, inactive nodes are white and the identified
separator sets S are marked in blue. S is subsequently used to generate the
corresponding constraint in (4.2) or (4.3).

4.3.2 Constraint Generation Strategies

The extensive number of inequalities needed for (4.3) makes it necessary to
identify violated constraints during the optimization and add them to the
problem. We note that it suffices to treat individual connected components as
one entitity, since establishing a connection automatically connects all pairs
of nodes between them. Identifying violated constraints boils down to finding
a vertex separator set S between two disconnected, active components in
the current solution. The constraints corresponding to S are then generated
according to (4.2) or (4.3) for all nodes in the given connected component.

At the heart of this technique is the observation that only a subset of
inequalities is active at the optimum of a given problem instance. However,
depending on the choice of the inequalities that we add in each step, we may
explore (and therefore construct) different parts of the polytope Ω, most
likely requiring a different number of iterations.

In the following, we first review the two standard strategies, namely the
nearest and minimal separator, and then propose several novel, alternative
strategies.

Nearest separator. In this standard approach, the vertex separator set
in the immediate neighbourhood of the active component is picked for
generating the new constraint. This strategy has been used, for example,
in [20]. It is motivated by its simplicity and the fact that it often coincides
with the minimal separator strategy for small components.

Minimal separator. A minimal (in terms of |S|) separator set is obtained
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by solving a max-flow problem between any two disjoint active components
at hand and selecting the smaller vertex set on either side of the resulting
min-cut. For the max-flow, we set the flow capacity c in edge (i, j) as
c(i, j) = max(1− xi, 1− xj). The strategy was applied in [64].

Equidistant separator. Alternatively, we can identify the separator set S
that is equidistant to the current active component and all other components
by running a breadth-first search (BFS) from either side. Similar to the
max-flow of the minimal separator, the distance measure is only accounting
for non-active nodes. This strategy originates in the observation that the
weakest evidence between two components is often found half-way into the
connecting path.

k-Nearest and k-Interleave. We run a BFS from the active component C
and collect the k (disjoint) separator sets {Sn}k−1

n=0 composed of all nodes with
identical distance. The search terminates if k equals the number of nodes in
C or if another active node is reached. For the k-interleave, only separators
with even distance are chosen. The intuition behind these strategies is that
a wider range of neighbours (and their neighbours) has to be considered for
the next solution.

4.4 Experiments & Results

Datasets & Preprocessing.

We conduct experiments on two medical datasets: First, on the DRIVE
database of retinal images [69], each being 565 × 584 px. We use the
probability estimates P (xi = 1|I) for a pixel i being vasculature from the
recent state-of-the-art approach of [56] for our unaries. Second, we run
experiments on the olfactory projection fibers (OPF) dataset [53], composed
of 8 3D confocal microscopy image stacks. We use the stacks prepared in [30],
where we estimate P (xi = 1|I) of voxel i being part of the fiber by a logistic
regression on the image intensities. We segment the nerve fiber under the
requirement of connectedness on the 3D grid graph of 256× 256× n nodes
with n ∈ {30, . . . , 51} depending on the case. The probability P (xi = 1|I)
of voxel i being part of the fiber is estimated by a logistic regression on the
image intensities. Both datasets are illustrated in Fig. 6.1.
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Figure 4.3: Runtime with and without the proposed objective-dependent
constraints on 64× 64 instances. Mean values are depicted by �, whiskers
span [min,max] values. Unsolved instances are excluded for readability. We
find that all strategies benefit from the additional constraints. Additional
per-instance information can be found in the supplement.

Optimization.

We solve the ILP (4.5) by the branch-and-cut algorithm of the solver
Gurobi [117] with a default relative gap of 10−4. Objective-dependent
constraints for single nodes (Section 4.3.1) are added from the beginning.
For the exact connectedness (Section 4.2.1), the strategies described in
Sect. 4.3.2 are implemented as a callback: Whenever the solver arrives at
an integral solution x′, violated constraints are identified and added to the
model. If no such violation is found, i.e. x′ is already connected, then it is
accepted as new current solution x∗. For the geodesic tree connectedness
(Section 4.2.2), all constraints are added at once. In order to arrive at a fair
comparison, we define the root node for both approaches.

Experiment: Objective-dependent constraints.

To examine the impact of the objective-dependent constraints, we subsample
25 subimages of 64 × 64 px from the DRIVE instances and run the ILP
once with and once without the additional first order constrains of (4.8).
As shown in Fig. 4.3, we find that all strategies benefit from the additional
constraints.
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Figure 4.4: Left: Number of solved instances per strategy. The darker bar
indicates how often a strategy was the fastest to solve an instance. Right:
Runtime on solved instances. Strategies with too few solved instances are
not included. k-Nearest and k-Interleave are found to be the most successful
exact strategies.

Experiment: Comparing exact and approximative algorithms.

We compare exact and geodesic tree MCCS on both datasets. On 2D
images, we additionally compare to the method by [65] called Topocut. As
a baseline, we compute the maximum connected component in the non-
constrained solution (Maxcomp). The results are presented in Fig. 5.7 and
Table 4.1 (additional information per instance is provided in the supplement).
We observe that 6/8 and 12/20 instances were solved to optimality with
our propositions, while standard strategies solved ≤ 1. k-Nearest and k-
interleave are the two most successful exact strategies in terms of solved
instances and speed. In terms of segmentation scores, the two heuristics
are on par with the exact algorithm, while all of them outperform the
baseline. We find the geodesic approach to match the exact solution with
respect to objective values in all instances (within a relative difference of
10−4), whereas Topocut often obtains slightly lower objective values than
the geodesic approach. A qualitative comparison between an exact and
geodesic solution is presented in Fig. 4.5.
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Table 4.1: Segmentation scores in terms of F1-score, (Precision, Recall) in %
on the solved instances. All approaches outperform the baseline (MaxComp),
while no significant difference can be found between them.

OPF DRIVE
F1 (P R) F1 (P R)

Maxcomp 68.5 (67.7, 71.9) 78.7 (87.2, 72.1)
Geodesic 76.2 (69.1, 85.4) 80.1 (86.2, 75.2)
Topocut - - - 80.1 (86.4, 74.9)
Exact 76.2 (69.1, 85.4) 80.1 (86.2, 75.2)

Geodesic Exact

Figure 4.5: Comparison of exact and approximative connectedness: Major
differences as the one indicated are encountered mainly if solutions are
competing under the model P (X = x|I) and thus almost equivalent w.r.t.
objective value.

4.5 Conclusions

We have shown that exact optimization of the MCCS, as it is typical for
neural and vascular structure reconstruction tasks, strongly benefits from
the proposed objective-dependent constraints and the constraint generation
strategies. In a first quantitative comparison between exact and approxima-
tive approaches on two datasets, we found that the geodesic tree formulation
is a fast, yet highly competitive alternative to exact optimization.
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While we focussed on large grid-graphs that are most important for low-
level segmentation and reconstruction, we expect that our findings transfer
to MCCS problems and related ILP-based formulations on sparse graphs,
e.g. those discussed in [30, 20, 31, 32], and thus consider this a promising
direction for future work. Besides, it will be intersting to investigate the
effect of our propositions in the presence of higher-order terms.
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Abstract

Lineage tracing, the joint segmentation and tracking of living cells
as they move and divide in a sequence of light microscopy images,
is a challenging task. Jug et al. [86] have proposed a mathematical
abstraction of this task, the moral lineage tracing problem (MLTP),
whose feasible solutions define both a segmentation of every image and a
lineage forest of cells. Their branch-and-cut algorithm, however, is prone
to many cuts and slow convergence for large instances. To address this
problem, we make three contributions: (i) we devise the first efficient
primal feasible local search algorithms for the MLTP, (ii) we improve
the branch-and-cut algorithm by separating tighter cutting planes and
by incorporating our primal algorithms, (iii) we show in experiments
that our algorithms find accurate solutions on the problem instances of
Jug et al. and scale to larger instances, leveraging moral lineage tracing
to practical significance.

5.1 Introduction

Recent advances in microscopy have enabled biologists to observe organisms
on a cellular level with higher spatio-temporal resolution than before [149,
100, 150]. Analysis of such microscopy sequences is key to several open ques-
tions in biology, including embryonic development of complex organisms [70,
71], tissue formation [72] or the understanding of metastatic behavior of
tumor cells [73]. However, to get from a sequence of raw microscopy images
to biologically or clinically relevant quantities, such as cell motility, migra-
tion patterns and differentiation schedules, robust methods for cell lineage
tracing are required and have therefore received considerable attention [74,
75, 76, 77, 78, 79].

Cell lineage tracing is typically considered a two step problem: In the
first step, individual cells are detected and segmented in every image. Then,
in the second step, individual cells are tracked over time and, in case of a
cell division, linked to their ancestor cell, to finally arrive at the lineage
forest of all cells (Fig. 6.1). The tracking subproblem is complicated by cells
that enter or leave the field of view, or low temporal resolution that allows
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Figure 5.1: Depicted above is a lineage forest of cells from a sequence of
microscopy images. The first image of the sequence is shown on the left.
The last image is shown on the right. Cell divisions are depicted in black.

large displacements or even multiple consecutive divisions within one time
step. In addition to this, mistakes made in the first step, leading to over- or
undersegmentation of the cells, propagate into the resulting lineage forest
and cause spurious divisions or missing branches, respectively. The tracking
subproblem is closely related to multi-target tracking [33, 34, 35, 36, 37] or
reconstruction of tree-like structures [151, 20, 104, 30, 152]. It has been cast
in the form of different optimization problems [81, 82, 83, 85, 84] that can
deal with some of the mentioned difficulties, e.g., by selecting from multiple
segmentation hypotheses [85, 84].

Jug et al. [86], on the other hand, have proposed a rigorous mathematical
abstraction of the joint problem which they call the MLTP. It is a hybrid of
the MCMCP, which has been studied extensively for image decomposition [87,
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98], and the minimum cost disjoint
arborescence problem, variations of which have been applied to reconstruct
lineage forests in [81, 82, 83, 84, 85] or tree-like structures [151, 152, 30].
Feasible solutions to the MLTP define not only a valid cell lineage forest over
time, but also a segmentation of the cells in every frame (c.f. Fig. 5.2). Solving
this optimization problem therefore tackles both subtasks – segmentation and
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tracking – simultaneously. While Jug et al. [86] demonstrate the advantages
of their approach in terms of robustness, they also observe that their branch-
and-cut algorithm (as well as the cutting-plane algorithm for the linear
relaxation they study) is prone to a large number of cuts and exhibits
slow convergence on large instances. That, unfortunately, prevents many
applications of the MLTP in practice, since it would be too computationally
expensive.

Contributions. In this paper, we make three contributions: Firstly,
we devise two efficient heuristics for the MLTP, both of which are primal
feasible local search algorithms inspired by the heuristics of [95, 153] for the
MCMCP. We show that for fixed intra-frame decompositions, the resulting
subproblem can be solved efficiently via bipartite matching.

Secondly, we improve the branch-and-cut algorithm [86] by separating
tighter cutting planes and by employing our heuristics to extract feasible
solutions.

Finally, we demonstrate the convergence of our algorithms on the problem
instances of [86], solving two (previously unsolved) instances to optimality
and obtaining accurate solutions orders of magnitude faster. We demonstrate
the scalability of our algorithms on larger (previously inaccessible) instances.

5.2 Background and Preliminaries

Consider a set of T = {0, . . . , tend} consecutive frames of microscopy image
data. In moral lineage tracing, we seek to jointly segment the frames into
cells and track the latter and their descendants over time. This problem
is formulated by [86] as an ILP with binary variables for all edges in an
undirected graph as follows.

For each time index t ∈ T , the node set Vt comprises all cell fragments,
e.g. superpixels, in frame t. Each neighboring pair of cell fragments are
connected by an edge. The collection of such edges is denoted by Et. Between
consecutive frames t and t+1, cell fragments that are sufficiently close to each
other are connected by a (temporal) edge. The set of such inter frame edges is
denoted by Et,t+1. By convention, we set Vtend+1 = Etend+1 = Etend,tend+1 = ∅.
The graph G = (V,E) with V =

⋃
t∈T Vt and E =

⋃
t∈T (Et ∪ Et,t+1) is

called hypothesis graph and illustrated in Fig. 5.2. For convenience, we
further write Gt = (Vt, Et) for the subgraph corresponding to frame t and
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time

Figure 5.2: The moral lineage tracing (MLT)1: Given a sequence of images
decomposed into cell fragments (depicted as nodes in the figure), cluster
fragments into cells in each frame and simultaneously associate cells into
lineage forests over time. Solid edges indicate joint cells within images and
descendant relations across images. Black nodes depict fragments of cells
about to divide.

G+
t = (V +

t , E
+
t ) with V +

t = Vt ∪ Vt+1 and E+
t = Et ∪ Et,t+1 ∪ Et+1 for the

subgraph corresponding to frames t and t+ 1.
For any hypothesis graph G = (V,E), a set L ⊆ E is called a lineage

cut of G and, correspondingly, the subgraph (V,E \ L) is called a lineage
(sub)graph of G if

1. For every t ∈ T , the set Et ∩ L is a multicut2 of Gt.
2. For every t ∈ T and every {v, w} ∈ Et,t+1 ∩ L, the nodes v and w are

not path-connected in the graph (V +
t , E

+
t \ L).

3. For every t ∈ T and nodes vt, wt ∈ Vt, vt+1, wt+1 ∈ Vt+1 with
{vt, vt+1}, {wt, wt+1} ∈ Et,t+1 \L and such that vt+1 and wt+1 are path-
connected in (V,Et+1 \ L), the nodes vt and wt are path-connected in
(V,Et \ L).

For any lineage graph (V,E \ L) and every t ∈ T , the non-empty, maximal
connected subgraphs of (Vt, Et \ L) are called cells at time index t. Further-
more, Jug et al. call a lineage cut, respectively lineage graph, binary if it
additionally satisfies

4. For every t ∈ T , every cell at time t is connected to at most two
distinct cells at time t+ 1.
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According to [86], any lineage graph well-defines a lineage forest of cells.
Moreover, a lineage cut (and thus a lineage graph) can be encoded as a
01-labeling on the edges of the hypothesis graph.

Lemma 5.2.1 ([86]). For every hypothesis graph G = (V,E) and every
x ∈ {0, 1}E, the set x−1(1) of edges labeled 1 is a lineage cut of G iff x
satisfies inequalities (5.1) – (5.3):

∀t ∈ T ∀C ∈ cycles(Gt)∀e ∈ C :

xe ≤
∑

e′∈C\{e}
xe′ (5.1)

∀t ∈ T ∀{v, w} ∈ Et,t+1∀P ∈ vw-paths(G+
t ) :

xvw ≤
∑
e∈P

xe (5.2)

∀t ∈ T ∀{vt, vt+1}, {wt, wt+1} ∈ Et,t+1(with vt, wt ∈ Vt)
∀S ∈ vtwt-cuts(Gt)∀P ∈ vt+1wt+1-paths(Gt+1) :

1−
∑
e∈S

(1− xe) ≤ xvtvt+1 + xwtwt+1 +
∑
e∈P

xe (5.3)

Jug et al. refer to (5.1) as space cycle, to (5.2) as space-time cycle and
to (5.3) as morality constraints. We denote by X ′G the set of all x ∈ {0, 1}E
that satisfy (5.1) – (5.3). For the formulation of the additional bifurcation
constraints, which guarantee that the associated lineage cut is binary, we
refer to [86, Eq. 4]. The set XG collects all x ∈ X ′G that also satisfy the
bifurcation constraints.

Given cut costs c : E → R on the edges as well as birth and termination
costs c+, c− : V → R

+
0 on the vertices of the hypothesis graph, [86] defines

1The figure is a correction of the one displayed in [86].
2A multicut of Gt = (Vt, Et) is a subset M ⊆ Et such that for every cycle C in Gt it

holds that |M ∩ C| 6= 1, cf. [154].
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the following moral lineage tracing problem (MLTP)

min
x,x+,x−

∑
e∈E

cexe +
∑
v∈V

c+
v x

+
v +

∑
v∈V

c−v x
−
v (5.4)

subject to x ∈ XG, x+, x− ∈ {0, 1}V , (5.5)

∀t ∈ T ∀v ∈ Vt+1∀S ∈ Vtv-cuts(G+
t ) :

1− x+
v ≤

∑
e∈S

(1− xe), (5.6)

∀t ∈ T ∀v ∈ Vt∀S ∈ vVt+1-cuts(G+
t ) :

1− x−v ≤
∑
e∈S

(1− xe). (5.7)

The inequalities (5.6) and (5.7) are called birth and termination con-
straints, respectively.

5.3 Local Search Algorithms

In this section, we introduce two local search heuristics for the MLTP.
The first builds a lineage bottom-up in a greedy fashion, while the second
applies Kernighan-Lin [155] updates to the intra-frame components. The
latter requires repeatedly optimizing a branching problem, given a fixed
intra-frame decomposition, for which we discuss an efficient combinatorial
minimizer.

Both algorithms maintain a decomposition of the graph (V,
⋃
t∈T Et), i.e.

the components within each frame Gt that represent the cells. We denote
the set of all cells with V. For each set of edges going from a component
a ∈ V at time point t to a component b at t+ 1, we associate an arc ab ∈ A.
This gives a directed graph G = (V ,A), as illustrated in Fig. 5.3. We write
Va for the set of vertices v in component a ∈ V and Eab for the set of edges
represented by arc ab ∈ A. They further maintain a selection of the arcs
A(y), where y ∈ {0, 1}A, to represent which temporal edges are cut.

5.3.1 Greedy Lineage Agglomeration (GLA)

The first algorithm takes an MLTP instance and constructs a feasible lineage
in a bottom-up fashion. It is described in Alg. 1 and follows a similar scheme
as the GAEC [95] heuristic for the MCMCP in the sense that it always takes
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G = (V,E)

t

⇒

G = (V ,A)

u

v

w a b

Figure 5.3: For a fixed decomposition of the frames (depicted with black
solid/dashed cut edges), we associate a directed graph G over the components
V. The arcs A bundle all edges going from any node of one cell to any
node of another cell in the successive frame. For example, the components
Va = {u} and Vb = {v, w} are linked by the arc ab which corresponds to
the set of edges Eab = {uv, uw}. Determining the optimal state of the
temporal edges (grey) given a decomposition into cells boils down to finding
an optimal branching in G.

Algorithm 1 Greedy Lineage Agglomeration (GLA)

while progress do
(a, b)← arg minab∈E∪A∆transform

ab

if ∆transform
ab < 0 then

applyTransform(G, a, b) . updates partitions of G
and selects arcs A(y).

else
break

end if
end while
return edgeLabels(G) . cut-edge labeling x∗ from V

and A(y).

the currently best possible transformation, starting from V = V . It applies
three different types of transformations: 1) a merge contracts all edges
between two components of the same time point t, combining them into one
single component. 2) setParent selects an arc ab ∈ A and thereby sets a of
Vt as the (current) parent of b ∈ Vt+1, while 3) changeParent de-selects such
(active) arc ab and instead selects an alternative cb. While final components V
determine intra-frame cuts, the final selection of arcs then determines which
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a b

a

b

c

c

a

b d

set parent change parent merge components

t t + 1 t t + 1 t− 1 t t + 1

Figure 5.4: The three transformations of GLA: set a as parent of b (left),
change the parent of b from c to a (middle) or merge two components a and
b into one (right). The major arc along which the transformation occurs
is depicted in red, while other arcs that affect the transformations cost are
blue. When changing a parent, for example, the presence of other active
arcs originating from a and c determine whether termination costs have to
be paid. For a merge, we have to consider arcs to parents or children, which
would be joined with an active arc and therefore change their state.

temporal edges are cut edges (xe = 1). Unlike GAEC, transformations
concerning the temporal edges are reversible due to changeParent. All
allowed transformations, merge, setParent and changeParent, are depicted in
Fig. 5.4. The change in objective (5.4) caused by a particular transformation
involving a and b is denoted with ∆transform

ab . In order to determine the cost
or reward of a particular transformation, we have to examine not only the
edge between the involved components a and b, but also whether they have
an associated parent or child cell already. For a merge, we have to consider
arcs going to children or parents of either component, since they would be
combined into an active arc and therefore change their state and affect the
objective. The detailed, incremental calculation of these transformation
costs ∆transform

ab can be found in the appendix. We maintain feasibility at all
times: two components with different parents cannot be merged (it would
violate morality constraints (5.3)), and similarly, a merge of two partitions
with a total of more than two active outgoing arcs is not considered (as it
would violate bifurcation constraints). The algorithm stops as soon as no
available transformation decreases the objective.
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t t

7→

Figure 5.5: Depicted above is a transformation carried out by the KLB
algorithm. One node in the middle image is moved from the blue component
to the red component. Consequently, the optimal branching changes.

Implementation. We use a priority queue to efficiently retrieve the cur-
rently best transformation. After applying it, each affected transformation
is re-calculated and inserted into the queue. We invalidate previous editions
of transformations indirectly by keeping track of the most recent version for
all E . For each component, we actively maintain the number of children and
its parent to represent the selected arcs A(y).

Algorithm 2 KL with Optimal Branchings (KLB)

while progress do
for a, b ∈ V do

if 6 ∃uv ∈ Et : u ∈ Va ∧ v ∈ Vb then
continue

end if
improveBipartition(G, a, b) . move nodes

across border or
merge.

end for
for a ∈ V do

splitPartition(G, a) . split partition.
end for

end while
return cutEdgeLabels(G) . cut-edge labeling x∗ from V

and A(y∗).
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5.3.2 Kernighan-Lin with Optimal
Branchings (KLB)

Algorithm 2 takes an MLTP instance and an initial decomposition, e.g. the
result of GLA, and attempts to decrease the objective function (5.4) in each
step by changing the intra-frame partitions in a Kernighan-Lin-fashion [155],
an example is illustrated in Fig. 5.5. Like the algorithm proposed by [95]
for the related MCMCP, it explores three different local transformations to
decrease the objective function maximally: a) apply a sequence of k node
switches between two adjacent components a and b, b) a complete merge of
two components, and c) splitting a component into two. Transforms that
do not decrease the objective will be discarded. In contrast to the setting of
a MCMCP, judging the effect of such local modifications on the objective is
more difficult, since it requires according changes to the temporal cut-edges.
This can be seen when reordering the terms of the MLTP objective fMLTP

(5.4):

fMLTP(x) =
∑

e∈⋃t∈T Et,t+1

ce +
∑

e∈⋃t∈T Et

cexe + fMCBP(x) , (5.8)

where we identify the first sum to be an instance-dependent constant, the
second sum is the contribution from intra-frame edges (i.e. the decompo-
sition into cells) and the last term, summarized with fMCBP is the sum
over all inter-frame edges as well as birth and termination costs. Given
a particular KLB-transformation, the change to the intra-frame part is
straight-forward to calculate, while the change of the inter-frame part in-
volves solving min fMCBP(.) anew. This sub-problem turns out to be a
variant of a minimum cost branching problem (MCBP), which we discuss
next. Afterwards, we describe a combinatorial optimizer for this MCBP,
and finally provide additional details on its usage within KLB.

Minimum Cost Branching on G. Given a fixed decomposition into cells
V , i.e. is a fixed value for all intra-frame cut-edge variables xe, we can reduce
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the remaining (partial) MLTP to the following MCBP over G = (V ,A):

min
y,y−,y+

∑
ab∈A

cabyab +
∑
a∈V

c+
a y

+
a +

∑
a∈V

c−a y
−
a (5.9)

subject to ∀a ∈ V : (1− y+
a ) =

∑
b∈δ+(a)

yba (5.10)

∀a ∈ V : (1− y−a ) ≤
∑

b∈δ−(a)

yab ≤ 2 (5.11)

y ∈ {0, 1}A, y−, y+ ∈ {0, 1}V , (5.12)

where y, y−, y+ are substitutes for those original cut variables x, x+, x− that
are bundled within an arc or component in G. The objective (5.9) is exactly
fMCBP of (5.8). Each yab indicates whether arc ab is active (yab = 1) or
not (yab = 0). The equality constraint (5.10) ensures that at most one
incoming arc is selected (preventing a violation of morality) and, if none is
chosen, the birth indicator y+

a is active. In the same sense, (5.11) enforces
the penalty for termination if necessary, and its upper bound limits the
number of children to 2, which enforces the bifurcation constraint. Since G
is acyclic by construction, we do not require cycle elimination constraints
that are typically present in general formulations of MCBPs. Observing that
∀e ∈ Eab : 1− yab = xe, i.e. all edges in an arc need to have the same state
to satisfy space-time constraints, we derive the weights cab = −∑e∈Eab

ce.
With a similar reasoning, all vertices of a component a need to be in the same
birth/termination state, ∀v ∈ Va : y+

a = x+
v , hence we derive c+

a =
∑

v∈Va c
+
v

(and analogous for termination costs c−a ). The derivation is found in the
supplement.

Matching-Based Algorithm for the MCBP. We now show that the
MCBP (5.9)-(5.11) can be solved efficiently by reducing it to a set of
minimum cost bipartite matching problems (MCBMPs).

To this end, observe that the graph G = (V ,A) is acyclic by construction,
cf. Fig. 5.3. Denote by Gt,t+1 = (Vt ∪ Vt+1,At,t+1) the subgraph of G that
corresponds to the consecutive frames t and t+ 1.

Lemma 5.3.1. For every G = (V ,A) arising from a fixed intra-frame decom-
position, the solution of the MCBP on G can be found by solving the MCBP
for all Gt,t+1 individually.
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t

⇒
a

b

Gt,t+1

a

a′

a−

b
b+

Figure 5.6: Illustration of the constructed bipartite matching problem (right)
for an MCBP in the subgraph of two consecutive frames t, t+ 1 (left). The
matching problem graph consists of the original nodes and edges, duplicates
a′ for a ∈ Vt, auxiliary termination nodes a− and auxiliary birth nodes b+.
Auxiliary edges which have zero cost by construction are gray. For simplicity,
we illustrate only two edges between termination and birth nodes. Matched
nodes correspond to active arcs in the original Gt,t+1.

Proof. The constraints (5.10) only couple birth variables y+
a for a ∈ Vt+1

with arc variables yba where ba ∈ At,t+1. Similarly, the constraints (5.11)
only couple termination variables y−a for a ∈ Vt with arc variables yab where
ab ∈ At,t+1. Thus, the objective function and the constraints split into a
set of MCBPs corresponding to the subgraphs Gt,t+1 of G. Hence, solving
|T | − 1 many sub-MCBPs individually gives the solution of the MCBP on
G.

Lemma 5.3.2. An MCBP on Gt,t+1 can be transformed into an equivalent
minimum cost bipartite matching problem (MCBMP).

Proof. For a given MCBP on Gt,t+1, we construct an MCBMP as follows
(illustrated in Fig. 5.6): 1) insert a duplicate a′ for each node a ∈ Vt and
add an arc a′b for each original arc ab ∈ At,t+1 with identical cost ca′b = cab.
2) For each node a ∈ Vt, insert a node a− and an arc aa− with its cost being
c−a , i.e. the cost of terminating in a. Repeat this for all duplicate nodes a′

but set the according cost c−a′ = 0. Similarly, add a node b+ for each b ∈ Vt+1

and an arc b+b with a cost of c+
b . 3) Connect each pair of auxiliary nodes b+

and a− (or a′−) with an arc if ab ∈ At,t+1 with a cost of 0. The resulting
graph is clearly bipartite.

67



5. Efficient Algorithms for Moral Lineage Tracing

Now, consider the MCBMP on this graph: A match (a, b) or (a′, b)
corresponds to yab = 1, respectively ya′b = 1, a match of (a, a′) to y−a = 1
and vice versa for birth variables y+

b . Exactly one incoming arc for each node
of Vt+1 or the link to its birth node b+ is matched, satisfying (5.10). In the
same fashion, each a ∈ Vt is assigned to a node b ∈ Vt+1 or its termination
node a−, satisfying the left hand side of (5.11). Assigning a duplicate node
a′ to a node b ∈ Vt+1 allows having bifurcations, i.e. satisfies the right-
hand side of (5.11), while its alternative choice, matching it to its zero-cost
termination node has no effect on the cost. Finally, the zero-cost arcs
between the auxiliary birth and termination nodes a− and b+ are matched
whenever a pair of a or and b is matched (due to lack of alternatives).

The MCBMP can be solved in polynomial time by the hungarian algo-
rithm [156, 157]. Applying it to each of the |T | − 1 subgraphs of Gt,t+1 thus
leaves us with an efficient minimizer for the MCBP.

Implementation of KLB. The algorithm maintains the weighted G =
(V ,A), the current objective in terms of each of the three parts of (5.8),
and solves the MCBP on G by the matching-based algorithm described
in the previous section. We initially solve the entire MCBP, but then,
within both methods that propose transformations, improveBipartition and
splitPartition, we exploit the locality of the introduced changes. By applying
Lemma 5.3.1, we note that for a given V , modifying two of its cells a and b
in frame t will only affect arcs that go from t− 1 to t and from t to t+ 1.
In other words, ∆fMCBP can be computed only from the subproblems of
(t − 1, t) and (t, t + 1). In practice, we find that the effect is often also
spatially localized, hence we optionally restrict ourselves to only updating
the MCBP in a range of dMCBP (undirected) arc hops from a and b, where
the modification occured. This dMCBP parameter should be explored and
set depending on the instance, since choosing it too small may result in
misjudged moves and thus, in wrong incremental changes to the current
objective. Note, however, that feasibility is still maintained in any case.
We handle this by solving the entire MCBP once at the end of every outer
iteration. Doing so ensures that the final objective is always correct and
allows us to detect choices of dMCBP that are too small. Since we observe
that it takes relatively few outer iterations, we find the overhead by these
extra calls to be negligible.

To reduce the number of overall calculations in later iterations, we mark
components that have changed and then, in the next iteration, attempt to
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improve only those pairs of components which involve at least one changed
component. To account for changes that affect moves in previous or subse-
quent frames, we propagate these changed flags to all potential parents or
children of a changed component.

5.4 Improved Branch-and-Cut Algorithm

Jug et al. propose to solve the MLTP with a branch-and-cut algorithm, for
which they design separation procedures for inequalities (5.1) – (5.3), (5.6) –
(5.7) and the bifurcation constraints. In the following, we propose several
modifications of the optimization algorithm, which drastically improve its
performance.

It is sufficient to consider only chordless cycles in (5.1) and, furthermore,
it is well-known that chordless cycle inequalities are facet-defining for mul-
ticut polytopes (cf. [120] and [154]). This argument can be analogously
transferred to inequalities (5.2) and (5.3).

Moreover, the inequalities of (5.3) where {vt, wt} ∈ Et is an edge of the
hypothesis graph may be considerably strengthened by a less trivial, yet
simple modification. Lemma 5.4.1 shows that with both results combined,
we can equivalently replace (5.1) – (5.3) by the set of tighter inequalities
(5.13) and (5.14). Proofs are provided in the supplementary material. In
relation to our improved version of the branch-and-cut algorithm, we refer
to (5.13) as cycle and to (5.14) as morality constraints.

Lemma 5.4.1. For every hypothesis graph G = (V,E) it holds that x ∈ X ′G
iff x ∈ {0, 1}E and x satisfies

∀t ∈ T ∀{v, w} ∈ Et ∪ Et,t+1

∀ chordless vw-paths P in G+
t :

xvw ≤
∑
e∈P

xe (5.13)

∀t ∈ T ∀v′, w′ ∈ Vt such that {v′, w′} /∈ Et
∀v′w′-cuts S in Gt∀ chordless v′w′-paths P in G+

t :

1−
∑
e∈S

(1− xe) ≤
∑
e∈P

xe (5.14)
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Remark. Suppose we introduce for every pair of non-neighboring nodes
v′, w′ ∈ Vt a variable xv′w′ indicating whether v′ and w′ belong to the
same cell (xv′w′ = 0) or not (xv′w′ = 1). Then any inequality of (5.14) is
exactly the combination of a cut inequality 1− xv′w′ ≤

∑
e∈S(1− xe) and a

path inequality xv′w′ ≤
∑

e∈P xe in the sense of lifted multicuts [154]. For
neighboring nodes v, w ∈ Vt, i.e. {v, w} ∈ Et, we have the variable xvw at
hand and can thus omit the cut part of the morality constraint, as the
lemma shows.

Termination and Birth Constraints. We further suggest a strength-
ening of the birth and termination constraints in the MLTP. To this end, for
any v ∈ Vt+1 let Vt(v) = {u ∈ Vt | {u, v} ∈ Et,t+1} be the set of neighboring
nodes in frame t. Further, we denote by E

(
Vt(v), Vt+1 \ {v}

)
the set of inter

frame edges that connect some node ut ∈ Vt(v) with some node ut+1 ∈ Vt+1

different from v.

Lemma 5.4.2. For every hypothesis graph G = (V,E), the vectors x ∈
X ′G, x

+, x− ∈ {0, 1}V satisfy inequalities (5.6) iff the following inequalities
hold:

∀t ∈ T ∀v ∈ Vt+1∀S ∈ Vtv-cuts(G+
t ) :

1− x+
v ≤

∑
e∈S\E(Vt(v),Vt+1\{v})

(1− xe). (5.15)

Similarly, x ∈ X ′G, x+, x− ∈ {0, 1}V satisfy (5.7) iff

∀t ∈ T ∀v ∈ Vt∀S ∈ vVt+1-cuts(G+
t ) :

1− x−v ≤
∑

e∈S\E(Vt\{v},Vt+1(v))

(1− xe) (5.16)

hold true.

Additional Odd Wheel Constraints. A wheel W = (V (W ), E(W )) is
a graph that consists of a cycle and a dedicated center node w ∈ V (W )
which is connected by an edge to every node in the cycle. Let EC denote the
edges of W in the cycle and Ew the remaining center edges. With a wheel
subgraph W = (V (W ), E(W )) of a graph G we may associate an inequality∑

e∈EC

xe −
∑
e∈Ew

xe ≤
⌊ |V (W )| − 1

2

⌋
, (5.17)
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Figure 5.7: Comparison of algorithms for the MLTP in terms of runtime,
objective (solid) and bounds (dashed) on the large instances of [86]. Our
heuristics are able to determine feasible solutions quickly, while our branch-
and-cut algorithm (ILP ours) converges to the optimal solution in up to
one hundredth of the time of the original branch-and-cut algorithm (ILP
original) and provides tight bounds in both cases. On these instances, KLB
exhibits no significant runtime difference between the two choices of dMCBP.

which is valid for multicut polytopes [120]. A wheel is called odd if |V (W )|−1
is odd. It is known that wheel inequalities are facet-defining for multicut
polytopes iff the associated wheel is odd [120].

We propose to add additional odd wheel inequalities to the MLTP in
order to strengthen the corresponding LP relaxation. More precisely, we
consider only wheels W = (V (W ), E(W )) ⊂ G such that w ∈ Vt+1 and
v ∈ Vt for all v ∈ V (W ) \w and some t ∈ T . This structure guarantees that
for any x ∈ X ′G, the restriction xE(W ) is the incidence vector of a multicut
of W . Therefore, (5.17) holds with respect to x.

Implementation. For a subset of the constraints, we use the commercial
branch-and-cut solver Gurobi (7.0) [117] to solve the LP relaxation and find
integer feasible solutions. Whenever Gurobi finds an integer feasible solution
x, we check whether x ∈ XG and all birth and termination constraints are
satisfied. If not, then we provide Gurobi with an additional batch of violated
inequalities from (5.13) – (5.16) as well as violated bifurcation constraints
and repeat. To this end, we adapt the separation procedures of [86] to
account for our improvements in a straight-forward manner. We further
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5. Efficient Algorithms for Moral Lineage Tracing

add odd wheel inequalities for wheels with 3 outer nodes as described above
(so-called 3-wheels) to the starting LP relaxation.

For every integer feasible solution that Gurobi finds, we fix the connected
components of the intra-frame segmentation and solve the remaining MCBP.
This allows for the early extraction of feasible lineage forests from the ILP.

5.5 Experiments & Results

Instances and Setup. We evaluate our algorithms on the two large
instances of [86]: Flywing-epithelium and N2DL-HeLa-full. The hypothesis
graph of the former instance consists of 5026 nodes and 19011 edges, while
the latter consists of 10882 nodes and 19807 edges. In addition to this, we
report experiments on two more sequences of a flywing epithelium time-lapse
microscopy with a wider field of view. Their hypothesis graphs consist of
10641 nodes and 42236 edges, respectively 76747 edges. We denote the data
sets with Flywing-wide I and II. These instances are preprocessed with the
same pipeline as Flywing-epithelium. For details on the preprocessing, we
refer to [86].

Our choice of birth and termination costs follows [86], i.e. we set c+ =
c− = 5 for all instances. We initialize the KLB heuristic with the solution of
GLA to decrease the number of outer iterations. We benchmark two versions
of KLB: The first one is denoted with KLB-d=inf and solves the MCBP
within the (reachable) subgraph of t ± 1, while the second, KLB-d=10,
additionally exploits spatial locality, i.e. it uses dMCBP = 10.

Convergence Analysis. The convergence of our algorithms in compar-
ison to the branch-and-cut algorithm of [86] is reported in Fig. 5.7 and
Table 5.1. We find that GLA is the fastest in all instances, but only reaches
a local optimum with a gap of about 1.95 % and 3.69 %, respectively. This
solution is improved by KLB in terms of objective, up to a gap of 0.76 % and
1.86 %. Both variants of KLB obtain the same solution in terms of cut-edge
labeling and show no considerable runtime difference. We find that KLB
spends most of the time in the first outer iteration, where it has to check a
large number of bipartitions that do not improve and will therefore not be
considered in the next iteration. Our KLB implementation could potentially
be sped up by updating components (of disjoint Gt−1:t+1) in parallel.
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Figure 5.8: Number of morality cuts (top), i.e. (5.3) or (5.14), and cycle
cuts (bottom), i.e. (5.1) and (5.2) or (5.13), separated in the different
branch-and-cut algorithms. We observe that our branch-and-cut algorithm
requires considerably fewer morality cuts, while the number of cycle cuts
(including both space-cycles and space-time-cycles) is in the same order of
magnitude.

The improved branch-and-cut algorithm retrieves feasible solutions con-
siderably faster and provides tighter bounds than the algorithm of [86]. The
instances Flywing-epithelium and N2DL-HeLa are solved to optimality in
less than 200 s, respectively 1000 s, while the original algorithm did not find
any feasible solutions in that time. As shown in Fig. 5.8, we observe that our
modifications of the branch-and-cut algorithm greatly reduce the number of
morality cuts.

On the larger instances Flywing-wide I and II, we present our results
in Fig. 5.9. We are able to determine the maximal optimality gaps for GLA
to be 2.9 % (I ) and 2.1 % (II ), and 1.3 % (I ) and 0.95 % (II ) for KLB.
Again, both variants of KLB obtain identical solutions. Here, exploiting
spatial locality helps: KLB-d=inf runs in 477 s (I ) and 9129 s (II ), while
KLB-d=10 reduces this to 104 s and 3359 s, respectively. The particular
choice of dMCBP = 10 was found to be stable in both cases. More extensive
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Figure 5.9: Results on the more extensive instances Flywing-wide I and II.
Our branch-and-cut algorithm with 3-wheel constraints provides slightly
tighter bounds, with which we determine the gaps for GLA to be 2.9 % (I )
and 2.1 % (II ), and 1.3 % (I ) and 0.95 % (II ) for KLB. Exploiting spatial
locality when re-solving the MCBPs considerably reduces runtime of KLB.

Table 5.2: Comparison of the similarity to ground truth of segmentation
(SEG) and traced lineage forest (TRA) on Flywing-epithelium. ILP denotes
the result of the branch-and-cut algorithm, while PA [158] is a common
tracking tool used by biologists.

Algorithm SEG TRA

GLA 0.9363 0.9640
KLB 0.9485 0.9721
ILP 0.9722 0.9813
PA (auto) 0.7980 0.9206

results with varying dMCBP can be found in the supplement.

Solution Quality. We compare the solution quality of our two heuristics
by segmentation (SEG) and tracking (TRA) metrics as used in [78] for
Flywing-epithelium. The results are reported in Table 5.2. We observe that
KLB improves the scores of GLA slightly (up to an additional 1.2 % and
0.81 % for SEG and TRA, respectively). The optimal ILP solutions achieve
slightly better scores in both measures than the heuristics. All presented
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5. Efficient Algorithms for Moral Lineage Tracing

algorithms outperform the baseline, the packing analyzer [158], whose scores
were originally reported in [86].

5.6 Conclusion

We have introduced local search algorithms for the recently introduced
MLTP [86], a mathematical framework for cell lineage reconstruction, which
treats both subproblems, image decomposition and tracking, jointly. We
propose two efficient heuristics for the MLTP: a fast agglomerative procedure
called GLA that constructs a feasible lineage bottom-up, and a variant of
the KL-algorithm which attempts to improve a given lineage by switching
nodes between components, merging or splitting them. The latter algorithm
repeatedly solves a MCBP conditioned on fixed partitions. We show that this
subproblem can be solved as a minimum cost bipartite matching problem,
which is of independent interest. Furthermore, we improve the branch-and-
cut algorithm of [86] by separating tighter cutting planes and employing
our result about the MCBP subproblem. Our branch-and-cut algorithm
solves previous instances quickly to optimality. For both the previous and
larger instances, our heuristics efficiently find high quality solutions. This
demonstrates empirically that our methods alleviate runtime issues with
MLTP instances and makes moral lineage tracing applicable in practice (e.g.
in [21]).
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Cell Lineage Tracing in
Lens-free Microscopy Videos
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Synopsis: Lens-free microscopy (LFM) is a low-cost technology particularly
suited for continous monitoring of cell cultures in-vitro. In this work, we
propose (i) a cell detector for LFM videos based on fully convolutional
residual networks, and (ii) a probabilistic model based on moral lineage
tracing (MLT) which clusters detections and tracks cells through time
simultaneously.
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6. Cell Lineage Tracing in Lens-free Microscopy Videos

Abstract

In vitro experiments with cell cultures are essential for studying growth
and migration behaviour and thus, for gaining a better understanding of
cancer progression and its treatment. While recent progress in lens-free
microscopy (LFM) has rendered it an inexpensive tool for continuous
monitoring of these experiments, there is only little work on analysing
such time-lapse sequences.

We propose (1) a cell detector for LFM images based on residual
learning, and (2) a probabilistic model based on moral lineage tracing
that explicitly handles multiple detections and temporal successor hy-
potheses by clustering and tracking simultaneously. (3) We benchmark
our method on several hours of LFM time-lapse sequences in terms of de-
tection and tracking scores. Finally, (4) we demonstrate its effectiveness
for quantifying cell population dynamics.

6.1 Introduction

Cell growth and migration play key roles in cancer progression: abnormal
cell growth can lead to formation of tumors and cancer cells can spread
to other parts of the body, a process known as metastasis. In vitro exper-
iments are essential to understand these mechanisms and for developing
anti-cancer drugs. In these experiments, the cells are typically observed with
conventional light microscopes. Thanks to recent advances in CMOS sensor
technology, LFM [99, 100] has become a promising alternative. In LFM a
part of the incident wavefront originating from the light source is scattered
by the sample, in this case the cell. The scattered light then interferes with
the unscattered part of the wavefront and the resulting interference pattern
is recorded with a CMOS sensor. The components required for LFM are
extremely small and cheap. Thus, LFM provides the means for a wide range
of applications where a conventional light microscope would be either too
big or simply too expensive, such as the continuous monitoring of growing
cell cultures inside standard incubators [101].

To quantify the clinically relevant information on cell growth and migra-
tion from the large amount of images that are acquired in such continuous
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t = 366 min t = 387 min t = 405 min

Figure 6.1: The cell lineage tracing problem with LFM data. We aim
to detect all cells and establish their relation over time, i.e. determine
the lineage forest. While the LFM technology allows for frequent image
acquisition (3 min / frame in this case), challenges arise due to overlapping
interference patterns of close objects, fluctuating shape and size of the cells
appearance, and particles that generate similar patterns as the cells. The
detail views show cell locations as a circle and identify their lineage tree.

monitoring, reliable automatic image analysis methods are crucial. Counting
the number of cells in a time series of images gives access to the dynamics
of cell growth. Locating and tracing individual cells provides information
about cell motility, and over the course of a sequence, reconstructing the
lineage trees gives insights into cell cycle timings and allows more selective
analysis of cell sub-cultures.

There are several works on these tasks in traditional light microscopy,
e.g. focussing on cell segmentation [159], detection and counting [103, 160,
58] or tracking [161, 162, 86, 78, 105], but very few deal with LFM data.
One of the few exceptions is [163] which employs a regression framework for
estimating the total cell count per image. We aim at the more complex goal
of not only counting but also localizing cells and reconstructing their spatio-
temporal lineage forest (c.f. Fig. 6.1). Methods for the latter task range from
Kalman filtering [161] to keep track of moving cells, or iteratively composing
tracklets by using the Viterbi algorithm [164], and have been compared
in [78]. More recently, Jug et al. [86] have proposed a mathematically
rigorous framework for lineage reconstruction, the so-called MLTP. The
MLTP differs fundamentally from all mathematical abstractions of cell
tracking whose feasible solutions are either disjoint paths or disjoint trees
of detections. Unlike these approaches that select only one detection for
each cell in every image, feasible solutions of the MLTP select and cluster
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an arbitrary set of such detections for each cell. This renders the lineage
trees defined by feasible solutions of the MLTP robust to the addition of
redundant detections, a property we will exploit in this work.

In this paper, we contribute a framework for analysis of LFM sequences.
First, we design and benchmark robust cell detectors for LFM time-lapse
sequences derived from most recent work on CNNs and residual learning.
Second, we discuss the MLTP in the context of LFM data. In particular,
we define a probability measure for which the MLTP is a MAP estimator.
This allows us to define the costs in the objective function of the MLTP
w.r.t. probabilities that we estimate from image data. We validate it experi-
mentally on two annotated sequences. Finally, we demonstrate the capability
of our approach to quantify biologically relevant parameters from sequences
of two in vitro experiments with skin cancer cells.

6.2 Methods

We consider the lineage tracing task as a MAP inference over a hypothesis
graph containing a multitude of potential lineage forests. We discuss the
probability measure and its MAP estimator, the MLTP in Section 6.2.1. In
order to construct the hypothesis graph from a sequence of LFM images,
we devise a cell detector in Section 6.2.2, which estimates a cell probability
map for each given image. The workflow is illustrated in Fig. 6.2.

6.2.1 Lineage Tracing

Hypothesis graph.

We construct a spatio-temporal hypothesis graph G = (V,E) as follows: For
every image It in the sequence, we apply a cell detector and define one node
v ∈ Vt for every local maximum in P (cs = 1|It), the estimated probability
map for finding a cell at a particular location s in image It. Additionally, we
define hypothesized successors to each node that has one or more favourable
parents in the previous frame but no immediate successor. This helps
avoiding gaps in the final tracklets. The nodes v ∈ V represent cells, yet do
not need to be unique, i.e. one cell may give rise to several nodes. We then
construct edges in space Esp

t = {uv ∈ Vt × Vt : d(u, v) ≤ dmax}, i.e. between
any two nodes that lie within a distance of dmax, and in the same fashion, we
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Figure 6.2: Illustration of our workflow. From left to right: 1) Raw mi-
croscopy image, 2) image overlayed with cell probability map generated by
the detector, 3) nodes of the hypothesis graph with spatial edges constructed
from cell probabilities, 4) optimized lineage where spatial edges that were
cut are removed, and 5) each cluster is represented as one cell with its
lineage tree identifier. Temporal edges are not depicted for simplicity.

construct temporal edges Etmp
t = {uv ∈ Vt × Vt+1 : d(u, v) ≤ dmax} between

nodes in adjacent frames.

Probabilistic model.

We introduce a family of probability measures, each defining a conditional
probability of any lineage forest, given an image sequence. We describe the
learning of this probability from a training set of annotated image sequences
as well as the inference of a maximally probable lineage forest, given a
previously unseen image sequence. The resulting MAP estimation problem
will assume the form of an MLTP with probabilistically justified costs.

First, we encode subgraphs in terms of cut edges with binary indicator
variables x ∈ {0, 1}E. If edge uv is cut, i.e. xuv = 1, it means that nodes u
and v do not belong together. In order to ensure that the solution describes a
lineage forest, we rely on the formulation of the MLTP [86], which describes
the set of inequalities that are required to do so. In short, these constraints
ensure: 1) spatial and temporal consistency, i.e. if nodes u and v as well
as v and w belong together, then u and w must also belong together. 2)
Distinct tracklets cannot merge at a later point in time. These are the so
called morality constraints. 3) Bifurcation constraints allow cells to split
in no more than two distinct successors. We will denote the set of x that
describe valid lineage forests with XG. For a more extensive discussion
of these constraints, we refer to [86, 105]. We next model the measure of
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probability:

P (x|XG,Θ) ∝ P (XG|x)
∏
uv∈E

P (xuv|Θ)
∏
v∈V

P
(
x+
v |Θ

)∏
v∈V

P
(
x−v |Θ

)
,

(6.1)

where P (XG|x) ∝
{

1 if x ∈ XG,

0 otherwise
. (6.2)

It is comprised of four parts. First, we have P (XG|x) representing the
uniform prior over XG. Second, the cut probability P (xuv|Θ) describing
the probability of u and v being part of the same cell (either in space or
along time), and third and fourth, the birth and termination probabilities
P (x+

v |Θ) and P (x−v |Θ) for each node v ∈ V . The variables x+
v , x

−
v ∈

{0, 1} are indicating whether the respective event, birth or termination,
occurs at node v. Θ denotes the joint set of parameters. We use these
parts to incorporate the following assumptions: Two detections u and v
that are close are more likely to originate from the same cell, hence we
choose P (xuv = 1|Θ) = min(d(u,v)

θsp
, 1). Similarly, two successive detections

u at t and v at t + 1 are more likely to be related the closer they are,
is captured by P (xuv = 1|Θ) = min(d(u,v)

θtmp , 1). Finally, we assume that
birth and termination events occur at a low rate, which is incorporated
by P (x+

v = 1|Θ) = θ+ and P (x−v = 1|Θ) = θ−. We fit these parameters
Θ on training data in a maximum likelihood fashion: For θ− and θ+ this
boils down to calculating the relative frequency of the respective events on
the annotated lineage. For the spatial and temporal parameters θsp and
θtmp, we first complement the lineage forest with edges within dmax as E .
We then maximize the log-likelihood logL(θ) =

∑
uv∈E logP (xuv|θ) by an

extensive search over the interval θ ∈ [θmin, θmax], where we found [1, 80] to
be appropriate.

The MAP estimate x∗ = arg maxx∈X P (x|Θ, XG) can be written as
solution to the MLTP:

min

{ ∑
uv∈E

cuvxuv +
∑
v∈V

c+
v x

+
v +

∑
v∈V

c−v x
−
v

∣∣∣∣ x ∈ XG ∩XV

}
, (6.3)

where the coefficients become cuv = − log P (xuv=1|Θ)
1−P (xuv=1|Θ)

for edges, and vice
versa for cv of the node events. XV is the set of x that satisfy the auxiliary
constraints which tie birth and termination indicator variables x−v and x+

v
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to the respective edge variables. We optimize (6.3) with the KLB algorithm
described in [105].

6.2.2 Cell Detection with Residual Networks

Cells in LFM images are usually only marked at their center of mass and
not segmented since their interference pattern, i.e. their appearance in the
image, does not accurately describe their true shape and would therefore be
ambiguous in many cases. Thus, we are interested in a detector that outputs
the set of cell centers in image It. Strong performance of the detector
is crucial for the lineage reconstruction as its errors can affect the final
lineage trees over many frames. To achieve this, we build on the recent
work on residual networks [102]. However, instead of directly regressing
bounding boxes or center coordinates in a sliding window fashion, we train
our network, denoted with f(It), on a surrogate task: We approximate
f(It) ≈ P (cs = 1|It), the probablity map of finding a cell at a particular
location s in It. This detector is fully convolutional and its output f(It) has
the same size as It. We found this to facilitate the training as it enlargens the
spatial support of the sparse cell center annotations and gracefully handles
the strongly varying cell density. Similar findings were made with techniques
that learn a distance transform to detect cells, e.g. in [103]. We describe next
how we arrive at a suitable architecture for this task and how to construct
P (cs = 1|It) from point-wise cell annotations.
Network Architecture. We start from the architecture of ResNet-50 [102].
We first truncate the network at layer 24 to obtain a fully convolutional
detector. We found that truncating in the middle of the original ResNet-50,
i.e. at layer 24, results in best resolution of the output response maps and
allows to distinguish close cells. We then add one convolutional layer of
1× 1× 256 and one up-convolutional layer (also known as deconvolutional
layer) of 8 × 8 × 1 with a stride of 8. The former combines all feature
channels, while the latter compensates for previous pooling operations and
ensures that the predicted cell probability map has the same resolution as
the input image It. Finally, a sigmoid activation function is used in the last
layer to ensure that f(It) is within the interval [0, 1] at any point.
Loss Function & Training. We sample training images of size 224× 224
from all frames of the training corpus. For each training image Ik, we
construct a corresponding cell probability map P (cs = 1|Ik) by placing a
Gaussian kernel Gσ with σ = 8 at each annotated center. This implicitly

83
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represents the assumption that all cells have about the same extent, which
is reasonable for our microscopy data. Each image is normalized to zero
mean and unit variance. During training, we minimize the cross entropy loss
between the predicted map f(It) and P (cs|It) in order to let our network
approximate the constructed cell probability map. We fine tune the network
(pre-trained weights from ResNet-50 [102]) with a learning rate of 10−3 for
100 epochs with batch size of 8. In each epoch, we sample 4000 training
images. Since the annotated dataset for training is typically small and shows
strong correlation between cells in consecutive frames, we used dropout of
0.5 after the last convolutional layer to avoid overfitting.

6.3 Experiments & Results

Datasets. We use a sequence depicting A549 cells, annotated over 250
frames in a region of interest (ROI) of 1295×971 px, for all training purposes.
For testing, we annotated two distinct sequences monitoring 3T3 cells of
350 and 300 frames in a ROI of 639 × 511 px (3T3-I ) and 1051 × 801 px
(3T3-II ), respectively. Images were acquired at an interval of 3 min with
1.4µm× 1.4µm per pixel.

Benchmarking detectors. We compare four different network configura-
tions, including the described ResNet-23, ResNet-11, a variant of it which
was truncated at layer 11, the UNet [159] and CNN-4. In UNet, we obtained
better results when replacing the stacks in the expansive path with single
up-convolution layers which are merged with the corresponding feature maps
from contracting path. CNN-4 is a plain vanilla CNN with three 5× 5 con-
volutional layers followed by max pooling and finally, one up-convolutional
layer of 8× 8× 1 to compensate for the down-sampling operations. We use
the same training procedure (Section 6.2.2) for all detectors, but adjust the
learning rate for UNet and CNN-4 to 10−2.

We match annotated cells to detections within each frame with the
hungarian algorithm and consider only matches closer than 10 px (≈ a cell
center region) as a true positive (TP). Unmatched annotations are counted
as false negative (FN), unmatched detections as false positive (FP). The
results are presented in Fig. 6.3, where we find the ResNet-23 to be the most
robust detector.

Lineage tracing. To compare the quality of different lineages, we match
again annotations and detections within each frame to calculate the number
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Figure 6.3: Performance of different detectors over all test frames. Boxplots
depict median as orange line, mean as black square and outliers as grey +.
The F1 scores are shown in %. We find that ResNet-23 is the most robust
detector in our experiment with an average F1 of 94.1 %. It is followed by
the UNet with 89.2 %, ResNet-11 with 85.1 % and finally, CNN-4 with only
72.2 %.

of TP, FP and FN as described before. We then determine the number of
false links, i.e. how often two matched nodes do not have the same parent.
From these, we calculate multiple object detection accuracy (MODA) and
multiple object tracking accuracy (MOTA) [165]. Moreover, we derive the
number of edit operations needed to get from the predicted lineage to the
ground truth lineage, and calculate the tracking accuracy (TRA) score
proposed in [78]. We use unit weight for each type of edit (add or delete
node or edge). This is justified by the fact that we have point annotations
for cells instead of segmentations, making both addition and deletion equally
expensive to correct.

For the MLTP, we compare the effect of varying θtmp, θsp together with
hypothesis graphs generated from the different detectors in Fig. 6.4. The
optimal parameter choice for ResNet-23 is at 10, i.e. a relatively small
merge radius of favourable merges, while the other detectors considerably
benefit from wider ranges. In Table 6.1, we compare different lineage tracing
approaches. Our baseline is linear assignment problem tracking (LAPT) [162].
The disjoint trees method (DTP), uses our ResNet-23 detections but solves
the disjoint trees problem instead, i.e. it considers only one detection per cell.
We find that MLTP outperforms both in terms of detection and tracking
metrics.
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Figure 6.4: Sensitivity analysis of the lineage tracing model with different
detectors. We increase both edge cut parameters θtmp and θsp together.
While the optimal choice in combination with ResNet-23 is relatively small,
i.e. at 10, the other detectors, which suffer from many spurious detections,
benefit from a wider range. Most notably, the performance with CNN-4
improves up to a competitive TRA of 84.8 %.

Table 6.1: Quantitative evaluation of traced lineages. Precision, recall, F1
and MODA are averaged over all frames of a sequence, while MOTA and
TRA are global scores for the entire lineage forest. All measures are in %.
Disjoint trees (DTP) uses our ResNet-23 detections and is equivalent to
MLTP with disabled spatial edges and no hypothesized successors. LAPT
is linear assignment problem tracking [162] and our baseline.

Instance Method PrecisionRecall F1 MODA MOTA TRA

3T3-I
LAPT 86.39 88.99 87.63 85.88 83.87 80.46
DTP 93.67 92.84 93.22 93.67 90.22 87.11
MLTP 97.09 93.19 95.07 97.18 95.67 92.58

3T3-II
LAPT 85.12 87.35 86.19 84.68 82.65 79.13
DTP 94.02 95.89 94.93 93.85 91.49 89.87
MLTP 96.46 96.12 96.28 96.45 95.43 93.76

Assessing cell population dynamics. We apply our method on data
from two experiments with skin cancer cells. In each, one population is
exposed to an inhibitor substance while the control is not. Figure 6.5 depicts
the resulting statistics. We observe the expected difference in growth rate,
yet a more constrained motility of the control cells, which is caused by the
limited space.
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Figure 6.5: Cell dynamics measured on two experiments with skin cancer cell
lines. One population (blue) is exposed to an inhibitor substance, while the
other (orange) is not. From left to right: Cell count over time, histograms
on cell motility (µm/3 min) and divisions rdiv/h. Cells that divide often are
more abundant in the control group.

6.4 Conclusions

We have presented a framework for automatic analysis of LFM time-lapse
sequences. It transfers two recently proposed methods, residual learning [102]
and moral lineage tracing [86, 105], to the task at hand. We have shown
experimentally that it is able to determine cell lineage forests of high quality
and thereby quantify several measures of interest for the analysis of in vitro
experiments, including cell population dynamics and motility.
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7

Concluding Remarks

With the progress of advanced biomedical imaging techniques and an emerg-
ing demand for quantitative methods, computer-aided analysis of biomedical
image data has gained considerable importance. Amongst such analysis
problems is the task of estimating a graph from observed images or videos –
a task we called graph inference. Our contributions focus on two prominent
forms of the problem, namely vessel networks and cell lineages. Due to
the publication-based nature of this thesis, the Chapters 3 to 6 are self-
contained and in their original form. This final chapter therefore provides a
brief summary as well as a more general discussion of the work, including
directions for future research.

First, we have presented a probabilistic model for imposing local statistics
into the graph inference step for vascular networks in Chapter 3. This model
enables utilizing physiological knowledge gained from high-resolution data,
such as the µCT of a corrosion casted cerebral vasculature in our case, when
processing image volumes of lower resolution. There are a few remarks on
this part of our work. First, as with any method that imposes a prior on
the prediction step, one has to be careful to not accidentally suppress actual
vasculature that is of surprising shape. Devising a workflow that gradually
goes from a uniform to the learned prior and monitoring the changes could
be helpful to address this. Second, measuring the overall quality of a network
is difficult, which is why we resorted to a comparison based on macroscopic,
physiological measures. A theoretically more appealing option would be a
metric based on the graph edit distance [166]. This concept is used for single
neuron reconstructions [167] or for cell lineages [78, 168], both of which
are a special case of the graph edit distance where the graphs are trees.
This property renders calculation of the edit distance tractable. For more
general classes of graphs, approximative calculation schemes would need to
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be explored and validated. That being said, obtaining a ground truth vessel
network as reference graph is a laborious task to begin with. For many
potential use cases, it is probably recommendable to devise a metric that is
specific to the particular application. Such a specific metric is most likely
simpler to annotate for and easier to interpret in the end, but is also the key
step to adjusting the method to the specific needs, potentially saving valuable
computational resources and time. Regarding computation time, whenever
connectedness constraints are part of the model, we strongly recommend to
use the branch-and-cut algorithm with a more efficient constraint generation
scheme developed Chapter 4, which is considerably faster.

In Chapter 4, we have proposed and benchmarked different constraint
generation strategies for solving the MCCSP with a branch-and-cut algo-
rithm. One of the key findings was that adding multiple violated constraints
at once improved scalability of the branch-and-cut algorithm. This enabled
a benchmark on larger instances than before, i.e. on pixel-grid graphs orig-
inating from segmentation problems, which led to our second key finding
of this chapter: the approximative formulation of connectedness along the
geodesic tree (proposed by [66]) yields solutions of high quality while pro-
viding polynomial complexity. Thus, it is considerably faster than exact
branch-and-cut solvers, even with improved constraint generation strate-
gies. While our experiments focussed on MCCSPs with unary costs, the
constraint generation strategies are also applicable in the presence of higher-
order cost functions, since adding higher-order terms does not alter the
subset of feasible connected graphs. In fact, Shen et al. [169] apply one of
the proposed strategies (k-nearest) with both unary and binary potentials
even in a multiclass setting, i.e. a disjoint connected subgraph for each
foreground class is determined. In a scenario where higher-order terms
become the dominant part of the MCCSPs objective function, however, it is
no longer clear whether the geodesic tree formulation would still perform
well. Because of higher-order terms being more difficult to capture when
calculating the geodesic tree, this tree might not be a good approximation to
the actual connectedness anymore, in which case the quality in comparison
to an exact formulation of connectedness would suffer. A potential approach
for handling such difficult cases could be a learned surrogate geodesic (along
which the tree is calculated), e.g. in the form of a classifier that estimates
the most likely parent for each node. This would be closely related to the
work of [170], where a CNN is trained to estimate a topological distance
used within a watershed algorithm.
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Encouraged by the results on constraint generation strategies in MCCSPs,
we moved our focus to the MLTP [86], a joint clustering and tracking
formulation for cell lineage tracing. Its originally proposed branch-and-cut
algorithm suffered from many cuts and thus, slow convergence on large
instances. We addressed this in Chapter 5 by two contributions. One
of them is the improvement of the original branch-and-cut algorithm by
separating thighter cutting planes. In contrast to the constraint generation
strategies in Chapter 4, this not only changes the order and/or amount
of the added inequalities, but results in a more compact representation of
feasible solutions. In addition to this, we devised the two first primal feasible
search heuristics for the MLTP. These heuristics are used either within the
branch-and-cut algorithm or for instances that are simply too large for exact
optimization algorithms due to their weaker scalability. A line of future
research could extend these heuristics to variants of the MLTP, e.g. including
separate node weights analogously to the MCMCP variant discussed in [153],
or in the presence of long-range weights in the form of so-called lifted edges
as in [95, 154, 37]. Another potentially useful modification of the MLTP for
which the heuristics would need to be adjusted is the addition of weights
for particular events, such as repeated division within (short) time intervals
similar to one of the models in [82].

Already during our work on optimizers for the MLTP, we found the cell
lineage tracing task in LFM to be an interesting use-case. LFM is a low-cost
microscopy technique, which is well-suited for continuous live cell monitoring
due to being label-free. However, the lineage tracing task in LFM videos
had received almost no attention. Hence, we aimed at filling this niche.
We proposed a framework using FCNs for detecting cells in combination
with a probabilistic model to estimate the cell lineage for which the MLTP
becomes its MAP estimator. In our experiments, we demonstrated the
advantages of using the MLTP instead of traditional disjoint tree problem
(DTP) formulations, and showed that this framework is able to generate
lineages of high quality. Considering the high diversity of data that can be
generated from LFM, e.g. through different cell lines or different densities,
future work certainly needs to conduct an extended study on a larger corpus
of sequences. In fact, such study is ongoing in [171]. Besides such an
extended validation, future research could improve parts of the current
approach. The probabilistic model could include any of the above mentioned
extensions to the MLTP such as lifted edges or event weights. Another option
is replacing the relatively simple cut weight model with a discriminatively
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trained classifier that distinguishes nodes of the same entity (i.e. the same
cell) from those of different entities. This has been proposed in the context
of pedestrian tracking [172, 37]. These approaches should be transferable to
our setting, even though they most likely require adjustments to account
for the particularities of cells in LFM. Spatial proximity and low-level
features like edges, for example, are expected to be much more important
for distinguishing individual cells than for re-identifying pedestrians that
relies strongly on high-level visual features.

As many other fields, recent progress in deep learning has strongly
influenced the latest approaches in medical image analysis. For example, the
majority of methods participating in the most recent editions of challenges
for brain tumor segmentation (BRATS) [173] or liver tumor segmentation
(LITS) [129] employ CNNs or FCNs, at least at some stage of their pipeline.
This applies also for (sub-)tasks in graph inference. CNNs and FCNs are
employed as detection or segmentation methods for vasculature [174, 175]
and cells [159, 176, 177]. These more complex models, trained with a
sufficient amount of data, provide stronger unary potentials for the model
for graph inference. This improves the overall quality and robustness of
detections and can render it easier to determine an optimal or near-optimal
solution to the joint problem. The latter is particularly helpful when working
with MAP estimators for graph inference that take the form of an ILP and
are then optimized by a branch-and-cut algorithm, where it can save valuable
computation time. All in all, it is to be expected that the trend continues:
adapting the next generation of machine learning and computer vision
methods for detection and segmentation to the biomedical case and its
particularities (e.g. the difficulty to obtain larger amounts of annotated data
and a typically lower consensus between annotators) will most likely remain
a main direction of research that will improve graph inference approaches.

Beyond that, an emerging sub-field of research is geometric deep learn-
ing [178], which aims at transferring the concepts of deep learning (in
particular those of CNNs) to non-euclidean domains. This includes learning
on graphs [179, 180, 181, 182, 183], variants of which are starting to find
application in medical image computing as well [184, 185]. In our context of
graph inference from biomedical image data, two aspects are particularly
interesting. First, the subgraph estimation can be considered a (constrained)
labeling problem on the hypothesis graph, which could be performed with
an adapted version of a graph CNN. Effectively, such graph CNN could
be trained to approximate the subgraph labeling of the combinatorial opti-
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mization algorithm. If successful, this could save computation time during
inference and potentially enable an efficient joint-training of the model’s
components as the approximated final inference step could be included in an
end-to-end training scheme. Depending on feasibility and implementation, it
could even provide the means to identify valid constraints from a large train-
ing dataset of (annotated) graphs. However, it is not clear how, to which
degree, and at which computational complexity it is possible to approxi-
mate topological constraints like connectedness or restriction of higher-order
furcations with such approaches. This is perhaps a main question for future
research on graph inference in biomedical image analysis.
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A.1 Additional Experimental Results

Details on the objective-dependent constraints experiment with 25 subsam-
pled 64× 64 problem instances are given in Table A.1 and Fig. A.1.

For the full datasets, additional experimental results per instance for
the different constraint generation strategies are shown in Table A.2 and
Table A.3. The gap is calculated as gap = 1− objective

bound
and shown in percent.

Note that two strategies might obtain solutions with identical objective

97

http://dx.doi.org/10.1007/978-3-319-46726-9_46
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Table A.1: Number of solved instances (#S), fastest to solve (#F) and
instances with gap ≤ 1 % per strategy.

without with
#S #F #ε1 #S #F #ε1

Equidistant 19 2 19 19 4 19
k-Nearest 21 13 21 21 8 21
k-Interleave 19 3 20 21 7 21
Minimal 11 0 11 11 0 15
Interleave 12 2 13 14 1 14
Nearest 10 1 10 11 1 14

value, yet establish different bounds. We limited runtime to maximum 4 h
and 8 h for DRIVE and OPF, respectively.
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This chapter has been published as supplementary material to [105].

© 2017 IEEE. Reprinted, with permission, from

M. Rempfler, J.-H. Lange, F. Jug, C. Blasse, E. W. Myers, B. H. Menze,
and B. Andres. “Efficient Algorithms for Moral Lineage Tracing.” In: The
IEEE International Conference on Computer Vision (ICCV). Oct. 2017,
pp. 4705–4714. doi: 10.1109/ICCV.2017.503

B.1 Transformation Costs for GLA

Here, we detail on the calculation of the change of objective for the trans-
formations applied in GLA (c.f. Section 5.3.1). We start with setParent.
Setting a as parent of b will change the objective by

∆set
ab = cab − c+

b − 1 (|children(a)| = 0) c−a , (B.1)

where cab = −∑e∈Eab
ce, c

+
a =

∑
v∈Va c

+
v and 1 (. . .) is the indicator function.

It accounts for the activated arc ab, the fact that b no longer marks the
birth of a new cell and, if a did not have a child previously, it takes the
vanishing termination cost into account. A similar reasoning applies to
changeParent. When we change the parent of b from a′ to a, we get the

103

http://dx.doi.org/10.1109/ICCV.2017.503


B. Supplementary Material to Efficient Algorithms for
Moral Lineage Tracing

following transformation cost:

∆change
a′b→ab =cab − 1 (|children(a)| = 0) c−a

− ca′b + 1 (|children(a′)| = 1) c−a′ , (B.2)

where we have to consider the possibility that a′ could form a terminus after
the transform. Finally, for a merge of two components a and b of the same
frame, we calculate:

∆merge
ab = cab −∆birth

ab −∆term
ab

+
∑

ad∈A:d∈children(b)

cad +
∑

bd∈A:d∈children(a)

cbd , (B.3)

where the last two sums account for arcs to active children, which will be
contracted into active arcs with the merge, and therefore change their state
and affect the objective. Birth ∆birth

ab and termination costs ∆term
ab depend

on the current parents and children, that is:

∆term
ab =


c−a if hasChild(b) ∧ ¬hasChild(a) ,

c−b if hasChild(a) ∧ ¬hasChild(b) ,

0 otherwise ,

(B.4)

and

∆birth
ab =


c+
a + cpa if hasParent(b) ∧ ¬hasParent(a) ,

c+
b + cpb if hasParent(a) ∧ ¬hasParent(b) ,

0 otherwise ,

(B.5)

with pa and pb being the arc from the parent of b or a, respectively. Note
that the merge is not feasible if a and b have distinct parents.

B.2 Minimum Cost Branching Coefficients

We derive the weights for the MCBP used in our KLB heuristic (Sec-
tion 5.3.2). Given a fixed intra-frame partitioning and the corresponding
G = (V ,A), we note that all edges Eab of an arc from component a to
component b must have the same state (otherwise, space-time constraints
would be violated). We can thus represent them with a set of binary arc
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indicator variables yab satisfying ∀e ∈ Eab : 1− yab = xe. Similiarly, birth
and termination indicator variables x+ and x− can be grouped with respect
to their component, i.e. ∀v ∈ Va : y+

a = x+
v (and analogous for y− and x−),

since all nodes v within a cell must have the same state. Substituting these
branching variables into (5.4), leads to:∑

e∈E
cexe +

∑
v∈V

c+
v x

+
v +

∑
v∈V

c−v x
−
v

=
∑

e∈⋃t∈T Et

cexe +
∑
ab∈A

∑
e∈Eab

ce(1− yab)

+
∑
a∈V

y+
a

∑
v∈Va

c+
v︸ ︷︷ ︸

c+a

+
∑
a∈V

y−a
∑
v∈Va

c−v︸ ︷︷ ︸
c−a

=
∑

e∈⋃t∈T Et

cexe +
∑

e∈⋃t∈T Et,t+1

ce +
∑
ab∈A

yab

(
−
∑
e∈Eab

ce

)
︸ ︷︷ ︸

cab

+
∑
a∈V

y+
a c

+
a +

∑
a∈V

y−a c
−
a

=
∑

e∈⋃t∈T Et

cexe +
∑

e∈⋃t∈T Et,t+1

ce

+
∑
ab∈A

cabyab +
∑
a∈V

y+
a c

+
a +

∑
a∈V

y−a c
−
a ,

where the first sum only depends on the fixed intra-frame partitioning,
the second term is constant and the remaining three terms correspond to
the objective of the MCBP, where we identify the coefficients cab, c

+
a and c−a .

Whenever the arcs selected by y form a branching (which at most bifurcates),
then the corresponding x satisfy morality (and bifurcation) constraints.

B.3 Proofs for Section 5.4

Proof of Lemma 5.4.1. We first show that any x ∈ {0, 1}E satisfying
all of (5.1) – (5.3) also satisfies (5.13) and (5.14) by contraposition. First,
assume x ∈ {0, 1}E violates an inequality of (5.13) for some t ∈ T , {v, w} ∈
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Et ∪ Et,t+1 and chordless vw-path P . We distinguish the following cases: If
{v, w} ∈ Et and P is a path in Gt, then the inequality is included in (5.1).
If {v, w} ∈ Et,t+1, then the inequality is included in (5.2). It remains to
consider the case that {v, w} ∈ Et and P is not entirely contained in Gt. Let
{vt, vt+1}, {wt, wt+1} ∈ Et,t+1 with vt, wt ∈ Vt be the first and the last inter
frame edges in P , respectively. Furthermore, let Pvt+1wt+1 be the subpath of
P between those edges. Now, either there is a vtwt-cut S in Gt such that
xS = 1 or there is a vtwt-path P ′ in Gt such that xP ′ = 0. It is clear that
P ′ can be extended to a vw-path of edges labeled 0, because xP = 0. This
yields either an inequality of (5.3) corresponding to S, {vt, vt+1}, {wt, wt+1}
and Pvt+1wt+1 or an inequality of (5.1) corresponding to {v, w} ∪ P ′ that is
violated by x.

Next, suppose x ∈ {0, 1}E violates an inequality of (5.14) for some t ∈ T ,
{v′, w′} ∈ Et, a v′w′-cut S in Gt and a chordless v′w′-path P in G+

t . Then
xS = 1 and xP = 0. Clearly, x violates the inequality of (5.3) corresponding
to S, {vt, vt+1}, {wt, wt+1} and Pvt+1wt+1 , where {vt, vt+1}, {wt, wt+1} and
Pvt+1wt+1 are defined similar to the last paragraph.

For the converse, we show that if x ∈ {0, 1}E satisfies the inequalities
(5.13) and (5.14), then it also satisfies (5.1) – (5.3). Any cycle in G+

t which
is not chordless can be split into two cycles contained in Gt, G

+
t or Gt+1

which share exactly one edge. Therefore, any inequality of (5.1) – (5.2) is
implied by a combination of inequalities from (5.13). This is a standard
argument for multicut polytopes, cf., for instance, [154]. Moreover, for any
{vt, wt} ∈ Et and any vtwt-cut S in Gt it holds that {vt, wt} ∈ S. Thus,
reapplying the previous argument and the simple fact that

1−
∑
e∈S

(1− xe) ≤ 1− (1− xvtwt) = xvtwt ,

we conclude that the inequalities (5.3) are implied by a combination of
inequalities from (5.13) and (5.14).

Proof of Lemma 5.4.2. We show the claim only for birth constraints
since the proof for termination constraints is analogous. Let x ∈ X ′G and
x+, x− ∈ {0, 1}V . Apparently, if (5.15) is satisfied, then∑

e∈S\E(Vt\{v},Vt+1(v))

(1− xe) ≤
∑
e∈S

(1− xe)
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implies that (5.6) also holds. Conversely, suppose (5.15) is violated. Then
there exists some t ∈ T and v ∈ Vt+1, S ∈ Vtv-cuts(G+

t ) such that x+
v = 0

and xe = 1 for all e ∈ S \E
(
Vt(v), Vt+1 \ {v}

)
. Assume (5.6) is not violated,

then there is a path P in G+
t from some node in Vt to v with xP = 0. Then

P must have non-empty intersection with E
(
Vt(v), Vt+1 \{v}

)
. Let u ∈ Vt(v)

and v′ ∈ Vt+1 \ {v} be such that {u, v′} ∈ P . Since xuv = 1 it follows that x
violates the inequality

xuv ≤
∑
e∈Puv

xe

of (5.2) where Puv is the subpath of P from u to v. This is a contradiction
to x ∈ X ′G.

B.4 Additional Results

We report additional, detailled results in terms of runtime, bounds, objective
for feasible solutions, and derived gaps obtained on the two additional
instances Flywing-wide I and II in Table B.1. In Fig. B.1, we present a
more detailled analysis of the effect of locality parameter dMCBP of our KLB
heuristic.
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Figure B.1: Comparison of varying dMCBP within KLB in terms of runtime
(left) and obtained objective (right). Parametrizations that were found
to (sometimes) misjudge the change of objective due to a too restricted
locality are marked with ×, while the others are depicted as . For the latter
parametrizations, we observe that all obtain the same objective value on
all instances. However, their runtime varies considerably for the larger two
Flywing-wide instances.

108



B.4. Additional Results

Table B.1: Detailed quantitative comparison of algorithms for the MLT on
the two additional instances Flywing-wide I and II. BestGap is calculated
using the tightest bound of any algorithm.

Flywing-wide I
Method Time / s objBest objBound BestGap

GLA 0.72 -89895.00 0.0293
KLB-d=10 104.09 -91316.14 0.0133
KLB-d=inf 477.50 -91316.14 0.0133
ILP (ours) 10000.80 -91774.40 -92528.30 0.0082

Flywing-wide II

GLA 3.43 -167029.00 0.0214
KLB-d=10 3359.34 -168998.95 0.0095
KLB-d=inf 9129.41 -168998.95 0.0095
ILP (ours) 10245.80 -168862.00 -170606.00 0.0103
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Vorwissen zur lokalen Gefässgeometrie.” In: Bildverarbeitung für die
Medizin 2015: Algorithmen - Systeme - Anwendungen. Proceedings des
Workshops vom 15. bis 17. März 2015 in Lübeck. Ed. by H. Handels,
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J. Klohs, G. Székely, B. Andres, and B. H. Menze. “Reconstructing
cerebrovascular networks under local physiological constraints by
integer programming.” In: Medical Image Analysis 25.1 (2015), pp. 86–
94.

[21] M. Rempfler, S. Kumar, V. Stierle, P. Paulitschke, B. Andres, and
B. H. Menze. “Cell Lineage Tracing in Lens-Free Microscopy Videos.”
In: Medical Image Computing and Computer-Assisted Intervention
– MICCAI 2017: 20th International Conference, Quebec City, QC,
Canada, September 11-13, 2017, Proceedings, Part II. Ed. by M.
Descoteaux, L. Maier-Hein, A. Franz, P. Jannin, D. L. Collins, and S.
Duchesne. Cham: Springer International Publishing, 2017, pp. 3–11.

116

https://www.ietf.org/rfc.html


Bibliography

[22] J.-P. Vert and Y. Yamanishi. “Supervised Graph Inference.” In:
Advances in Neural Information Processing Systems 17. Ed. by L. K.
Saul, Y. Weiss, and L. Bottou. MIT Press, 2005, pp. 1433–1440.

[23] Y. Yamanishi. “Supervised Bipartite Graph Inference.” In: Advances
in Neural Information Processing Systems 21. Ed. by D. Koller, D.
Schuurmans, Y. Bengio, and L. Bottou. Curran Associates, Inc., 2009,
pp. 1841–1848.

[24] M. Fiori. “Graph inference and graph matching problems: theory
and algorithms.” Dissertation. UR. FI-IIE, 2015.

[25] C. E. Priebe, D. L. Sussman, M. Tang, and J. T. Vogelstein. “Statis-
tical inference on errorfully observed graphs.” In: Journal of Compu-
tational and Graphical Statistics 24.4 (2015), pp. 930–953.

[26] E. J. Candès and B. Recht. “Exact matrix completion via convex
optimization.” In: Foundations of Computational mathematics 9.6
(2009), p. 717.
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[78] M. Maška, V. Ulman, D. Svoboda, P. Matula, P. Matula, C. Ederra, A.
Urbiola, T. España, S. Venkatesan, D. M. Balak, et al. “A benchmark
for comparison of cell tracking algorithms.” In: Bioinformatics 30.11
(2014), pp. 1609–1617.

[79] E. Meijering, O. Dzyubachyk, and I. Smal. “Methods for cell and
particle tracking.” In: Methods in Enzymology 504.9 (2012), pp. 183–
200.

[80] A. Schrijver. Combinatorial optimization: polyhedra and efficiency.
Vol. 24. Springer Science & Business Media, 2002.

123



Bibliography

[81] F. Jug, T. Pietzsch, D. Kainmüller, J. Funke, M. Kaiser, E. van
Nimwegen, C. Rother, and G. Myers. “Optimal joint segmentation
and tracking of Escherichia coli in the mother machine.” In: Bayesian
and grAphical Models for Biomedical Imaging. Springer, 2014, pp. 25–
36.

[82] B. X. Kausler, M. Schiegg, B. Andres, M. Lindner, U. Koethe, H.
Leitte, J. Wittbrodt, L. Hufnagel, and F. A. Hamprecht. “A Discrete
Chain Graph Model for 3d+t Cell Tracking with High Misdetec-
tion Robustness.” In: Computer Vision – ECCV 2012. Ed. by A.
Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 144–157.

[83] D. Padfield, J. Rittscher, and B. Roysam. “Coupled minimum-cost
flow cell tracking for high-throughput quantitative analysis.” In:
Medical image analysis 15.4 (2011), pp. 650–668.

[84] M. Schiegg, P. Hanslovsky, B. X. Kausler, L. Hufnagel, and F. A.
Hamprecht. “Conservation tracking.” In: 2013 IEEE International
Conference on Computer Vision (ICCV). 2013, pp. 2928–2935.

[85] M. Schiegg, P. Hanslovsky, C. Haubold, U. Koethe, L. Hufnagel,
and F. A. Hamprecht. “Graphical model for joint segmentation and
tracking of multiple dividing cells.” In: Bioinformatics 31 (2015),
pp. 948–956.

[86] F. Jug, E. Levinkov, C. Blasse, E. W. Myers, and B. Andres. “Moral
Lineage Tracing.” In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2016.

[87] B. Andres, J. H. Kappes, T. Beier, U. Köthe, and F. A. Hamprecht.
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“Cut, Glue, &amp; Cut: A Fast, Approximate Solver for Multicut
Partitioning.” In: 2014 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2014, pp. 73–80.

[94] J. H. Kappes, M. Speth, G. Reinelt, and C. Schnörr. “Higher-order
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