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Abstract

Augmented Reality (AR) is a technology that superimposes a computer-generated virtual
image on a user’s view of the real world, thus merging the Virtual and the Real. Over
the last few decades, AR applications have expanded from the very first military, industrial,
and medical applications, into entertainment, education, and gaming industry, gradually
entering our daily life. The ever-growing importance of augmented reality has awakened
special interest of the automotive industry to also apply it to a production car.

Today, despite the success of augmented reality in consumer electronics, AR in a car is still
difficult to realize than AR on a mobile device. First of all, the requirements on functional
safety, real-time capability, and robustness of an AR function (algorithm) in the automotive
industry is in another dimension. Also, an in-vehicle AR application needs to be distributed
into different domains of the in-vehicle Electric/Electronic (E/E) system, which, however,
does not support transmitting massive amount of data today. In order to incorporate aug-
mented reality in a production car, both of the existing AR functions and the in-vehicle E/E
architecture have to be refined or redesigned.

This thesis presents a roadmap toward practical implementations of in-vehicle augmented
reality. It discusses in detail how fundamental understandings, including depth understand-
ing and scene understanding, enable a series of AR functions such as localization, tracking,
and rendering for in-vehicle augmented reality. In particular, this thesis makes three follow-
ing scientific contributions.

First, within the scope of depth understanding, we propose a compression scheme for a
compact mid-level representation of depth information named Stixel. The proposed Stixel
compression algorithm reduces both temporal and spatial redundancies in Stixel data using
a combination of predictive modeling and entropy coding. It enables transmitting depth
information through a reasonably priced in-vehicle bus, which solves a key problem for
incorporating in-vehicle augmented reality.

Second, within the scope of scene understanding, we propose a workflow to 3D shape
reconstruction named 3D Shaping as the first step towards building a three-dimensional
environmental model at an object level, which is essential for augmented reality. The 3D
Shaping workflow adapts an existing silhouette-based reconstruction algorithm to jointly es-
timate the pose, the scale, and the 3D geometry of an object that is detected in an input
image. The estimation step takes advantage of an extremely low-dimensional representa-
tion of 3D geometries, which allows distributing the workflow into different domains of the
in-vehicle E/E architecture without significantly increasing the payload requirement on the
in-vehicle communication medium. We additionally propose two extensions of 3D Shap-
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Abstract

ing in order to make it more practical for real traffic scenes. Relying on the proposed 3D
Shaping and its extensions, truly 3D augmentation of the real world becomes possible for
in-vehicle AR.

Last but not least, within the scope of system design and integration, we propose three dif-
ferent designs of in-vehicle AR systems, respectively for the current generation, next gen-
eration, and future generation of production cars. We continuously integrate our research
findings into the designed AR systems, and we fully exploit depth understanding and scene
understanding for in-vehicle AR in our designs. We expect our proposed future AR system
to be seriously considered by industrial decision makers and eventually adopted in series
production cars in the future.

The value of in-vehicle AR will continuously grow in the future, especially when drivers
do not have to drive anymore by themselves. Relying on new sensor technology, display
technology, and Artificial Intelligence (AI), in-vehicle augmented reality will become more
connected, more sophisticated, and more “real”. We hope this thesis could catch the at-
tention of our peers in both academic research and industry so that more researchers and
developers would devote themselves to AR. We firmly believe in a bright future of in-vehicle
augmented reality.

xviii



1 Introduction

Now I do not know whether it was

then I dreamed I was a butterfly, or

whether I am now a butterfly

dreaming I am a man.

Zhuang Zhou
c. 369 BC - c. 286 BC

Mankind has never ceased to question the reality of the world they live in. As early
as the 4th century BC, the ancient Chinese philosopher Zhuang Zhou [Wat03] already
raised the doubt about his existence after he dreamed about himself being a butterfly
fluttering in the virtual world in his dream. In a general sense, the term Virtual involves
everything that does not exist in the physical world, from dreams, myths, to fictional
universes. It reveals the desire of human beings to emancipate themselves from the Real,
which is most of the time perceived as being boring, banal, and monotonous. This desire
has motivated countless researchers and scientists to keep exploring new possibilities for
closing the gap between the virtual and the real. As an inevitable result of their e�orts,
Augmented Reality (AR) emerged.

This chapter introduces the background, the key problems, the way of thinking, the
structure, and the key contributions of the thesis. We briefly review the history and related
work of augmented reality in Section 1.1 and Section 1.2, respectively. In Section 1.3, we
provide an overview of in-vehicle E/E architecture, with the main focus on the telematics
domain and the Advanced Driver Assistance System (ADAS) domain, which are the most
relevant domains for incorporating in-vehicle AR. In Section 1.4, we explain the key
problems that make it impossible for us to realize in-vehicle augmented reality without
any modification of the E/E architecture. Three key problems are defined in this section,
which we address later in the main body of the thesis. In Section 1.5, we introduce our
way of thinking, i.e., how we approach the objective of designing and integrating an AR
system in a production car. Instead of focusing on individual functions in an AR system,
we rather put emphasis on two fundamental understandings, namely depth understanding
and scene understanding, based on which AR functions and systems are built. We present
the outline and the contributions of this thesis in the last two sections, Section 1.6 and
Section 1.7, respectively.
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1 Introduction

1.1 History of Augmented Reality

Figure 1.1: Head-mounted display created by Sutherland [Sut68] in 1968. Images are
extracted from [Sut68] and adapted by the author.

The first use of the term “Augmented Reality” was attributed to the former Boeing
researcher T. Caudell [JMC93] in 1990. He used it to describe the enhancement of human
perception of reality through computer generated virtual objects. The first mention of this
kind of idea was much earlier, as L. Frank Baum [Fra01] introduced the “character maker”
in his novel The Master Key in 1901. The character maker comprises a set of spectacles
that overlay a label onto a person’s forehead. The label reflects the persons character,
e.g., ‘G’ for Good or ‘E’ for Evil. About 60 years later, in 1968, the idea in [Fra01] was
realized by Sir Sutherland [Sut68]. He created a new type of three-dimensional display
(Fig. 1.1), known as Head-Mounted Display (HMD) today, which is literally mounted
on the head of a user. The HMD shows a virtual scene that changes along with the
position and the orientation of the head. This gives a user the impression as if he or
she were “inside” the virtual scene. However, quite the opposite of a modern day HMD,
the wearer back then was rather tethered to a workstation confined to a fixed location
instead of really wearing the HMD. Another decade later, in 1980, S. Mann [Man97] built
a wearable computer with a stereo HMD, which is considered the world’s first augmented
reality wearable device. These are the pioneers who made fundamental contributions to
augmented reality in the early years.

Relying on fast booming hardware and software technologies in the past three decades,
augmented reality has experienced a rapid development. Today, there is a wide range
of AR applications in many di�erent fields including video games [Nia12, Lyt15, Nia16],
commerce [L’O15], education [Ter16, Exp16], industrial design and assembly [VSH07,
WON16], military [CDA+05], and tourism [BM06]. Google Glass [X D15] and Microsoft
Hololens [Mic16] belong to the most well-known commercially available AR wearable
devices. In 2016, the AR game Pokémon Go [Nia16] swept the globe by lifting the players
o� their couches and forcing them to go outside in order to catch Pokémons, a virtual
creature who only appears on the screen if the player moves him- or herself physically close
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to some specific GPS locations in the real world, known as “spawn points” of Pokémons.
Augmented reality has already started to change the way how people acquire information,
play games, and design product among others. The gap between the virtual and real is
gradually closing.

1.1.1 AR in the Automotive Industry

Early AR projects in the automotive industry date back to the 90’s. ARVIKA [Fri02] was
one of the most influential pioneer projects. Supported by the German Federal Ministry
of Education and Research, the primary objective of this project was to implement an
augmented reality system for mobile use in industrial applications in a wide range of
fields spanning from development to production and service. Germany’s three major car
manufacturers, namely Daimler, BMW, and VW were involved in this project. Since
then, a number of AR projects were spun out of the automotive industry [RBW05]. AR
applications such as engine maintenance, wiring, and safety drive training were prototyped
and demonstrated.

(a) (b)

(c) (d)

Figure 1.2: In-vehicle AR concepts, demonstrators, and products. (a) Daimler AR demon-
strator DICE [Dai12]. (b) Microsoft productivity future vision [Mic11].
(c) Toyota AR concept Window to the World [CT11]. (d) Head-up display
available in Mercedes-Benz C-Class 2014 [Dai13]. Image source: (a)(d) Daim-
ler AG, (b) Microsoft Corporation, (c) Toyota Motor Corporation.
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Coming into the modern era, in early 2012, Mercedes-Benz [Dai12] exhibited the Dynamic
and Intuitive Control Experience (DICE) demonstrator, where the entire windscreen of
a car was conceptualized as a single augmented reality Head-Up Display (HUD). Only
gestures were needed for controlling and interacting with the system. One year later,
Mercedes-Benz [FPR+13] again presented a prototype vehicle, which drove itself “without
a real driver” on the historical route from Mannheim to Pforzheim in Germany. This
project, although not directly schemed for augmented reality, opened up new possibilities
for in-vehicle AR to provide the “engineering view” to the driver and thus enabling him
or her to monitor, view, and understand the decisions of a self-driving car.

Despite the growing popularity of in-vehicle augmented reality in the press (Fig. 1.2),
AR has still not been truly integrated into vehicle platforms. There are certain specific
automotive requirements that have to be met during the stage of system design, such as
real-time and robustness requirements on the algorithms, power consumption and com-
munication bandwidth constraints on the Electrical/Electronic (E/E) systems, etc. The
automotive industry is still seeking new solutions to incorporate AR in a production car.
On the one hand, AR technologies have to be further developed in order to improve their
robustness and reliability. On the other hand, the in-vehicle E/E architecture needs to
be modified or redesigned in order to support computationally expensive AR algorithms
and enable transmitting data across di�erent in-vehicle domains. These challenging tasks
still remained unaddressed at the time point when we started this thesis.

1.2 Related Work

In 2014, Gabbard et al. [GFK14] published a comprehensive review of challenges and op-
portunities for incorporating augmented reality into automotive applications. According
to [GFK14], the opportunities of in-vehicle AR lie above all in supporting interactions
between the driver and the car, e.g., navigation aids through a windshield HUD, whereas
a number of critical technical challenges including tracking, depth perception, and 3D
scene registration need to be overcome.

Opportunities As in [GFK14], most of the existing studies of in-vehicle augmented re-
ality [TFO+94, DCT09, KD09, PDT+09, CPMA11, KWGP13, MCJS13] focused on AR
user interaction using a head-up display. The advantage to augment additional informa-
tion directly on the windshield of a car is, that the driver does not have to shift his or
her attention away from driving anymore while accomplishing additional driving related
tasks in the same time, e.g., finding the next way point or checking the speed limit. Sev-
eral examples of using AR based navigation and driver assistance systems are presented
in [DCT09, KD09, KWGP13, MCJS13]. Also, AR navigation and driver assistance at
night [Ber08] is of great interest and importance to the automotive industry.

Currently, commercially available in-vehicle AR systems are already able to provide the
afore-mentioned features to some extent. Several Original Equipment Manufacturers
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(OEMs) including Daimler [Dai13] and BMW [BMW11a, BMW11b] already integrated
head-up displays in their premium segment production cars. Automotive suppliers such
as Pioneer [Pio12] and Harman [Har16] also o�er external HUDs that can be mounted
overhead or to the dashboard. Nevertheless, the current generation of HUDs are only able
to show static overlays instead of contact-analog augmentations.

In the meanwhile, the number of sensors equipped in a production car has gradually
increased. Additional sensors including camera, Radar, and Lidar are already widely
used in pilot projects of self-driving cars [FPR+13, DAK+15, Way16]. These sensors
would be eventually available in future generation of series production cars, enabling
them to capture the 360¶ surroundings (Fig. 1.3). This o�ers another opportunity to
in-vehicle AR by providing more precise and comprehensive measurements of the world.

Figure 1.3: Sensor setup of the prototype vehicle “Bertha” [DAK+15] comprising a
forward-looking stereo-vision system, a backward-looking monocular vision
system, and eight Radar sensors covering 360¶ surrounding environment of
the ego-car up to 200 meters. Image source: Daimler AG.

Challenges Despite the variety of automotive AR products being o�ered, augmented
reality itself is still not a mature technology, let alone to be integrated into a vehicle
platform.

In recent years, progresses have been made in AR enabling technologies including track-
ing [Bad04, NNB04, YKN06, How08], localization [DNC+01, LT10], depth estimation [Hir05,
GEM09], 3D scene reconstruction and registration [PSR12, DPRR13, KTCM15], head
pose and gaze point estimation [TKBO11, ZLR12], and realistic rendering [HDH03,
UIS+09, dLLT12]. There are also a number of studies [Tuf97, HU04, GSZW10, GTFC12,
TMH+12, GBR14] focusing on applying these technologies in a car. These studies re-
vealed some of the challenges in transferring indoor AR technologies, e.g., tracking, to a
large-scale outdoor environment. The hardware platform carrying indoor AR applications
is usually a smartphone or a see-trough head-mounted display, where head tracking and
gaze point estimation are not required. In a car, however, head and gaze point track-
ing is critical to the user experience while augmenting contact-analog information on the
windshield, e.g., blending a navigation arrow on the surface of the road in the real world.
Due to the large variety of tra�c scenes, weather conditions, and driving styles, existing
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AR technologies cannot be easily transferred into a car without improving the algorithms
or redesigning the hardware. This is one of the biggest technical challenges in realizing
in-vehicle AR.

Despite those afore-mentioned technical challenges, another hurdle of incorporating AR
in a car finds itself in the high-demanding automotive requirements. The state-of-the-
art AR enabling technologies are often computationally expensive, produce large amount
of 3D data, and are not real-time capable. In contrast, the automotive E/E system
is characterized through its heterogeneity, computational e�ciency, and low-bandwidth
communication media. As long as no significant upgrade is applied that enables data-
intense computing and transmission on the in-vehicle E/E architecture, the trade-o� has to
made between the performance of the algorithm and the cost of modifying the specification
of the in-vehicle E/E systems. From the point of view of system architects, an entire AR
workflow has to be distributed to di�erent Electronic Control Units (ECUs) in a car. In
addition, the amount of data that has to be transmitted through the in-vehicle bus needs
to be analyzed, and the latency from the sensors to the AR displays has to be minimized.
These questions still remain open to the automotive industry.

In reviewing the literature of augmented reality, we realized that at the time point when
we started this thesis, there was very limited research concerning both optimizing AR
technologies and modifying or redesigning the in-vehicle E/E architecture for in-vehicle
AR. To our best knowledge, our work in this thesis is the first of its kind that addresses
these issues.

1.3 In-Vehicle E/E Architecture

In-vehicle Electric/Electronic (E/E) architectures are heterogeneous and distributed sys-
tems comprising a large number of Electronic Control Units (ECUs) and the communica-
tion systems connecting them. In some flagship vehicles, there are more than 100 ECUs
controlling the engine, the brake, the seats, and the infotainment system. Figure 1.4
shows a typical E/E architecture of a modern vehicle. The ECUs in a car form four
major domains according to their main functionalities. These include body domain that
provides comfort related functions, powertrain domain that controls the engine, ADAS
domain that helps improve driver safety, and telematics domain for in-vehicle telecommu-
nication and infotainment. All of them share a central gateway which relays signal from
one domain to another.

The communication between ECUs is carried out through a specialized communication
network named in-vehicle buses. Since its first introduction in the late 80’s, various
communication standards were developed in order to meet special requirements of di�erent
domains. For example, data transmission in the ADAS domain is crucial to the safety of
the driver or the passengers and therefore has to be hard real-time capable. In contrast,
transmitting a control signal within the body domain is more tolerate to transmission
error or packet loss. There are four most widely deployed vehicle bus standards today,
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namely Controller Area Network (CAN), Local Interconnect Network (LIN), FlexRay, and
Media Orient Systems Transport (MOST). Table 1.1 gives a brief comparison of them.
For more details of in-vehicle buses, please refer to [ZS11].

Table 1.1: Comparison of in-vehicle bus standards [ZS11]. Data source: [ZS11].
Bus Bandwidth Application Domain Example Use Case Cost
LIN Æ 20 kbps Body Door lock Low
CAN Æ 500 kbps Powertrain Engine control Medium
FlexRay Æ 10 Mbps ADAS X-by-wire High
MOST Æ 25 Mbps Telematics Video streaming High

1.3.1 Telematics Domain

The French origin télématique of the term telematics merges télécommunication and in-
formatique, which refers to the transfer of information via telecommunications. In a car,
it involves satellite navigation, radio, Bluetooth telephony, and wireless communication.
More generally, in-vehicle telematics also includes input and output hardware devices for
information transfer such as wheel buttons, number pads, and various in-vehicle displays.

The telematics domain provides an ideal basis for applying in-vehicle augmented reality.
First, virtual contents to be augmented, e.g., virtual points of interest, need to be con-
stantly updated. This requires wireless communication between a car and online content
providers, which are provided by the telematics domain. Second, there are abundant
options in the telematics domain available for designing the Human-Machine-Interface
(HMI) of an AR system. It is more intuitive to use buttons in the telematics domain,
e.g., a wheel button or a control element in the central panel, to interact with the AR sys-
tem instead of using a seat button. Last but not least, the core functionalities of several
AR customer features, e.g., navigation, are already available in the telematics domain.
Hence, we do not need to re-implement them from the scratch. These give certain ad-
vantages to the telematics domain against other domains while considering the carrying
domain for in-vehicle AR.

1.3.2 ADAS Domain

ADAS domain comprises ECUs, in-vehicle sensors, and actuators that help a driver in
accomplishing various driving tasks and preventing tra�c accidents. Several well-known
ADAS applications include adaptive cruise control, parking assist, and lane-keeping warn-
ing. Traditional ADAS uses cameras, ultrasonic sensors, and Radars to perceive the en-
vironment and detect obstacles. Recent research projects also added Lidar to the ADAS
in order to capture precise 3D measurements of the surrounding environment.

The ADAS domain is also important for in-vehicle augmented reality. One of the keys
to merging the virtual and the real is an accurate alignment of real and virtual objects.
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The better the three-dimensional environment is understood and reconstructed, the more
realistic the blended output can be. In other words, an AR system requires algorithms
that detect, classify, and track real-world objects in real time. In the ADAS domain, a
number of algorithms to object (car, pedestrian, and tra�c sign) detection and tracking
are already available. These could be reused by an in-vehicle AR system.

1.4 Problem Statement

AR pioneers Azuma et al. [ABB+01] defined an AR system, independent of its carrying
platform, to share the following three properties.

• Blends real and virtual, in a real environment.

• Real-time interactive.

• Registered in 3D.

There are several issues of the current generation of in-vehicle E/E architecture which
makes it impossible to incorporate an AR system that meets all of the three properties.
For example, the in-vehicle front-looking camera is originally designed for driver assistance
and does not directly stream images to the displays. Instead, it evaluates input images
through computer vision algorithms and only sends out the processed information, e.g.,
recognized tra�c signs or road surface markings, to the vehicle bus. Without modifying
the E/E architecture, there is no input source of the Real available to the AR system,
let alone blending the Real and the Virtual. Besides, 3D registration is still an active
research area in both academic research and industry. Robust and large-scale registration
algorithms that are applicable to an in-vehicle system are yet to be developed. Even if
an algorithm was ready to be applied, it could easily overwhelm the computational and
memory capacity of any ECUs by its complexity. In addition, the requirement of real-
time interactivity makes it even more di�cult to incorporate AR in a car. It would be for
example a poor interaction experience if zooming on a map using AR navigation would
take more than a second.

By analyzing the current generation of the in-vehicle E/E architecture, we crystallized
three key problems for in-vehicle augmented reality which we address in the main body
of this thesis. These include the transmission of depth information through in-vehicle
bus, object-level 3D reconstruction of the surrounding environment, and the engineering
problem of integrating designed AR systems into prototype vehicles.

1.4.1 Key Problem: Transmission of Depth Information

Vision-based advanced driver assistance systems are increasingly being used in modern
production cars. Towards this, stereo vision systems are used to capture the 3D surround-
ings of the ego-cars. Using stereo matching algorithms [Hir05, GEM09], depth information
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is generated, processed, or stored for a short period of time in the vision processing system
for further use, such as building an environmental model for in-vehicle augmented reality
(Fig. 1.5).

(a) Original image. (b) Disparity image. (c) Point cloud.

Figure 1.5: Representations of depth information.

Stixel [BFP09, PF10, PF11, PGS13] is a data structure that was introduced about ten
years ago to model depth information in tra�c scenes. The term “Stixel” was created by
combining “Stick” and “Pixel”, which reflects the fact that a Stixel frames a thin rectan-
gular area (like a stick) in a depth image with similar disparity (pixel) values (Fig. 1.6).
Based on the assumption that the geometry in common tra�c scenes comprises predomi-
nantly vertical and horizontal surfaces, the Stixel representation finds a balance between
the compactness and informativeness of the depth information.

Figure 1.6: Stixel representation of a tra�c scene. Distances are encoded in color, from
red being close to green being far away. Image source: [PF11].

Even using the Stixel representation, the depth data volume of the complete scene is
still too huge for a low- or medium-bandwidth in-vehicle communication system, e.g., a
CAN [Int03] bus. In other words, in today’s commercially available cars, depth informa-
tion still remains in the in-vehicle vision system, without being accessible to the other
components in the car due to cost reasons. This limits the development of a number of
applications such as augmented reality that requires depth information of the surrounding
environment. Hence, the automotive industry is still seeking a solution that makes depth
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information available to other in-vehicle processing units via a less expensive communi-
cation bus. This is the first key technical problem that needs to be solved for in-vehicle
augmented reality.

1.4.2 Key Problem: Object-level 3D Reconstruction

Recall that Azuma et al. [ABB+01] required an AR system to be able to register the
3D environment. A key approach to 3D registration is referred to as object-level 3D
reconstruction [RBM+07, RMB+09], which aims at building a 3D environmental model at
an object level. Relying on object-level 3D reconstruction, in-vehicle AR applications are
able to truly augment the 3D world. Figure 1.7 shows a rendered example of object-level
reconstruction of a car’s surroundings. In this example, the driver of the ego-car entering
the intersection cannot see the other car behind the bush. If the 3D pose (position and
orientation) and 3D geometry of every objects in this scene are precisely reconstructed
and registered, we can overlay a warning sign onto the hidden car through AR and thus
bring it back to the driver’s notice.

Figure 1.7: Example object-level 3D reconstruction of a car’s surroundings.

There are four stages in building such an object-level environmental model. The first stage
(Fig. 1.8(b)), referred to as 2D Detections, aims at detecting one or multiple targeted
objects in a 2D input image. It is also known as object bounding box detection. The
second stage 2D Semantics (Fig. 1.8(c)), also known as image segmentation, pixel-level
classification, or instance segmentation, classifies every pixel in a 2D input image. This
requires a more detailed understanding of the scene in the image, i.e., how the scene is
structured. The third stage 3D Semantics (Fig. 1.8(d)) extends 2D semantics to the three-
dimensional world with the help of additional sensors such as stereo camera or Lidar. By
back projecting image cues to the 3D space and combining them with 3D measurements,
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a comprehensive reconstruction of the scene can be achieved, enabling further processing
such as occlusion reasoning and surface reconstruction among others.

The fourth and the most important stage is referred to as Geometry Modeling, which fits
3D geometries (shapes) of the detected objects into the reconstructed 3D scene. Now, the
3D scene can be represented by a list of objects with their 3D poses and shapes instead
of a huge amount of 3D points – hence, the name of object-level reconstruction. This
enables a more compacted representation of the 3D environment.

So far, all core functionalities for object-level 3D reconstruction are provided by the ADAS
domain in a car. However, as already elaborated in Section 1.3.1, the hardware compo-
nents for HMI (displays, buttons) are provided by the telematics domain. Hence, we need
a sophisticated solution for shipping 3D geometries through the in-vehicle communication
system. This is the second key technical problem for in-vehicle augmented reality.

1.4.3 Key Problem: In-Vehicle Proof of Concept

The modern in-vehicle E/E architecture is a highly complex system consisting of a consid-
erable number of sensors, actuators, and ECUs, as well as the in-vehicle buses connecting
them. Decades of research have been conducted in order to enable all of the in-vehicle
components functioning as a whole. Several related research topics in the area of system
design, modeling, and simulation include arithmetic expressions, heterogeneous composi-
tion, clock synchronization, and modeling delays. Beyond that, the validation, integration,
and testing of a designed and implemented system in a test vehicle are also proven to be
a huge challenge that requires years of engineering experiences.

So far, in the automotive industry, it typically takes five to seven years for a new feature
from the research phase to the actual production launch. In the early phase of this time
span, prototypes are usually built for proof of concept. Based on the evaluation of the
prototypes, the decision makers would decide whether to continue the development at all
or how much resource should be further allocated if decided to continue. These kinds of
decisions are typically hard to taken since it might have serious strategic consequences
influencing the competitiveness of the manufacturer. Specifically, for in-vehicle augmented
reality which is a technology that is not considered mature yet, it is even harder to
make an early decision regarding the upgrade of the E/E architecture and the customer
features to be provided based thereon. On the one hand, the robustness of currently
existing AR functions such as tracking and localization needs to be improved, in oder
to meet the technical requirements of the automotive industry. This requires further
research and algorithmic development in the fundamental understandings, e.g., depth
understanding and scene understanding. On the other hand, the current generation of
the E/E architecture needs to be updated or redesigned, in order to support an AR system
that is yet to be developed. In other words, at the current time point, it is impossible for
a system architect to fix the specification for the in-vehicle E/E architecture for the next
five years while the technology of AR itself is still under development.
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(a) Input image.

(b) First stage: 2D detections.

(c) Second stage: 2D semantics.

(d) Third stage: 3D semantics.

Figure 1.8: The first three stages of building an object-level environmental model.
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Given all the afore-mentioned constraints and determining factors, it is clearly infeasi-
ble to address all of the afore-mentioned research topics within the scope of this thesis.
Therefore, we define the key problem here from the following two perspectives. First, we
aim to prove the basic concept of AR in a test vehicle using the currently available tech-
nologies as far as possible. In parallel, we intend to continuously integrate new findings
during the research on depth and scene understanding into an AR prototype system. This
engineering problem is the last and the most important key problem of the thesis.

1.5 Think Model

This thesis aims at enabling in-vehicle augmented reality in series production cars. To be
more precise, it does not focus on individual algorithms or technologies, referred to as AR
functions, that support in-vehicle AR. Since AR functions cover a variety of subjects from
3D geometry, computer vision, computer graphics, to navigation, and optical physics, it
is impossible to attack all of them and make a breakthrough in each AR function within
the scope of this thesis. Also, from the view point of an OEM, our task consists in
specification and requirements engineering instead of developing and implementing single
functions. These are the reasons why we decided to focus on a more fundamental layer
of AR in this thesis and tackle the afore-mentioned key problems which are critical for
incorporating augmented reality in a car.

Nevertheless, it is impossible to discuss the fundamental understandings without introduc-
ing AR functions. Therefore, in Section 1.5.1, we begin with three of the most important
AR functions for in-vehicle augmented reality, namely localization, tracking, and render-
ing. Subsequently, in Section 1.5.2, we stress the importance of depth understanding and
scene understanding for AR and show how these two fundamental understandings support
the introduced AR functions.

1.5.1 AR Functions

Localization Localization aims at answering the question “Where am I?”. It applies
both global and local positioning techniques in order to achieve certain required local-
ization precision. It is essential that an in-vehicle AR system be able to determine the
precise global position of the ego-car, since virtual objects such as virtual Point Of Inter-
ests (POIs) provided by most of the content providers are defined in the global coordi-
nate system. According to [U.S17], as of late 2016, Standard Positioning Service (SPS)
GPS receivers only provide a horizontal accuracy around 1.9 meters. The vertical accu-
racy is twice as much. In order to increase the GPS accuracy, enhanced systems such
as Di�erential GPS (DGPS) and Real-Time Kinematic GPS (RTK-GPS) are deployed,
enabling a car to navigate at lane level [DB08] or in areas with poor or without GPS recep-
tion [LGSB12]. Yet in urban areas, especially in areas with tall buildings, the performance
of pure GPS-based localization methods are usually unsatisfying due to multipath infer-
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ences. Recently, hybrid localization methods based on Simultaneous Localization And
Mapping (SLAM) [DNC+01, LT10] successfully solved this problem by combining classic
localization techniques with (visual) tracking.

Tracking The problem of tracking involves self-tracking and tracking of external objects.
It enables retrieving and updating the relative pose between the ego-car and surrounding
objects. A straightforward solution for self-tracking accumulates data from motion sen-
sors, e.g., wheel odometer. However, wheel odometry is vulnerable against wheel drift,
since once the vehicle loses track at one point, it will never be able to correct itself again.
The drifting e�ect can be compensated using visual odometry [NNB04, How08], where
feature points [LK81] extracted from consecutive image frames are first matched, and
optical flows [BB95] are then calculated based on the matched feature points. In other
words, drifts are detected and compensated visually using visual odometry. The robust-
ness of visual odometry is increased by eliminating outliers using RANSAC [FB81] or by
using a Kalman Filter [Kal60]. Although a monocular camera is proven to be su�cient
for self-tracking [YKN06], a stereo camera is still preferred in systems that require more
precise tracking results. The advantage of using a stereo camera is, that it is able to track
feature points directly in the three-dimensional space [Bad04].

Figure 1.9: Example of 6D Vision. The left image shows a typical tra�c scene. The right
image draws the dense motion field of the surroundings estimated using 6D
Vision. Velocities are encoded in color from green being slow to red being
fast. Images are extracted from [RMWF10] and adapted by the author.

Also, computer vision plays an important role in tracking external objects. A vision-
based method usually initializes a tracking procedure based on object detection, e.g., ve-
hicle [CVT+12] or pedestrian [XLF05] detection. Common visual cues for object tracking
include color, edges, optical flow, and texture [YJS06]. Recently, a new approach known
as 6D Vision [FRBG05, RMWF10] enabled motion tracking of dense feature points in
real-time using a stereo camera. The 6D Vision approach allowed a stereo camera to
track the entire scene in its field of view (Fig. 1.9). In addition, the results of 6D Vision
could be fused with other sensors available in a car such as Radar [GSDB07, BF12] or
ultrasonics [KCV13], yielding more promising and robust tracking results.
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Rendering AR rendering aims at seamlessly integrating computer rendered objects into
the real world. In order to achieve a high degree of visual coherence [KK12], global illumi-
nations [PML+10] must be calculated accurately and the light interaction between virtual
and real objects has to be simulated correctly. Adding shadowing, reflection, and refrac-
tion e�ects [HDH03, UIS+09, dLLT12] will further improve the visual realism of virtual
objects. Image-based rendering techniques [KLZN03] that illuminate computer gener-
ated objects with measurements of real world lighting are especially helpful by various
environment illuminations under di�erent weather conditions.

Other AR functions such as spatial AR [BR05] and light field [MIT15] are less applicable
in a car. For more details of AR functions, please refer to [ABB+01, ZDB08].

1.5.2 Fundamental Understandings

Depth Understanding Figure 1.10 shows an example of the use of depth understanding
for AR navigation. Assume our navigation destination to be the building behind the
caravan on the right side of the image. If we directly overlay a navigation arrow at
the position where the building appears in the image, we will most probably get confused
whether we should stop in front of the caravan or not (Fig. 1.10(a)). Now, if we replace the
caravan with a dummy 3D cube and place it in front of the navigation arrow (Fig. 1.10(b)),
the destination in the rendered image (Fig. 1.10(c)) becomes much more clear. This simple
example shows how depth understanding enables realistic blending between virtual objects
and the real world.

(a) AR overlay without depth reasoning. (b) A dummy depth mask.

(c) AR overlay with depth reasoning.

Figure 1.10: Exploiting depth information for AR rendering.

Depth understanding supports AR functions by all means. We are able to localize the ego-
car more precisely in the 3D surroundings using depth measurements, e.g., point clouds
captured by a Lidar or disparity maps generated by a stereo camera. For tracking, depth
understanding helps us separate target objects according to their distances to the ego-
car. AR rendering becomes more realistic by applying a depth mask to virtual objects, as
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already shown in Fig. 1.10. Hence, we need to understand the depth in order to augment
the real world.

Scene Understanding Several conceptual graphical interfaces of AR driver assistance
applications are shown in Fig 1.11. The speed of the ego-car, the speed of surrounding
cars, and the distance to the left and right lane, are shown to the driver, in order to keep
him or her informed about the surrounding tra�c situation. If an obstacle appears in
front of the ego-car, the obstacle and the road on which the ego-car drives turn red in
order to give an early warning to the driver. In addition, an estimated Time To Collision
(TTC) is augmented. In case someone attempts to overtake the ego-car, the overtaking
vehicle is rendered di�erently in the rear view image, in order to attract the attention
of the driver. All of these conceptual designs are based on the assumption that roads
and lane markings are flawlessly detected, surroundings cars are robustly tracked, and
pedestrians are recognized with their attentions being predicted in advance. In other
words, the surrounding scene has to be fully understood for in-vehicle AR.

(a) Front view. (b) Rear view.

(c) Crossing vehicle. (d) Crossing pedestrian.

Figure 1.11: Conceptual graphical interfaces of AR driver assistance. Image source: Daim-
ler AG.

Scene understanding is fundamental to AR functions. First, the accuracy of localization
can be improved significantly through a combination of GPS and lane markings detec-
tion. While GPS receivers only provide a horizontal accuracy around 1.9 meters [U.S17],
a typical lane marking aided localization technique operates at centimeter level [GBR14].
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Second, by separating dynamic objects from a static background, tracking can be carried
out more e�ciently. There is no need to track objects that are irrelevant to tra�c scenes,
such as sky, buildings, or vegetations. The tracking algorithm would have a clear focus
if these irrelevant objects could be detected and removed in a preprocessing step. Last
but not least, understanding the entire scene provides abundant possibilities to redesign
the AR graphical interface. Examples are already shown in Fig. 1.11(b). Here, classifi-
cation is carried out at a pixel level, enabling the AR renderer to overlay a pixel-precise
augmentation onto the overtaking car instead of a simple rectangular bounding box.

1.6 Organization of the Thesis

We present the roadmap of this thesis in Fig. 1.12. It illustrates how the knowledge is
built up in order to reach the top of the pyramid – our goal to enable in-vehicle augmented
reality in series production cars.

Chapter 5.

System Design

AR Functions

Chapter 3.

Depth
Understanding

Chapter 4.

Scene
Understanding

Chapter 2.

Mathematical Prerequisites

Chapter 1. Introduction

Figure 1.12: Roadmap of the thesis.

In Chapter 2, we introduce essential mathematical prerequisites which helps in better
understanding the rest of this thesis from a mathematical point of view. These include
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basic mathematical models of virtual and real cameras, a brief introduction to motions,
and definitions of di�erent coordinate systems relevant to in-vehicle AR.

In Chapter 3, we comprehensively discuss one of the fundamental understandings for
in-vehicle augmented reality: Depth Understanding. The major challenge in enabling
depth understanding in a car lies above all in, as already mentioned in Section 1.4.1, the
bandwidth of the in-vehicle communication system. We propose a self-developed lossless
compression scheme for Stixel in this chapter to solve this problem. We believe that the
proposed compression scheme is a key enabler for in-vehicle augmented reality.

In Chapter 4, we provide an in-depth discussion of another fundamental understandings
for in-vehicle AR: Scene Understanding. As introduced in Section 1.4.2, the main challenge
here is how to reconstruct the three-dimensional surroundings of the ego-car at an object
level. We present a novel 3D reconstruction workflow named 3D Shaping in this chapter,
that is able to reconstruct the 3D shape of an object using only a single frame from a
monocular camera. In addition, we propose two extensions to 3D Shaping in order to make
it more practical for real tra�c scenes. Our proposed 3D Shaping workflow together with
its extensions serve as the first step toward object-level 3D reconstruction, which solves
another key problem for incorporating augmented reality in a car.

Based on the fundamental understandings discussed in Chapter 3 and Chapter 4, a wide
range of AR functions can be realized. However, as already elaborated at the beginning
of Section 1.5, addressing each AR function in the finest detail is out of scope of this
thesis. Therefore, instead of dedicating an entire chapter specifically for AR functions,
we implicitly immerse the discussion of the three most important functions into Chap-
ter 5 and explain how they are supported and improved through depth understanding
and scene understanding. These functions include road Surface Estimation, ego-Motion
Estimation, and depth Culling, each as a representative of localization, tracking, and
rendering, respectively.

In Chapter 5, we tackle the final key problem of this thesis – the proof of concept of AR
in a test vehicle. Here, we put the emphasis on how our new findings in depth and scene
understanding would enable augmented reality in a close-to-production vehicle platform.
We present three di�erent in-vehicle AR systems, respectively designed for the current
generation, the next generation, and future generation of productions cars. The current
generation AR system is integrated into a middle-class prototype vehicle, whereas the
next generation into a modified upper-class production car with more advanced sensor
technology. Both of them are demonstrated in normal road tra�c. We show the advan-
tage of using Stixel compression for the transmission of depth information in the next
generation AR system, and we design the future AR system in such a way as to fully ex-
ploit 3D Shaping for object-level 3D reconstruction. We expect our designed AR systems
to be seriously considered by the industrial decision makers and eventually adopted in
series production cars in the future.

In the last chapter of this thesis, Chapter 6, we conclude this thesis and give a brief
outlook on the future of in-vehicle AR.
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1.7 Key Contributions

The key contribution of this thesis, in a nutshell, is that it brings in-vehicle augmented
reality one step closer to practical implementation. As already stated in Section 1.2, this
thesis is, to our best knowledge, the first of its kind which jointly concerns fundamental un-
derstandings and in-vehicle E/E architecture design in order to enable augmented reality
in series production cars. We propose solutions in the thesis which resolves two technical
key issues for in-vehicle AR, namely transmission of depth information and object-level
3D reconstruction, respectively. In addition, we tackle the key engineering problem to
prove the concept of in-vehicle AR by presenting three designed AR systems for the cur-
rent generation, the next generation, and future generation of production cars, based on
our findings during the research on depth understanding and scene understanding.

From a technical point of view, the contributions of this thesis are three-fold.

In Chapter 3, we develop an e�cient lossless compression scheme for Stixel which enables
the transmission of depth information through a reasonably priced in-vehicle communi-
cation system. The proposed compression scheme is, to our best understanding, the first
of its kind in the context of depth compression. We design the compression algorithm
in such a way that both spatial and temporal redundancies in Stixel are removed. The
removal of redundancies is achieved by using a combination of predictive modeling and
entropy coding, which is inspired by the prediction step of image compression. Compared
to general purpose compression algorithms, our approach takes advantage of continuous
motion of objects in a common tra�c scene for predictive modeling and therefore out-
performs them significantly. Evaluation shows that our proposed algorithm outperforms
a well-known general purpose compression method, namely zlib, by more than 60 percent
in space savings. More importantly, we prove that using our proposed Stixel compres-
sion scheme, depth data could be transmitted through a reasonably priced CAN bus,
whereas a more expensive FlexRay bus is needed for uncompressed Stixel data or com-
pressed data through general compression methods. This finding has great relevance for
the cost-sensitive automotive industry to incorporate augmented reality in a car.

In Chapter 4, we present an approach named 3D Shaping to reconstruct 3D objects using
only a single frame from a monocular camera. The proposed approach exploits an ex-
isting silhouette-based reconstruction technique, which takes advantage of an extremely
low-dimensional latent space to represent 3D geometries. We combine the latent geome-
try representation with a deep-learning-based appearance detection step, which achieves
nearly 20 percent performance gain by 3D reconstruction in viewpoint accuracy. Further-
more, we present two extensions to 3D Shaping in order to make it more practical for
real tra�c scenes. The proposed extensions take advantage of additional 3D sensors in a
car including stereo camera and Lidar. In the first extension, we propose a novel neural
network architecture called Pose-RCNN, which is able to jointly detect objects and esti-
mate a viewpoint angle for each detected object. We attach a small viewpoint regression
network on top of the ROI pooling layer of a Region-based Convolutional Neural Network
(R-CNN), yielding the architecture of the proposed Pose-RCNN. We show competitive
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results of our proposed Pose-RCNN against other state-of-the-art approaches. In the sec-
ond extension, we use an additional point cloud energy for 3D Shaping, which enables us
to optimize 3D geometries directly in the 3D space. By using 3D measurements from a
Lidar, we are able to reconstruct multiple objects within the same class by heavy self-
occlusion. In summary, the proposed 3D Shaping approach and its extensions serve as
the first step towards object-level 3D reconstruction of the surroundings, based on which
a number of AR functions can be further improved.

In Chapter 5, we present three di�erent in-vehicle AR systems, respectively designed
for the current generation, the next generation, and future generation of productions
cars, in order to prove the concept of in-vehicle augmented reality. First, we present a
rather modest design of an in-vehicle AR system aiming at only using currently available
technologies in a middle-class commercially available car with least possible modifications.
Under these constraints, we decide that the AR system shall be purely GPS-based. We
propose a low-cost GPS-smoothing algorithm, which is able to track the ego-car to some
extent but requires much less computational resources compared to an Extended Kalman
Filter or visual tracking algorithms. In addition, we use a “clever” HMI design and
a sophisticated data retrieval mechanism to visually compensate the drifting e�ect in
case the tracking is unstable. We demonstrate the first AR system with two customer
features, namely AR driver assistance and AR passenger infotainment. Second, based on
the feedback on our first AR prototype system, we present the next generation of in-vehicle
AR system which takes advantage of the most advanced automotive sensors back then in a
modified upper-class production car. We adjust our design requirements according to the
additionally available resources in the test vehicle and decide that the AR system shall be
distributed, in order to simulate di�erent vehicle domains. Stixel compression introduced
in Chapter 3 is applied here in order to simulate the transmission of depth information
from the ADAS domain to the telematics domain in the in-vehicle E/E architecture. With
depth information available, we fully exploit depth understanding in order to support AR
functions including road estimation, ego-motion estimation, and depth culling in the next
generation AR system. We demonstrate these AR functions in the test vehicle in normal
daily tra�c. Last but not least, we propose a future generation AR system aiming at
future series production. We present the functional modules, software components, and
the E/E architecture of our designed future AR system in detail. Here, 3D Shaping
introduced in Chapter 4 is integrated, which enables 3D reconstruction of the surroundings
at an object level. The performance of road estimation, ego-motion estimation, and depth
culling can be boosted using 3D Shaping. We believe that our designed AR systems will
bring in-vehicle augmented reality one-step closer to everybody’s daily life.
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Note that parts of this work have already been published in [RGHC14a, RGHC14b,
RTG+14, BRWF16, RKD16a, RKD16b, RC19a], and submitted to [RC19b], respectively.

The main contribution presented in Chapter 3 is published in

• Q. Rao, C. Grünler, M. Hammori, S. Chakraborty: Stixel on the Bus: An E�cient
Lossless Compression Scheme for Depth Information in Tra�c Scenarios. In Pro-
ceedings of the 20th Anniversary International Conference on MultiMedia Modeling
(MMM), 2014.

and

• Q. Rao, S. Chakraborty: E�cient Lossless Compression for Depth Information in
Tra�c Scenarios. Springer Multimedia Systems, Feb. 2019.

The main contribution presented in Chapter 4 appeared in the following publications

• Q. Rao, L. Krüger, K. Dietmayer: Monocular 3D Shape Reconstruction Using Deep
Neural Networks. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV),
2016.

• M. Braun, Q. Rao, Y.K. Wang, F. Flohr: Joint Object Detection and Pose Esti-
mation Using 3D Object Proposals. In Proceedings of the IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC), 2016.

• Q. Rao, L. Krüger, K. Dietmayer: 3D Shape Reconstruction in Tra�c Scenarios
Using Monocular Camera and Lidar. In Workshop Proceedings of the 13th Asian
Conference on Computer Vision (ACCV), 2016.

and is submitted as the following manuscript for review.

• Q. Rao, S. Chakraborty: In-Vehicle Object-level 3D Reconstruction of Tra�c Scenes.
Submitted.

The main contribution presented in Chapter 5 appeared in the following publications.

• Q. Rao, T. Tropper, C. Grünler, M. Hammori, S. Chakraborty: AR-IVI - Implemen-
tation of In-Vehicle Augmented Reality. In Proceedings of the IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), 2014.

• Q. Rao, C. Grünler, M. Hammori, S. Chakraborty: Design Methods for Augmented
Reality In-Vehicle Infotainment Systems. In Proceedings of the 51st Annual Design
Automation Conference (DAC), 2014.
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There is no royal road to geometry.

Euclid
c. 325 BC - c. 265 BC

We understand the world through geometry, both the virtual world and the real. It is
important to have a deeper mathematical insight into both worlds in order to better
understand the problem of augmented reality. We provide the insight in this chapter.

We first introduce mathematical models of di�erent type of cameras including virtual
camera, pinhole camera, and stereo camera in Section 2.1. In Section 2.2, we briefly
introduce a simple type of motion that models the motion of rigid bodies, which applies
for most objects in a common tra�c scene. In Section 2.3, we introduce the coordinate
systems used by in-vehicle augmented reality. In the last section, Section 2.4, we explain
the major challenges of AR from a mathematical perspective.

2.1 Camera Model

2.1.1 Virtual Camera

In the virtual world, a virtual camera renders a 3D scene onto an image. In mathematical
terms, it first transforms a point from the camera coordinate system into the Normal-
ized Device Coordinate (NDC) cube, where coordinates are normalized within [≠1, 1]
(Eq. 2.1). Then, the NDC coordinates are rasterized according to the size of the image,
yielding pixel coordinates. The matrix P that transforms a camera point cX to an NDC
point ndcX is referred to as projection matrix. The parameters of the projection matrix
influence the type of the projection. Common projection types include orthogonal pro-
jection and perspective projection, whose projection matrices are given in Eq. 2.2 and
Eq. 2.3, respectively. Their view frustums are illustrated in Fig. 2.2, and rendered exam-
ples of both projections are shown in Fig. 2.1. Readers might note the tiny di�erence at
the grill of the car in Fig. 2.1

ndcX = P cX (2.1)

23



2 Mathematical Prerequisites
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(a) 3D scene.

(b) Orthogonal projection. (c) Perspective projection.

Figure 2.1: Orthogonal vs. perspective projection. A part of the grill is only visible to
the orthogonal camera.
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(a) Orthogonal camera. w and h denote the sensor
width and height. Zn and Zf are the nearest and
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(b) Perspective camera. –x and –y denote the horizontal and vertical Field Of
View (FOV) angle. Zn and Zf are the nearest and farthest clipping distance.

Figure 2.2: View frustum of a virtual camera.
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2.1.2 Pinhole Camera

A pinhole camera (Fig. 2.3) is one of the simplest mathematical models used to model a
camera in the real world. It assumes that the thickness of the lens is infinitely close to
zero so that all rays remain undeflected after passing through it.

cO

cX(cXx, cXy, cXz)

cXÕ(cX Õ
x
, cX Õ

y
, cX Õ

z
)

f

cXz

Figure 2.3: Pinhole camera model.

Similar to a virtual perspective camera, a pinhole camera projects a point in the camera
coordinate system onto an image through perspective projection. First, the camera co-
ordinates are projected through Eq. 2.4, where f denotes the focal length of the camera.
cX Õ

x
and cX Õ

y
are normalized metric coordinates on the image plane. They are then trans-

formed into pixel coordinates through Eq. 2.5, where (sx, sy) denote the scale factors and
(cx, cy) the image center.

cX Õ
x

= f
cXx

cXz

cX Õ
y

= f
cXy

cXz

(2.4)

imxx = sx
cXx + cx

imxy = sy
cXy + cy

(2.5)

Equation 2.6 expresses the complete projection equation in matrix form. s◊ is an ad-
ditional parameter, which is introduced to model the skew factor of the Charge Couple
Device (CCD) sensor in a camera if it is not perfectly rectangular. The depth cXz is lost
through the projection.
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Equation 2.7 writes a more compact form of the projection equation. The matrix K
containing projection parameters is referred to as camera intrinsic parameters.

imx ≥ K
Ë

I 0
È

cX (2.7)

2.1.3 Stereo Camera

As the name suggests, a stereo camera comprises two (horizontally) aligned pinhole cam-
eras whose fields of view overlap. Every point in the overlapped FOV is seen twice by the
stereo camera: once by the left camera and once by the right, as depicted in Fig. 2.4. The
di�erence between its horizontal coordinate on the left and on the right image is referred
to as disparity, which is a common measure of depth information in the context of stereo
vision.
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Figure 2.4: Stereo camera model.

Given the metric baseline of the stereo camera B and the focal length f in pixels, the
relation between the disparity d and the depth cXz of a point is formulated in Eq. 2.8.

cXz = f
B

d
(2.8)

After the depth cXz is reconstructed, the other two coordinates cXx and cXy of the
point cX can be determined through Eq. 2.9, where (cx, cy) indicates the image center.
Therefore, we can use a stereo camera to reconstruct the 3D point cloud of the scene.

cXx = (imxx ≠ cx)
cXz

f

cXy = (imxy ≠ cy)
cXz

f

(2.9)
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2.2 Motion

2.2.1 Model View Matrix

In the virtual world, objects have their own coordinate systems where their geometries
(3D shapes) are defined, commonly using vertices and faces. A point (vertex) in an
object coordinate system is transformed to a camera coordinate system through a model
transformation and a view transformation, as expressed in Eq. 2.10.

cX = V · M · oX (2.10)
The model matrix M first transforms object coordinates into world coordinates through
a concatenation of scaling, rotation, and translation, as formulated in Eq. 2.11. Then, the
world coordinates are mapped to camera coordinates through the view matrix V , which
is defined using the right, up, and forward vector of the camera, as well as the position
of the camera in the world, as expressed in Eq. 2.12.
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T

XXXV (2.12)

The production of the model matrix and the view matrix is often referred to as modelview
matrix as a one-step transformation, if the world coordinates are not interested. By
combining Eq. 2.12 and Eq. 2.1, we have the complete transformation from an object
point to an NDC point, as expressed in Eq. 2.13.

ndcX = P · V · M · oX (2.13)

2.2.2 Rigid Body Motion

The motion of solid and rigid objects in the real world such as cameras or cars can be
modeled through rigid body motion, where object deformation is neglected. In other
words, the distance between any two points on a rigid body remains constant as it moves
in the world. Similar to the modelview matrix in the virtual world, a matrix M describing
a rigid body motion in the real world can be decomposed into a rotation matrix R and a
translation vector T, as expressed in Eq. 2.14.

M =
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R T
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If we attach the world coordinate system to the camera coordinate system at an initial
time point and track the motion of the camera (Fig. 2.5) throughout the time, we can
build the transformation from a world point wX to a camera point cX, as expressed in
Eq. 2.15. c

w
M denotes the rigid body motion from the camera to the world, which is often

referred to as the camera extrinsic parameters.
cX = c

w
M · wX (2.15)
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Figure 2.5: Transformation from camera to world coordinate system.

By combining the intrinsic parameters in Eq. 2.7 and the extrinsic parameters in Eq. 2.15,
we can model the complete projection in the real world using only one projection matrix
P , as expressed in Eq. 2.16.

imx ≥ P · wX = K
Ë

I 0
È

c

w
M wX (2.16)

Representation of Rotations

There are di�erent mathematical models for representing 3D rotations, two of which are
introduced here, namely quaternion and Euler angles. Both of them are widely used in
context of computer vision or robotics for modeling 3D rotation.

Quaternion A quaternion is an extension of a complex number, which takes the form
in Eq. 2.17, where i2 = ≠1, j2 = ≠1, and i · j = ≠j · i.

q = q0 + q1i + q2j + q3ij, q0, q1, q2, q3 œ R (2.17)

A rotation can be equally mapped to a special sub-group of the set of quaternion H, i.e.,
the group of unit quaternions S

3, as defined in Eq. 2.18.

S
3 = {q œ H | ÎqÎ2 = q2

0 + q2
1 + q2

2 + q2
3 = 1} (2.18)
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The conversion from quaternion to rotation matrix and vice versa are given in Eq. 2.19
and Eq. 2.20, respectively.

R =

S

WU
r00 r01 r02
r10 r11 r12
r20 r21 r22

T

XV =

S

WU
1 ≠ 2q2

2 ≠ 2q2
3 2q1q2 ≠ 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 1 ≠ 2q2
1 ≠ 2q2

3 2q2q3 ≠ 2q0q1
2q1q3 ≠ 2q0q2 2q2q3 + 2q0q1 1 ≠ 2q2

1 ≠ 2q2
2

T

XV (2.19)

q0 =
Û

1 + r00 + r11 + r22
2

q1 = r21 ≠ r12
4q0

q2 = r02 ≠ r20
4q0

q3 = r10 ≠ r01
4q0

(2.20)

Euler angles A three-dimensional rotation can be decomposed to a concatenation of
three rotations around each axis, as expressed in Eq. 2.21. –, —, and “ are the rota-
tion angles around the x-, y-, and z-axis, which are referred to as roll, pitch, and yaw,
respectively. Together, they are called Euler angles.

Rzyx(“, —, –) = Rz(“)Ry(—)Rx(–)

Rz(“) =

S

WU
cos “ ≠ sin “ 0
sin “ cos “ 0

0 0 1

T

XV

Ry(—) =

S

WU
cos — 0 sin —

0 1 0
≠ sin — 0 cos —

T

XV

Rx(–) =

S

WU
1 0 0
0 cos – ≠ sin –
0 sin – cos –

T

XV

(2.21)

We use Eq. 2.22 to calculate Euler angles from a rotation matrix.

tan – = r21
r22

tan — = ≠r20
r21 sin – + r22 cos –

tan “ = r10
r00

(2.22)

In case of a gimbal lock, i.e., when r00, r10, r21 and r22 are zero, the yaw angle “ is set to
be zero and the roll angle – is given by – = arctan(r01/r11).

For more details of rotation matrix, quaternion, and Euler angles, please refer to [Sho85].
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2.3 Coordinate Systems

2.3 Coordinate Systems

Typically, we use multiple coordinate systems to describe the motion of a complex system
such as a car, as shown in Fig. 2.6. Each coordinate system is responsible for describing the
motion of a specific component of the car, such as wheels, chairs, and the chassis. In the
context of in-vehicle augmented reality, we are specifically interested in the vehicle (ego-
car) coordinate system and the transformations from di�erent sensor coordinate systems
to it.

Figure 2.6: Example coordinate systems in a car.

Figure 2.7 illustrates typical coordinate system transformations for in-vehicle augmented
reality. Real world objects in the surroundings are tracked by di�erent sensors in a car,
i.e., their motions are first estimated in the corresponding sensor coordinate systems,
such as a camera, Radar, or Lidar coordinate system. Since sensors equipped in a car are
moving with the car, it is more practical to define a car coordinate system to describe
the motion of the ego-car in the world instead of directly tracking the motion of each
sensor. The estimation of ego-motion can be carried out through wheel odometry, visual
odometry, GPS tracking, or combinations of them.

The car coordinate system is attached to the middle of the rear axle, with the x-axis
pointing to the driving direction, y-axis pointing to the left looking from the driver seat,
and z-axis pointing up. Assuming the car drives at a constant yaw rate Ê and speed v in
a short time interval �t, the motion of the car can be described by Eq. 2.23, where r, l,
and „ denotes the radius, the length, and the angle of the arc driven by the car (Fig. 2.8)
in the short period of time. If the yaw rate is positive, the car drives to the left.

„ = Ê�t

l = v�t

r = l

„
= v

Ê

(2.23)
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Figure 2.7: Typical coordinate system transformations used by in-vehicle AR.
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Figure 2.8: Movement of the vehicle coordinate system.
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2.4 Augmented Reality

The translation vector T and the rotation matrix R of the car during the time interval are
given by Eq. 2.24 and Eq. 2.25. Note that they are defined in the car coordinate system
before the movement.

T =

S

WU
r sin „

r(1 ≠ cos „)
0

T

XV (2.24)

R =

S

WU
cos „ sin „ 0

≠ sin „ cos „ 0
0 0 1

T

XV (2.25)

Equation 2.26 describes the inverse transformation of a fixed point in the world with
respect to the movement of the car.

vXt+�t = Rt+�t|t(vXt ≠ Tt+�t|t)
= Rt+�t|t

vXt ≠ Rt+�t|tTt+�t|t

=

S

WWWU

cos „ sin „ 0 ≠r sin „
≠ sin „ cos „ 0 r(1 ≠ cos „)

0 0 1 0
0 0 0 1

T

XXXV
vXt

= vM t+�t|t
vXt

(2.26)

The motion matrix vM t+�t|t transforms a point from the previous car coordinate system
into the current. Assuming a camera is perfectly calibrated to the car and the extrin-
sic matrix c

v
M is known, we can derive the transformation of the point in the camera

coordinate system using Eq. 2.27. Transformations in the camera coordinate system are
more interested in the context of AR since virtual objects are eventually augmented in
the virtual camera instead of the car coordinate system.

cXt+�t = c

v
M vXt+�t

= c

v
M vM t+�t|t

vXt

= c

v
M vM t+�t|t

c

v
M≠1 cXt

(2.27)

The result matrix cM t+�t|t is written in Eq. 2.28.
cM t+�t|t = c

v
M vM t+�t|t

c

v
M≠1 (2.28)

Camera to car calibration, as well as Radar or Lidar to car calibration, can be carried out
through hand-eye calibration techniques. For more details, please refer to [SH06].

2.4 Augmented Reality

We illustrate the procedure of merging the Virtual and the Real using a V-shape graph, as
shown in Fig. 2.9. In the real world, objects are detected and tracked, i.e., the rigid body
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motion (Section 2.2.2) of each surrounding object and the ego-car is estimated, based
on which a three-dimensional model of the environment is reconstructed. In the virtual
world, each virtual object to be augmented is modeled by its geometry, which goes through
the model-view-projection transformation (Section 2.2.1) and is eventually rendered on a
2D canvas. Finally, the rendered image and the real image are superimposed, yielding an
augmented reality blend.

AR Blending

Environment
Modeling

Object
Tracking

Object
Detection

Rendering

Modelview &
Projection

Geometry
Modeling

Real World Virtual World

Figure 2.9: V-model of augmented reality.

The quality of AR blending is mainly a�ected by the following three factors. First,
intrinsic calibration, i.e., the process of determining the camera intrinsic parameters of a
pinhole camera in the real world. The better a real-world pinhole camera is calibrated,
the more realistic a virtual camera can be parameterized in order to project objects in
the virtual world in the same way as in the real. Second, tracking, i.e., the procedure of
estimating of motion matrices of the ego-car and surrounding objects. In case we need
to attach a virtual object on a moving object in the real world, the modelview matrix
of the virtual object has to be updated corresponding to the motion of the real-world
object. It is therefore critical for AR to estimate the motion matrix of a moving real-
world object as precise as possible. Third, 3D environmental model, based on which depth
or occlusion reasoning is performed. This has a direct influence on the final output of AR
blending, as already shown in the example in Fig. 1.10. Without a properly reconstructed
3D environmental model, the output is only a superposition of real and rendered images
which would most of the time only distract the driver instead of adding values to in-vehicle
augmented reality.
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3 Depth Understanding

In the land of the blind, the one-eyed

man is king.

Desiderius Erasmus Roterodamus
1466 - 1536

The Dutch Renaissance humanist Erasmus [Des23] revealed the importance of the ability
to perceive the world with eyes, even with only one. Here, we extend his famous proverb
quoted at the beginning of this chapter by adding another eye. It becomes: In the land
of one-eyed men, the binocular man is king. With two eyes, we are able to perceive the
three-dimensional world. Our skill to reason the depth from di�erent views seems so
natural that we simply take it for granted.

Today, as a monocular forward looking camera already became a standard equipment in
a car, the automotive industry gradually start to deploy stereo camera for more advanced
driver assistance functions. A car equipped with a stereo camera is enabled to fully
understand the depth. Consequently, new research questions such as how to represent,
transmit, and reprocess the depth information retrieved by an in-vehicle stereo camera
are raised. The answers still remain open.

In this chapter, we focus on a self-developed algorithm for compressing Stixels, a mid-level
representation of depth information. We begin with an introduction of depth understand-
ing and related work in Section 3.1 and Section 3.2, respectively. In Section 3.3, we
discuss the redundancy in Stixel data from a mathematical point of view. In Section 3.4,
we explain the workflow of our proposed compression algorithm and present experimental
results. We summarize this chapter in Section 3.5 and outline directions for future work.

3.1 Introduction

Vision-based advanced driver assistance systems are increasingly being used in modern
production cars. Towards this, stereo vision systems are used to capture the 3D surround-
ings of the ego-cars. Using stereo matching algorithms [Hir05, GEM09], depth information
is generated, processed, or stored for a short period of time in the vision processing system
for further use, such as building an environmental model for in-vehicle augmented reality.

Stixel [BFP09, PF10, PF11, PGS13] is a data structure that was introduced about ten
years ago to model depth information in tra�c scenes. The term “Stixel” was created by
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3 Depth Understanding

combining “Stick” and “Pixel”, which reflects the fact that a Stixel frames a thin rectan-
gular area (like a stick) in a depth image with similar disparity (pixel) values (Fig. 3.1).
Based on the assumption that the geometry in common tra�c scenes comprises predomi-
nantly vertical and horizontal surfaces, the Stixel representation finds a balance between
the compactness and informativeness of the depth information.

Even using the Stixel representation, the depth data volume of the complete scene is
still too huge for a low- or medium-bandwidth in-vehicle communication system, e.g., a
CAN [Int03] bus. In other words, in today’s commercially available cars, depth informa-
tion still remains in the in-vehicle vision system, without being accessible to the other
components in the car due to cost reasons. This limits the development of a number
of applications such as augmented reality that requires depth information of the sur-
rounding environment. Hence, the automotive industry is still seeking for a solution that
makes depth information available to other in-vehicle processing units via a less expensive
communication bus.

Figure 3.1: Stixel representation of a typical tra�c scene. Distances are encoded in color,
from red being close to green being far away. A half million disparities in the
left image are represented by a few hundred Stixels in the right image. Each
colored rectangle in the right image represents a Stixel. Image source: [PF11].

In reviewing the literature of Stixel, we found that there is a considerable amount of
redundancy in Stixel data caused by several assumptions of independence introduced
by Pfei�er et al. [PF11] in order to improve the computational performance. These
redundancies can be removed through a sophisticatedly designed compression scheme.
This motivated us to develop a compression algorithm for Stixels and use it to solve one
of the key problems for in-vehicle augmented reality: transmission of depth information.

3.1.1 Key Contributions

In this chapter, we present an e�cient lossless compression scheme for Stixels, with the
specific objective of transmitting compressed data through a less expensive in-vehicle
bus. We are motivated by the fact that there is a considerable amount of redundancy
in Stixel data, which originates from several assumptions of data independence [PF11].
These redundancies are removed in our proposed approach through a combination of
predictive modeling and entropy coding, which is inspired by the prediction stage of image
compression [WSS96, WSS00]. Compared to general purpose compression algorithms, our
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approach takes advantage of continuous motion of objects in a common tra�c scene for
predictive modeling and therefore outperforms them significantly as the evaluation results
show.

Our contributions of this chapter are threefold. First, we develop a lossless compression
scheme for Stixels, which is, to our best understanding, the first of its kind in the context
of depth compression. Second, we show that the compression performance of our proposed
algorithm reaches its theoretical upper bound on our recorded dataset. Last but not least,
we prove that through Stixel compression, in-vehicle transmission of depth data becomes
possible via a more reasonably priced CAN bus. Without the proposed scheme, a more
expensive FlexRay bus is needed, which makes the adoption of in-vehicle AR applications
more di�cult, given the highly cost sensitive nature of the automotive domain. Hence,
we believe that our work in this chapter has great relevance for the automotive industry.

3.2 Related Work

Stereo Matching Stereo matching is an approach to generate depth information from a
pair of aligned cameras. The depth data are encoded in disparities, which refers to the
pixel di�erence between the same point in the left image and the right image, as already
introduced in Section 2.1.3. The di�erence between the entire left and right images is
referred to as disparity map, disparity image, or depth image.

Traditional approaches [Hir01, HIG02, DDWL10] focused on searching correspondences in
local regions in the image, such as edges, corners, or salient objects where correspondences
are easily identified. These approaches typically produce either sparse or dense disparity
maps, also with blurred boundaries, as they assume a disparity value to be constant
within a local window. In 2005, stereo matching was redefined by Hirschmüller [Hir05] as
a global optimization problem, referred to as Semi-Global Matching (SGM). He introduced
an energy function that comprises two terms representing pixel-wise matching cost and
local smoothness, respectively. By minimizing this energy, a globally optimal solution
can be found for every pixel. Thanks to hardware implementation [GEM09] of SGM,
real-time access to depth information in a car became possible.

However, even if SGM itself was able to run in real-time, the subsequent applications
using the output of SGM were still not real-time capable since the processing e�ort of
a disparity map would increase corresponding to its density. This motivated Pfei�er et
al. [BFP09, PF10, PF11, PGS13] to define a novel representation of depth information
which is more compact but still suitable for computer vision applications. They named
the novel compact mid-level representation “Stixel”.

Stixel Stixels are rectangular slices that are used to “quantize” a disparity image –
hence, the name Stixel as the combination of “Stick” and “Pixel”. This representation
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3 Depth Understanding

turns over half million disparity measurements into only a few hundred Stixels [PF11],
which reduces the data volume of depth information significantly.

From a computer science point of view, a Stixel is simply a data structure that defines
the position, the size, and the depth of a rectangular slice in a disparity image. The
computation of Stixels is formulated as a global segmentation problem [PF11], where
each vertical column in the disparity image is segmented into two classes: obstacle and
ground. Stixels are then generated only out of obstacle segments. In other words, Stixels
in the disparity image implicitly indicate the existence of obstacles in the 3D world and
encode the boundary between free spaces and obstacles. This property is further exploited
by recent work [SCR+16, CRS+17] which generate a semantic environmental model for
more challenging tasks in the automotive industry, such as in self-driving cars.
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Figure 3.2: Example of Stixel computation.

Figure 3.2 shows an example how Stixels are generated from an input disparity map.
In this example, there is only one object bus in the scene, which spans two columns in
the input depth image. Each column is segmented into obstacle segments (gold) and
ground segments (gray). In the third column with the horizontal coordinate1) u = 2,
there is only one obstacle segment with the top vertical coordinate vt = 2 and the bottom
vertical coordinate vb = 4. The disparity value of this segment is d = 5. Hence, one
Stixel S(u, d, vt, vb) is generated in the third column with the symbols S1 = (2, 5, 2, 4).
Similarly, another Stixel S2 = (3, 5, 2, 4) can be generated in the fourth column. From the
input disparity map with 7 ◊ 7 = 49 disparity values, two Stixels with in total 2 ◊ 4 = 8
symbols are generated.
1) The horizontal and vertical coordinate start from zero.
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Despite the fact that Stixels already represent depth information in a compact way, the
communication bandwidth needed to transfer them through a low- or medium-bandwidth
in-vehicle bus is still not available. Hence, a relevant research question is whether Stixel
data is amenable for further compression to such an extent that they can be transferred
via for example a CAN bus. Compression algorithms that work best for Stixels need to
be further investigated and developed.

Data Compression In a narrow sense, data compression refers to the procedure to rep-
resent the same information using fewer bits. It can be either lossy or lossless. Lossy
compression is a irreversible procedure that reduces data amount by removing less impor-
tant information. In contrast, lossless compression only removes statistical redundancy of
the original data which allows it to be perfectly reconstructed. In this work, we decide to
focus on lossless compression techniques for the reason that new in-vehicle applications
such as AR navigation (Fig. 1.10) require depth information as precise as possible and
lossless compression enables transmitting the captured depth measurements without any
information loss. ZIP [Int15], PNG [Int04], and GIF [Wor89] are some well-known file
formats using lossless compression.

A typical lossless compression algorithm comprises a modeling stage which removes re-
dundancies in the original data and an entropy coding stage which translates symbols
into bit streams [ESU09, NS08, RAS13, Ste94]. Specifically in the area of image com-
pression, redundancy removal during the modeling stage is typically realized through
prediction [HV93, WSS96, WSS00, WM97], where pixels are predicted from their neigh-
bors and only the residual between the original and the predicted pixels are encoded. If
the prediction mechanism is designed properly, the entropy of the symbols to be encoded
could be massively reduced, i.e., most of the symbols to be encoded would become zero.
For example, the LOCO-I algorithm [WSS96, WSS00] used by the JPEG-LS standard
uses three neighboring pixels (upper left, upper, and left) for prediction. The LOCO-I
predictor is able to detect edges (discontinuities) in the image in a very simple way and
eventually predicts a pixel value that is not on the detected edge.

After the prediction, the entropy coder replaces frequently occurring symbols with fewer
bits and rare symbols with many bits. According to Shannon’s source coding theo-
rem [Sha48], the optimal code length for a symbol is ≠ log P where P indicates the
probability of the input symbol. Hu�man coding [Huf52] and Golomb coding [Gol66]
are among the most well-known entropy coding algorithms. The former is ideal if the
probability of each input symbol is a power of half, whereas the latter is optimal if the
source follows a one-sided geometric distribution.

The Squash Compression Benchmark [Nem18] provides a benchmark for data compression
algorithms. The benchmark evaluates di�erent codecs at every compression level on dif-
ferent datasets and continues publishing the results on the website. Currently, it contains
more than 40 codecs including zpaq [Mah09], zlib [GA95], and brotli [AS16], comprising
di�erent derivatives of Lempel-Ziv (LZ77) [ZL77] and Hu�man coding [Huf52]. Among
them, zlib achieves good performance in both space savings (≥ 80%) and compression
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speed (≥ 2 MB/s) on the test dataset of the benchmark. In comparison, zpaq (level-5)
achieves the best compression performance with nearly 98% space savings but only op-
erates at 8.5 KB/s, which is lower than the data rate of Stixels2) We choose zlib as the
representative of general purpose compression algorithms and compare its performance
on Stixels against our proposed compression scheme.

3.3 Redundancy in Stixel

The computation of Stixel in [PF11] results in both spatial and temporal redundancies in
Stixel data. The spatial redundancy emerges from the assumption that adjacent columns
in the disparity image are independent. The temporal redundancy occurs naturally by
continuous motion in real tra�c scenes.

We can observe spatial redundancy in Stixel data using the example in Fig. 3.2. Due to
the fact that the Stixel S1(2, 5, 2, 4) and S2(3, 5, 2, 4) belong to the same object in the real
world, the only di�erence between them is the horizontal position u. S2 can be predicted
from S1. In addition, as an example of temporal redundancy, if the bus stays at the same
position in the disparity map in the next frame, S1 and S2 will also remain the same,
which can be predicted from the current frame straightforwardly.

In this section, we discuss the redundancy in Stixel data from a mathematical perspective.
First, we briefly review the computation of multilayer Stixel as in [PF11]. Then, we intro-
duce Stixel entropy that defines the theoretical performance limit of Stixel compression.
Analytical results of the defined Stixel entropy are presented at the end of this section.

3.3.1 Stixel Computation

As introduced in Section 3.2, the computation of Stixel is formulated as a global segmen-
tation problem where a disparity image is segmented into obstacle and ground. Math-
ematically, the segmentation is modeled as a Maximum A Posteriori (MAP) estimation
problem expressed in Eq. 3.1, where L denotes a column-wise labeling that separates
each column of an input disparity image into object segments and ground segments. The
objective is to find the most likely labeling Lú, given the corresponding disparity D of the
input image.

Lú = arg max
L

P (L|D) (3.1)

By applying the Bayes rule, the a posteriori probability P (L|D) can be written as the
product of the conditional probability P (D|L) and the a priori probability P (L), as
expressed in Eq. 3.2. The former models the likelihood of the input disparity map by a
determined labeling, the latter rates an a priori knowledge about the world model.

P (L|D) ≥ P (D|L) · P (L) (3.2)
2) The payload analysis is given in Tab. 3.5.
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In order to achieve real-time capability, [PF11] considered the following three types of
probabilistic independence. First, neighboring columns are assumed to be independent,
i.e., P (L) = r

u P (Lu), where u denotes the horizontal coordinate. Second, disparity
measurements are considered independent and identically distributed, allowing generaliz-
ing P (D|L) to r

u P (Du|L). Third, the disparity measurements in the same column are
assumed to be independent of all labeling in other columns, i.e., P (Du|L) = P (Du|Lu).
These result in a clean statistical separation of the columns, as expressed in Eq. 3.3.

P (L|D) ≥
Ÿ

u

P (Du|Lu) · P (Lu) (3.3)

It is indeed reasonable to make these assumptions in order to improve computational
e�ciency. However, the assumptions do not truly reflect the real world. Large objects
such as cars and trucks often span multiple columns in an image. The disparities and
the labeling of a column can be easily predicted from neighboring columns, especially in
tra�c scenes where motions are considered continuous and smooth. These lay a theoretical
foundation for us to further compress Stixel data.

3.3.2 Stixel Entropy

In order to quantitatively measure the redundancy in Stixel data, we calculate the Shan-
non entropy [Sha48] of Stixels. Here, we use a four-symbol tuple S(u, d, vt, vb) to encode
a Stixel, where u denotes the horizontal coordinate, d the disparity, vt and vb the vertical
coordinates of the top and the bottom, respectively. The width of a Stixel w is fixed to
a constant value and thus not considered a symbol that contains any useful information
within the scope of data compression.

Since the four symbols making up a Stixel are not mutually independent, we can only de-
termine the lower bound and the upper bound of their joint entropy using the inequalities
expressed in Eq. 3.4.

H(u, d, vt, vb) Æ H(u) + H(d) + H(vt) + H(vb)
H(u, d, vt, vb) Ø max

1
H(u), H(d), H(vt), H(vb)

2 (3.4)

We analyze the statistical properties of Stixels using a real-world road record that contains
more than 5.5 million Stixels. This dataset comprises di�erent road situations such as
industrial area and country roads among others. The resolution of an input image is
1024 ◊ 440 and the minimum width of a Stixel is set to be 3 pixels, i.e., u ranges from
0 to Â1024/3Ê = 342 and vt, vb œ [0, 440]. A disparity value ranges from 0 to 127, with a
step size of 0.25. We remap it to [0, 508] by multiplying the disparity value with factor 4.
By doing so, we are able to encode each symbol with nine bits covering [0, 511].

The statistical results of the dataset are presented in Tab. 3.1. The space savings as a
measure of the performance of a compression algorithm is defined in Eq. 3.5. Since entropy
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indicates the theoretically smallest average symbol length for lossless compression, we use
it as the benchmark on this specific dataset to evaluate our proposed compression scheme.
According to the results in Tab. 3.1, the average space savings of a compression algorithm
for Stixels could theoretically reach 32% – 80% on our recorded dataset.

fl = 1 ≠ Compressed Size
Raw Size (3.5)

Table 3.1: Example Shannon entropy of our recorded dataset.
Symbol Entropy Bit-Length Space Savings

u 7.1775 9 20.25%
d 6.7558 9 24.94%
vt 3.6888 9 59.01%
vb 6.6690 9 25.90%

inf S(u, d, vt, vb) 7.1775 36 80.06%
sup S(u, d, vt, vb) 24.2911 36 32.52%

3.4 Stixel Compression

In this section, we propose a workflow for compressing Stixels. Recall that Stixel was
originally introduced to reduce the data volume of disparity maps while keeping a certain
level of data structure for further computer vision algorithms. In other words, the original
focus of Stixel was not to compress the data to the greatest extent. In fact, Pfei�er et
al. [PF11] made a series of assumptions during the computation of Stixels which leaves
a considerable amount of redundancies in the data, as already discussed in Section 3.3.
This motivated us to design a compression scheme that removes the redundancies as far as
possible so that we could possibly transfer it through a relatively low-bandwidth in-vehicle
communication system like a CAN bus.

Inspired by image compression techniques, we also combine predictive modeling and en-
tropy coding in our proposed compression scheme for Stixels. Typically for image com-
pression, a predictor runs from left to right, top to bottom on the input image, takes
pixels in a local neighborhood as references, and predicts the value of the next pixel based
on the reference area. The residual between the predicted value and the input value is
then encoded through an entropy coder. For Stixel compression, this cannot be directly
adopted since unlike pixels in an image, Stixels are not in a rectangular grid. The reason
for that is, in a column of an input disparity map, the number of obstacle segments is not
determined, i.e., each column might contain di�erent number of Stixels. Hence, we need
to first design a grid representation for Stixel data.
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To begin with, we first introduce our designed grid representation for Stixels in Sec-
tion 3.4.1. Then, we explain the first stage of the encoder workflow, namely Predictive
Modeling, in Section 3.4.2, followed by the second stage Entropy Coding in Section 3.4.3.
The entire workflow of the encoder is depicted in Fig. 3.3. The encoding workflow ensures
that all of the information necessary for a lossless reconstruction of the Stixel data is con-
tained in the output bitstream. First, there is no operation in the encoding workflow such
as quantization or low-pass filtering that introduces an irreversible loss of information.
In addition, the stage of predictive modeling is designed to be the same in the encoder
and the decoder so that the predicted Stixel column CP from the same reference group
remains the same. Last but not least, we also encode the mode of entropy encoding3) into
a header structure which allows the decoder to determine the correct decoding mode.
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Bu�er

Stixel
Grid

Reference
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Prediction

Competitive
Fusion

|CP | = |CX |?

Residual
Mode

Rescue
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Golomb
CodingBit Stream
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out

Predictive Modeling

Entropy Coding

Figure 3.3: Encoding workflow of Stixel compression.

3.4.1 Stixel Grid

In general, neighboring pixels in an image have strong spatial correlations and therefore
can be predicted based on a local reference area. As already shown in the example at the
beginning of Section 3.3, Stixels have both temporal and spatial redundancies that can
be removed using prediction. In order to do so, we need a grid representation for Stixels
that incorporates both temporal and spatial domain. This is the reason why we propose
the temporal-spatial neighborhood matrix shown in Fig. 3.5.

Concatenating all Stixels within the same column yields a Stixel Column C = S0S1 . . . Sn≠1,
with n being the number of Stixels in that column. The vertical coordinates satisfy
vt

0 < vb

0 < vt

1 < vb

1 < · · · < vt

n≠1 < vb

n≠1, i.e., Stixels are ordered from image top to
image bottom, following the definition of a common image coordinate system. The Stixel
3) Residual mode or rescue mode. More details in Section 3.4.3.
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Column is the canonical element in our proposed compression workflow. It can be di�eren-
tiated by another Stixel Column if they contain the same number of Stixels. The di�erence
between two Stixel Columns is referred to as Residual Column R = ˆS0ˆS1 . . . ˆSn≠1.

As in [PF11], Stixels are not required to be vertically adjacent, i.e., a ground segment
between two obstacle segments in the same column is allowed. Therefore, both vt and vb

are needed to specify the vertical position of a Stixel. Now, we enforce Stixels in the same
column to be adjacent by filling placeholder Stixels Sg into gaps between existing Stixels
(Fig. 3.4). Be doing so, we can save one symbol for the vertical coordinate (either vt or
vb) as one can then be derived from the other using Eq. 3.6.

vb

i≠1 = vt

i
≠ 1, i = 1 . . . n ≠ 1 (3.6)

In the following text, vt will be omitted and vb will be denoted as v.

Figure 3.4: Ground Stixel as a place holder. Illustrated by the white rectangle frames
without filling color.

We define a Stixel Frame F = C0C1 . . . CN≠1 as the concatenation of all Stixel Columns
from image left to image right. The number of Stixel Columns N within a Stixel Frame
is a constant. A Stixel Frame encodes the scene in the spatial domain.

Stacking temporally adjacent Stixel Frames together yields the desired grid representation
for Stixels, which we refer to as temporal-spatial neighborhood matrix (Fig. 3.5). Each row
of the matrix represents a Stixel Frame, whereas each column of it records the temporal
change of the same Stixel Column. Relying on this grid representation, we can define a
reference area (bounded by the black box in Fig. 3.5) where Stixels are both spatially
and temporally correlated. The next step is then to design a predictor that removes these
redundancies.

3.4.2 Predictive Modeling

Figure 3.6 illustrates the complete scheme for predicting a Stixel Column based on the
reference area. It comprises three major steps: building Stixel reference groups, predicting
the next Stixel to be encoded, and fusing the predicted results competitively.
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Figure 3.5: Temporal-spatial neighborhood matrix of Stixel Columns.

CA CBCC CD CA CBCC CD CPCP

reference group simple prediction competition fusion

Figure 3.6: Scheme for Stixel Column prediction.
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Reference Group We first cluster Stixels within a reference area into smaller groups
according to their similarity. The purpose of clustering is to roughly identify Stixels that
belong to the same object in the real world, since objects often span multiple columns
and multiple frames in a tra�c scene.

We calculate the dissimilarity between two Stixels using Eq. 3.7 where l = vb ≠ vt denotes
the length of a Stixel. The three weighted terms from left to right measure the di�erence
between their disparities, lengths, and vertical boundaries, respectively. The controlling
weights are set to be ⁄1 > ⁄2 > ⁄3, i.e., we put more emphasis on the di�erence be-
tween disparities over the other two factors. Two Stixels are grouped together if their
dissimilarity indicator � is smaller than certain threshold ·s.

� (S1, S2) =⁄1|d1 ≠ d2|2 + ⁄2|l1 ≠ l2|2

+ ⁄3
1
|vb

1 ≠ vb

2|2 + |vt

1 ≠ vt

2|2
2 (3.7)

Stixel Prediction After the reference area is clustered, one Stixel is predicted from each
reference group in a similar manner as the LOCO-I prediction introduced in Section 3.2.
We prefer the LOCO-I algorithm over the others for the following reasons. First, the
memory requirement of LOCO-I is simple to meet, as the LOCO-I predictor only takes
three neighboring pixels as input. Second, LOCO-I only performs addition or subtraction
operations, which allows very fast computation. Last but not least, the LOCO-I predictor
is capable of detecting discontinuity within the reference area. In our case, this property
turns truly useful, since a gap in depth between adjacent Stixels appears to be a common
case in tra�c scenes. The ability to detect discontinuities in depth allows us eliminating
false references during the prediction stage and thus to improve the overall performance
of the entire compression workflow.

In order to be consistent with LOCO-I, we use CX to denote the current Stixel Column
Ct,u in Fig. 3.5 in the rest of this section. Similarly, Ct,u≠1 is substituted by CA, Ct≠1,u≠1
by CB, Ct≠1,u by CC , and Ct≠1,u+1 is replaced by CD, as shown in Fig. 3.7. The predicted
Stixel column is denoted as CP .

. . . ... ... ...
· · · CB CC CD · · ·
· · · CA CX · · ·

... ... ... . . .

Q

ccccccccca

R

dddddddddb

Figure 3.7: Simplified notation of the temporal-spatial neighborhood matrix.

Equation 3.8 defines the function used to predict the disparity. It takes 1) dA if a temporal
discontinuity (a huge gap between dA and dC) is detected; 2) dB if a spatial discontinuity
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3.4 Stixel Compression

(a huge gap between dB and dC) is detected; 3) the combination dA + dB ≠ dC if no
discontinuities are detected.

dP =

Y
__]

__[

min(dA, dB), if dC Ø max(dA, dB)
max(dA, dB), if dC Æ min(dA, dB)
dA + dB ≠ dC , otherwise

(3.8)

The boundary value vP is straightforwardly predicted through linear interpolation, based
on the assumption that Stixels in the same reference group tend to form large rectangle
or trapezoids in an image [PGS13]. This assumption is reasonable for objects with clear
and sharp edges, such as cars or trucks.

If a reference group contains less than three Stixels, we take the average of the available
references as the prediction.

Competitive Fusion Predicted Stixels have to compete against each other if they ver-
tically overlap with more than ·v pixels. A confidence score is assigned to each predicted
Stixel according to the availability of its references during the prediction stage. The one
with the higher confidence score wins the competition. For example, a Stixel predicted
based on three reference Stixels from column CA, CB, and CC is considered more trustwor-
thy than that with only one Stixel reference from column CD.

In the last step, all remaining Stixels are fused together, yielding the predicted Stixel
Column CP .

After experimenting with di�erent combinations of the parameters (Fig. 3.8 and Fig. 3.9),
we choose ⁄1 = 4, ⁄2 = 2, ⁄3 = 1, together with ·s = 285 and ·v = 11, which yields the
best space saving factor on our recorded dataset. The results in Fig. 3.8 suggest that
the dissimilarity measure puts more weight on the depth and length di�erence than the
di�erence of vertical position. The results in Fig. 3.9 indicate that there exists a lower
bound for both ·s and ·v. The influence on the final space savings become trivial once
they are set to be bigger than the lower bounds.

3.4.3 Entropy Coding

The entropy coder at the end of the workflow has two di�erent modes: Residual mode and
Rescue mode. It runs residual coding if a di�erentiation between CP and CX is possible,
i.e., the number of predicted Stixels is equal to the number of Stixels in the current Stixel
Column. If the predicted column has more or less Stixels than the current one, the coder
switches to rescue coding.

In residual mode, the residual column between CP and CX is encoded through a modified
version of Golomb code. A source symbol x œ N is divided by a Golomb divisor m œ N

+,
yielding a quotient q œ N and a remainder r œ N, i.e. x = q · m + r. The quotient is

47



3 Depth Understanding

0

8

2

6 10

2

84

1

6

3

4

2
4

0 2

6

low space saving high space saving

1
 = 4

2
 = 2

3
 = 1

 = 71.06%

Figure 3.8: Experiment on di�erent ⁄ by Stixel compression. Fixing ·s and ·v, ⁄1 = 4,
⁄2 = 2, ⁄3 = 1 yield the best space saving results on our recorded dataset.
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dataset.
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Table 3.2: Statistical properties of residuals for di�erent reference combinations.
Combination References Occurrence Entropy

CA CB CC CD H(rd) H(rv)

#1 ◊ 16.19% 6.2664 5.4195
#2 ◊ 8.27% 6.0334 5.5463
#3 ◊ ◊ 0.62% 4.9560 4.5351
#4 ◊ 7.60% 5.5494 5.7342
#5 ◊ ◊ 6.61% 2.7966 3.3201
#6 ◊ ◊ 2.58% 3.9158 4.5833
#7 ◊ ◊ ◊ 3.30% 4.0536 4.4018
#8 ◊ 10.06% 4.5559 4.7061
#9 ◊ ◊ 1.26% 3.4223 3.6910
#10 ◊ ◊ 7.60% 4.4382 4.4595
#11 ◊ ◊ ◊ 0.99% 3.3246 4.1816
#12 ◊ ◊ 1.39% 3.6463 3.9729
#13 ◊ ◊ ◊ 2.06% 2.9732 3.7330
#14 ◊ ◊ ◊ 7.48% 2.5996 3.7083
#15 ◊ ◊ ◊ ◊ 23.97% 2.0705 2.2218

encoded through an unary code, whereas the remainder is encoded through a modified
binary code. Theoretically, there exists an optimal Golomb divisor mú if the source
follows a one-sided geometric distribution [Gv75]. In practice, m is usually rounded up
to the next power to 2 so that the encoder can be e�ciently implemented through binary
arithmetic [WSS00, LQY+10]. In order to find the optimal Golomb divisors by di�erent
reference combinations, we examined probability distributions of the residuals using our
recorded dataset with 21 844 Stixel Frames. Table 3.2 shows the entropy of the residuals
by di�erent combination patterns according to the availability of Stixel references in a
reference area. For example, the combination pattern #1 indicates that only one reference
Stixel from Stixel Column CD is available. Fig. 3.10 shows the distribution of the residuals
by the three most frequent combination patterns: #15 where all four Stixel references are
available, #1 where only one reference from column CD is available, and #8 where only
one reference from column CA is available. Since the residuals are two-sided distributed,
we use Eq. 3.9 to map the negative values back to the positive side.

xÕ =

Y
]

[
2x, if x Ø 0
≠2x ≠ 1, if x < 0

(3.9)

The Golomb divisor by di�erent reference combinations is updated adaptively based on
the “one-liner” implementation as suggested in [WSS96]. We also use di�erent Golomb
divisors for disparity residual and vertical boundary residual since their statistical prop-
erties are di�erent.

In rescue mode, a Stixel is modeled by S(d, l) (l for the vertical length), and it is straight-
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residuals (bottom) for the most frequent reference combinations.
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forwardly encoded through binary coding. The horizontal coordinate u is recorded in
a header structure of the current Stixel Frame, which is necessary for the decoder to
determine which columns are in rescue mode before it starts to decode.

3.4.4 Experimental Results

We evaluate the proposed compression algorithm for Stixel data using a 15-minute real
world record of tra�c scenes. The record contains 21 844 frames and more than 5.5
million Stixels. The proposed approach, referred to as Space+Time as predictions are
made based on both spatial and temporal neighbors, is compared with a stand-alone
Space approach as well as a stand-alone Time approach where no temporal or spatial
references are taken, respectively. In addition, we considered including several general
purpose compression algorithms into our comparison group, and we eventually decided to
use zlib which achieved a good performance in both space saving and compression speed
in the Squash compression benchmark.

Table 3.3: Space savings and processing time by Stixel compression. The compression
Software is implemented using C++ without multi-threading. The processing
time is recorded on an Intel Core i7-5960X CPU.

Approach Space Savings Processing Time (µs)
min max avg. min max avg.

Space+Time -0.77% 86.93% 71.95% 158 1348 327
Space 20.16% 80.92% 69.15% 25 269 34
Time -86.50% 85.46% 70.45% 29 230 48
Zlib 0.91% 29.91% 8.55% 50 298 78

The results in Tab. 3.3 show that the Space+Time approach achieves the highest space
saving ratio, which is better than the stand-alone Time approach as well as the stand-
alone Space approach. Although it also takes the longest time to process, the Space+Time
approach still meets the real-time requirement since our stereo vision system only operates
at 25 frames per second.

The advantage of having a carefully designed prediction stage in our proposed compression
algorithm is clearly proven through the evaluation results. All of our three approaches
(Space, Time, and Space+Time) which incorporate predictive modeling significantly out-
performed the general purpose compression approach zlib, where a combination of LZ-77
and Hu�man Coding is carried out during compression. The major weakness of, not only
zlib, but any kind of general compression algorithm is, that it does not necessarily have to
understand how the original data is generated and is thus not su�ciently able to remove
the redundancies before the entropy coding stage. In our proposed predictive modeling
stage, we carefully considered the mathematical procedure how Stixels are generated, the
physical shapes of other road users, and the nature of continuous motion in tra�c scenes,
which eventually led to our decisions to design a LOCO-I-like predictor for Stixels. These
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3.4 Stixel Compression

are the main reasons why our proposed Stixel compression scheme is non-replaceable by
a general purpose compression algorithm.

In addition, we picked up the best case scenario (Fig. 3.11) and the worst case scenario
(Fig. 3.12) in the 15-minute record according to their instant compression performance
(Tab. 3.4). In the best case scenario, the ego-car stopped in front of a crossroad, waiting for
the tra�c light. The scene in front of the camera remained almost the same, of which the
temporal prediction takes full advantage. In the worst case, a truck drove from left to right
in the image. It nearly covered the entire field-of-view of the camera, causing problems
for Stixel computation. The Stixels appeared to be randomly segmented, which generated
massive errors during the prediction stage, disturbing the probability distribution of the
residuals. As a result, a great amount of residual bits were needed by the entropy encoder.

Table 3.4: Extreme cases by Stixel compression.
Approach Original Bits Residual Bits Rescue Bits Space Savings

Worst
Case

Space+Time 5868 5196 717 -0.77%
Space 5868 4553 132 20.16%
Time 5868 10143 801 -86.50%

Best
Case

Space+Time 9540 1247 0 86.93%
Space 6624 1066 198 80.92%
Time 9576 1392 0 85.46%

Figure 3.13 and Fig. 3.14 illustrate instant compression performance of the Space+Time
approach. The performance is heavily influenced by the tra�c scenes. The curve of the
compressed data volume in Fig. 3.13 remains flat when the ego-car drives straightforward,
and it turns spiky when unexpected objects appear in the scene. Most of the time, the
space savings in Fig. 3.13 stays close to the upper bound of the theoretical limit of Stixel
compression, except the afore-mentioned worst case scenario.

Furthermore, we analyzed the payload4) requirement for transmitting Stixels through
di�erent in-vehicle buses (Tab. 3.5). Note that the requirement is influenced by the max-
imum of instant data volumes instead of the average value. Also, it is worth mentioning
that depending on the structure of the data frames, the payload capacity of a in-vehicle
bus generally only reaches a percentage of its maximum bandwidth. For example, a CAN
data frame [Int03] has a maximum frame length of 128 bits, in which the actual data field
is only up to 64 bits. In other words, only the half of its maximum bandwidth can be
used for carrying the user data.

According to Tab. 1.1, the CAN bus has a maximum bandwidth of 500 kbps = 62.5 KB/s,
which yields a maximum payload capacity of 62.5 KB/s ◊ 50% = 31.25 KB/s. Therefore,
we come to the conclusion that the more expensive FlexRay is required for transmitting
4) Data packets that carry user data rather than control information.
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Figure 3.11: The best case scenario by Stixel compression.
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Figure 3.12: The worst case scenario by Stixel compression.
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Table 3.5: Payload analysis for transmitting Stixels.
w/o Space+Time Zlib

Instant Peak (KB) 2.02 0.87 1.93
Required Payload (KB/s) 46.37 17.68 46.17
Required Vehicle Bus FlexRay CAN FlexRay
Cost High Medium High

uncompressed Stixel data or compressed data using zlib, whereas compressed Stixel data
through our approach can be transmitted via the CAN bus. For in-vehicle augmented
reality applications that require depth information in the telematics domain, the CAN bus
connecting the central switch and the telematics gateway would have to be replaced by a
FlexRay bus, if our proposed compression scheme is not deployed. Also, the telematics
gateway would have to be redesigned in order to be able to decode both CAN and FlexRay
signals. From the point of view of automotive system architects, such a big scale of
modification would be unrealistic for near future production cars. Therefore, we believe
that our proposed Stixel compression algorithm is a key enabler for near future in-vehicle
applications such as in-vehicle AR.

3.5 Summary and Future Work

In this chapter, we introduced a novel algorithm for compressing Stixel data, as a key
solution to the problem of transmitting depth information through a reasonably priced
in-vehicle communication system.

The lossless compression algorithm comprises a predictive modeling stage and an entropy
coding stage. During the predictive modeling stage, a Stixel Column to be encoded
is first predicted based on reference Stixels in its spatial and temporal neighborhood.
The residual column is subsequently encoded through Golomb coding, an entropy coding
method which is optimal for data sources following geometric distribution. Experiment
results show a convincing performance of our proposed algorithm, which achieves nearly
72% of average space savings, which almost reaches the upper bound of the theoretical
compression limit on our recorded dataset. The proposed compression algorithm enabled
us to transmit Stixel data via a less expensive CAN bus, which has great relevance for
the cost-sensitive automotive industry.

Although we already achieved convincing results, there are still improvements in our
compression algorithm which could be made in the future. Di�erent reference areas and
alternative prediction directions could be experimented, in order to increase the robust-
ness by predictive modeling. The instant peaks in the compressed data stream could
be eliminated by combining lossy and lossless compression. In the near future, we will
devote ourself in exploring these possible improvements. We believe that our proposed
compression scheme has great potential to be adopted in series production cars.
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One can not know the true nature of

Mount Lu, for one is on that very

mountain itself.

Su Shi
1037 - 1101

The Song dynasty poet Su Shi, also known as Su Dong-Po, wrote the beautiful Chinese
quatrain [Ven10] quoted at the beginning of this chapter after he visited the mount Lu in
today’s Jiangxi Province, China. Instead of depicting a specific scenery and expressing his
nature-loving, the poetry attempted to share one of his philosophical views, enlightening
us how di�cult it is to grasp the entire picture of things from a narrow viewpoint. Today,
after almost thousand years, the idea of Su still echoes in the modern society. For example,
from the point of view of a driver, we can interpret Su’s poet as how di�cult it is for us
to get a picture of our entire surroundings through our view through the windshield. It
is impossible to understand the entire tra�c scene when we are part of the scene.

Scene understanding is indispensable for in-vehicle augmented reality. Here, in this chap-
ter, we introduce a novel workflow to 3D shape reconstruction named 3D Shaping and
elaborates its necessity for in-vehicle augmented reality. We begin with a brief introduc-
tion of scene understanding and related work in Section 4.1 and Section 4.2, respectively.
In Section 4.3, we present the workflow of monocular 3D Shaping that only requires a
single image from a monocular camera as input. In Section 4.4 and Section 4.5, we in-
troduce two extensions to monocular 3D Shaping by using an additional in-vehicle 3D
sensors, in order to make 3D Shaping more practical for tra�c scenes. In the last section,
Section 4.6, we summarize this chapter and outline directions for future work.

4.1 Introduction

Scene understanding covers a series of problems from object detection, semantic classi-
fication, to 3D reconstruction, and environmental modeling. It is still one of the most
challenging research topics in computer vision and robotics today. In the automotive in-
dustry, technologies based on scene understanding are already widely used. For example,
an in-vehicle computer vision system is able to recognize road marks, detect pedestrians,
and predict their movements to some extent, in order to support ADAS functions such as
lane-keeping assist and brake assist. However, for more challenging scene understanding
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tasks such as those required by an in-vehicle AR system or in a self-driving car, traditional
computer vision approaches based on hand-crafted features are not su�cient anymore.

In recent years, Deep Learning marked a new era of computer vision by setting records
in a range of scene understanding tasks. Deep-learning-based approaches use complex
multilayer neural networks that process visual inputs in a similar way as the visual cortex
in a human brain. The word “deep” refers to the number of layers used in a neural
network. For example, the well-known neural network AlexNet [KSH12] published in
2012 has only 8 layers, whereas a more recent neural network named ResNet [HZRS16]
published in 2016 contains more than 150 layers. Several research projects in the context
of self-driving car already started to use deep neural networks for semantic segmentation
of tra�c scenes. Automotive hardware with massive processing power that supports deep
learning is also available on the market and is being further developed.

For in-vehicle augmented reality, building a 3D environmental model at an object level
is an essential problem, as already mentioned in Section 1.4.2. The challenge lies not
only in finding an appropriate modeling algorithm but also in distributing the algorithm
across the in-vehicle E/E architecture, to be more specific, across the ADAS domain and
the telematics domain. On the one hand, the approach to generate a 3D environmental
model should be run-time e�cient enough so that it could possibly run in real-time. On
the other hand, the 3D shapes of objects in the generated environmental model should
be described using as few parameters as possible, since they need to be transfered from
the ADAS domain to the telematics domain via a low- or medium-bandwidth in-vehicle
communication system. In the rest of this chapter, we explain how our specific solution
for object-level 3D reconstruction, namely 3D Shaping, copes with these challenges.

4.1.1 Key Contributions

In a nutshell, the key contribution of this chapter is the proof of concept of object-level
3D reconstruction in a car using our proposed 3D Shaping and its extensions. First, we
introduce monocular 3D Shaping (Section 4.3), which requires only a single image frame
taken by a monocular camera as input for 3D shape reconstruction. We adapt an existing
3D reconstruction technique [PSR12] and combine it with the state-of-the-art deep neural
network, which achieves 20% performance gain in viewpoint estimation. In addition, in
order to deal with real tra�c scenes, we propose two extensions to monocular 3D Shaping
by using additional 3D sensors, which we refer to as Pose-RCNN and 3D Shaping +
Lidar, respectively. The proposed Pose-RCNN (Section 4.4) for joint object detection
and viewpoint estimation achieves the highest detection and orientation scores for easy
scenarios of the KITTI detection benchmark [GLU12]. The proposed 3D Shaping + Lidar
(Section 4.5) is able to reconstruct multiple objects in a tra�c scene with self-occlusion,
and it improves the accuracy of occupancy estimation by more than 80% against the
monocular 3D Shaping. Using the proposed monocular 3D Shaping together with its
extensions, we prove the concept of object-level 3D reconstruction in a car, which is
essential to solve the key problem introduced in Section 1.4.2 for in-vehicle AR.
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The specific relevance of 3D Shaping to in-vehicle AR is the use of a Latent Shape Space
(Section 4.3.1), where various 3D geometries can be represented using only two param-
eters. This enables transmitting highly complex 3D shapes through a low- or medium-
bandwidth communication system1). Therefore, we believe that the proposed 3D Shaping
approach is a key enabler for future in-vehicle AR applications to truly augment the 3D
world.

4.2 Related Work

Single Frame 3D Reconstruction Early approaches to 3D reconstruction using a sin-
gle image include Shape from Shading [Hor89], Shape from Contour [HB88], and Shape
from Silhouette [Lau94]. Oswald et al. [OTNC13] gave a detailed review of the early ap-
proaches. The early approaches reconstruct 3D shapes relying on a single image cue such
as light source, object boundaries, or surface discontinuities among others. Recently, 3D
reconstruction approaches commonly combine multiple image cues to improve the quality
of reconstruction. Guan et al. [GWBB09] combined shading, edges, and silhouette to
estimate human body shape using a single photograph or painting. The human body was
represented using a deformable mesh model called SCAPE [ASK+05], which is capable
of recovering non-rigid deformations caused by articulation. However, user input was
needed to initialize the estimation of the pose and the silhouette of a human. Cashman et
al. [CF13] reconstructed the 3D geometry of a dolphin by combining occluding contours
and interest points in an image. They represented the shape through a 3D morphable
model which comprises a mesh of control vertices and an interpolation rule. The interest
points needed to be initialized through user input as well. Kholgade et al. [KSES14] in-
troduced a photo-editing software application which enabled 3D object manipulation in
an image. The application estimated the illumination and reflectance of the environment,
which enabled rendering more realistic object shadows and surface illumination during
object manipulation. A user has to provide keypoint correspondences and masks for the
ground and the shadow area in an image for the 2D-3D alignment.

Although the afore-mentioned recent work on single frame 3D reconstruction already
achieved competitive results, user input was still required for the initialization, which
made them impractical for in-vehicle applications. We need a fully autonomous step to
initialize the pose (position and orientation) of the object that we want to reconstruct from
a single image. This is one of the essential problems of single frame 3D reconstruction.

Latent Shape Another essential problem of 3D reconstruction is how to e�ciently rep-
resent the 3D geometry. Zia et al. [ZSSS11] trained deformable wireframe models for cars
and bicycles based on an Active Shape Model [CTCG95]. A wireframe model is indeed a
low-dimensional representation, but we are not able to recover the complete 3D geometry
of an object from a wireframe model. In order to recover the entire shape of an object,
1) The analysis regarding the bandwidth is presented in Chapter 5.
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Sandhu et al. [SDYT09] encoded 3D geometries using an implicit function named Signed
Distance Function (SDF), also known as zero-level embedding function [RR12]. They used
Principal Component Analysis (PCA) to model the shape variance in a low-dimensional
space. A 3D geometry was then recovered through a silhouette-based optimization during
the recall process, where the input image is segmented into foreground and background
and the silhouette of the 3D geometry is matched to the segmented foreground.

The major advantage to use SDF for describing the object geometry over explicit ge-
ometry description or other implicit methods is, that the normal vectors can be easily
calculated for further uses, e.g., shading. Also, there exists a fast approach to render the
3D geometry from an SDF [LC87]. Recently, Prisacariu et al. [PSR12] made two signif-
icant improvements based on [SDYT09]. First, they transformed SDFs to the frequency
domain using Discrete Cosine Transform (DCT) in order to make it feature rich. Second,
they trained an extremely low-dimensional latent space through Gaussian Process Latent
Variable Model (GPLVM) [Law05], which embedded all variant shapes within the same
object class, e.g., car or human body. In other words, the search space for the optimal
shape is constrained within a low-dimensional latent space, which enables highly e�cient
recall of the 3D shape.

We find the GPLVM representation of 3D object geometry in [PSR12] highly relevant
to the key problem of object-level 3D reconstruction for in-vehicle AR, since it enables
representing 3D object shapes using only two additional latent parameters. However, the
major drawback of the approach in [PSR12] is, that the algorithm used for di�erentiating
foreground and background in an input image is only trained based on a few frames (5 to
7 frames as described in [PSR12]). Besides, for tracking purpose, the first frame still needs
to be initialized manually. We believe that using deep-learning-based methods, the per-
formance of foreground-background segmentation can be boosted, and the initialization
of object pose can be carried out using the similar neural network architecture for image
segmentation. Hence, we decide to combine the approach in [PSR12] with state-of-the-art
deep neural networks for in-vehicle augmented reality in our work.

Deep Learning Today, the computer vision community is experiencing a boom in deep
learning. Deep-learning-based algorithms are applied in a wide range for object detec-
tion [KSH12, GDDM14, Gir15, RHGS15, RDGF16], semantic segmentation [HAGM14,
LSD15, ZJRP+15], viewpoint estimation [BHL15, PSG+15, SQLG15, TM15], depth es-
timation [EF15, LSL15], and even point cloud classification [WSK+15]. Early uses of
Convolutional Neural Networks (CNN) for image classification [LBD+89] and object recog-
nition [LBBH98] already date back to the 1990s. However, due to the high computational
cost that could hardly be covered by a CPU back then, neural networks first went through
their dark decades until the concept of General Purpose computing on GPU (GPGPU)
became practical. For more details about deep learning and its history, please refer
to [Sch15].

Specifically for semantic segmentation, Long et al. [LSD15] introduced a novel network
architecture named Fully Convolutional Network (FCN). Every pixel of the input image
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is classified, yielding an output with the same size as the input. Nevertheless, FCN
had an issue of non-sharp boundaries in the output which are cause by the max-pooling
layers. Several studies [CPK+14, HAGM15, ZJRP+15, LSvdHR16] attempted to integrate
Conditional Random Fields (CRFs) into an FCN in order to solve this issue. Among them,
Zheng et al. [ZJRP+15] were able to fully integrate a CRF into a CNN-training process
by breaking down the CRF minimization into a Recurrent Neural Network (RNN). For
the reason that the approach in [ZJRP+15] was on the top rank of the PASCAL VOC
2012 image segmentation benchmark [EEv+15] back then in 2015, we adopted it in our
monocular 3D Shaping workflow presented in Section 4.3.

Recent works [BHL15, PSG+15, SQLG15, TM15] also showed the applicability of deep
learning in viewpoint estimation. Tulsiani et al. [TM15] and Su et al. [SQLG15] modeled
viewpoint estimation as a multi-class classification problem. A viewpoint angle was dis-
cretized into viewpoint bins, and a cross-entropy loss function was used for training the
neural network. Pepik et al. [PSG+15] and Beyer et al. [BHL15] showed however that it
is a more natural way to model viewpoint estimation as a regression problem. The latter
introduced Biternion Net which was capable of regressing fine-grained orientation angles.
We believe both variants of modeling viewpoint estimation could be relevant, and we ap-
ply both for monocular 3D Shaping (Section 4.3) in order to investigate their influences
on viewpoint estimation in tra�c scenes. Based on our experience with the monocular 3D
Shaping, we adapt the Biternion representation for further improvement (Section 4.4).

Object Detection So far, the introduced related work for 3D reconstruction and view-
point estimation only works for single object, i.e., an input image only contains a single
object. In a real tra�c scene, however, this is rarely the case. Hence, we need to first
find objects in the input image, define a Region Of Interest (ROI) around each object
(typically a rectangular bounding box), and crop the image patches out of the ROI so
that each image patch contains only one object. This procedure is referred to as object
detection.

A typical preprocessing step for object detection is known as bounding box proposal, also
referred to as region proposal, where candidate ROIs that are more likely to contain
target objects are generated. Objectness [ADF12], Multi-scale Combinatorial Group-
ing (MCG) [APTB+14], Constrained Parametric Min-Cut (CPMC) [CS12], and Selec-
tive Search (SS) [UvdSGS13] are several well-known proposal methods. Please refer
to [HBDS16] for more details of region proposal.

Recent works [LFU13, GGAM14, CKZ+15] used 3D sensors such as an RGB-D camera
or a stereo camera to improve the performance of region proposal. Lin et al. [LFU13]
extended the CPMC framework to 3D in order to segment and understand indoor scenes
from RGB-D data. Gupta et al. [GGAM14] proposed an integrated system for scene
understanding through RGB-D images by augmenting the MCG framework with depth
information. Chen et al. [CKZ+15] used a stereo camera to generate 3D object proposals
in common tra�c scenes. Improvements in region proposal and object detection through
3D sensors are demonstrated in these publications.
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Before the AlexNet [KSH12] was introduced, the most successful approaches for object
detection used hand-crafted features [DT05] and Support Vector Machine (SVM)-based
classifiers [FGMR10, PGSS12, DABP14, PSGS15]. Today, object detection is also domi-
nated by deep-learning-based approaches. Compared to hand-designed features, the ma-
jor advantage of a deep neural network lies above all in its learning capacity, which en-
ables coping with highest complex models and object representations. In 2014, Girshick
et al. [GDDM14] published Region-based CNN (R-CNN), which set a groundbreaking
record in object detection on Pascal VOC 2012 challenge [EEv+15]. A number of im-
provements such as Fast R-CNN [Gir15] and Faster R-CNN [RHGS15] were proposed
subsequently attempting to improve the runtime performance. The top performing algo-
rithms in object detection on the KITTI vision benchmark [GLU12] back then in 2016
include Subcategory-aware CNN (SubCNN) [XCLS17] and the afore-mentioned 3D Object
Proposals (3DOP) [CKZ+15] that made use of Lidar proposals.

In order to enable 3D Shaping in real tra�c scenes, we propose a novel neural network
architecture, namely Pose-RCNN, for jointly detecting objects and estimating viewpoints.
The methods proposed in [DABP14, CKZ+15, HOBS15, PSGS15, XCLS17] are compre-
hensively compared to our proposed Pose-RCNN in Section 4.4.

4.3 Monocular 3D Shape Reconstruction

We first attempt to reconstruct the complete 3D geometry of an object only using one
frame from one monocular camera. The purpose of approaching this challenging task for
in-vehicle augmented reality is to prove the concept that object-level 3D reconstruction
is feasible with a minimum sensor setup, e.g., a monocular camera. This proof of concept
is highly important for the cost-sensitive automotive industry.

As already mentioned in Section 4.2, we find the latent variable representation of 3D ge-
ometries in [PSR12] highly relevant to the key problem of object-level 3D reconstruction
we intended to solve for in-vehicle AR, and we believe the performance of this recon-
struction approach could be boosted through deep neural network. This motivated us
to design a workflow that exploits the strength of both deep neural networks and latent
shape representation, which we refer to as monocular 3D Shaping.

The entire workflow of monocular 3D Shaping is illustrated in Fig. 4.1. It comprises a
first stage of 2D appearance detection and a second stage of viewpoint and shape opti-
mization. The objective here is to find the correct viewpoint angle and 3D geometry of
an object in an input image. In the first stage, the input image is semantically segmented
into foreground and background through a segmentation network (SegNet). In addition,
an initial viewpoint angle is estimated through a viewpoint network (VPNet). The fore-
ground pixels are used as an image cue for the 3D shape optimization in the second stage,
where the 3D pose and 3D shape of the object are jointly optimized.

The rest of this section is structured as follows. We introduce the latent shape space in
Section 4.3.1 and discuss the 3D shape optimization in Section 4.3.2. In Section 4.3.3,
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4.3 Monocular 3D Shape Reconstruction

we explain the SegNet and VPNet in detail. In Section 4.3.4, we present the experiment
results of monocular 3D Shaping.

SegNet

VP + Shape
OptimizationVPNet

shape prior

input output

Figure 4.1: Workflow of monocular 3D Shaping.

4.3.1 Latent Shape

3D geometries are represented implicitly through Signed Distance Function (SDF). The
general definition of an SDF is expressed in Eq. 4.1, where � denotes a subset of a metric
space with d(·, ·) being the metric function. ˆ� and �c denote the boundary and the
complement set of �, respectively. The definition of the metric function d is expressed in
Eq. 4.2, which returns “the nearest distance” between x and the boundary of �. The SDF
is positive if x is “inside” � and negative if outside. Theoretically, an SDF is di�erentiable
almost everywhere if � is in the Euclidean space.

�(x) =

Y
__]

__[

d(x, ˆ�), if x œ �
0, if x œ ˆ�
≠d(x, ˆ�), if x œ �c

(4.1)

d(x, ˆ�) = inf
xÕœˆ�

d(x, xÕ) (4.2)

Figure 4.2 shows an example of a signed distance function in R
2. One would immediately

realize that this SDF represents the silhouette of a car. The boundary of the car is
implicitly embedded in the contour line that equals zero, also known as zero level set.

A two-dimensional SDF is capable of representing the 2D boundary of an object in an
image. By adding one dimension, the surface of a 3D geometry can be represented. In
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Figure 4.2: Visualization of a two-dimensional SDF.

Figure 4.3: Visualization of a three-dimensional SDF.
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4.3 Monocular 3D Shape Reconstruction

fact, the previous example in Fig. 4.2 is just one slice from a 3D SDF that encodes the
3D geometry of a car, as shown in Fig. 4.3.

In practice, an SDF is discretized and stored in a floating point array. Each element
of the array records the distance from its grid location to the zero level. The higher
the dimension of the array is, the finer the original geometry is discretized. Figure 4.4
illustrates how the fineness of an SDF is a�ected by the dimension of the array container.

(a) Original 3D model. (b) Dimension: 20 ◊ 20 ◊ 20.

(c) Dimension: 60 ◊ 60 ◊ 60. (d) Dimension: 120 ◊ 120 ◊ 120.

Figure 4.4: Di�erent levels of fineness of an SDF.

Although an SDF is able to implicitly embed a 3D geometry, it cannot be directly used
as a feature for classification or other machine-learning-based algorithms. The reason
is that an SDF is a representation of the original 3D geometry in the spatial domain.
A machine learning algorithm typically needs to operate in a so-called feature domain,
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where sample points that belong to di�erent classes are clearly separated. The same
applies why we would not directly use RGB value as a feature for object recognition in
an image. Therefore, a three-dimensional Discrete Cosine Transform (Eq. 4.3) is applied,
which transforms an SDF into the frequency domain in order to make it feature rich.

Xk1,k2,k3 =
N1≠1ÿ

n1=0

N2≠1ÿ

n2=0
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2

4
k3

6 (4.3)

The number of DCT coe�cients is the same as the number of the elements in a discretized
SDF. Their sizes increase cubically with the dimension of the array. Dealing with an
extremely high dimensional feature would require more computational power and slow
down the entire workflow. However, if we cut the dimension of an SDF array, the quality
of 3D reconstruction needs to be compromised. Here, we take advantage of the property
of DCT which centralizes low-frequency components, and we simply discard small high-
frequency coe�cients. Figure 4.5 shows how the quality of reconstruction is a�ected by
the number of DCT coe�cients. The di�erence between the reconstructions using 603

coe�cients (Fig. 4.5(a)) and 403 coe�cients (Fig. 4.5(b)) is already barely distinguished
through naked eyes.

(a) Coe�cients: 60 ◊ 60 ◊ 60. (b) Coe�cients: 40 ◊ 40 ◊ 40. (c) Coe�cients: 20 ◊ 20 ◊ 20.

Figure 4.5: Reconstruction with di�erent numbers of DCT coe�cients.

After collecting a small number of 3D geometries (training samples) and transforming
them to DCT coe�cients (features), a process called Gaussian Process Latent Variable
Model (GPLVM) training is carried out which embeds the high-dimensional features into
a low-dimensional latent space. GPLVM has the following advantages in the context
of 3D shape representation. First, it only requires a small number of training samples,
taking advantage of the nature of a Gaussian process. Second, it is able to significantly
reduce the dimension of the feature space without any information loss. Last but not
least, the low-dimensional latent space is continuous and di�erentiable everywhere, which
is mathematically convenient by optimization.

Mathematically, GPLVM training aims at finding a Gaussian process (Eq. 4.4) that maps
a low-dimensional latent space X to a high dimensional feature space Y . K denotes
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4.3 Monocular 3D Shape Reconstruction

a kernelized covariance matrix of the Gaussian distribution, with each element kij =
Ÿ(xi, xj).

Y ≥ N (0, K) (4.4)

The kernel function Ÿ(·, ·) is typically a radial basis function plus some white noise, as
expressed in Eq. 4.5.

Ÿ(x, xÕ) = ◊1 exp
A

≠◊2
2 Îx ≠ xÕÎ2

B

+ ◊3 + ◊4”(x, xÕ) (4.5)

The so-called hyper-parameters � = {◊1, ◊2, ◊3, ◊4} and the set of latent variables X are
the variables to be optimized during GPLVM training. The optimization is formulated
as a Maximum Likelihood Estimation (MLE) problem in Eq. 4.6. In other words, during
GPLVM training, we try to find the latent variables X that are most likely to generate
the given training set Y through a Gaussian process controlled by the hyper-parameters
�.

(Xú; �ú) = arg max
X;�

p(Y |X; �) (4.6)

In practice, the negative log-likelihood L = ≠ ln p(Y |X; �) is minimized through a Scaled
Conjugate Gradient (SCG) method. Figure 4.6 shows a latent space that embeds 3D
geometries of cars, with an extremely low latent dimension q = 2. The transition of 3D

Figure 4.6: A two-dimensional latent space that embeds 3D geometries of cars. Latent
points in the dark area are considered to be able to generate more car-like 3D
shapes.

geometries inside the latent shape space is smooth everywhere, as shown in Fig. 4.7.

Having a trained latent space, one can infer a feature point yú of an arbitrary latent vari-
able xú by the definition of Gaussian process (Eq. 4.7), where Kú = [Ÿ(xú, x1), Ÿ(xú, x2), · · · ]T
and Kúú = Ÿ(xú, xú). C

Y
yú

D

≥ N
A

0,

C
K Kú

(Kú)T Kúú

DB

(4.7)
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Figure 4.7: A smooth transition of latent shapes.

Therefore, the expectation and the variance of yú can be estimated through Eq. 4.8.

E(yú) = Ÿ(xú, X)K≠1Y

V ar(yú) = Ÿ(xú, xú) ≠ Ÿ(xú, X)T K≠1Ÿ(xú, X)
(4.8)

The inference from a low-dimensional latent variable back to the original feature space is
referred to as GPLVM recall.

Now, the path between a 3D geometry and a latent variable is completed, as illustrated in
Fig. 4.8. 3D geometries go through distance transformation, DCT, and GPLVM training
to become latent variables in the latent shape space. A latent variable generates a 3D
SDF through GPLVM recall and Inverse DCT (IDCT). The triangulation of a 3D SDF is
realized using the Marching Cube [LC87] algorithm.

CAD
Model SDF

Marching
Cube

Distance
Transform DCT

IDCT

GPLVM
Training

GPLVM
Recall

Feature
Point

Latent
Point

Figure 4.8: From latent variable to 3D geometry.

More details of latent shape training are given in Appendix A.

4.3.2 Optimization Problem

Figure 4.9 demonstrates how 2D-3D shape optimization works. The screen at the left
side shows a semantically segmented input image, with blue pixels illustrating a car. At
the right side, a 3D geometry of a car is projected onto the screen. The objective of the
optimization is to find the best position, orientation, and 3D shape of the car so that the
silhouette of the car on the screen matches the segmented output as close as possible.
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Figure 4.9: Visualization of 3D shape optimization.

Mathematically, the energy function in Eq. 4.9 is maximized during 3D shape optimiza-
tion. � denotes a region of interest in an image and x an image pixel. Pf (·) and Pb(·)
record how likely a pixel belongs to the foreground (the target object) or the background,
respectively. They are estimated using a segmentation neural network (SegNet). fi(·; ·)
denotes a projection function that projects a 3D SDF denoted as � onto the image plane.
The projection is controlled by the parameter set fl. More specifically, fl comprises three
parameters for the translation, four parameters2) for the rotation, one parameter for the
scale, and two additional latent variables for the 3D geometry. Relying on the latent
shape representation, we only need to solve two additional variables in the latent space
instead of, e.g., 403 = 64 000 variables in the original feature space.

E(�; fl) =
ÿ

xœ�
Pf (x)fi(�; fl) + Pb(x)[1 ≠ fi(�; fl)] (4.9)

The energy function is di�erentiable with respect to the latent variable and the viewpoint
parameters. Thus, it can be optimized through standard non-linear optimization methods,
such as gradient descent or Levenberg-Marquardt [Mor78]. More details of the derivatives
of the energy function are given in Appendix B.

We conducted di�erent experiments under controlled conditions in order to examine the
influence of latent variables and viewpoint parameters on the energy function. First, we
render a dummy image of a car from a fixed viewpoint and calculate the energy value at
each point in the latent shape space. The result is visualized in Fig. 4.10, which clearly
shows an area of global maxima that can be reached through gradient-based optimization
2) Quaternion representation.
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methods. Second, we fix the latent shape and loose the orientation angle to change the
viewpoint. In other words, we circle the camera a around the car and calculate the
energy at each angle. Figure 4.11 illustrates the result. We observe that there is a local
maximum 180¶-flipped from the global maximum, i.e., there is a 50 percent chance that
the optimization converged at local maximum, if we randomly initialize the viewpoint at
the beginning of the optimization. Last but not least, in order to show the ambiguity
between depth and scale, we loose the longitudinal distance and the scale parameter while
fixing the others. A ridge-like structure can be observed in Fig. 4.12 that shows the result.
This is quite straightforward to understand, since a big car far away might look like the
same in an image as a small car right in front of us. The ambiguity between the depth
and the scale will not disappear if only one image is used during the optimization.

low energy high energy

l = [0.32, 0.21]

E = 0.9393

Figure 4.10: Energy by varying latent variable.

4.3.3 SegNet and VPNet

For monocular 3D Shaping, we assume the object bounding boxes are given in an earlier
processing step, i.e., each input image contains only one object. For the SegNet, we
use a Fully Convolutional Network (FCN) combined with a Conditional Random Field
(CRF) as suggested in [ZJRP+15], for the reason that it produces sharp-edged foreground-
background segmentation. The finer the segmentation results are, the better quality
of 3D shape reconstruction can be achieved. In addition, we train a separate neural
network specifically for viewpoint initialization. The network architecture is adapted
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Figure 4.11: Energy by varying orientation angle.
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Figure 4.12: Energy by varying depth and scale.
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from AlexNet [KSH12]. By modifying the last fully connected layer of the AlexNet, we
are able to model the problem of viewpoint estimation di�erently from a mathematical
point of view. Here, we use two di�erent types of loss functions: the cross-entropy loss
expressed in Eq. 4.10 and the Euclidean loss in Eq. 4.11. Using cross-entropy loss function,
viewpoint estimation is formulated as a classification problem, whereas using Euclidean
loss, it is defined as a regression problem.

L = ≠ 1
N

Nÿ

n=1
ln

A
exln

q
K

k=1 exk

B

(4.10)

In Eq. 4.10, N denotes the number of training samples, K the total number of viewpoint
bins, l the groundtruth viewpoint label, and x the predicted score. We tried di�erent
numbers of viewpoint bins. Generally, using a larger K increases the precision of the
estimated viewpoint angle.

L = 1
2N

Nÿ

n=1
Îx̂n ≠ xnÎ2 (4.11)

The Euclidean loss in Eq. 4.11 turns the neural network into a regressor. x̂n denotes
the groundtruth and xn the predicted viewpoint, respectively. The Euclidean distance
between the groundtruth and the output of the neural network is minimized during the
training process.

We used a subset of ImageNet with viewpoint annotations [XMS14] for training the VP-
Net. A layer-separation for di�erent classes is not considered since for monocular 3D
Shaping, we specifically focus on car objects. All training processes are carried out using
the Ca�e deep learning framework [JSD+14].

4.3.4 Experimental Results

We use viewpoint accuracy as the quantitative measure to evaluate the performance of
3D shape reconstruction. The viewpoint error is measured by the geodesic distance over
the rotation sphere, as expressed in Eq. 4.12, where Rest denotes the estimated rotation
matrix and Rgt the groundtruth. We calculate the median viewpoint error Med(•) over
the entire evaluation dataset. In addition, we show the percentage of accurate estimates
Acc(< ◊), with ◊ being the angular threshold. The results are presented in Tab. 4.1.

”vp(Rest, Rgt) = 1Ô
2

Î ln(RT

est
Rgt)ÎF (4.12)

The first half of Tab. 4.1 shows results after the first stage of monocular 3D Shaping and
the second half after the second stage, 2D-3D optimization. The network using cross-
entropy loss for viewpoint estimation are denoted by VPNet-Kbin, with K indicating
the number of viewpoint bins. The viewpoint regression network using Euclidean loss
function is denoted by VPNet-Reg. VDPM-24bin stands for Viewpoint Deformable Part
Model [XMS14] with 24 viewpoint bins, which was considered the state-of-the-art before
deep-learning-based algorithms were introduced.
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Table 4.1: Evaluation of viewpoint estimation by monocular 3D Shaping.
Approach Med(”vp) Acc(30¶) Acc(15¶) Acc(5¶)
VDPM-24bin 19.60¶ 67.51% 35.57% 8.16%
VPNet-Reg 23.11¶ 58.74% 34.75% 12.34%
VPNet-24bin 11.82¶ 86.77% 64.29% 19.26%
VPNet-72bin 7.48¶ 90.47% 73.61% 35.23%
VPNet-24bin+Shape 5.47¶ 88.04% 78.35% 47.08%
VPNet-72bin+Shape 4.29¶ 89.13% 77.30% 54.13%

The following three points can be summarized from the results in Tab. 4.1. First, the
viewpoint network with the most viewpoint bins outperforms the other approaches. Sec-
ond, the estimated viewpoint angles are more close to the groundtruth after the second
stage optimization. There is a nearly 20 percent performance gain in Acc(< 5¶) by
VPNet-72bin+Shape. Last but not least, the optimization process is proven to be robust
against initialization to some extent, as VPNet-24bin+Shape and VPNet-72bin+Shape
yield similar results.

Figure 4.13 shows a reconstructed 3D car overlaid on the image, as an example use case
of 3D Shaping for in-vehicle augmented reality. The foreground possibilities estimated
through the segmentation network is illustrated in Fig. 4.13(b), ranging from zero (black)
to one (white). The red frame in Fig. 4.13(b) shows the outer contour of the projected
3D geometry.

(a) Input image (b) Segmentation score (c) 3D shape recovered (d) 3D shape overlay

Figure 4.13: Example of satisfying 3D reconstruction.

Three failed reconstructions due to (a) ambiguous silhouette, (b) divergence in the la-
tent shape space, and (c) bad viewpoint initialization are presented in Fig. 4.14. More
reconstruction results of 3D Shaping are shown in Fig. 4.16.

Certainly, the silhouette-based 2D-3D optimization is subject to viewpoint initialization
and image segmentation. Additional constraints such as discriminant keypoints could
be introduced to solve the problem of ambiguity shown in Fig. 4.14(a). For example,
wheels or side mirrors could be used to identify the viewpoint. Another idea would be
using shared latent space that associates latent shape variables and keypoints. However,
compared to neural networks, it is not easy to parallelize these algorithms and e�ciently
implement them on an in-vehicle platform.
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(a) Ambiguous silhouette.

(b) Divergence in the latent shape space.

(c) Bad viewpoint initialization.

Figure 4.14: Failed 3D reconstructions.

(a) Original image patch. (b) Segmented image. (c) Probability of car pixels.

Figure 4.15: Occlusion problem by monocular 3D Shaping. The optimizer would try to
cover the entire white area in (c) with only one instance of the object class
car.
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Nevertheless, the workflow presented in this section is only designed for a single object
standing in front of a clean background. Multiple instances of the same object class
would cause a self-occlusion problem, as illustrated in Fig. 4.15. Without knowing the
exact number of cars in the scene and boundaries between them, the optimizer is unable
to deliver reasonable estimations of the viewpoint and 3D shapes.

Figure 4.16: More reconstruction results of monocular 3D Shaping. The last two rows
present two failed reconstructions due to 180¶-flipped viewpoint and strong
reflection from the wheel, respectively.
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4.4 Pose-RCNN

In this section, we introduce Pose-RCNN, a combined approach for object detection and
viewpoint estimation. We intend to use Pose-RCNN as an extension for monocular 3D
Shaping in order to make it more practical for real tra�c scenes. Recall that we assume an
input image to monocular 3D Shaping to only contain one object. For images containing
multiple objects, we need to first detect the objects in the images. In addition, as we
already shown in Section 4.3.4, the performance of the second stage optimization of 3D
Shaping weakly depends on the initial guess of the viewpoint. We used a separate VPNet
to estimate the viewpoint in the monocular 3D Shaping approach, and we believe the
VPNet can be integrated into a detection network such as R-CNN. Therefore, we name
the novel neural network architecture Pose-RCNN for it is able to detect object and
estimate their pose jointly.

There are two major building blocks in our proposed Pose-RCNN workflow. The first
building block is to generate ROI proposals that are more likely to contain target objects.
Here, we propose two di�erent methods for proposal generation, one of them takes Stixels
as input, the other one uses point clouds captured by a Lidar. The second building block
is a modified R-CNN that takes an image and the bounding box proposals generated
from the first as input. It outputs an object class and a viewpoint angle per proposal. We
cherry-pick the most trustworthy detection results of the proposed Pose-RCNN for 3D
Shaping.

4.4.1 Proposal Generation

Lidar Proposal Generation In order to generate ROI proposals given an unorganized
Lidar point cloud, we need to cluster the entire cloud into smaller clusters. A common
approach to cluster point clouds is to remove the points on the ground in the first step
and group the rest non-ground points together. Here, we use the implementation of
the Point Cloud Library for clustering the point cloud. Progressive Morphological Filter
(PMF) [ZCW+03] is used to estimate ground points, and k-dimensional tree is used for
clustering non-ground points based on their Euclidean distances. At last, for each point
cloud cluster, a 3D bounding box is generated and projected onto the input image, yielding
2D ROI proposals (Fig. 4.17). The projected 2D proposals are enriched again through
spatial translation and scaling in order to increase the number of proposals.

The parameters of PMF and k-d-tree-based nearest neighbor clustering have considerable
influence on the recall rate of Lidar proposals. Here, we pick up two di�erent parameter
sets for evaluation. Through the first set, denoted as Li1, we attempt to rigorously keep
the false negative rate as low as possible, whereas we intend to increase the recall rate
through the second set Li2 where the constraint of minimum size of a cluster is lifted. The
detailed parameters of Li1 and Li2 are given in Tab. 4.2. Note that ground estimation
using the second parameter set Li2 only takes short range Lidar points as input as a Lidar
can hardly reach the ground beyond a certain distance. In other words, using Li2, points
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(a) Proposals in 3D space.

(b) Proposals projected onto the image.

Figure 4.17: Lidar proposal generation.
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Table 4.2: Detailed parameter settings of Lidar proposal.
Step Parameter Li1 Li2

Ground estimation initial ground distance 0.2m 0.15m
maximal ground distance 0.5m 0.15m

Euclidean clustering cluster distance 0.3m 0.45m
minimal number of points 50 10

in the far range are not removed through PMF in the first step. This allows us to catch
potential objects in the far range and thus to increase the recall rate. The range threshold
between “near” and “far” is set to be 20 meters.

Stereo Proposal Generation We also use Stixel (Fig. 4.18) to generate ROI proposals.
As already introduced in Section 3.2, Stixel is a compact mid-level representation of depth
information, which are generated based on the assumption that objects in a tra�c scene
roughly have a vertical “facade”, such as pedestrians and cars. We use our a priori
knowledge about the size of common tra�c participants to turn Stixels into bounding
box proposals. First, Stixels that are taller than 2.4m, shorter than 1.2m, farther away
than 100m, or higher than 0.5m above the ground are removed, since the possibility of an
existing pedestrian or car in this range is low. Then, the width of each remaining Stixel
is adjusted by multiplying three di�erent aspect ratios, including 0.5, 1, and 2. Here, we
experiment two parameter sets as well, namely Stixel Proposal SP with 7-pixel width and
Stixel Proposal Less-wide and Jittered SPLJ with 3-pixel width. For SPLJ, proposals
are “jittered” by 10 percent to the left, right, top, and bottom, in order to increase the
number of proposals.

4.4.2 Network Architecture of Pose-RCNN

The network architecture of the proposed Pose-RCNN is shown in Fig. 4.19. We attach
a small viewpoint regression network on top of the ROI pooling layer of an R-CNN. The
feature vectors at the output of the ROI pooling layer go through three parallel fully-
connected layers, yielding object classes, bounding box o�sets, and viewpoint angles. We
use the von Mises loss function for regressing viewpoint angles. Against the cross-entropy
loss and Euclidean loss function used in the VPNet (Section 4.3.3) for monocular 3D
Shaping, the von Mises loss function has the following advantages. First, the von Mises
distribution resembles a normal distribution around a circle, i.e., there is no discontinuity
between ≠180¶ and 180¶ in the output anymore. Second, the von Mises loss function
is di�erentiable everywhere and thus mathematically convenient to be integrated into a
neural network. These allow the network to interpret the input feature more correctly to
the corresponding groundtruth angle, and to converge faster during a training process.
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(a) Stixels generated by a stereo camera.

(b) Filtered Stixels.

(c) Generated proposals after adjusting the Stixel width.

Figure 4.18: Stereo proposal generation.
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Figure 4.19: Network architecture of the proposed Pose-RCNN. p denotes the dimension
of a layer output and ⇤ the size of the ROI pooling window. The outputs
of the Pose-RCNN include (from top to bottom) an object class (cls), a
bounding box (box), and an orientation angle (ort).
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4.4.3 Experimental Results

We evaluate Pose-RCNN using the KITTI vision benchmark [GLU12] for object detection.
A total of 80 256 labeled objects including cars, pedestrians, and cyclists in common tra�c
scenes are available in the training dataset of KITTI. We evaluate our proposed methods
for proposal generation, namely SP, SPLJ, Li1, and Li2, as well as their combinations
SP-Li1, SPLJ-Li1, and SPLJ-Li2. The methods are combined by taking the union of the
results without any filtering of duplicates.

Table 4.3 and Tab. 4.4 present the Average Precision (AP) in object detection and the
Average Orientation Similarity (AOS) in viewpoint estimation, respectively. We achieve
the highest detection and orientation scores for easy scenarios. For other moderate and
hard scenarios, our results are also competitive with the state-of-the-art object detection
methods introduced in Section 4.2, including ACF [DABP14], R-CNN [HOBS15], DPM-
VOC+VP [PSGS15], 3DOP [CKZ+15], and SubCNN [XCLS17]. The biggest advantage
of our proposed Pose-RCNN is, even if its detection performance is a few percent less
than the state-of-the-art approaches for certain scenarios, that it has a potential to be
integrated into a real-time in-vehicle framework relying on its single feed-forward neural
network architecture.

Table 4.3: Evaluation of Pose-RCNN in average precision (%).
Object Approach Di�culty

Easy Moderate Hard

Car

ACF [DABP14] 55.89 54.74 42.98
R-CNN [HOBS15] - - -
DPM-VOC+VP [PSGS15] 74.95 64.71 48.76
3DOP [CKZ+15] 93.04 88.64 79.10
SubCNN [XCLS17] 90.81 89.04 79.27

Proposed 88.43 75.80 66.57

Pedestrian

ACF [DABP14] 44.49 39.81 37.21
R-CNN [HOBS15] 61.61 50.13 44.79
DPM-VOC+VP [PSGS15] 59.48 44.86 40.37
3DOP [CKZ+15] 81.78 67.47 64.70
SubCNN [XCLS17] 83.28 71.33 66.36

Proposed 77.53 63.40 57.49

Cyclist

ACF [DABP14] - - -
R-CNN [HOBS15] - - -
DPM-VOC+VP [PSGS15] 42.43 31.08 28.23
3DOP [CKZ+15] 78.39 68.94 61.37
SubCNN [XCLS17] 79.48 71.06 62.68

Proposed 80.79 68.79 60.40

In fact, average orientation similarity as defined in [GLU12] is strongly correlated with the
average precision. The average orientation similarity is the upper bound of the average

83



4 Scene Understanding

Figure 4.20: Recall – IoU curves of di�erent proposal methods. The numbers inside the
brackets show the average number of proposals and the average recall (%),
respectively. The 3DOP curve is sampled from the original paper [CKZ+15].
The curves of Selective Search (SS) are calculated based on an implementa-
tion of [UvdSGS13].
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Table 4.4: Evaluation of Pose-RCNN in average orientation similarity (%).
Object Approach Di�culty

Easy Moderate Hard

Car

DPM-VOC+VP [PSGS15] 72.28 61.84 46.54
3DOP [CKZ+15] 91.44 86.10 76.52
SubCNN [XCLS17] 90.67 88.62 78.68

Ours 88.34 75.41 66.07

Pedestrian

DPM-VOC+VP [PSGS15] 53.55 39.83 35.73
3DOP [CKZ+15] 72.94 59.80 57.03
SubCNN [XCLS17] 78.45 66.28 61.36

Ours 73.95 59.90 54.27

Cyclist

DPM-VOC+VP [PSGS15] 30.52 23.17 21.58
3DOP [CKZ+15] 70.13 58.68 52.35
SubCNN [XCLS17] 72.00 63.65 56.32

Ours 75.49 62.87 55.47

precision, i.e., the ratio — = AOS/AP is always smaller than 1. For cars, our approach
already achieves a similar — as 3DOP [CKZ+15] and SubCNN [XCLS17]. For cyclists and
pedestrians, our — ratio is even higher than those by 3DOP and SubCNN. These evince a
great potential of our proposed Pose-RCNN. Improving the average recall of the proposals
would automatically boost the average orientation similarity score.

4.5 3D Shaping + Lidar

In this section, we introduce another extension of monocular 3D Shaping in order to make
it more practical for real tra�c scenes. Here, we take advantage of another in-vehicle 3D
sensor, a Lidar, to reconstruct the 3D shape of multiple object instances in the same class.
Hence, we name the extension 3D Shaping + Lidar.

Recall that the monocular 3D Shaping proposed in Section 4.3 requires the input image
only to contain one object. For multiple object in the same class, a problem of self-
occlusion will occur, as already shown in Fig. 4.15. We aim at solving this problem by
taking advantage of the additional Lidar.

The workflow of 3D Shaping + Lidar is similar to that of monocular 3D Shaping. It com-
prises the first stage of appearance detection and the second stage of shape optimization.
In the first stage, we can take advantage of the proposed Pose-RCNN (Section 4.4) to
cluster the scene in 3D and generate object proposals together with an estimated orien-
tation angle for each detected object. Furthermore, we can use the clustered Lidar points
as an additional cue for shape optimization. By directly using 3D measurements, the
ambiguity between distance and scale as observed by monocular 3D Shaping (Fig. 4.12)
can be eliminated.
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In the rest of this section, we first explain the updated energy function for 3D Shaping +
Lidar in Section 4.5.1 and present the evaluation results in Section 4.5.2.

4.5.1 Energy and Optimization

The new energy function is defined in Eq. 4.13, where a point cloud energy Ecloud is
combined with the image-based energy Eimg defined in Eq. 4.9. ⁄ is the weight combining
the two energies. � denotes an SDF that encodes 3D geometries, and fl denotes a set of
pose parameters. This energy function is first used by Dame et al. [DPRR13] for similar
purposes.

E(�; fl) = Eimg(�; fl) + ⁄Ecloud(�; fl) (4.13)
The cloud energy is formulated in Eq. 4.14, where XL denotes a 3D point in a Lidar
cluster L, and g œ SE(3) the Lie algebra that transforms a point from Lidar coordinates
to the object geometry coordinates. The object geometry coordinates system is attached
at the geometrical centroid of an object. The exponential term of the Geman-McClure
function [GM85] reaches its minimum if XO exactly lies on the zero-level of the SDF �.
It increases monotonically with the distance between XO and the object surface, and the
increasing rate is controlled by ‡.

Ecloud(�; fl) =
ÿ

XLœL
exp

I
�2(g(XL; fl))

�2(g(XL; fl)) + ‡

J

=
ÿ

XO

exp
I

�2(XO)
�2(XO) + ‡

J (4.14)

Figure 4.21: 3D Shaping optimization using image and Lidar measurements. The first row
shows the initial state, and the second row the final state. Image statistics
are illustrated in the middle column, with white pixels being more likely to be
foreground pixels. The right column shows SDFs and Lidar measurements.

In order to examine the properties of the point cloud energy, we conduct similar experi-
ments under controlled conditions as in Section 4.3.2. We generate a dummy point cloud
cluster by random sampling the surface of an SDF of a car, and we use the dummy cluster
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Figure 4.22: Cloud energy by varying latent variable.
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Figure 4.23: Cloud energy by varying orientation angle.
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to simulate Lidar measurements. First, we fix the viewpoint and vary the latent variables
within a trained latent shape space. Second, we fix the latent shape and alter the ori-
entation angle. The results are visualized in Fig. 4.22 and Fig. 4.23, respectively. We
observe similarities between the point cloud energy and the image-based energy. There is
a unique global minimum by varying latent variables, while a 180¶-flipped local minimum
by varying orientation angle occurs.

In practice, the image energy and the point cloud energy can be jointly optimized through
gradient-based optimization methods. Figure 4.21 shows an example to help understand
the optimization process. Lidar points would “stick” to the surface if the optimization is
ideally converged.

4.5.2 Experimental Results

We evaluate the combined energy function on a subset of the KITTI vision benchmark.
Thirty-eight raw recording sequences with groundtruth 3D object labels are included in
our evaluation dataset. In order to evaluate the performance of 3D reconstruction, we
use the accuracy of orientation angle and the accuracy of occupancy bounding box as two
measures.

We manually add a bias with 15¶ mean and 15¶ standard deviation to the groundtruth
orientation, in order uncouple the evaluation of 3D reconstruction from viewpoint initial-
ization. This bias is set to be larger than the average estimation error of the top ranking
algorithms of the KITTI vision benchmark. The results are presented in Tab. 4.5 and
Fig. 4.26. In Tab. 4.5, Med(”) shows the median of the absolute estimation errors ” in
degree, and Acc(< ◊) indicates the percentage of accurate estimates that are smaller than
the threshold angle ◊. According to the results, both 3D Shaping approaches using or
without using a Lidar are able to correct viewpoint angle within a certain initialization
error. At short range, the approach using a Lidar is able to correct an error more than
30¶ and at full range up to 20¶. This clearly shows the improvement by using a Lidar.

Table 4.5: Evaluation of 3D Shaping in viewpoint estimation.
Range Approach Med(”) Acc(< 20¶) Acc(< 10¶) Acc(< 5¶)

short (Æ 20m)
Initialization 16.07¶ 61.23% 31.80% 15.15%
Orientation Net 12.77¶ 63.00% 42.12% 23.61%
Shaping Cam 13.96¶ 65.67% 37.95% 21.64%
Shaping Cam+Lidar 7.02¶ 85.45% 67.53% 37.99%

full
Initialization 16.01¶ 62.08% 31.87% 15.49%
Orientation Net 20.44¶ 49.42% 30.61% 16.57%
Shaping Cam 16.08¶ 60.24% 32.59% 17.91%
Shaping Cam+Lidar 14.14¶ 61.50% 38.44% 20.22%
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The occupancy bounding box is defined as the rectangular bounding box around an object
from a bird’s-eye view. The bounding box overlap ratio is given by Eq. 4.15. We present
the evaluation results of bounding box accuracy in Tab. 4.6 and Fig. 4.26. In Tab. 4.6,
Mean(Ovl) denotes the average of the overlap ratios. Acc(> •) indicates the percentage of
accurate estimates that are larger than a certain threshold of overlap ratio. An estimated
occupancy bounding box is considered correct if the overlap ratio is larger than 0.5.
According to the results, the approach using a Lidar significantly improves the bounding
box estimation performance compared to the monocular approach, due to the fact that the
ambiguity between distance and scale is eliminated by directly using 3D measurements.

Ovl(A, B) = A fl B

A fi B
(4.15)

Table 4.6: Evaluation of 3D Shaping in bounding box estimation.
Range Approach Mean(Ovl) Acc(> 0.5) Acc(> 0.7)

short (Æ 20m) Shaping Cam 0.17 8.34% 1.97%
Shaping Cam+Lidar 0.69 90.57% 62.77%

full Shaping Cam 0.11 5.67% 1.21%
Shaping Cam+Lidar 0.53 58.36% 28.87%

We also evaluate the absolute translation error and present the results in Tab. 4.7 and
Fig. 4.26. In Tab. 4.7, Med and Std denote the median and the standard deviation
of absolute translation errors, respectively. We observe a significant improvement in
estimating longitudinal distance for 3D Shaping using a Lidar compared to monocular 3D
Shaping.

Table 4.7: Evaluation of 3D Shaping in translation estimation.
Range Approach Med (m) Std (m)

longitudinal lateral longitudinal lateral

short (Æ 20m) Shaping Cam 2.724 0.522 1.751 0.805
Shaping Cam+Lidar 0.157 0.085 0.376 0.525

full Shaping Cam 3.856 0.494 2.540 0.982
Shaping Cam+Lidar 0.359 0.106 0.702 0.655

Figure 4.24 gives an example of how occupancy estimation is improved by using a Lidar.
It is quite common in a tra�c scene that only a part of the object surface is captured by
Lidar, yielding an L-shape or I-shape measurements in the resulting point clouds when
looking from a bird’s-eye view. The reasons for that include reflective surface material,
occlusion, and clustering errors. Relying on our prior knowledge about 3D geometries of

89



4 Scene Understanding

a specific object class, e.g., a car, the estimated occupancy bounding box are more correct
even if the point cloud cluster is sparse and incomplete.

Figure 4.24: Improvement in occupancy estimation for 3D Shaping. The left image shows
the bounding box (dark red) that is directly obtained from a Lidar clus-
ter. The right image shows the estimated bounding box (red) through 3D
Shaping. The green bounding box illustrates the groundtruth.

Figure 4.25 shows a rendered result when heavy self-occlusion occurred. Using a Lidar
allows us to cluster the scene directly in 3D and thus to reconstruct multiple instances
within the same class that are occluded by each other. This enables us to build a 3D
environmental model at an object level, which is essential for in-vehicle augmented reality.

Figure 4.25: AR visualization of 3D Shaping by heavy occlusion.
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Figure 4.26: Evaluation of 3D Shaping + Lidar. Left: short range objects. Right: all
objects. From top to bottom: absolute orientation error, overlap ratio of
occupancy bounding box, absolute longitudinal error, and absolute lateral
error. The vertical axis indicates the percentage of estimates that are smaller
or larger than the corresponding threshold on the horizontal axis.

91



4 Scene Understanding

4.6 Summary and Future Work

In this chapter, we presented a novel workflow named 3D Shaping for the reconstruction
of 3D environment at an object level. We first proposed monocular 3D Shaping that
only requires a single image from a monocular camera as input. Then, we presented
two extensions of monocular 3D Shaping by taking advantage of additional in-vehicle 3D
sensor in order to make it more practical for real tra�c scenes.

The monocular 3D Shaping workflow combines an existing silhouette-based reconstruction
technique with deep neural networks. The performance of 3D reconstruction is boosted by
nearly 20 percent in viewpoint accuracy. Through the use of an extremely low-dimensional
latent shape space, we are able to describe the complete 3D geometry of an object using
only two additional parameters. In other words, the transmission of complex 3D object
geometries through a low- or medium-bandwidth in-vehicle bus becomes possible. This
has great relevance for in-vehicle augmented reality.

The first extension we proposed for monocular 3D Shaping is named Pose-RCNN, a novel
neural network architecture that is able to jointly detect objects and estimate viewpoint
angles. We showed competitive results of our proposed Pose-RCNN on the KITTI vision
benchmark against other state-of-the-art approaches. The second extension we introduced
for monocular 3D Shaping is referred to as 3D Shaping + Lidar, where we directly use
3D point clouds measured by a Lidar as an additional cue for 3D shape optimization.
The evaluation showed a significant improvement in pose and occupancy bounding box
estimation against the monocular 3D Shaping approach. Relying on the proposed exten-
sions of monocular 3D Shaping, object-level 3D reconstruction in a tra�c scene becomes
possible.

Although the presented 3D Shaping approach and its extensions already achieved satis-
fying reconstruction results, there are still possible improvements which could be taken
into consideration in the future. Instance-ware segmentation could be applied in order
to further increase the quality of 3D reconstruction for scenes with heavy occlusion. A
neural network that directly reconstructs a 3D geometry from an image would also be of
great interest. These are the scope of further research on the topic of 3D reconstruction.
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Rome wasn’t built in a day.

John Heywood
c. 1497 - c. 1580

Rome was not built in a day [Bed00]; In-vehicle augmented reality is not built in one step
as well. Today, compared to the popularity of AR applications in consumer electronic
devices such as smartphones or glasses, AR in a car is still not a mature technology. Why
is it so di�cult to incorporate augmented reality in a car, especially when the sensors
installed in a modern vehicle are much more powerful than those in a smartphone? What
are the specific challenges in realizing in-vehicle augmented reality? How do we cope with
these challenges? These are the questions that we answer in this chapter.

We begin this chapter with a brief introduction of system design in Section 5.1, followed
by the related work in Section 5.2. In Section 5.3, we present a purely GPS-based AR
system which we design for the current generation of production cars. We address the
challenges which we faced during the development, and we explain in detail how we
made design decisions in order to overcome the challenges. In Section 5.4, we present a
redesigned AR system for the next generation of production cars that will be equipped
with more advanced sensor technology. We take advantage of in-vehicle depth sensors
and fully exploit depth understanding for the next generation AR system. Also, we show
the benefit of Stixel compression proposed in Section 3.4 for the transmission of depth
information from one vehicle domain to another. In Section 5.5, we propose our design for
future in-vehicle AR system aimed at enabling AR for series production. We present the
functional modules, software components, and the E/E architecture of our designed future
AR system in detail. Here, we fully exploit scene understanding, more specifically, the 3D
Shaping pipeline proposed Section 4.3, in order to boost the performance of AR functions.
In the last section, Section 5.6, we summarize this chapter and outline directions for
furture work.

5.1 Introduction

The objective of system design is to determine the overall system blueprint that satisfies
the system’s essential requirements [RWD12]. It involves a series of processes defining
functions, software components, hardware components, architectures, and physical pro-
cessing components of a system. In general, the output of system design is a deliverable
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that contains all design documents of the afore-mentioned system elements, from the
functional layer down to the physical layer. This document is referred to as system spec-
ification.

In the automotive industry, a system specification plays an important role as the interface
between OEMs and suppliers. In a traditional development process that follows the V-
model (Fig. 5.1), OEMs generally do not implement software or hardware components
themselves. The actual implementation is usually outsourced to suppliers, who implement
the designed system according to the system specification made by the OEMs. It is thus
essential for OEMs to genuinely “translate” the system’s requirements into the system
specification during system design. Any late phase requirement change would result in
massive development cost by both OEMs and suppliers and eventually seriously delay the
entire product pipeline.

At an early stage of development, OEMs use to build prototype systems themselves be-
fore making design decisions and deliver specifications to suppliers. The advantage of
system prototyping lies above all in the fast cycle of requirements analysis, system design,
implementation, and testing. Relying on system prototyping, developers are able to get
evaluation and feedback from test users, which helps them update and refine the system
step by step. This approach is typically helpful if system designers find themselves lacking
know-how on new types of systems that have never been built before.

Suppliers

OEMs

Implementation

Unit
Design

System
Design

Requirements
Analysis

Unit
Testing

System
Integration

System
Qualification

Figure 5.1: Development model in the automotive industry that resembles the letter ‘V’.
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5.2 Related Work

5.1.1 Key Contributions

We exactly found ourselves with only a blank sheet of paper at the very beginning of the
AR project. So we decided to start with a modest design which uses the available in-vehicle
technologies as far as possible. This resulted in our first AR prototype vehicle which was
the first of its kind in the automotive industry that successfully proved the concept of
in-vehicle augmented reality. Based on the lessons learned from our first AR prototype,
we continuously integrated our new findings during the research in depth understanding
and scene understanding into our new designed AR systems. We fully exploited depth
understanding in our second design for the next generation of in-vehicle AR systems, and
we integrated it into a modified upper-class production car equipped with more advanced
sensors compared to our first AR prototype vehicle. Beyond that, we propose a third
design for future AR system aimed at future series production, where we deploy scene
understanding in order to boost AR functions including localization, tracking, rendering.

From a technical view point, the contributions of this chapter are described as follows.
In Section 5.3, we introduce a low-cost GPS-smoothing algorithm in substitution for
Kalman-filter-based tracking or visual tracking. The proposed algorithm requires much
less computation resource than a Kalman filter. In exchange, the robustness by tracking
is compromised in some corner cases. We use a “clever” HMI design and a sophisti-
cated data retrieval mechanism to visually compensate the unstable tracking e�ect. In
Section 5.4, we demonstrate how AR functions including road surface estimation, ego-
motion estimation, and depth culling can be supported through depth understanding.
We show the advantage of our proposed Stixel compression scheme which enables the
transmission of depth information through an economically reasonable in-vehicle trans-
mission system, namely a CAN bus, as already discussed in Section 3.4. In Section 5.5, we
present in detail the functional modules, software components, and the E/E architecture
of our designed future generation of in-vehicle AR systems. We explain how road sur-
face estimation, ego-motion estimation, and depth culling can be further boosted through
scene understanding. Furthermore, we show how 3D Shaping proposed in Section 4.3
can be integrated into the future generation AR system, which enables object-level 3D
reconstruction of the surroundings.

In a nutshell, the key contributions of our work in this chapter lie above all in the proof
of concept of in-vehicle AR and the continuous integration of research results into new
designed AR systems, which solves the last and the most important key problem (Sec-
tion 1.4.3) for in-vehicle AR. We expect our work to be seriously considered by industrial
decision makers and eventually adopted in series production cars in the future.

5.2 Related Work

Related AR projects in the automotive industry are already introduced in Section 1.1 and
Section 1.2. In the academic research, AR prototypes have also been built for years. In
2004, Hu et al. [HU04] developed the VIsion-based Car NAvigation System (VICNAS)
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with an AR navigation mode. The system augmented the road using virtual navigation
arrows through a hybrid tracking approach based on visual, GPS, and inertial measure-
ments. In 2012, George et al. [GTFC12] presented the Driver Assistance by Augmented
Reality for Intelligent Automobile (DAARIA) system which was able to detect obsta-
cles in the surroundings of the prototype vehicle and track the eyes of the driver. Two
commercially available camera systems were adopted for detection and tracking. A wide
angle scene camera was additionally mounted behind the rear-view mirror, serving as the
system input. Proper augmentation of virtual objects was achieved through a precise
extrinsic calibration between di�erent cameras of the system.

We note that none of the previous works, both AR projects in the industry and AR
prototypes built by research institutes, aimed at integrating their developed AR systems
into a production car. As already mentioned in Section 1.2, this work is, to our best
knowledge, the only one so far that comprehensively discusses the design and integration
of an in-vehicle AR system aimed for possible series production in the future.

5.3 Current Generation AR System

5.3.1 System Design

We started with a rather modest design of the in-vehicle AR system in 2013, aiming at only
using technologies that are available in a middle-class commercially available production
car with least possible modifications. Regarding the limit of available sensors and software
components back then, we made the following design decisions.

• The AR system shall be purely GPS-based.

• The AR system shall be able to show contact-analog information to some extent.

• The AR system shall operate in two di�erent modes, namely AR driver assistance
and AR passenger infotainment, respectively.

Figure 5.2 shows the layered architecture of our designed AR system. The input layer of
the system comprises cameras, vehicle sensors, navigation routes, and a database of Point
of Interests (POIs). The cameras are only responsible for taking images of the real world
and streaming them into the AR Engine without any further processing. The vehicle
sensors, including a GPS, a steering wheel sensor, a wheel odometer, and an inertial
measurement unit (IMU), together with the navigation routes, provide measurements to
the AR engine in order to determine the global position of the ego-car. All relevant
measurement data are fed into a sensor fusion interface in order to make more precise
estimations of the position and orientation of the cameras. The AR engine, functioning as
the core of the AR system, is responsible for retrieving nearby POIs (virtual objects) from
the POI database, projecting them onto the image according to their relative positions to
the ego-car, and compositing AR blended images. The blended images are then sent out
to the output layer of the system which comprises two displays: a Liquid Crystal Display
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Figure 5.2: Overview of the AR system architecture. Hardware components that are orig-
inally available in the vehicle are marked in blue, while additionally installed
components are highlighted in green. Red blocks show fundamental software
components of the AR system. Gray blocks draw o�ine or online databases.

(LCD) mounted on top of the central console and a touch screen mounted at the back of
the driver seat. AR blends for driver assistance and passenger infotainment are separately
displayed on these two output screens.

In fact, we built four displays (central, rear seat, side window, and HUD) and two cameras
(front, side) into the car at the very beginning in order to study which combinations are
most satisfactory for which AR use cases. Certainly, the HUD is the preferred display for
in-vehicle augmented reality. However, the display area of a current generation of HUD is
only ca. 21cm ◊ 7cm, which is not enough for showing contact-analog navigation arrows
and driver assistance information. Therefore, we decided not to use the HUD for the
current generation AR system. Also, AR features on the side window screen turned out to
be rarely satisfying. Quite the opposite of the Window to the World concept [CT11], most
of the time, the side camera in our prototype vehicle only captured fields and forests on
German highways and country roads. Even in the best cases, augmented POIs appeared
less than a second on the side screen. This is too short for passengers to perceive the
virtual objects, let alone to interact with them. Therefore, we also ceased the development
of side window features, which was expected to be the least challenging task among other
design options.

The final system components of our AR system are illustrated in Fig. 5.3. We integrated
our designed system into a Mercedes-Benz R-Class which had enough trunk space for
modifications. The front camera with an 83¶ diagonal FOV was mounted behind the
rear-view mirror. It took video of the real world at 25 frames per second and streamed it
to the AR engine. The AR engine ran on a mobile workstation with a 2.2GHz Intel Core
i7-2720QM CPU and a NVIDIA Quadro 2000M GPU. An accelerometer was mounted
above the middle point of the rear axle in order to capture roll and pitch motions of
the ego-car. We additionally installed an UMTS router which enabled the AR engine to
access databases of POIs. Several pictures of the modified prototype vehicle are presented
in Fig. 5.4.
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Figure 5.3: Di�erent system components in the R-Class prototype vehicle. Image source:
Daimler AG. Adapted by the author.

(a) Vehicle trunk. (b) Central LCD.

(c) Rear-seat touch screen. (d) Vehicle interior.

Figure 5.4: The R-Class AR prototype vehicle.
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5.3.2 System Implementation

In the following subsection, we address several challenges we faced during the implemen-
tation of the AR system and explain how we overcame them. These include, but are
not limited to, how to estimate the camera pose using position-based techniques, how
to retrieve and organize POIs from diverse content providers, and how to compensate
inaccuracy of pose estimation using a sophisticated HMI design.

Camera Pose Estimation As already explained in Section 2.4, a realistic AR blend
requires precise alignment between the real and the virtual camera. Since our virtual POIs
are defined in the global coordinate system, this requirement can be equally formulated as
to estimate the pose of the ego-car in the real world, where the AR camera is mounted. We
simplify this problem using Constant Turn Rate and Velocity (CTRV) model [SRW08],
which tracks the longitudinal and lateral position (x, y) of the ego-car, as well as the
orientation (yaw) angle ◊. The CTRV model works well if there is no sudden acceleration
expected during the drive. Besides, the pitch and the roll angle are compensated through
the additional accelerometer. The state equation of CTRV is given in Eq. 5.1, where v
and Ê indicate the linear and the angular velocity of the ego-car, respectively. k is the
index of the system state and �t the time interval between two states.

xk+1 = xk + vk

Êk

sin(◊k + Êk�t) ≠ vk

Êk

sin ◊k

yk+1 = yk ≠ vk

Êk

cos(◊k + Êk�t) + vk

Êk

cos ◊k

◊k+1 = ◊k + Êk�t

(5.1)

Figure 5.5: Illustration of the smoothing step by GPS-based pose estimation.
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GPS measurements (latitude, longitude, and heading) are used to update the predicted
system state. The particular problem regarding GPS measurements is their slow update
frequency (only one update per second), whereas the velocity and the yaw rate are updated
20 times per second. As a consequence, the measured GPS pose pgps

k
(xgps

k
, ygps

k
, ◊gps

k
)

di�ers most of the time from the pose pk|k≠1 predicted by the system state equations. To
overcome this problem, we added a low-cost smoothing step where GPS measurements
are extrapolated relying on vehicle dynamics (Fig. 5.5). A new GPS measurement is
predicted K-steps into the future according to the current velocity and yaw rate of the
ego-car. K indicates the number of system states between two GPS measurements. A
linear combination of the extrapolated GPS pose and the predicted pose, as formulated
in Eq. 5.2, is then used as the actual estimate for system update. The weight ⁄ is given
by Ÿ/K in order to increase the smoothness of the trajectory.

p̂k+Ÿ|k+Ÿ = (1 ≠ ⁄)p̂k+Ÿ|k + ⁄p̂gps

k+Ÿ|k, Ÿ œ {1, 2, . . . , K} (5.2)

Compared to a more complicated update step, e.g., the update equation used by Extended
Kalman Filter (EKF) [Sor85], our proposed low-cost smoothing step avoids the calculation
of the Jacobian and thus allows us to save computation time and spare critical resources
of the AR system.

POI Data Retrieval While retrieving POIs from online content providers, we faced a
problem caused by the density of POIs and the diversity of POI data format. In some
specific areas such as tourist hot spot or urban downtowns, POIs usually overlap with
each other on the displays. This would result in a confusing and irritating AR output
(Fig. 5.6). Also, similar POIs retrieved from di�erent providers could appear on the screen
at the same time, showing duplicated information to the users.

Figure 5.6: Early stage experiment with online data retrieval. Image source of the map:
Google Maps.

We solved this issue by filtering and preprocessing raw POI data in a semi-automatic
manner using a self-implemented software component named Object Editor (Fig. 5.7(a)).
Its graphical interface is divided into three functional panels. The editor panel provides
basic editing functions for POIs and object catalogs. The map interface allows selecting
test tracks and generating new POIs directly on the map. The simulator window shows
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how virtual POIs would look like in the AR blended output. The object editor provided
functionalities to finetune various attributes of a POI, such as its geographical location,
icon texture, and 3D shape among others. Using the object editor, we were able to select
POIs manually out of the POI dataset that we want to augmented.

(a) Object editor. (b) Online data collector.

Figure 5.7: Self-developed tools for POI data retrieval.

Internet connection was another issue throughout online POI retrieval. The quality of
the Internet connection is subject to a variety of factors, such as weather condition, the
location of the ego-car, and the infrastructure in the surroundings. The time of response
to a retrieval query varies from few seconds to infinity. For example, queries sent out
from a tunnel or a forest would get lost most of the time. Also, with respect to the speed
of a moving vehicle, the average response time from an online content provider (a few
seconds) is still too long.

In order resolve the connection issue, we developed a software module called Online Data
Collector (Fig. 5.7(b)) in order to fetch and cache POIs in advance. We use navigation
information to predict an area where the ego-car will show up. In case no navigation
routes are given, the upcoming route is predicted using extrapolation based on the motion
dynamics of the ego-car. POIs in the upcoming area are then fetched from content
providers and cached into the AR engine.

HMI Design Driving distraction has always been a challenging issue for the design of
the Human Machine Interface (HMI) for in-vehicle augmented reality. A not properly
designed AR user interface would increase the driving stress through confusing augmented
information. Since it is hard to keep a low-level distraction while providing interactivity
at the same time, we decided to design two HMIs separately for AR driver assistance and
AR passenger infotainment, respectively.

For drivers, we squeezed out the most significant information to help them by driving
tasks. We replaced traditional navigation arrows through a navi-carpet (Fig. 5.8(a))
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(a) Street names and how numbers. (b) Navigation carpet and barriers.

(c) Speed limit warning. (d) Tra�c jam head.

Figure 5.8: Example of AR driver assistance.

(a) Standard view. (b) Social media.

(c) Gaming. (d) Scenic information.

Figure 5.9: Example of AR infotainment.
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which is blended onto the road surface in the real world as if it was real road marking. In
curves and roundabouts, a part of the navi-carpet turned into a barrier “standing” on the
road (Fig. 5.8(b)). This would catch more attention of the driver for the upcoming turning
action. In a dangerous situation such as speeding (Fig. 5.8(c)) or tra�c jam (Fig. 5.8(d)),
the color of the navi-carpet turned red in order to warn the driver. Emphasized virtual
tra�c signs and road banners would furthermore remind the driver of the dangerous
situation.

For rear-seat passengers, we integrated social networking (Fig. 5.9(a)), gaming (Fig. 5.9(a)),
and tour guiding (Fig. 5.9(b)) features into the AR infotainment system. These features
were presented to the passengers through a standardized POI interface. If a passenger
had a special interest in a specific POI, he or she could touch it on the screen in order
to gain more detailed information. In some cases, e.g., by sudden acceleration in curves,
POIs could be hardly hit on the screen through finger touch. Therefore, we reserved an
area on the left screen where we listed all currently visible POIs. Users can always touch
their interested POIs in this area and have an overview of all of them.

5.3.3 System Testing and Demonstration

We tested our AR prototype vehicle in real world tra�cs. Figure 5.10 shows one of our
prepared test tracks in Stuttgart region, which covered an urban area, an industrial area,
and a country area in a small forest, providing a large variety of tra�c scenes.

Figure 5.10: Test tracks for the R-Class AR prototype vehicle in Stuttgart region. Image
source of the map: Google Maps.

During the road tests, we added unusual driving maneuvers such as circling roundabouts or
making a sudden turn, in order to explore the limit of the GPS-based positioning system.
The results showed certain robustness of the system to augmented POIs reasonably, as
long as we drove the test vehicle in an “appropriate” manner in curves and roundabouts.
In case of sudden acceleration at a turn, we could observe a “drift e�ect”, as shown in
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Fig. 5.11. The drift e�ect is caused by an unrealistic approximation of the mathematical
model used by the pose estimation step, since the CTRV model only assumes constant
velocity and is thus not able to properly track acceleration. We modified several HMI
designs to make this e�ect less noticeable to the users, such as lifting the navi-carpet in
curves and adding the static area of POI list. Also, the self-developed online data collector
is able to filter out POIs near sharp curves upfront, so that they are not shown to the
users at all. However, we believe that in order to fundamentally solve this problem, a
sensor fusion approach combining visual cues is indispensable.

Figure 5.11: Drift e�ect of virtual objects by sudden acceleration in a curve.

We also conducted usability testing in order to evaluate the HMI of our AR system. We
invited over 200 beta testers1) to the Mercedes-Benz Driving Simulation Center [Zee10]
(Fig. 5.12) and placed them into the simulator where the same interface of our AR system
was simulated. The only di�erence between the simulator and our prototype vehicle was
that the AR blended output was directly shown on the 360¶ screen in the simulator instead
of on the displays in the car.

During the usability testing, we asked the participants a number of open questions such
as “What do you particularly like with respect to the augmented information?” and “What
do you not like, what is most disturbing?”, and we recorded their answers. A summarized
answer to the question “What is your general opinion about in-vehicle augmented reality?”
is presented in Tab. 5.1. It shows that the majority of the participants were enthusiastic
about in-vehicle AR, yet there were still concerns about information overflow and driver
distraction. The feedback of the usability testing helped us make design decisions for
further HMI development.

In October 2013, we demonstrated our R-Class AR prototype vehicle on the augmented
reality conference insideAR [Met13], one of the largest AR events worldwide back then.
We prepared a short demonstration track near the conference hall (Fig. 5.13) and invited
1) All test users are employees at Daimler AG working in di�erent areas.
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Figure 5.12: Mercedes-Benz driving simulator [Zee10]. Image source: Daimler AG.

other conference attendees for a 5-minute demo ride. On the occasion of this event, we
have received numerous constructive feedback from our industrial peers, which positively
helped us in further development towards a close-to-production in-vehicle AR system.

Figure 5.13: Demonstration track on insideAR at Olympiapark in Munich. Image source
of the map: Google Maps.
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5.4 Next Generation AR System

5.4.1 System Design

We proved the concept of in-vehicle AR through our R-Class prototype vehicle while
keeping the car as unmodified as possible. However, the AR system in the R-Class was
still considered far away from being integrated. It was a centralized system running on
a mobile workstation. The input (camera) and the output (displays) of the system were
additionally installed into the car. Even the tracking algorithm itself was not robust
enough in several cases, which had to be compensated using a “clever” HMI design.
Therefore, we decided to build a new AR prototype vehicle using a Mercedes-Benz S-Class,
the flagship vehicle of Mercedes which was equipped with the most advanced automotive
sensors back then. Based on the abundant resources we had in the S-Class, we adjusted
our design requirements as follows.

• The AR system shall be distributed.

• Vision-based tracking shall be deployed.

• The interior of the prototype vehicle shall be unmodified, i.e., extra cameras and
displays must not be installed.

The new AR system design is illustrated in Fig. 5.14. We built two desktop workstations
into the trunk in order to separately simulate the ADAS domain and the telematics
domain in the car. They were connected through a Gigabit Ethernet (GE) cable. The
ADAS workstation was responsible for processing input image pairs taken by the in-
vehicle stereo camera. It forwarded both raw data and processed data to the telematics
workstation, where the AR engine was hosted. The AR engine rendered output images
for di�erent in-vehicle displays. Figure 5.15 illustrates several possible display options for
in-vehicle augmented reality, among which we chose the central LCD and the instrument
cluster LCD as the output of our new designed AR system.

The final hardware components of the AR system in the S-Class is illustrated in Fig. 5.16.
Compared to the previous system in the R-Class, we installed more hardware components
in the vehicle trunk while keeping the vehicle interior as unmodified as possible.

Figure 5.17 shows several pictures of the modified S-Class. We kept the interior of the
car “clean” while filling the trunk with workstations and other hardware components. All
additional cables for video transmission were laid inside the body of the car and thus not
visible to the driver or the passengers. There were only two potentially detectable interior
changes which might distinguish the prototype vehicle from normal production cars. One
of them was the control panel hiding in the central console storage (Fig. 5.17(c)) which
provides power switch functionalities and diverse peripheral interfaces. This panel could
be perfectly hidden by the cover of the storage. The other one was the extra installed
IMU in the middle of the rear-seat (Fig. 5.17(d)). If the armrest of the rear-seat was
re-attached, the IMU would not be exposed to the passengers anymore.
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Figure 5.14: AR system in the S-Class prototype vehicle.
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Figure 5.15: Possible display areas in the S-Class AR prototype vehicle. Image source:
Daimler AG. Adapted by the author.

Figure 5.16: Hardware components of the S-Class AR prototype vehicle. Image source:
Daimler AG. Adapted by the author.
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(a) Vehicle trunk. (b) Main display.

(c) System control panel. (d) Additional IMU.

Figure 5.17: The S-Class AR prototype vehicle.
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5.4.2 Exploiting Depth Understanding

We fully exploited depth understanding in our new design, which supported a number
of AR functions that would improve the robustness and the overall performance of the
AR system. We used a depth image to estimate the road surface and the tilt angle
of the camera2), which enabled a seamless overlay of the navi-carpet. In order to deal
with the drifting problem in the R-Class, we integrated a stereo vision based tracking
algorithm [FRBG05] to estimate and compensate the motion of the ego-car. We also used
Stixel frames as depth masks by rendering. Issues occurred in the previous design could
be successfully resolved through the use of depth information.

Road Surface Estimation By assuming the road surface to be planar, the disparities of
ground points would approximate a line in the v-disparity space, as formulated in Eq. 5.3.
In the camera coordinate system (Fig. 5.18), a point on the road surface satisfies Eq. 5.4,
where h and – indicate the height and the tilt angle of the camera, respectively. Addi-
tionally, the vertical coordinate v follows the pinhole projection as expressed in Eq. 5.5,
where fy and cy are the vertical focus and image center of the camera.

v = p1d + p2 (5.3)

h ≠ Y

Z
= tan – (5.4)

v = fy

Y

Z
+ cy (5.5)

Ocam

P

Y

Z

Ground Plane

h
–

Figure 5.18: Ground plane in the camera coordinate system.

By substituting the disparity d through d = fx · b/Z (Eq. 2.8) and associating Eq. 5.3,
Eq. 5.4, and Eq. 5.5, we are able to derive the dependencies of the parameters as expressed
in Eq. 5.6.

p1 = fy

fx

· h

b

p2 = cy ≠ fy tan –
(5.6)

2) The software components of stereo camera-based road surface estimation and ego-motion estimation
are implemented by the Image Understanding Group of Daimler AG.
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In practice, the line variables p1 and p2 are estimated through Least SQuares (LSQ)
using a number of (v, d) pairs. Then, the camera height h and the tilt angle – can be
determined. With this information, the augmented driving corridor (Fig. 5.19) can be
aligned with the road surface even if the slope of the road is steep.

(a) (b) (c)

Figure 5.19: Road surface estimation for AR using depth information. (a) Disparity im-
age. (b) Estimated road area. The likelihood increases from red to green.
(c) Augmented driving corridor (technical visualization for engineers).

Ego-Motion Estimation We track the 6 DoF ego-motion of the stereo camera using an
Extended Kalman filter. Recall the coordinate system for in-vehicle AR introduced in
Section 2.3, the state of the system is the ego-motion matrix M , which transforms a point
cP from the previous camera coordinate system to the current one, as the ego-car moves
itself in the real world (Eq. 5.7).

cPk = Mk|k≠1
cPk≠1 (5.7)

The ego-motion is predicted using the measurements from the IMU and updated through
point correspondences (pairs of (u, v, d) measurements). The Kalman innovation and the
measurement matrix can be derived by the optical flow formulated in Eq. 5.8, where X,
Y , and Z are the three coordinates of the point cP .

�u = fx

Xk

Zk

≠ fx

Xk≠1
Zk≠1

�v = fy

Yk

Zk

≠ fy

Yk≠1
Zk≠1

�d = fx

b

Zk

≠ fx

b

Zk≠1

(5.8)

A more detailed derivation is given in [FRBG05].

We demonstrated the robustness of the ego-motion estimation through a small AR ap-
plication, as shown in Fig. 5.20. In this example, we randomly threw a virtual cube
into the scene and observed whether it remained stable in the world. According to our
observation, the virtual cubes were anchored in their environment throughout our exper-
iments, which proved a significant improvement against the tracking algorithm used in
the previous system in the R-Class.
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Figure 5.20: Ego-motion estimation for AR using depth information.

Depth Culling We used Stixel frames as a depth bu�er throughout the AR rendering.
The part of a virtual object which is occluded by closer Stixels was not rendered, as shown
in Fig. 5.21. This enabled a more realistic blending between the virtual and the real and
thus improved user experience with the in-vehicle AR system.

(a) AR rendering without depth culling. (b) AR rendering with depth culling.

Figure 5.21: Improvement by AR rendering using depth information.

5.4.3 Key Enabler: Stixel Compression

As introduced in Section 1.4.1, the in-vehicle transmission of depth information is consid-
ered a key problem for incorporating in-vehicle augmented reality. As already presented in
Section 3.4.4, our proposed Stixel compression algorithm enables transmitting compressed
Stixel data through a CAN bus, whereas uncompressed Stixel or compressed data through
a general compression algorithm require FlexRay. The latter is more expensive from both
point of view of developers as well as customers. In order to enable in-vehicle AR which
requires depth information to be transmitted to the telematics domain, the CAN bus
connecting the central switch and the telematics gateway would have to be replaced by

113



5 System Design and Integration

FlexRay without applying our proposed compression scheme. Also, the telematics gate-
way would have to be redesigned in order to be able to decode both CAN and FlexRay
signals. Therefore, we believe that our proposed Stixel compression algorithm is a key
enabler for in-vehicle AR in the next generation of production cars.

Table 5.2: Payload analysis for transmitting Stixels.
w/o Space+Time Zlib

Instant Peak (KB) 2.02 0.87 1.93
Required Payload (KB/s) 46.37 17.68 46.17
Required Vehicle Bus FlexRay CAN FlexRay
Cost High Medium High

5.4.4 System Demonstration

In May 2014, we invited the advisor of this thesis to a demonstration ride around the TUM
main campus in Munich (Fig. 5.22). We demonstrated the S-Class AR prototype vehicle
with the major focus on the use of depth information. Accordingly, we demonstrated AR
functions in the daily tra�c including road surface estimation, ego-motion estimation,
and depth culling using Stixels. The advisor gave us positive feedback regarding the AR
prototype vehicle and the development of the AR system, which further motivated us to
design a future in-vehicle AR system aimed for future series production.

Figure 5.22: Demonstration track around the TUM campus in Munich. Image source of
the map: Google Maps.
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5.5 Future Generation

5.5.1 System Design

We laid the groundwork for the system design of an in-vehicle AR system through our
R-Class and S-Class prototype vehicle. Now, based on the lessons we learned during our
previous development, we share our own vision3) of how a future in-vehicle AR system
would like to be. The future system would take advantage of additional vehicle sensors
such as Radar or Lidar, which would enable direct tracking in the three-dimensional
world. It would be able to communicate with other tra�c users or infrastructure, e.g.,
tra�c light, and understand the current tra�c situation and choose the most appropriate
virtual content for the users. It would also support various types of user interaction, such
as voice control and gesture control. In the rest of this subsection, we explain our designed
future system with respect to the functional modules, the software components, and the
E/E architecture.

Functional Modules Figure 5.23 shows our vision of typical functional modules of a
future in-vehicle AR system. Functions inside the colored box are supported by both
depth understanding and scene understanding. Outputs of individual functional modules
are fused through a sensor fusion interface, yielding more robust detection and tracking
results. We plan additional driver/passenger monitoring functions including gaze esti-
mation, gesture recognition, and voice control, in order to enrich the user experience
throughout AR interaction. Furthermore, we believe that Car2X communication will be
a new fundamental input source to the AR system, which will enable features that cannot
be easily implemented based on depth or scene understanding, e.g., tra�c light detection.

Software Components Our vision of typical software components of a future in-vehicle
AR system are presented in Fig. 5.24. Di�erent software components are distributed in
the ADAS domain and the telematics domain. As more sensors would be installed into
a future vehicle, the local surroundings would be comprehensively perceived and under-
stood, enabling robust and realistic blending between the virtual and the real. Images
taken by di�erent input cameras would be streamed to the AR engine where they are
merged together through image stitching techniques, which would provide users with a
di�erent view of the reality. Instant tra�c information such as tra�c jams or accidents
would be sent and received through Car2X communication, which would keep users up-
dated about their journey at any time. AR outputs would also be shown on di�erent
screens in the car, including the HUD whose field of view would be significantly enlarged
in the future.

3) All system designs, diagrams, and features presented in this section do not necessarily reflect the o�cial
decisions of Daimler AG.
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Figure 5.23: Typical functional modules of a future in-vehicle AR system.
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Figure 5.24: Typical software components of a future in-vehicle AR system.
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E/E Architecture Domains in a future in-vehicle E/E architecture would be more clearly
separated. The overall performance of the AR system would be then boosted through
a high-speed inter-domain communication mechanism, e.g., a high-speed backbone bus
(Fig. 5.25).

High Speed Backbone Bus

ADAS Gateway Telematics Gateway

ECU_1

ECU_2

ECU_N

ECU_1

ECU_2

ECU_N

Figure 5.25: Typical future E/E architecture for in-vehicle AR.

5.5.2 Exploiting Scene Understanding

A future AR system would also fully exploit scene understanding. Here, we present exam-
ples of how the AR functions including road surface estimation, ego-motion estimation,
and depth culling could be further improved through the use of semantic information.

Road Surface Estimation The algorithm introduced in Section 5.4.2 assumes the road
surface to be planar and approximates the v-disparity space using linear functions. This
assumption does not always reflect the truth. By applying deep-learning-based semantic
segmentation techniques, road pixels can be directly identified from an RGB-image and
associated with 3D measurements, as shown in Fig. 5.26. Using semantic information will
enable estimation of non-planar road surfaces.

Ego-Motion Estimation The performance of ego-motion estimation introduced in Sec-
tion 5.4.2 largely depends on the quality of the collection of features points named feature
pool. Feature points extracted from dynamics objects are considered outliers and should
be eliminated before going into the Kalman filter. Relying on a pixel-level semantic seg-
mentation, we are able to identify static areas in an image even before extracting feature
points (Fig. 5.27). This would increase the robustness of ego-motion estimation, which is
critical to the user experience of an in-vehicle AR system.
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(a) (b)

(c) (d)

Figure 5.26: Road surface estimation using semantic information. (a) Point cloud overlaid
on input image. (b) Point cloud overlaid on segmented image. (c)(d) are the
corresponding 3D view of (a) and (b), respectively.

Figure 5.27: Elimination of outliers by ego-motion estimation using semantic informa-
tion. Feature points inside the red eclipses are identified car pixels and thus
excluded from the feature pool.
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Depth Culling The quality of a depth bu�er generated from Stixel data is limited, as
Stixel is only an approximation of a fine-grained disparity map. The ridges at the top and
bottom of Stixels would cause disturbing rendering e�ect. In order to generate a smooth
depth map, we could use fine geometries reconstructed through 3D Shaping introduced in
Section 4.3. The comparison is shown in Fig. 5.28, demonstrating how the use of semantic
information and prior knowledge about object geometries would improve AR rendering.

(a) (b) (c) (d)

Figure 5.28: Depth culling using semantic information. (a) Color image. (b) Depth bu�er
generated from Stixel. (c) 3D Shaping reconstruction. (d) Depth bu�er
generated from 3D Shaping reconstruction.

5.5.3 Key Enabler: 3D Shaping

As already stated in Section 1.4.2, object-level 3D reconstruction is essential to solving
the 3D registration problem by augmented reality. Our proposed 3D Shaping workflow
in Section 4.3 serves as the first step towards generating 3D object map of the entire
surroundings. Using 3D Shaping, 3D geometries are embedded into an extremely low-
dimensional latent shape space. Theoretically, we only need two additional variables for
reconstructing the complete 3D shape of an object. This property is ideal for us to apply
3D Shaping for in-vehicle augmented reality.

High Speed Backbone Bus

ADAS

Gateway

Telematics

Gateway

Sensor Fusion

3D Shaping Optimizer

Inference Engine

object list

sensor
measurements

3D Shaping Renderer

AR Composer

AR blended
outputs

Figure 5.29: Integration of 3D Shaping into a future in-vehicle AR system.
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Figure 5.29 demonstrates how 3D Shaping could be integrated into a future in-vehicle AR
system. The optimizer and the renderer in the 3D Shaping workflow are separated and
distributed into the ADAS domain and the telematics domain, respectively. For each new
object, the optimizer would first minimize the energy function in Eq. 4.13 and then send
out the optimized latent shape variables to the sensor fusion interface, where they would
be tracked according to the shape consistency. The sensor fusion interface would pack
the two additional latent variables into an object list and send the list to the telematics
gateway through the vehicle backbone bus. The payload on the backbone would only
increase by the size of two floating points multiplied by the number of objects being
tracked.

We analyzed the payload requirements for transmitting 3D geometries via in-vehicle buses.
Assuming the 3D shaping optimizer operates at 25 frames per second and at most 32
objects can be simultaneously tracked, we calculate the required payload using di�erent
representations of object geometry. The size of the SDF is set to be 40 ◊ 40 ◊ 40 and
single-precision floating point is used. The result is presented in Tab. 5.3, where FE
indicates Fast Ethernet with a transfer rate of 100 Mbps, and N -GE indicates Gigabit
Ethernet with N Gbps transfer rate. The result clearly shows the advantage of using
latent shape representation. In fact, a vehicle backbone will be filled with all di�erent
signals for inter-domain communication. Every free byte on the backbone is considered
a critical resource. 3D Shaping is one of the most practical solutions to fully exploit
3D object-level reconstruction for in-vehicle augmented reality, with the minimum sensor
requirement of only one monocular camera. Therefore, we are firmly convinced that 3D
Shaping is another key enabler for incorporating AR in a future production car.

Table 5.3: Payload analysis for transmitting 3D geometries.
SDF Face + Vertex Latent Shape

Single Object 250 KB ≥ 73 KB 8 B
Required Payload ≥ 195 MB/s ≥ 57 MB/s 6.25 KB/s
Required Backbone 10-GE 1-GE FE
Cost High Medium Low

5.5.4 Future Challenges and Opportunities

As the number of sensors integrated into a future in-vehicle AR system grows, it becomes
harder to keep the entire system running at low latency, even if each component of the
system operates in real-time. A simple example of the problem in shown in Fig. 5.30, where
a camera, a Radar and an IMU have sensed a real world event at the same time. The
processing of camera and Radar measurements would cause significant delay compared
to the processing of IMU measurements. As a result, the sensor interface would receive
a camera or a Radar measurement “from the past”, yielding non-optimal fusion results.
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In order to appropriately use this so-called Out Of Sequence Measurement (OOSM), all
system states in the past have to be stored, from the sensing time point to the arrival
time point of the OOSM. This requires a large memory space in the ECU where sensor
fusion is carried out. Also, due to frequent matrix inversions by OOSM update, additional
computational power and memory bandwidth are indispensable. These will increase the
di�culty of incorporating augmented reality in a production car.

Figure 5.30: Example of OOSM problem.

Artificial Intelligence, particularly deep-learning-based techniques for depth and scene
understanding have been boosted in the past years and will continue developing. The
intelligence of a car would be in another dimension in the future, allowing it compre-
hensively perceive the surroundings, communicating with infrastructures and other road
users, and even driving itself. Being freed from the otherwise tedious driving tasks, a
driver would enjoy the mixture of the virtual and the real world throughout the journey.
Also, new display technologies such as Organic LED (OLED) and 3D holograph would
enable a new series of HMIs for augmented reality. One day in the future, we could in-
teract with the AR system in a way far beyond touch, voice, or gesture control. All these
together lead in-vehicle augmented reality towards a bright future.

5.6 Summary and Future Work

In this chapter, we proposed three designs of in-vehicle augmented reality systems, re-
spectively for the current generation, next generation, and future generation of production
cars.

We integrated the current generation AR system into a Mercedes-Benz R-Class production
car, with the requirement of only using GPS-based positioning techniques. The system was
centralized, used one front-looking monocular camera as input, and showed AR blended
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images on a central LCD and a rear-seat touch screen. We demonstrated AR driver
assistance and AR passenger infotainment in the R-Class prototype vehicle.

We built another AR prototype vehicle by modifying a Mercedes-Benz S-Class production
car for the next generation in-vehicle AR system. The system was distributed into two
desktop workstations simulating the ADAS domain and the telematics domain, respec-
tively. We built them into the trunk of the vehicle while keeping the interior as unmodified
as possible. In the next generation AR system, we made full use of depth understanding
through stereo vision which supported AR functions by localization, tracking, and ren-
dering. We showed that our proposed Stixel compression algorithm is a key enabler for
further integrating AR into the E/E architecture of the next generation of production
cars.

Based on the lessons learned during our development of the R-Class and the S-Class
prototype vehicle, we proposed an AR system designed for future series production. We
envisioned the future in-vehicle AR system to fully exploit semantic scene understand-
ing for a various number of AR features. We also show that our proposed 3D Shaping
algorithm is another key enabler which could enable truly 3D augmentation of the real
world. With fast booming deep learning and display technologies, we firmly believe that
in-vehicle AR will have a bright future.
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6.1 Summary of the Thesis

In this thesis, we presented a roadmap toward practical implementations of in-vehicle
augmented reality. We proposed two key enablers, namely Stixel Compression and 3D
Shaping which solve the key technical problems for incorporating augmented reality in
a car. In addition, we successfully tackled the key engineering problem to prove the
concept of AR in test vehicles. Based on our findings and lessons learned during the
development, we designed three AR systems, respectively for the current, the next, and
the future generation of production cars. The current and the next generation of our
designed AR system were integrated and demonstrated in an R-Class and an S-Class
prototype vehicle, respectively. We expect our proposed future generation AR system to
be seriously considered by industrial decision makers and eventually be adopted in series
productions.

In Chapter 3, we proposed a lossless compression algorithm for Stixel as a key solution to
the problem of transmitting depth information via a low- or medium-bandwidth in-vehicle
communication system. The lossless compression algorithm comprises a predictive mod-
eling stage and an entropy coding stage. During predictive modeling, a Stixel Column
to be encoded is first predicted by references in its spatial and temporal neighborhood.
Subsequently, the resulted residual column is encoded through Golomb coding, an entropy
coding method which is optimal for data sources following geometric distribution. Ex-
periment results show that our proposed algorithm achieved nearly 72% of average space
savings, which almost reached the upper bound of the theoretical compression limit on our
recorded dataset. Our analysis indicated that without Stixel compression, the more ex-
pensive FlexRay bus is required for transmitting raw Stixel data from the ADAS domain
to the telematics domain in order to support AR functions based on depth understand-
ing. Relying on our proposed Stixel compression algorithm, the depth information can be
transmitted through a CAN bus without modifying the current generation of in-vehicle
E/E architecture.

In Chapter 4, we proposed a novel workflow named 3D Shaping as the first step toward
object-level 3D reconstruction, which is key to solving the 3D registration problem for
augmented reality. The proposed monocular 3D Shaping only requires a single image
from a monocular camera as input, and it is able to jointly estimate the pose, the scale,
and the 3D geometry of an object in the image. The workflow comprises the first stage
of 2D appearance detection and the second stage of 3D shape optimization. The first
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stage exploits a state-of-the-art deep neural network to semantically segment an input
image at a pixel level. The second stage adapts an existing silhouette-based reconstruction
technique which takes advantage of an extremely low-dimensional latent space to represent
3D geometries. Theoretically, only two additional parameters are needed to reconstruct
a complex 3D geometry without any information loss. Our evaluation shows a nearly
20 percent performance gain of 3D reconstruction in viewpoint accuracy. Relying on the
extremely low-dimensional latent representation of 3D geometries, 3D Shaping can be
distributed into the ADAS domain and the telematics domain in the future in-vehicle
E/E architecture, which enables truly 3D augmentation of the real world.

Furthermore, we proposed two extensions to monocular 3D Shaping in Chapter 4, which
makes it more practical for tra�ce scenes. The proposed improvements made use of
additional 3D sensors in a car, e.g., a stereo camera or a Lidar. The first extension
we proposed is a novel neural network architecture named Pose-RCNN which is able to
jointly detect objects in a scene and estimate a viewpoint angle for each detected object.
Evaluation of our proposed Pose-RCNN showed competitive results against other state-
of-the-art approaches. The second extension we proposed is called 3D Shaping + Lidar,
where we used an additional point cloud energy to optimize 3D geometries directly in the
3D space. This enabled us to reconstruct multiple object instances within the same class
by heavy self-occlusion. Evaluation results show a significant improvement in pose and
occupancy bounding box estimation against the monocular approach.

Figure 6.1: Vision of in-vehicle augmented reality. Image source: Daimler AG.

In Chapter 5, we tackled the final key problem of this thesis by proving the concept of in-
vehicle augmented reality through three designed AR systems. we first designed a modest
AR system only using GPS-based positioning techniques, and we integrated the system
into a Mercedes-Benz R-Class prototype vehicle. The AR system was a centralized system,
and it used a single front-looking monocular camera as the system input plus a central
LCD and a rear-seat touch screen as the system output. We demonstrated AR driver
assistance and AR passenger infotainment in the R-Class prototype vehicle. During our
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road test, we observed that the GPS-based positioning algorithm was not robust enough
in curves and roundabouts. We compensated the “drifting” e�ect of POIs through a
“clever” HMI design and a sophisticated POI retrieval mechanism in the R-Class.

In order to resolve the issues we had in the first AR prototype system, we built another
AR prototype vehicle by modifying a Mercedes-Benz S-Class production car which was
equipped with powerful in-vehicle sensors and provided more options of display area for
in-vehicle AR. The new AR system was distributed into two desktop workstations simu-
lating the ADAS domain and the telematics domain, respectively. Almost all additional
hardware components were built into the trunk of the car so that the vehicle interior
remained as unmodified as possible. We fully exploited depth understanding through
stereo vision, and we integrated AR functions that made use of depth information to en-
able precise localization, robust tracking, and realistic rendering. In addition, we showed
the advantage of our proposed Stixel compression scheme for the transmission of depth
information through a low- or medium-bandwidth in-vehicle bus.

Based on the lessons learned during our development of the R-Class and the S-Class
prototype vehicle, we proposed a future AR system designed for series production in
the future. We presented the functional modules, software components, and the E/E
architecture of our designed future AR system in detail. We also presented the scheme
for the integration of our proposed 3D Shaping workflow into the AR system, which will
enable 3D reconstruction of the surroundings at an object level and boost the performance
of AR functions such as road estimation, ego-motion estimation, and depth culling.

6.2 Future Outlook

Today, Artificial Intelligence (AI) is revolutionizing the modern society. AI-boosted prod-
ucts and applications start entering our daily life, influencing a range of activities including
learning, trading, and moving from A to B. As AI becomes more and more powerful in
the future, cars would eventually be able to drive themselves, and drivers would be eman-
cipated from the tedious task of driving and enjoy the ride in the “third place” between
their homes and their o�ces. This sets the stage for in-vehicle augmented reality to really
demonstrate its value.

In the future, in-vehicle AR would turn the ride of the no-more-driving drivers into quality
time from three di�erent perspectives. First, as the OLED display technology becomes
mature, every interior surface of the car could become a display for augmented reality.
People could see augmented information through the windshield, the dashboard, and
the doors. The entire interior could even become an AR room while the car is driving
itself. Second, the interaction between the passengers and the car would be revolutionized
relying on advanced sensor technologies. Gesture control, gaze control, natural language
control could be enabled, bringing the user experience with the in-vehicle AR system to
another level. Last but not least, AR contents would become more personalized relying
on artificial intelligence. Content providers could push the most interested AR contents
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to a driver based on his or her driving habits and daily routines. All of these would make
in-vehicle augmented reality more connected, more sophisticated, and more “real”.

From a technical viewpoint, an in-vehicle AR system in the future would fully exploit
depth and semantic scene understanding in order to further boost localization, tracking,
and rendering. The proposed Stixel compression algorithm in Chapter 3 could be further
improved by using di�erent reference areas or combining lossy and lossless compression. If
the instant peak of the compressed Stixel stream could be further cut down, more stereo
cameras (backward-looking, side-looking) could be connected to the AR system with-
out necessarily modifying the in-vehicle communication system. This would truly enable
360¶ depth understanding for in-vehicle AR. Also, the proposed 3D Shape reconstruction
workflow in Chapter 4 could be further developed by incorporating instance-aware seg-
mentation techniques or 3D neural networks. Semantic Stixels could be an alternative
input to the 3D Shaping reconstruction pipeline. Once the complete scene of the 360¶

surroundings is reconstructed at an object level, any kind of AR applications such as see-
through navigation carpet and real-time AR shooting game could be realized. Moreover,
Car2X communication could be a new fundamental input source to the future AR system,
enabling features beyond the scope of depth and scene understanding. Ethernet backbone
would become the main carrier medium for transmitting massive amount of data that are
required by the AR system from one vehicle domain to the other.

Nevertheless, these visions would not become reality if we stop pushing forward the frontier
of our research in augmented reality. We hope this thesis could catch the attention of our
peers in both academic research and industry so that more researchers and developers
would devote themselves to augmented reality. We firmly believe in a bright future of
in-vehicle AR.
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A Latent Shape Training Software

In Section 4.3.1, we introduced the latent shape space where 3D geometries are embedded.
In order to train a latent shape space, we gather a small number of training samples (CAD
models of cars), calculate the feature points out of them, and embed the feature points
into a lower-dimensional latent space using GPLVM. Figure A.1 illustrates again how a
3D CAD model is “translated” into a latent variable and vice versa.

CAD
Model SDF

Marching
Cube

Distance
Transform DCT

IDCT

GPLVM
Training

GPLVM
Recall

Feature
Point

Latent
Point

Figure A.1: From 3D CAD model to latent variable.

In order to facilitate the training process and reach a certain level of automation, we
developed a Graphical User Interface (GUI) using Matlab. It comprises a panel for data
preparation (Fig. A.3(a)) and a panel for GPLVM training (Fig. A.3(b)). As the names
suggest, the data panel provides functionalities to compute feature points out of CAD
models, whereas the GPLVM panel mainly focuses on tuning training parameters and
visualizing the trained latent space.

We start a training process by preparing training samples. Each training sample is a
vectorized SDF that encodes a 3D geometry of a specific class, e.g., car. First, we pick
up a small number of public available CAD models of cars and load them into Matlab
one after another. Each loaded CAD model is approximated through its alpha shape in
order to reduce the complexity of the geometry and remove irrelevant interior faces. We
implemented a slider for alpha radius, a non-negative scalar that controls the convexity of
the approximated geometry. A larger alpha radius generates a more convex 3D surface,
whereas a smaller radius results in a closer approximation to the original geometry, though
leaving holes and discontinuities inside the model (Fig. A.2). Subsequently, an SDF is
calculated from an approximated alpha shape using the implementation of [Bat15].

We only need a small number of training samples for GPLVM training. The more diverse
the training samples are, the better coverage of the latent shape space can be achieved.
For example, we are not able to reconstruct a truck out of a latent shape space that
is trained with only passenger cars. After a set of training samples are prepared, we
use the GPLVM panel to adjust training parameters and initialize a training process.
The GPLVM panel visualizes the variation of the latent shape space during the training
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process. The actual optimization during GPLVM training is implemented by She�eld
Machine Learning Group [She13]. When the training process is finished, we can generate
and export new 3D geometries by clicking at an arbitrary spot in the latent space inside
the panel. We can also change the color and the dimension of a generated 3D geometry
using the GPLVM panel.

(a) Larger alpha radius. (b) Smaller alpha radius.

Figure A.2: Alpha shape slider.

The output of a training process is a GPLVM model containing a set of latent variables
and the hyper-parameters of the Gaussian Process that maps the latent variables to their
corresponding training samples. During 3D Shaping optimization, we search the optimal
shape within the trained latent space instead of the high-dimensional feature space. This
makes 3D Shaping optimization highly e�cient.
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(a) Panel for data preparation.

(b) Panel for GPLVM training.

Figure A.3: GUI of the latent shape training software.
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B Derivatives of 3D Shaping Energy

In Section 4.3.2, we introduced the energy function (Eq. 4.9) for monocular 3D shape
reconstruction. The energy function is di�erentiable with respect to the latent variable
and the viewpoint parameters, and it can be minimized using gradient-based non-linear
optimization methods. Here, we provide the mathematical details how the partial deriva-
tives of the energy function are derived. The notations used in this appendix are given
in Tab. B.1. The partial derivatives with respect to the optimization targets (3 variables
for translation, 4 variables for rotation, 1 variable for scale, 2 additional latent variables
for 3D geometry) are decomposed by using the chain rule, as expressed in Eq. B.1. The
transformation of coordinate systems (Section 2.3) is given in Eq. B.2.

ˆE

ˆfl
= ˆE

ˆ� · ˆ�
ˆ sdfX · ˆ sdfX

ˆ ndcX · ˆ ndcX
ˆfl

(B.1)

oX M≠æ cX P≠æ ndcX trivial≠≠≠æ sdfX (B.2)

Table B.1: Notations used for 3D Shaping derivatives.
Symbol Definition

E Energy (negative log-likelihood).
� Region of interest on image.
fi Projection function.
� Signed distance function.
Pf Foreground probability.
Pb Background probability.
L Ray.
fl Optimization target.

oX Point in object geometry coordinate.
cX Point in camera coordinate.

ndcX Point in normalized device coordinate.
sdfX Point in SDF cube coordinate.

d Dimension of a SDF cube.
P Projection matrix.
M Modelview matrix.
JM Modelview Jacobian matrix.
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Step 1: ˆE/ˆ� The energy E is a function of a projection fi (Eq. B.3), which is again
a function of an SDF cube � (Eq. B.4).

E(fi) = ≠
ÿ

�
ln [fiPf + (1 ≠ fi)Pb] (B.3)

fi(�) = 1 ≠ exp
I

≠
ÿ

L

ln
1
1 + e�’

2J

(B.4)

By applying the chain rule, we have

ˆE

ˆ� = ˆE

ˆfi
· ˆfi

ˆ� (B.5)

where
ˆE

ˆfi
= ≠

ÿ

�

Pf ≠ Pb

fiPf + (1 ≠ fi)Pb

(B.6)

and
ˆfi

ˆ� = exp
I

≠
ÿ

L

ln
1
1 + e�’

2J
ÿ

L

’e�’

1 + e�’
(B.7)

= (1 ≠ fi)
ÿ

L

’e�’

1 + e�’
(B.8)

Therefore,
ˆE

ˆ� = ≠
ÿ

�

(Pf ≠ Pb)(1 ≠ fi)
fiPf + (1 ≠ fi)Pb

ÿ

L

’e�’

1 + e�’
(B.9)

Note that Pf and Pb are estimated using a segmentation neural network.

Step 2: ˆ�/ˆ sdfX This derivative is numerically computed using Eq. B.10.

ˆ�
ˆ sdfX = �(X + �X) ≠ �(X ≠ �X)

2�X (B.10)

Step 3: ˆ sdfX/ˆ ndcX This derivative is constant and thus trivial, for the reason that

sdfX =
3

ndcX + 1
2

4
· d (B.11)

Step 4: ˆ ndcX/ˆfl First, we write an NDC point ndcX as the projection of a camera
point cX:

ndcX = P cX (B.12)
S
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ndcX = p0
cX
cZ

+ p8 (B.14)

ndcY = p5
cY
cZ

+ p9 (B.15)

ndcZ = p14
1

cZ
+ p10 (B.16)

Their partial derivatives are given by the quotient rule as the coordinates of a camera
point are functions of the optimization targets as well.

ˆ ndcX

ˆfl
= p0 · 1

cZ2

A
cZ

ˆ cX

ˆfl
≠ cX

ˆ cZ

ˆfl

B

(B.17)

ˆ ndcY

ˆfl
= p5 · 1

cZ2

A
cZ

ˆ cY

ˆfl
≠ cY

ˆ cZ

ˆfl

B

(B.18)

ˆ ndcZ

ˆfl
= p14 · 1

cZ2 · ˆ cZ

ˆfl
(B.19)

The partial derivatives of a camera point are given by the multiplication of the modelview
Jacobian matrix and the corresponding object point. For more details of the Jacobian of
the modelview matrix, please refer to [PR12].

cX = M(fl) oX (B.20)

ˆ cX
ˆfl

= JM(fl) oX (B.21)
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