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ABSTRACT

Cameras are widely used for localization and navigation in GNSS-denied environments. By exploiting VSLAM (Visual Simul-
taneous Localization and Mapping) techniques, vehicles equipped with cameras are capable of estimating their own trajectories
and simultaneously building a map of the surrounding environment. Due to constraints on payload size, weight, and costs, many
VSLAM applications must be based on a single camera. However, the associated monocular estimation of the vehicle trajectory
and the map is ambiguous by a scale factor. The purpose of this work is to show how the correct scale factor can be estimated
in planar motion cases by exploiting range measurements from a single station. The proposed method is independent of the
VSLAM algorithm used for ego-motion estimation of the vehicle.



Figure 1: Static station and dynamic rover

INTRODUCTION

Autonomous navigation of ground vehicles often relies on several sensors such as mobile receivers, Inertial Measurement Units
(IMUs), laser scanners and cameras [1]. By applying VSLAM (Visual Simultaneous Localization and Mapping) techniques,
a vehicle can estimate its ego-motion and simultaneously build a map using onboard cameras. Due to constraints on size,
weight, accommodation and cost, a stereo camera rig cannot be implemented in many cases. Moreover, if the baseline length
of a stereo rig is very short, it does not provide significant advantage over a single camera due to the resolution limits. As a
result, several approaches using monocular cameras have been developed. Klein and Murray developed the Parallel Tracking
and Mapping (PTAM) algorithm [2], which divides the tracking and mapping into separate threads to accelerate the computation.
Later on, Strasdat, Montiel and Davison proposed a scale-aware loop closure method to deal with the relative scene scale drift
[3]. Based on the PTAM framework, Mur-Artal, Montiel and Tardós [4] proposed the state-of-the-art ORB-SLAM approach,
which provides a robust real-time monocular SLAM solution. Engel, Schöps and Cremers proposed a large scale dense SLAM
algorithm (LSD-SLAM) using monocular cameras [5], which minimizes the photometric error instead of the feature reprojection
error for improving the performance. However, all these algorithms estimate the motion only up to a global scale.

A number of approaches have been considered for resolving the global scale ambiguity. Many of them use IMUs, see for
example Achtelik et al. [6] and Nützi et al. [7]. The fusion of camera and IMUs can significantly reduce the relative scale
drifts. However, the inherent drift of IMUs is prone to introducing inconsistency in global scale estimation. Tabibiazar and Basir
proposed an approach using range measurements from cellular networks [8]. Their method requires at least 3 ranging links for
estimating the robot’s position before integrating the result with vision-based estimates. Three links are often not available, e.g.,
mobile networks do not typically provide threefold coverage. Zhu, Giorgi, and Günther proposed a scale and relative position
estimation method in [9] using two dynamic rovers equipped with monocular cameras and ranging capability between them.
It provides a solution for multi-agent based applications, e.g., robotic swarm navigation. Nevertheless, the cooperation of two
dynamic vehicles is not always feasible.

Therefore, we developed a method for estimating the global scale in monocular VSLAM by exploiting range measurements
on a single link to a static station. As a result, the The method developed in this paper does not depend on the method of ranging,
as long as it is performed with respect to a given static location.

SYSTEM MODEL

The measurement scenario addressed in this work is shown in Fig. 1. A rover equipped with a monocular camera and a ranging
device, e.g., a wireless radio receiver, executes SLAM tasks on the ground. The motion of the vehicle is constrained to be planar.
In the proposed scheme, a radio link is available between the dynamic rover and a static station. The static station can be another
robotic rover in stationary mode, a base station, or a wireless hotspot with transmitter for the specific radio signal. The dynamic
rover estimate its ego-motion using an onboard camera, and a radio link is established to execute base-to-rover ranging. The
range measurements can be obtained by using pilot signals for synchronization. Because a satisfactory clock synchronization
between the rover and the station cannot be achieved in many cases, round-trip-delay (RTD) techniques is a favorable choice for
slow-movement scenarios to eliminate the impact of any clock offset. The details of ranging using RTD for navigation purposes
are discussed in [10].

We define a navigation frame (N) as a fixed coordinate frame for the rover with its origin at the starting location of rover.
The navigation frame is related to the world reference frame by a specific transformation dependent on the initial position and



attitude of the vehicle. Moreover, we use (k) to express the camera’s local coordinate frame at keyframe k, which varies as the
camera moves. Let~c(W )

k ∈ R2 be the position of the robot in world frame (W ) at time k. In the remainder of this paper, we use a
superscript with parentheses (·) to denote the coordinate frame in which the vector is represented. Time is measured at keyframes,
i.e., the time reference instances in which both the range measurements and the trajectory estimation are available.

The transformation between two arbitrary coordinate frames (P) and (Q) follows

~X (Q) = R(P→Q)
~X (P)+~t(P→Q), (1)

where ~X (P) and ~X (Q) denote the coordinates of an arbitrary 3D point ~X expressed in the corresponding (P) and (Q) frames,
R(P→Q) ∈ SO(3) denotes the orthonormal rotation matrix, and~t(P→Q) denotes the translation vector from the origin of (P) to the
origin of (Q).

MOTION ESTIMATION USING MONOCULAR CAMERAS

According to perspective projection, a visible point with 3D coordinates in the navigation frame ~X (N)
i ∈ R3 is projected to a

two-dimensional (2D) point~u(k)i in the measurement set Ωk at k-th keyframe as

~u(k)i = π(~X (N)
i ,~c(N)

k ,R(N→k)) ∈Ωk ⊂ R2. (2)

Ωk is the set of 2D coordinates of all the points of interest on the image plane.
By tracking features in consecutive image sequences, the essential matrix E(k→k+1) can be estimated using epipolar geometry

constraints [11]. The essential matrix can be decomposed into a rotation R(k→k+1) and a unit vector ~e(k→k+1) representing the
translation direction as: E(k→k+1) =

[
~e(k→k+1)

]
×R(k→k+1), where [·]× denotes the 3×3 skew symmetric matrix built ase1

e2
e3


×

=

 0 −e3 e2
e3 0 −e1
−e2 e1 0

 . (3)

The translation in true scale is related to the monocular estimation by

~t(k→k+1) = sgl(k→k+1)~e(k→k+1). (4)

In this equation l(k→k+1)~e(k→k+1) is the estimated translation from monocular vision, in which l(k→k+1) ∈ R+ denotes the esti-
mated norm of the translation from time k to k+1, and~e(k→k+1) reflects the direction of the motion. sg ∈ R+ is the true global
scale in the world frame, which cannot be obtained in the monocular-only case [12]. Without loss of generality, one can assume
l(1→2) = 1, since one can map the value into sg.

To start the tracking, using the estimated motion from the first two frames, the 3D coordinates of the tracked points can be
estimated by triangulation as X̂ (N)

i = π−1(~u(1)i ,~u(2)i ,E(1→2)). Consequently, the camera positions at the following time instances
k ≥ 2 can be obtained by minimizing the re-projection residual

ĉ(N)
k+1 = argmin

~c(N)
k+1

∑
~u(k+1)

i ∈Ωk+1

∥∥∥π(~X (N)
i ,~c(N)

k+1)−~u
(k+1)
i

∥∥∥2

Σ
−1
i,k+1

, (5)

where where ‖ ·‖
Σ−1 denotes the Mahalanobis distance with Σ as the measurements covariance matrix. Using the estimated pose,

the 3D position of the new features detected in frame k+1 can be updated using π−1(·). As a result, the tracking can be continued
as long as sufficient features can be tracked in consecutive frames. However, the estimated position of the camera and the map
points are all ambiguous by a scale factor sg.

During the consistent tracking, keyframes are selected if the image has significant change while sufficient reliable features
are tracked. Since the obtained motion estimates follow dead-reckoning principle, the estimation error will accumulate over time.
In order to improve the accuracy of the estimation result, a global optimization for both 3D point position and the vehicle poses
is performed using K keyframes and Np map points:

{X̂ (N)
i },{ĉ

(N)
k },{R̂(N→k)}= arg min

{~X(N)
i ,~c(N)

k ,R(N→k)}

Np

∑
i=1

K

∑
k=1

vik

∥∥∥~u(k)i −π(~X (N)
i ,~c(N)

k ,R(N→k))
∥∥∥2

Σ
−1
i,k

, (6)

where vik is a binary visibility mask, which assumes vik = 1 if feature i is visible to the camera at time instant k, otherwise vik = 0.
Therefore, by executing the optimization in Eqn. (6), the rover obtains a set of up-to-scale egomotion estimates expressed in

its own navigation frame, i.e., {ĉ(N)
k }.



Figure 2: Geometry of the static station and the dynamic rover

SCALE ESTIMATION USING MONOCULAR CAMERA AND SINGLE RANGING LINK

Fig. 2 illustrates the basic geometry between the static station and the dynamic rover. Without loss of generality, the reference
frame origin is set to be the position of the base station. The direction of the x-axis of the reference frame (W ) can be arbitrarily
chosen. The initial heading of the camera is defined as the y’-axis in the navigation frame (N). As a result, the initial position of
the rover can be parameterized by the initial radius r1 and the initial polar angle α in the world frame (W ). The initial attitude of
the rover is described by the angle α +θ − π

2 , i.e.,

~c(W )
1 = t(N→W ) = r1R(α)[1,0]T , (7)

R(1→W ) = R(N→W ) = R(α +θ − π

2
), (8)

where R(·) ∈ SO(2) is a 2D rotation matrix.
Using the images from the monocular cameras, the ego-motion of the rover in its navigation frame (N) can be independently

estimated up-to-scale as {ĉ(N)
k } by exploiting a VSLAM algorithm. However, due to the lack of global scale knowledge, the

poses in real-world metric are unavailable.
In the world reference frame (W ), the position of the rover at k-th keyframe can be expressed as

~c(W )
k = sgR(N→W )~c

(N)
k +~c(W )

1 (9)

As a result, the coordinates of the trajectory in world frame and navigation frame can be related by a similarity transformation
T ∈Sim(2)⊂ R3×3. The transformation in Eq. (9) can be parameterized by 4 parameters as:

~c(W )
k = R(α)

(
r1[1,0]T + sgR(θ − π

2
)~c(N)

k

)
(10)

Although the monocular camera itself can only estimate the motion up-to-scale, with the additional help of a sparse set of
noisy range measurements {ρk}, where

ρk = rk +ηk =
∥∥∥~c(W )

k

∥∥∥+ηk, (11)

a method for estimating the global scaling factor sg can be devised by exploiting consecutive ranging measurements at keyframes.



Table 1: Transformation on the results from unconstrained optimization.
If Transformation

ŝg < 0 r̂1 > 0 ŝg←−ŝg θ̂ ← θ̂ +π

ŝg > 0 r̂1 < 0 r̂1←−r̂1 θ̂ ← θ̂ +π

ŝg < 0 r̂1 < 0 ŝg←−ŝg r̂1←−r̂1

Using the range measurements, the global scale sg, initial attitude heading θ , and initial radius r1 can be estimated by
least-squares optimization. Stacking the K range measurements and the three parameters into vectors ρ = [ρ1,ρ2, ...,ρK ]

T and
F(ξ ) = [‖~c(W )

1 ‖,‖~c
(W )
2 ‖, ...,‖~c

(W )
K ‖]T with ξ = [sg,θ ,r1]

T , the problem can be formulated as

ξ̂ = argmin
ξ

‖ρ−F(ξ )‖2
Q−1 s.t. Bξ > 0. (12)

The inequality constraints are due to the positiveness of both the scale sg and the initial true range r1. B =

[
1 0 0
0 0 1

]
is a

selection matrix used to set the constraints. Q is the covariance matrix of the noise η = [η1,η2, ...,ηK ]
T .

Due to the presence of several local minima and the bounded search space, it is challenging to solve the nonlinear inequality
constrained optimization in Eq. (12). However, not all minima violating the constraints represent erroneous solution, due to the
symmetric properties of the objective function. Define Ak(sg,θ ,r1) = (rk(ξ )−ρk)

2. For any sg,θ and r1, the value of object
function is invariant to the following parameter change:

Ak(sg,θ ,r1) = Ak(−sg,θ +π,r1)

=Ak(sg,θ +π,−r1) = Ak(−sg,θ ,−r1).
(13)

Consequently, we can obtain the estimates of the parameters by solving the corresponding unconstraint problem and transform
the results obtained with the relations given in Table 1.

The unconstrained optimization can be obtained iteratively by solving a linearized problem as

ξ̂ = argmin
ξ

∥∥ρ− Jξ ξ
∥∥2

Q−1 (14)

ξ̂i+1 = ξ̂i +
(

Jξ (ξ̂i)
T Q−1Jξ (ξ̂i)

)−1
Jξ (ξ̂i)

T Q−1
(

ρ−F(ξ̂i)
)

(15)

where Jξ is the Jacobian matrix associated to the function F(ξ ).
In order to solve the problem in Eq. (14), K ≥ 3 range measurements are required. Due to the high nonlinearity of the

objective function, the Levenberg-Marquardt algorithm [13] is applied, instead of a Gauss-Newton approach [14], in order to
exploit its better global minimization capabilities.

As a result, the global scale factor sg is estimated by combining ranging and visual measurements. Consequently, based on
the global scale, the position of the rover {ĉ(W )

k } and the coordinates of the map points {~X (W )
i } can be obtained without scale

ambiguity. In addition, the initial heading of the rover θ , which refers to the radial direction between the rover and the station,
can be obtained from the estimation. It should be mentioned that the ranges are invariant to the change of the initial polar angle
α . Hence with a single radio link, the absolute position of the rover in reference frame (W ) is ambiguous by the angle. The
ambiguity can be resolved only if additional set-ups are available, e.g., by connecting to a second base station, or by using an
antenna array to estimate the angle of arrival.

SIMULATION RESULTS

The proposed scale estimation method using sparse range measurements is tested in simulation using KITTI benchmark datasets
[15]. We use the odometry dataset with provided ground truth to verify the result. The range measurements {ρk} are simulated
from the true ranges with additive Gaussian noise.

Fig. 3 shows the estimation result at keyframe 100 from KITTI odometry dataset 07. The image at the current keyframe is
shown in the upper-left plot and the estimated trajectory in the navigation frame until current time instant is at upper-right. The
uncertainty of the range measurements is 1 [m]. The figure at bottom-left compares the whole trajectory in estimated global scale
with the ground truth data. The true trajectory is plotted in blue color, and the estimated one is in red. It can be observed that the
scaled trajectory using the estimated ŝg aligns well with the ground truth. The bottom-right curve reflects the change the scale
estimation error over time. The result converges quickly and the error remains low after 20 keyframes. As a comparison, Fig.



Figure 3: Scale estimation using KITTI odometry dataset 07

Figure 4: True scale and the initial guess for KITTI odometry dataset 07



Figure 5: Impact of ranging error on the scale estimation error

4 illustrates the difference between the true global scale and the initial guess without any scale estimation. Since a monocular
camera cannot provide any global scale information, the red trajectory is scaled using sg = 1.

To analyze the impact of the ranging noise on the estimation result, we execute the simulation by adding different ranging
noise on the measurements. Fig. 5 visualizes the result of the global scale estimation error with respect to the ranging noise level.
The images used in the simulation are taken from KITTI dataset 07. The curve shows the root-mean-square error (RMSE) of
global scale estimation with respect to the standard deviation of the range measurements. It can be seen that the scale estimation
error is superlinearly dependent on the range measurements error. The curve is generated using KITTI dataset 07 with ground
truth scale sg = 10.3624. The relative error is less than 0.8% when the ranging uncertainty is below 1 meter. In practice,
dependent on the requirements and constraints for the SLAM scenario, higher ranging accuracy than 1 meter is feasible through
signal design.

Fig. 6, Fig. 7 and Fig. 8 shows the estimated poses of the rover using images from KITTI odometry dataset 04, 03 and 07 by
applying the jointly estimated parameters ξ̂ . The dataset 04 contains images taken from a linear trajectory without any direction
change. The three datasets represent different typical motions of a dynamic rover. The dataset 03 is a forward trajectory with a
few turns, and the dataset 07 consists of images taken from motions in a closed loop. In the figures, the red trajectories are the
ground truth, and the blue ones are the estimated trajectories. In the simulation, the standard deviation of the ranging noise is 1
meter. It can be conclude from the results that using the proposed method, the poses of the rover can be well estimated with only
a single camera and sparse ranging measurements from a single base station.

CONCLUSION

For VSLAM applications based on monocular cameras, the estimated positions of the camera and the map points have a global
scale ambiguity. We propose a method that exploits ranging measurements from a single station to estimate the scale factor in
planar motion cases. Applying the symmetry property of the cost function, one can solve an unconstrained optimization while
preserves the positiveness of the scale by using a transformation. The proposed method is verified on real images from benchmark
datasets, and it is shown that the camera poses can be accurately estimated without global scale ambiguity.
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