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1 Introduction and Problem
Statement

With the advent of computerized modeling and simulation-based development, the num-
ber of applications in which numerical models are used to create virtual prototypes of
a given system of interest has vastly increased, ranging from structural mechanics,
electro-magnetics, to fluid dynamics, just to name a few. Numerical simulations not
only reduce the cost of building physical prototypes and allow early testing and valida-
tion, but also offer an opportunity of using mathematical tools to optimize the design
according to given criteria.
Depending on the application at hand, the complexity of numerical models of real-

life technical systems can easily become prohibitive, making their numerical evaluation
challenging even for modern high-performance computers. This is even more true if,
during optimizations, the models need to be evaluated repeatedly until an optimal solu-
tion is found. Furthermore, in the era of digitalization, Internet of Things (IoT), digital
twins and embedded controllers, there is an increased demand of running numerical
models in real-time, often with very limited computational resources, in order, e.g., to
estimate the state of the system and perform predictive maintenance, or run feedback
controllers to achieve a desired performance. In these latter applications, it is of par-
ticular importance that numerical models do not exceed a given admissible complexity,
while being the best possible representations of the system of interest.
This thesis is dedicated to finding the best possible approximations for large-scale

models of multiple-inputs, multiple-outputs (MIMO) linear time-invariant dynamical
systems, given an admissible complexity, represented by the reduced model order. New
algorithms are presented to produce reduced-order models that aim at minimizing the
approximation error based on two of the most prominent system norms, namely the H2

and H∞ norms. For the former, a new framework by the name of “Model Function” is
introduced to decouple the cost of optimization from the cost of reduction, hence gen-
erating substantial speedup in H2-optimal reduction. Based on this result, an efficient
implementation of a globalized H2-optimal model reduction algorithm is presented.
For the latter, a rational-interpolation-based scheme available for single-input, single-
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output (SISO) systems is extended to the case of MIMO systems. Numerical efficiency
is achieved by using data-driven surrogate modeling approaches. For all presented algo-
rithms, fully-documented, open-source numerical implementations are available within
the MATLAB1 Toolbox sssMOR, released during this thesis and developed with the
support of a number of people. The goal of this toolbox is to make model reduction
algorithms available to non-expert users by minimizing the number of required input
parameters and delivering reduced-order models at the push of a button. At the same
time, all model reduction functions in sssMOR allow easy customization for expert users
who wish to prescribe a desired behavior and use the toolbox as a reference to compare
model reduction algorithms.
This thesis is structured as follows: Chapter 2 gives a brief overview of the funda-

mentals on model reduction pertinent to this thesis, while Chapter 3 can be considered
as the main part, addressing the topics of H2- and H∞-optimal model reduction by
tangential interpolation and presenting the main contributions of this thesis. Each
topic starts with a brief review of existing results, followed by a short summary of ad-
vances achieved during this thesis. The details are available in the original publications
reprinted with the publishers’ consent or referenced in the Appendix. Section present-
ing new results achieved during this thesis have been distinguished by a “*” symbol for
ease of reference. Chapter 4 introduces numerical tools developed and released during
this thesis, while Chapter 5 ends the discussion with a summary of achievements and
outlook.

1MATLAB and Control System Toolbox 2016b, The MathWorks, Inc., Natick, Massachusetts, United
States.



2 A Brief Review on Model
Reduction

In this thesis, we consider linear time-invariant (LTI) systems described by generalized
state-space models of the form

Σ





E ẋ(t) = Ax(t) +B u(t),

y(t) = C x(t) +Du(t),

(2.1a)

(2.1b)

where E∈RN×N is the descriptor matrix, A∈RN×N is the system matrix and x∈RN ,
u∈Rm, y∈Rp represent the state, input and output vectors of the system, respectively.
The matrix D ∈Rp×m directly linking the input vector to the output vector is called
the feed-through matrix.

Assumptions and restrictions Throughout this thesis, we will consider only models
with regular descriptor matrix, satisfying detE 6=0. Extensions to the case of singular
E can be found in [29, 68, 82, 123, 127] and references therein. In the following, for
simplicity, we will assume p,m�N to hold, meaning that the vectors y (the quantities
of interest) and u (external forces) have only few entries, compared to the number of
state variables in x. This is not a necessary restriction for applying the method of
tangential interpolation (cf. Section 2.2), used within this thesis, per se. Nonetheless,
models with a large number of inputs and outputs may be more tedious to approximate
and may require additional considerations, cf. [12, 25, 27, 51]. Finally, the discussion
will be limited to asymptotically stable systems, for which all generalized eigenvalues
of the pencil (E,A) are in the open left-half of the complex plane. This restriction
is required to ensure that the norms introduced in Section 3.1 are defined. Whenever
unstable systems of the form (2.1) are given, the anti-stable part should be retained in
the reduced model. This can be achieved by decomposing (2.1) into its asymptotically
stable and anti-stable part; the former can then be reduced while the latter is preserved
exactly, cf. [19, 23, 92, 121].
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Frequency domain description A different—yet equivalent—characterization of
the dynamical behavior of a linear system (2.1) from the inputs u to the outputs y can
be given in the frequency domain as a relation y(s) = G(s)u(s), where G(s) represents
the rational transfer function matrix

G(s) := C (sE − A)−1
B +D, (2.2)

in the variable s∈C, obtained through Laplace transform of (2.1) under the assumption
x(t = 0) = 0 [4, 78].

Motivation for LTI models Models of the form (2.1) and (2.2) are widely used
to describe the dynamical behavior of linear systems, as well as non-linear systems
locally around the equilibria and operating points. As such, the theory on this system
class is well established and a variety of analysis, control design [78, 80, 86, 125] and
model reduction techniques [4, 5] have been developed over the past half century. In
addition, most computations can be performed very efficiently exploiting advanced
numerical linear algebra routines [17, 39, 41, 115]. Nonetheless, as the problem size
N increases, numerical computations become resource demanding, quickly reaching a
point where a simple model evaluation becomes challenging—if at all feasible—on a
standard computer.

Reduced-order models For this reason, model order reduction techniques are being
developed to obtain simplified representations, called reduced-order models of the form

Σr





Er ẋr(t) = Ar xr(t) +Br u(t),

yr(t) = Cr xr(t) +Dr u(t),

(2.3a)

(2.3b)

with a reduced state vector xr(t) ∈Rn and n � N . The respective transfer function
matrix takes the form

Gr(s) := Cr (sEr − Ar)−1
Br +Dr. (2.4)

The goal of model reduction within this thesis is to construct reduced-order models
(2.3), respectively (2.4), that yield a good approximation yr(t)≈ y(t) for a wide range
of admissible inputs u(t). Several approaches have been studied in the literature to find
valid approximations of dynamical systems of the form (2.1) or (2.2). Early approaches
include approximations of (2.2) by rational interpolation, most notably by means of
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Padé approximations [30, 102, 119], moment matching or asymptotic waveform evalu-
ation [109], as well as Kalman’s work on realization theory [80] and partial realization
[62, 79], targeted at finding minimal state-space realizations for given proper rational
matrix functions or sequences of their evaluations at s→∞, respectively. Analogously,
minimal state-space realizations solving the rational interpolation problem can also be
obtained by means of the Loewner matrix approach [3, 15, 85, 95]. More recently,
as computer-aided modeling and spatial discretizations of partial differential equations
generally result in models of the form (2.1), a common approach to generate reduced-
order models is given by projecting the dynamic equations (2.1) onto appropriately
chosen subspaces [132]. This projective formulation is quite general in that it can be
used to express many of the most well-known approaches to generate reduced-order
models for (2.1), some of which are presented in the next section. Note however that
there exist alternative approaches to generate reduced-order models given (2.1), which
cannot be formulated in a projective framework. An example is given by reduced-order
model parametrizations based on Sylvester equations [7, 8, 76, 134, 136]. Finally, note
that recently data-driven approaches which generate reduced-order models from data
(e.g. measurements or model evaluations), i.e. without requiring explicit knowledge of
(2.1) or (2.2), have gained increased interest. This class of methods includes the afore-
mentioned Loewner matrix approach, its time-domain variant [106], as well as Vector
Fitting [42, 43, 70] and further approaches, e.g., the recent approach [81], available in
the literature on system identification, which are not listed for brevity.

2.1 Model Reduction by Projection

The foundation in reducing state-space models (2.1) by projection is given by assuming
that the state vector x(t) ∈ RN can be approximated in an n-dimensional subspace,
defined by a basis matrix V ∈RN×n, according to the relation

x(t) = V xr(t) + e(t). (2.5)

Note that our approximation goal is not to minimize the state reconstruction error
‖x(t) − V xr(t)‖ but rather to determine an appropriate subspace R(V ) such that the
output error ‖y(t)− yr(t)‖ is small for all admissible inputs u(t). Through a change of
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variables in (2.1a), the set of first-order differential equations takes the form

E V ẋr(t) = AV xr(t) +B u(t) + (Ae(t)− Eė(t))
︸ ︷︷ ︸

ε(t)

. (2.6)

To ensure solvability of the overdetermined set of differential equations (2.6) and elim-
inate the residual term ε(t), the equations are projected onto the subspace R(EV ),
orthogonally to a second n-dimensional subspace R(W ). This can be achieved by pre-
multiplying (2.6) with the projector1 Π =EV

(
W>EV

)−1
W> satisfying Π2 = Π. As-

suming ε(t)⊥R(W ) (known as the Petrov-Galerkin condition), the projected dynamics
in the reduced state vector take the form

ΠE V ẋr(t) = ΠAV xr(t) + ΠB u(t). (2.7)

Due to regularity of E, the matrix EV
(
W>EV

)−1
is of full column-rank, hence the

reduced-order model ultimately takes the form

W>E V ẋr(t) = W>AV xr(t) + W>B u(t),

yr(t) = C V xr(t) + Dr u(t),

(2.8a)

(2.8b)

where in (2.8b) we have inserted the ansatz (2.5) and neglected all terms that depend on
the state reconstruction error e(t). Note that the feed-through term Dr is not affected
by this projection, therefore it appears natural to select Dr = D, which often in the
literature leads to neglecting this term altogether. However, we will use the term Dr

in Section 3.3 explicitly as additional degree of freedom to increase the approximation
quality and shall therefore include it in our considerations.

From (2.8) it becomes evident that to obtain a reduced-order model by projection,
only appropriate choices of bases matrices (also referred to as projection matrices)
V,W and—whenever applicable—a reduced feed-through Dr are needed. Note that, in
general, only the subspaces R(V ) and R(W ) are of interest, as the reduced transfer
function is invariant to a change of bases [16, 118]. Nevertheless, specific choices of
bases, e.g. orthonormal or bi-orthogonal, are often used due to numerical considerations.
In the following we will briefly introduce some of the most prominent methods to design
V andW , before we discuss in more detail in Section 2.2 the reduction method of central
relevance to this thesis.

1A similar derivation can be conducted using pseudo-inverses, cf. [112].
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Modal truncation As eigenvalues and eigenvectors are widely used to characterize
the behavior of dynamical systems over time, modal truncation [40, 93] is a model reduc-
tion approach aimed at preserving certain eigenvalues of interest while neglecting others.
It can be interpreted as a projection onto the invariant subspace spanned by the pre-
served eigenvectors. This approach—and variants thereof—is widely used in structural
mechanics [11, 38, 124], where the reconstruction of the displacement x(t) ≈ V xr(t)
over the whole domain is often of interest and for which lower-frequent eigenvalues
often play a dominant role. The question about eigenvalue dominance becomes more
involved when approximating input/output maps such as (2.1), as aspects of control-
lability and observability [78] need to be taken into account. For this reason, several
dominance measures have been proposed [90, 94, 113, 130]. Modal truncation has the
advantage of explicitly preserving eigenvalues and eigenvectors of the original system,
which might be important depending on the application at hand. However, note that
for large-scale models, only an estimation of particular regions of the spectrum is possi-
ble in a numerical efficient manner, using iterative algorithms such as power methods,
inverse iteration or QR-iteration [41], as well as the implicitly restarted Arnoldi [89]. In
addition, modal truncation only allows boolean decisions between keeping or neglecting
certain eigenvectors in the reduced basis V . The methods that follow offer somewhat
higher flexibility by introducing new state-space directions that might be better suited
to approximate the input/output behavior of the system.

Balanced truncation A second class of projection methods is known under the
name of balanced truncation or truncated balanced realization. It is based on finding
a balancing state-space transformation in which individual state-space directions are
equally controllable and observable. This can be characterized in terms of the Gramian
matrices for controllability and observability, P and Q respectively, defined in terms of
the solutions of following generalized Lyapunov equations

AP E> + E P A> +BB> = 0,

A> Q̃ E + E> Q̃A+ C>C = 0,

(2.9a)

(2.9b)

where Q= E>Q̃E. System-invariant measures, called Hankel singular values, for the
degree of controllability and observability of balanced state-space directions can be de-
fined as ςi :=

√
λi (QP ), i=1, . . . , N . Model reduction is then performed by inspecting

the relative decay of ςi and truncating directions corresponding to lower values. Prelim-
inary work is due to Mullis and Roberts [100] and Moore [97, 98]. Several extensions
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and derivations have followed. The most relevant in the context of this thesis is given
by the Low-Rank Square-Root Balanced Truncation (LR-SRBT) method [22, 28, 44,
45, 83, 88, 107, 108, 116, 120, 137], which is based on finding low-rank approximations
of the controllability and observability Gramians, e.g. P ≈ZpZ>p with Zp ∈RN×q and
N � q > n. The original method by Moore bears the advantage of guaranteeing
preservation of stability and having rigorous, a priori error bounds [49]

‖G−Gr‖H∞ ≤ 2
N∑

i=n+1
ςi, (2.10)

where the H∞ norm is introduced in Section 3.1. This allows both the estimation of the
error and a suitable selection of reduced order n, making this method—in principle—
suitable for fully automated model reduction. Unfortunately, rigor is lost when applying
LR-SRBT, which is however the only variant applicable to truly large-scale models. In
addition, the low-rank solution of the Gramian matrices introduces new parameters, for
which often times heuristics are used and an optimal choice is still open [83, 137]. Even
so, this model reduction class has been used very effectively and is still considered the
gold standard in model reduction. Note that there is a strong link between approximate
balanced truncation and the rational interpolation method discussed in Section 2.2 [135].

Optimal Hankel norm approximation Related to the method of balanced trun-
cation is the construction of an optimal reduced model measured in terms of the Hankel
norm, which is the 2-induced norm of the Hankel operator, a modification of the con-
volution operator, mapping past inputs to future outputs [4]. The main result is due
to Adamjan, Arvo and Krein [1] and Glover [61]. This method requires balancing
and all-pass dilation of the full-order model and subsequent projection onto the stable
eigenspace, which in general involves dense operations. As such, the method is non
viable for problems of very large-scale [24]. Nonetheless, stability is preserved and the
error bound

‖G−Gr‖H∞ ≤
N∑

i=n+1
ςi (2.11)

holds. Even though this type of approximation is not optimal in the H∞ norm (the
2-induced norm of the convolution operator, cf. Section 3.1), it is known to yield
good approximations also in this norm. For this reason, this method will be used in
Section 3.3 for comparison.
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2.2 Model Reduction by Tangential Interpolation

Another approach to the model reduction problem is given by rational interpolation,
i.e. constructing a reduced-order model, whose (rational) transfer function interpolates
the original transfer function—and perhaps its derivatives—at selected complex shifts
s=σi, i.e.

G(j)(σi) = G(j)
r (σi) i = 1, 2, . . . , j = 0, 1, . . . , (2.12)

where G(j)(s) denotes the j-th derivative of G(s) with respect to s. As the coefficients
of the Taylor series expansion of G(s) around a frequency σ are also called moments2,
this method is often also referred to as moment matching.

Given a rational transfer function G(s), the problem of finding a suitable interpolant
has been addressed in different fields, e.g. complex analysis and system theory, un-
der the names of (multi-point) Padé Approximation [10], Moment Matching [84, 142],
Asymptotic Waveform Evaluation [109], just to name a few. However, the construction
of a reduced transfer function Gr(s) based on the explicit knowledge of the moments is
known to be ill-conditioned [52]. In the 1980’s, DeVillemagne and Skelton [132] showed
how to achieve rational interpolation by projection, i.e. without explicit computation of
the moments. In the late 1990’s, Grimme [64] used the rational Krylov method by Ruhe
[114], a generalization of the shifted and inverted Arnoldi algorithm, to compute the
projection matrices in a numerically stable way. Similarly, Feldmann and Freund [52]
and Gallivan, Grimme and Van Dooren [59] used a Lanczos process to compute projec-
tion matrices. As to the nomenclature, this class of reduction methods is often denoted
in the literature with different names, i.e. rational interpolation, moment matching or
Krylov subspace methods. While the main goal of the approaches behind these names
is common, i.e. interpolating the transfer function and its derivatives at selected points
in the complex plane, there are subtle differences that make the concepts not entirely
equivalent, especially for MIMO models. We refer to [16] for a brief discussion on this
topic and will use in the remainder of this contribution the most general name, i.e.
rational interpolation.

For MIMO systems, an interpolatory approach as in (2.12) might be inefficient, as
single entries of the transfer function matrix may have different frequency ranges of
interest. For this reason, Gallivan, Vandendorpe and Vandoren [60] proposed approxi-
mations by tangential interpolation, i.e. interpolating the transfer function matrix only

2Note that the literature may differ here in the sign of these coefficients.
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along selected left and right tangential directions l∈Cp, r∈Cm, i.e.

G(j)(σi) r = G(j)
r (σi) r,

l>G(j)(σi) = l>G(j)
r (σi).

(2.13a)

(2.13b)

As this result is the main tool used in the reduction methods presented in the following
chapter, it is directly introduced here, omitting all preliminary results briefly mentioned
above.

Theorem 1 (Bi-tangential Hermite Interpolation [16, 60]). Consider a full-order model
Σ as in (2.1) with transfer function G(s) and let scalar frequencies σi∈C and vectors
ri ∈Cm, lj ∈Cp be given such that σiE − A is nonsingular for i= 1, . . . , n. Consider
projection matrices V,W ∈CN×n and let the resulting reduced-order model (2.8) have
the transfer function Gr(s) and eigenvalues λj satisfying λj 6= σi for all j=1, . . . , n and
i=1, . . . , n.

1. If

(A− σiE)−1B ri ∈ R(V ), i = 1, . . . , n (2.14)

then G(σi) ri = Gr(σi) ri.

2. If

(A− σiE)−TC> li ∈ R(W ), i = 1, . . . , n (2.15)

then l>i G(σi) = l>i Gr(σi).

3. If both (2.14) and (2.15) hold, then, in addition,

l>i G
(j)(σi) ri = l>i G

(j)(σi) ri, i = 1, . . . , n. (2.16)

This class of methods is inherently predestined for the reduction of large-scale models,
as its computation only requires the solution of (generally sparse) linear systems of
equations (LSE) of the form (2.14) and (2.15), which can be done efficiently even in the
large-scale setting. Note that to improve numerical stability, the projection matrices
as of (2.14) and (2.15) should be preferably computed using an Arnoldi-type approach,
including (modified) Gram-Schmidt orthogonalization after each new direction is com-
puted.
In contrast to balanced truncation and optimal Hankel norm approximation, rigorous

and global error bounds are available only for systems in strictly dissipative form, cf.
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[104]. Note that error expressions have also been provided, e.g., by Bai et al. in [9]
and Gugercin in [65]. More recently, Feng, Antoulas and Benner [53] have presented
point-wise error bounds in the frequency (and parameter) domain. As already denoted
by Antoulas and Soerensen in [6], the local nature of interpolatory reduction is at
the same time a fundamental problem and a fundamental strength of the methods3.
Note for completeness that, given a state-space model (2.1), the problem of rational
interpolation can be addressed also in a non-projective way by Sylvester-equations-
based parametrizations (cp. [7, 8, 76]) or the Loewner matrix approach referenced
above.
Once numerically reliable tools are available to produce reduced-order models sat-

isfying (tangential) interpolatory conditions, the question naturally arises as to how
to select interpolation points, tangential directions and the number of derivatives to
be matched in order to achieve a good approximation. This leads to the question of
which selection of parameters results in an optimal reduced-order model with respect
to some given criteria. The next chapter—and in fact the main part of this thesis—is
devoted to this question. After a brief introduction to the approaches already available
in literature, the contributions developed within this thesis are presented.

3We will come back to this point in Section 3.2.2





3 Optimal Model Reduction by
Tangential Interpolation

Whenever a full-order model is given and the requirements on the allowable complexity,
expressed in terms of a target reduced order, are known, the question naturally arises
as to how to generate a reduced model that is optimal—in some sense—for this given
reduced order. In this chapter, we introduce the two most prominent system norms used
to quantify the approximation error. The remainder of the chapter will then be devoted
to develop interpolatory reduction methods targeted at generating reduced models with
the lowest possible error, while being computationally efficient also for very large-scale
problems.

3.1 System Norms

In the context of generating approximate models, a very fundamental question is to
determine how large the approximation error is allowed to be and subsequently quantify
how large the resulting approximation error really is. For dynamical systems (2.1)
reduced by projection (2.8), typical characterizations are given in terms of the output
error ey(t) := y(t)− yr(t) or the error in state reconstruction ex(t) := x(t)− V xr(t) for
all admissible inputs u(t) ∈ U in some set U . The work in this thesis focuses on control
systems, where the modeling intent is to represent the input/output dynamics of a given
system and the evolution of state variables can be seen as a necessary intermediate step.
In this context, a correct approximation of the state vector is at most a subordinate
goal, whereas the primary goal is to minimize the output error ey(t). In the frequency
domain, this error can be represented as

L {y(t)− yr(t)} = y(s)− yr(s) = (G(s)−Gr(s))︸ ︷︷ ︸
Ge(s)

u(s), (3.1)

where L {·} denotes the Laplace transform for zero initial conditions. As it can be
seen from (3.1), the output error for all admissible inputs can be characterized by the
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difference in transfer function matrices Ge(s) = G(s)−Gr(s), therefore minimizing the
output error ey(t) can be translated to minimizing the approximation error Ge(s). The
distance between two transfer function matrices can be measured in terms of Hardy
norms (Hp), where Hp×m

p spaces are spaces of p×m complex-valued function which
are analytic in the open right-half of the complex plane. See [4] for a more detailed
discussion on normed spaces.

H2 norm Consider a p×m complex-valued function G, analytic in the open right-half
of the complex plane. Then its H2 norm is defined as [4, 14]

‖G‖H2 :=

 1

2π

∞∫

−∞
tr
(
GH(−jω)G(jω)

)
dω



1/2

. (3.2)

We note that Hp×m
2 is a Hilbert space as the norm (3.2) can be defined as ‖G‖H2 =√

〈G, G〉H2 by means of the inner product

〈G, H〉H2 := 1
2π

∞∫

−∞
tr
(
GH(−jω)H(jω)

)
dω. (3.3)

In addition, given the controllability and observability Gramians P and Q, respectively,
defined in (2.9), the H2 norm can be computed by [4, 14]

‖G‖H2 =
√

tr (B>QB) =
√

tr (CPC>). (3.4)

It was shown in [65, 69] that the H2 norm can be evaluated also using the residue
theorem according to following result (for SISO models)

‖G‖H2 =

√√√√
N∑

i=1
res [G(s), λi]G(−λi) (3.5)

where we assumed the poles of G(s) to be simple for ease of notation. Finally note that
for systems with single-input (m= 1) and/or single-output (p= 1), the H2 norm can
be interpreted as an induced norm of the underlying convolution operator according to
[16]

‖G‖H2 = sup
u∈L2

‖y‖L∞

‖u‖L2

. (3.6)
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There exists a direct relation between the approximation error in the frequency domain
in terms of the H2 norm and a bound for the Lebesgue L∞ norm of the output error
in the time domain, also for the more general case of MIMO models, according to [67]

‖y − yr‖L∞ ≤ ‖G−Gr‖H2 ‖u‖L2 . (3.7)

A low H2 error in the frequency domain hence corresponds to a low maximum output
error in the time domain for all L2-bounded inputs.

H∞ norm Consider a p×m complex-valued function G, analytic in the open right-half
of the complex plane. Then its H∞ norm is defined as [4]

‖G‖H∞ := sup
ω∈R

ςmax (G(jω)) , (3.8)

where ςmax (·) denotes the largest singular value. As opposed to Hp×m
2 , the Hardy space

Hp×m
∞ is not an Hilbert space. Nonetheless, it can be shown that the H∞ norm is an

induced norm according to [4, 16]

‖G‖H∞ = sup
U 6=0

‖GU‖H2

‖U‖H2

= sup
u∈L2

‖y‖L2

‖u‖L2

, (3.9)

where U := L {u} and u is an L2 function over the positive real axis [4]. A bounded
H∞ error in the frequency domain results in an uniformly bounded output error in the
time domain, according to

‖y − yr‖L2 ≤ ‖G−Gr‖H∞‖u‖L2 . (3.10)

3.2 H2-Optimal Model Reduction

Given a desired fixed order n, the goal of this section is to find a reduced-order model
satisfying

Gr(s) = arg min
deg Ĝr=n

‖G− Ĝr‖H2 . (3.11)

As the optimization problem in (3.11) is non-convex, at first the ambition will be to
find a local solution. This problem has been studied time and again over the course
of the past 50 years, cf. e.g. [13, 31, 58, 66, 67, 75, 87, 96, 122, 128, 133, 139, 140,
141], and several characterizations of optimality solutions have been derived. A good
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overview can be found in the recent manuscript by Beattie and Gugercin [16]. Consid-
ering the problem of minimizing the mean-squared output error for a given stochastic
input, Meier and Luenberger derived in [96] first-order optimality conditions for SISO
models in terms of rational interpolatory conditions. Further, optimality conditions in
terms of Lyapunov equations were derived by Wilson [133] and later by Hyland and
Bernstein [75]. Gugercin, Antoulas and Beattie [67] linked all of the above, showing
their equivalence to structured orthogonality conditions, based on optimal approxima-
tions in Hilbert spaces. The generalization of the interpolatory conditions to MIMO
models presented in the following is based on the works [31, 67, 128].

Theorem 2 ([31, 67, 128]). Consider a full-order model (2.1) with transfer function
G(s). Consider a reduced-order model with transfer function Gr(s) =

n∑
i=1

ĉib̂i
s−λr,i with

reduced poles λr,i∈C and input, output residue directions b̂>i ∈Cm, ĉi∈Cp, respectively.
If Gr(s) satisfies (3.11) locally, then

G(−λ̄r,i) b̂>i = Gr(−λ̄r,i) b̂>i
ĉ>i G(−λ̄r,i) = ĉ>i Gr(−λ̄r,i)

ĉ>i G
(1)(−λ̄r,i) b̂>i = ĉ>i G

(1)
r (−λ̄r,i) b̂>i

(3.12a)

(3.12b)

(3.12c)

for i = 1, . . . , n.

The extension to the case of poles with higher multiplicities is omitted here for brevity
and can be found in [129]. In general, previous approaches to the H2-optimal model re-
duction problem referenced above either required the solution of sequences of Lyapunov
equations or the computation of transfer functions numerator and denominator poly-
nomials, hence becoming intractable for large-scale problems,. Gugercin, Antoulas,
and Beattie introduced in [67] an algorithm to iteratively construct a reduced-order
model by rational interpolation—hence being numerically tractable also in the large-
scale setting—until the optimality conditions (3.12) are satisfied.

The Iterative Rational Krylov Algorithm and its derivates If the reduced
order poles and residue directions were known a priori, then by Theorem 1 it would
be clear how to construct a reduced-order model satisfying the optimality conditions
(3.12). However, as reduced poles and residue directions depend on the interpolation
data (shifts and tangential directions), Gugercin, Antoulas and Beattie proposed in [67]
the Iterative Rational Krylov Algorithm (IRKA) to iteratively adapt the interpolation
data, until (hopefully) convergence. A sketch of the MIMO version of IRKA is given in
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Algorithm 1 and will be a central element of all further discussions within this thesis.

Algorithm 1 MIMO H2-Optimal Tangential Interpolation (IRKA)
Input: Σ; Initial interpolation data {σi}ni=1, {ri}

n
i=1, {li}

n
i=1

Output: locally H2-optimal reduced model Σr

1: while not converged do
2: Compute V,W according to (2.14) and (2.15)
3: Σr ← W>ΣV // compute reduced model by projection
4: [X,D, Y ] = eig(Σr) // eigendecomposition
5: σi ← −λi (D); ri ← B>r Y ei; li ← CrX ei // update interpolation data
6: end while

IRKA has experienced a great success mainly due to its simplicity and effectiveness
in producing high-quality reduced-order models for very large-scale problems. Even
though no results are available in terms of convergence and stability of the reduced-order
models in general (cf. [56] for the case of state-space symmetric systems), it has been
shown to be effective in practice. It has therefore been extended in different contexts,
e.g. in the data-driven approximation within the Loewner framework [15], structure
preserving reduction of port-Hamiltonian systems, systems in 2nd order form [138],
general co-prime factorizations [14], DAEs [68], and recently even nonlinear systems [2,
18, 20, 21, 55]. In addition, in [15] Beattie and Gugercin introduced a residue-correction
step to accelerate the convergence in presence of large input/output spaces.
For completeness, note that also different approaches have been presented to ef-

ficiently solve the optimal H2 reduction problem. For instance, as opposed to the
fixed-point iterations mentioned so far, trust-region descent algorithms for H2-optimal
reduction have been derived by Beattie and Gugercin [15] and Panzer et al. in [103,
105]. A detailed description of these algorithms is left out for brevity. However, note
that many of the approaches presented in this thesis also apply to these alternatives.

3.2.1 Initialization*

As for any local optimization problem, initialization plays a crucial role in determining
convergence behavior and ultimately the quality of the optimal solution. The same
holds true also for the case of H2-optimal model reduction as presented in the previous
section1. This is briefly discussed in [65, 66, 67, 103] and more extensively in the student
thesis by Michael Ott [101] and Siyang Hu [74]—who I had the privilege to supervise—
as well as the manuscript [33]. Indeed, not only the convergence speed (and hence the

1We will show in Section 3.2.3 how the dependency on appropriate initialization can be mitigated by
introducing globalized H2-optimal reduction strategies.
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reduction cost), but also stability and approximation error2 highly depend on the initial
choice of {σi}ni=1, {ri}

n
i=1, {li}

n
i=1. Even though there have been different studies in the

literature trying to determine a priori, i.e. before any sort of reduction, valid choices of
initial parameters, to date there is no initialization strategy that is guaranteed to yield
good results in all cases.
The problem of identifying good shifts σi, be it for direct reduction by rational

interpolation or as initialization for an H2-optimal reduction method, has been studied
by different researchers. Grimme [64] studied the problem of choosing appropriate
shifts and derived heuristics relations when choosing interpolation points on the real
or imaginary axis. Eid [46, 47] used relationships resulting from time-domain model
reduction to propose one optimal interpolation point, which can be computed using the
algorithm ICOP, available in the sssMOR toolbox presented in Chapter 4. Gugercin,
Antoulas and Beattie propose in [65, 67, 69] to choose mirror images of the most
dominant eigenvalues of the full-order model, inspired by the expression of the H2

error. Also note that the problem of finding good frequencies has been dealt also by
Penzl [108], Benner, Kürschner, and Saak [28, 83], as well as Druskin, Simoncini, and
Zavslavski [44, 45] in the context of approximate solution of Lyapunov equations. As
demonstrated in [135], the strong relationship between these methods and reduction by
rational interpolation make these approached interesting also to the problem at hand.
In [101], Ott has compared a large number of shift initialization strategies for SISO

models and assessed their suitability for initializing H2-optimal reduction algorithms.
Noting that the amount of numerical simulations was not enough to have statistical
relevance, during this work no affirmative answer to the original question could be found.
Nonetheless, the initialization strategies that appear to bear the highest potential are:

I.1 Computing a few eigenvalues/eigenvector of the original model using iterative
methods (cp. eigs in MATLAB) and using the mirrored spectrum, as well as
input/output residual directions as initial data.

I.2 Initialize all data at σi = 0 (and, for MIMO models, ri =
[
1 1 . . . 1

]>
, li =

1
[
1 1 . . . 1

]>
of appropriate dimensions).

The first approach (I.1) is certainly the most valid, as it uses information from the
original model and is motivated by H2 considerations (cf. [69]). In practice, this ap-
proach generally yields quick convergence and good reduced-order models, even though

2It turns out that the selection of reduced order may also have a significant impact on the optimization.
In fact, a variation of ±1 in n can make a difference, e.g., in terms of convergence and stability. An
appropriate selection of reduced order lies outside the scope of this thesis and is topic of ongoing
research. Cf., e.g., the CUmulative REduction (CURE) scheme in [103, 105].
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exceptions are known. In general, it is numerically inexpensive, as the computation of
a few eigenvalues can be done efficiently by means of power iterations. Nonetheless,
its efficiency may decrease with increasing number of eigenvalues to be computed. In
addition, it may sometimes suffer from convergence issues, especially when computing
eigenvalues with largest/smallest real or imaginary part. In general, one is interested
in determining the first n most dominant eigenvalues, which could be done e.g. by ap-
plying the dominant pole algorithm of [113]. The second approach (I.2) is more trivial
in that it requires no knowledge of the original model. At the same time, this is as
well one of its advantages, requiring no additional computational effort. In addition,
an initial reduction with this choice of parameters is particularly convenient from a
computational perspective, as only LSEs with same left hand-sides need to be solved.
The choice of tangential directions as vectors of 1s makes sure that all input/output
channels are considered in the reduction. Both initialization strategies are implemented
in the sssMOR toolbox presented in Chapter 4 within the function initializeShifts.

3.2.2 The Model Function Framework*

Depending on the effectiveness of the initialization, convergence to a local H2-optimal
reduced model may require a large amount of optimization steps until convergence. As
obvious from Algorithm 1, this implies the repeated reduction of the original, full-order
model, at every step of the optimization. In some sense, the cost of reduction and the
cost of optimization are tied together.
To alleviate the high cost resulting from repeated reduction, Panzer introduced in

[103] the concept of Model Function Σµ, i.e., a surrogate model to be used during H2-
optimization instead of the full model. As the author states, the main idea for this
approach originated during the master thesis of Stefan Jaensch [77], who he supervised.
This concept was further studied during this thesis in [34, 35], where it was shown that
under certain update conditions, the optimization based on the Model Function would
result in a reduced-order model satisfying the H2-optimality conditions with respect to
the original model. Considerations on the initialization and the update of the Model
Function have been presented and the idea has been extended to a general framework
applying to interpolatory H2-optimal reduction for different system classes. Numeri-
cal investigations have demonstrated the substantial speedup that can be achieved by
applying the framework to large-scale models.
The main motivation for the new framework arises from simple considerations on the

locality of model reduction by tangential interpolation, as partly pointed out also by
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Antoulas and Sorensen in [6]. In fact,

1. tangential interpolation only guarantees to yield a good approximation locally
around the shifts {σi}ni=1, tangentially along directions {ri}ni=1 and {li}ni=1,

2. as ‖G−Gr‖H2 is a non-convex function, in general only local optima can be found.

As such, the main idea behind the Model Function framework is to generate a good
approximation of the full-order model, locally with respect to the initial interpolation
data—and run surrogate optimization with respect to this local approximation. The
new (optimal) interpolation data thus found is used to update the Model Function.
Provided the optimal interpolation data converges, then the reduced-order model is
guaranteed to satisfy the optimality conditions with respect to the full-order model, cf.
[34, Theorem 4.2]. While LSEs with respect to the full-order model Σ are needed only
when creating and updating the Model Function Σµ, the H2 optimization is performed
on the generally much smaller model function Σµ, thus making the optimization cost
negligible compared to the reduction cost. The details, derivations and proofs can be
found in [35] for SISO and [34] for MIMO LTI models. Figure 1 gives a graphical
overview of the Model Function framework, where niµ represents the order of the Model
Function at iteration i and kµ is the number of iterations required for the Model Function
framework to converge. The left side shows conventionalH2-optimal reduction methods,
while the right side illustrates the Model Function framework.

Figure 1: Schematic overview of the Model Function framework
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As discussed in [34], this approach truly is a new framework for H2-optimal model
reduction and not just an additional H2-optimal reduction algorithm. In fact, this
framework can be applied to various interpolatoryH2 reduction methods, such as IRKA,
the trust region method of [14], and SPARK [103, 105]. First indications on how to
apply this framework even to different system classes (e.g. nonlinear systems), for
which interpolatory H2-optimal/-inspired algorithms are available, are given in [36] .
When applied to IRKA, the resulting algorithm Confined IRKA (CIRKA) takes the
form described in Algorithm 2.

Algorithm 2 Confined IRKA (CIRKA) [34]
Input: Σ; Initial interpolation data {σi}ni=1, {ri}

n
i=1, {li}

n
i=1.

Output: reduced model Σµ,r, Model Function Σkµ
µ , error estimation ε̃H2

1: k ← 0;
[
Σk
µ, {σµ,j} , {rµ,j} , {lµ,j}

]
← empty; // Initialization

2: {σ∗,i}ni=1 ← {σi}
n
i=1, {r∗,i}

n
i=1 ← {ri}

n
i=1, {l∗,i}

n
i=1 ← {li}

n
i=1;

3: while not converged do
4: k ← k + 1
5: Σk

µ ←updateModelFunction
(
Σ,Σk−1

µ , Stot
∗ , Rtot

∗ , L
tot
∗ , S

k−1
∗ , Rk−1

∗ , Lk−1
∗

)

6:
[
Σµ,r, S

k
∗ , R

k
∗ , L

k
∗
]
← IRKA (Σk

µ, S
k−1
∗ , Rk−1

∗ , Lk−1
∗ ) // H2 optimization

7: Stot
∗ ←blkdiag

(
Stot
∗ , Sk∗

)
; Rtot
∗ ←

[
Rtot
∗ , R

k
∗
]
; Ltot
∗ ←

[
Ltot
∗ , L

k
∗
]

8: end while
9: kµ ← k

10: ε̃H2 ←norm
(
Gkµ
µ −Gµ,r

)

Besides decoupling the cost of reduction from the cost of optimization and thus often
accelerating H2-optimal reduction (there more so, the higher the original order N), this
new framework naturally—i.e. at no additional cost—yields a middle-sized surrogate
model, the Model Function Σµ, that can be used for a variety of purposes, first and
foremost the estimation of the approximation error

‖G−Gr‖Hp ≈ ‖Gµ −Gr‖Hp . (3.13)

Interpretations of the Model Function framework The Model Function frame-
work presented above can be given different interpretations. On the one hand, it is
a form of surrogate optimization (cf. e.g. [111]) in that the H2 optimization is not
conducted on the actual cost function J = ‖G − Gr‖H2 but on an approximation
J ≈Ĵ =‖Gµ −Gr‖H2 . In fact, the framework itself is an application of reduced-model-
based optimization, cf. e.g. [26, 71]. On the other hand, the framework can be seen
as H2 optimization in a subspace, defined by the matrices Vµ and Wµ, that is updated
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at every iteration. In fact, this technique could be interpreted as a subspace accelera-
tion method (cf. e.g. [113]) to recycle information obtained in a previous optimization
step. Traditionally, subspace acceleration methods in numerics are used to ameliorate
the convergence of iterative methods. In our setting, this becomes the convergence
to a set of optimal reduction parameters. Finally, one may think of it as a restarted
H2 optimization, where e.g. IRKA is restarted in a higher-dimensional subspace after
convergence.

3.2.3 Globalized H2-Optimal Model Reduction*

The H2-optimal reduction problem defined in (3.11) is non-convex, meaning that in
general one can only hope to find a local minimizer. However, when computational
resources available to evaluate the models are limited, it is of particular interest to
find the best H2-optimal reduced-order model for a given complexity, i.e. the global
minimum. To analyze the impact of different initializations, Figure 2 summarizes the
results of running IRKA for a SISO version of the ISS model, taken from the collection
[37], generating optimal reduced models of order n= 2. A detailed description of the
numerical setup can be found in [33]. Figure 2a depicts all initial shifts (small markers),
as well as the respective IRKA fixed points, indicated by large markers of the same type.
Figure 2b compares the local optimal reduced models to the full-order model in terms
of Bode magnitude diagrams. As it can be seen, several local minima are found with
very different approximation qualities.
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Figure 2: The impact of different intializations inH2-optimal reduction of the ISS model.
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To alleviate this dependency, [33] introduces a globalized approach to H2-optimal
model reduction, based on performing an initial global sampling of the search space [73,
110] and subsequent (parallel) localized reduction using the H2 reduction algorithms
of the previous sections. Preliminary work is documented in the masters thesis of Hu
[74]. Even though this approach cannot guarantee, in general, that the global optimum
will be found, in practical terms it increases the chances of finding it, with probability
tending towards one as the coverage of the initial global sampling increases. In essence,
what this approach does it to determine the best local optimum within the set of all
local optima found. As the computation of the H2 norm of the error is not feasible
for large-scale models (cf. (3.4)), a different strategy is required. By using the Hilbert
projection theorem, it is shown in [33] that the best minimizer is the one with largestH2

norm. As this model has the reduced order n, its norm is readily computed. Further,
the burden of repeatedly performing local H2 optimization from all initial samples, e.g.
by IRKA, is alleviated by exploiting the Model Function framework of Section 3.2.2.
In this way, the localized optimization can be performed efficiently with respect to the
surrogate model Σµ. Details on effective initialization and update of the Model Function
in this globalized setting, e.g. using k-means clustering [91], are given in [33].

3.3 H∞-Optimal Model Reduction

As briefly mentioned in Section 2.1, the reduction methods of balanced truncation
and optimal Hankel norm approximations (OHNA) both deliver global, rigorous error
bounds on the H∞ norm of the approximation error. Recall that, for these error bounds
to hold, dense operations are required, making these approaches viable only for middle-
sized problems. Noticing that the error bound (2.11) for the OHNA is smaller by a
factor of two than the one by balanced truncation (2.10), it is not surprising that in
practice OHNAs are known to yield small H∞ approximation errors. Even so, neither
of the two approaches is aimed at finding a reduced-order model with minimal H∞
error, i.e., solving the problem

Gr(s) = arg min
deg Ĝr=n

‖G− Ĝr‖H∞ . (3.14)

The problem of H∞-optimal reduction still lacks approaches that are both numeri-
cally efficient for large-scale problems and guarantee (at least local) optimality of the
reduced-order model. Existing approaches include the linear matrix inequality (LMI)-
based formulations in [63, 72, 131]. Unfortunately, these inequalities can be solved only
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for very small problems. It was noted by Flagg [57] and later in Flagg, Beattie and
Gugercin [54] that there is a connection between sufficient conditions for H∞ optimality
due to Trefethen [126] and the H2 interpolatory conditions of Meier and Luenberger
[96]. In fact, a SISO reduced model that interpolates the original model at 2n+1 in-
terpolation points in the open right-half of the complex plane and yields an error with
constant modulus over the imaginary axis is known to be an H∞-optimal approxima-
tion. In the SISO case, 2n interpolation conditions can be achieved by means of rational
interpolation, while an additional interpolation point is generally attained at s → ∞
when Dr =D is chosen. By modifying the reduced feed-through while preserving the
original interpolation points, the additional interpolation point in the right half-plane
can be introduced, while at the same time trying to achieve a nearly constant modulus
of the error over the imaginary axis. The parametrization in terms of Dr of all reduced
order models satisfying particular interpolatory conditions is due to Mayo and Antoulas
[95] and Bettie and Gugercin [15]. While in these works particular projection bases are
required, the result has been generalized to arbitrary bases during this thesis in [36].
In addition, constant modulus of the error system over the imaginary axis can be inter-
preted from approaches in potential theory in the complex plane as an equipotential with
charges distributed symmetrically with respect to the imaginary axis. When charges
are interpreted as transfer function poles and sinks as transfer function zeros, a link
to H2-optimal reduction can be drawn, where the Meier-Luenberger conditions impose
exactly this type of symmetric distribution with respect to the imaginary axis of poles
and zeros (i.e. interpolation points).
In the following section we will discuss the extension of the Ansatz by Flagg, Beattie

and Gugercin [54] to MIMO models that was presented in [36]. Before that, note that
for any nth-order approximation Gr(s), following lower bound on the H∞ error holds

‖G−Gr‖H∞ ≥ ςn+1, (3.15)

where ςn+1 corresponds to the n + 1st Hankel singular value. This lower bound can be
used in a sufficient way to have an indication of “how far” a given reduced-order model
is at most from the optimal H∞ approximation.

3.3.1 MIMO Interpolatory H∞ Approximations*

The manuscript [36] presents an interpolatory approach to generate near-optimal H∞
approximations for MIMO models. In the MIMO case, the H∞ norm of the error
(i.e. the maximum singular value of the transfer function matrix G(s) − Gr(s)) may
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not be analytic along the imaginary axis. For this reason, there does not seem to
be a straightforward extension of Trefethen’s result on sufficient conditions for H∞
optimality. Nevertheless, it is easy to argue that, assuming the maximum singular
value of the approximation error were constant along the imaginary axis, then a change
in approximation parameters is likely to increase the maximum singular value at some
frequency while possibly reducing it for some other. Following this thought (which will
be to some extent confirmed by the numerical examples at the end of this section),
also in the MIMO case it appears beneficial to start the generation of H∞-optimal
reduced-order models by first performing H2-optimal reduction, e.g., by IRKA.

Minimization of the H∞ error with respect to Dr Once an H2-optimal reduced-
order model is obtained, it is preferable to preserve the favorable selection of tangential
interpolatory conditions. That said, the reduced-order model is uniquely identified
except for the remaining p+m parameters in the reduced feed-through matrix. Using
the Sherman-Morrison-Woodbury formula, the modified reduced-order model can be
decomposed into the sum of the IRKA reduced model and the change induced by the
reduced feed-through, i.e.

GD
r (s,Dr) = G0

r(s) + ∆GD
r (s,Dr), (3.16)

where the expressions for GD
r (s,Dr) are given in [36]. Accordingly, the H∞-optimal

reduced order model can be found by solving

D∗r = arg min
Dr
‖G−GD

r (Dr)‖H∞ (3.17)

with the additional constraint of requiring GD
r (s,Dr) to be stable.

Solving the H∞ optimization efficiently If we could solve (3.17) efficiently, then
the resulting reduced-order model would indeed be (locally) H∞-optimal. However, as
the error system G(s)−GD

r (s,Dr) is of order N+n, this computation is not feasible for
large-scale models. To alleviate this problem, surrogate optimization is proposed. In
fact, by using the samples of the transfer function of the full-order model taken during
IRKA, data-driven approaches such as the Lowner framework [95] or vector fitting [43,
70] can be used to build a middle-sized surrogate model to be used during optimization.
This makes this approach tractable even for very large-scale models. Nevertheless, as
surrogate optimization is implemented, the resulting reduced-order model cannot be



26 3 Optimal Model Reduction by Tangential Interpolation

expected to be optimal, but hopefully close to optimal.

Numerical results Figure 3 shows numerical results obtained with the heatmodel
example. The approximation errors in Figure 3a are divided by the theoretical lower
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Figure 3: Numerical results using MIHA on the heatmodel example.

bound (3.15), meaning that values close to 1 are actually (at least close to) optimal.
Also note how the surrogate optimization with the vector fitting [43, 70] surrogate
(MIHA VF) has only minimal influence on the quality of the reduction. For the same
model, Figure 3b shows the singular values over the imaginary axis before and after
the additional Dr optimization for a reduced order n= 2. Notice how the maximum
singular value for the MIHA reduced model is almost perfectly flat over the imaginary
axis, confirming our intuition on H∞-optimal approximations.



4 Numerical Tools for Model
Reduction

It is impossible to talk about the theory of model reduction without making a direct
link to the numerical aspects of putting the developed algorithms into practice. In fact,
reduction algorithms that are promising from a theoretical standpoint are of no use
if they cannot be ultimately applied efficiently for the large-scale problems that arise
in real-life applications, often exceeding the order of magnitude O (N) ≈ 105 . . . 106.
While this chapter cannot go into the details of numerical linear algebra as required
for model reduction, its scope is to raise the awareness to some particular topics that
should be kept in mind and ultimately reference to existing software tools.
One central aspect in the numerical treatment of large-scale models is that the main

limiting factor is determined by the available storage, while the required computational
time to perform operations takes a subordinate role. Luckily, large-scale models often
come in sparse representations [115], as generally the elements of the state vector are
only influenced by neighboring elements. Therefore, it is of primary importance to
preserve the sparsity throughout the numerical computations, as otherwise the resulting
fill-in may cause to exceed the available memory. This is the primary reason why,
e.g. the Lyapunov equations required for the balanced truncation reduction cannot
be computed using direct methods such as Bartel-Stewart or Hammarling. Indeed,
one of the few computations that can be performed efficiently for large, sparse models
are LSEs. In fact, through reordering and clever pivoting, LU decompositions can be
tailored to reduce the fill-in [39]. Even so, the size or the structure of the problem
may be prohibitive even for sparse direct methods, requiring indirect methods for the
solution of the LSEs, which involve only matrix-vector multiplications [115].

4.1 The sss and sssMOR Toolboxes*

During this thesis, the sss and sssMOR MATLAB toolboxes have been developed and
released to make classic as well as modern efficient model reduction algorithms accessible
to a vast audience of both expert and non-expert users. An introduction is given in [32].
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While sss is focused on the definition and analysis of sparse large-scale models, sssMOR
provides functions to efficiently reduce sss models. The toolboxes are characterized
by exploiting syntax and functionality of MATLAB’s Control System Toolbox1, which
by itself is unfortunately unfit to deal with large-scale models as the sparsity of the
system matrices is destroyed. The separation of the two toolboxes bears the advantage
of allowing the use of sss models also in other applications where reduction may not
be required. An example of this is the taX toolbox2 [48] for the definition and analysis
of thermo-acustic networks.
Dynamical models can be defined using the command sys = sss(A,B,C,D,E); and

based on these sss objects, a large number of functions known from the Control System
Toolbox, such as bode, step, impulse, isstable, norm etc. has been included in
the sss toolbox to analyze large-scale models in an efficient way. In addition, classic and
state-of-the-art model reduction routines such as projectiveMor, modalMor, tbr,
rk, irka, isrk, cirka, gcirka, hinfMor etc. are implemented to obtain reduced-
order models preserving certain properties of the original model and targeted at ob-
taining minimal approximation errors with respect to different error measures.
The development has always had usability and customizability as the two primary

goals. The former is achieved by consistency to MATLAB’s built-in functions, com-
prehensive documentation and automatic choice of meaningful reduction parameters,
forcing unexperienced users to select only as few reduction parameters as necessary.
For example, the function tbr can be called with only the respective sss model as in-
put, in which case a plot with the relative decay of Hankel singular values will appear,
prompting the user to select a reduced order. As another example, the function irka
can be called with as little as the sss model and a desired reduced order, performing
internally all required initializations and selections of execution parameters. The lat-
ter is achieved by allowing the definition of a large number of execution parameters,
which is achieved by simply passing one additional input, allowing experienced users
an in-depth tailoring of the function execution.
The development of the sss and sssMOR toolboxes has involved overall a large num-

ber of people, starting from the initiators Heiko Peuscher (né Panzer), Rudy Eid and
Sylvia Cremer who had the idea of using a “sparse state space” class to extend the
capabilities of the built-in Control System Toolbox, and who programmed the core
functionality of sss and sssMOR long before the research related to this thesis was

1MATLAB and Control System Toolbox 2016b, The MathWorks, Inc., Natick, Massachusetts, United
States.

2Available at https://www.tfd.mw.tum.de/index.php?id=33

https://www.tfd.mw.tum.de/index.php?id=33
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started. The desire to make the functions available to a vast audience is what has
driven me to take on this project from the very beginning of my doctoral studies. From
simple retouching and commenting, the desire to improve and increase the functionality
has resulted in a large number of modifications and improvements, which ultimately led
to the current form of the toolboxes as they are available on the homepage of the Chair
of Automatic Control3, on the File Exchange in MATLAB Central4 and on the devel-
opment platform GitHub5. This entire effort would not have been nearly as successful
without the dedicated work of my colleague Maria Cruz Varona, who embarked this
project enthusiastically right from the start, and a team of students that I would like to
mention explicitly in chronological order: Lisa Jeschek, Jorge Luiz Moreira Silva, Ro-
drigo Mancilla, Siyang Hu, Michael Ott, Max Gille, Jonathan Seiti Miura, Jonas Ferber,
Maximilian Loderer, Niklas Kochdumper and Paul Heidenreich. In addition, during the
cooperation with the Professur of Thermofluiddynamik at Technical University of Mu-
nich, Stefan Jaensch and Thomas Emmert have contributed to the development of sss.
Furthermore, the automatic generation of MATLAB documentation has been greatly
supported by the cooperation with Philip Holzwarth and Nico-Philipp Walz from the
MOREMBS6 team. Last but not least, the integration of the M-M.E.S.S.7 Toolbox
[117] into sss to efficiently solve large-scale matrix equations has been supported by
Jens Saak.

sss and sssMOR are free, open-source software tools with over 1500 downloads by the
time this manuscript was written. The development has been moved to the well-known
platform GitHub with the hope to engage the model reduction community in contribut-
ing, maintaining and improving the toolboxes, adding further reduction methods and
hence providing a common platform to

a) compare different methods and reproduce numerical results from literature,

b) increase the number of available analysis and reduction methods for expert and
non-expert users.

Finally, note that an extension for the analysis and reduction of parametric models has
been recently added in form of the psssMOR toolbox8.

3Available at https://www.rt.mw.tum.de/?sssMOR
4Available at https://de.mathworks.com/matlabcentral/fileexchange/59169-sssmor-toolbox
5Available at https://github.com/MORLab/sssMOR
6Available at http://www.itm.uni-stuttgart.de/research/morembs/
7Available at https://www.mpi-magdeburg.mpg.de/projects/mess
8Available at https://www.rt.mw.tum.de/forschung/morlab/software/psssmor/

https://www.rt.mw.tum.de/?sssMOR
https://de.mathworks.com/matlabcentral/fileexchange/59169-sssmor-toolbox
https://github.com/MORLab/sssMOR
http://www.itm.uni-stuttgart.de/research/morembs/
https://www.mpi-magdeburg.mpg.de/projects/mess
https://www.rt.mw.tum.de/forschung/morlab/software/psssmor/


30 4 Numerical Tools for Model Reduction

4.2 Other Tools

In recent years, many efforts have been done in the model reduction community to
develop efficient model reduction tools and making them publicly available. An updated
overview of model reduction software can be found in the MORWiki [99] at https:
//morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Category:Software and is
therefore omitted at this point for brevity. In addition, conceptual work has been put
forward by Jörg Fehr, Jan Heiland, Christian Himpe and Jens Saak on how to generally
increase replicability, reproducibility, reusability of numerical examples [50].

https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Category:Software
https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Category:Software


5 Summary of Achievements and
Outlook

In this thesis, current advances in the fields of H2- and H∞-optimal model reduction for
linear time-invariant multiple-input multiple-output dynamical systems are presented.
A new framework is introduced that can significantly reduce the cost of H2-optimal
model reduction, making it even more efficient in the reduction of very large-scale
models. At the same time, optimality is guaranteed by observing particular update
conditions. Moreover, the Model Function resulting from this new framework has been
used to estimate the reduction error. Furthermore, possible extensions of this frame-
work to other system classes have been introduced. In addition, a first numerically
efficient approach targeted at finding the globally H2-optimal reduced order model of
fixed order has been presented. Moreover, a numerically efficient method to obtain
reduced-order models with nearly-optimal H∞-error for system with multiple-inputs
multiple-outputs has been presented. Finally, numerical tools in the form of the sss
and sssMOR MATLAB toolboxes have been presented, which deliver state-of-the-art
model reduction algorithms to both expert and non-expert users.

The problem of finding guaranteed H∞-optimal reduced-order models is still open
and requires further investigation. More generally, the task to estimate rigorously and
globally the reduction error is still open and could not be tackled in this thesis. Related
to this is the problem of finding a suitable reduced order for model reduction by rational
interpolation. That said, the Model Function resulting from the homonymous frame-
work could be used in combination with the Cumulative Reduction (CURE) framework
[103, 134] to construct reduced order models in a cumulative fashion while recycling
and using the Model Function to estimate the reduction error. First investigations have
been conducted in [74] and in unpublished work by the author of this thesis. Finally,
numerical investigations on the effectiveness of applying the Model Function framework
to other system classes are still open.
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Acknowledgment of foreign scientific contributions

Following people have been involved to some extent in the work presented in this thesis:

◦ Stephan Jaensch and Heiko Peuscher (né Panzer) introduced the preliminary idea
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cilla, Siyang Hu, Michael Ott, Max Gille, Jonathan Seiti Miura, Jonas Ferber,
Maximilian Loderer, Niklas Kochdumper and Paul Heidenreich.

◦ Michael Ott has contributed in his Bachelors Thesis to the analysis of different
initialization strategies for H2-optimal model reduction.

◦ Siyang Hu has contributed in his Masters Thesis to the development of a globalized
H2 reduction approach and to first investigations regarding the recycling of the
Model Function within the Cumulative Reduction (CURE) framework to estimate
a suitable reduced order exploiting the Model Function.



References
Own Publications
[32] A. Castagnotto, M. Cruz Varona, L. Jeschek, and B. Lohmann. sss & sssMOR:

Analysis and Reduction of Large-Scale Dynamic Systems in MATLAB. at-Auto-
matisierungstechnik, 65.2 (2017), 134–150 (cf. p. 27).

[33] A. Castagnotto, S. Hu, and B. Lohmann. An Approach for Globalized H2-
Optimal Model Reduction. IFAC-PapersOnLine, 51.2 (2018), 196–201 (cf. pp.
17, 22, 23).

[34] A. Castagnotto and B. Lohmann. A New Framework for H2-Optimal Model Re-
duction. Mathematical and Computer Modelling of Dynamical Systems, (2018),
1–22 (cf. pp. 19–21).

[35] A. Castagnotto, H.K. F. Panzer, and B. Lohmann. Fast H2-Optimal Model
Order Reduction Exploiting the Local Nature of Krylov-Subspace Methods. In:
2016 European Control Conference (ECC). Aalborg, Denmark, 2016, 1958–1969
(cf. pp. 19, 20).

[36] A. Castagnotto, C.A. Beattie, and S. Gugercin. Interpolatory Methods for H∞
Model Reduction of Multi-Input/Multi-Output Systems. In: Model Reduction
of Parametrized Systems. Ed. by P. Benner, M. Ohlberger, A. Patera, G. Rozza,
and K. Urban. Vol. 17. MS&A (Modeling, Simulation and Applications). Cham:
Springer International Publishing, 2017, 349–365 (cf. pp. 21, 24, 25).

Other Publications
[1] V. Adamjan, D. Arov, and M. Krein. Infinite Hankel block matrices and related

extension problems. American Mathematical Society Translations, 111 (1978),
133–156 (cf. p. 8).

[2] M. I. Ahmad, P. Benner, and P. Goyal. Krylov subspace-based model reduction
for a class of bilinear descriptor systems. J. Comput. Appl. Math. 315 (2017),
303–318 (cf. p. 17).

[3] B.D.O. Anderson and A.C. Antoulas. Rational interpolation and state-variable
realizations. Linear Algebra Appl. 137/138 (1990), 479–509 (cf. p. 5).

[4] A.C. Antoulas. Approximation of Large-Scale Dynamical Systems. Vol. 6. Ad-
vances in Design and Control. Philadelphia, PA: SIAM Publications, 2005 (cf.
pp. 4, 8, 14, 15).



34 5 Summary of Achievements and Outlook

[5] A.C. Antoulas, D.C. Sorensen, and S. Gugercin. A survey of model reduction
methods for large-scale systems. Contemp. Math. 280 (2001), 193–219 (cf. p. 4).

[6] A. Antoulas and D. Sorensen. Approximation of large-scale dynamical systems:
An overview. Int. J. Appl. Math. Comput. Sci. 11.5 (2001), 1093–1121 (cf. pp.
11, 20).

[7] A. Astolfi. A new look at model reduction by moment matching for linear
systems. In: 46th IEEE Conference on Decision and Control. 2007, 4361–4366
(cf. pp. 5, 11).

[8] A. Astolfi. Model reduction by moment matching for linear and nonlinear sys-
tems. IEEE Transactions on Automatic Control, 55.10 (2010), 2321–2336 (cf.
pp. 5, 11).

[9] Z. Bai, R.D. Slone, W.T. Smith, and Q. Ye. Error Bound for Reduced System
Model by Padé Approximation via the Lanczos Process. IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst. 18.2 (1999), 133–141 (cf. p. 11).

[10] G.A. Baker and P. Graves-Morris. Padé approximants. Vol. 59. Cambridge
University Press, 1996 (cf. p. 9).

[11] M.C.C. Bampton and R.R. Craig Jr. Coupling of substructures for dynamic
analyses. AIAA Journal, 6.7 (1968), 1313–1319 (cf. p. 7).

[12] N. Banagaaya, L. Feng, W. Schoenmaker, P. Meuris, A. Wieers, R. Gillon, and
P. Benner. Model order reduction for nanoelectronics coupled problems with
many inputs. In: Proceedings of the 2016 Conference on Design, Automation &
Test in Europe. 2016, 313–318 (cf. p. 3).

[13] L. Baratchart, M. Cardelli, and M. Olivi. Identification and rational L 2 ap-
proximation A gradient algorithm. Automatica, 27.2 (1991), 413–417 (cf. p.
15).

[14] C.A. Beattie and S. Gugercin. A trust region method for optimal H2 model
reduction. In: IEEE Conference on Decision and Control. 2009 (cf. pp. 14, 17,
21).

[15] C.A. Beattie and S. Gugercin. Realization-independent H2-approximation. In:
51st IEEE Conference on Decision and Control. 2012, 4953–4958 (cf. pp. 5, 17,
24).

[16] C.A. Beattie and S. Gugercin. Model Reduction by Rational Interpolation. In:
Model Reduction and Approximation: Theory and Algorithms. SIAM, 2017, 297–
334 (cf. pp. 6, 9, 10, 14–16).

[17] P. Benner. Numerical Linear Algebra for Model Reduction in Control and Sim-
ulation. GAMM-Mitt. 29.2 (2006), 275–296 (cf. p. 4).

[18] P. Benner and T. Breiten. Interpolation-based H2-model reduction of bilinear
control systems. SIAM J. Matrix Anal. Appl. 33.3 (2012), 859–885 (cf. p. 17).



35

[19] P. Benner, M. Castillo, E. Quintana-Ortí, and G. Quintana-Ortí. Parallel Model
Reduction of Large-Scale Unstable Systems. In: Parallel Computing: Software
Technology, Algorithms, Architectures & Applications. Ed. by G.R. Joubert,
W.E. Nagel, F. J. Peters, and W.V. Walter. Vol. 13. Advances in Parallel
Computing. Elsevier, 2004, 251–258 (cf. p. 3).

[20] P. Benner and P. Goyal. Multipoint Interpolation of Volterra Series and H2-
Model Reduction for a Family of Bilinear Descriptor Systems. Syst. Control
Lett. 97 (2016), 1–11 (cf. p. 17).

[21] P. Benner, P. Goyal, and S. Gugercin. H2-Quasi-Optimal Model Order Reduc-
tion for Quadratic-Bilinear Control Systems. arXiv e-prints 1610.03279. Cornell
University, 2016 (cf. p. 17).

[22] P. Benner, P. Kürschner, and J. Saak. A Reformulated Low-Rank ADI Iteration
with Explicit Residual Factors. Proc. Appl. Math. Mech. 13.1 (2013), 585–586
(cf. p. 8).

[23] P. Benner and E. S. Quintana-Ortí. Model Reduction Based on Spectral Pro-
jection Methods. In: Dimension Reduction of Large-Scale Systems. Ed. by P.
Benner, V. Mehrmann, and D. Sorensen. Vol. 45. Lect. Notes Comput. Sci. Eng.
Springer-Verlag, Berlin/Heidelberg, Germany, 2005, 5–45 (cf. p. 3).

[24] P. Benner, E. S. Quintana-Ortí, and G. Quintana-Ortí. Computing Optimal
Hankel Norm Approximations of Large-Scale Systems. In: Proc. 43rd IEEE
Conf. Decision Contr. Omnipress, Madison, WI, 2004, 3078–3083 (cf. p. 8).

[25] P. Benner and A. Schneider. Model Reduction for Linear Descriptor Systems with
Many Ports. In: Progress in Industrial Mathematics at ECMI 2010. Ed. by M.
Günther, A. Bartel, M. Brunk, S. Schöps, and M. Striebel. Vol. 17. Mathematics
in Industry. Berlin: Springer-Verlag, 2012, 137–143 (cf. p. 3).

[26] P. Benner, Z. Tomljanović, and N. Truhar. Optimal damping of selected eigen-
frequencies using dimension reduction. Numer. Lin. Alg. Appl. 20.1 (2013), 1–17
(cf. p. 21).

[27] P. Benner, L. Feng, and E.B. Rudnyi. Using the superposition property for
model reduction of linear systems with a large number of inputs. In: Proceedings
of the 18th International Symposium on Mathematical Theory of Networks &
Systems. 2008 (cf. p. 3).

[28] P. Benner, P. Kürschner, and J. Saak. Self-generating and efficient shift param-
eters in ADI methods for large Lyapunov and Sylvester equations. Electronic
Transactions on Numerical Analysis, 43 (2014), 142–162 (cf. pp. 8, 18).

[29] P. Benner and T. Stykel. Model Order Reduction for Differential-Algebraic Equa-
tions: A Survey. In: Surveys in Differential-Algebraic Equations IV. Ed. by A.
Ilchmann and T. Reis. Differential-Algebraic Equations Forum. Cham: Springer
International Publishing, 2017, 107–160 (cf. p. 3).

[30] C. Brezinski. Padé-type approximation and general orthogonal polynomials. Springer,
1980 (cf. p. 5).



36 5 Summary of Achievements and Outlook

[31] A. Bunse-Gerstner, D. Kubalinska, G. Vossen, and D. Wilczek. h2-norm optimal
model reduction for large scale discrete dynamical MIMO systems. J. Comput.
Appl. Math. 233.5 (2010), 1202–1216 (cf. pp. 15, 16).

[37] Y. Chahlaoui and P. Van Dooren. A collection of benchmark examples for model
reduction of linear time invariant dynamical systems. Tech. rep. 2002–2. SLICOT
Working Note, 2002 (cf. p. 22).

[38] R.R. Craig Jr. Substructure Methods in Vibration. Journal of Vibration and
Acoustics, 117.B (1995), 207–213 (cf. p. 7).

[39] T. Davis. Direct Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, 2006 (cf. pp. 4, 27).

[40] E. J. Davison. A method for simplifying linear dynamic systems. IEEE Trans.
Autom. Control, AC–11 (1966), 93–101 (cf. p. 7).

[41] J. Demmel. Applied Numerical Linear Algebra. Society for Industrial and Applied
Mathematics, 1997 (cf. pp. 4, 7).

[42] Z. Drmač, S. Gugercin, and C.A. Beattie. Quadrature-Based Vector Fitting for
Discretized H2 Approximation. SIAM Journal on Scientific Computing, 37.2
(2015), A625–A652 (cf. p. 5).

[43] Z. Drmač, S. Gugercin, and C.A. Beattie. Vector Fitting for Matrix-valued
Rational Approximation. SIAM Journal on Scientific Computing, 37.5 (2015),
A2346–A2379 (cf. pp. 5, 25, 26).

[44] V. Druskin and V. Simoncini. Adaptive rational Krylov subspaces for large-scale
dynamical systems. Syst. Control Lett. 60.8 (2011), 546–560 (cf. pp. 8, 18).

[45] V. Druskin, V. Simoncini, and M. Zaslavsky. Adaptive Tangential Interpolation
in Rational Krylov Subspaces for MIMO Dynamical Systems. SIAM J. Matrix
Anal. Appl. 35.2 (2014), 476–498 (cf. pp. 8, 18).

[46] R. Eid. Time domain model reduction by moment matching. Dissertation.
Munich, Germany: Technical University of Munich, 2009 (cf. p. 18).

[47] R. Eid, H.K. F. Panzer, and B. Lohmann. How to choose a single expansion
point in Krylov-based model reduction. Technical Reports on Automatic Control
2. Institute of Automatic Control, Technical University of Munich, 2009 (cf. p.
18).

[48] T. Emmert, S. Jaensch, C. Sovardi, and W. Polifke. taX—A Flexible Tool for
Low-Order Duct Acoustic Simulation in Time and Frequency Domain. In: Forum
Acusticum, Krakow, Poland. 2014, 7–12 (cf. p. 28).

[49] D. F. Enns. Model reduction with balanced realizations: An error bound and a
frequency weighted generalization. In: Proc. 23rd IEEE Conf. Decision Contr.
Vol. 23. 1984, 127–132 (cf. p. 8).

[50] J. Fehr, J. Heiland, C. Himpe, and J. Saak. Best Practices for Replicability,
Reproducibility and Reusability of Computer-Based Experiments Exemplified
by Model Reduction Software. AIMS Mathematics, 1.3 (2016), 261–281 (cf. p.
30).



37

[51] P. Feldmann. Model order reduction techniques for linear systems with large
numbers of terminals. In: Proceedings Design, Automation and Test in Europe
Conference and Exhibition. Vol. 2. 2004, 944–947 Vol.2 (cf. p. 3).

[52] P. Feldmann and R.W. Freund. Efficient linear circuit analysis by Padé approx-
imation via the Lanczos process. IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst. 14 (1995), 639–649 (cf. p. 9).

[53] L. Feng, A.C. Antoulas, and P. Benner. Some a posteriori error bounds for
reduced-order modelling of (non-)parametrized linear systems. ESAIM: M2AN,
51.6 (2017), 2127–2158 (cf. p. 11).

[54] G.M. Flagg, C.A. Beattie, and S. Gugercin. InterpolatoryH∞ Model Reduction.
Syst. Control Lett. 62.7 (2013), 567–574 (cf. p. 24).

[55] G.M. Flagg and S. Gugercin. Multipoint Volterra Series Interpolation and H2
Optimal Model Reduction of Bilinear Systems. SIAM J. Numer. Anal. 36.2
(2015), 549–579 (cf. p. 17).

[56] G. Flagg, C.A. Beattie, and S. Gugercin. Convergence of the iterative rational
Krylov algorithm. Syst. Control Lett. 61 (2012), 688–691 (cf. p. 17).

[57] G.M. Flagg. An Interpolation-Based Approach to the Optimal H∞ Model Re-
duction. MA thesis. Virginia Polytechnic Institute and State University, 2009
(cf. p. 24).

[58] P. Fulcheri and M. Olivi. Matrix Rational H2 Approximation: A Gradient Algo-
rithm Based on Schur Analysis. SIAM Journal on Control and Optimization, 36.6
(1998), 2103–2127. eprint: https://doi.org/10.1137/S0363012995284230
(cf. p. 15).

[59] K. Gallivan, E. Grimme, and P. Van Dooren. A rational Lanczos algorithm for
model reduction. Numer. Algorithms, 12 (1996), 33–63 (cf. p. 9).

[60] K. Gallivan, A. Vandendorpe, and P. Van Dooren. Model reduction of MIMO
systems via tangential interpolation. SIAM J. Matrix Anal. Appl. 26.2 (2004),
328–349 (cf. pp. 9, 10).

[61] K. Glover. All optimal Hankel-norm approximations of linear multivariable sys-
tems and their L∞-error norms. Internat. J. Control, 39.6 (1984), 1115–1193 (cf.
p. 8).

[62] W.B. Gragg and A. Lindquist. On the partial realization problem. Linear
Algebra Appl. 50 (1983), 277–319 (cf. p. 5).

[63] K.M. Grigoriadis. Optimal H∞ model reduction via linear matrix inequalities:
continuous and discrete-time cases. In: Proceedings of the 34th IEEE Conference
on Decision and Control. Vol. 3. 1995, 3074–3079 (cf. p. 23).

[64] E. J. Grimme. Krylov projection methods for model reduction. PhD thesis. Univ.
of Illinois at Urbana-Champaign, USA, 1997 (cf. pp. 9, 18).

[65] S. Gugercin. Projection methods for model reduction of large-scale dynamical
systems. PhD thesis. Rice University, 2002 (cf. pp. 11, 14, 17, 18).

https://doi.org/10.1137/S0363012995284230


38 5 Summary of Achievements and Outlook

[66] S. Gugercin and A.C. Antoulas. A survey of balancing methods for model re-
duction. In: Proc. European Control Conf. ECC 2003, Cambridge, UK. 2003
(cf. pp. 15, 17).

[67] S. Gugercin, A.C. Antoulas, and C.A. Beattie. H2 Model Reduction for Large-
Scale Dynamical Systems. SIAM J. Matrix Anal. Appl. 30.2 (2008), 609–638 (cf.
pp. 15–18).

[68] S. Gugercin, T. Stykel, and S. Wyatt. Model Reduction of Descriptor Systems by
Interpolatory Projection Methods. SIAM J. Sci. Comput. 35.5 (2013), B1010–
B1033 (cf. pp. 3, 17).

[69] S. Gugercin and A. Antoulas. An H2 error expression for the Lanczos procedure.
In: Proceedings. 42nd IEEE Conference on Decision and Control. Vol. 2. 2003,
1869–1872 (cf. pp. 14, 18).

[70] B. Gustavsen and A. Semlyen. Rational approximation of frequency domain
responses by vector fitting. Power Delivery, IEEE Transactions on, 14.3 (1999),
1052–1061 (cf. pp. 5, 25, 26).

[71] J. S. Han, E.B. Rudnyi, and J.G. Korvink. Efficient optimization of transient
dynamic problems in MEMS devices using model order reduction. Journal of
Micromechanics and Microengineering, 15.4 (2005), 822 (cf. p. 21).

[72] A. Helmersson. Model reduction using LMIs (1994) (cf. p. 23).
[73] R. Horst and P.M. Pardalos. Handbook of global optimization, volume 2 of

Nonconvex Optimization and its Applications. Kluwer Academic Publishers, 2.3
(1995), 4 (cf. p. 23).

[74] S. Hu. Global H2-Optimal Model Reduction with Adaptive Choice of Reduced
Order. MA thesis. Technical University of Munich, 2017 (cf. pp. 17, 23, 31).

[75] D.C. Hyland and D. Bernstein. The optimal projection equations for model
reduction and the relationships among the methods of Wilson, Skelton, and
Moore. IEEE Transactions on Automatic Control, 30.12 (1985), 1201–1211 (cf.
pp. 15, 16).

[76] T.C. Ionescu, A. Astolfi, and P. Colaneri. Families of moment matching based,
low order approximations for linear systems. Systems & Control Letters, 64
(2014), 47–56 (cf. pp. 5, 11).

[77] S. Jaensch. H2-optimale Entwicklungspunktwahl bei der Modellordnungsreduk-
tion mit Krylov-Unterraum-Verfahren. MA thesis. Technical University of Mu-
nich, 2012 (cf. p. 19).

[78] T. Kailath. Linear Systems. Prentice-Hall, Inc., New Jersey, 1980 (cf. pp. 4, 7).
[79] R. Kalman. On partial realizations, transfer functions and canonical forms. Acta

Polytechnica Scandinavica, 31 (1979), 9–32 (cf. p. 5).
[80] R. E. Kalman, P. L. Falb, and M.A. Arbib. Topics in mathematical system theory.

Vol. 1. McGraw-Hill New York, 1969 (cf. pp. 4, 5).



39

[81] B. Kramer and S. Gugercin. Tangential interpolation-based eigensystem real-
ization algorithm for MIMO systems. Math. Comput. Model. Dyn. Syst. 22.4
(2016), 282–306 (cf. p. 5).

[82] P. Kunkel and V. Mehrmann. Differential-algebraic equations. EMS textbooks
in mathematics. European Math. Soc., Zürich, 2006 (cf. p. 3).

[83] P. Kürschner. Efficient Low-Rank Solution of Large-Scale Matrix Equations.
PhD thesis. Shaker Verlag Aachen, 2016 (cf. pp. 8, 18).

[84] M. Lal and R. Mitra. Simplification of large system dynamics using a moment
evaluation algorithm. IEEE Transactions on Automatic Control, 19.5 (1974),
602–603 (cf. p. 9).

[85] S. Lefteriu and A.C. Antoulas. A new approach to modeling multiport systems
from frequency-domain data. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 29.1 (2010), 14–27 (cf. p. 5).

[86] D. J. Leith and W.E. Leithead. Survey of gain-scheduling analysis and design.
International journal of control, 73.11 (2000), 1001–1025 (cf. p. 4).

[87] A. Lepschy, G. Mian, G. Pinato, and U. Viaro. Rational L2 approximation: a
non-gradient algorithm. In: 32nd IEEE Conference on Decision and Control.
Vol. 3. 1991, 2321–2323 (cf. p. 15).

[88] J.-R. Li and J. White. Reduction of large circuit models via low rank approximate
gramians. Int. J. Appl. Math. Comput. Sci. 11.5 (2001), 1151–1171 (cf. p. 8).

[89] J. Liesen and Z. Strakos. Krylov subspace methods: principles and analysis.
Numerical Mathematics and Scientific Computation. Oxford University Press,
2012 (cf. p. 7).

[90] L. Litz. Reduktion der Ordnung linearer Zustandsraummodelle mittels modaler
Verfahren. Vol. 4. Hochschulsammlung Ingenieurwissenschaft : Datenverar-
beitung. Stuttgart: Hochschul-Verlag, 1979, 164 (cf. p. 7).

[91] S. Lloyd. Least squares quantization in PCM. IEEE transactions on information
theory, 28.2 (1982), 129–137 (cf. p. 23).

[92] C. Magruder, C.A. Beattie, and S. Gugercin. Rational Krylov methods for
optimal L2 model reduction. In: 49th IEEE Conference on Decision and Control
(CDC). 2010, 6797–6802 (cf. p. 3).

[93] S.A. Marshall. An Approximate Method for reducing the Order of a Linear
System. Internat. J. Control, 10 (1966), 642–643 (cf. p. 7).

[94] N. Martins, L. T.G. Lima, and H. J. C. P. Pinto. Computing dominant poles of
power system transfer functions. IEEE Trans. Power Syst. 11.1 (1996), 162–170
(cf. p. 7).

[95] A. J. Mayo and A.C. Antoulas. A framework for the solution of the generalized
realization problem. Linear Algebra Appl. 425.2-3 (2007), 634–662 (cf. pp. 5, 24,
25).



40 5 Summary of Achievements and Outlook

[96] L. Meier and D.G. Luenberger. Approximation of Linear Constant Systems.
IEEE Transactions on Automatic Control, 12.5 (1967), 585–588 (cf. pp. 15, 16,
24).

[97] B.C. Moore. Principal Component Analysis in Nonlinear Systems: Preliminary
Results. In: 18th IEEE Conference on Decision and Control including the Sym-
posium on Adaptive Processes. Vol. 2. 1979, 1057–1060 (cf. p. 7).

[98] B.C. Moore. Principal component analysis in linear systems: controllability, ob-
servability, and model reduction. IEEE Trans. Autom. Control, AC–26.1 (1981),
17–32 (cf. p. 7).

[99] The MORwiki Community. MORWiki - Model Order Reduction Wiki. http:
//modelreduction.org (cf. p. 30).

[100] C. Mullis and R. Roberts. Synthesis of minimum roundoff noise fixed point
digital filters. IEEE Transactions on Circuits and Systems, 23.9 (1976), 551–562
(cf. p. 7).

[101] M. Ott. Strategien zur Initialisierung der Entwicklungspunkte für H2-Optimale
Modellordnungsreduktion. Bachelor Thesis. Technical University of Munich,
2016 (cf. pp. 17, 18).

[102] H. Padé. Sur la représentation approchée d’une fonction par des fractions ra-
tionnelles. 740. Gauthier-Villars et fils, 1892 (cf. p. 5).

[103] H.K. F. Panzer. Model Order Reduction by Krylov Subspace Methods with
Global Error Bounds and Automatic Choice of Parameters. Dissertation. Mu-
nich, Germany: Technical University of Munich, 2014 (cf. pp. 17–19, 21, 31).

[104] H.K. F. Panzer, T. Wolf, and B. Lohmann. H2 and H∞ Error Bounds for Model
Order Reduction of Second Order Systems by Krylov Subspace Methods. In:
Proc. European Control Conf. ECC 2013, Zurich. 2013, 4484–4489 (cf. p. 11).

[105] H. Panzer, S. Jaensch, T. Wolf, and B. Lohmann. A Greedy Rational Krylov
Method for H2-Pseudooptimal Model Order Reduction with Preservation of Sta-
bility. In: Proceedings of the American Control Conference. 2013, 5512–5517 (cf.
pp. 17, 18, 21).

[106] B. Peherstorfer, S. Gugercin, and K. Willcox. Data-Driven Reduced Model Con-
struction with Time-Domain Loewner Models. SIAM Journal on Scientific Com-
puting, 39.5 (2017), A2152–A2178 (cf. p. 5).

[107] T. Penzl. Algorithms for model reduction of large dynamical systems. Linear
Algebra Appl. 415.2–3 (2006), 322–343 (cf. p. 8).

[108] T. Penzl. A cyclic low-rank Smith method for large sparse Lyapunov equations.
SIAM Journal on Scientific Computing, 21.4 (2000), 1401–1418 (cf. pp. 8, 18).

[109] L. T. Pillage and R.A. Rohrer. Asymptotic waveform evaluation for timing anal-
ysis. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 9.4 (1990), 352–
366 (cf. pp. 5, 9).

http://modelreduction.org
http://modelreduction.org


41

[110] J.D. Pintér. Global optimization in Action. Dordrecht-Boston-London: Kluwer
Academic Publishers, 1996, 54–63 (cf. p. 23).

[111] N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P.K.
Tucker. Surrogate-based analysis and optimization. Progress in aerospace sci-
ences, 41.1 (2005), 1–28 (cf. p. 21).

[112] R. Rao and S.K. Mitra. Further Contributions to the Theory of Generalized In-
verses of Matrices and Its Applicaitons. Sankhya: The Indian Journal of Statis-
tics, 33.3 (1971), 289–300 (cf. p. 6).

[113] J. Rommes and N. Martins. Efficient Computation of Multivariable Transfer
Function Dominant Poles Using Subspace Acceleration. IEEE Transactions on
Power Systems, 21.4 (2006), 1471–1483 (cf. pp. 7, 19, 22).

[114] A. Ruhe. Rational Krylov algorithms for nonsymmetric eigenvalue problems.
In: Recent Advances in Iterative Methods. Ed. by G. Golub, M. Luskin, and A.
Greenbaum. Vol. 60. The IMA Volumes in Mathematics and its Applications.
Springer, New York, 1994, 283–295 (cf. p. 9).

[115] Y. Saad. Iterative methods for sparse linear systems. Second. Society for Indus-
trial and Applied Mathematics, 2003 (cf. pp. 4, 27).

[116] J. Saak. Efficient Numerical Solution of Large Scale Algebraic Matrix Equations
in PDE Control and Model Order Reduction. PhD thesis. Chemnitz University
of Technology, 2009 (cf. p. 8).

[117] J. Saak, M. Köhler, and P. Benner. M-M.E.S.S.-1.0.1 - The Matrix Equation
Sparse Solver Library (2016) (cf. p. 29).

[118] B. Salimbahrami and B. Lohmann. Krylov Subspace Methods in Linear Model
Order Reduction: Introduction and Invariance Properties. Tech. rep. Institute
of Automation, University of Bremen, 2002 (cf. p. 6).

[119] Y. Shamash. Model reduction using the Routh stability criterion and the Padé
approximation technique. International Journal of Control, 21.3 (1975), 475–484
(cf. p. 5).

[120] V. Simoncini. A new iterative method for solving large-scale Lyapunov matrix
equations. SIAM Journal on Scientific Computing, 29.3 (2007), 1268–1288 (cf.
p. 8).

[121] K. Sinani. Iterative Rational Krylov Algorithm for Unstable Dynamical Systems
and Genaralized Coprime Factorizations. MA thesis. Virginia Tech, 2016 (cf. p.
3).

[122] J. T. Spanos, M.H. Milman, and D. L. Mingori. A new algorithm for L2 optimal
model reduction. Automatica, 28.5 (1992), 897–909 (cf. p. 15).

[123] T. Stykel. Gramian-based model reduction for descriptor systems. Math. Control
Signals Systems, 16.4 (2004), 297–319 (cf. p. 3).

[124] T.-J. Su and R.R. Craig jr. Model reduction and control of flexible structures
using Krylov vectors. Journal of Guidance, Control, and Dynamics, 14.2 (1991),
260–267 (cf. p. 7).



42 5 Summary of Achievements and Outlook

[125] T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications
to modeling and control. In: Readings in Fuzzy Sets for Intelligent Systems.
Elsevier, 1993, 387–403 (cf. p. 4).

[126] L. Trefethen. Rational Chebyshev approximation on the unit disk. Numerische
Mathematik, 37.2 (1981), 297–320 (cf. p. 24).

[127] M.M. Uddin. Computational methods for model reduction of large-scale sparse
structured descriptor systems. PhD thesis. Magdeburg, Germany: Otto-von-
Guericke-Universität, 2015 (cf. p. 3).

[128] P. Van Dooren, K. Gallivan, and P.-A. Absil. H2-optimal model reduction of
MIMO systems. Appl. Math. Lett. 21 (2008), 1267–1273 (cf. pp. 15, 16).

[129] P. Van Dooren, K.A. Gallivan, and P.-A. Absil. H2-optimal model reduction
with higher-order poles. SIAM Journal on Matrix Analysis and Applications,
31.5 (2010), 2738–2753 (cf. p. 16).

[130] A. Varga. Enhanced modal approach for model reduction. Math. Model. Syst.
1.2 (1995), 91–105 (cf. p. 7).

[131] A. Varga and P. Parrilo. Fast algorithms for solving H∞-norm minimization
problems. In: Decision and Control, 2001. Proceedings of the 40th IEEE Con-
ference on. Vol. 1. 2001, 261–266 (cf. p. 23).

[132] D. Villemagne and R.E. Skelton. Model Reduction using a Projection Formula-
tion. Internat. J. Control, 46 (1987), 2141–2169 (cf. pp. 5, 9).

[133] D.A. Wilson. Optimum Solution of Model-Reduction Problem. Proceedings of
the Institution of Electrical Engineers, 117.6 (1970), 1161–1165 (cf. pp. 15, 16).

[134] T. Wolf. H2 Pseudo-Optimal Model Order Reduction. Dissertation. Munich,
Germany: Technical University of Munich, 2015 (cf. pp. 5, 31).

[135] T. Wolf and H. Panzer. The ADI iteration for Lyapunov equations implicitly
performs H2 pseudo-optimal model order reduction. International Journal of
Control, 89.3 (2016), 481–493 (cf. pp. 8, 18).

[136] T. Wolf, H.K. Panzer, and B. Lohmann. H2 pseudo-optimality in model order
reduction by Krylov subspace methods. In: European Control Conference (ECC).
2013, 3427–3432 (cf. p. 5).

[137] T. Wolf, H.K. Panzer, and B. Lohmann. ADI iteration for Lyapunov equations:
A tangential approach and adaptive shift selection. Applied Numerical Mathe-
matics, 109 (2016), 85–95 (cf. p. 8).

[138] S. Wyatt. Issues in Interpolatory Model Reduction: Inexact Solves, Second Order
Systems and DAEs. PhD thesis. Blacksburg, Virginia, USA: Virginia Polytechnic
Institute and State University, 2012 (cf. p. 17).

[139] Y. Xu and T. Zeng. OptimalH2 Model Reduction for Large Scale MIMO Systems
via Tangential Interpolation. International Journal of Numerical Analysis and
Modeling, 8.1 (2011), 174–188 (cf. p. 15).



43

[140] Y. Xu and T. Zeng. Fast optimal H2 model reduction algorithms based on
Grassmann manifold optimization. International Journal of Numerical Analysis
and Modeling, 10 (2013), 972–991 (cf. p. 15).

[141] W.-Y. Yan and J. Lam. An approximate approach to H2 optimal model reduc-
tion. IEEE Transactions on Automatic Control, 44.7 (1999), 1341–1358 (cf. p.
15).

[142] V. Zakian. Simplification of linear time-invariant systems by moment approxi-
mants. International Journal of Control, 18.3 (1973), 455–460 (cf. p. 9).





Appendix A

Reproduction of publications





47

A.1 Fast H2-Optimal Model Order Reduction Exploiting the
Local Nature of Krylov-Subspace Methods

Summary: This contribution presents a new approach, based on the heuristic Model
Function idea presented by Heiko K. F. Panzer in his doctoral thesis, to accelerate
H2-optimal model reduction while guaranteeing optimality at convergence. This paper
revises the surrogate optimization based on intermediate reduced-order models, namely
the Model Functions, and introduces proof of satisfaction of first-order H2-optimality
conditions if certain update conditions are ensured. The motivation in this paper was
taken from observing that the well-known IRKA method for H2-optimal reduction can
sometimes be computationally more demanding than dense methods such as balanced
truncation. Exploiting the local nature of rational interpolation (depending on the con-
text sometimes also referred to as Krylov-subspace method), surrogate optimization is
motivated and introduced. The paper results in a modified version of IRKA by the
name of “Confined IRKA”, as the validity of the method is confined locally around the
interpolation points chosen to define the Model Function. In preliminary considera-
tions, it is shown how CIRKA can decouple the cost of optimization from the cost of
reduction, hence allowing for significant speedup. This contribution focuses exclusively
on models with single input and single output.

Contribution(s): Derivations, analysis, software development, numerical examples
and writing have been conducted predominantly by the first author.
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Fast H2-Optimal Model Order Reduction Exploiting the Local Nature of
Krylov-Subspace Methods*

Alessandro Castagnotto, Heiko K. F. Panzer, and Boris Lohmann

Abstract— Rational Krylov-subspace methods are a predes-
tined candidate in the reduction of very-large-scale linear
models due to their moderate computational cost and memory
requirements. However, in order to achieve good approximation
results, state-of-the-art Krylov algorithms like IRKA iteratively
search for a set of locally H2-optimal reduction parameters.
This search requires the repeated reduction of the high-
dimensional model and can therefore still account for significant
computational cost, especially in case of slow convergence.
In this contribution, we investigate the cost of H2-optimal
rational Krylov methods and propose an enhanced reduction
framework, based on the local nature of such methods, to
reduce the computational effort while guaranteeing optimality
at convergence. The improvement achieved through this frame-
work is analyzed theoretically and validated numerically on a
modified IRKA algorithm.

I. INTRODUCTION

A. Motivation and problem statement

The accurate description of dynamical systems can result
in high-fidelity models of prohibitively large dimensions.
This is the case, for example, in models resulting from the
spatial discretization of partial differential equations over a
fine grid. Simulations and optimizations based on these large
models are computationally expensive, if at all feasible. To
resolve this issue, model reduction techniques that generate
good approximated models in a numerically efficient manner
are required.

Krylov-subspace methods (also known as rational inter-
polation or moment matching techniques) are known to be
suitable for the reduction of very-large-scale models, since
they require only the solution of shifted linear systems
of equations (LSE). In fact, storage requirements can be
reduced significantly even when applying direct methods like
LU decomposition by exploiting the sparsity that typically
characterizes the matrices. However, the reduction quality
of these methods relies heavily on the choice of appro-
priate reduction parameters, like reduced order, matching
frequencies and tangential directions. Fortunately, in the past
decade a range of numerically tractable Krylov-subspace
methods that find locally optimal parameters were developed.
In practice, however, it turns out that other methods like
balanced truncation or modal reduction might outperform
the H2-optimal Krylov methods in terms of computational
time.

*The work related to this contribution is supported by the German
Research Foundation (DFG), Grant LO408/19-1.

Chair of Automatic Control, Technical University of Munich, Boltz-
mannstr. 15, D-85748 Garching. e-mail: a.castagnotto@tum.de

In this contribution, we will inspect this intrinsic issue of
H2-optimal reduction procedures by analyzing the compu-
tational cost of the methods. Subsequently, we will propose
a framework that reduces the computational complexity of
finding optimal parameters by introducing the concept of
model functions. Finally, we will prove that this procedure
effectively achieves H2-optimality.

For simplicity of exposure, the discussion will be restricted
to the case of systems with a single input and a single output
(SISO). The results can be further generalized to include
the multiple input, multiple output (MIMO) case, as will be
discussed in the full paper.

B. Notation

Σ = {E,A,B,C,D} denotes a dynamical system by its
realization, i.e. the set of matrices defining state and output
equations. Σµ denotes a model function, a concept we will
introduce in Section IV-A. Accordingly, all related quantities
will be indicated by a superscript µ. The amount of iterations
required until convergence will be represented by k, while
a subscript i as in σi denotes either an element within a
set or the value at a certain iteration depending on the
context. CN,n (·) is used to express the asymptotic arithmetic
complexity of a mathematical operation with problem size
N and reduced order n. The image of a matrix A, i.e. the
subspace spanned by its columns, is denoted by Im(A).

II. PRELIMINARIES

A. Model reduction by projection

Consider a high-order linear state-space model

E ẋ = Ax+B u,

y = C x+Du,
(1)

where E∈RN×N is the regular descriptor matrix, A∈RN×N
is the system matrix and x∈RN , u∈R1, y ∈R1 represent
the state, input and output of the system respectively. The
goal of model reduction within this contribution is to reduce
the full order model (FOM) (1) to a reduced order model
(ROM) obtained by a Petrov-Galerkin projection

Er︷ ︸︸ ︷
W>E V ẋr =

Ar︷ ︸︸ ︷
W>AV xr +

Br︷ ︸︸ ︷
W>B u,

yr = C V︸︷︷︸
Cr

xr + D︸︷︷︸
Dr

u,
(2)

where xr∈Rn (n�N) represents the reduced state vector.
For brevity, we will refer to the ROM in (2) through Σr and
will use the shorthand notation Σr = W>ΣV to underline
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the projective nature. In fact, in this framework the task
of finding a good ROM translates to finding appropriate
reduction matrices W and V .

Note that in a control setting, the main goal is not the
reconstruction of the whole state vector x but rather the
approximation of the input-output behavior of the system,
which can be characterized in the frequency domain by the
rational transfer function

G(s) :=
L{y(t)}
L {u(t)}

= C (sE −A)
−1
B +D, (3)

i.e. the Laplace transform of the impulse response.

B. Balanced truncation

A well-known method and probably gold standard for the
computation of W,V is given by balanced truncation (BT)
[1], [2]. This technique is based on obtaining a balanced
realization, i.e. a realization in which every state is equally
controllable and observable. In general, it requires the com-
putation of the Cholesky factors of the controllability and
observability Gramians P =S>S and Q=R>R defined by

APE> + EPA> +BB> = 0, (4a)

A>QE + E>QA+ C>C = 0, (4b)

as well as the singular value decomposition of the product
SER>. The reduction is then performed by truncating the
states corresponding to small singular values, for they are
both hard to reach and to observe.

This technique requires the solutions of generalized Lya-
punov equations, which are dense and hence prohibitively
large to store. Extensions of this procedure that are more
suitable for large-scale systems are available, e.g. in [3].

C. Implicit moment matching by Krylov-subspace methods

A different choice of W,V is given by matrices spanning
appropriate Krylov subspaces. In fact, if V,W span nth-order
input and output rational Krylov (RK) subspaces

Kn
(
(A− σE)−1E, (A− σE)−1B

)
, (5a)

Kn
(
(A− σE)−>E>, (A− σE)−>C>

)
, (5b)

then the reduced order model is guaranteed to match 2n
moments of the FOM, that is Taylor series coefficients about
σ∈C [4]. Note that an analogous result applies to the case
where σ is not a scalar value but a set of complex frequencies
σ = {σi}qi=1 with associated dimensions of the respective
Krylov subspaces {ni}qi=1 where

∑q
i=1 ni=n. In this case,

known as multipoint Padé, the projection subspace is given
by the union of all individual rational Krylov subspaces. In
the following we will make no distinction in the notation for
the sake of simplicity.

The special case where both input and output Krylov
subspaces are computed with the same shifts σ is called
Hermite interpolation and will play a central role in the
following. In fact, by the moment matching theorem, if

(A− σE)
−1
B ∈ Im(V ) and (A− σE)

−>
C> ∈ Im(W ),

then it holds

G(σ) = Gr(σ), (6a)
G′(σ) = G′r(σ), (6b)

where G′(s) denotes the first derivative with respect to s [5].
In the following, we shall refer to a Hermite interpolation as
stated above through the shorthand notation Σr=RK (Σ, σ).

Note that given a set σ of complex shifts, the Krylov
subspaces defined in (5) can be characterized equivalently
by the following Sylvester equations

AV − E V SV −BT = 0, (7a)

A>W − E>W S>V − C>T = 0, (7b)

where SV is a Jordan matrix that encodes the shifts and T
is a row vector of zeros and ones [6].

In this setting, the task of model reduction translates to
finding appropriate shifts σ and reduced order n.

D. H2-optimal reduction
The quality of the ROM obtained through Krylov-subspace

methods relies heavily on the choice of reduction parameters.
For this reason, the task of finding optimal parameters has
been studied extensively in the literature [5], [7], [8].

It appears that the most tractable algorithms aim at mini-
mizing the H2-norm of the error, i.e.

Gr(s) = argmin
dim(G̃r)=n

∥∥∥G(s)− G̃r(s)
∥∥∥
H2

. (8)

Often times H2-optimal ROMs are characterized by the
Meier-Luenberger necessary conditions they satisfy, i.e.

G(−λr,i) = Gr(−λr,i), (9a)

G′(−λr,i) = G′r(−λr,i), (9b)

where λr,i are the eigenvalues of the ROM.
The most simple and prominent procedure aimed at con-

structing H2-optimal ROMs is the Iterative Rational Krylov
Algorithm (IRKA). It represents a fixed point iteration re-
sulting from a simplified Newton procedure [5].

Algorithm 1 Iterative Rational Krylov Algorithm (IRKA)
Input: Σ, σ, tol
Output: locally H2-optimal reduced model Σr, σ∗

1: while relative change of σ > tol do
2: Σr ← RK(Σ, σ) // Hermite interpolation
3: σ ← −λ(Σr) // mirror reduced eigenvalues
4: end while
5: σ∗ ← σ // return optimal shifts

A trust-region method by the same authors that uses
gradient and Hessian to guarantee a monotonic decrease of
the error in each iteration is given in [7]. Moreover, the
procedure in [8], [9] uses a trust-region method and further
allows for an adaptive selection of the reduced order.

Due to its simplicity and widespread acceptance, we
shall focus on the IRKA algorithm in the following as a
representative for H2-optimal MOR techniques.

1959



III. THE COST OF H2-OPTIMAL REDUCTION

The observation that H2-optimal reduction methods can
be outperformed in terms of computation time by other
methods like balanced truncation motivates us to inspect the
operations involved in the procedures and try to analyze the
factors responsible for the main burden.

The computational efficiency of an algorithm can be as-
sessed according to different criteria (e.g. usage of resources,
execution time) and is affected by a variety of factors [10].
While the amount of operations (flops) required to obtain
a desired solution gives an indication about the amount
of work to be processed, the implementation on hardware
plays an ever more important role. Research areas such
as computational science and engineering (CSE) and high-
performance computing focus on this issue [11]. Going into
the algorithmic implementation details would exceed the
scope of this treatise by far. Instead, in this section we look at
H2-optimal reduction methods from a theoretical standpoint
and try to understand which operations are the most intensive
with regards to arithmetics.

A. Comparison between BT and IRKA

The predominant cost in the reduction by RK lies in the
solution of large-scale linear systems of equations (LSE)
needed to determine a basis for the Krylov subspaces (5).
For this task sparse direct and iterative solvers are available
to deal with the dimensionality of large-scale problems. On
the other hand, the reduction by BT requires the computation
of the Cholesky factors of the Gramian matrices solving
generalized Lyapunov equations (4) (LyapChol). Using direct
methods, this involves operations on dense matrices and is
thus only feasible for middle-sized models. Iterative solvers
like LRCF-ADI [3] or RK-subspace methods [12] increase
the feasible problem size significantly.

Regardless of the individual choice of algorithm, a com-
parison between RK and BT yields following ratio for the
asymptotic arithmetic complexities CN,n (·) when reducing a
model of full order N to a reduced order n:

CN,n (RK)

CN,n (BT)
≈ CN (LSE)

CN (LyapChol)︸ ︷︷ ︸
α

·n. (10)

The numerical value of α clearly depends on the choice of
algorithms for the solution of LSE and LyapChol, as well as
problem specific quantities such as sparsity and structure of
the system matrices at hand. Assuming dense direct solvers,
for instance, the ratio becomes α = 1

136 [13], [14], but is
generally significantly smaller when applying sparse direct
solvers [15], [16]. This is demonstrated in Figure 1, where α
is estimated by comparing the execution times of mldivide
and lyapchol in MATLAB, for some sparse benchmark
models from the collection [17].

Whichever the chosen low level algorithms and hence the
value for α, when applying H2-optimal reduction methods
the reduction by RK has to be repeated as many times as
needed until a set of optimal parameters is found. For in-
stance, if IRKA requires kIRKA steps to reach convergence,

200 400 600 800 1,000 1,200 1,400
10−5

10−4

10−3

full order N

α

Fig. 1. Complexity ratio α, estimated for direct sparse LSE solvers on a
selection of benchmark models.

then the arithmetic complexity ratio is given as

CN,n (IRKA)

CN,n (BT)
≈
CN,n (RK) · kIRKA
CN,n (BT)

≈ α ·n ·kIRKA. (11)

From this comparison we see that the search for optimal
parameters is weighted with the full cost of performing a
reduction by RK and that if kIRKA becomes large, the
advantage with respect to BT might be lost. As it is shown in
the next section, the two problems of reduction (i.e. obtaining
information from the FOM) and optimization (i.e. finding
suitable reduction parameters) can be somewhat decoupled
by exploiting the local nature of Krylov-subspace methods.

IV. MODEL FUNCTIONS IN H2-OPTIMAL MOR

To cope with the main computational burden of finding
locally optimal reduction parameters in this section we
propose a reduction framework for anyH2-optimal reduction
procedure that starts from an initial guess of the optimal
shifts σ0 and converges to a locally optimal solution σ∗. Note
that we restrict the discussion to SISO systems for brevity
and that the generalization for MIMO will be given in the
full paper.

A. The main idea - Model Function MOR

Assume we are given a FOM of high order N and would
like to obtain an H2-optimal ROM of much smaller order n.
In the pursuit of this goal, at every step i along the way to
the optimal solution σ∗, we need to reduce the FOM at σi
and decide how to proceed (evaluate gradient and Hessian or
compute the reduced eigenvalues). Depending on how many
steps (k) are required to converge, this might require several
reductions and is responsible for the predominant cost of
such techniques.

Recall that RK methods have a local validity (as opposed
to e.g. BT) in the sense that all we know is that we might
expect the ROM to be a good approximation of the FOM
around chosen frequencies σ. Since the minimization of the
H2-norm of the error is a non-convex problem, all we might
hope for is to find a local optimum around σ. Therefore, it
might be enough to use a local approximation of the FOM
around these frequencies and run the optimizer on it. This
observation leads us to the definition of a model function Σµ.

Definition 1: Let Σ be the FOM of order N we wish to
reduce. The model function Σµ of order nµ is defined by
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applying Hermite interpolation of Σ about some complex
frequencies σµ, i.e.

Σµ := RK (Σ, σµ) , (12)

whereby typically N�nµ>n.
The purpose of Σµ is to be a good local approximation

of the FOM and allow for a faster optimization. Reduction
strategies using a middle-sized surrogate model Σµ, simi-
larly to what we described so far, are known as two-step
approaches [18]. The drawback of this strategy is that the
reduction quality depends heavily on the intermediate model
and therefore the choice of shifts. In addition, it is generally
not possible to establish any optimality or other rigorous
quality measures with respect to the original problem.

For this reason, in the proposed procedure we go further
and exploit the information gained from the optimization at
step i with respect to the model function Σµi . In fact, the
optimization of the model function indicates new frequency
regions that might be relevant. We make use of this informa-
tion and update the model function Σµi+1 with information
of the FOM about the new optimal frequencies σ∗i . The
optimization is repeated with respect to this new model
function, that now represents the FOM well also locally
around the new shifts. The iteration is repeated until the
optimal shifts have converged, i.e. σ∗i =σ∗i+1.

B. Optimality of the reduced model function Σµr

What has been presented so far is up to now merely a
heuristic procedure that tries to reduce the optimization cost
by replacing the FOM with a local approximation. What still
remains unclear is what type of properties one can expect
from the resulting ROM. In the following we will prove that
the ROM obtained in this procedure actually is a local H2-
optimal approximation of the FOM and, in addition, that it
is exactly the same ROM as one would obtain by reducing
the FOM directly at the optimal shifts σ∗.

Lemma 1: Assume Σµ=RK (Σ, σµ), where σµ is the set
of shifts used to create the model function. Further, assume
that we obtained a reduced model function that minimizes
the H2-error locally with respect to the model function, i.e.
Σµr = RK (Σµ, σ∗). Then, if σ∗ ⊆ σµ, the reduced model
function Σµr is a locally H2-optimal approximation of the
FOM Σ.

Proof: The proof is obtained by showing that the Meier-
Luenberger conditions in (9) are satisfied. By optimality of
Σµr at σ∗ we get that the reduced eigenvalues satisfy the
condition −λµr,i = σ∗i ∀i= 1, . . . , n. Further, the condition
σ∗ ⊆ σµ implies that the model function contains, amongst
other, the information relative to a Hermite interpolation of
Σ at σ∗, that is the transfer function value and its derivative.
Connecting all these results completes the proof.

This shows that if the model function is continuously
updated with information about the new optimal shifts σ∗i
at each step, at convergence Σµr will be optimal even with
respect to the original model. A trivial consequence of this
is that the transfer functions Gr(s) and Gµr (s) are the same.

Corollary 1: Consider the assumptions of Lemma 1. Then
the transfer function Gµr (s) corresponding to the realization
Σµr is the same as Gr(s), i.e. the one we would obtain by
approximating G(s) directly.

Proof: The proof follows directly from the fact that
both Gµr (s) and Gr(s) are transfer functions of a dynamical
system of order n and that by fixing 2n parameters we get
uniqueness. Note that by (2) it is implicitly assumed that
D=Dr=Dµ

r .
It turns out that we can even go one step further and

show that the state-space representation Σµr resulting from
the model function framework is the same as Σr.

Theorem 1: Assume Σµ = RK (Σ, σµ). Further assume
that we obtained an optimal reduced model function, i.e.
Σµr = RK (Σµ, σ∗). Then, if σ∗ ⊆ σµ, the realization of
the reduced model function Σµr is the same as Σr, i.e. the
realization we would obtain by directly reducing Σ at σ∗.

Proof: For brevity of exposition, this contribution
will focus on the case of SISO systems and will exclude
multiplicities in σ∗ as well as the case of different bases for
the Krylov subspaces. Note, however, that generalizations in
this direction are available and will be explained in the full
paper.

Recall that the input Krylov subspace used for the direct
reduction of Σ about σ∗ satisfies

AVr − EVrS∗V −BT = 0, (13)

where λi(S∗V )=σ∗i . Consider the Sylvester equation for V µr

AµV µr − EµV µr S∗V −BµT = 0, (14)

which can be rewritten as

(Wµ)
>

(AV µV µr − EV µV µr S∗V −BT ) = 0,

(Wµ)
>
(
AṼr − EṼrS∗V −BT

)
= 0.

(15)

A comparison between (15) and (13) reveals that Ṽr = Vr
is sufficient to satisfy (14). However, to get equivalence, we
need to show also the necessity of this condition.

For this purpose, assume that the expression in the bracket
in (15) does not vanish. Another way of interpreting the
equation is by seeing it as a product of nµ row vectors and
n column vectors

...
CA−1

σµi
...

 · ( · · · Aσ∗
j
Ṽr,j −B · · ·

)
= 0, (16)

where Aσi := A − σiE. Now, we can use the condition
σ∗⊆σµ since it implies that for every σ∗j , we can find the
row-vector i with σµi = σ∗j . For each of these pairs, the
product simplifies to

C
(
Ṽr,j −

(
A− σ∗jE

)−1
B
)

= 0,

which has to hold true for all C. Therefore, we get the
equality

Ṽr,j =
(
A− σ∗jE

)−1
B = Vr,j . (17)
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Repeating this procedure for all σ∗j yields V µV µr = Vr,
and applying the dual argumentation yields WµWµ

r = Wr,
which completes the proof.

C. Update of the model function

From the results we have just seen, the main condition the
model function has to satisfy at convergence is σ∗⊆σµ, i.e.
the model function Σµ must contain at least the information
related to a Hermite interpolation of Σ at the optimal fre-
quencies σ∗. This suggests the following update procedures:

1) The simplest strategy is to update the model function Σµi
at each step with Krylov directions about all frequencies
σ∗. In multiset notation this yields σµi =∪ij=1σ

∗
j .

2) Another strategy would update the model function only
with the new optimal shifts not already included. In set
notation this yields σµi =∪ij=1σ

∗
j . This procedure makes

sure the size of the model function does not grow too
fast but preserves the information already computed.

3) The most lean procedure would be to keep only the
information that is required to ensure optimality at
convergence, that is σµi = σ∗i . This last option keeps
the model function size to a minimum but destroys
information about the FOM already computed. Note
also that the model function needs to be larger than
the ROM, therefore some additional information needs
to be incorporated.

D. The cost of the model function strategy

One question still remains open at this point: will this
procedure really reduce the arithmetic complexity of the
reduction as hoped? To answer the question we study the
complexity CµN,n (·) of any given H2-optimal MOR function
that reduces a model of full order N to an approximant of
reduced order n with the proposed model function frame-
work:

CµN,n (·) =
kµ∑
i=1

C
N,nµ,+i

(RK)︸ ︷︷ ︸
Σµ update

+
kµ∑
i=1

Cnµi ,n (·)︸ ︷︷ ︸
optimization

, (18)

where nµ,+i represents the update size of the model function
Σµ and nµi represents the order of the respective model
function at each iteration i. The total number of iterations
needed until convergence is denoted by kµ.

This representation reveals the effect of the model function
approach, i.e. decoupling to cost of reduction (i.e. retrieving
information from the FOM) and optimization (i.e. finding
suitable frequencies). Further it shifts the cost from the
actual MOR function—in our case the search of H2-optimal
reduction parameters—to the update of the model function.
Therefore, this strategy is expected to be particularly effec-
tive if the model function updates are significantly less than
the number of reduction steps required for the H2-optimal
search. The numerical examples of Section VI illustrate the
effectiveness of this framework.

V. CONFINED IRKA

The proposed model function framework is general in the
sense that it can be applied to any H2-optimal reduction pro-
cedure that is initialized about some complex frequencies σ
and yields a locally optimal solution σ∗. In this contribution,
we will show how this can be applied to the well-known
IRKA procedure. Since the validity of the optimization is
confined to the region of complex frequencies covered by
the model function, we shall call this procedure Confined
Iterative Rational Krylov Algorithm (CIRKA). The update
of the model function can be conducted in several ways as
discussed in Section IV-C.

Algorithm Confined IRKA (CIRKA)
Input: Σ, σ, tol
Output: locally H2-optimal reduced model Σr

1: Initialize Σµ to empty
2: while relative change of σ > tol do
3: Σµ ← updateModelFct(Σ,Σµ, σ)
4: [Σµr , σ

∗]← IRKA(Σµ, σ)
5: σ ← σ∗

6: end while
7: Σr ← Σµr

A comparison of the complexity between IRKA and
CIRKA is given in Table I.

TABLE I
COMPARISON BETWEEN IRKA AND CIRKA

Algorithm CN,n (·)

IRKA kIRKA · CN,n (RK)

CIRKA
kµ∑
i=1
C
N,n

µ,+
i

(RK) +
kµ∑
i=1

kIRKA,i · Cnµi ,n
(RK)

Assuming C
nµi ,n

(RK)�CN,n (RK) we see that the cost is
shifted from the optimization to the model function update.
This is illustrated also in Figure 2, where IRKA and CIRKA
are compared in terms of their advantage, with respect to
BT, over the number of IRKA iterations1.

0 5 10 15 20
0

0.5

1

1.5

kIRKA

C(
·)/
C(

B
T

)

IRKA
CIRKA

Nkµ, nµ,+i

Fig. 2. Comparison between IRKA and CIRKA for different full orders.

1The plot was generated assuming dense direct algorithms for both LSE
and LyapChol, as well as following parameters: n=10, nµ0 =12, nµ,+i =5,
kµ=4. For CIRKA, the full orders chosen are N=40, 60, 100.
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It becomes evident that the influence of a high number of
steps during the optimization becomes negligible especially
for higher full orders. On the other hand, the number of steps
CIRKA requires until convergence and the number of model
function updates become the main cost drivers. As a general
rule of thumb, the proposed method is effective as long as

kµ∑
i=1

nµ,+i < n · kIRKA. (19)

VI. NUMERICAL EXAMPLES

As a proof of concept, this section shows some reduction
results obtained with CIRKA in comparison to IRKA on
different benchmark models [17], [19]. The results, which
are summarized in Table II2, show the effective speedup of
the model function framework.

TABLE II
NUMERICAL RESULTS WITH IRKA AND CIRKA (n = 10).

beam (N=348)
∑kµ

i=1 kIRKA kµ nµkµ tred/s

IRKA 157 - - 19.5
CIRKA 143 7 30 6.2
speedup 3.2

eady (N=598)
∑kµ

i=1 kIRKA kµ nµkµ tred/s

IRKA 21 - - 11.1
CIRKA 34 4 32 2.4
speedup 4.7

rail (N=79841)
∑kµ

i=1 kIRKA kµ nµkµ tred/s

IRKA 15 - - 104.4
CIRKA 10 1 12 3.9
speedup 26.9

VII. CONCLUSIONS

In this contribution, the arithmetic complexity of H2-
optimal rational Krylov algorithms has been analyzed. It
has been discussed that the computational expense can
become higher than the one of direct balancing methods,
depending on the amount of optimization steps required until
convergence. In order to overcome this bottleneck, we have
proposed a general framework that uses model functions,
i.e. local approximations of the FOM, to speedup the op-
timization. Through this framework, the cost of reduction
(obtaining information from the original model) is separated
from the cost of optimization (finding suitable reduction
frequencies), which becomes negligible especially for high
full orders. It has been shown that if the model function is
appropriately updated throughout the procedure, optimality
with respect to the original model is preserved. Finally, a
faster version of IRKA, namely confined IRKA was proposed.
First numerical examples have demonstrated the effective
speedup.

2All computations were conducted using MATLAB R© R2015b on an
Intel R© CoreTM i7-2640M CPU @2.80GHz with 8.00 GB RAM.

APPENDIX I
MATLAB CODE FOR CIRKA

The MATLAB functions cirka and a more general
modelFctMor, which applies the model function frame-
work to any H2-optimal method, will be included in the
release v1.05 of sssMOR, a free and open-source MATLAB
toolbox for the analysis and reduction of large-scale dynam-
ical systems, available for download at www.rt.mw.tum.
de/?sssMOR [20].
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A.2 A New Framework for H2-Optimal Model Reduction
Summary: This contribution follows up on the preliminary work in Appendix A.1
and presents in more general terms a framework by the name of “Model Function”
which can be applied to different system classes for which interpolatory H2-optimal (or
-inspired) reduction algorithms are available. After revising fundamentals of interpola-
tory H2-model reduction for linear time-invariant systems, the contribution starts with
an analysis of the numerical cost attached to performing H2-optimal reduction with
conventional methods. The numerical algorithms involved (sparse LU decomposition,
QR decomposition, Eigenvalue decomposition, projection) are compared in terms of
execution times for benchmark models of different orders (101 − 105) and structure.
From this analysis, it becomes evident that the sparse LU decompositions are by far
the bottleneck in interpolatory reduction, with execution times up to nearly four orders
of magnitude higher than the other steps. This motivates the estimation of algorithmic
complexity counting the number of LU decompositions performed. Applied to IRKA,
this investigation makes evident that the cost of optimization is weighted with the full
cost of reduction of the full-order model. For this reason, the Model Function frame-
work is introduced, together with an illustrative example and information about wise
choices for initialization and update. Derivations and optimality proofs are presented
for the class of multiple-input, multiple-output linear time-invariant systems. The new
framework is then reflected, given different interpretations, and a theoretical discussion
on when it is expected to be numerically advantageous with respect to conventional H2-
optimal reduction. In addition, first ideas on how to further exploit the Model Function,
which is computed “for free” during H2-optimal reduction, are presented, such as the
estimation of the approximation error. Numerical results show both effectiveness and
limitations of the framework. The manuscript ends with first indication on how to
apply the framework also to other system classes, e.g. systems of differential-algebraic
equations and nonlinear systems.

Contribution(s): Derivations, analysis, software development, numerical examples
and writing have been conducted predominantly by the first author.

Reference: Alessandro Castagnotto & Boris Lohmann (2018) A new framework for
H2-optimal model reduction, Mathematical and Computer Modelling of Dynamical
Systems, 24:3, 236-257, DOI: 10.1080/13873954.2018.1464030
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A.3 An Approach for Globalized H2-Optimal Model Reduction
Summary: This contribution presents a numerically efficient approach to tackle the
problem of finding the globally H2-optimal reduced-order model of prescribed order n.
After revising the fundamentals of conventional H2-optimal model reduction, the paper
starts with a numerical example motivating the need of global approaches. In fact,
H2-optimal reduction by IRKA is started from 200 initial points in the complex plane,
converging to a total of four different local minima with very different (up to three
orders of magnitude) approximation qualities . For this reason, a globalized approach
inspired by the general literature on global optimization is proposed. This approach
requires in a first step a stochastic global sampling of the search space and in a second
step localized reduction initiated at all samples, hence the name globalized local search.
A brief comparison of two different approaches, namely multi-start and clustering (or
path relinking) is discussed, making the former seem more appropriate to the problem
at hand. In addition, as opposed to the latter, it allows parallel execution of local
optimization. To increase the numerical efficiency of the proposed globalized version
IRKA, some additional considerations are introduced. Most predominantly, the glob-
alized optimization is combined with the Model Function framework of Appendix A.1
and Appendix A.2 to decouple the cost of repeated optimization from the cost of reduc-
ing the full-order model. Further, the Hilbert projection theorem is used to avoid the
expensive computation of large-scale H2 norms and efficiently select the “best” local
optimum amongst all optima found. While this approach does not guarantee that the
global optimum will be found (in fact, the probability tends to 1 as the number or initial
samples increases), it does make H2-optimal reduction less sensitive to initializations
and returns the best local minimum amongst all minima found. Numerical examples
demonstrate the effectiveness and efficiency of the approach, comparing it to simply
running IRKA from many initial samples.

Contribution(s): Derivations and software development have been conducted by
the first author with preliminary support by the second author. Analysis, numerical
examples and writing have been conducted predominantly by the first author.
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Abstract In this contribution, we present a model order reduction algorithm for linear systems
with multiple inputs and multiple outputs that aims at finding the global optimal reduced model
of prescribed order n, with respect to the H2 norm. Our approach is based on globalized local
optimization, which requires a global sampling of the search space and subsequent local H2
optimization. The increased cost resulting from repeated H2 optimization will be mitigated
by exploiting the Model Function framework for H2-optimal model reduction, making the
optimization cost negligible compared to the cost of reduction. Numerical investigations motivate
the need for globalized approaches in H2-optimal reduction and demonstrate how our method
is capable of finding global optima, at a far lower cost than running conventional H2-optimal
reduction for different initial samples.
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1. INTRODUCTION

The innovation and development of technical systems have
profited greatly from the advent of numerical simulations,
allowing system design and analysis based on virtual pro-
totypes. As the complexity of the systems and the require-
ments on the accuracy of the numerical models grow, so
does the complexity of the mathematical models used to
describe their dynamical behavior. This poses high de-
mands on the computational resources required to evaluate
the models. This is even more true if the computations are
run repeatedly, e.g. during optimizations, or need to be run
in real-time, e.g. in embedded controllers or digital twins.
In these scenarios, it is of particular interest to find the best
possible approximation of the original model for a given
admissible complexity.
Modern model order reduction algorithms seek to auto-
matically capture the relevant dynamics of a given model
into approximate models of much smaller order, while
preserving fundamental characteristics and being numer-
ically efficient. Amongst all methods, H2-optimal model
reduction has gained a wide interest in the past years,
as it is numerically tractable for large-scale models and
satisfies optimality conditions with respect to the H2 norm
of the error (Gugercin et al., 2008; Van Dooren et al.,
2008; Beattie and Gugercin, 2009; Panzer et al., 2013).
Nonetheless, as the optimization problem is non-convex,
all methods only aim at finding a local optimum.
In this contribution, we extend existing local H2 reduction
algorithms by introducing approaches from the field of
global optimization. The increased cost resulting from
repeated local optimization will be mitigated by exploiting
� The work related to this contribution is supported by the German
Research Foundation (DFG), Grant LO408/19-1.

the Model Function framework for fast H2optimization
(Castagnotto et al., 2016; Castagnotto and Lohmann,
2018). Even though, in general, there is no guarantee the
global optimum will be found, our algorithm is able to
efficiently find several local minima and determine the
best one amongst them without additional large-scale
operations.
The remainder of the paper is structured as follows:
Section 2 briefly revises the fundamentals of H2-optimal
model reduction by tangential interpolation. Section 3
will motivate the development of globalized approaches
by analyzing the convexity of the optimization problem.
Section 4 will introduce a globalized approach for H2-
optimal reduction. Finally, Section 5 will demonstrate the
effectiveness of the proposed procedure in numerical sim-
ulations, while Section 6 will present concluding remarks.

2. PRELIMINARIES

2.1 Model Reduction by Tangential Interpolation

We consider stable linear dynamical systems of the form
E ẋ(t) = A x(t) + B u(t)

y(t) = C x(t)

}
Σ (1)

where E ∈RN×N is the regular descriptor matrix, A∈RN×N

is the system matrix and x∈RN , u∈Rm, y ∈Rp (p, m�N)
represent the state, input and output vectors of the system,
respectively. Σ denotes the system (1) by its state-space
representation. The input-output behavior of (1) can be
characterized in the frequency domain by y(s) = G(s)u(s),
with the rational transfer function matrix

G(s) := C (sE − A)−1
B ∈ Cp×m, (2)

obtained through Laplace transform of (1) under the
assumption x(t = 0) = 0. The construction of a reduced-
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The innovation and development of technical systems have
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allowing system design and analysis based on virtual pro-
totypes. As the complexity of the systems and the require-
ments on the accuracy of the numerical models grow, so
does the complexity of the mathematical models used to
describe their dynamical behavior. This poses high de-
mands on the computational resources required to evaluate
the models. This is even more true if the computations are
run repeatedly, e.g. during optimizations, or need to be run
in real-time, e.g. in embedded controllers or digital twins.
In these scenarios, it is of particular interest to find the best
possible approximation of the original model for a given
admissible complexity.
Modern model order reduction algorithms seek to auto-
matically capture the relevant dynamics of a given model
into approximate models of much smaller order, while
preserving fundamental characteristics and being numer-
ically efficient. Amongst all methods, H2-optimal model
reduction has gained a wide interest in the past years,
as it is numerically tractable for large-scale models and
satisfies optimality conditions with respect to the H2 norm
of the error (Gugercin et al., 2008; Van Dooren et al.,
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2018). Even though, in general, there is no guarantee the
global optimum will be found, our algorithm is able to
efficiently find several local minima and determine the
best one amongst them without additional large-scale
operations.
The remainder of the paper is structured as follows:
Section 2 briefly revises the fundamentals of H2-optimal
model reduction by tangential interpolation. Section 3
will motivate the development of globalized approaches
by analyzing the convexity of the optimization problem.
Section 4 will introduce a globalized approach for H2-
optimal reduction. Finally, Section 5 will demonstrate the
effectiveness of the proposed procedure in numerical sim-
ulations, while Section 6 will present concluding remarks.
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where E ∈RN×N is the regular descriptor matrix, A∈RN×N

is the system matrix and x∈RN , u∈Rm, y ∈Rp (p, m�N)
represent the state, input and output vectors of the system,
respectively. Σ denotes the system (1) by its state-space
representation. The input-output behavior of (1) can be
characterized in the frequency domain by y(s) = G(s)u(s),
with the rational transfer function matrix

G(s) := C (sE − A)−1
B ∈ Cp×m, (2)

obtained through Laplace transform of (1) under the
assumption x(t = 0) = 0. The construction of a reduced-
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1. INTRODUCTION

The innovation and development of technical systems have
profited greatly from the advent of numerical simulations,
allowing system design and analysis based on virtual pro-
totypes. As the complexity of the systems and the require-
ments on the accuracy of the numerical models grow, so
does the complexity of the mathematical models used to
describe their dynamical behavior. This poses high de-
mands on the computational resources required to evaluate
the models. This is even more true if the computations are
run repeatedly, e.g. during optimizations, or need to be run
in real-time, e.g. in embedded controllers or digital twins.
In these scenarios, it is of particular interest to find the best
possible approximation of the original model for a given
admissible complexity.
Modern model order reduction algorithms seek to auto-
matically capture the relevant dynamics of a given model
into approximate models of much smaller order, while
preserving fundamental characteristics and being numer-
ically efficient. Amongst all methods, H2-optimal model
reduction has gained a wide interest in the past years,
as it is numerically tractable for large-scale models and
satisfies optimality conditions with respect to the H2 norm
of the error (Gugercin et al., 2008; Van Dooren et al.,
2008; Beattie and Gugercin, 2009; Panzer et al., 2013).
Nonetheless, as the optimization problem is non-convex,
all methods only aim at finding a local optimum.
In this contribution, we extend existing local H2 reduction
algorithms by introducing approaches from the field of
global optimization. The increased cost resulting from
repeated local optimization will be mitigated by exploiting
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Research Foundation (DFG), Grant LO408/19-1.

the Model Function framework for fast H2optimization
(Castagnotto et al., 2016; Castagnotto and Lohmann,
2018). Even though, in general, there is no guarantee the
global optimum will be found, our algorithm is able to
efficiently find several local minima and determine the
best one amongst them without additional large-scale
operations.
The remainder of the paper is structured as follows:
Section 2 briefly revises the fundamentals of H2-optimal
model reduction by tangential interpolation. Section 3
will motivate the development of globalized approaches
by analyzing the convexity of the optimization problem.
Section 4 will introduce a globalized approach for H2-
optimal reduction. Finally, Section 5 will demonstrate the
effectiveness of the proposed procedure in numerical sim-
ulations, while Section 6 will present concluding remarks.
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E ẋ(t) = A x(t) + B u(t)

y(t) = C x(t)

}
Σ (1)

where E ∈RN×N is the regular descriptor matrix, A∈RN×N

is the system matrix and x∈RN , u∈Rm, y ∈Rp (p, m�N)
represent the state, input and output vectors of the system,
respectively. Σ denotes the system (1) by its state-space
representation. The input-output behavior of (1) can be
characterized in the frequency domain by y(s) = G(s)u(s),
with the rational transfer function matrix

G(s) := C (sE − A)−1
B ∈ Cp×m, (2)

obtained through Laplace transform of (1) under the
assumption x(t = 0) = 0. The construction of a reduced-

Proceedings of the 9th Vienna International Conference on
Mathematical Modelling
Vienna, Austria, February 21-23, 2018

Copyright © 2018 IFAC 1

An Approach for Globalized H2-Optimal
Model Reduction �

Alessandro Castagnotto, Siyang Hu, Boris Lohmann

Chair of Automatic Control, Technical University of Munich,
Boltzmannstr. 15, D-85748 Garching.

(e-mail: {a.castagnotto, siyang.hu, lohmann}@tum.de)

Abstract In this contribution, we present a model order reduction algorithm for linear systems
with multiple inputs and multiple outputs that aims at finding the global optimal reduced model
of prescribed order n, with respect to the H2 norm. Our approach is based on globalized local
optimization, which requires a global sampling of the search space and subsequent local H2
optimization. The increased cost resulting from repeated H2 optimization will be mitigated
by exploiting the Model Function framework for H2-optimal model reduction, making the
optimization cost negligible compared to the cost of reduction. Numerical investigations motivate
the need for globalized approaches in H2-optimal reduction and demonstrate how our method
is capable of finding global optima, at a far lower cost than running conventional H2-optimal
reduction for different initial samples.

Keywords: Minisymposium on Model Reduction; model reduction; model approximation;
large-scale systems; MIMO; global optimization;

1. INTRODUCTION

The innovation and development of technical systems have
profited greatly from the advent of numerical simulations,
allowing system design and analysis based on virtual pro-
totypes. As the complexity of the systems and the require-
ments on the accuracy of the numerical models grow, so
does the complexity of the mathematical models used to
describe their dynamical behavior. This poses high de-
mands on the computational resources required to evaluate
the models. This is even more true if the computations are
run repeatedly, e.g. during optimizations, or need to be run
in real-time, e.g. in embedded controllers or digital twins.
In these scenarios, it is of particular interest to find the best
possible approximation of the original model for a given
admissible complexity.
Modern model order reduction algorithms seek to auto-
matically capture the relevant dynamics of a given model
into approximate models of much smaller order, while
preserving fundamental characteristics and being numer-
ically efficient. Amongst all methods, H2-optimal model
reduction has gained a wide interest in the past years,
as it is numerically tractable for large-scale models and
satisfies optimality conditions with respect to the H2 norm
of the error (Gugercin et al., 2008; Van Dooren et al.,
2008; Beattie and Gugercin, 2009; Panzer et al., 2013).
Nonetheless, as the optimization problem is non-convex,
all methods only aim at finding a local optimum.
In this contribution, we extend existing local H2 reduction
algorithms by introducing approaches from the field of
global optimization. The increased cost resulting from
repeated local optimization will be mitigated by exploiting
� The work related to this contribution is supported by the German
Research Foundation (DFG), Grant LO408/19-1.

the Model Function framework for fast H2optimization
(Castagnotto et al., 2016; Castagnotto and Lohmann,
2018). Even though, in general, there is no guarantee the
global optimum will be found, our algorithm is able to
efficiently find several local minima and determine the
best one amongst them without additional large-scale
operations.
The remainder of the paper is structured as follows:
Section 2 briefly revises the fundamentals of H2-optimal
model reduction by tangential interpolation. Section 3
will motivate the development of globalized approaches
by analyzing the convexity of the optimization problem.
Section 4 will introduce a globalized approach for H2-
optimal reduction. Finally, Section 5 will demonstrate the
effectiveness of the proposed procedure in numerical sim-
ulations, while Section 6 will present concluding remarks.

2. PRELIMINARIES

2.1 Model Reduction by Tangential Interpolation

We consider stable linear dynamical systems of the form
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order model from the full-order model (1) can be obtained
by means of Petrov-Galerkin projection

Er︷ ︸︸ ︷
W �E V ẋr(t) =

Ar︷ ︸︸ ︷
W �A V xr(t) +

Br︷ ︸︸ ︷
W �B u(t)

yr(t) = C V︸︷︷︸
Cr

xr(t)





Σr

(3)
where xr ∈ Rn (n � N) represents the reduced state
vector and the matrices V, W ∈ RN×n are called projection
matrices. Σr denotes the realization of the reduced model
(3) and Σr =W �ΣV is short-hand notation to specify the
projection matrices used.
Given a model (1), our primary goal is the approximation
of the transfer behavior, represented by the transfer func-
tion: G(s)≈Gr(s). To achieve this goal, a judicious choice
of projection matrices V, W needs to be made. In this
contribution, we will choose V, W such that the reduced
model Σr is a bi-tangential Hermite interpolant of the
full model with respect to given frequencies σi ∈ C and
input, resp. output, tangential directions ri ∈Cm, li ∈Cp.
The following result is based on (Gallivan et al., 2004;
Beattie and Gugercin, 2014). For brevity, we introduce
Aσi

:=A − σiE.
Theorem 1. (Bi-tangential Hermite Interpolation). Consider
a full-order model Σ as in (1) with transfer function
G(s) and let scalar frequencies σi ∈ C and vectors
ri ∈Cm, lj ∈Cp be given such that Aσi is nonsingular for
i=1, . . . , n. Consider a reduced-order model Σr as in (3)
with transfer function Gr(s), obtained through projection
Σr = W �ΣV .
(1) If

A−1
σi

B ri ∈ R(V ), i = 1, . . . , n (4)
then G(σi) ri = Gr(σi) ri.

(2) If
A−�

σi
C� li ∈ R(W ), i = 1, . . . , n (5)

then l�
i · G(σi) = l�

i · Gr(σi).
(3) If both (4) and (5) hold, then, in addition,

l�
i G′(σi) ri = l�

i G′
r(σi) ri, i = 1, . . . , n, (6)

where G′(s) denotes the first derivative with respect
to s.

Following this result, an appropriate choice for the in-
terpolation frequencies {σi}n

i=1 and tangential directions
{ri}n

i=1 and {li}n
i=1 needs to be made. As this is a non-

trivial task, an automatic selection of reduction param-
eters, minimizing the approximation error ‖G − Gr‖ for
some chosen norm, is highly desirable.

2.2 H2-Optimal Model Reduction

In this contribution, we address the problem of finding an
optimal reduced model of prescribed order n solving the
optimization problem

Gr(s) = arg min
deg Ĝr=n

‖G − Ĝr‖H2 . (7)

The H2 norm in (7) is induced by the H2 inner product
according to (Antoulas, 2005)

‖G‖2
H2 = 〈G, G〉H2

:= 1
2π

∞∫

−∞

tr
(
GH(−jω)G(jω)

)
dω.

(8)
The optimal solution of (7) has been characterized in
different ways (cf. Gugercin et al. (2008) for an overview).
For our discussion, necessary conditions for local H2 op-
timality in terms of bi-tangential Hermite interpolation
are of particular interest (Meier and Luenberger, 1967;
Gugercin et al., 2008; Van Dooren et al., 2008).
Theorem 2. (First-order optimality cond.). Consider a full
order model (1) with transfer function G(s). Consider
a reduced-order model with transfer function Gr(s) =

n∑
i=1

ĉib̂i

s−λr,i
where λr,i ∈C are the reduced poles and b̂�

i ∈Cm,
ĉi ∈Cp the input resp. output residual directions.
If Gr(s) satisfies (7) locally, then

G(−λ̄r,i)b̂�
i = Gr(−λ̄r,i)b̂�

i (9a)
ĉ�

i G(−λ̄r,i) = ĉ�
i Gr(−λ̄r,i) (9b)

ĉ�
i G′(−λ̄r,i)b̂�

i = ĉ�
i G′

r(−λ̄r,i)b̂�
i (9c)

for i = 1, . . . , n.

Extensions to poles with higher multiplicities can be found
in (Van Dooren et al., 2010). In addition, note that by the
Hilbert projection theorem, for any reduced model Gr(s)
satisfying (7), the expression of the H2 error norm can be
simplified as follows.
Lemma 3. (Gugercin et al. (2008)). Consider a full-order
model Σ with transfer function G(s). Let Gr(s) be a local
minimizer of (7) and have simple poles. Then

〈G − Gr, Gr〉H2 = 0, (10)
and, as a consequence,

‖G − Gr‖H2 = 〈G, G〉H2 − 〈Gr, Gr〉H2 . (11)

The question remains open on how to construct a re-
duced model satisfying (9). Theorem 1 specifies how to
construct bi-tangential Hermite interpolants. However, in
general, the eigenvalues and residual directions of the
reduced model are not known a-priori. For this reason,
an iterative scheme known as Iterative Rational Krylov
Algorithm (IRKA) has been developed (Gugercin et al.,
2008; Van Dooren et al., 2008) to adapt the interpolation
data until the conditions (9) are satisfied. A sketch is given
in Algorithm 1.

Algorithm 1 Iterative Rational Krylov Algorithm
Input: Σ, {σi}n

i=1, {ri}n
i=1, {li}n

i=1
Output: Σr satisfying (9)

1: while not converged do
2: R (V ) ← R

([
A−1

σ1 B r1 . . . A−1
σn

B rn

])

3: R (W ) ← R
([

A−�
σ1 C� l1 . . . A−�

σn
C� ln

])

4: Σr ← W �ΣV
5: [X, D, Y ] = eig(Σr) // eigendec. (cf. MATLAB)
6: σi ← −e�

i Dei; ri ← B�
r Y ei; li ← CrXei

7: end while

2.3 Model Function Framework

Recently, a new framework to speedup H2-optimal re-
duction has been presented, based on the local nature of
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model reduction by tangential interpolation. It achieves—
in some sense—a decoupling of the cost of optimization
(i.e. finding optimal reduction parameters) from the cost
of reduction (i.e. evaluating the full-order model) (Panzer,
2014; Castagnotto et al., 2016; Castagnotto and Lohmann,
2018). This involves the definition of a surrogate model,
the Model Function Σµ, a bi-tangential Hermite interpo-
lation of the full-order model with respect to iteratively
updated interpolation data. This framework can be ap-
plied to general interpolatory H2 reduction algorithms; In
combination with IRKA, the resulting algorithm is called
Confined IRKA (CIRKA), briefly sketched in Algorithm
2.

Algorithm 2 Confined IRKA
Input: Σ, {σi}n

i=1, {ri}n
i=1, {li}n

i=1
Output: Σr satisfying (9), Σµ, ε̃H2

1: while not converged do
2: Σµ ← updateΣµ (Σ, {σi}n

i=1 , {ri}n
i=1 , {li}n

i=1)
3:

[
Σr, {σ∗,i}n

i=1 , {r∗,i}n
i=1 , {l∗,i}n

i=1
]

←
IRKA

(
Σµ, {σi}n

i=1 , {ri}n
i=1 , {li}n

i=1
)

4: {σi}n
i=1 ← {σ∗,i}n

i=1; {ri}n
i=1 ← {r∗,i}n

i=1;
{li}n

i=1 ← {l∗,i}n
i=1

5: end while
6: ε̃H2 ← ‖Σµ−Σr‖H2

‖Σµ‖H2

Note how CIRKA naturally—i.e. at not additional cost—
returns a middle-sized surrogate Σµ that can be used, e.g.
for error estimation ε̃H2 . Finally, note that the decoupling
of the cost of reduction from the cost of optimization is
what motivates us to introduce globalized approaches in
the reduction of large-scale systems. In fact, as the opti-
mization is run with respect to a middle-sized surrogate,
its cost is negligible compared to the cost of evaluating
the full-order model (Castagnotto et al., 2016; Castagnotto
and Lohmann, 2018).

3. CONVEXITY ANALYSIS

To motivate the need of globalized approaches in H2-
optimal reduction, we perform a numerical analysis 1 , ini-
tializing IRKA at different sets of frequencies {σi}n

i=1 and
comparing the fixed points {σ∗,i}n

i=1 found. We use the
IRKA implementation of the sssMOR toolbox (Castag-
notto et al., 2017), using the options stopCrit = 's0',
tol = '1e−6' and maxiter = 5e2. We investigate
the benchmark model of the International Space Sta-
tion (iss) taken from the collection (Chahlaoui and Van
Dooren, 2002). The model has a full order of N = 270
as well as m = p = 3 inputs and outputs. To simplify
the graphical representation of the results, we inspect
the subsystem from the first input to the first output
(SISO) and restrict the discussion to a reduced order n=2.
Therefore only pairs of complex conjugated frequencies are
considered, for which a representation on the first quad-
rant in the complex plane suffices. To find a meaningful
initialization for IRKA, we inspect the spectrum of the
original model, as optimal frequencies often lie close to
the mirrored eigenvalues. The eigenvalues with positive
1 All numerical simulations were run using MATLAB® R2016b on an
Intel® Core™ i7-2640 CPU @ 2.80 GHz computer with 8 GB RAM.

imaginary part, mirrored on the imaginary axis, are shown
in Figure 1, as well as the region chosen for initialization.
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Figure 1. Mirrored spectrum and initialization region.

Figure 2 depicts all initial frequencies, as well as the
respective IRKA fixed points. Small markers indicate
initial points, while large markers of the same type denote
the fixed points IRKA converged to.
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Figure 2. IRKA initialization and fixed points.

Over all, four local minima are found, confirming that
the optimization problem (7) is non-convex. Compare
also Table 1, where the optimal frequencies are listed,
together with the relative H2 error εH2 := ‖G−Gr‖H2

‖G‖H2
of

the respective reduced model.
Table 1. Local optima and relative H2 errors

for the SISO iss model.

σ∗,1 σ∗,2 σ∗,3 σ∗,4

σ∗ 0.004±0.775i 0.01±1.99i 0.08±9.27i 0.19±37.99i
εH2 5.8e − 3 9.3e − 1 1.0 8.6e − 1

The global optimal frequency is σ∗,1, with a relative error
two orders of magnitude lower than all other minima. Out
of all 200 initial points chosen, 49 converged to the global
optimum (ca. 25%). Note, in particular, how the basins
(regions of attraction) of the local minima are disconnected
and that even optimizations started close to σ∗,1 may
converge to one of the neighboring local minima. Finally,
a comparison of the local optimal reduced models is given
in terms of Bode plots in Figure 3.
Similar analyses were conducted with other benchmark
models from the collection (Chahlaoui and Van Dooren,
2002). E.g. in the case of the model building, a similar
initialization with respect to the mirrored spectrum yields
the fixed points listed in Table 2. Out of the 200 initial
points, 63 (ca. 32%) converged to the global optimum σ∗,1.
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the fixed points IRKA converged to.
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Over all, four local minima are found, confirming that
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also Table 1, where the optimal frequencies are listed,
together with the relative H2 error εH2 := ‖G−Gr‖H2
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The global optimal frequency is σ∗,1, with a relative error
two orders of magnitude lower than all other minima. Out
of all 200 initial points chosen, 49 converged to the global
optimum (ca. 25%). Note, in particular, how the basins
(regions of attraction) of the local minima are disconnected
and that even optimizations started close to σ∗,1 may
converge to one of the neighboring local minima. Finally,
a comparison of the local optimal reduced models is given
in terms of Bode plots in Figure 3.
Similar analyses were conducted with other benchmark
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Figure 3. Bode plots of the iss model and local optima.
Table 2. Fixed points and relative H2 errors

for the building model.

σ∗,1 σ∗,2 σ∗,3

σ∗ 0.49±5.22i 0.68±13.74i −33.64±18.89i
εH2 3.2e-2 7.8e-1 n.a.

However, 21 cases (ca. 10%) converged to the fixed point
σ∗,3. As indicated by its real part (cf. Table 2), the
respective reduced model is unstable. As the H2 norm
is undefined in this case, the fixed point clearly is not
a local optimum. Indeed, an unstable reduced model is
not an acceptable approximation of a stable model. In
all other cases (ca. 58 %), IRKA converged to the local
optimum σ∗,2. Finally, note that for some models (cf. e.g.
beam) IRKA shows a great robustness in finding the global
optimum, converging only in a few cases to different fixed
points.
From these examples, it is easy to see how the optimization
problem (7) is non-convex and that, in certain cases, IRKA
may not converge to the global optimum. In addition, in
few cases, it may even return an unstable reduced model.
Clearly, if we had knowledge of all fixed points within
the search space, one could choose the best one and—by
inspection of the real part—rule out instability.

4. A GLOBALIZED APPROACH

In this section, we present a globalized approach for H2-
optimal reduction, which aims at finding the global optimal
reduced order model of prescribed order n. In general,
it is not possible to guarantee global optimality, except
for some special cases. Nonetheless, there are approaches
that aim at finding the global optimum by means of
globalized local optimization (Pintér, 1991). They are based
on generating a set of starting points, globally sampling
the search space (initial global search), and subsequently
performing local optimization. Amongst all local minima
found, the one with best optimal value is (hopefully) the
global optimum. Following this approach, our globalized
H2-optimal reduction scheme can be divided in following
steps.

4.1 Initial Global Search (Initialization of σi, ri, li)

The first step consists in globally sampling the search space
by defining k0 sets of initial samples

{{σi}n
i=1 , {ri}n

i=1 , {li}n
i=1}k0

j=1 .

Common approaches in literature include grid and random
searches, cf. e.g. Pintér (1991). While the former guarantee
global convergence as the grid size diminishes, they are
computationally demanding, generally resulting in high
values for k0. For this reason, random searches are gen-
erally more efficient. This sampling can be improved by
introducing information about the full-order model avail-
able at a low computational cost. For instance, comput-
ing a few eigenvalues and eigenvectors can be performed
very efficiently for sparse large-scale models using power
methods (Demmel, 1997). In the following, we propose two
strategies:
I.1 Compute the eigenvalues λmin and λmax of smallest

and largest magnitude. Define a region delimited
by semi-circles of radii |λmin| and |λmax| in the
right half-plane and take k0 random samples, e.g.
using normal, uniform or lognormal distributions.
Assuming no dominance of inputs and outputs is
known a-priori, set all ri, li to vectors [1 1 . . . 1]�
of appropriate dimensions.

I.2 Compute the k0 · n eigenvalues of smallest magni-
tude λsm,i and their respective eigenvenctors vsm,i.
Choose σi from the mirrored eigenvalues −λsm,i and
tangential directions according to ri =

(
v�

sm,iB
)� and

li =Cvsm,i.
In both cases, we recommend adding the origin σi = 0 as
additional sample.

4.2 Generation of a Model Function Σµ

The next step in globalized optimization usually represents
the local optimization for all k0 initial samples. In our
case, this requires the repeated reduction of the full model
Σ through IRKA, resulting in a significant increase of
reduction cost as k0 grows. For this reason, we propose to
exploit the advantages of the Model Function framework
of Section 2.3 to reduce the cost of optimization by using
CIRKA. Hence, before running the local optimization, we
generate a middle-sized Model Function Σµ. As there are
different possibilities for this step, we present a few most
relevant.
M.1 Generate Σµ as a bi-tangential Hermite interpolant

of Σ with respect to all k0 initial samples. This
guarantees the Model Function to be a good local ap-
proximation around all initial frequencies. However,
the computational cost tied to this increases as k0
grows.

M.2 Generate Σµ as a bi-tangential Hermite interpolant
of Σ with respect to kc ∈N centroids of respective k-
means clusters of all initial frequencies (Lloyd, 1982).
This allows to control the cost tied to initializing
Σµ through choice of kc and still generates a valid
local approximation in the vicinity of most start-
ing frequencies. As tangential directions, we choose
[1 1 . . . 1]� of appropriate dimensions.

4.3 Globalized Local Optimization

Given the Model Function Σµ, localized optimization can
be run starting IRKA from all initial samples. As the
dimension of Σµ is small, this step is fast and can be
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performed in parallel without occurring in memory limita-
tions. The set of all fixed points found will be denoted by{

{σ∗,i}n
i=1 , {r∗,i}n

i=1 , {l∗,i}n
i=1

}k∗
j=1, where k∗ ∈ [1, . . . , k0].

If a local optimization does not converge 2 or results in an
unstable reduced model, the solution is disregarded.
Note: Following the discussions in literature, it is also
possible to run the local optimization only for initial sam-
ples that are most promising. This approach is generally
known as scatter search or path relinking 3 (Pintér, 1991).
It is based on estimating the basins and running the
optimization only for starting samples that are likely to
lie outside. This reduces the number of local optimiza-
tion being performed, cannot however be implemented in
parallel. In addition, a valid estimate of the basins for
H2 optimization—at least for IRKA—is non-trivial, as
apparent from Figure 2.

4.4 Selection of the Global Optimum

Given all minima found, the question arises on how to
efficiently determine which local minimum is the best.
Clearly, an evaluation of (7) is too expensive, as it requires
the solution of a generalized Lyapunov equation of dimen-
sion N+n. Fortunately, a computationally efficient method
to compare the quality of different minima can be derived
by using Lemma 3: The best locally optimal reduced model
Ggl

r,∗(s), amongst all local optima Gr,∗,1(s), . . . , Gr,∗,k∗(s),
is the one with largest H2 norm, i.e.
Ggl

r,∗ := arg min
i

‖G−Gr,∗,i‖H2 = arg max
i

‖Gr,∗,i‖H2 . (12)

This is easy to compute, as it only requires the solution of
n-dimensional Lyapunov equations.

4.5 Update of Σµ and Fixed-Point Iteration

A local optimum in the reduction of Σµ may not be a local
optimum with respect to Σ. As discussed in (Castagnotto
et al., 2016; Castagnotto and Lohmann, 2018), optimality
with respect to Σ can only be claimed if, after an update
of Σµ, the optimizer does not change. For this reason, the
Model Function Σµ needs to be updated with information
of the local optima (or at least of the global optimum)
and the globalized optimization needs to be repeated—
starting from all local optima of the previous iteration—
until convergence. Note that one may add new samples in
order to increase the chances of finding new local minima.
Further note that, in general, only a few full-dimensional
LU decompositions are required for the update of Σµ.
A summary of the proposed algorithm global CIRKA is
given in Algorithm 3. For details on implementation, we
refer to the function cirka provided with this contribu-
tion, to be used within the sssMOR toolbox (Castagnotto
et al., 2017). To run global CIRKA, it suffices to set the
option Opts.global = true. In addition, a function
girka is provided, used to run IRKA for several initial
samples in parallel.
2 Depending on the initialization and reduced order chosen, IRKA
may not converge—up to a given tolerance—to a fixed point within
a prescribed maximum number of iterations.
3 Cf. the MATLAB function GlobalSearch distributed with the
Global Optimization Toolbox™.

Algorithm 3 Global CIRKA
Input: Σ, {{σi}n

i=1 , {ri}n
i=1 , {li}n

i=1}k0
j=1

Output: (best) Σr satisfying (9), Σµ, ε̃H2
1: while not converged do
2: Σµ ← updateΣµ

(
Σ, {{σi}n

i=1 , {ri}n
i=1 , {li}n

i=1}k0
j=1

)

3: for j =1 to k0 do
4:

[
Σr,j ,

{
{σ∗,i}n

i=1 , {r∗,i}n
i=1 , {l∗,i}n

i=1
}

j

]
←

IRKA
(

Σµ, {{σi}n
i=1 , {ri}n

i=1 , {li}n
i=1}

j

)

5: end for
6: Σr ← arg maxj‖Σr,j‖H2

7: {{σi}n
i=1 , {ri}n

i=1 , {li}n
i=1}k0

j=1 ←
{

{σ∗,i}n
i=1 , {r∗,i}n

i=1 , {l∗,i}n
i=1

}k∗
j=1

8: end while
9: ε̃H2 ← ‖Σµ−Σr‖H2

‖Σµ‖H2

5. NUMERICAL RESULTS

In this section we show the reduction results obtained with
global CIRKA on the iss model already introduced in
Section 3, taking into considerations all inputs and outputs
(MIMO). In order to facilitate the depiction of results,
our goal is to obtain the global optimal reduced model
of order n = 2. We initialize global CIRKA with k0 = 40
samples of frequencies and tangential directions using the
initialization strategy I.2.
Figure 4 shows the initial frequencies and all minima found
both for global CIRKA (gCIRKA) and IRKA run from all
the inital sets (gIRKA).
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Figure 4. Optimization results with gCIRKA and gIRKA.

Table 3 lists all local optima, including the relative H2
errors and their estimations using the Model Function.
Note that the significant quality difference between σ∗,1
and σ∗,6 results from different tangential directions to
which gCIRKA converged.
Our approach gCIRKA is able to effectively find the global
optimum σ∗,1. As it can be seen from Figure 4, gIRKA
and gCIRKA find the same local minima, showing that
surrogate optimization using the Model Function does not
influence this results. Further, we note that in gIRKA,
IRKA converged to the global optimum for only 20% of
the initial points considered.
Finally, we conclude with some remarks on the compu-
tational efficiency of gCIRKA, whose cost is dominated
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performed in parallel without occurring in memory limita-
tions. The set of all fixed points found will be denoted by{

{σ∗,i}n
i=1 , {r∗,i}n

i=1 , {l∗,i}n
i=1

}k∗
j=1, where k∗ ∈ [1, . . . , k0].

If a local optimization does not converge 2 or results in an
unstable reduced model, the solution is disregarded.
Note: Following the discussions in literature, it is also
possible to run the local optimization only for initial sam-
ples that are most promising. This approach is generally
known as scatter search or path relinking 3 (Pintér, 1991).
It is based on estimating the basins and running the
optimization only for starting samples that are likely to
lie outside. This reduces the number of local optimiza-
tion being performed, cannot however be implemented in
parallel. In addition, a valid estimate of the basins for
H2 optimization—at least for IRKA—is non-trivial, as
apparent from Figure 2.

4.4 Selection of the Global Optimum

Given all minima found, the question arises on how to
efficiently determine which local minimum is the best.
Clearly, an evaluation of (7) is too expensive, as it requires
the solution of a generalized Lyapunov equation of dimen-
sion N+n. Fortunately, a computationally efficient method
to compare the quality of different minima can be derived
by using Lemma 3: The best locally optimal reduced model
Ggl

r,∗(s), amongst all local optima Gr,∗,1(s), . . . , Gr,∗,k∗(s),
is the one with largest H2 norm, i.e.
Ggl

r,∗ := arg min
i

‖G−Gr,∗,i‖H2 = arg max
i

‖Gr,∗,i‖H2 . (12)

This is easy to compute, as it only requires the solution of
n-dimensional Lyapunov equations.

4.5 Update of Σµ and Fixed-Point Iteration

A local optimum in the reduction of Σµ may not be a local
optimum with respect to Σ. As discussed in (Castagnotto
et al., 2016; Castagnotto and Lohmann, 2018), optimality
with respect to Σ can only be claimed if, after an update
of Σµ, the optimizer does not change. For this reason, the
Model Function Σµ needs to be updated with information
of the local optima (or at least of the global optimum)
and the globalized optimization needs to be repeated—
starting from all local optima of the previous iteration—
until convergence. Note that one may add new samples in
order to increase the chances of finding new local minima.
Further note that, in general, only a few full-dimensional
LU decompositions are required for the update of Σµ.
A summary of the proposed algorithm global CIRKA is
given in Algorithm 3. For details on implementation, we
refer to the function cirka provided with this contribu-
tion, to be used within the sssMOR toolbox (Castagnotto
et al., 2017). To run global CIRKA, it suffices to set the
option Opts.global = true. In addition, a function
girka is provided, used to run IRKA for several initial
samples in parallel.
2 Depending on the initialization and reduced order chosen, IRKA
may not converge—up to a given tolerance—to a fixed point within
a prescribed maximum number of iterations.
3 Cf. the MATLAB function GlobalSearch distributed with the
Global Optimization Toolbox™.

Algorithm 3 Global CIRKA
Input: Σ, {{σi}n

i=1 , {ri}n
i=1 , {li}n

i=1}k0
j=1

Output: (best) Σr satisfying (9), Σµ, ε̃H2
1: while not converged do
2: Σµ ← updateΣµ

(
Σ, {{σi}n

i=1 , {ri}n
i=1 , {li}n

i=1}k0
j=1

)

3: for j =1 to k0 do
4:

[
Σr,j ,

{
{σ∗,i}n

i=1 , {r∗,i}n
i=1 , {l∗,i}n

i=1
}

j

]
←

IRKA
(

Σµ, {{σi}n
i=1 , {ri}n

i=1 , {li}n
i=1}

j

)

5: end for
6: Σr ← arg maxj‖Σr,j‖H2

7: {{σi}n
i=1 , {ri}n

i=1 , {li}n
i=1}k0

j=1 ←
{

{σ∗,i}n
i=1 , {r∗,i}n

i=1 , {l∗,i}n
i=1

}k∗
j=1

8: end while
9: ε̃H2 ← ‖Σµ−Σr‖H2

‖Σµ‖H2

5. NUMERICAL RESULTS

In this section we show the reduction results obtained with
global CIRKA on the iss model already introduced in
Section 3, taking into considerations all inputs and outputs
(MIMO). In order to facilitate the depiction of results,
our goal is to obtain the global optimal reduced model
of order n = 2. We initialize global CIRKA with k0 = 40
samples of frequencies and tangential directions using the
initialization strategy I.2.
Figure 4 shows the initial frequencies and all minima found
both for global CIRKA (gCIRKA) and IRKA run from all
the inital sets (gIRKA).
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Figure 4. Optimization results with gCIRKA and gIRKA.

Table 3 lists all local optima, including the relative H2
errors and their estimations using the Model Function.
Note that the significant quality difference between σ∗,1
and σ∗,6 results from different tangential directions to
which gCIRKA converged.
Our approach gCIRKA is able to effectively find the global
optimum σ∗,1. As it can be seen from Figure 4, gIRKA
and gCIRKA find the same local minima, showing that
surrogate optimization using the Model Function does not
influence this results. Further, we note that in gIRKA,
IRKA converged to the global optimum for only 20% of
the initial points considered.
Finally, we conclude with some remarks on the compu-
tational efficiency of gCIRKA, whose cost is dominated
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Table 3. Local optima, relative H2 errors and their estimates for the MIMO iss model.

σ∗,1 σ∗,2 σ∗,3 σ∗,4 σ∗,5 σ∗,6

σ∗ 0.004±0.775i 0.01±1.99i 0.04±8.48i 0.05±9.23i 0.04±7.93i 0.003±0.623i
εH2 7.0e-01 9.4e-01 9.7e-01 9.8e-01 1.0e+00 1.0e+00
ε̃H2 7.4e-01 9.8e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00

Table 4. Cost of gCIRKA and gIRKA.

gCIRKA gIRKA gCIRKA (k-means)

nLU 40 376 18

by the number of large-scale LU decompositions 4 (nLU )
required in computing and updating the Model Function
Σµ. In this numerical example, the Model Function was
initialized with respect to all initial frequencies (M.1),
leading to a total of nLU = 40. Note that bluntly running
IRKA for all initial points (gIRKA) requires nLU = 376
(cf. Table 4), indicating the significant advantage of using
the Model Function approach. In addition, this cost can
be further reduced by k-means clustering (M.2). Figure 5
shows the result using σ = 0 and kc =9 centroids.
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Figure 5. Results with gCIRKA using k-means clustering.

Note how in this case, not all local minima of Figure 4
are found. Nonetheless, the global optimum is successfully
found.

6. CONCLUSIONS AND OUTLOOK

In this contribution, we have shown that the reduction
quality of conventional H2-optimal reduction algorithms,
such as IRKA, may heavily depend on the chosen ini-
tialization. What is more, in some cases they may even
converge to unstable reduced models. For this reason, we
have introduced an approach that, by means of global-
ized local optimization, aims at finding the (hopefully)
global H2-optimal reduced model for linear systems with
multiple-inputs and multiple-outputs. By exploiting the
Model Function framework, localized optimization can be
conducted from many initial samples in the search space at
a negligible cost, compared to the cost of reducing the full-
order model, thus making globalized approaches attractive
and efficient also in the case of very large-scale models. The
functions introduced in this contribution are available to
use in combination with the sssMOR toolbox.

4 Similar considerations can be conducted if iterative solvers are
used instead of sparse LU decomposition.
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A.4 Interpolatory Methods for H∞ Model Reduction of
Multi-Input/Multi-Output Systems

Summary: This contribution extends the “Interpolatory H∞ Approximation” algo-
rithm by Flagg, Beattie and Gugercin to linear time-invariant models with multiple in-
puts and multiple outputs, yielding a numerically efficient approach to obtain reduced-
order models with low H∞ approximation error. After revising the fundamentals of
H∞-optimal reduction and existing approaches for generating reduced-order models
with low H∞-errors, the contribution starts by motivating why rational interpolation
and, in particular, H2-optimal reduction, is a valid approach to address also the H∞
reduction problem. Conceptual discussions are accompanied by a numerical example
comparing the H∞-approximation error of IRKA and balanced truncation. Once a set
of favorable interpolation conditions is found, the only remaining degrees of freedom
in the reduced-order model are given by the entries of the feed-through matrix, which
in the H2-optimal context is always chosen to satisfy D = Dr. A new proof is given
on how to introduce an additional feed-through term Dr into the reduced-order model
while preserving the original interpolatory conditions. A new approach called “MIMO
Interpolatory H∞ Approximation” (MIHA) is presented, which starts from H2-optimal
reduction and subsequently minimizes the H∞ error with respect to Dr. To increase the
numerical efficiency, the Sherman-Morrison-Woodbury formula is used to separate the
reduced-order model resulting from IRKA from the additional term resulting from Dr

optimization. This allows the approximation of the error system (after IRKA) by means
of data-driven surrogate modeling. The data is taken “for free” during IRKA iterations,
while the methods chosen to generate the surrogate is vector fitting. In this way, large-
scale H∞-norm computations can be avoided. When using the surrogate, optimality
with respect to the original error system cannot be guaranteed per se. Nonetheless,
numerical examples show the effectiveness of the proposed procedure, being very close
to (and sometimes even better than) optimal Hankel Norm approximations.

Contribution(s): Derivations, analysis and writing have been conducted by the first
author with the support of the second and third author. Software development and
numerical examples have been conducted predominantly by the first author.
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Chapter 22
Interpolatory Methods forH1 Model
Reduction of Multi-Input/Multi-Output Systems

Alessandro Castagnotto, Christopher Beattie, and Serkan Gugercin

Abstract We develop here a computationally effective approach for producing
high-quality H1-approximations to large scale linear dynamical systems having
multiple inputs and multiple outputs (MIMO). We extend an approach for H1
model reduction introduced by Flagg et al. (Syst Control Lett 62(7):567–574,
2013) for the single-input/single-output (SISO) setting, which combined ideas
originating in interpolatory H2-optimal model reduction with complex Chebyshev
approximation. Retaining this framework, our approach to the MIMO problem
has its principal computational cost dominated by (sparse) linear solves, and so
it can remain an effective strategy in many large-scale settings. We are able
to avoid computationally demanding H1 norm calculations that are normally
required to monitor progress within each optimization cycle through the use of
“data-driven” rational approximations that are built upon previously computed
function samples. Numerical examples are included that illustrate our approach. We
produce high fidelity reduced models having consistently better H1 performance
than models produced via balanced truncation; these models often are as good
as (and occasionally better than) models produced using optimal Hankel norm
approximation as well. In all cases considered, the method described here produces
reduced models at far lower cost than is possible with either balanced truncation or
optimal Hankel norm approximation.

22.1 Introduction

The accurate modeling of dynamical systems often requires that a large number of
differential equations describing the evolution of a large number of state variables be
integrated over time to predict system behavior. The number of state variables and
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differential equations involved can be especially large and forbidding when these
models arise, say, from a modified nodal analysis of integrated electronic circuits,
or more broadly, from a spatial discretization of partial differential equations over
a fine grid. Most dynamical systems arising in practice can be represented at least
locally around an operating point, with a state-space representation having the form

E Px D A x C B u;

y D C x C D u;
(22.1)

where E 2 R
N �N is the descriptor matrix, A 2 R

N�N is the system matrix and
x 2 R

N , u 2 R
m, and y 2 R

p (p; m � N) represent the state, input, and output
of the system, respectively. A static feed-through relation from the control input u
to the control output y is modeled through the matrix D 2 R

p�m. Most practical
systems involve several actuators (input variables) and several quantities of interest
(output variables), motivating our focus here on systems having multiple inputs and
multiple outputs (MIMO).

In many application settings, the state dimension N (which typically matches the
order of the model) can grow quite large as greater model fidelity is pursued, and
in some cases it can reach magnitudes of 106 and more. Simulation, optimization,
and control design based on such large-scale models becomes computationally very
expensive, at times even intractable. This motivates consideration of reduced order
models (ROMs), which are comparatively low-order models that in spite of having
significantly smaller order, n � N, are designed so as to reproduce the input-
output response of the full-order model (FOM) accurately while preserving certain
fundamental structural properties, that may include stability and passivity. For state
space models such as (22.1), reduced models are obtained generally through Petrov-
Galerkin projections having the form:

Er
‚ …„ ƒ

W>E V Pxr D
Ar

‚ …„ ƒ

W>A V xr C
Br

‚…„ƒ

W>B u;

yr D C V
„ƒ‚…

Cr

xr C Dr u:
(22.2)

The projection matrices V; W 2 R
N �n become the primary objects of scrutiny in

the model reduction enterprise, since how they are chosen has a great impact on the
quality of the ROM. For truly large-scale systems, interpolatory model reduction,
which includes approaches known variously as moment matching methods and
Krylov subspace methods, has drawn significant interest due to its flexibility
and comparatively low computational cost [1–3]. Indeed, these methods typically
require only the solution of large (generally sparse) linear systems of equations, for
which several optimized methods are available. Through the appropriate selection
of V and W, it is possible to match the action of the transfer function

G.s/ D C .sE � A/�1 B C D (22.3)



22 Interpolatory H1 Model Reduction of MIMO Systems 351

along arbitrarily selected input and output tangent directions at arbitrarily selected
(driving) frequencies. The capacity to do this is central to our approach and is stated
briefly here as:

Theorem 1 ([4, 5]) Let G.s/ be the transfer function matrix (22.3) of the
FOM (22.1) and let Gr.s/ be the transfer function matrix of an associated ROM
obtained through Petrov-Galerkin projection as in (22.2). Suppose �; � 2 C are
complex scalars (“shifts”) that do not coincide with any eigenvalues of the matrix
pencil .E; A/ but otherwise are arbitrary. Let also r 2 C

m and l 2 C
p be arbitrary

nontrivial tangent directions. Then

G.�/ � r D Gr.�/ � r if .A � �E/�1 Br 2 Ran.V/; (22.4a)

l> � G.�/ D l> � Gr.�/ if .A � �E/�> C>l 2 Ran.W/; (22.4b)

l> � G0.�/ � r D l> � G0r.�/ � r if, additionally, � D �: (22.4c)

A set of complex shifts, f�ign
iD1, f�ign

iD1, with corresponding tangent directions,
frign

iD1, flign
iD1, will be collectively referred to as interpolation data in our present

context. We define primitive projection matrices as

eV :D �

.A � �1E/�1Br1; : : : ; .A � �nE/�1Brn
�

(22.5a)

eW :D �

.A � �1E/�>C>l1; : : : ; .A � �nE/�>C>ln
�

(22.5b)

Note that eV and eW satisfy Sylvester equations having the form:

A eV � E eVS� D BeR and A>eW � E>eW S>� D C>eL; (22.6)

where S� D diag .�1; ::; �n/ 2 C
n�n, S� D diag .�1; ::; �n/ 2 C

n�n, eR D
Œr1; ::; rn� 2 C

m�n and eL D Œl1; : : : ; ln� 2 C
p�n [6]. In this way, the Petrov-Galerkin

projection of (22.2) is parameterized by interpolation data and the principal task
in defining interpolatory models then becomes the judicious choice of shifts and
tangent directions.

Procedures have been developed over the past decade for choosing interpolation
data that yield reduced models, Gr.s/, that minimize, at least locally the approxima-
tion error, G.s/ � Gr.s/, as measured with respect to the H2-norm:

kG � GrkH2
:D

s

1

2�

Z 1

�1
kG. j!/ � Gr. j!/k2

F d! (22.7)

(see [1]). Minimizing the H2-error, kG � GrkH2
, is of interest through the immedi-

ate relationship this quantity bears with the induced system response error:

ky � yrkL1

� kG � GrkH2
ku.t/kL2

; (22.8)
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A well-known approach to accomplish this that has become popular at least in part
due to its simplicity and effectiveness is the Iterative Rational Krylov Algorithm
(IRKA) [7], which, in effect, runs a simple fixed point iteration aimed at producing
interpolation data that satisfy first-order H2-optimality conditions, i.e.,

G.��i/ � Obi D Gr.��i/ � Obi; Oc>i � G.��i/ D Oc>i � Gr.��i/; (22.9a)

and Oc>i � G0.��i/ � Obi D Oc>i � G0r.��i/ � Obi: (22.9b)

for i D 1; : : : ; n. The data �i, Obi and Oci are reduced poles and right/left vector
residues corresponding to the pole-residue expansion of the ROM:

Gr.s/ D
n

X

iD1

Oci Ob>i
s � �i

: (22.10)

Despite the relative ease with which H2-optimal reduced models can be
obtained, there are several circumstances in which it might be preferable to obtain a
ROM which produces a small error as measured in the H1-norm:

kG � GrkH1

:D max
!

&max.G. j!/ � Gr. j!//; (22.11)

where &max.M/ denotes the largest singular value of a matrix M (see [1]). ROMs
having small H1-error produce an output response with a uniformly bounded
“energy” error:

ky � yrkL2
� kG � GrkH1

kukL2
: (22.12)

The H1 norm is also used as a robustness measure for closed-loop control systems
and is therefore of central importance in robust control. It finds frequent use in
aerospace applications, among others, where the L2 energy of the system response
is of critical interest in design and optimization.

Strategies for producing reduced models that give good H1 performance has
long been an active area of research [8]. Analogous to the H1-control design
problem, the optimal H1 reduction problem can be formulated in terms of linear
matrix inequalities, although advantageous features such as linearity and convexity
are lost in this case [9, 10]. Due to the high cost related to solving these matrix
inequalities, this approach is generally not feasible in large-scale settings.

Another family of methods for the H1 reduction problem relates it to the
problem of finding an optimal Hankel norm approximation (OHNA) [11–13]. Along
these lines the balanced truncation (BT) algorithm yields rigorous upper bounds on
the H1 error and often produces small approximation error, especially for higher
reduced order approximants [1, 14]. Each of these procedures is generally feasible
only for mid-size problems since either an all-pass dilation requiring large-scale
eigenvalue decomposition (for OHNA) or the solution of generalized Lyapunov
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equations (for BT) is required. Extensions to large-scale models are available,
however—e.g., in [15–20].

A wholly different approach to the H1 model reduction problem for SISO
models was proposed by Flagg, Beattie, and Gugercin in [21]. A locally H2-optimal
reduced model is taken as a starting point and adjusted through the variation of rank-
one modifications parameterized by the scalar feed-through term, D. Minimization
of the H1-error with respect to this parameterization available through D produces
ROMs that are observed to have generally very good H1-performance, often
exceeding what could be attained with OHNA.

In this work, we extend these earlier interpolatory methods to MIMO systems.
We introduce a strategy that reduces the computational expense of the intermediate
optimization steps by means of data-driven MOR methods (we use vector fitting [22,
23]). Stability of the reduced model is guaranteed through appropriate constraints in
the resulting multivariate optimization problem. Numerical examples show effective
reduction of approximation error, often outperforming both OHNA and BT.

22.2 MIMO Interpolatory H1-Approximation (MIHA)

In this section we first characterize the H1-optimal reduced order models from
the perspective of rational interpolation. This motivates the usage of H2-optimal
reduction as a starting point for the model reduction algorithm we propose for the
H1 approximation problem.

22.2.1 Characterization of H1-Approximants via Rational
Interpolation

In the SISO case, Trefethen [13] has characterized best H1 approximations within
a broader context of rational interpolation:

Theorem 2 (Trefethen [13]) Suppose G.s/ is a (scalar-valued) transfer function
associated with a SISO dynamical system as in (22.3). Let bGr.s/ be an optimal H1
approximation to G.s/ and let Gr be any nth order stable approximation to G.s/ that
interpolates G.s/ at 2n C 1 points in the open right half-plane. Then

min
!2R jG. j!/ � Gr. j!/j � kG � bGrkH1

� kG � GrkH1

In particular, if jG. j!/�Gr. j!/j D const for all ! 2 R then Gr is itself an optimal
H1-approximation to G.s/.

For the SISO case, a goodH1 approximation will be obtained when the modulus
of the error, jG.s/ � Gr.s/j, is nearly constant as s D j! runs along the imaginary
axis. In the MIMO case, the analogous argument becomes more technically involved
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as the maximum singular value of matrix-valued function G.s/ � Gr.s/ will not
generally be analytic in the neighborhood of the imaginary axis (e.g., where multiple
singular values occur). Nonetheless, the intuition of the SISO case carries over to
the MIMO case, as the following Gedankenexperiment might suggest: Suppose that
bGr is an H1-optimal interpolatory approximation to G but &max.G. j!/ � Gr. j!//

is not constant with respect to ! 2 R. Then there exist frequencies O! and Q! 2 R

and � > 0 such that

kG � bGrkH1
D &max.G. j O!/ � bGr. j O!// � � C min

!
&max.G. j!/ � bGr. j!//

D � C &max.G. j Q!/ � bGr. j Q!//:

By nudging interpolation data away from the vicinity of Q! and toward O! while
simultaneously nudging the poles of bGr away from the vicinity of O! and toward Q!,
one may decrease the value of &max.G. j O!/ � bGr. j O!// while increasing the value of
&max.G. j Q!/ � bGr. j Q!//. This will (incrementally) decrease the H1 norm and bring
the values of &max.G. j O!/ � bGr. j O!// and &max.G. j Q!/ � bGr. j Q!// closer together
toward a common value.

Of course, the nudging process described above contains insufficient detail to
suggest an algorithm, and indeed, our approach to this problem follows a somewhat
different path, a path that nonetheless uses the guiding heuristic for (near) H1-
optimality:

&max.G. j!/ � eGr. j!// � const for all ! 2 R: (22.13)

Approximations with good H1 performance should have an advantageous con-
figuration of poles and interpolation data that locates them symmetrically about
the imaginary axis, thus balancing regions where &max.G.s/ � eGr.s// is big (e.g.,
pole locations) symmetrically against regions reflected across the imaginary axis
where &max.G.s/ � eGr.s// is small (e.g., interpolation locations). This configuration
of poles and interpolation data, we note, is precisely the outcome of optimal
H2 approximation as well, and this will provide us with an easily computable
approximation that is likely to have good H1 performance.

22.2.2 H1 Approximation with InterpolatoryH2-Optimal
Initialization

Local H2-optimal ROMs are often observed to give good H1 performance—
this is in addition to the expected good H2 performance. This H1 behaviour is
illustrated in Fig. 22.1, where the H1 approximation errors of local H2-optimal
ROMs produced by IRKA are compared to ROMs of the same order obtained
through BT for the CD player MIMO benchmark model [24].
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Fig. 22.1 Numerical investigations indicate that IRKA models are often good also in terms of the
H1-error

The frequently favourable H1 behaviour of IRKA models has particular
significance in this context, since they are computationally cheap to obtain even
in large-scale settings, indeed often they are much cheaper than comparable BT
computations. The resulting locally H2-optimal ROMs can be further improved
(with respect to H1 error) by relaxing the (implicit) interpolation constraint at
1 while preserving the H2-optimal interpolation conditions (which is the most
important link the H2-optimal ROM has with the original model).

Consider the partial fraction expansion

Gr.s/ D
N

X

iD1

Oci Ob>i
s � �i

C Dr: (22.14)

For ease of exposition, we assume the poles, �i, to be simple, although the results
we develop here can be extended to the case of higher multiplicity. The input/output
behavior is determined by n scalar parameters �i, n pairs of input/output residuals
Obi; Oci and the p�m-dimensional feed-through Dr. Considering that a constant scaling
factor can be arbitrarily defined in the product of the residuals, this leaves us a total
of n . p C m/ C p � m parameters, n . p C m/ of which can be described in terms
of two-sided tangential interpolation conditions (22.4). This interpolation data is
established for the original H2-optimal ROM and we wish it to remain invariant
over subsequent adjustments, so the only remaining degrees-of-freedom are the p �m
entries in the feed-through matrix Dr.

In the typical context of H2-optimal model reduction, Dr is chosen to match
the feed-through term D of the original model, thus guaranteeing that the error
G�eGr remains in H2. Note that D remains untouched by the state-space projections
in (22.2), moreover since typically p; m � N, the feed-through term need not
be involved in the reduction process and may be retained from the FOM. Indeed,
retaining the original feed-through term is a necessary condition for H2 optimality,
forcing interpolation at s D 1 and as a consequence, small error at higher
frequencies. Contrasting significantly with H2-based model reduction, good H1
performance does not require Dr D D, and in this work we exploit this flexibility
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in a crucial way. A key observation playing a significant role in what follows was
made in [25, 26] that the feed-through term Dr induces a parametrization of all
reduced order models satisfying the two-sided tangential interpolation conditions.
This result is summarized by following theorem taken from [25, Theorem 4.1] and
[26, Theorem 3]

Theorem 3 Let eR, eL be defined through the Sylvester equations in (22.6). Assume,
without loss of generality, that the full order model satisfies D D 0 and let the
nominal reduced model G0

r .s/ D Cr .sEr � Ar/
�1 Br be obtained through Petrov-

Galerkin projection using the primitive projection matrices (22.5). Then, for any
Dr 2 C

p�m, the perturbed reduced order model

eGD
r .s; Dr/ D �

eCr C DreR
� �

seEr � �

eAr CeL>DreR
���1 �

eBr CeL>Dr
� C Dr

(22.15)

also satisfies the tangential interpolation conditions (22.4).
Note that for D ¤ 0, the results of Theorem 3 can be trivially extended by adding
D to the right-hand side in (22.15). Even though for theoretical consideration the
use of primitive Krylov bases eV; eW introduced in (22.5) is often convenient, from a
numerical standpoint there are several reason why one may choose a different basis
for the projection matrices. This next result shows that the interpolation conditions
are preserved also for arbitrary bases—in particular also real and orthonormal
bases—provided that the shifting matrices R and L are appropriately chosen.

Corollary 1 Let Tv; Tw 2 C
n�n be invertible matrices used to transform the

primitive bases eV; eW of the Krylov subspace to new bases V D eVTv and W D eWTw.
Let the same transformation be applied to the matrices of tangential directions,
resulting in R D eRTv and L D eLTw. Then, for any Dr, the ROM GD

r is given by

GD
r .s; Dr/ D .Cr C DrR/

„ ƒ‚ …

CD
r

2

6

4sEr � �

Ar C L>DrR
�

„ ƒ‚ …

AD
r

3

7

5

�1

�

Br C L>Dr
�

„ ƒ‚ …

BD
r

CDr

(22.16)

Proof The proof amounts to showing that the transfer function matrix GD
r of the

ROM is invariant to a change of basis from eV and eW as long as eR and eL are adapted
accordingly.

GD
r � Dr D CD

r

�

sE � AD
r

�
�1

BD
r

D .CV C DrR/
h

sW>EV � W>AV � L>DrR
>

i
�1 �

W>B C L>Dr

�

D �

CeV C DreR
�

Tv

h

T>

w

�

seW>EeV � eW>AeV �eL >DreR
>

�

Tv

i
�1

T>

w

�

eW>B CeL >Dr

�

D �

CeV C DreR
�

h

seW>EeV � eW>AeV �eL >DreR
>

i
�1 �

eW>B CeL >Dr

�

D eGD
r � Dr :
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The results of Theorem 3 generalize to the case of arbitrary bases. Following
the notation from [25, Definition 2.1], the state-space models resulting from
Petrov-Galerkin projections with V; W and eV; eW respectively are restricted system
equivalent. As a consequence, they share the same transfer function matrix.

Using the Sherman-Morrison-Woodbury formula [27] for the inverse of rank k
perturbations of a matrix, we are able to decompose the transfer function of the
shifted reduced model into the original reduced model and an additional term.

Corollary 2 Define the auxiliary variable Kr :D sEr � Ar. The transfer function of
the shifted reduced model GD

r can be given as

GD
r .s/ D G0

r .s/ C �GD
r .s; Dr/; (22.17)

where G0
r is the transfer function of the unperturbed model and �GD

r is defined as

�GD
r D �1C�2 C �3 � .�4/

�1 � �2 C Dr

given

�1 :D CrK �1
r L>Dr

�3 :D .Cr C DrR/K �1
r L>

�2 :D DrRK �1
r

�

Br C L>Dr
�

�4 :D I � DrRK �1
r L>

(22.18)

Proof Note that by the Sherman-Morrison-Woodbury formula, following equality
holds:

�

Kr � L>DrR
��1 D K �1

r C K �1
r L>

�

I � DrRK
�1

r L>
��1

DrRK
�1

r : (22.19)

Using this relation in the definition of GD
r , the proof is completed by straightforward

algebraic manipulations.
We proceed by attempting to exploit the additional degrees-of-freedom available

in Dr to trade off excessive accuracy at high frequencies for improved approximation
in lower frequency ranges, as measured with the H1-norm. We first obtain
an H2-optimal ROM by means of IRKA and subsequently minimize the H1-
error norm with respect to the constant feed-through matrix Dr while preserving
tangential interpolation and guaranteeing stability. The resulting ROM G�r will
represent a local optimum out of the set of all stable ROMs satisfying the tangential
interpolation conditions. The outline of our proposed reduction procedure, called
MIMO interpolatory H1-approximation (MIHA), is given in Algorithm 1.

Numerical results in Sect. 22.3 will show the effectiveness of this procedure in
further reducing the H1-error for a given IRKA model. However, at this stage the
optimization in Step 2 appears problematic, for it requires both the computation of
the H1-norm of a large-scale model and a constrained multivariate optimization
of a non-convex, non-smooth function. It turns out that both of these issues can be
resolved effectively, as it will be discussed in the following sections.
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Algorithm 1 MIMO interpolatory H1-approximation (MIHA)
Input: G.s/, n
Output: Stable, locally optimal reduced order model G�

r , approximation error e�

H1

1: G0
r  IRKA.G.s/; n/

2: D�

r  arg minDr

�

�G.s/� GD
r .s; Dr/

�

�

H1

s.t. GD
r .s; D�

r / is stable

3: G�

r  GD
r .s; D�

r /

4: e�

H1

 �

�G.s/� G�

r .s/
�

�

H1

22.2.3 Efficient Implementation

As we have noted, the main computational burden of the algorithm described above
resides mainly in Step 2. We are able to lighten this burden somewhat through
judicious use of (22.17) and by taking advantage of previously computed transfer
function evaluations.

22.2.3.1 A “Free” Surrogate Model for the Approximation Error G � G0
r

Step 1 of Algorithm 1 requires performing H2-optimal reduction using IRKA.
This is a fixed point iteration involving a number of steps k before convergence
is achieved. At every step j, Hermite tangential interpolation about some complex
frequencies f�ign

iD1 and tangential directions frign
iD1, flign

iD1 is performed. For this
purpose, the projection matrices in (22.5) are computed, and it is easy to see that for
all i D 1; : : : ; n it holds

C � eVei D C .A � �iE/�1 Bri D G.�i/ri (22.20a)

e>i eW> � B D l>i C .A � �iE/�1 B D l>i G.�i/ (22.20b)

e>i eW>EeVei D l>i .A � �iE/�1 E .A � �iE/�1 ri D l>i G0.�i/ri (22.20c)

Observe that, at basically no additional cost, we can gather information about
the FOM while performing IRKA. Figure 22.2a illustrates this point by showing
the development of the shifts during the IRKA iterations reducing the CDplayer
benchmark model to a reduced order n D 10. For all complex frequencies indicated
by a marker, tangent data for the full order model is collected.

To use this “free” data, there are various choices for “data-driven” procedures that
produce useful rational approximations. Loewner methods [25, 28–30] are effective
and are already integrated into IRKA iteration strategies [31]. We adopt here a vector
fitting strategy [22, 23, 32–34] instead. This allows us to produce stable low-order
approximations of the reduction error after IRKA

fG0
e � G0

e :D G � G0
r : (22.21)
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Fig. 22.2 Data collecting during IRKA can be used to generate data-driven surrogates. (a) Points
at which data of the FOM is collected during IRKA. (b) Decay of singular values of the matrix
ŒL; �L� for the data collected during IRKA

An appropriate choice of order for the surrogate model can be obtained by forming
the Loewner L and shifted Loewner �L matrices from G and G0 evaluations that
were generated in the course of the IRKA iteration and then observing the singular
value decay of the matrix ŒL; �L�, as indicated in Fig. 22.2b.

Using the decomposition in (22.17), the H1-norm evaluations required during
the optimization will be feasible even for large-scale full order models. In addition,
it will allow us to obtain a cheap estimate QeH1

for the approximation error

eH1
:D �

�G � GD
r

�

�

H1

�
�

�

�

fG0
e � �GD

r

�

�

�

H1

D QeH1
(22.22)

22.2.3.2 Constrained Multivariate Optimization with Respect to Dr

The focus of this work lies in the development of new model reduction strategies.
Our intent is not directed toward making a contribution to either the theory
or practice of numerical optimization and we are content in this work to use
standard optimization approaches. In the results of Sect. 22.3, we rely on state-of-
the-art algorithms that are widespread and available, e.g., in MATLAB. With that
caveat understood, we do note that the constrained multivariate optimization over
the reduced feed-through, Dr, is a challenging optimization problem, so we will
explain briefly the setting that seems to work best in our case. The computation
and optimization of H1-norms for large-scale models remains an active area of
research, as demonstrated by Mitchell and Overton [35, 36] and Aliyev et al. [37].

The problem we need to solve in step 2 of Algorithm 1 is

min
Dr2Rp�m

max
!

&max
�

G. j!/ � GD
r . j!; Dr/

�

s:t: GD
r .s; Dr/ is stable

(22.23)
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Fig. 22.3 Comparison of different solvers shows the effectiveness of coordinate descent followed
by multivariate optimization

which represents a non-smooth, non-convex multivariate optimization problem in
a p�m-dimensional search space. In our experience, the best strategy considering
both optimization time and optimal solution is given by a combination of coordinate
descent (CD) [38] and subsequent multivariate optimization (MV). We refer to
this combined strategy as CD+MV. The coordinate descent strategy is used in this
setting somewhat like an initialization procedure to find a better starting point than
D0

r D 0. This initialization is based on reducing the search space from p � m
dimensions to just one, hence performing a much simpler univariate optimization in
each step. Once one cycle has been conducted for all elements in the feed-through
matrix, the resulting feed-through is used to initialize a nonlinear constrained
optimization solver that minimizes the error with respect to the whole Dr matrix.
We have used a sequential quadratic programming (SQP) method as implemented
in MATLAB’s fmincon, although acceptable options for this final step abound.
Further information about optimization strategies can be found in [39].

The suitability of CD+MV is motivated by extensive simulations conducted
comparing different strategies, such as direct multivariate optimization, global
search (GS) [40], and genetic algorithms (GA) (cp. Fig. 22.3). Ultimately, we rely
on the results of Sect. 22.3 to show that this procedure is effective.

22.3 Numerical Results

In the following we demonstrate the effectiveness of the proposed procedure by
showing reduction results with different MIMO models. The reduction code is based
on the sssMOR toolbox1 [41]. For generation of vector fitting surrogates, we use the
vectfit3 function2 [22, 32, 33]. Note that more recent implementation of MIMO

1Available at www.rt.mw.tum.de/?sssMOR.
2Available at www.sintef.no/projectweb/vectfit/downloads/vfut3/.
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vector fitting introduced in [23] could be used instead, especially for improved
robustness.

22.3.1 Heat Model

Our proposed procedure is demonstrated through numerical examples conducted
on a MIMO benchmark model representing a discretized heat equation of order
N D 197 with p D 2 outputs and m D 2 inputs [42].

Model reduction for this model was conducted for a range of reduced orders; the
results are summarized in Table 22.1. The table shows the reduced order n, the order
nm of the error surrogate fG0

e , and the relative H1 error of the proposed ROM GD
r ,

as well as the percentage improvement over the initial IRKA model. Our proposed
method improves significantly on the H1 performance of IRKA, in some cases by
more than 50%.

Figure 22.4 gives a graphical representation of the reduction results. The plots
compare the approximation error achieved after applying MIHA, with a vector
fitting surrogate as described in Sect. 22.2.3.1, to other reduction strategies. These
include the direct reduction with IRKA, balanced truncation (BT), Optimal Hankel
Norm Approximation (OHNA) as well as the optimization with respect to the actual
error G0

e (MIHA without surrogate). For a better graphical comparison throughout
the reduced orders studied, the errors are related to the theoretical lower bound given
by

eH1

:D &H
nC1; (22.24)

Table 22.1 Results for the heat model problem

n 1 2 3 4 5 6 7 8 9 10

nm 14 24 20 22 24 30 32 36 36 36
kG�GD

r k
kGk

8.7e-2 7.6e-3 1.2e-2 1.2e-3 6.5e-4 5.7e-4 4.1e-4 1.6e-4 4.4e-5 8.6e-6

1� kG�GD
r kkG�G0
rk 50.8% 39.0% 27.0% 36.7% 36.0% 44.8% 52.0% 44.6% 49.5% 42.6%

0 2 4 6 8 10
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5

reduced order

‖G
−G

r‖

MIHA (VF surr.)
MIHA (no surr.)
IRKA
OHNA
BT

Fig. 22.4 Plot of the approximation error relative to the theoretical error bound
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Fig. 22.5 Optimization with the surrogate effectively reduces and provides an accurate estimate
of the true error. (a) Singular value plot of the error before and after optimization. (b) Comparison
of error estimate QeH1

versus true error eH1

with which we denote the Hankel singular value of order n C 1.
Notice how effectively the ROMs resulting from the Dr-optimization reduce the

H1-error beyond what is produced by the IRKA ROMs and that they often, (here,
in 9 out of 10 cases) yield better results than BT and sometimes (here, in 3 out of
10 cases) yield better results even than OHNA. Note also that the optimization with
respect to the vector-fitting surrogate produces as good a result as optimization with
respect to the true error. For reduced order n D 8, optimization with respect to the
surrogate yields even a better result. This is not expected and may be due to the
different cost functions involved, causing optimization of the true error to converge
to a worse solution.

The plot also confirms our initial motivation in using IRKA models as starting
points, since their approximation in terms of the H1 norm is often not far from BT.
Finally, note how in several cases the resulting ROM is very close to the theoretical
lower bound, which implies that the respective ROMs are not far from being the
global optimum.

Figure 22.5a shows the approximation error before and after the feed-through
optimization for a selected reduced order of 2. The largest singular value is
drastically reduced (ca. 40%) by lifting up the value at high frequencies. This
confirms our intuition that the H1-optimal reduced order model should have a
nearly constant error modulus over all frequencies. Finally, Fig. 22.5b demonstrates
the validity of the error estimate QeH1

obtained using the surrogate model.

22.3.2 ISS Model

Similar simulations were conducted on a MIMO model with m D 3 inputs and
p D 3 outputs of order N D 270, representing the 1r component of the International
Space Station (ISS) [24]. The results are summarized in Table 22.2 and Fig. 22.6.
Note that the H1-error after IRKA is comparable to that of BT and the proposed
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Table 22.2 Results for the ISS problem

n 2 4 6 8 10 12 14 16 18 20

nm 12 18 12 18 18 15 42 48 30 30
kG�GD

r k
kGk

2.7e-1 9.4e-2 8.4e-2 7.9e-2 3.6e-2 3.4e-2 2.2e-2 2.2e-2 1.0e-2 7.7e-3

1� kG�GD
r kkG�G0
rk 7.5% 9.9% 8.8% 4.9% 9.5% 13.8% 23.3% 15.7% 3.5% 25.8%
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Fig. 22.6 Plot of the approximation error relative to the theoretical error bound (ISS)
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Fig. 22.7 Singular value plot of the error before and after optimization (ISS)

procedure is effective in further reducing the error, outperforming BT in all cases
investigated.

Finally, note also in this case that the modulus of the error due to this H1-
approximation procedure is nearly constant, as anticipated. This is demonstrated in
Fig. 22.7, where the error plots for the reduction order n D 10 are compared.
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A.5 sss & sssMOR: Analysis and reduction of large-scale
dynamic systems in MATLAB

Summary: This contribution gives an introduction and overview to the MATLAB
toolboxes developed and released during this thesis, namely sss and sssMOR. At the be-
ginning of the paper, a broad introduction to the curse of dimensionality and the need
for sparse matrix representations is given, which explains the limitations of MATLAB’s
built-in Control System Toolbox. Subsequently, an introduction to state-space models
and projective model reduction is given. The second part is dedicated to introducing
the sss toolbox, i.e. the class of sss objects and related analysis and manipulation
functions. This section ends with a description of the tailoring concept, using Opts
structure objects to define optional execution parameters, that would be otherwise cho-
sen automatically from the functions. In addition, the main computational functions
solveLse and lyapchol are introduced, These functions are the core of sss in that
they define the algorithms to solve linear systems of equations and matrix equations,
the two key computations in analysis and reduction. The definition of these functions
allows easy extension to other algorithms that might be preferred by the users, as they
only need to be added in these two functions. The third section is dedicated to sssMOR,
introducing ssRed objects, i.e. reduced-order dynamical model objects containing in-
formation about the full-order model and the reduction. Further, a selection of model
reduction functions is presented, ranging from classic to more state-of-the-art methods.
The end of this section is dedicated to the sssMOR app, i.e. a graphical user interface
that provides the main functionality of sss and sssMOR. Finally, the fourth section
presents some numerical examples and comparisons to the built-in functions.
This contribution received the 2018 “Best Paper Award” in the section “Tools” of the
journal “at-Automatisierungstechnik”.

Contribution(s): Writing and numerical examples have been conducted predomi-
nantly by the first author with contributions of the second and third author. Soft-
ware development has been initiated, coordinated and conducted predominantly by the
first and second author with support of the third author and contributions from Jorge
Luiz Moreira Silva, Rodrigo Mancilla, Siyang Hu, Michael Ott, Max Gille, Jonathan
Seiti Miura, Jonas Ferber, Maximilian Loderer, Niklas Kochdumper. Stefan Jaensch,
Thomas Emmert, Philip Holzwarth and Nico-Philipp Walz.

Copyright notice: Castagnotto, A., Varona, M., Jeschek, L., et al. (2017). sss &
sssMOR: Analysis and reduction of large-scale dynamic systems in MATLAB. at - Au-
tomatisierungstechnik, 65(2), pp. 134-150. c©2017 Walter de Gruyter Berlin/Boston.
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Abstract:We present two MATLAB toolboxes, provided as
open-source code, that expand the capabilities of the Con-
trol System Toolbox to large-scale models. sss allows the
definition and analysis of sparse state-space (sss) objects
with functions (such as bode, step, norm,. . . ) revisited to
exploit the sparsity of the system matrices. sssMOR en-
tails model reduction algorithms that capture the relevant
dynamics of high order systems in models of significantly
lower dimensions. The sssMOR_App provides a graphical
user interface for easy interaction with the tools. With sss
and sssMOR it is possible to analyze dynamical systems
with state-space dimensions higher thanO(104), which is
typically the limit for built-in ss objects. In this contribu-
tion, we give a first introduction to the toolboxes and the
main functionality. Numerical examples show the advan-
tages of using the tools.

Keywords: Large-scale systems, control systems,model re-
duction, MATLAB, control system toolbox.

Zusammenfassung: Wir stellen zwei MATLAB Tooboxen
vor, welche wir open-source zur Verfügung stellen und
die Funktionalität der Control System Toolbox auf hochdi-
mensionale Modelle erweitern. sss ermöglicht die Defini-
tion und Analyse dünnbesetzter (Engl.: sparse) Zustands-
raummodelle mit Funktionen (z.B. bode, step, norm,. . . ),
welche zur Ausnutzung der Dünnbesetzheit angepasst
wurden. sssMOR enthält Modellreduktionsalgorithmen,
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womit die relevante Dynamik in Modellen deutlich nied-
riger Ordnung beschrieben werden kann. Die sssMOR_App
bietet eine graphische Benutzeroberfläche für eine einfa-
chere Interaktion mit den Tools an. Mit sss und sssMOR
ist es möglich, Zustandraummodelle der Ordnung höher
alsO(10

4
), die typische Grenze bei built-in Funktionen, zu

analysieren. In diesem Betrag wird eine erste Einführung
in die Toolboxen gegeben. Numerische Beispiele motivie-
ren die Vorteile deren Nutzung.

Schlüsselwörter: Hochdimensionale Modelle, dynami-
sche Syteme, Modellordnungsreduktion, MATLAB, Con-
trol System Toolbox.

1 Introduction

1.1 The curse of dimensionality

The accurate modeling of dynamical systems often results
in a large number of differential equations and state vari-
ables describing the system behavior in time. This is the
case, for instance, when discretizing partial differential
equations over a fine spatial grid ormodeling systemswith
a large number of components like integrated circuits.
Applications in which large-scale models arise are numer-
ous and cover different domains. Figure 1 shows a few
examples¹.

Especially in a control theoretic setting, such mod-
els are often formulated in a state-space representation,
where the state vector 𝑥(𝑡) ∈ ℝ𝑛 describes the state of the
system at each point in time. With ever rising demands
on modeling fidelity, the model order 𝑛 can become pro-
hibitively large, easily exceeding hundreds of thousands.
This poses a great challenge on the numerical treatment

1 The gyroscope photograph “Badger 3” by Adam Greig is licensed
under CC BY-SA 2.0.
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Figure 1: Examples of large-scale dynamical systems (described in Section 3).

of such models, first and foremost due to storage limita-
tions. In fact, even in the simpler yet common case of lin-
ear systems, storing a matrix of such dimensions can be-
come a hard task, as it is demonstrated by the following
MATLAB² example that defines an identity matrix of size
𝑛 = 105:

» A = eye(1e5);
Error using eye
Requested 100000x100000 (74.5GB) array exceeds
maximum array size preference.
Creation of arrays greater than this limit may
take a long time and cause MATLAB to become
unresponsive.

The problem is that storing all 𝑛2 = 1010 entries of the ma-
trix requires roughly 8 ⋅ 10

10
Bytes = 80 GB of memory,

which is not feasible on a standard computer. The ques-
tion at this point is natural: is there any way of storing large
matrices in MATLAB at all?

Luckily, the answer lies in the structure of the matrix
A=eye(n) we wish to store. In this case, the number of
nonzero entries, denoted by nnz(A), is small compared
to a full matrix, since they only lie on the diagonal. Such
a matrix is called sparse and can be defined in MATLAB
using A = speye(n),

» A = speye(1e5); whos A
Name Size Bytes Class Attributes

A 100000x100000 2400008 double sparse

which requires only 2.4 MB of storage! By exploiting spar-
sity, it is possible to store diagonal matrices up until a size

2 MATLABandControl SystemToolbox (Release 2015b) are registered
trademarks of The MathWorks, Inc., Natick, Massachussets, United
States.

ofO(10
8
).Does this mean that we can store also large-scale

dynamical systems in MATLAB?
Unfortunately, this is not the case, at least notwith the

built-in functionality of MATLAB’s Control System Tool-
box², as demonstrated by the following example:

» A = speye(1e5); b = rand(1e5,1); c = b’;
» sys = ss(A,b,c,[]);
Error using ss (line 259)
Requested 10000000000x1 (9.3GB) array exceeds
maximum array size.

In fact, the dynamic system objects for state-space mod-
els such as ss or dss do not support sparse matrices and
convert all system matrices to full arrays. This restricts the
maximummodel order that can be stored and analyzed in
MATLAB drastically.

The sss toolbox presented in this contribution over-
comes this drawback by defining sparse state-space ob-
jects, i.e. dynamic systems defined by sparse matrices
(sss). This allows both to store large-scale models with
hundreds of millions of state variables, as well as to exploit
the sparsity of the systemmatrices to reduce the computa-
tional burden when manipulating and analyzing them.

» A = speye(1e7); b = rand(1e7,1); c = b’;
» sys = sss(A,b,c)

sys =

(SSS)(SISO)
10000000 states, 1 inputs, 1 outputs
Continuous-time state-space model.

That said, even when using the sss toolbox, compu-
tations such as simulations, optimization and control de-
sign algorithms based on large-scale models will require
a substantial amount of computational resources, pro-
vided they can be carried through. For this reason, in the
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Figure 2: Sparsity patterns of the systems shown in Figure 1.

large-scale setting we often seek reduced order models
(ROM) of much smaller order 𝑞 ≪ 𝑛 that capture the rel-
evant dynamics and possibly preserve fundamental prop-
erties. The sssMOR toolbox provides a set of model order
reduction (MOR) routines that range from classic meth-
ods like modal truncation, balanced truncation and ratio-
nal Krylov methods, as well as state-of-the-art algorithms
that allow for an adaptive choice of reduced order and op-
timal reduction parameters.

In this contribution, we give a brief overview of the
structure, functionality and advantages of the sss and
sssMOR toolboxes, after revising a few basic concepts on
large-scale models and model reduction.

1.2 Preliminaries

1.2.1 Linear time-invariant state-space models

In this contribution, we consider linear time-invariant sys-
tems that can be represented in state-space by models of
the form

𝐸 ̇𝑥 = 𝐴 𝑥 + 𝐵 𝑢

𝑦 = 𝐶 𝑥 + 𝐷 𝑢
(1)

where 𝐸 ∈ ℝ
𝑛×𝑛 is the descriptor matrix, 𝐴 ∈ ℝ

𝑛×𝑛 is the sys-
tem matrix and 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚, 𝑦 ∈ ℝ𝑝 (𝑝, 𝑚 ≪ 𝑛) repre-
sent the state, input and output of the system respectively.
These types of models are often used to describe the dy-
namic behavior of the systemunder consideration, at least
locally around some operating point. Due to the amount of
system theoretic results and control design schemes avail-
able, they arewidely used both in literature and in real-life
applications.

By taking the Laplace transforms L {𝑢(𝑡)} = 𝑈(𝑠),
L {𝑥(𝑡)} = 𝑋(𝑠) and L {𝑦(𝑡)} = 𝑌(𝑠) and assuming zero
initial conditions, we obtain a representation of (1) in the
frequency domain known as the transfer function matrix
𝐺(𝑠) satisfying

𝐺(𝑠) := 𝐶 (𝑠𝐸 − 𝐴)
−1

𝐵 + 𝐷, (2)

𝑌(𝑠) = 𝐺(𝑠) ⋅ 𝑈(𝑠)

1.2.2 Sparse matrices

The system matrices 𝐸 and 𝐴 in (1) are generally sparse,
meaning that the number of nonzero elements nnz(E),
nnz(A) is significantly less than the number of entries of
the full matrix. On the other hand, a matrix that has only
a few—if any—zeros is called dense. Broadly speaking, the
sparse structure of the system matrices results from the
modeling itself and is due to the fact that each element in
themodelhas adirect influenceonly to its neighboringele-
ments. Note also at this point that—provided𝐸 is regular—
the implicit³ state space representation in (1) is equivalent
to a respective explicit representationwith𝐸 = 𝐼. However,
the representation in implicit form is crucial to preserve
the sparsity of the system matrices.

Figure 2 shows, as an example, the sparsity pat-
terns of the different benchmark models corresponding to

3 State space representations as in (1) are sometimes referred to asde-
scriptor systems. However, note that this term is used inconsistently
in the literature both for systems with regular and singular 𝐸. The lat-
ter case, better known as systems of Differential Algebraic Equations
is however much more involved.
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the systems in Figure 1, where each blue dot represents
a nonzero entry.

Sparse matrices bear a great potential especially in
terms of the storage requirements. In fact, while storing
a dense matrix of size𝑁 in IEEE double-precision floating-
point format takes 𝑁2 ⋅ 8 Bytes, a sparse matrix is equiv-
alently represented by its nonzero entries. For this rea-
son, data structures have been developed to efficiently
store sparse matrices (e.g. compressed-column matrix for-
mat used in MATLAB [1]).

Moreover, the sparsity of thematrices canbe exploited
also to reduce the computational effort, since operations
on zero elements can be explicitly avoided. Matrix-vector
multiplications are a basic example of operations that can
be significantly speed-up and, in addition, a large num-
ber of algorithms have been adapted. For example, the
LU-decomposition of a sparse matrix generally runs much
faster than the LU-decomposition conducted on the full
matrix. Furthermore, by reordering the entries of a matrix
and using graph theoretical considerations, it is possible
to minimize the fill-in, i.e. the number of new nonzero en-
tries in theLU factors generatedduring thedecomposition.
A more detailed discussion on direct and iterative sparse
algorithms lies outside the scope of this treatise and canbe
found e.g. in [1–4]. For the purposes of this contribution, it
is however important to understand at this point that the
sparsity of the matrices describing dynamical systems can
and should be exploited by the numerical algorithms em-
ployed.

1.2.3 Model order reduction by projection

Withonly a fewexceptions (cp. e.g. [5, 6]),model reduction
for dynamical systems in the linear and nonlinear case is
generally performed by means of projections with appro-
priately chosen subspaces. For this, it is assumed that the
trajectory of a given LTI model (1) dwells predominantly
in a 𝑞-dimensional subspace Ran(𝑉). Following this as-
sumption, the full state 𝑥 ∈ ℝ𝑛 can be approximated well
in reduced coordinates𝑥

𝑟
∈ ℝ
𝑞 through following relation-

ship
𝑥 = 𝑉 𝑥

𝑟
+ 𝑒, (3)

where 𝑒denotes the approximation error. Using this ansatz
in the original dynamics (1) results in an overdetermined
system of differential equations

𝐸 𝑉 ̇𝑥
𝑟

= 𝐴 𝑉 𝑥
𝑟

+ 𝐵 𝑢 + 𝐴 𝑒 − 𝐸 ̇𝑒⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜀

, (4)

which generally cannot be solved uniquely for 𝑥
𝑟
. To over-

come this burden, the dynamics (4) are projected onto

a lowdimensional subspace bymeans of the projector𝛱 =

𝐸𝑉(𝑊⊤𝐸𝑉)−1𝑊⊤. Enforcing the Petrov–Galerkin condi-
tion, the projected differential equation in reduced co-
ordinates (4) is solved for the residual 𝜀 that vanishes
after projection, hence satisfying 𝑊

⊤
𝜀 = 0. The reduced

order dynamics are finally obtained by considering the
low-dimensional set of differential equations

𝐸
𝑟

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑊
⊤

𝐸 𝑉 ̇𝑥
𝑟

=

𝐴
𝑟

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑊
⊤

𝐴 𝑉 𝑥
𝑟

+

𝐵
𝑟

⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑊
⊤

𝐵 𝑢

𝑦
𝑟

= 𝐶 𝑉⏟⏟⏟⏟⏟⏟⏟
𝐶
𝑟

𝑥
𝑟

+ 𝐷⏟⏟⏟⏟⏟⏟⏟
𝐷

𝑟

𝑢
(5)

Following this setting, the main task of any model reduc-
tion technique can be boiled down to appropriately de-
signing the projection matrices 𝑉, 𝑊.

1.3 Overview of the toolbox

The functions presented in this contribution are dis-
tributed within two toolboxes: sss and sssMOR.

sss expands the capabilities of the Control System
Toolbox by allowing the definition of sparse state space
(sss) objects as well as analysis functions (such as bode,
step, isstable etc.) tailored to exploit the sparsity of the
system matrices whenever possible. As such, its usage is
not limited to the field of model order reduction and may
be introduced in several applicationswhere large-scale dy-
namical systems are involved. This is the case e.g. in the
taX⁴ toolbox for modeling and analysis of thermoacoustic
networks [7, 8].

sssMOR entails both classic and state-of-the-art
model reduction algorithms that capture the relevant dy-
namics of the high order system in models of signif-
icantly lower dimension. The reduction functions take
sss full order models and return reduced ssRed mod-
els with the desired characteristics, depending on the
chosen method. Figure 3 gives a schematic overview of
the toolboxes and their dependencies. As indicated by
the graphic, sssMOR comes with the graphical user in-
terface sssMOR_App, which will be briefly introduced in
Section 3.4.

The article is structured as follows: In Section 2 we
give an introduction to the main functionality of the sss
toolbox. Analogously Section 3 gives an overview of the
functionality of the sssMOR toolbox. In Section 4 we
demonstrate the functionality by means of simple numer-
ical examples demonstrating the validity of using sss and

4 https://tax.wiki.tum.de/
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Figure 3: Overview of the toolboxes presented in this contribution.

sssMOR when dealing with mid- to large-scale models.
Finally in Section 5 we summarize the main strengths of
the toolboxes, acknowledge third party and older contrib-
utors and give an outlook on new functionalities being
developed.

2 sss – Sparse State-Space Toolbox
In this section, we introduce the sss toolbox and its main
functionality. Due to space limitations we can only give
a brief introduction. For more details on the functionality,
algorithms and optional parameters refer to the detailed
documentation of the toolbox directly in MATLAB using
the help and doc commands.

2.1 sss – sparse state-space objects

To overcome the storage limitations of ss objects and ex-
ploit sparsity, the sss class, i.e. the sparse state-space
class, was created. This class allows the definition of sss
objects, i.e. state-space objects defined by sparsematrices.

2.1.1 Definition of sss-objects

sss models of dynamical systems can be defined based
on given systemmatrices by the call sys=sss(A,B,C,...)
both for continuous time and discrete-time models.

The sss class not only stores the sparse system, but also
provides useful information about the model:

» load(’iss.mat’); sys = sss(A,B,C)
sys =

(SSS)(MIMO)
270 states, 3 inputs, 3 outputs
Continuous-time state-space model.

» sys.n
ans =

270

» sys.isDescriptor
ans =

0

» sys.isMimo
ans =

1

2.1.2 Manipulation of sss-objects

Often times a given model is only a subsystem, or the de-
sired model results as the sum or difference of individual
models. Also, if the given model is MIMO, we may want to
select a subsystem corresponding to certain input/output
channels. Following functions allow theseoperationswith
sss-objects:
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2.2 System analysis

The definition of a dynamic systemmodel (sss, ss) is only
the first step in analyzing the characteristics of the un-
derlying system. Typically, one may want to compute the
eigenvalues of a model, check for stability, analyze the be-
havior in frequency or time domain and conduct simula-
tions for certain input signals.

Many of the system analysis functions known from the
Control System Toolbox can be found in sss, allowing sim-
ilar analysis with large-scale models. Following this idea,
sss has been developed keeping the compatibility with ex-
isting MATLAB scripts and its familiar syntax in mind. As
such, most functions are named exactly like to the corre-
sponding MATLAB built-in counterpart and can be called
by simply passing a sparse sss-object instead of a dense
ss-object.

2.2.1 Eigenvalues and stability

Several characteristic properties of linear dynamical sys-
tems are tied to their eigenvalues. For this reason, it is of-
tendesirable to get anoverviewof the spectrumof amodel.
To compute all eigenvalues of a given sss-object, one may
use eig(sys):

Note however that this computation requires dense opera-
tions (Schur decompositions) and might be very demand-
ing in terms of computational time and storage [9]. On the
other hand, the computation of a few eigenvalues can be
conducted efficiently for large-scalemodels and canbe ob-
tained by calling eigs(sys):

Both functions are the basis for determining the stability of
a givenmodel. The function isstable(sys)first attempts
at computing the eigenvalue with largest real part using
eigs and falls back to eig otherwise.

2.2.2 Frequency response and Bode plot

To analyze a given model in the frequency domain, we
often need to evaluate its transfer function matrix 𝐺(𝑠)

(2) at several frequencies in the complex plain, typically
on the imaginary axis. This can be done by the function
freqresp(sys).

To get an overview over the dynamic behavior for several
frequencies, the amplitude and phase of 𝐺(𝑠) are typically
plotted over the imaginary axis in a Bode plot.

2.2.3 System norms

A fundamental characterization of dynamical systems is
given by system norms defined in Lebesgue L and Hardy
H spaces. This is the case, for instance, when measuring
the distance between two models. Just like in the built-in
case, the norm function computes theH

2
andL

∞
norms of

models passed as arguments. Unlike the built-in case, the
function uses sparse computations and can therefore deal
with large-scalemodels. The Lyapunov equations required
for theH

2
-norm computations are solved using sparse it-

erative solvers and the L
∞

norm is estimated by evalu-
ating the frequency response and its derivatives at differ-
ent frequencies, which requires only the solution of large
sparse linear systems of equations (LSE). More details on
the implementation will be given in Section 2.3.2.
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2.2.4 Time domain analysis – response to impulse, step
and arbitrary inputs

Sometimes the behavior of a dynamical system is best in-
terpreted and analyzed in the time domain, for example by
analyzing the response from an initial state 𝑥(𝑡 = 0) under
the influence of a driving signal 𝑢(𝑡). Typical inputs used
in a system theoretic setting are impulse 𝑢(𝑡) = 𝛿(𝑡) and
step signals 𝑢(𝑡) = ∫

𝑡

−∞
𝛿(𝜏)𝑑𝜏.

To analyze the response to arbitrary input signals 𝑢(𝑡)

there are several functions implemented, e.g. lsim:

2.3 General properties and advantages of
sss

The following sections give a brief overview of some gen-
eral aspects that characterize the functionality of sss, such
as customizability, the handling of core large-scale compu-
tations and compatibility with built-in MATLAB functions.

2.3.1 Opts structures – from highly automatized to
highly tailored

Most sss (and sssMOR) functions allow a variable Opts
of type structure as an optional input. This variable is
used to influence the function execution, e.g. by defining
parameters or choosing amongst differentmethods imple-
mented. The specification of these parameters is optional:
all of them have default values, allowing inexpert users to

get started quickly, without preventing expert users from
making their own choices.

2.3.2 solveLse and lyapchol – the core of sss

The main goal of the sss toolbox is to preserve the spar-
sity of large-scale models and exploit it for computations,
that would otherwise be expensive or even unfeasible. For
this reason, many operations that are usually involved in
the analysis of linear systems, such as eigenvalue, singu-
lar value, Hessenberg and Schur decompositions, have to
be avoided at all times. In general, this requires the de-
velopment of alternative methods, which sometimes can
compute only approximations to the quantities of interest
(compare e.g. eigs and eig).

Therefore, in general the largest cost allowed when
dealing with large-scale models is given by the solution of
sparse linear systems of equations (LSE). In sss this task is
dedicated to the function solveLse which is called from
all other functions whenever a linear system of the form
𝐴𝑥 = 𝑏 needs to be solved. It is highly customizable to
solve large sparse systems (either with sparse LU or it-
erative solvers) as well as small dense systems (full LU
or Hessenberg reduction), depending on the problem at
hand. Further, the function automatically recycles infor-
mation fromprevious solutions by using persistentvari-
ables. In this case, the solution of different LSEs with com-
mon left-hand side can be computed efficiently.

Another computation frequently encountered in the
analysis and reduction of LTI models is given by the so-
lution of generalized Lyapunov equations, i.e. equations of
the form

𝐴𝑋𝐸
⊤

+ 𝐸𝑋𝐴
⊤

+ 𝐵𝐵
⊤

= 0, (6)

where the solution 𝑋 is symmetric positive definite and
can hence be represented in terms of its Cholesky factor

𝑋 = 𝑅𝑅
⊤

. (7)

For small denseproblems, equationsof type (6) areusually
solved for 𝑅 using direct methods, e.g. the algorithm by
Hammarling [10]. For large-scale models, iterative meth-
ods are available to find low-rank approximations to 𝑋 ≈

𝑅̃𝑅̃
⊤ with rectangular factors 𝑅̃ ∈ ℂ

𝑛×𝑞. Amongst all, the
Alternating Direction Implicit (ADI) [11–15] algorithm and
Rational Krylov Subspace Methods (RKSM) [16, 17] are best
known. In sss, an own version of the function lyapchol
is implemented and called whenever a Lyapunov equa-
tion of type (6) needs to be solved. Similarly to the
case of solveLse, this function is customizable so that
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both small dense problems (calling built-in lyapchol)
and large sparse problems (calling the third-party toolbox
M-M.E.S.S.⁵ [18], which performs ADI) can be solved.

Therefore, all expensive sparse computations are per-
formed from the functions solveLse and lyapchol. These
functions are customizable in their behavior through re-
spective Opts structures and their functionalities can be
easily extended individually by the users to include their
favorite solvers: just add the respective function call and
Opts entry to either solveLse or lyapchol.

2.3.3 Compatibility with built-in functions

The goal of the sss toolbox is to extend the capability of
the Control System Toolbox to sss models. As such, all
functions that have an equivalent in built-inMATLABhave
a compatible calling behavior. This means that the usage
of input and outputs of the built-in functions is supported
by the sss functions, sometimes even extended to improve
usability and/or capability.

For example, the function freqresp(sys,w) com-
putes the frequency response over the imaginary axis
for real and imaginary frequency vectors w, but can also
compute the frequency response over the whole complex
plane if the frequencies in w have nonzero real and imagi-
nary parts. In addition, by passing the option Opts.frd =
true, the output of freqresp is an frd object, a MATLAB
built-in object that can be used to plot the frequency re-
sponse without repeated computations. As another exam-
ple, the function isstable returns a boolean true/false
if calledwith one output, just like in the built-in case. How-
ever, it can also return the spectral abscissa as a second
output argument, i.e. the largest real part in the spectrum.

In developing the sss functions, one of our goals is to
allow users to take existing scripts based on the Control
System Toolbox, change the system definition from ss or
dss to sss and run the same script using sss.

3 sssMOR – Model Order
Reduction Toolbox

Even when using sss functions to exploit sparsity, compu-
tations such as simulations, optimization and control de-
sign algorithms based on the full order models (FOM) will
require a substantial amount of time, provided they can

5 Available at http://dx.doi.org/10.5281/zenodo.49542

be carried through. For this reason, in the large-scale set-
ting we often seek reduced order models (ROM) of much
smaller size that capture the relevant dynamics.

As an example, recall the three benchmarkmodels in-
troduced in Figure 1, whose sparsity patterns were given
in Figure 2. The first model represents the component 1R of
the International Space Station (ISS)⁶, whichhas the state-
space dimension 𝑛 = 270 as well as three inputs and out-
puts𝑚 = 𝑝 = 3 [19]. The secondmodel represents a vibrat-
ing micro-mechanical butterfly gyroscope (Gyro)⁷ of order
𝑛 = 34722with𝑚 = 1 input and𝑝 = 12outputs [20]. Lastly,
the third model represents a thermal problem describing
the cooling process of a steel profile (Rail)⁸ [21, 22]. There
are different model sizes available, ranging from 𝑛 = 1357

to 𝑛 = 79841, with 𝑚 = 7 inputs and 𝑝 = 6 outputs.
In the following figure, three reduced order mod-

els are presented to approximate the benchmark models
given above. They are obtained with three different MOR
techniques, namely truncated balanced realization (tbr,
also known under the name balanced truncation), rational
Krylov subspace method (rk) and Iterative Rational Krylov
Algorithm (irka). The magnitude responses of full and re-
duced order models are plotted in Figure 4 for the SISO
transfer function from the respective first input to the first
output using bodemag.

As it can be seen already from these examples, the
relevant dynamics of the large-scale models can be repre-
sented by reduced order models of significantly lower or-
der. Themaindifficulty in the reduction is to find appropri-
ate projection matrices 𝑉, 𝑊 in an efficient manner. This
task is taken on by the reduction algorithms in sssMOR.

3.1 ssRed – a new class for reduced order
models

As ROMs are generally described by dense matrices, there
is no advantage in defining them as sss-objects. Instead,
sssMOR contains a new subclass of ss, namely ssRed,
which inherits all properties of ss-objects and can there-
fore be used in all built-in functions. In addition, in-
formation about the reduction is stored as a property
sysr.reductionParameters. As one model may result

6 Available at http://slicot.org/20-site/126-benchmark-examples-for-
model-reduction.
7 Available at https://portal.uni-freiburg.de/imteksimulation/
downloads/benchmark/The%20Butterfly%20Gyro%20(35889).
8 Available at https://portal.uni-freiburg.de/imteksimulation/
downloads/benchmark/Steel%20Profiles%20(38881).
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Figure 4: Reduction results for the benchmark models in Figure 1. The blue solid line represents the FOM, the red dashed line the ROM.

from a sequence of 𝑘 reduction steps (compare e.g. cure),
the property is a 𝑘-dimensional structure containing all
parameters involved in the reduction of the FOM. Here is
a minimal example showing the reduction parameters of
a model obtained through tbr:
» sys = loadSss(’iss’); sysr = tbr(sys,30);
» class(sysr)
ans =

ssRed

» sysr.reductionParameters{1}

ans =

method: ’tbr’
params: [1x1 struct]

» sysr.reductionParameters{1}.params

ans =

originalOrder: 270
type: ’tbr’
redErr: 0
hsvTol: 1.0000e-15
lse: ’gauss’
hsv: [270x1 double]

sssMOR contains classic reduction methods such as
modal truncation, truncated balanced realizations and
rational Krylov subspace methods. At the same time,
state-of-the-art algorithms like the iterative rational Krylov
algorithm (IRKA) and more recent algorithms such as cu-
mulative reduction framework (CURE) and the stability-

preserving, rational Krylov algorithm (SPARK) are imple-
mented. The implementation is strongly coupled with the
ongoing research at the Chair of Automatic Control in
Munich. In addition, methods developed at other insti-
tutions are also frequently updated for benchmarking. In
the following, we introduce the main reduction functions
available in sssMOR.

3.2 Classic methods

The methods presented in this section can be categorized
as the establishedmethods that have been studied and de-
veloped over the past decades and are widespread in the
MORcommunity. As a detailed explanation of themethods
exceeds the scope of this treatise, we point out to compre-
hensive overviews on model reduction [23–28], whereas
method-specific references will be given in the following.

3.2.1 Modal truncation

One very commonapproach tomodel reduction is given by
preserving the most dominant eigenmodes and truncating
the others. The projectionmatrices𝑉 and𝑊 span the right
and left invariant subspaces corresponding to the eigen-
values that should be preserved. These are typically eigen-
valueswith smallestmagnitude, but a dominance analysis
according to Litz [29] can be included to take into account
controllability and observability of the eigenmodes. MOR
approaches based on eigenmode preservation are quite
common in engineering fields such as structural mechan-
ics, as they have a direct physical interpretation.
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3.2.2 Truncated balanced realization

One of the gold standards of model reduction, this tech-
niques is based on preserving the directions in the state-
space that aremost relevant in terms of generalized energy
transfer between inputs and outputs. From a theoretical
standpoint, the method is based on finding a balanced re-
alization, where all states are equally controllable and ob-
servable. This requires the computation of controllability
and observability Gramians related to the solutions of gen-
eralized Lyapunov equations:

𝐴𝑃𝐸
⊤

+ 𝐸𝑃𝐴
⊤

+ 𝐵𝐵
⊤

= 0, (8a)
𝐴
⊤

𝑄𝐸 + 𝐸
⊤

𝑄𝐴 + 𝐶
⊤

𝐶 = 0. (8b)

The singular values of the product 𝑃(𝐸⊤𝑄𝐸) are sys-
tem invariant (Hankel singular values) and their decay can
be used to determine a valid reduced order 𝑞. An upper
bound on the approximation error can also be obtained.

For very-large-scale models, equations (8) cannot be
solved directly anymore due to storage limitations and
computational expense. Instead, the indirect methods in-
troduced in Section 2.3.2 need to be used [13, 30, 31].
Both direct and indirect methods are implemented in tbr,
whereas the MATLAB built-in function balancmr can only
deal with small to mid-sized problems.

Since the efficient solution of large-scale Lyapunov
equations of type (8) has been (and still is) focus of in-
tense research, tbr could also count as a state-of-the-art
method.

3.2.3 Rational Krylov

A different choice of projection matrices 𝑉, 𝑊 that has
drawn increased attention over the past decades is given
by the rational input and output Krylov subspaces, respec-
tively of the form

𝐾
𝑞

((𝐴 − 𝜎𝐸)
−1

𝐸, (𝐴 − 𝜎𝐸)
−1

𝐵) ⊆ Ran(𝑉), (9a)

𝐾
𝑞

((𝐴 − 𝜇𝐸)
−⊤

𝐸
⊤

, (𝐴 − 𝜇𝐸)
−⊤

𝐶
⊤

) ⊆ Ran(𝑊). (9b)

In fact, it can be shown [32] that the resulting reduced
order model interpolates the original transfer function
𝐺(𝑠) and its derivatives at the approximation frequen-
cies 𝜎 and 𝜇, also called shifts or expansion points. Bases
for rational Krylov subspaces can be computed both effi-
ciently (as they require only the solution of sparse LSEs)
and numerically robust by using Arnoldi or Lanczos pro-
cesses [33]. In sssMOR the bases 𝑉 and 𝑊 are computed
using the arnoldi function. The LSE involved are com-
puted using solveLse (cp. Section 2.3.2) to allow a deeper
customization.

3.3 State-of-the-art methods

In this section, we present model reduction functions de-
veloped in recent years, most of which are aimed at im-
proving classic methods and choose the reduction param-
eters in a judicious way.

3.3.1 IRKA

One of the major questions involved in the reduction by
RK-methods is how to choose the reduction parameters,
namely shifts and, in the MIMO case, tangential directions.
A very simple yet effectivemethod to adaptively determine
these parameters is given by the Iterative RK Algorithm
(IRKA) [34]. The fix-point iteration involved yields at con-
vergence a ROM𝐺

𝑟
(𝑠) thatminimizes—at least locally—the

approximation error measured in theH
2
-norm, i.e.

𝐺
𝑟

= arg min
deg𝐻=𝑞

‖𝐺 − 𝐻‖ H
2

. (10)
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Expensive computations, like H
2
-norms of large-scale

models are avoided at all times.

3.3.2 CURE

Onemajor challenge inMOR is given by the selection of an
appropriate reduced order 𝑞. Many methods rely on an a-
priori choice of 𝑞 and require a completely new reduction
if the reduced order was not chosen properly (cp. IRKA).
CUmulative REduction (CURE) is based on model reduc-
tion by Krylov subspace methods and allows the adap-
tive choice of reduced order by cumulatively updating the
ROM [15, 35, 36]. Themethod is based on a factorization of
the approximation error

𝐺
𝑒

= 𝐺 − 𝐺
𝑟

= 𝐺
⊥

⋅ 𝐺
𝑟
. (11)

Provided the reduction error is still too large, the reduced
model can be updated iteratively following the pattern

𝐺 = 𝐺
𝑘

𝑟
+ 𝐺
𝑘

⊥
⋅ 𝐺
𝑘

𝑟

= 𝐺
𝑘

𝑟
+ 𝐺
𝑘+

𝑟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐺
𝑘+1

𝑟

+𝐺
𝑘+1

⊥
⋅ 𝐺
𝑘+1

𝑟
(12)

The function cure can be combined with different Krylov-
based reductionmethods. In sssMORwe implemented the
combination with rk, irka and spark, which can be se-
lected through the optional parameters. Further combina-
tions are possible and canbe easily integrated individually
by the users.

3.3.3 PORK

The task of finding a local H
2
-optimal reduced order

model, e.g. by using irka, is non-convex and requires
an iterative solution. On the other hand, the global H

2
-

pseudo-optimal reduced model can be computed explic-
itly, for example by using the Pseudo-Optimal RK (PORK)
algorithm [31, 37, 38]. H

2
-pseudo-optimality in this case

means optimality within a subspace G ⊆ H
(𝑝,𝑚)

2
, defined

by the spectrum and residual directions:

𝐺
𝑟

= arg min
𝐻∈G

‖𝐺 − 𝐻‖ H
2

. (13)

The PORK algorithm requires the basis of either an input
or an output Krylov subspace (𝑉 or 𝑊), and is therefore
implemented in the porkV and porkW functions. The func-
tions are based on Sylvester equations for the Krylov sub-
spaces, i.e. equations of the form

𝐴𝑉 − 𝐸𝑉𝑆
𝑣

− 𝐵𝑅
𝑣

= 0, (14)

and require therefore in addition the input of the matrices
𝑆
𝑣
and 𝑅

𝑣
.

3.3.4 SPARK

To optimize the subspace G inH
2
-pseudo-optimal reduc-

tion to obtain anH
2
-optimal reduced order model the Sta-

bility Preserving, Adaptive RK (SPARK) algorithm was de-
veloped [35, 36]. It is based onH

2
-pseudo optimal reduc-

tion and finds through a trust-region optimization, a pair
of H
2
-optimal shift parameters. The restriction to two

shifts (and hence reduced order q=2) is valid in combina-
tion with cure to obtain arbitrary reduced orders.

3.3.5 CIRKA

The cost of each iteration inH
2
-optimization, e.g. in irka

or spark, is weighted with the full cost of one rk reduc-
tion. In order to decouple the cost of optimization from
the cost of reduction, the model function framework has
been recently presented [36, 39]. When applied to irka,
this yields a new variant called Confined IRKA, which gen-
erally leads to substantial speedups, especially for very
large-scale models.
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3.4 Model Reduction App

The basic functionality of the sss and sssMOR toolboxes
can be used also from within the sssMOR_App. The graph-
ical user interface allows an easy and intuitive interaction
with the toolbox and is meant to facilitate the usage of the
system analysis and reduction functions. Note that only
the main functionalities of sss and sssMOR are available
in the app. In a nutshell, the user can load and define sss
models, perform MOR by classic methods, visualize the
system responses in time and frequency domain as well
as compare models quantitatively in terms ofH

2
andH

∞

norms. Figure 5 shows a screenshot of themodel reduction
section of the app.

4 Numerical examples
In the following, we present a few numerical examples
demonstrating the main functionality of the sss and
sssMOR toolboxes. In addition, we perform a compari-
son to the Control System Toolbox to demonstrate the rele-
vance of using sparsemethods andmodel reduction when
dealing with large-scale models. All computations were
conducted using MATLAB® R2015b on an Intel® CoreTM

i7-2640M CPU@2.80 GHz with 8.00 GB RAM.

Figure 5: Screenshot of the
sssMOR_App.

4.1 sss and sssMOR – natural extensions of
the Control System Toolbox

One of our goals in the development of sss and sssMOR is
to recover (most of) the functionality of the Control System
Toolbox when dealing with large-scale models. This fact
is shown by following example, in which the same func-
tion yourAnalysisFunction, written for ss objects, can
be called with sss and ssRed objects exploiting the capa-
bilities of sss and sssMOR.
%sssMOR_paper_demo1.m
% Run same analysis for ss, sss and ssRed objects
%% Load benchmark example
clear, clc
sysName = ’iss’;
load(sysName)
%% System definition
desClass = ’ss’;
switch desClass

case ’ss’
sys = dss(A,B,C,[],[]);

case ’sss’
sys = sss(A,B,C,[],[]);

case ’ssRed’
sysFOM = sss(A,B,C,[],[]);
sys = tbr(sysFOM,50);

end
%% Run analysis code
yourAnalysisFunction(sys);
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An example of analysis function is given in the following:

function yourAnalysisFunction(sys)
% Analyze LTI model
%% Model order
n = size(sys.A,1);
%% Memory requirement to store sys
info = whos(’sys’);
reqMem = info.bytes
%% Check stability of the given model
stabCheck = isstable(sys)
%% Bode magnitude plot
figure; bodemag(sys)
%% H2 and Hinf norms
h2norm = norm(sys)
h8norm = norm(sys,Inf)

To exemplify the impact of using sss and sssMOR for
system analysis, Table 1 summarizes the results obtained
for the benchmark model rail_1357.mat using all three
model classes.

As it can be seen, using sss and sss objects already
yields a major improvement in terms of memory and

Table 1: Comparison of analysis of the Rail benchmark (𝑛 = 1357) for
different system classes.

ss sss ssRed

order 1357 1357 50

reduction (tbr) time [s] – – 2.89

memory [MB] 29.61 0.32 0.05

isstable time [s] 28.87 0.23 0.01

bode time [s] 31.69 1.06 0.63

norm(sys) value 0.0046 0.0046 0.0046

time [s] 62.20 54.34 0.01

norm(sys,inf) value 0.3523 0.3523 0.3539

time [s] 188.19 6.47 0.01

Table 2: Analysis of the Gyro benchmark (𝑛 = 34722) for different
system classes.

ss sss ssRed

order 34 722 34 722 40

reduction (irka) time [s] – – 105.20

memory [MB] > 9000 39.51 0.07

bode time [s] – 646.16 0.93

norm(sys) value – 0.2103 0.2103

time [s] – 347.21 0.01

norm(sys,inf) value – 0.0248 0.0248

time [s] – 1534.3 0.04

Figure 6: Bode magnitude plot for full and reduced order models for
the Gyro benchmark (𝑛 = 34722, 𝑞 = 40).

computational requirements with respect to ss, even for
a model of modest size 𝑛 = 1357. By applying MOR (in
this case tbr), (basically) the same results canbe obtained
with significant speedup.

Table 2 shows the results for the gyro.mat bench-
mark model. Due to the relatively high order 𝑛 = 34722,
the analysis withMATLABwas not possible, as the respec-
tive ss object would require more than 9 GB of memory
to be stored. The Bode magnitude plot comparing full and
reduced order models is given in Figure 6 for the channel
between first input and first output (sys(1,1)).

4.2 Performance comparison of MOR
methods

In this section we compare execution time and reduction
quality of different reduction methods available in the
toolbox. This canhelp to get a first idea onwhat algorithms
to choose, even though we stress out that the reduction
method of choice highly depends on the desired charac-
teristics of the ROM and the FOM at hand. As benchmark
modelwe chose the Rail example of full order 𝑛 = 1357. To
simplify the graphical representation, we restrict our con-
siderations to the SISO subsystem sys(1,4) from the 4th

input to the 1st output.
Table 3 summarizes the results quantitatively, while

Figure 7 gives a qualitative comparison by showing the
Bodemagnitude plots (bodemag) for full and reduced order
models. For all methods a reduced order 𝑞 = 10 was cho-
sen. The reduction by modalMorwas conducted preserving
eigenmodes corresponding to the first 𝑞 eigenvalues with
smallest magnitude. The reduction by rk was conducted
matching 2𝑞 moments at the origin (𝜎 = 𝜇 = 0). The al-
gorithms irka, rkIcop and cure were also initialized at
𝜎 = 0.
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Table 3: Comparison of some reduction methods provided in
sssMOR.

method time [s] ‖𝐺−𝐺
𝑟
‖H
2

‖𝐺‖H
2

‖𝐺−𝐺
𝑟
‖H
∞

‖𝐺‖H
∞

modalMor 0.18 5.628e−02 7.625e−03

tbr 0.39 4.966e−02 4.298e−02

rk 0.09 4.848e−04 1.951e−05

irka 0.28 1.095e−04 3.624e−06

rkIcop 0.19 4.492e−04 1.835e−05

cure (with spark) 4.18 1.811e−02 8.572e−03

Figure 7: Bode magnitude plot for full and reduced order models for
the Rail benchmark (𝑛 = 1357, 𝑞 = 10).

Figure 8: Comparision between balred and tbr.

As it can be seen from comparing the data, all reduc-
tion methods are able to efficiently produce high quality
ROMs at a low computational cost. The rational Krylov
methods (rk, irka, rkIcop) seem to perform the best for
this example both in terms of computational cost and ap-
proximation quality. The cure algorithm run in combina-
tion with spark repeatedly performs H

2
-optimal reduc-

tion to order 𝑞 = 2, hence explaining the relatively high
execution time. Nonetheless, note that it is the only Krylov
method able to choose the reduced order on the go.

Finally, we add a small comparison between balred,
the Control System Toolbox built-in function for reduction

by balanced truncation, and the tbr function in sssMOR.
The comparison is conducted formodels of relatively small
size⁹ and a reduction to order 𝑞 = 10. The (averaged) exe-
cution times in Figure 8 demonstrate that using tbr canbe
advantageous even for small models.

4.3 Reduction of large-scale models –
a brief tutorial

Now that you can download and use sss and sssMOR for
free, how can you effectively use the tools to analyze and
reduce a given high-order model? To get you started we
provide a tutorial, i.e. an example onhow to reduce a given
large-scale model without prior knowledge of the under-
lying dynamics. Since an appropriate choice of reduction
methods and parameters highly depends on the model at
hand, we present a general scheme that might be helpful
to get started with model reduction. You can find the tuto-
rial on our website http://www.rt.mw.tum.de/?sssMOR.

5 Conclusions
In this contribution we gave a first presentation of the sss
and sssMOR toolboxes, free and open-source tools for the
analysis and reduction of large-scale models in MATLAB.
We have demonstrated that the built-in capability of the
Control System Toolbox is limited to small and mid-sized
problems, making it impossible to even define and store
large-scale models. The main reason for this is that the
sparsity, which characterizes the systemmatrices in large-
scale applications, is not exploited.

Based on this problem, we have developed the sss
(sparse state-space) toolbox to define and analyze state-
space models of very large size (𝑛 ≫ 10

4). We have pre-
sented the main functionality of sss and stressed that
many of the functions available in the Control System
Toolbox have been reprogrammed to exploit sparsity. This
makes sss a natural extension to the Control System Tool-
box for large-scale problems, with the aim of making old
routines developed for ss objects work efficiently also for
sss objects.

In addition, we have presented the sssMOR toolbox,
entailing both classic and state-of-the-art reduction meth-
ods such as modalMor, tbr, rk, irka, . . . to efficiently re-

9 Models: build (𝑛 = 48), CDplayer (𝑛 = 120), heat-cont (𝑛 = 200), iss
(𝑛 = 270), beam (𝑛 = 348), fom (𝑛 = 1006) [19].
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duce the order of a given model while approximating the
dynamics with high fidelity.

The main computational burden in the analysis and
reduction of large-scale models is given by the solution
of large, sparse linear systems of equations or large-scale
matrix equations. Techniques to efficiently handle these
computations are implemented centrally in the functions
solveLseand lyapchol respectively. It is therefore easy to
select the desiredmethod for the problem at hand, or even
individually include specific solvers within the toolbox.

The description of the tools has been complemented
by numerical results, showing the significant advantage
given by using sss and ssRed objects when dealing with
large-scale models.

5.1 Outlook

Both sss and sssMOR toolboxes are being actively devel-
oped at MORLab, the MOR laboratory of the Chair of Au-
tomatic Control, Technical University of Munich. As such,
their functionalities are constantly improved and updated
along with the theoretic results achieved in research.

Current toolbox developments include the analysis
and reduction of parametric models [40–42], as well as
data-driven and H

∞
-optimal model reduction of MIMO

models. To keep up to date on new developments, check
our website¹⁰ and our page on MATLAB central file ex-
change¹¹, or sign up for our newsletter under https://
lists.lrz.de/mailman/listinfo/sssmor.

5.2 Third-party software

sss and sssMORmake use of openly available third-party
software to complement their functionalities. At the mo-
ment, the only third-party software involved isM-M.E.S.S.-
1.0¹², the Matrix Equation Sparse Solver for MATLAB de-
veloped by Jens Saak, Martin Köhler and Peter Benner at
the Max Planck Institute for Dynamics of Complex Tech-
nical Systems in Magdeburg¹³ [18]. It is used for finding
approximate (low-rank) solutions to large-scale Lyapunov
equations of the form (8) by means of the Alternating
Directions Implicit (ADI) algorithm. This step is required
both in computing theH

2
-norm of an sss object and per-

10 www.rt.mw.tum.de/?sssMOR
11 https://de.mathworks.com/matlabcentral/fileexchange/59169-
sssmor-toolbox
12 http://dx.doi.org/10.5281/zenodo.49542
13 http://www.mpi-magdeburg.mpg.de/csc

forming model reduction by tbr. We thank the authors of
M-M.E.S.S. for developing the toolbox and making it pub-
licly available, aswell as for the friendly exchange over the
past years.
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14 http://www.itm.uni-stuttgart.de/index_en.php
15 http://www.itm.uni-stuttgart.de/research/model_reduction/
MOREMBS_en.php
16 https://www.tfd.mw.tum.de/index.php?id=5&L=1
17 https://tax.wiki.tum.de/
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