
Technische Universität München

Lehrstuhl für Sicherheit in der Informationstechnik
an der Fakultät für Elektrotechnik und Informationstechnik

New Techniques for Emulating Fault Attacks

Ralph Heinz-Erik Nyberg

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Infor-
mationstechnik der Technischen Universität München zur Erlangung des
akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten
Dissertation.

Vorsitzender: apl. Prof. Dr.-Ing. Walter Stechele

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Georg Sigl

2. Prof. Dr.-Ing. Ulf Schlichtmann

3. Prof. Dr.-Ing. Dirk Rabe

Die Dissertation wurde am 17.04.2018 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstech-
nik am 04.09.2018 angenommen.

Abstract

Integrated security circuits such as smart cards and security controllers pro-
tect sensitive data and protect its integrity with dedicated measures, which
are often based on secured implementations of cryptographic algorithms. Be-
sides the typical areas, identification, pay TV and ticketing, integrated se-
curity circuits are also deployed in automotive and industrial applications.
Usually, countermeasures against so-called fault attacks are implemented in
software and hardware to prevent attackers from compromising sensible data
with fault attacks. These countermeasures have to be verified already during
circuit design taking the specified security requirements into account, which
is also known as security verification. For security verification of digital fault
countermeasures, pre-silicon fault injection techniques are usually used to
model complex physical effects of fault attacks during circuit design. Al-
though abstract fault models are used, the huge variety of fault parameters
in terms of spatial and temporal fault injection lead to a fault injection space
infeasible to be analyzed completely. Therefore, analysis need to focus on
subsets of the fault injection space, which have to be selected based on their
relevance for the specified security level. These relevant faults have to be
modeled with efficient tools that, on the one hand, provide the appropriate
configurability and, on the other hand, provide high-performance to make
security verification feasible in given time.

FPGA-based fault emulation, which basically constitutes a hardware ac-
celerated fault simulation technique where the circuit under verification is
synthesized onto an FPGA, features the highest possible pre-silicon verifi-
cation performance. While a test sensitizes the circuit under verification,
configurable faults are injected into it by additional hardware components
synthesized onto the FPGA along with the actual circuit to be verified. Un-
fortunately, depending on the implementation, state-of-the-art fault emula-
tion lacks either the configurability required to model arbitrary fault attacks
or the performance is limited by a communication bottleneck between soft-
ware and hardware components for fault configuration. The goal of my thesis
is to close the gap between configurability and performance of FPGA-based

i

ii

fault emulation and to achieve industrial applicability for security related
designs.

First, I introduce a meta fault configuration model able to describe arbi-
trary fault configurations, which I use afterwards to describe the features of
the implemented fault emulation techniques. The fault configuration model
is defined at a meta level to make it independent of utilized tools, the circuits
to be verified and their level of abstraction to be analyzed. This enables the
description of fault models known from literature as well as new ones, and
reuse for other applications is enabled.

Next, I present an FPGA-based fault emulation environment that sup-
ports the configurability required to mimic arbitrary fault attacks in combina-
tional and sequential logic. My implementation supports fault configuration
at runtime, which includes configurable fault model types, single and multi-
ple faults and variable fault durations. Fault configurations can be applied at
arbitrary discrete times during fault experiments. To allow the injection of
time-displaced or time-overlapped faults, I propose a feature to reconfigure
the fault settings during runtime in an efficient way, requiring a negligible
amount of additional logic. This enables the emulation of sophisticated fault
attacks such as exploiting multiple laser beams to inject faults with indepen-
dent sources in a time-displaced or a time-overlapped fashion.

Further, I propose a hardware-efficient and performance-efficient concept
for evaluating emulation results in hardware. This method is supported by
a self-testing functional test software for processor-based security designs. A
single fault-free emulation is used to generate a golden reference for following
fault emulations. This way, the reference for result comparison has not to be
generated by a second instance of the circuit to be verified. Moreover, the
fault emulator is sensitive to events on dedicated observation points, which
allows to judge the circuit behavior in a more flexible manner and reduces
false positives in the emulation results. This feature also allows to configure
temporal fault injection settings relatively to dedicated events on the defined
observation points. For instance, time frames of varying length in which
security-relevant operations are executed can be selected for fault injection
without manually determining the absolute timing of them.

There are usually considerably more combinational cells than sequential
cells in the designs to be verified. As a consequence, instrumenting circuits
for fault injection in combinational logic consumes more of the limited hard-
ware resources on the FPGA. Unfortunately, the entire combinational logic
needs to be instrumented to support arbitrary multiple fault injection at
runtime, which limits applicability compared to fault injection in sequen-
tial logic. Moreover, the performance is decreased since timing paths are
increased with each instrumented combinational cell. To address these limi-

iii

tations, I present a software-based pre-processor that maps faults in combi-
national logic to equivalent faults in sequential logic. These equivalent faults
are then configured into the fault emulator for performance efficient analysis.

Once I achieved my goals w.r.t. configurability and applicability for in-
dustrial designs, I focus on performance optimization measures, which finally
close the gap between performance and configurability. The presented opti-
mizations address the communication bottleneck of FPGA-based fault em-
ulation, reduce emulation runtime and cancel fault experiments when these
exhibit fault effects equivalent to previous experiments.

To discuss the improvements of my work over the state-of-the-art, I ap-
plied the presented fault emulation techniques to two different microcon-
troller designs and configured hundreds of millions of fault attacks. With my
results I demonstrate that the presented techniques enable to model arbi-
trary fault attacks in combinational and sequential logic of industrial designs
without performance loss compared to fault-free emulations. As far as fault
injection in combinational logic is concerned, I removed the limitation on
applicability, I reduced the hardware requirements by 45% and I increased
the performance by a factor of six at the same time. The proposed tech-
niques allow to mimic more arbitrary fault attacks in given time and thus
help to improve security devices by means of possibly finding more security
flaws already during circuit design, i.e. before the manufactured devices are
analyzed during post-silicon certification.

iv

Kurzfassung

Integrierte Sicherheits-Schaltungen – im Sinne des englischen Wortes secu-
rity – schützen sensible Daten und ihre Integrität. Hierzu werden Sicher-
heitsmaßnahmen implementiert, die häufig auf abgesicherten Implementie-
rungen kryptographischer Verfahren basieren. Zu integrierten Sicherheits-
Schaltungen gehören Chipkarten und Sicherheitskontroller, die zum Beispiel
bei elektronischen Reisepässen, Zugangskarten, elektrischen Tickets für öf-
fentliche Verkehrsmittel, sowie für Automotive- und Industrieanwendungen
eingesetzt werden. Um eine Kompromittierung sensibler Daten durch so-
genannte Fehlerattacken auf integrierte Schaltungen zu verhindern, werden
gewöhnlich dedizierter Gegenmaßnahmen in Hard- und Software implemen-
tiert. Während der Entwicklung von integrierten Sicherheits-Schaltungen müs-
sen die implementierten Sicherheitsmaßnahmen unter Berücksichtigung der
spezifizierten Sicherheitsanforderungen verifiziert werden. Zur Sicherheitsve-
rifikation von digitalen Gegenmaßnahmen hinsichtlich Fehlerattacken werden
hierzu üblicherweise Fehlerinjektionstechniken eingesetzt, welche die kom-
plexen physikalischen Auswirkungen von Fehlerattacken bereits während der
Entwicklung des Schaltungsdesigns modellieren. Trotz abstrakter Modelle ist
es unmöglich, alle möglichen Fehlerattacken zu modellieren, da berücksich-
tigt werden muss, dass ein Angreifer örtliche und zeitliche Angriffspunkte
beliebig variieren kann, was zu einem komplexen Fehlerraum führt. Daher
müssen für das zu erzielende Schutzniveau relevante Submengen des Fehler-
raums selektiert, anschließend modelliert und basierend auf der Modellierung
analysiert werden. Dies erfordert Modellierungswerkzeuge, die zum einen die
Konfiguration entsprechender Fehlerattacken ermöglichen und zum anderen
sehr performant sind, um die Menge der analysierbaren Fehlerattacken in der
verfügbaren Zeit für die Sicherheitsverifikation zu maximieren.

Die FPGA-basierte Fehleremulation, welche prinzipiell eine Hardware-
beschleunigte Fehlersimulation darstellt, ist das schnellste Werkzeug zur Mo-
dellierung von Fehlern. Hierzu wird die zu verifizierende Schaltung in ein
FPGA konfiguriert. Während die Schaltung durch einen Test sensitiviert
wird, werden konfigurierbare Fehler mittels zusätzlicher Hardware, die eben-

v

vi

falls in das FPGA konfiguriert ist, in die zu verifizierende Schaltung injiziert.
Im Rahmen dieser Arbeit schließe ich mittels neuer Emulationstechni-

ken die Lücke zwischen Konfigurierbarkeit und Geschwindigkeit der FPGA-
basierten Fehleremulation und ermögliche die Anwendbarkeit für industrielle
Sicherheitskontroller. Die präsentierten Emulationstechniken erlauben es be-
liebige Fehler zu konfigurieren, was in dieser Form mit bisherigen Ansätzen
entweder nicht möglich ist, oder aufgrund eines Kommunikationsflaschenhal-
ses zu erheblichen Geschwindigkeitsverlusten führt.

Zuerst führe ich ein Meta-Fehlerkonfigurationsmodell ein, welches ich ver-
wende, um die Konfigurationsmöglichkeiten der implementierten Fehlerinjek-
tionstechniken eindeutig zu beschreiben. Das Meta-Fehlerkonfigurationsmo-
dell ist auf einem abstrakten Meta-Level verallgemeinert beschrieben, sodass
es unabhängig von den eingesetzten Modellierungswerkzeugen, der zu verifi-
zierenden Schaltung und dem zur Verifikation betrachteten Abstraktionsle-
vels der Schaltung ist. So lassen sich bekannte Fehlermodelle aus der Litera-
tur sowie neue Fehlermodelle beschreiben und die Wiederverwendbarkeit für
andere Applikationen ist sichergestellt.

Anschließend präsentiere ich eine FPGA-basierte Fehleremulationsumge-
bung, die die erforderliche Konfigurierbarkeit zur Modellierung beliebiger
Fehlerattacken in kombinatorischer und sequentieller Logik bietet. Meine Im-
plementierung unterstützt zur Laufzeit konfigurierbare Fehlermodelle sowie
Einzel- und Mehrfachfehler mit einer variablen Injektionsdauer. Eine Fehler-
konfiguration kann einmal pro Fehlerexperiment zu beliebigen diskreten Zeit-
punkten aktiviert werden. Ich präsentiere ein zusätzliches Feature, welches
die Aktivierung verschiedener Fehlerkonfigurationen zu mehreren beliebigen
diskreten Zeitpunkten während eines Fehlerexperiments ermöglicht. So lassen
sich aufwändige Fehlerattacken konfigurieren, die zum Beispiel mit mehreren
Laserstrahlen von unabhängigen Quellen zeitlich überlagert oder zeitversetzt
durchgeführt werden können.

Des Weiteren schlage ich ein Konzept zur Evaluation der Emulationser-
gebnisse in Hardware vor. Für Prozessor-basierte Schaltungsdesigns wird die-
ser Ansatz durch die Verwendung eines selbsttenstenden funktionalen Tests
unterstützt. Mit Hilfe einer einzigen fehlerfreien Emulation wird eine Re-
ferenz für alle folgende Fehleremulationen generiert, wodurch die Referenz
nicht durch eine Duplikation des zu verifizierenden Designs generiert wer-
den muss. Dieser Ansatz ist effizient hinsichtlich des benötigten Hardware-
aufwands sowie der erzielten Geschwindigkeit. Beobachtungspunkte, an wel-
chen die Emulation auf bestimmte Ereignisse sensitiv ist, erlauben eine fle-
xiblere Bewertung des Verhaltens des zu verifizierenden Schaltungsdesigns,
wodurch falsch-positive Emulationsergebnisse reduziert werden. Außerdem
können Zeitpunkte für die Fehlerinjektion relativ zu dedizierten Ereignis-

vii

sen an den definierten Beobachtungspunkten konfiguriert werden. Dadurch
wird es ermöglicht, Zeitbereiche variabler Länge für die Fehlerinjektion zu
berücksichtigen, in denen sicherheitsrelevante Operationen durchgeführt wer-
den, ohne die absoluten Zeitpunkte manuell zu bestimmen.

Die zu verifizierenden Schaltungen können als synchrone sequentielle Schal-
tung realisiert sein, welche aus kombinatorischen und sequentiellen Gattern
bestehen, wobei der Anteil an kombinatorischen Gattern üblicherweise we-
sentlich höher ist. Um die Modellierung beliebiger Fehler innerhalb eines
Schaltungsdesigns zu unterstützen, muss jedes Gatter für eine Fehlerinjektion
instrumentiert werden. Für jedes Gatter wird zusätzliche Logik zur Steuerung
der Fehlerinjektion benötigt, wodurch der Hardwareaufwand zur Realisie-
rung der Fehlerinjektion entsprechend der Anzahl an kombinatorischen und
sequentiellen Gattern des zu verifizierenden Schaltungsdesigns steigt. Vergli-
chen mit der FPGA-basierten Fehleremulation für Fehler in ausschließlich
sequentieller Logik, wird daher für die Fehlerinjektion in ausschließlich kom-
binatorischer Logik mehr der verfügbaren Hardware des verwendeten FPGAs
benötigt. Dies hat zur Konsequenz, dass die maximale Schaltungsgröße des zu
verifizierenden Schaltungsdesigns kleiner ist, wenn die FPGA-basierte Fehle-
remulation für Fehler in kombinatorischer Logik realisiert wird. Um die dar-
aus resultierende Limitierung der Anwendbarkeit der FPGA-basierten Feh-
leremulation für die Fehlerinjektion in kombinatorischer Logik zu beseitigen,
präsentiere ich einen Software-basierten Präprozessor, welcher Fehler in kom-
binatorischer Logik auf äquivalente Fehler in sequentieller Logik abbildet, die
dann performant mit dem Fehleremulator untersucht werden können. Die-
ser Ansatz bietet weitere Vorteile, da äquivalente Fehler bestimmt und zur
Geschwindigkeitsoptimierung von weiteren Untersuchungen ausgeschlossen
werden können.

Da mittels der präsentierten Fehleremulationstechniken meine Ziele hin-
sichtlich Konfigurierbarkeit und Anwendbarkeit erfüllt sind, widme ich mich
als nächstes Geschwindigkeitsoptimierungen, um die Lücke zwischen Konfi-
gurierbarkeit und Geschwindigkeit der FPGA-basierten Fehleremulation zu
schließen. Ich präsentiere Optimierungen, die den Kommunikationsflaschen-
hals zwischen Soft- und Hardwarekomponenten der Fehleremulationsumge-
bung beseitigen, die Laufzeit für Fehlerexperimente reduzieren und Fehler-
experimente abbrechen, wenn diese Fehlereffekte zeigen, die bereits in vor-
hergehenden Experimenten beobachtet wurden.

Um die Verbesserung gegenüber dem Stand der Technik zu diskutieren,
analysierte ich die Schaltungsdesigns zweier Sicherheitskontroller, für wel-
che ich einige hundert Millionen verschiedener Fehlerattacken emulierte. Die
Ergebnisse meiner Experimente zeigen, dass die präsentierten Fehleremula-
tionstechniken, im Gegensatz zum Stand der Technik, die Modellierung be-

viii

liebiger Fehlerattacken in kombinatorischer und sequentieller Logik industri-
eller Schaltungsdesigns unter Verwendung repräsentativer Tests und im Ver-
gleich zu einer fehlerfreien Schaltungsemulation ohne Geschwindigkeitseinbu-
ßen ermöglichen. Für die Fehlerinjektion in kombinatorischer Logik konnte
ich, verglichen mit bisherigen Ansätzen, den benötigten Hardwareaufwand
um 45% reduzieren und die Laufzeit um den Faktor sechs reduzieren. Durch
die Reduktion des Hardwareaufwands können größere Schaltungen verifiziert
werden. Mit Hilfe der präsentierten Fehleremulationstechniken lassen sich
beliebige Fehlerattacken im Rahmen der Sicherheitsverifikation während der
Schaltungsentwicklung analysieren, wobei zusätzlich mehr Fehlerattacken in
gegebener und üblicherweise limitierter Zeit modelliert werden können. Die-
se Arbeit trägt daher dazu bei, die Sicherheit integrierter Schaltungen zu
verbessern, da mehr Sicherheitsprobleme bereits während der Schaltungsent-
wicklung, also bevor die gefertigte Schaltung Post-Silizium zertifiziert wird,
ausgeschlossen werden können.

Acknowledgements

I thank my adviser Prof. Dr.-Ing. Georg Sigl for his supervision, support and
patience over the past years. I would also like to thank my examiners Prof.
Dr.-Ing. Ulf Schlichtmann and Prof. Dr.-Ing. Dirk Rabe for their support.

I am sincerely grateful to Prof. Dr.-Ing. Dirk Rabe, who initiated the
HaVerI project in which I started my scientific work and who motivated me
to pursue a doctorate.

I am particularly grateful to Prof. Dr.-Ing. Georg Sigl and Prof. Dr.
Claudia Eckert for giving me the opportunity to continue my scientific work
at Fraunhofer AISEC.

I would also like to thank my colleagues from Infineon Technologies AG,
Fraunhofer AISEC, Technische Universität München and Hochschule Em-
den/Leer for collaboration on scientific and industrial projects as well as
scientific exchange. My special thanks goes to Dietmar Heinz, Prof. Dr.-Ing.
Gerd von Cölln and Dr.-Ing. Johann Heyszl for giving me opportunities,
to Jürgen Nolles for his support, to Robert Hesselbarth for inspiring discus-
sions in the final phase of writing my dissertation and to Robert Specht for
proof-reading my dissertation.

Parts of this work originate from
the project HaVerI (FKZ 17N1509),
which was funded by the German
Federal Ministry of Education and
Research.

ix

x

List of Figures

1.1 Concept of fault injection techniques 3

2.1 Fault-error-failure chain . 15

3.1 Detailed fault injection concept 26
3.2 Fault classification . 29
3.3 Configuration possibilities of fault models 30
3.4 Sensitization, propagation and observation 38
3.5 Detailed fault classification . 41

5.1 Concept of FPGA-based fault emulation 82

6.1 The fault emulation environment 96
6.2 Finite state machine . 98
6.3 Fault injection cells for flip flops and combinational cells . . . 105
6.4 Timing diagram for a particular fault experiment. 113

7.1 Fault effect in sequential logic caused by a transient fault in
combinational logic . 128

7.2 Separating combinational and sequential fault propagation . . 130
7.3 Tool flow for enhanced combinational fault emulation 136
7.4 Adding fault injection capability to an AND-gate. 137

8.1 Performance optimization: sub-selection of fault injection cells 147
8.2 Performance optimization: emulating distinguishable faults . . 150

9.1 Performance dependent on the spatial fault multiplicity 159
9.2 Performance dependent on test duration and spatial fault mul-

tiplicity . 160

xi

xii LIST OF FIGURES

List of Tables

6.1 Fault classification for security designs 121

9.1 Hardware requirements of the fault emulation environment . . 158
9.2 Fault propagation results . 165
9.3 Total runtime for fault injection campaigns 167
9.4 Runtime for MiniSAT . 171

xiii

xiv LIST OF TABLES

Contents

Abstract i

Kurzfassung v

Acknowledgements ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem Statement . 4
1.2 My Contribution . 5
1.3 Thesis Structure . 6

2 Attacks on Integrated Circuits 11
2.1 Taxonomy of Attacks . 12
2.2 Basics of Faults in Integrated Circuits 13

2.2.1 A Historical Perspective 13
2.2.2 Causality Relationship of Fault, Error and Failure . . . 14
2.2.3 Persistence of Faults 16

2.3 Fault Attacks . 18
2.3.1 Fault Analysis at Algorithm Level 18
2.3.2 Methods for Physical Fault Injection 19

2.4 Summary . 22

3 Modeling Fault Attacks during Security Verification of Fault
Countermeasures 23
3.1 Security Requirements and Countermeasures 24
3.2 Fault Injection Concept . 26
3.3 Abstracting Faults with Fault Models 29

3.3.1 Abstraction Level of Fault Models 30

xv

xvi CONTENTS

3.3.2 Properties of Fault Models 32
3.3.3 Fault Model Types . 33
3.3.4 Transient Fault Models 33
3.3.5 Permanent Fault Models 34
3.3.6 Summary and Conclusion 35

3.4 Testing Concepts . 36
3.4.1 Testability of Faults in Combinational Logic 36
3.4.2 Testing Concepts for Sequential Circuits 38
3.4.3 Tests and Test Generation 38

3.5 Propagation and Classification of Transient Faults 40
3.5.1 Masking Effects . 40
3.5.2 Detailed Fault Classification 41

3.6 Pre-Silicon Fault Modeling Tools 42
3.7 Relevance for this Thesis . 46

4 Meta Fault Configuration Model 49
4.1 Fault Configuration Space . 51

4.1.1 Temporal Granularity 51
4.1.2 Spatial Configuration Space 53
4.1.3 Value Configuration Space 54
4.1.4 Spatial-Value Configuration Space 56
4.1.5 Total Configuration Space 57

4.2 Fault Multiplicities . 58
4.2.1 Spatial Fault Multiplicity 59
4.2.2 Temporal Fault Multiplicity 59

4.3 Practice-Oriented Interpretation 60
4.3.1 Mapping Temporal Properties of Faults 61
4.3.2 Number of Fault Injection Times 64
4.3.3 Permanent vs. Transient Faults 65
4.3.4 Parametrized Fault . 65

4.4 Fault Injection Complexity . 66
4.4.1 Spatial Fault Injection Complexity 67
4.4.2 Spatial-Value Fault Injection Complexity 70
4.4.3 Total Fault Injection Complexity 72

4.5 Summary . 79

5 State-of-the-Art of FPGA-based Fault Emulation 81
5.1 Concept . 81
5.2 Fault Injection Methodologies 83

5.2.1 Partial FPGA-reconfiguration 83
5.2.2 Mutant-based and Saboteur-based HDL Modification . 84

CONTENTS xvii

5.2.3 Circuit Instrumentation Technique 85
5.3 Fault Generation and Upload 86
5.4 Test Generation, Upload and Execution 87

5.4.1 Structural Test . 87
5.4.2 Functional Test . 87

5.5 Response Observation and Fault Classification 88
5.5.1 Comparison of Two Circuit Instances 89
5.5.2 Alternative Approaches 90
5.5.3 Response Observation for Processor Designs 90

5.6 Summary and Discussion . 91

6 Fault Emulation Environment for Security Verification 95
6.1 Fault Configuration Model at Gate Level 96

6.1.1 Finite State Machine 97
6.1.2 Fault Configuration Model at Gate Level 98
6.1.3 Multiple Transient and Multiple Permanent

Faults . 101
6.1.4 Single Transient and Single Permanent Faults 103

6.2 Hardware Implementation . 104
6.2.1 Fault Injection Control Unit 104
6.2.2 Fault Injection Cells 105
6.2.3 Concrete Fault Configuration Possibilities 107

6.3 Circuit Instrumentation . 108
6.4 Fault Injection Campaign . 110
6.5 Response Observation . 114

6.5.1 Using Adequate Observation Points 115
6.5.2 Determining the Fault-Free Reference 116
6.5.3 Determining Fault Emulation Results 116
6.5.4 Observation of Processor Designs 117
6.5.5 Discussion of Advantages 119

6.6 Fault Classification for Security Designs 121
6.7 Summary and Discussion . 122

7 Enhancing Fault Injection in Combinational Logic 123
7.1 Motivation . 124
7.2 Related Work . 125
7.3 A Pre-Processor for Combinational Faults 126

7.3.1 Fault Configuration Model for Combinational Cells . . 127
7.3.2 Concept . 128
7.3.3 Fault Equivalence . 130
7.3.4 Implementation . 134

xviii CONTENTS

7.4 Summary and Discussion . 137

8 Performance Optimizations and a Feature for Multiple Fault
Injection Times 139
8.1 Performance Benchmarks . 140
8.2 Fighting the Communication Bottleneck 141

8.2.1 Configuration Data Overhead Reduction 142
8.2.2 Parallelizing Fault Experiments and Configuration

Upload . 143
8.2.3 Sub-Selection of Fault Injection Cells 144
8.2.4 Summary . 146

8.3 Reducing Emulation Runtime 146
8.3.1 Shorten Fault Experiments 147
8.3.2 Skipping Equivalent Fault Experiments 149

8.4 Multiple Fault Injection Times 151
8.5 Summary and Discussion . 152

9 Experimental Results 155
9.1 Verified Security Controllers 156
9.2 Fault Injection in Sequential Logic 157
9.3 Fault Injection in Combinational and Sequential Logic 163

9.3.1 Combinational Fault Propagation Results 163
9.3.2 Applicability for Industrial Circuits 165
9.3.3 Performance . 168

9.4 Summary and Conclusions . 171

10 Conclusions 173

Bibliography 177

Chapter 1

Introduction

Connected electronic devices are essential in our daily routines. To name
just a few examples, we use smart phones, laptops and personal computers
for checking daily news, writing emails or messages and managing the ap-
pointments of the upcoming day. Our favorite TV series are provided by
streaming video on demand services, for which also TVs and Blue-Ray play-
ers are connected. Nowadays, we expect getting access to the Internet with
our smart phones in public networks from, e.g., cafés and public transporta-
tion. The number of sold smart phones in 2016 is about 1,5 billion [Gar17b],
which clearly indicates the strong impact of these devices on our daily live.

Hot topics in the information technology related research domains are
today Internet of Things, ’Industrie 4.0’, autonomous cars, smart homes and
smart grid. In these emerging areas many different devices and machines
are connected to exchange information, building a system that provides a
service. In contrast to the listed devices above used by human beings to
communicate or to enjoy media and multimedia, the incorporated devices
work autonomously, i.e. without interaction with human beings. This is the
reason for a heavy increase of connected devices in the last decade, which
will still drive the market in the next decade. In 2015, the analysts of Gart-
ner, Inc. [Gar15] predicted that 6.4 billion connected devices would be in use
worldwide by end of 2016. These numbers are confirmed now and 8.4 billion
connected devices are predicted to be in use by end of 2017 [Gar17a]. This
corresponds to an increase of about 30 percent each year. Correspondingly
20.4 billion connected devices are expected in 2020 [Gar17a]. This tremen-
dous amount of devices introduces huge potentials for adversaries to perform
on-line attacks, exploited to break into systems and networks in order to
violate privacy, confidentiality and integrity. In case of online attacks, the
victim may realize that he is being attacked, enabling him to possibly coun-
teract this threat before an adversary may cause any damage. Even more

1

2 CHAPTER 1. INTRODUCTION

powerful are therefore off-line attacks, where attacks are repeated on isolated
devices until its success without anyone noticing it. Successful attacks can
then be replayed as on-line attacks, which increases the probability to com-
promise a system before respective attacks are detected by the victim. For
example, secret information such as cryptographic keys and passwords can
be extracted off-line, which then can be exploited to compromise systems by
means of accessing their secured interfaces or breaking secured communica-
tion channels.

Systems are not appropriately secure by simply using encryption to pro-
tect sensible data. Even if the utilized encryption algorithm is theoretically
secure, the hardware or software implementation of the cryptographic algo-
rithm itself may introduce leakage of information about the processed secrets
due to for example varying execution time, power consumption or electro-
magnetic emission of a circuit (also known as side channels). Basically, per-
forming repeated passive measurements of these side channels a processed
cryptographic key could be extracted. There is another class of attacks that
exploits deliberately injecting faults into a system, where the fault may cause
a malfunction or service failure, i.e. the circuit behavior deviates from the
circuit’s specification. This way, very critical behavior can be caused, e.g.,
disturbing the system such that its availability is violated, which would be
critical in numerous safety applications. Especially critical for security ap-
plications would be to exploit faults to circumvent specific checks on, e.g.,
passwords to cause buffer overflows or to disrupt a cryptographic algorithm
such that it outputs the processed key instead of the ciphertext.

Consequently, various attacks possibly mounted on systems and devices
need to be considered when designing security circuits and security systems.
Therefore, to protect sensitive data in terms of confidentiality as well as in-
tegrity and to enable secured authentication, it is not sufficient to rely solely
on deploying cryptographic primitives. In addition, appropriate countermea-
sures need to be deployed that counteract passive side-channel attacks and
active fault attacks. Basically, fault countermeasures introduce redundancy
in hardware or software that enables to detect corrupted behavior caused by
fault attacks and then actively prevents that an attack can be exploited. This
is the purpose of security circuits, which include relatively complex processor-
based circuits such as so-called secure elements, trusted platform modules
(TPM), hardware security modules (HSM) and smart cards. These allow
secured key storage, allow to perform cryptographic operations in untrusted
environments and provide secured code execution, used to protect sensitive
data and its integrity and to realize secured authentication. For this purpose,
security circuits deploy cryptographic peripherals such as hardware acceler-
ators for cryptographic algorithms and random number generators. These

3

golden

reference

=?
result

faulty

response

fault

classification

fault

experiments

Figure 1.1: Concept of fault injection techniques.

are implemented and integrated into circuits in a secure way, for which it is
necessary to deploy additional countermeasures dedicated to specific passive
and active attacks. To create a secured system, any incorporated security-
critical device that is accessible to adversaries need to be designed in a secure
way.

In this thesis the focus is on security verification, particularly on verifica-
tion of the effectiveness of countermeasures that are dedicated to active fault
attacks. In order to check the effectiveness of fault countermeasures, security
verification is required to be performed in addition to common functional
verification. Since fault countermeasures are only supposed to take any ac-
tion in presence of faults, various fault attacks need to be mimicked during
security verification by means of performing a huge number of fault experi-
ments, during which faults with varying spatial and temporal properties are
injected into the circuit under verification.

Figure 1.1 depicts the basic concept of fault injection techniques, which I
am going to apply to security designs in this thesis. During fault experiments,
the circuit to be verified needs to be sensitized by appropriate tests, i.e.
input pattern or, in case of processor-based architectures, test software. The
purpose is to represent relevant situations such as performing encryption
and decryption using a cryptographic algorithm implemented in hardware
or software, while attacks are being mimicked. In case of processor designs,
usually relative extensive tests lasting thousands of clock cycles are applied
since deployed software-based countermeasures need to be considered as well.
Due to the fault injection, the circuit may output a faulty response, which is
compared to the fault-free response generated by the golden reference. If a
critical malfunction is observed that is not detected by fault countermeasures,
faults are classified as critical. These are the cases of interest, which suit as
starting point for further investigation with the goal to track the issue.

4 CHAPTER 1. INTRODUCTION

Important to note is that fault injection can be applied to any level of ab-
straction of the circuit under verification. This includes pre-silicon techniques
that are already applicable during circuit design and post-silicon physical
fault injection into the physical device. As for design bugs, it is important
that vulnerabilities and security leaks are identified as early as possible dur-
ing circuit design in order to save design costs and reduce time-to-market.
Thus, pre-silicon fault injection tools are required that are applicable during
circuit design.

1.1 Problem Statement

Unfortunately, there is only a limited time frame for security verification dur-
ing circuit design. Furthermore, due to the complexity of the verified circuits
and applied tests and also due to the complexity of the fault injection space,
it is impossible to consider all possible configurations for fault injection. In
fact, only a very small subset of the total fault injection space can be con-
sidered within the given time frame for security verification. This motivates
high speed tools for fault injection that are also required to provide the con-
figurability required to mimic arbitrary fault attacks. Moreover, these tools
are required to be applicable to relatively complex circuits and are required
to handle extensive tests.

Pre-silicon fault injection tools based on software implementations in-
cluding statistical, analytical, probabilistic and symbolic techniques as well
as simulation-based, emulation-based and hardware-based (e.g. development
boards) implementations are reported in literature (detailed in Section 3.6).
All fault injection tools have application specific merits and strength. From
these I choose the FPGA-based fault emulation technique, particularly the
circuit instrumentation technique, which alters the design during security
verification to add fault injection capability. The instrumented design is
then synthesized into an FPGA. Additional software components are added
to configure and control fault emulation. The biggest advantage over all
other approaches is that FPGA-based fault emulation is the fastest method
to perform fault propagation in a circuit after fault injection. Contrarily to
post-silicon physical fault injection techniques, for which the circuit needs to
be already manufactured, this technique can be applied early during circuit
design. The performance of fault emulation is linear with the duration of
the test that sensitizes the circuit under verification. Therefore, fault emu-
lation provides high speed even for extensive tests, whereas software-based
and simulation-based approaches would struggle.

Of course, fault emulation comes with some disadvantages. Compared

1.2. MY CONTRIBUTION 5

to software-based and simulation-based approaches, fault emulation is con-
sidered to provide less configurability and less observability. These two dis-
advantages have a considerable impact on applicability of fault emulation
during security verification. High configurability is a requirement to mimic
arbitrary fault attacks. So far, higher configurability comes with consider-
ably reduced performance because of a communication bottleneck between
controlling software components and hardware components. Observability is
important to reliably identify vulnerabilities of security designs. For this pur-
pose, not only the functional behavior of the circuit under verification needs
to be checked, but also the effectiveness of deployed fault countermeasures,
which is especially challenging when processor designs with limited top level
interfaces are verified. Another drawback of FPGA-based emulation is that
hardware resources available on FPGAs are limited. For mimicking arbitrary
fault attacks fault injection capability needs to be added to every incorpo-
rated cell, for which additional logic is required. This limits the size of the
circuit under verification (CUV), and therefore, applicability especially when
considering fault injection in combinational cells.

1.2 My Contribution

The goal of this thesis is to eliminate the discussed disadvantages of FPGA-
based fault emulation. I maximize the configurability for mimicking arbi-
trary fault attacks while the performance is maximized at the same time,
which allows to benefit as much as possible from limited verification times.
I decrease the hardware requirements for fault injection in combinational
logic, and thus, increase the applicability in general. I increase observability
for security controllers by introducing concepts for reliable response obser-
vation and fault classification, which at the same time save hardware and
runtime overhead. In particular, I contribute the following improvements to
the state-of-the-art, some of which have been partly or fully published in
[NR11, NHN+14, NHRS15, NHS15, NHHS16]:

• I present an FPGA-based fault emulation environment that allows to
configure arbitrary permanent and transient multiple faults at runtime
without requiring to re-synthesize the fault emulator. This is a require-
ment for mimicking arbitrary fault attacks.

• I present a feature for fault emulation that allows to configure multiple
fault injection times, where for every clock cycle of a test an arbi-
trary multiple fault can be injected without limitations. This feature
completes fault configurability in sequential logic of FPGA-based fault

6 CHAPTER 1. INTRODUCTION

emulation, for which I also propose a very hardware-efficient implemen-
tation (not published yet).

• I close the gap between speed and configurability of fault emulation
environments by introducing performance optimization measures aim-
ing on fighting the communication bottleneck between software and
hardware components. These allow to support the high configurabil-
ity requirements without performance loss compared to fault-free test
runs.

• I propose additional performance optimization measures that aim on
reducing the time required for fault experiments and skipping equiva-
lent fault experiments entirely (not published yet).

• I present a generic concept for reliable response observation and fault
classification, which is supported by software-based self-tests in case
that the circuit under verification is a processor-based architecture.
The proposed concept reduces false positives in emulation results, al-
lows to monitor the state of the circuit under verification and supports
defining test-related events used to control fault emulation. Thus, ob-
servability, controllability and applicability is improved.

• I introduce a new method enhancing fault injection in combinational
logic by extending FPGA-based fault emulation by a software-based
pre-processing that maps faults from combinational logic to equivalent
faults in sequential logic. This method benefits from the high perfor-
mance that FPGA-based fault emulation provides while limitations of
conventional approaches with respect to applicability and performance
are eliminated. Further performance optimizations based on skipping
equivalent fault experiments are proposed for this method.

• I propose a meta fault configuration model that allows to describe all
configuration possibilities required to mimic arbitrary fault attacks in-
dependently of the targeted circuit under verification, specific levels of
abstraction and the technique used for fault injection. I use it to derive
fault models for the considered level of abstraction to provide formal
descriptions for all presented techniques and implementations.

1.3 Thesis Structure

Next, in Chapter 2, I present the background to this thesis by means of
reviewing the existing work related to physical fault effects, physical attacks

1.3. THESIS STRUCTURE 7

and physical fault injection techniques.
In Chapter 3, I briefly outline security requirements and fault counter-

measures and introduce fault injection concepts. Then I discuss along with
the related work how physical faults are modeled using fault models and I
review testability of faults and propagation of transient faults. My intention
is to impart the basics of fault modeling, which is used to abstract complex
physical behavior, and to impart that fault behavior depends on the sensitiz-
ing test. Finally, I review appropriate fault injection tools, where the focus
lies on discussing the respective advantages and disadvantages in order to
argue my decision to choose FPGA-based fault emulation for modeling fault
attacks during security verification.

In Chapter 4 my goal is to create a comprehensive understanding of all
possibilities for configuring fault properties during fault injection. Since fault
modeling can be applied to any level of abstraction of a circuit under verifica-
tion, I decided to formulate a fault configuration model at a meta level. It is
based on a fault configuration space that covers all configuration possibilities
independently of the targeted circuit under verification and its considered
level of abstraction. It is independent of specific fault injection tools and
techniques as well. This way, the proposed model constitutes a superset of
specific fault models known from literature. This formal description is used
to derive a fault configuration model at gate level later in Chapter 6, based
on which formal descriptions of following concepts and implementations are
provided. Moreover, I discuss in the context of the meta fault configuration
model terms that are commonly used to describe properties of faults, fault
models and fault experiments. I focus on terms that allow to describe specific
practice-oriented subsets of the fault configuration space. Finally, equations
are derived that allow to determine the complexity of the formulated fault
injection space for practice-oriented subsets.

I decided to review the state-of-the-art of FPGA-based fault emulation
in an own dedicated chapter, presented in Chapter 5. There I focus on how
fault emulation realizes the concepts of fault injection and detail respective
methodologies for fault injection, fault generation, test generation and re-
sponse observation. I also discuss possibilities to implement components of
fault emulation environments either in software or hardware, where I focus on
respective advantages and disadvantages, based on which I make my design
decisions.

Then, in Chapter 6, I present my hardware implementation for FPGA-
based fault emulation that I have chosen to maximize configurability. My
implementation provides configurability at runtime for arbitrary permanent
and transient faults including single and multiple faults, at runtime config-
urable fault duration and at runtime configurable fault model types. After

8 CHAPTER 1. INTRODUCTION

this, the hardware implementation is embedded into a fault emulation en-
vironment, which adds software components to complete the concepts and
methodologies of FPGA-based fault emulation discussed earlier when review-
ing the state-of-the-art. To provide formal descriptions for the presented
techniques and implementations, I apply the meta fault configuration model
to gate level by means of refining its properties accordingly. Finally, I present
advanced concepts for response observation and fault classification that suits
security designs. These concepts are supported by software-based self-tests
in case that the circuit under verification is a processor-based design.

Chapter 7 is dedicated to fault injection in combinational logic. There, I
detail limitations w.r.t. applicability and performance that are encountered
when using FPGA-based fault emulation for fault injection in combinational
logic. In order to eliminate these limitations, I present a concept as well
as an implementation that extends fault emulation by a software-based pre-
processor for fault injection and fault propagation in combinational logic.
Basically, I separate combinational and sequential fault propagation, where
combinational fault propagation is performed in software in order to de-
termine an equivalent fault in sequential logic. Then, the fault emulator
presented earlier is used for further sequential fault propagation by means
of injecting the determined equivalent fault into sequential logic. The con-
cept is supported by reviewing the literature related to state equivalence and
fault equivalence, based on which I derive the relation of equivalent transient
faults.

In Chapter 8, I close the gap between speed and configurability of fault
emulation environments by means of introducing performance optimization
measures. These allow to reach optimal performance while supporting the
ability to configure arbitrary faults at runtime. The presented performance
optimization measures aim on fighting the communication bottleneck be-
tween software and hardware components of the fault emulation environment.
Moreover concepts for shortening fault experiments and skipping equivalent
fault experiments are proposed. Then, I propose a feature for enabling mul-
tiple fault injection times. This feature enables to configure any fault defined
in the fault configuration space of the meta fault configuration model.

In Chapter 9, I provide experimental results for fault injection campaigns.
First, I concentrate on fault injection in sequential logic to analyze the pro-
posed performance optimizations for fighting the communication bottleneck
of fault emulation environments. After this, I present results for fault injec-
tion in combinational and sequential logic. There, I focus on fault propa-
gation results to discuss the efficiency and effectiveness of the performance
optimizations proposed for the software-based pre-processing for enhancing
fault injection in combinational logic. Then, I discuss respective performance

1.3. THESIS STRUCTURE 9

results and provide a comparison to the state-of-the-art. I am able to show
that the proposed techniques provide a highly configurable and fast tool
to perform fault injection in both combinational and sequential logic, which
suits the purpose of security verification. Moreover, the presented techniques
remove the limitations of state-of-the-art approaches w.r.t. speed, configura-
bility, observability and applicability.

Finally, Chapter 10, summarizes and concludes this thesis.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Attacks on Integrated Circuits

In the last decades, many efforts have been made on studying the reasons
for fault occurrences, their impact on circuit behavior and modeling fault
behavior. A lot of studies were motivated by manufacturing and quality
testing whose goal is to find efficient tests, mainly used to detect permanent
defects in integrated circuits. Advances in circuit design and semiconduc-
tor processes result in shrinking technology nodes and increasing operating
frequencies. This leads to more frequent occurrence of transient faults and
increases their impact on circuit behavior. As a consequence, reliability en-
gineering emerged, who pushed research in the direction of transient faults
with the goal of hardening circuits against random fault occurrences dur-
ing in field operation. Nowadays, reliability engineering is considered to be
an important design parameter in addition to the conventional power-area-
performance trade-off, not only for application in very harsh environments
like outer space and safety-critical application domains (e.g. automotive and
avionics), but also for consumer products.

This work is dedicated to security engineering, which is another important
application domain that is concerned with faults. In a security context,
not only random fault occurrences have to be considered and countered by
e.g. error detection and correction codes. Additionally, deliberately injected
faults aiming on compromising security applications during in field operation,
so called fault attacks, are one of the major concerns for concept, design and
verification engineers of security circuits. Therefore, fault countermeasures
dedicated to specific fault attacks are deployed, which need to be verified
during circuit design.

Next, I outline the taxonomy of attacks on integrated circuits in Sec-
tion 2.1 to define fault attacks, which is the class of attacks to which this
thesis is dedicated. In order to draw a comprehensive picture, I briefly sketch
the historical context on faults in integrated circuits in Section 2.2.1. In this

11

12 CHAPTER 2. BACKGROUND

thesis, I make use of definitions and techniques that are mostly originated
from application domains that are not dedicated to the security context, e.g.
manufacturing testing and reliability engineering. I therefore discuss in the
remainder of Section 2.2 fault effects in integrated circuits along with the
related work from a general point of view and introduce related definitions.
Various physical fault injection techniques that have been successfully ex-
ploited for fault attacks to break cryptographic algorithms as well as their
respective physical effects are reviewed in Section 2.3.

In Chapter 3, I bridge the gap to fault countermeasures and fault injec-
tion concepts, including common fault models, testing concepts and fault
classification. Additionally, I review pre-silicon methods capable of fault
modeling.

2.1 Taxonomy of Attacks

Attackers try to compromise security circuits and cryptographic algorithms
by means of conducting attacks in order to reveal secrets. In general, attacks
are divided into active and passive attacks, as defined in [Shi00] and discussed
by Skorobogatov et al. [Sko05] and Mangard et al. [MOP07].

Passive Attacks Passive attacks observe physical properties (side chan-
nels) of a circuit such as operating temperature, power consumption or ex-
ecution time while the circuit is operated in its specification. In literature,
these attacks are also referred to as side-channel attacks.

Active Attacks Active attacks manipulate a circuit or disrupt its function
in order to prompt an abnormal circuit behavior that does not comply with
the circuit’s specification (service failure). For this, the circuit itself can be
altered, an extra amount of energy can be induced or environmental and
operating conditions that do not comply with the circuit’s specification can
be exploited. Injecting faults deliberately, also known as fault attack in
literature, belongs to the class of active attacks.

Skorobogatov et al. [Sko05] and Mangard et al. [MOP07] subdivide pas-
sive and active attacks further into invasive, semi-invasive and non-invasive
attacks, which indicates whether and how much a circuit is altered for con-
ducting an attack. Although I focus on active attacks (fault attacks) in
this thesis, the following description will also consult definitions for passive
(side-channel) attacks.

2.2. BASICS OF FAULTS IN INTEGRATED CIRCUITS 13

Invasive Attacks Invasive attacks depackage a circuit to expose the die
by grinding or by using laser cutters or acid in order to apply further modifi-
cations. For example, focused ion beam (FIB) and probing stations are often
used to contact internal signals. According to Mangard et al., using prob-
ing to observe internal signals is a passive attack, whereas changing internal
signals with this setup is an active attack.

Semi-invasive Attacks Semi-invasive attacks only depackage a circuit to
expose the die but do not modify the die itself. This is required to conduct
active attacks using e.g. a laser or light as well as optical passive side-channel
attacks. It also improves precision of active attacks that use radiation sources
(alpha particles, electromagnetic interference, etc.) and passive electromag-
netic side-channel attacks, since the radiation source or probe can be put
closer to the surface.

Non-invasive Attacks Non-invasive attacks do not alter a circuit and
are conducted by exploiting directly accessible interfaces, environmental and
operating conditions, radiation sources or side channels. Active non-invasive
attacks can be induced by clock glitches (clock signal variation), power supply
glitches (supply voltage variation), temperature variation of the environment
and radiation sources such as alpha-particle and electromagnetic interference.
Passive non-invasive attacks include timing, power, temperature, photonic
and electromagnetic side-channel attacks.

2.2 Basics of Faults in Integrated Circuits

In this section I start with the historical background on faults in integrated
circuits (IC). Then I give definitions related to faults, errors, failures and
testing for faults, after which I bridge the gap to physical fault attacks.

2.2.1 A Historical Perspective

Faults in digital integrated circuits may occur because of different phenom-
ena. For instance, manufacturing defects resulting from defective fabrication
and process variation is one cause of fault occurrences. Rejecting defective
devices to prevent that these are shipped to customers opened the oldest
research area concerning faults, manufacturing testing, which includes disci-
plines such as test generation and fault simulation. In these research fields,
relevant faults are usually assumed to be permanently present in circuits.

14 CHAPTER 2. BACKGROUND

However, back in the 70’s faults were discovered that exhibit transient char-
acteristics. The relevant historical facts outlined in the following paragraph
are inline with the book Soft Errors in Modern Electronic Systems [Nic10].

In 1975, Binder et al. [BSH75] reported on anomalies in space applications
that triggered flip-flops. These effects were observed about one time in four
years and were not caused by manufacturing defects. These could not be
explained by known effects such as solar wind either. Instead, Binder et
al. concluded that cosmic ray particles with high atomic numbers and high
energy produce dense ionization tracks of electron-hole pairs, which charges
base-emitter capacitance of transistors. In 1978, May and Woods [May78]
reported that soft-errors also occur at sea-level. These were caused by alpha-
particle hits emitted from radioactive decay of uranium and thorium used
in package materials. May and Wood also introduced the term soft-error as
random, nonrecurring single-bit error. In the same year, Ziegler suggested
that cosmic radiation possibly may also cause soft-errors. In the 1990s, when
package materials with low emission rates were already used, and therefore,
could not be the reason for soft-errors, it was found that cosmic neutrons
pose the main source for soft-errors [Zie96].

Nowadays, it is known that many sources are capable of inducing enough
energy to cause a transient abnormal circuit behavior. These include, radia-
tion sources, high-energetic particle hits and electromagnetic interaction, as
will be detailed along with the literature in following sections. Because of
shrinking technology nodes and growing device count per chip, particle hits
occur more frequently [Bau05, MM07]. First studies focused on fault effects
on sequential cells. However, reduction in operating voltage and increasing
operating frequencies increase the probability that particle hits in combina-
tional logic result in errors [Bau05, MM07]. As a consequence, the impact
of faults in combinational logic could not be neglected anymore. Moreover,
because of further advances in circuit design and manufacturing technologies,
particle hits causing multiple faults are more likely to occur and it became
important to study also these effects [MZM10].

2.2.2 Causality Relationship of Fault, Error and
Failure

A fault has the potential to manifest as an error in an internal state of a
system, which in turn may cause a service failure observable as corrupted
external state, as discussed e.g. by Clark et al. [CP95] and later refined by
Avizienis et al. [ALR01, ALRL04]. This causality relationship is often re-
ferred to as fault-error-failure chain [ALR01], which is depicted in Figure 2.1.

2.2. FAULT, ERROR AND FAILURE 15

fault error service failure
(internal state) (external state)(physical)

Figure 2.1: Fault-error-failure chain, illustrating the causality relationship
of fault, error and failure.

The terms fault, error and failure are defined referring to the literature as
follows:

Fault A fault is a physical defect, imperfection, flaw or abnormal event.
Faults can occur in hardware or software at any level of abstraction and
during the entire life cycle of a system [ALRL04] ranging from specification
and design over manufacturing to in field operation.

In this thesis, I focus on modeling hardware faults and I use the term fault
for abnormal circuit behavior caused by a physical effect or fault injection.
The exhibited behavior of a hardware fault depends on its cause, the affected
area and its temporal properties timing of occurrence, timing of dormancy
relative to input or software execution, from which follows the fault duration.

Error An error is the deviation of correct and incorrect internal system
states. Faults that manifest in at least one memory element result in an
erroneous internal state, and hence, implicate an error [ALRL04].

In the literature, the two terms hard-error and soft-error commonly refer
to permanent and transient errors, respectively. The term soft-error was
originated by May et al. [May78] to described fault effects in dynamic memory
cells.

Failure The term failure is often used as abbreviation of service failure
and refers to the deviation of delivered incorrect service from correct service
[ALRL04]. A system’s service corresponds to the system’s external state,
i.e. the system’s output, which is generated by a sequence of the system’s
internal states. Therefore, a service failure is the implication of at least one
erroneous internal system state [ALRL04].

Note that, in a security context, a service failure occurs when assets or
secrets such as sensible data or cryptographic keys are exposed to adver-
saries. This happens, for example, when fault countermeasures supposed
to detect specific attacks in order to protect the defined assets and secrets

16 CHAPTER 2. BACKGROUND

actually fail. Fault attacks and countermeasures are further detailed in Sec-
tions 2.3 and 3.1.

Soft-Error-Rate (SER) In the domain of reliability engineering the Soft-
Error-Rate (SER) is an important measurement for quantifying the vulner-
ability to random fault occurrence. It expresses the frequency of random
soft error occurrence caused by e.g. particle hits [PHRB11], given in failure
in time (FIT), which is the number of failures that can be expected in one
billion device hours of operation.

2.2.3 Persistence of Faults

Based on the duration faults exhibit, Clark et al. [CP95] divide faults
into permanent, intermittent and transient faults. Avizienis et al. [ALR01,
ALRL04] suggest to use the term persistence as hypernym for these proper-
ties.

Permanent Faults Permanent faults are irreversible device defects, which
are permanently effective and are caused by e.g. damage (mechanical, over-
voltage, etc.), fatigue or incorrect manufacture [CP95]. Permanent faults can
be further subdivided into static and dynamic faults. Static faults include
electrical shorts (stuck) to power supply. The fault behavior of static faults is
independent of the operating clock frequency. Dynamic faults include delay
faults, which are only effective with frequencies above a specific value.

Intermittent Faults Intermittent faults in integrated circuits are irre-
versible device defects which tend to oscillate between periods of erroneous
activity and dormancy [CP95], i.e. these are temporarily present and a non-
deterministic appearance is typical. Intermittent faults can be caused by e.g.
erroneous design [CP95], irregular physical structure of components, critical
circuit timing, stray capacitances, aging, fatigue, noise, loose connections
[KP74], electromigration [KE15] and tunneling effects [Con03]. Faults of-
ten exhibit an intermittent characteristic before they turn into a permanent
fault, caused by, e.g., a permanent oxide breakdown [Con03].

Transient Faults Transient faults are caused by reversible single or mul-
tiple event effects (SEE, MEE). These occur infrequently and temporarily
when either an extra amount of energy is added into a circuit or when its
environmental or operating condition are varied in a range that does not
comply with the circuit’s specification. Transient faults cause an abnormal

2.2. FAULT, ERROR AND FAILURE 17

electrical behavior for a relatively short period of time (e.g. induced voltage
pulse) and usually do not damage a circuit. Note, in rare cases when the
energy is high enough, it may result in a latchup or burnout. Both latchups
and burnouts may cause permanent damage [Bau05], i.e. single event effects
may also result in permanent faults or permanent errors.

Sources for transient faults include radiation such as neutrons [Zie96,
KHP04], alpha particles [May78, KHP04] and electromagnetic interaction
[QS02, MLB+14]. Furthermore, environmental and operating conditions ca-
pable to influence electronic properties temporarily, e.g. variation of tem-
perature [Sko09, KJP14], operating frequency [FT09] and operating voltage
[ABH+02] may cause transient faults. The caused abnormal faulty behavior
depends on the affected area (spatial property) and, in contrast to permanent
faults, especially on the induced energy, the circuit’s current state as well as
the timing and duration of fault occurrence relative to the circuit’s input
or software execution (temporal properties). A very comprehensive work on
transient fault effects is presented by Karnik et al. [KHP04].

Different terms are used in literature to describe transient fault effects
based on single and multiple event effects, to distinguish between single and
multiple fault occurrences and to distinguish whether combinational or se-
quential cells are affected. Unfortunately, theses terms are sometimes used
inconsistently and interchangeable [PHRB11] in an ambiguous way. More-
over, these terms are used to name the physical fault effects, but are also
used as synonym for related fault models. This makes it difficult to clearly
distinguish between the actual physical effect and the describing fault model.

The following terms are used hereinafter to describe modeled transient
fault effects.

• Single Event Upset (SEU) where a single transient fault is present in a
sequential cell (single upset).

• Multiple Event Upset (MEU) where multiple transient faults are present
in sequential cells (multiple upsets).

• Single Event Transient (SET) where a single transient fault is present
in a combinational cell (single transient).

• Multiple Event Transient (MET) where multiple transient faults are
present in combinational cells (multiple transients).

In the literature, the following synonyms are sometimes used. Multiple
Cell Upset (MCU) or Multiple Bit Upset (MBU) are typically used as syn-
onym for MEU, where MBU is then usually used to describe the case that
multiple faults affect the same word. Single Bit Upset (SBU) is sometimes

18 CHAPTER 2. BACKGROUND

used as synonym for SEU. SEU is often used as synonym for soft-errors in
general and sometimes referred to as the superset of SBU, MCU, and MBU.

To distinguish between single and multiple event effects, sometimes terms
were introduced that emphasize on that matter. For example, Kiddie et
al. [KRL15] recently denoted fault effects stemming from single and multi-
ple event effects as Single Event Single Transient (SEST) and Single Event
Multiple Transient (SEMT), respectively. In contrast, Miskov-Zivanov et
al. [MZM10] use the terms Single Event Multiple Transient Fault (SE-MTF)
and Multiple Event Multiple Transient Fault (ME-MTF). In order to keep
the nomenclature compact, I relinquish to distinguish between single and
multiple event effects for the reminder of this work.

2.3 Fault Attacks

The objective of this work is modeling fault attacks using emulation tech-
niques. Next, an introduction to fault analysis at algorithm level and meth-
ods for physical fault injection are given. I focus on techniques that have
been successfully mounted at circuit level to break cryptographic algorithms.

2.3.1 Fault Analysis at Algorithm Level

Incorrect ciphertexts or signatures produced by a disturbed cryptographic
algorithm in response to a fault attack may already pose a huge security
weakness, which can be analyzed at algorithm level. By analyzing the de-
viation of correct and incorrect ciphertexts, for which Biham et al. [BS97]
introduced the term differential fault analysis (DFA), a cryptographic key
can be extracted. Boneh et al. [BDL97] were the first to present a theoreti-
cal model for exploiting fault attacks and were able to break a public-key
cryptographic algorithm, namely Rivest Shamir Adleman (RSA). Similar
attacks were deployed to private-key cryptographic algorithms. Biham et
al. [BS97] deployed it to the Data Encryption Algorithm (DES), Biehl et
al. [BMM00] to elliptic curves and Girau, Dusart et al., Blömer et al. and
Piret et al. [Gir03, DLV03, BS03, PQ03] deployed it to the Advanced En-
cryption Standard (AES).

The above listed publications provide theoretical aspects of differential
fault analysis, where the presence of faults is only assumed during the execu-
tion of cryptographic algorithms. To actually mount a successful fault attack
onto a physical device, this fault needs to be injected into the physical device
and information about the used secret is obtained from a corrupted output.
In-depth knowledge about the theoretical background on differential fault

2.3. FAULT ATTACKS 19

analysis helps to select the timing and location for an attack mounted on the
physical device, i.e. at circuit level. Subsequently, methods for physical fault
injection and related practical setups are discussed.

2.3.2 Methods for Physical Fault Injection

Note, methods for physical fault injection discussed in the remainder of this
section are also used for post-silicon verification of security circuits.

Physical fault attacks are active attacks mounted at circuit level to prompt
a fault in the circuit. The underlying physical effects of known methods for
physical fault injection differ. Relatively prominent surveys on fault attacks
providing a comprehensive overview and insight on techniques and physical
effects are presented by Bar-El et al. [BCN+04] and Giraud et al. [GT04].

Injecting faults deliberately into a circuit may change circuit behavior
in such a way that access to sensible data is granted or secrets are leaked.
In the worst case, the attacked device outputs a secret key instead of the
ciphertext, which was reported for example by Trichina et al. [TK10]. In
general, the success of fault attacks increases by focusing on very small, local
and specific regions of a circuit (e.g. only affecting transistors of a specific
set of cells) and by controlling the timing precisely. Usually, it is desired
to not damage the circuit with an fault attack, since fault attacks have to
be repeated with varying parameters to succeed. Expertise in the circuit’s
layout and functionality helps to successfully conduct fault attacks.

Various methods for physically mounted fault attacks are reported in
the literature. These differ mainly in precision w.r.t. temporal (timing) and
spatial granularity (locality), acquisition cost, availability, replication abil-
ity and required expertise for their application. The most relevant methods
for fault attacks are optical attacks, such as laser beams and intense light.
Recently, electromagnetic (EM) glitch attacks gained increasing attention.
Supply voltage, clock signal and temperature variations are also very promi-
nent sources for fault attacks, since these were the first techniques reported
in literature. X-rays and alpha-particle attacks are also reported in litera-
ture but these attacks are uncommon, and I concentrate subsequently on the
other, more common fault attack methods. Fault effects of high energetic
particles is a well studied topic in nuclear physics and reliability engineering,
and therefore I refer to the related literature, e.g. [KHP04] and [Bau05].

In the following, I briefly review the most relevant physical fault attacks
that have been successfully mounted on physical devices. I elaborate on the
temporal and spatial precision of particular attacks, which I take up again
in Section 3.3 while reviewing appropriate fault models.

20 CHAPTER 2. BACKGROUND

Optical Attacks Optical attacks pose the most common method for phys-
ical fault injection, which include attacks utilizing intense light (e.g. flashgun)
and laser-beams. Since the package of the chip has to be removed, so that the
chip surface is exposed, optical attacks belong to the class of semi-invasive
attacks.

Integrated circuits are sensitive to light due to photo-electric effects, which
is exploited by optical attacks. Basically, based on photo-electric effects the
generation of electron-hole pairs in the semiconductor is caused [LNF+14].
As discussed in detail by e.g. Wang et al. [WX11], electron hole pairs affected
by an electric field result in a transient current pulse. The current pulse loads
the gate’s capacitance, which in turn generates a voltage pulse. At logical
level, the voltage pulse transforms into a signal transition, which propagates
through the combinational network. Optical fault attacks can be mounted on
both surfaces of a chip, the frontside and the backside. Respective attacks
are often referred to as frontside attacks and backside attacks. Castro et
al. [CDR+16] recently compared both techniques w.r.t. exploitable errors
induced into an AES hardware implementation. Due to the mirror effect of
metal layers on the frontside, backside attacks can be (but do not necessarily
have to be), more effective because of the freedom to target any desired
location [CDR+16].

Skorobogatov et al. [SA02] announced a successful attack using low-cost
equipment (flashgun and laser pointer). Schmidt et al. [SH07] mounted an-
other successful low-cost attack using fiber-optic light guides. More sophis-
ticated and very precise but also expensive setups utilize laser beams. De-
pending on the laser type, wavelength, spot size and duration of the shot,
the precision ranges from very short induced transient pulses (magnitude of
picosecond) to long transient pulses (magnitude of millisecond), where the
laser spot can effect a single gate but also multiple gates with very high
multiplicity [VML+14]. Various setups have been reported in literature. For
example, Trichina et al. [TK10] were able to break a protected software
implementation of a CRT-RSA cryptographic algorithm. For this, they con-
ducted a ’two-fault’ fault attack, where two faults were injected with a time
offset (also referred to as second-order attack). New multi-beam laser equip-
ment allows to additionally attack multiple locations either simultaneously
or with a time offset. This demonstrates the high precision both in timing
and locality achieved with laser setups.

Operating and Environmental Condition Variation Attacks Op-
erating condition variation attacks are conducted by exploiting accessible
interfaces, i.e. external clock source and power supply, and belong therefore

2.3. FAULT ATTACKS 21

to the class of non-invasive attacks. An investigation in fault attacks based
on supply voltage variation was reported by Selmane et al. [SGD08], who re-
duced the supply voltage during operation. A reduced supply voltage causes
affected gates to react more slowly and, thus, increases gate delays. As a
result, either timing violations may occur or the data signals may arrive too
late at sequential cells and are, hence, not latched, causing transient faults.

More sophisticated setups inject short spikes (rapid transients) into the
power network. Basically these also result in timing violations but for a short
period of time and therefore provides a better timing precision. These attacks
are also referred to as power and clock glitching attacks in the literature.
Such an attack was presented by Aumüller et al. [ABH+02], who were able
to break an RSA cryptographic algorithm implemented on a smartcard and
protected by a software countermeasure.

In case of clock glitching, either clock glitches are inserted into the clock
network [FT09] or transient overclocking is utilized [ADN+10]. Similar to
power glitching, timing violations may occur, which may transform in upsets
in sequential logic. Insides about clock glitching attacks were reported by
Anderson [AK96] and practical setups conducted to break an AES crypto-
graphic algorithm implemented in hardware were presented by Fukunaga et
al. [FT09] and Agoyan et al. [ADN+10].

Glitching attacks affect power and clock networks globally. It is very likely
that gates of the entire circuit or large circuit blocks are affected at once.
However, since timing violations cause the faulty behavior, the longest prop-
agation paths are affected the most. This can be exploited to narrow fault
effects, and as reported by Maistri et al. [MLB+14], timing violations seem
to hit bus transfers first because of their low slack. Agoyan et al. [ADN+10]
reported that they were able to precisely create single-bit faults.

Attacks exploiting variation of environmental conditions such as temper-
ature variations (e.g. local heating [Sko09]) also change timing behavior of
integrated circuits. The resulting fault effects are very similar to that of
supply voltage and clock signal variations.

Electromagnetic Glitch Attacks Electromagnetic glitch attacks are emit-
ted from a probe which is put closely to the surface of a chip. Quisquater
et al. [QS02] reported to disrupt the behavior of embedded memories by
means of exploiting electromagnetic glitches. Schmitd et al. [SH07] mounted
an electromagnetic glitch attack onto a CTR-based RSA cryptographic al-
gorithm implemented in software, and Maistri et al. [MLB+14] presented
a comprehensive survey on this matter. There are also successful attacks
on hardware implementations reported in the literature. For instance, an

22 CHAPTER 2. BACKGROUND

attack on an AES hardware implementation was presented by Dehbaoui et
al. [DDRT12].

Moro et al. [MDH+13, MDH+14] reported that electromagnetic glitches
seem to affect power networks locally. As a result, timing constraint viola-
tions are induced, similar to fault effects caused by power and clock glitching.
Electromagnetic glitch attacks pose therefore more localized glitch attacks.
Due to mechanical limitations of utilized probes, electromagnetic glitches do
not reach the precision of laser-induced faults. But as presented by Moro et
al. [MDH+13, MDH+14], the precision in both timing and locality is high
enough to break an AES cryptographic algorithm implemented in software by
means of adding assembly instructions and adding an extra AES encryption
round.

2.4 Summary

This section discussed attacks on integrated circuits, where fault attacks,
which belong to the class of active semi-invasive attacks, were discussed in
detail. This is the class of attacks for which I am going to present fault mod-
eling techniques utilized during security verification, where I mainly focus
on emulation techniques. After discussing basics of faults in integrated cir-
cuits to create a general understanding of faults and their effects on system
behavior, physical fault injection techniques were reviewed. My goal was
to show the most relevant fault injection techniques along with successfully
mounted attacks reported in literature in order to highlight the relevance of
these physical attacks, but also to convey a sense of physical effects caused
by fault attacks on integrated circuit. Despite the huge diversity of physi-
cal effects, it was shown that basically all fault attacks may cause errors in
sequential cells. Errors then in turn may corrupt system behavior, causing
service failures, when propagated into external states.

Next, I outline briefly security requirements and countermeasures de-
ployed in integrated circuits to fulfill these requirements in order to protect
assets and secrets. Then, after detailing the fundamentals of fault model-
ing tools including the fault injection concept, common fault models used
to abstract physical behavior of faults and fault testing concepts, I review
pre-silicon fault modeling tools reported in literature.

Chapter 3

Modeling Fault Attacks during
Security Verification of Fault
Countermeasures

The effectiveness of countermeasures dedicated to counteract passive or ac-
tive attacks need to be verified during security verification to ensure that
these fulfill the specified security requirements. The focus of this thesis lies on
introducing new fault emulation techniques for modeling fault attacks during
security verification. I therefore only discuss terms, concepts and methods
for security verification w.r.t. to fault attacks. Methods dedicated to security
verification w.r.t. passive side-channel attacks are beyond the scope of this
work and are not further considered.

Next, in Section 3.1, I briefly introduce definitions for security require-
ments and the concept of fault countermeasures along with the related nomen-
clature used in industrial standards like ISO/IEC 15408 (Common Criteria).
Then, I give an overview about the concepts of fault injection and introduce
related terms in Section 3.2. I detail fault models and fault testing concepts
in Sections 3.3 to 3.4, after which I discuss fault propagation and fault clas-
sification of transient faults in Section 3.5. Finally, in Section 3.6, I compare
common pre-silicon fault modeling tools, based on which FPGA-based fault
emulation is chosen as appropriate tool for modeling fault attacks during
security verification.

23

24 CHAPTER 3. MODELING FAULT ATTACKS

3.1 Security Requirements and

Countermeasures

The focus of this thesis lies on techniques used for security verification of
fault countermeasures, whereas the design of countermeasures is out of scope
of this thesis. However, a brief overview about the purpose and functional-
ity of fault countermeasures is necessary to comprehend the methodologies
of security verification. For this, I make use of the nomenclature used in
Common Criteria (ISO/IEC 15408), which is the most important industrial
standard for certification of security devices in Europe.

Security Requirements As per Common Criteria [Com12] (point 220),
a security target (ST) for a target of evaluation (TOE) defines the security
problem, assets and threats to those assets. The security target describes
the countermeasures in the form of security objectives, which are translated
into security requirements in a standardized language. The security target
demonstrates that these countermeasures are sufficient to counter the defined
threats. Security objectives for the TOE and for the operational environment
describe countermeasures that counter the defined threats. Security require-
ments consists of two groups of requirements (point 383):

• The security functional requirements (SFRs): a translation of the se-
curity objectives for the TOE into a standardized language, i.e. a spec-
ification of security objectives describing the countermeasures.

• The security assurance requirements (SARs): a description of how as-
surance is to be gained that the TOE meets the SFRs, i.e. a description
of how the TOE is to be evaluated. This includes e.g. testing the TOE
and examining various design representations.

In summary, the security target (ST) demonstrates that the security func-
tional requirements (SFRs) meet the security objectives describing the coun-
termeasures for the TOE and that the security objectives counter the threats
(point 224 in [Com12]). While SFRs describe the requirements of counter-
measures to be evaluated during the Common Criteria evaluation, the SARs
define what is done during circuit design (pre-silicon) and at circuit level
(post-silicon) to determine correctness of the TOE.

The goal of security verification is to determine correctness of a design in
consideration of defined verification conditions during the development cycle
of a circuit, i.e. before the design is evaluated for security certification. In case
that, for example, circuit parts are identified that are vulnerable to attacks
although security objectives describe countermeasures that should protect

3.2. FAULT INJECTION CONCEPT 25

assets against these threats, design adjustments and security verification are
usually repeated until correctness of the design is shown. Therefore, methods
used during security verification, including the methodologies presented in
this thesis, belong to the Common Criteria SAR.

Fault and Error Countermeasures In general, to prevent service fail-
ures, fault and error countermeasures are deployed in all application domains
that are concerned with faults. Fault countermeasures counteract either ran-
dom fault occurrences in e.g. safety-critical circuits or protect security cir-
cuits against active fault attacks with the purpose of protecting assets, e.g.
preventing the leakage of secrets. For this, redundancy can be deployed in
software, hardware or in both hardware and software at all available ab-
straction levels. The goal is to detect and counteract abnormal operational
and environmental conditions, i.e. the cause of faults, and abnormal circuit
behavior observable as errors in internal states. The simplest fault counter-
measure implemented in hardware is gate duplication, which is routinely used
for reliability engineering in order to decrease the Soft-Error-Rate (SER), e.g.
proposed in [GJKC06, NJJ06] for combinational logic and in [ZMM+06] for
sequential logic.

In a security context digitally designed countermeasures are often de-
ployed, but also analog mechanisms such as sensors and regulators are uti-
lized. Digitally designed countermeasures are used to detect errors in the
circuit. Sensors are used to detect the physical cause of faults, i.e. abnormal
environmental conditions (e.g. temperature and light sensors) and abnor-
mal operating condition (e.g. clock and voltage regulators). Furthermore,
countermeasures implemented in software are deployed to detect abnormal
behavior at system level, to support hardware countermeasures and to detect
errors in accessible registers and memories.

Often countermeasures implemented in hardware indicate with internal
alarm signals the detection of an attack, triggering to actively counteract the
attack such that a potential service failure is prevented. In contrast to safety
applications, for which it is usually required to recover from a faulty state
in order to not violate availability of a service by means of correcting errors,
security applications often set the circuit into a secure state such as the reset
state to counteract an attack. This way, assets are protected by means of
preventing that an attacker gains any advantage out of attacks.

26 CHAPTER 3. MODELING FAULT ATTACKS

reset

fault experiments

fault

selection

fault setfault

generation

testtest

generation

CUV

specific

abstraction level

Ne×

golden

reference

result

faulty

response

fault-free

response

arbitrary

abstraction level

fault

classification
=?

Figure 3.1: Detailed fault injection concept. The dashed area details the
fault experiments block of Figure 1.1 shown in the Introduction Chapter.

3.2 Fault Injection Concept

Security verification has to consider fault injection because fault countermea-
sures are only supposed to take any action in the presence of faults. There-
fore, security verification applies fault modeling techniques, which mimic
an attacker by injecting faults into a circuit representation (e.g. gate level
netlist) in order to check whether fault countermeasures work as specified by
security objectives.

Next, I give an overview of the fault injection concept, after which I de-
tail the involved disciplines and concepts, namely fault models, fault testing
and fault propagation as well as fault classification of transient faults. The
following descriptions are not limited to the security context. Instead, these
also reference to other application domains that are concerned with faults in
order to create a more generalized understanding of the outlined concepts.

Fault Injection Campaign The process of injecting different faults into
a circuit and observing its consequences on circuit behavior is referred to as
fault injection campaign, which is also referred to as fault injection analysis
and fault diagnosis in literature. Fault injection campaigns execute a set of
fault experiments in which the spatial (locations) and temporal properties
(timing) of fault injection are varied so that the fault injection space is cov-
ered exhaustively, i.e. all fault configuration possibilities are iterated. Fault
injection campaigns are applied in different application domains, e.g. for fault
grading of manufacturing tests, verifying fault countermeasures in security

3.2. FAULT INJECTION CONCEPT 27

and safety-critical application domains and for determining the Soft-Error-
Rate (SER) for reliability engineering. The goal of fault injection campaigns
is to study the consequences of faults on circuit behavior, to classify the im-
pact of faults, to verify security and safety and to identify most vulnerable
circuit parts for reliability engineering.

Figure 3.1 depicts the basic blocks of a fault injection campaign in detail.
The dashed area corresponds to the fault experiments block shown earlier
in Figure 1.1 in the Introduction Chapter. Additional preparation steps are
depicted, which include fault selection and fault generation of to be injected
faults and test generation of the test processed by the circuit under ver-
ification (CUV) during fault experiments. Executing fault experiments is
illustrated by the stacked CUV block, where the dashed circle indicates that
a number (Ne×) of fault experiments are performed during fault injection
campaigns. During fault experiments, physical fault effects are abstracted
using fault models (detailed in Section 3.3) and the verified circuit is sensi-
tized by a structural or functional test (detailed in Section 3.4). As indicated,
the CUV is represented at a specific level of abstraction, where any level of
abstraction can be chosen for which also an appropriate fault model has to
be considered for fault generation.

Fault Selection Strategies Because of the large fault injection space for
multiple faults (detailed in Section 4.4), it is impossible to cover the entire
fault space exhaustively. Even if fault models with a high degree of abstrac-
tion are used, the fault space for moderate circuits is already too large to
cover it exhaustively. In fact, covering all single transient faults in real-world
designs requires already millions of fault experiments.

Therefore, fault selection strategies are used to select a relevant subset of
the fault injection space that can be handled with fault injection campaigns
in a reasonable time. This way, relevant faults that are likely to be caused
and that are also relevant considering specified requirements (safety, secu-
rity, manufacturing testing, etc.) are covered. For this purpose, the physical
characteristics of specific faults (defect, particle hit, laser-induced fault, etc.),
the interacting physical factors of the circuit under consideration (e.g. circuit
technology and layout) and the specified requirements are mapped onto an
appropriate fault model.

Computational effort should be spent for mimicking relevant faults, i.e.
faults that turn into errors since latched by sequential cells. These faults
potentially cause service failures and are therefore especially relevant for
checking the effectiveness of fault countermeasures [PHRB11]. Hence, fault
injection in sequential cells is commonly performed during security verifica-

28 CHAPTER 3. MODELING FAULT ATTACKS

tion, where single event upsets in sequential cells are investigated first before
proceeding with relevant multiple event upsets. By concentrating on fault
injection in sequential cells, fault injection is applicable to RT level, where
it is accelerated with respect to gate level [PHB+14]. More advanced fault
selection strategies are considered for multiple fault injection. Appropriate
fault selection strategies reported in literature are based on either layout
[EAT13, PKE+11] or structural information [PTH+15, PHB+14, VML+14].
Moreover, these strategies can be combined with statistical fault injection
[LCMV09] to further reduce the complexity of fault injection campaigns.

Fault injection in combinational logic gained recently increasing attention
in the security context. For instance, in [PTH+15] the structure of combina-
tional logic is analyzed to select associated sequential cells for multiple fault
injection. However, transient fault injection in combinational logic has been
barely tackled exhaustively. This aspect is left out for now and is further
detailed in Chapter 7, which is dedicated to fault injection in combinational
logic.

Another common fault selection strategy starts at software layer and is
used for e.g. security verification of software-implemented fault countermea-
sures (e.g. [TMS+13]). These strategies limit fault injection to addressable
registers and memory of processor designs and do not suit hardware verifica-
tion.

Fault Generation Based on the output of fault selection strategies, fault
configurations are generated defining fault locations, timing, fault duration
and the fault model type for fault injection.

Test Generation Tests and test generation are relevant for fault injection
campaigns in order to sensitize and propagate faults, which allows to observe
their effects. The objectives on tests and test generation are discussed in
detail in Section 3.4 within the scope of fault testing concepts.

Fault Classification The behavior of a fault and the consequences for the
affected circuit depends on the location where the fault is injected and on the
timing related to the workload (input pattern, software, etc.) of the circuit.
Analogously to the fault-error-failure chain introduced in Section 2.2, a fault
is classified either as a failure when it causes a service failure or as a pass
when it does not cause a service failure, as depicted in Figure 3.2. Note
that with respect to testing concepts, a detected fault constitutes a failure,
whereas an undetected fault constitutes a pass. Fault classification will be

3.3. ABSTRACTING FAULTS WITH FAULT MODELS 29

fault Failure
(detected)

activation propagation
error

propagation

pass
(not activated)

pass
(not detected)

Figure 3.2: Fault classification into failure and passes along with the fault-
error-failure chain.

further discussed w.r.t. transient faults in Section 3.5.2 after fault models
and testing concepts are detailed.

3.3 Abstracting Faults with Fault Models

In literature, it has been shown that basically all physical fault attacks result
in single or multiple faults in sequential logic, even if originated from combi-
national logic. Temperature, voltage and clock signal variation cause timing
violations, which may manifest as upsets in a single or in multiple sequential
cells in the fanout cone of the fault location (downstreaming sequential cells)
[KJP14, ADN+10, OGST+14]. Laser-induced faults and high-energetic par-
ticles cause either transients in combinational logic, which may propagate to
downstreaming sequential logic, or single and multiple upsets are caused di-
rectly in sequential cells [VML+14, MZM10]. Hence, all physical fault attacks
can be mimicked by set, reset or bit-flip fault models. This was stated for
laser-induced faults [PHB+14, VML+14, RSDT13], power and clock glitching
attacks [ADN+10] and EM glitch attacks [OGST+14]. However, the question
is which subset of all multiple faults is appropriate to model these effects.
This motivates fault selection strategies, which were discussed in detail in
Section 3.2.

Recently, transient faults in combinational logic gained increasing at-
tention, not only for reliability engineering [EAT13], but also for security
verification [PTH+15]. On the one hand, there is the need to study e.g.

30 CHAPTER 3. MODELING FAULT ATTACKS

spatial

comb. cell

seq. cell

transistor

location

interface

variable

...

temporal

multiplicity

single

multiple

permanent

transient

multiplicity

single

multiple

value

delay

bridging

stuck-at

set/reset

bit-flip

byte fault a
b

st
ra

ct
io

n
 le

ve
l

injection/release
times

…

single

multiple

persistence

intermittent

Figure 3.3: Configuration possibilities of fault models, separated into tem-
poral, value and spatial properties.

laser-induced fault effects in order to map these to different abstraction lev-
els [LDCDN+15, PHB+14, PTH+15]. And on the other hand, combinational
logic generated and optimized by synthesis and also design errors in combi-
national logic introduce an additional risk for vulnerabilities to fault attacks.

Physical fault effects are required to be abstracted using behavioral mod-
els, so called fault models, when using fault modeling tools to mimic faults in
circuits. This way, the degree of abstraction is adapted to the use case in or-
der to reduce fault modeling complexity. This increases the efficiency of fault
modeling tools, which is especially of importance when huge sets of different
faults need to be mimicked to generate significant results. Fault models map
complex physical behavior to temporal, spatial and value properties such as
timing, fault duration, fault location, multiplicity (spatial and temporal),
type and value given by the fault model type. These properties are imple-
mented depending on the target abstraction level, which can be transistor
level (electrical), gate level (logical), register-transfer level (functional), algo-
rithm level, software layer and system level (architectural, including hardware
and software). In Figure 3.3 configuration possibilities of fault models are
summarized, which are discussed subsequently.

3.3.1 Abstraction Level of Fault Models

Fault models can be divided roughly into two classes depending on the sup-
ported precision of the time granularity and the level of abstraction to which
these are applied. The first class includes cycle accurate fault models used
to model digital behavior at zero delay gate level and higher abstraction lev-
els that abstract timing details and do not consider electrical and latching-
window masking (detailed in Section 3.5). Although, the level of abstraction
is relatively low in comparison to possible levels of abstraction, these fault

3.3. ABSTRACTING FAULTS WITH FAULT MODELS 31

models are often named high-level fault model in literature, e.g. in [PHRB11].
The second class contains fault models that aim on accurate modeling of
physical effects, for which a more precise time granularity is required and
technology-dependent properties of circuits are considered for fault model-
ing, especially such affecting fault propagation of transient faults. For this
purpose, low-level details such as the used manufacturing technology, prop-
agation delays and attenuation of transient pulses in combinational logic are
taken into account. These are applied to back-annotated gate level and lower
abstraction levels such as transistor level, full custom and analog circuits and
are often considered a low-level fault model in literature, e.g. in [PHRB11].
These fault models are usually applied when it is of interest to study physi-
cal effects of faults in great detail, e.g. for basic research, and also when the
Soft-Error-Rate (SER) for reliability engineering is determined.

In this thesis, fault models are used to mimic fault effects resulting from
fault attacks, which results in the following dilemma: On the one hand,
for precisely mimicking fault effects caused by arbitrary fault attacks, fault
models at lower levels of abstraction are required. This requires a lot of com-
putational effort, and effort is often spent on cases where faults are masked
and do not result in errors. For instance, faults modeled in transistors of
a combinational cell at transistor level may not effect the output of the re-
spective gate. On the other hand, the interests are in modeling fault effects
at higher abstraction levels that allow to keep the complexity of fault in-
jection and fault propagation in check, required for exhaustive analysis of
the behavior of security circuits in presence of faults [PHB+14]. For this
purpose, technology independent models are usually used that are available
early during circuit design when details such as circuit timing are not avail-
able [PHB+14, PHRB11]. Furthermore, cases should be focused where faults
are not masked and actually lead to errors, i.e. the worst case scenario, which
is of importance for validating fault countermeasures [PHRB11] and for iden-
tifying security flaws early during circuit design [PTH+15].

To ensure applicability for security verification, the following descriptions
will mainly consult cycle accurate fault models suitable at gate level and
register-transfer level, which basically constitutes a trade-off between pre-
cision and performance. This enables fault modeling in combinational and
sequential cells with a level of abstraction that allows to mimic arbitrary fault
attacks. Huge sets of different faults representing relevant situations with re-
spect to physical fault injection in digital logic can be analyzed, where limited
verification time is used efficiently.

32 CHAPTER 3. MODELING FAULT ATTACKS

3.3.2 Properties of Fault Models

Properties of physical faults are mapped to properties of fault models such as
discrete locations and timing with a granularity that depends on the circuit’s
level of abstraction under consideration.

Spatial Properties The spatial property of fault models configures the
locations for which faults are to be modeled, where the circuit’s level of
abstraction has to be taken into account. Often the term spatial fault mul-
tiplicity is used to describe the number of faulty locations, which helps to
generalize spatial properties for single and multiple fault injection.

Temporal Properties Temporal properties of fault models include the
fault injection time and the fault release time relative to the circuit’s current
state, which depends on the circuit’s input or software execution. Further-
more, the fault duration describes the time frame in the bounds of the fault
injection time and the fault release time. As far as modeling faults for mul-
tiple time intervals, which do not have to be consecutive time intervals, is
concerned, the term temporal fault multiplicity (see e.g. [Lev05]) can be used
to describe the number of affected time intervals. Although the temporal
fault multiplicity helps to generalize temporal properties, it is not sufficient
when modeling higher order fault attacks, e.g., multiple time-displaced at-
tacks, since the information about the fault injection and release times is
not considered. This aspect is further discussed in detail along with formal
descriptions in Chapter 4.

Considering these temporal properties is especially important in the se-
curity context to describe effects of e.g. lasers, which are able to generate a
sequence of pulses, injecting several faults in a short time [Lev07]. This was
exploited to mount a second order fault attack in [TK10], which successfully
broke a protected software implementation of a CRT-RSA cryptographic al-
gorithm.

Value Properties Value properties represent the fault injection. Both,
the value and the spatial properties, are tightly coupled with the level of
abstraction under consideration. For instance, it does not make sense to
model a byte fault on transistors, whereas a bit-flip can be modeled at several
levels of abstraction including gate level, RT level and software layer.

3.3. ABSTRACTING FAULTS WITH FAULT MODELS 33

3.3.3 Fault Model Types

Analogously to faults in integrated circuits, as discussed in Section 2.2.3,
fault models are classified based on the persistence of to be modeled faults
into intermittent, permanent and transient fault models. Moreover, a fault
model type known from literature defines a specific configuration of spatial,
value and temporal properties. Furthermore, a fault model type maps fault
effects to a value space and spatial configuration space dependent on the
abstraction level under consideration. Therefore, fault model types reported
in literature are usually already tailored to fit a certain level of abstraction
as well.

In a security context, transient fault models are preferred since these are
able to mimic the timing precision required to break modern hardened secu-
rity and cryptographic devices. There have been attempts to use permanent
fault models as well, mainly to mimic faults in non-volatile memory. For
instance, the first model for differential fault attacks on secret key crypto-
graphic systems [BS97] was based on a permanent fault model.

Therefore, I am going to focus on transient and permanent fault models
for the remainder of this thesis. Intermittent faults are not relevant for this
thesis and are not further considered.

3.3.4 Transient Fault Models

Providing configurable temporal properties, namely fault injection time and
fault release time, in addition to spatial fault properties is characteristic for
transient fault models. This allows to model single and multiple transients
in combinational logic (SET, MET) and single and multiple bit-upsets in
memory elements (SEU, MEU). Sometimes, the fault duration or a temporal
fault multiplicity is considered as well. The former enables to model faults for
consecutive time intervals, whereas the letter helps to generalize descriptions
for faults affecting consecutive and non-consecutive time intervals. Therefore,
transient fault models suit to mimic faults induced by fault attacks, as will
be further detailed subsequently.

For mimicking physical fault attacks in a security context, the set/reset
and bit-flip fault models are suitable, as stated in literature for e.g. laser-
induced faults [PHB+14, VML+14, RSDT13], glitching attacks [ADN+10]
and EM glitch attacks [OGST+14]. The bit-flip fault model mimics faulty
behavior by inverting the value of a fault site, e.g. the stored value of a
memory element. Set and reset fault models, however, mimic faulty behavior
by forcing either a logical ’0’ or logical ’1’ regardless of the fault-free value.
Compared to set and reset fault models, the bit-flip fault model is more

34 CHAPTER 3. MODELING FAULT ATTACKS

pessimistic in the sense that whenever a fault is injected, it actually causes
the fault site to change its value. In contrast, a reset fault e.g. modeled
for one clock cycle for a sequential cell that already drives logical ’0’ would
not cause any error. Set and reset fault models mimic fault behavior in
a more realistic fashion [SBHS15, PHB+14, VML+14, RSDT13], especially
when considering multiple faults. However, since the bit-flip model mimics
the worst case [VML+14] it is more efficient for the purpose of evaluating
fault countermeasures.

Usually, the bit-flip fault model is applied to sequential cells and memory
elements, for which it is applied once at the desired point in time. After
applying the bit-flip fault model, the faulty value is effective until it is over-
written functionally by the circuit. When applying the bit-flip fault model
to combinational cells, it is important to make sure that the faulty value
either does not toggle multiple times dependent on the switching activity
of the combinational logic or is captured at most once by downstreaming
sequential cells or memory elements. Otherwise, actual physical fault be-
havior would not be modeled in a realistic way. This is detailed later in
Sections 6.1.2 and 6.1.3, where I present a fault model that combines the
pessimistic characteristic of the bit-flip fault model with the ability to hold
the faulty value for an arbitrary duration.

Note that the ability to configure a temporal fault multiplicity with vary-
ing spatial fault properties would enable to mimic multiple fault injection
times, which would allow to generalize fault models. For example, this would
allow the bit-flip fault model to mimic the fault effects covered by multiple
set and reset faults as well.

3.3.5 Permanent Fault Models

Mimicking permanent faults have been established for decades in EDA tools
such as fault simulators and automated test pattern generation (ATPG)
tools. Characteristic for permanent fault models is that these have only
one valid configuration of temporal properties: the fault is injected at the
very beginning of a test and it is released at the very end of a test. Therefore,
the number of possible fault injection times is exactly one and the temporal
fault multiplicity is given by the test length. Permanent fault models that
can be applied at gate level include stuck-at fault models, path fault models,
transition fault models and bridging fault models. These are usually used to
mimic single or multiple manufacturing defects in combinational or sequen-
tial cells for e.g. test pattern generation, fault simulation and on-line testing.
For modeling permanent faults at transistor level, the stuck-open and stuck-
on fault models are usually used. The following description of permanent

3.3. ABSTRACTING FAULTS WITH FAULT MODELS 35

fault models is mainly inline with [ABF94] and [KKJ10].
In case of stuck-at fault models applied at gate level, a fault is represented

by a faulty gate whose output is permanently forced to either logical ’0’ or
logical ’1’, affecting the connected net as well. The same concept can also
be applied to gate inputs, however, then the associated net is considered
disconnected, thus, the fault is not propagating into it. This mimics the
fault effect of a defect input or output transistor that permanently closes or
opens, respectively. Based on the spatial fault multiplicity of faults, stuck-
at fault models are further divided into single stuck-at and multiple stuck-
at fault models [KKJ10]. The stuck-open and stuck-on fault models are
corresponding models at transistor level.

Bridging fault models mimic an electrical short between two nets (inter-
connect bridge), where the short is modeled as either wired-OR or wired-
AND, such that one driver dominates the other. In this way, the dominating
value is determined, which is then assigned to both nets.

Delay fault models such as transition and path fault models mimic man-
ufacturing defects that causes gates or entire combinational paths to react
more slowly than specified, e.g. caused by resistive shorts or process varia-
tion. The transition fault model assumes that the defect causes any signal
transition to be delayed past the clock edge. In contrast, the path fault model
assumes a distributed delay along a combinational path.

3.3.6 Summary and Conclusion

Fault models usually describe the specific and small subset of the fault in-
jection space that is relevant to a particular application domain in which it
is originated. This can be shown with e.g. the stuck-at fault model, where
even single stuck-at faults and multiple stuck-at faults are separated into
two dedicated fault models [KKJ10]. The relationship between single and
multiple faults could also be described in a more general way when consid-
ering the spatial multiplicity of faults, i.e. the number of affected locations.
This way, single stuck-at faults just constitute the small subset of multiple
stuck-at faults for which the spatial fault multiplicity is exactly one.

The same consideration can also be applied to generalize temporal prop-
erties by introducing a temporal fault multiplicity. Moreover, introducing
the number of fault injection times would help to describe the number of
events that are required to be handled by fault modeling tools when multiple
fault injection times are considered.

Furthermore, Fault models are usually bound to a specific abstraction
level. Sometimes fault modeling even entangles both fault injection and
modeling of circuit behavior. This can be noticed when looking at fault

36 CHAPTER 3. MODELING FAULT ATTACKS

models that consider technology-dependent attenuation of transient pulses
and circuit timing.

These considerations motivated me to introduce a fault configuration
model at a meta level, presented in the next Chapter 4, which is general-
ized in order to be independent of specific abstraction levels and superior
to specific fault models. It covers the entire fault injection space including
arbitrary fault configurations w.r.t. spatial, value and temporal properties.
Moreover, both the spatial fault multiplicity and the temporal fault multi-
plicity as well as multiple fault injection times are considered in the model.
The meta fault configuration model can be further refined for the abstraction
level under consideration, which I show by means of specifying and imple-
menting a fault configuration model at gate level in Chapter 6. To use the
same fault model to mimic all common physical fault attacks, it needs to
be as general as possible [VML+14]. Therefore, the presented meta fault
configuration model features single and multiple transient faults as well as
permanent faults in combinational and sequential logic uniformly, and hence,
suits modeling arbitrary fault attacks.

3.4 Testing Concepts

When the workload of a circuit is designed to explicitly sensitize certain
circuit parts, e.g. to check proper functionality, it is also referred to as a test
in the context of fault modeling. Parts of a circuit that are not sensitized may
remain idle, i.e. signal transitions do not occur in these circuit parts. This
can be the reason for a fault to remain in a system as an error without causing
a service failure in external states observable at primary outputs. Moreover,
a fault may also disappear from the system, when it stops causing errors at
some point in time. As for the purpose of manufacturing testing and on-line
testing, efficient tests that are able to make hardware faults observable as
errors in internal states or as service failures are therefore required for security
verification of fault countermeasures. Furthermore, in a security context, a
test is used as representative of relevant situations and is required to make
use of to be verified hardware components by performing, e.g., encryption
and decryption. Subsequently, testing concepts and the related nomenclature
are briefly introduced.

3.4.1 Testability of Faults in Combinational Logic

Figure 3.4 adds the conditions sensitization and propagation as well as the
property observability to the fault-error-failure chain, which was depicted

3.4. TESTING CONCEPTS 37

earlier. Related definitions are given subsequently, which are mainly inline
with [ABF94]. These were originated from manufacturing testing and were
originally introduced for permanent faults in combinational circuits. Further
concepts have been introduced to increase testability for sequential circuits,
which are also outlined very briefly.

Sensitization and Activation A logic line, i.e. a circuit node, is said to
be sensitized to a fault by a test (e.g. input pattern on primary inputs of
a circuit), if it drives the negation of the fault-free value in the presence of
the fault. A path of sensitized logic lines is referred to as a sensitized path.
For instance, to sensitize a fault that shorts a logic line to ground, modeled
as stuck-at-0 fault, the logic line has to drive a logical ’1’ in the fault-free
case. This is also referred to as activation in literature. Hereinafter, I use
the term sensitization exclusively. My intention is to avoid confusion between
the terms fault activation and fault injection later on.

Fault and Error Propagation Fault propagation and error propagation
are often interchangeable used in the literature. Propagation occurs if other
locations are also erroneously affected by the initial fault or by the caused
error.

Observability Observability is the ability to observe an internal logic line
directly at primary outputs (PO). That is, if at least one primary output
switches depending on the to be observed internal logic line, then the respec-
tive logic line is observable. Furthermore, if a fault propagates to at least one
PO, where it is observable, then the fault is said to be detected. In contrast,
if it is not observable, then it is said to be undetected. In the context of
manufacturing testing, a detected fault constitutes a service failure.

Controllability Controllability is the ability to establish specific values
at logic lines in a circuit by applying a stimulus at primary inputs (PI).
Controllability is established if a test applied at primary inputs (PI) sensitizes
a path from PIs to the fault site and a path from the fault site to primary
outputs POs, such that a fault propagates to POs where it is observable. In
case that no sensitized path exists, the fault is said to be logically masked.
Controllability is very similar to observability, however, with the difference
that controllability describes the ability to control logic values of logic lines by
applying a stimulus, whereas observability describes the ability to determine
signal values of logic lines at POs by applying a stimulus at PIs.

38 CHAPTER 3. MODELING FAULT ATTACKS

fault failure
sensitized propagated

error

propagated

observable at PPO observable at PO

Figure 3.4: Sensitization, propagation and observation illustrated along
with the fault-error-failure chain.

Testability Testability is the ability to control a fault with a test and to
observe it at POs.

3.4.2 Testing Concepts for Sequential Circuits

Hennie [Hen61] introduced the iterative logic array (ILA) model, which en-
ables to also apply the testing concepts of combinational circuits to sequential
circuits. Basically, this model unrolls sequential circuits for a given number
of cycles by means of concatenating a corresponding number of copies of the
combinational circuit part. In order to increase the controllability and ob-
servability and in turn the testability for sequential circuits, the concept of
pseudo primary inputs (PPI) and pseudo primary outputs (PPO) was intro-
duced. These ports are the inputs and outputs of the combinational circuit
part and are connected to either primary ports or sequential elements (mem-
ory and flip flops). This way, tests are applied at PPIs and faults can be
observed at PPOs, i.e. the testability of sequential circuits is increased. This
concept is nowadays routinely applied when considering design for testability
(DFT) techniques, utilizing e.g. scan register chains to control PPIs and to
observe PPOs. For this, registers are connected to chains used to transport a
test from dedicated PIs to PPI and to transport the combinatorial response
from PPOs to dedicated POs, which is activated in a dedicated test mode.

3.4.3 Tests and Test Generation

Note that the problem of test generation is out of scope of this thesis. How-
ever, in order to comprehensively understand the concept of fault injection
and respective tools, related concepts are outlined briefly from a general

3.4. TESTING CONCEPTS 39

point of view. Later in Section 5.4, I review how tests are generated, up-
loaded and executed when using fault emulation. The objectives on func-
tional tests within the scope of verifying fault countermeasures are detailed
in Section 6.5.4.

Test generation is a complex and time consuming problem. The goal of
test generation is optimizing test sequences in order to maximize test or fault
coverage while minimizing the test duration. Tests are subdivided into two
classes: structural tests and functional tests.

Structural Tests Structural tests are stimulus (singular), stimuli (plural)
or input pattern, which are applied at PIs of combinational circuits. In
case of sequential circuits, FFs can be connected to scan register chains to
increase testability. Structural test can be generated based on the structure
of the circuit under test, i.e. independently of its actual functionality, using
commercial automated test pattern generation (ATPG) tools. ATPG tools
are optimized to find single test pattern that already detect a set of faults
and to find compact sets of tests that cover, if possible, all faults.

Functional Tests Functional tests include software-based tests for proces-
sor architectures fetched from memory. Functional tests are used when struc-
tural testing of processors is technically or economically infeasible [CMD01]
due to limited top-level interfaces, which render sensitization and observation
impracticable. Test software can be a specific workload or target application.
For example, Mohammadi et al. [MEEM12] use different sorting algorithms
as workload to sensitize a processor architecture. There is also a class of
software that is especially built for test purposes, which is referred to as
software-based self-test (SBST) [CMD01, PGSR10]. In order to make errors
in internal states observable, test results can be propagated to observable
locations, e.g. addressable memory [Reo15].

In contrast to structural tests, commercial tool-support is not available
for automated test generation of functional tests [Reo15]. Thus, functional
tests are written manually by a test engineer. Recently, there are attempts
to automate functional test generation in scientific communities as well as
industry [Reo15]. Riefert et al. [RCS+15] present the first method able to
automatically generate functional test programs with superior fault efficiency
compared to those produced with manual approaches. However, the authors
state that high computational effort is required, constraints disabling external
interrupts are applied and the method is so far applicable for permanent
stuck-at faults only.

40 CHAPTER 3. MODELING FAULT ATTACKS

3.5 Propagation and Classification of

Transient Faults

Fault propagation of static permanent faults can be masked only by logi-
cal fault masking (see also the description of controllability in Section 3.4).
In contrast, dynamic permanent faults can be masked by latching window
masking as well, which is the reason why the behavior of these faults de-
pends on the clock frequency. Unlike permanent faults, fault propagation of
transient faults is derated by in total tree different masking effects, namely,
logical masking, latching window masking and electrical masking. Masking
effects of transient faults are discussed next.

3.5.1 Masking Effects

All three masking effects can prevent fault propagation, and therefore, have
an impact on whether a transient fault causes an error or failure. Electrical
masking and latching window masking are especially relevant when model-
ing single and multiple event transients (SET, MET), i.e. when modeling
transient faults in combinational logic.

Logical Masking Logical masking occurs when a fault site is sensitized
by a test, but a sensitized path to (pseudo) primary outputs does not exist
(see Section 3.4). That is, logic in the fan-out cone of the fault site does not
propagate the fault from input pins to output pins. A fault might propagate
to one or more input pins of the respective logic gates but the gates’ outputs
are logically dominated by the unaffected fault-free inputs. There is also the
case of fault masking, where one fault cancels out another fault [Dia75], i.e.
one fault logically masks another.

Electrical Masking Electrical masking effects are a consequence of de-
lay degradation as a transient is propagated through combinational logic
gates [EVC+09]. It attenuates the pulse width of a fault while it propagates
through a sensitized combinational path [LDJK94] and is caused by the input
and load capacitance and the effective parasitic capacitance between input
and output of the gates it passes [WX11].

Latching Window Masking (Temporal Masking) If a transient pulse
arrives at downstreaming sequential cells’ inputs, but not within the setup
and hold time, then it is not latched by the respective sequential cells. This is

3.5. PROPAGATION OF TRANSIENT FAULTS 41

fault failure
(s)*(p) (p)

error

(p)+!(o)

silent silent

latent

(s)ensitization
(p)ropagation
(l)ogical masking
(e)lectrical masking
(t)emporal masking
(o)verwriting

(l)+(e)+(t) (o)*(l)

green: uncrtical
orange: potentially critical
red: critical

+ disjunction (or)
* conjunction (and)
! negation (not)

Figure 3.5: Detailed fault classification into failure and passes along with
the fault-error-failure chain considering logical, electrical and temporal mask-
ing effects. Passes are further subdivided into silent and latent faults.

referred to as latching window masking [Gai97] and is also known as temporal
masking in literature.

3.5.2 Detailed Fault Classification

Since faults may remain in memory elements without causing a service failure
or may disappear from memory elements, passes are further subdivided in
latent and silent faults. This relation is depicted in Figure 3.5 and is subse-
quently explained along with masking effects of transient faults. Therefore,
fault propagation, fault overwriting and fault masking effects are considered
in addition in Figure 3.5 (listed in its legend) to complete the causality re-
lationship of transient faults, errors and failures. The logical conjunction ∗
of these effects indicates that multiple effects are required, whereas the log-
ical disjunction + indicates that at least one effect is required. The logical
negation ! indicates that an effect must not occur.

Silent Faults A fault is classified as silent, if it disappears due to masking
effects or overwriting. There are two cases for faults to exhibit a silent
behavior. Firstly, the fault is never latched in sequential cells because of
logical, electrical or temporal (latching window) masking, which is indicated
by (l) + (e) + (t) in Figure 3.5. Secondly, the faulty value of a memory
element is overwritten before it is latched by other memory elements while
logical masking prevents a further fault propagation into other sequential
cells, indicated by (o) ∗ (l) in Figure 3.5.

42 CHAPTER 3. MODELING FAULT ATTACKS

Example 3.5.1 (Silent fault). To give an example, a transient fault such as
a SEU in a memory element of a processor design has the potential to result
in a service failure, where e.g. the software execution of the processor crashes.
For this to happen, the fault has to be injected or propagated into a memory
element that is read by other hardware components (could be initiated from
software). However, if this location is overwritten by either hardware or
software before being read again, then the fault would disappear, resulting
in a silent fault.

Latent Faults A fault is classified as latent, if it manifests as an error in
the internal state (e.g. memory elements), where it is still present at the end
of a test but does not cause a system failure. There are two cases that may
lead to this behavior, which are depicted as transition from error to error
and indicated by (p) in Figure 3.5. Firstly, the fault remains in exactly the
memory elements where it was initially injected or propagated into from com-
binational logic. Secondly, the fault propagates to other memory elements,
but still does not cause a system failure.

Example 3.5.2 (Latent fault). When a erroneous memory element is read,
it could cause a service failure immediately or it could propagate to other
memory elements and then as a result cause a service failure. In contrast, if
the fault remains in the internal state but does not cause a service failure,
then it is said to be a latent fault. This might happen if e.g. at some point the
erroneous memory elements are not accessed anymore, neither reading nor
writing. More general speaking, when the external state does not depend on
the erroneous memory elements to which the fault propagates, then a service
failure cannot occur.

3.6 Pre-Silicon Fault Modeling Tools

Security verification methods are subdivided into pre-silicon and post-silicon
methods. In contrast to physical fault injection techniques, which belong
to post-silicon methods (refer to Section 2.3.2), pre-silicon methods make
use of fault models to mimic faults and are hence applicable during circuit
design. In general, it is desirable to find design bugs early in the design
flow of a circuit. When circuit design advances, fixing design bugs becomes
more expensive and delays time-to-market. Therefore, pre-silicon methods
available early during circuit design are required for security verification of
fault countermeasures, where fault models are used to mimic fault attacks.
Another motivation for pre-silicon methods is to have tools which can be used
to track security issues encountered during post-silicon security evaluations.

3.6. PRE-SILICON FAULT MODELING TOOLS 43

There are different methodologies for fault modeling reported in the lit-
erature:

• Logic simulation

• Fault simulation

• Formal methods

• Analytical Soft-Error-Rate (SER) estimation methods

• Fault emulation

Logic simulation, fault simulation and fault emulation can be used to realize
exhaustive fault injection methodologies, which is usually applied during se-
curity verification. Formal methods can be used for security verification of
fault countermeasures implemented in hardware only to a limited extend be-
cause of complexity issues. Analytical SER estimation methods are typically
used in the application domain of reliability engineering.

Subsequently, I briefly recap these pre-silicon fault modeling methods
along with the literature and place them in the application domains where
they were originated and usually used. The focus lies on emphasizing meth-
ods applicable for security verification of fault countermeasures implemented
in hardware.

Logic Simulation Simulation setups are usually used for functional verifi-
cation and are, thus, usually already available in development environments.
Two different approaches using logic simulation for fault injection are re-
ported in the literature using either built-in simulation commands [JAR+94]
or mutants and saboteurs based on HDL modification [GC91, JAR+94].

Built-in simulation commands can be used to inject and release faults in
a circuit during simulation. This is the easiest to implement method, since it
does not require HDL modification, and it works at abstraction levels ranging
from transistor level (electrical level) to system level (architectural level).

Mutants and saboteurs enable fault injection capability by HDL modifi-
cation. Mutants replace the original component register transfer level (RTL)
description by a description that is capable of fault injection. Saboteurs
are capable of altering signal behavior and extend an RTL design with-
out replacing the original description [JAR+94]. There are also attempts
at higher abstraction levels. For instance, Misera et al. [MVS08] introduced
mutants and saboteurs to SystemC-based architectural simulation. In gen-
eral, simulation-based fault injection techniques are considered to be slow
such that exhaustive fault injection campaigns cannot be realized efficiently
using slow simulations.

44 CHAPTER 3. MODELING FAULT ATTACKS

Fault Simulation In order to increase simulation performance in case that
faults are considered to be present in the circuit, dedicated fault simulation
was introduced. Fault simulation was originated in the manufacturing test-
ing domain. Several performance optimizations such as fault dropping and
parallel, deductive, differential and concurrent fault simulation have been
proposed, allowing fault simulation to perform noticeable faster than ex-
ploiting logic simulation for fault injection. Commercial fault simulators,
e.g. WinterLogic Z01X and Cadence Verifault-XL, provided only permanent
fault models for a long time since transient faults are irrelevant for manufac-
turing testing. Similarly, academic fault simulators, e.g. HOPE [LH92] and
PROOFS [NtCP92], provide only permanent stuck-at fault models. Ever
since automotive domains required safety verification considering standards
like ISO 26262, transient fault models were supported by commercial fault
simulators. This is still an emerging topic taking into account that there
is not yet a single commercial fault simulator available that supports fault
injection of multiple transient faults in combinational logic.

Motivated from a security context, a simulation-based approach (named
tLIFTING) that mimics multiple event transients at transistor level (SPICE
simulation) and maps these to higher abstraction levels (logic simulation)
was presented by Bosio et al. [DNFLR12]. tLIFTING extends an earlier
published fault and logic simulator (LIFTING [BDN08]) which is able to
simulate single and multiple stuck-at faults as well as single event upsets.
Although this simulator is able to inject faults, strictly speaking, LIFTING
is not a dedicated fault simulator since it does not come with performance
optimizations that are typical for fault simulation.

In case the CUV is a processor-based architecture, processor simulation
setups such as for example [TMS+13] can be used to inject faults into CUV’s
addressable registers. Since fault injection is restricted to addressable regis-
ters, these setups are only suitable for software verification.

Formal Methods Formal methods can be used to verify that hardware,
software or algorithms comply with their specification using equivalence check-
ing, model checking or theorem proving. In cases where a proof fails, a
counter example is provided. Nowadays, automated test pattern generation
(ATPG) is also supported by using formal engines, such as e.g. SAT-solvers
(Boolean Satisfiability Problem-solver). Formal methods are very expensive
in terms of computational effort, which increases drastically with the state
space to be explored. The complexity of hardware verification usually renders
formal verification of an entire system already impossible without consider-
ing fault modeling. Hardware verification therefore usually applies functional

3.6. PRE-SILICON FAULT MODELING TOOLS 45

verification using logic simulation.

Nevertheless, there have been attempts to adapt formal methods for
fault modeling. For instance, Larsson et al. [LH07] and Pattabiraman et
al. [PNKI13] present frameworks for symbolic fault injection of SEUs applied
to a Cyclic Redundancy Check (CRC) algorithm and an aircraft collision
avoidance application, respectively. Both frameworks model fault injection,
where faults are explicitly enumerated, similar to simulation- and emulation-
based exhaustive methods. Furthermore, fault injection is only possible at
software layer (fault injection in addressable registers). Both methods are
therefore not suitable for hardware verification.

Contrarily to exhaustive approaches, formal methods can approach the
problem the other way around. Instead of injecting different faults into a
circuit and observe the circuit’s behavior in an exhaustive fashion, formal
methods can represent faults in a more general way. For this, properties are
used to express that the circuit is in a faulty state, where assumptions can be
made to restrict the multiplicity of multiple faults. Such approaches, used for
dependability analysis, were presented by e.g. Leveugle [Lev05] and Baarir
et al. [BBC+09], but results were discussed only for simple example circuits
and have not been deployed yet to realistic security circuits.

Beside others, formal methods utilize efficient engines for exploring a
search space. One prominent engine are SAT-solvers. SAT is the abbrevia-
tion for the Boolean satisfiability problem, which refers to solving Boolean
functions and which belongs to the class of np-complete problems. A SAT-
solver is capable of making decisions, such as guessing value assignments for
Boolean variables. Boolean constraint propagation is then used to explore
the search space until a conflict occurs or a solution is found. If conflicts
occur, decisions made earlier are reversed in order to fix conflicts and to ex-
plore other parts of the search space. In this way, one solution that satisfies
the Boolean function may be found, although the entire np-complete prob-
lem is not solved. SAT solvers have also been established successfully for
automated test pattern generation (ATPG). Becker et al. [BDES14] provide
a very comprehensive survey on recent advances in this regard.

Analytical SER Estimation Methods Analytical Soft-Error-Rate (SER)
estimation methods stem from reliability engineering domains and include
statistical, analytical, probabilistic and symbolic techniques, such as pre-
sented by Miskov-Zivanov [MZM10], Polian et al. [PHRB11] and Chen et al.
[CET13]. Contrarily to fault injection approaches, these methods do not ap-
proach the problem of fault modeling exhaustively. Instead, the probability
of a high-energetic particle strike causing faults is estimated. Usually, these

46 CHAPTER 3. MODELING FAULT ATTACKS

methods are used to determine flip flops or combinational cells that con-
tribute the most to the soft-error-rate. By hardening these cells selectively,
the soft-error-rate can be reduced until it drops under a specific value.

Analytical SER estimation methods are not sufficient to validate the ef-
fectiveness of fault countermeasures in a security context since fault prob-
abilities are estimated, which only suits modeling random fault occurrence.
In a security context, however, faults are deliberately, precisely and locally
injected, e.g. using laser beams.

Fault Emulation Cheng et al. [CHD95] proposed to use FPGA-based
emulation as accelerator for fault grading of manufacturing tests. Since then,
FPGA-based fault emulation has also been used to implement fault injection
campaigns in other application domains, namely reliability, safety-critical
and security-critical engineering.

Fault emulation environments alter a CUV utilizing for example the
circuit instrumentation technique [EMEM14, EVC+09, KLPB05] to pro-
vide fault injection capability. The instrumented CUV is then synthesized
onto an FPGA. Alternatively, commercial hardware prototyping platforms
such as Cadence Palladium maybe utilized, as presented by e.g. Daveau et
al. [DBG+09].

FPGA-based fault emulation is the fasted method to perform extensive
fault injection campaigns. It is three to five orders of magnitude faster
[EMEM14, EVC+09] than simulation and other software-based statistical,
probabilistic and symbolic approaches. This high performance provided by
fault emulation allows to benefit as much as possible from limited verifica-
tion times during circuit design, which constitutes the reason for choosing
FPGA-based fault emulation as fault injection method for security verifica-
tion in this thesis.

In Section 5 FPGA-based fault emulation is detailed in an own section
along with the related work. The implementation of a specific FPGA-based
fault emulation environment, which serves as basis for further performance
optimizations and features, is presented in Chapter 6.

3.7 Relevance for this Thesis

In the remainder of this thesis, fault emulation is chosen as central method
for fault modeling used to implement fault injection campaigns during se-
curity verification, which is detailed along with the literature in Chapter 5.
A particular implementation is presented in Chapter 6. The high perfor-
mance provided by fault emulation is independent of the CUV’s circuit size

3.7. RELEVANCE FOR THIS THESIS 47

and allows to use limited time for verification efficiently early during circuit
design. Furthermore, long functional tests required to sensitize processor de-
signs are applicable. Of course emulation-based techniques also have some
disadvantages and limitations. One of the main contribution of this thesis is
to remedy these.

There are for example limited hardware resources on FPGAs, which in
turn limits the circuit size for which fault emulation is applicable, especially
when fault injection in combinational logic is considered. To tackle this
issue, in Chapter 7, I introduce a software-based pre-processing for faults
in combinational logic that maps faults in combinational logic to equivalent
faults in sequential logic, which are configured onto a fault emulator. For this
purpose, I additionally make use of software-based fault modeling techniques
based on Boolean constraint propagation provided by a SAT-solver.

Another disadvantage of fault emulation tackled in this thesis is that
performance optimizations often come at the cost of less flexibility in terms
of controllability. I tackle this issue by techniques that are generic in the
sense that these allow arbitrary fault configurations in terms of spatial and
temporal properties. This high configurability is supported by performance
optimizations presented in Chapter 8, which closes the gab between speed
and configurability of fault emulation environments.

In order to provide formal descriptions for the presented techniques and
implementations, I first present a meta fault configuration model in the next
Chapter 4. Furthermore, Chapter 4 aims on creating an understanding of
fault injection complexity in general and provides equations that allow to
determine the fault injection complexity for practice-oriented subsets of the
fault configuration space.

48 CHAPTER 3. MODELING FAULT ATTACKS

Chapter 4

Meta Fault Configuration
Model

After detailing fault effects and reviewing fault modeling concepts in previ-
ous chapters, this chapter provides the basis for formal descriptions of the
following fault injection techniques and respective implementations. More-
over, my intention in this chapter is to create a comprehensive understanding
about mapping properties of physical faults onto fault configurations using
fault models and about the resulting fault injection complexity when consid-
ering configuration possibilities that are required to mimic arbitrary faults
and fault attacks. For this purpose, I define a fault configuration model that
scales in terms of spatial, value and temporal granularity for physical fault
attacks ranging from less precise attacks (e.g. glitching attacks) to precise
laser attacks. Since fault modeling can be applied at any level of abstrac-
tion of a circuit under verification, I decided to formulate the presented fault
configuration model independently of particular abstraction levels, i.e. it is
defined at a meta level. This way, its fault properties can be refined in order
to apply the meta fault configuration model to the abstraction level under
consideration, maximizing its applicability. Another very important thing
to note is that the presented model solely covers fault configuration to de-
scribe fault injection in a system, but it is not meant to model the behavior
of the system. To emphasize on this matter, I decided to name it a fault
configuration model.

The meta fault configuration model describes fault configuration func-
tions defined in a function space, the total configuration space, which allows
to describe all configuration possibilities of fault models (illustrated earlier
in Figure 3.3). Thus, all configuration possibilities that need to be con-
sidered for mimicking arbitrary fault attacks are covered. The meta fault
configuration model therefore is a superset of all fault models known from

49

50 CHAPTER 4. META FAULT CONFIGURATION MODEL

literature. Note that also the temporal spread of faults, defined as temporal
fault multiplicity, and arbitrary multiple fault injection times are covered.
For this it is required that arbitrary spatial fault configurations can be de-
fined for arbitrary time intervals of a fault experiment. Therefore, the meta
fault configuration model describes the time line of a fault experiment with
consecutive time intervals. For each time interval an arbitrary fault con-
figuration, which covers spatial and value fault properties, can be applied,
resulting in a sequence of fault configurations. In summary, every fault config-
uration defined in the total configuration space describes a distinct sequence
of fault configurations, representing a particular fault experiment, and the
total configuration space covers all possible configuration sequences.

In Section 4.1, I develop the meta fault configuration model based on its
three components, namely temporal properties, spatial configuration space
and value configuration space, which I join into a function space, the total
configuration space. Then, in Section 4.2, the terms spatial fault multiplicity
and temporal fault multiplicity are formulated in the context of this model,
where single and multiple affected locations and single and multiple affected
time intervals are discussed. In Section 4.3 a practice-oriented interpretation
of the presented fault configuration model is discussed, where terms com-
monly used in literature to describe temporal properties of faults such as
single and multiple fault injection times and permanent and transient fault
models are formulated in the meta fault configuration model and discussed
accordingly. Moreover, the formal description of a particular parametrized
fault F is introduced, which bridges the gap to the description used in litera-
ture to describe particular faults when for example fault testing is concerned.
Finally, I discuss the fault injection complexity of fault injection campaigns
in Section 4.4 to create a comprehensive understanding in this regard. I also
present the fault injection complexity of practice-oriented and meaningful
subsets. This is supported by equations that allow to parametrize the fault
injection complexity with the spatial fault multiplicity and the number of
fault injection times (the temporal fault multiplicity can be used alterna-
tively). The developed equations constitute a powerful and practice-oriented
tool to determine the complexity of sophisticated fault injection campaigns.

A fault configuration model for faults in sequential and combinational
logic at gate level is derived later in Chapter 6.1 by means of refining the
properties of the meta fault configuration model for gate level. This way, a
fault configuration model at gate level is derived, which is used to describe
the presented fault injection techniques that are implemented using FPGA-
based fault emulation in Chapter 6 and extended by a software-based method
in Chapter 7.

4.1. FAULT CONFIGURATION SPACE 51

4.1 Fault Configuration Space

A physical fault has spatial, value and temporal properties. With respect
to fault models, properties of physical faults are mapped onto discrete fault
locations and discrete timing, for which also the spatial spread and temporal
spread of faults need to be considered. This way, arbitrary fault attacks
can be mimicked, including more sophisticated high-order fault attacks, e.g.
second-order fault attacks that may cause two different faults from a single
source or from two independent sources activated at different times.

The granularity, with which these properties are mapped, depends on the
level of detail that the fault model is able to resolve and the abstraction level
under consideration. For example, the spatial granularity of fault models at
transistor level allows to map faults onto transistors, which cannot be imple-
mented using fault models that are tailored to higher levels of abstraction.
A higher temporal granularity allows to model shorter transient faults, e.g.
a transient voltage pulse for a duration of a fraction of a clock period, which
cannot be implemented using cycle accurate fault models. There is also the
type of a fault model, which is represented by discrete values depending on
the level of abstraction under consideration. At higher abstraction levels
the type is usually represented by only a few possibilities, e.g. stuck-at-0
and stuck-at-1, and therefore, is often payed little attention when modeling
faults in digital circuits. However, when combining several fault model types
(bit-flip, stuck-at, etc.) into a single implementation, as I am going to do in
Chapter 6, it becomes necessary to describe these in a single value space in
order to be able to treat different fault model types uniformly. Moreover,
considering fault models that are applicable to analog circuits, the value
granularity becomes increasingly important. As a consequence, the spatial
and value configuration spaces as well as the temporal granularity of a meta
fault configuration model are required to be independent of specific levels of
abstraction. Furthermore, in order to derive fault configuration models for
specific levels of abstraction based on the meta fault configuration model, it
is also necessary to build the model in a way that it allows a refinement of
its properties.

With these considerations and requirements in mind, I am going to define
the fault configuration space of the meta fault configuration model, starting
with the temporal granularity.

4.1.1 Temporal Granularity

Temporal properties of faults describe when and how long these faults occur.
The temporal granularity, with which the temporal properties are resolved,

52 CHAPTER 4. META FAULT CONFIGURATION MODEL

is defined next on the base of consecutive time intervals on which the test
duration of a fault experiment is mapped. The bounds of these time intervals
are defined by discrete instances in time, hereinafter denoted by ti, where
ti ∈ R is the index assigned to identify the time interval and ti < ti+1 ≤
tNT

and 0 ≤ i < NT . Using time intervals instead of mapping temporal
properties directly to discrete instances in time suits the purpose of providing
a formal description for following implementations of fault injection methods
better. Important to note is that this description enables to model the fault
configuration for an entire fault experiment, where for each time interval an
arbitrary fault configuration with arbitrary spatial and value properties can
be modeled. That is, multiple fault injection times during fault experiments
can be modeled, which is required to model physical faults mounted by a
single source in a time-displaced manner or mounted by multiple sources.
Thus, arbitrary physical fault attacks including higher order attacks can be
modeled.

Definition 4.1.1 (Time Intervals). Fault injection is resolved for a time
interval, denoted by T i = [ti, ti+1), given by two consecutive discrete times
ti, ti+1 ∈ R, where i ∈ N0 and 0 ≤ i < NT . In each time interval an arbitrary
spatial fault configuration and value configuration can be applied, which are
defined in respective configuration spaces in the following sections. The set T
includes all time intervals to which a fault experiment is mapped, so T i ∈ T
where

T = { T i | T i = [ti, ti+1), T i ⊂ R, ti < ti+1 ≤ tNT
, 0 ≤ i < NT } . (4.1)

Next, the temporal granularity, with which temporal properties are re-
solved, is defined.

Definition 4.1.2 (Temporal Granularity). The cardinality of T is the total
number of time intervals, which corresponds to the temporal granularity of
a fault model, denoted by NT , where NT = |T |.

Note that NT +1 discrete instances of time are required to define NT time
intervals. In cases where a coarser granularity is sufficient for T , a subset of
R can be chosen, e.g. N0.

Since in each time interval arbitrary spatial and value configurations can
be applied, physical faults, which might be affective for multiple consecu-
tive or non-consecutive time intervals, are modeled by assigning a sequence
of spatial and value configurations. This is detailed in Sections 4.1.5 after
introducing the spatial configuration space and the value configuration space.

4.1. FAULT CONFIGURATION SPACE 53

4.1.2 Spatial Configuration Space

Subsequently, fault injection locations are introduced, based on which the
spatial property of fault configurations are defined in the context of the meta
fault configuration model. The corresponding definitions constitute the base
for defining the spatial configuration space and its respective spatial granular-
ity. The spatial configuration space includes fault configurations for arbitrary
single and arbitrary multiple faults, which is detailed later in Section 4.2.1.

Definition 4.1.3 (Fault Injection Locations). A particular discrete fault
injection location, i.e. a location at which fault injection can be configured, is
denoted by lj, where j ∈ N0 is the index assigned to identify the fault injection
location. The set of all considered fault injection locations is denoted by L,
where L = { l0, . . . , lNL−1 }, and 0 ≤ j ≤ NL − 1.

Fault injection locations are required to be refined according to the ab-
straction level under consideration. For example, it can be defined as a set
of coordinates, transistors, logic lines or register pins.

The spatial configuration space includes all spatial fault configurations,
i.e. it includes all possibilities to combine different fault injection locations
in order to model the spatial property of physical faults.

Definition 4.1.4 (Spatial Configuration Space). The power set of L, de-
noted by P(L), contains all configuration possibilities of the spatial property,
hereinafter referred to as spatial configuration space.

Note that the empty set ∅ ∈ P(L) corresponds to fault-free cases, i.e.
cases in which actually no fault occurs or when the fault cannot be mapped
onto the abstraction level under consideration. This is important to note
since P(L) allows to configure fault-free as well as arbitrary faulty cases,
including single and multiple affected fault injection locations, for any given
time interval T i = [ti, ti+1). This way, a sequence of configurations for an
entire fault experiment, including fault-free time intervals, can be defined.

The spatial granularity defines the number of considered fault injection
locations and is defined as follows:

Definition 4.1.5 (Spatial Granularity). The cardinality of L is the total
number of all discrete fault injection locations lj, which corresponds to the
spatial granularity of a fault model, denoted by NL. So, NL = |L|.

The spatial properties of physical faults are mapped to none, single or
multiple discrete fault injection locations. This way, during any given time
interval T i = [ti, ti+1), arbitrary fault injection locations are configurable to

54 CHAPTER 4. META FAULT CONFIGURATION MODEL

be affected by fault injection. For example, to model cases where a laser or
a high-energetic particle strike affects multiple gates, multiple discrete fault
injection locations can be configured to be affected.

In order to treat single and multiple faults uniformly, the spatial property
of a fault configuration for a given time interval is defined as the set of fault
injection locations to which the spatial fault properties of physical faults are
mapped. That is, the spatial fault configuration includes the affected fault
injection locations, defined as follows:

Definition 4.1.6 (Spatial Fault Configuration). The set La denotes the spa-
tial fault configuration, which models the spatial property of physical faults
and constitutes the spatial property of fault configurations. In literature,
the spatial property of faults is also referred to as fault site. La includes all
fault injection locations affected by fault injection and is a subset of all fault
injection locations included in L. So,

La = { l | l is affected by faults, l ∈ L } , (4.2)

where La ⊆ L.

The type of fault injection locations (logic line, transistor, register pin,
etc.) as well as an appropriate value configuration space representing the
physical fault effect have to be refined w.r.t. the abstraction level to which
the fault model is applied. Note, whether or not an affected location actually
causes an error depends on the circuit’s test and the circuit’s internal and
external state. These circuit-specific and test-dependent properties are not
part of the presented fault configuration model.

So far, the temporal granularity and the spatial configuration space were
defined. Next the value configuration space is introduced. Then, the relation
between spatial and value configuration space is described as forcing function.

4.1.3 Value Configuration Space

The type of a fault model (e.g. stuck-at or bit-flip) is represented by a value
configuration space, which has a granularity that depends on the level of
abstraction under consideration. From the value configuration space values
are chosen and mapped onto affected fault injection locations, which allows
to mimic physical fault effects at arbitrary levels of abstraction. Considering
fault injection tools such as fault simulation or fault emulation, this mapping
is actually realized by forcing values at accessible locations. With this in
mind, I describe the relation between spatial configuration space and value
configuration space as forcing function, which is defined in a spatial-value

4.1. FAULT CONFIGURATION SPACE 55

configuration space. This way, every fault injection location can be assigned
an arbitrary value from the defined value configuration space, resulting in a
spatial-value configuration space.

Definition 4.1.7 (Value Configuration Space for Affected Locations). Af-
fected locations l ∈ La are assigned a faulty value, denoted by v, representing
the physical fault effects to be modeled at fault injection locations. Every
l ∈ La can be assigned a v ∈ V , where V denotes the value configuration
space for affected fault injection locations.

In order to provide the ability that fault injection locations not included
in La remain fault-free for arbitrary time intervals, i.e. these are unaffected
by fault injection, it is necessary to define a value in the value configuration
space to which unaffected fault injection locations are mapped. This way,
every l ∈ L can be configured individually to be affected or not by fault
injection.

Definition 4.1.8 (Value Configuration Space). The unaffected value, de-
noted by u, leaves fault injection locations unaffected when assigned to it.
The value configuration space Vu includes faulty values v ∈ V and the unaf-
fected value v = u, so Vu = V ∪ {u} and v ∈ Vu.

Next, the value granularity is defined.

Definition 4.1.9 (Value Granularity). The cardinality of Vu, so |Vu|, is
the total number of values that can be assigned by a fault model, which
corresponds to the value granularity of a fault model.

The value configuration space has to be refined for the actual level of
abstraction and fault model type under consideration (e.g. analog or logical
values), allowing to define fault model types that resolve physical fault effects
with the required granularity. For example, in case of a stuck-at fault model
at gate level, Vu = { 0, 1, u } represents stuck-at-0, stuck-at-1 and unaffected,
respectively. However, the stuck-at fault model describes temporal proper-
ties as well, which will be detailed in the next section. Note that different
fault models known from literature can be joined into the value configuration
space.

Furthermore, important to note is that the presented meta fault configu-
ration model does not describe the circuit behavior, neither its fault-free nor
its faulty behavior, and hence, fault propagation is not part of the model.
The presented model only defines when and where faults occur, and the ac-
tual physical effects are mapped to values defined in the value configuration
space. That is, the model does not describe whether or not a fault turns into

56 CHAPTER 4. META FAULT CONFIGURATION MODEL

an error. This way, fault configuration and circuit model are kept separated,
which allows to refine the properties of the meta fault configuration model for
the actual level of abstraction under consideration independently of circuit
behavior.

So far, the temporal granularity, the spatial configuration space and the
value configuration space were defined. Next the relation between spatial
configuration space and value configuration space is described as forcing func-
tion, which is defined in the spatial-value configuration space.

4.1.4 Spatial-Value Configuration Space

Now, I introduce a forcing function ϕ, which represents fault injection by
means of joining spatial fault configurations and value fault configurations
into spatial-value configurations.

Definition 4.1.10 (Forcing Function). The forcing function, denoted by ϕ,
maps fault injection locations l ∈ L to individual values v ∈ Vu. So,

ϕ : L −→ Vu, l 7−→ v. (4.3)

Since the unaffected value is included in the value configuration space
Vu, fault injection locations can be configured individually to be affected by
fault injection, and if affected, then a faulty value can be configured indi-
vidually for each fault injection location. This allows to configure arbitrary
single and multiple faults. The forcing function is defined in the spatial-value
configuration space as follows.

Definition 4.1.11 (Spatial-Value Configuration Space). The function space
in which ϕ is defined, denoted by Vu

L , constitutes the spatial-value con-
figuration space. It joins both the spatial configuration space and the value
configuration space and includes all combinations of both spaces according to
combinatorics. That is, there are |Vu||L| distinct forcing functions ϕ defined
in Vu

L . So,
ϕ ∈ VuL (4.4)

Note, the forcing function ϕ that maps every l ∈ L to u ∈ Vu, i.e. the case
that all fault injection locations l ∈ L remain unaffected, and therefore, no
fault is injected, is denoted by ϕu, where

∀ l ∈ L : ϕu(l) = u. (4.5)

Next, to determine the spatial property of a fault configuration, i.e. the
spatial fault configuration La, from a known forcing function ϕ, the operator
La (ϕ) is defined.

La (ϕ) = { l | ϕ(l) 6= u } , (4.6)

4.1. FAULT CONFIGURATION SPACE 57

where l ∈ L and u ∈ Vu and ϕ ∈ VuL . The operator La (ϕ) determines the
set of affected fault injection locations La for which ϕ maps l to v 6= u. That
is, La = La (ϕ) . Note, in case that |Vu| = 2, which is the case for bit-flip
fault models, the number of distinct La ∈ P(L) matches exactly the number
of distinct ϕ ∈ VuL . That is, if |Vu| = 2, then |P(L)| =

∣∣VuL∣∣.
Next, I describe the relation between spatial-value configuration space

and the temporal granularity, for which I introduce a fault configuration
function.

4.1.5 Total Configuration Space

The fault configuration function is defined in the total configuration space.
Its purpose is to join the spatial configuration space and the value con-
figuration space with temporal properties, which completes the meta fault
configuration model. Important to note is that the meta fault configuration
model allows to configure arbitrary permanent and transient faults at ar-
bitrary fault injection times, which includes multiple fault injection times.
This is further detailed in Section 4.3.

Definition 4.1.12 (Fault Configuration Function). The fault configuration
function, denoted by f, joins spatial, value and temporal components of
the meta fault configuration model. For this purpose, the fault configuration
function f maps time intervals T i ∈ T to individual forcing function ϕ ∈ VuL ,
where the forcing function ϕ maps fault injection locations l ∈ L to individual
values v ∈ Vu. So,

f : T −→ Vu
L , T i 7−→ ϕ. (4.7)

Finally, the meta fault configuration model is completed with the defini-
tion for the total configuration space.

Definition 4.1.13 (Total Configuration Space). The function space in which

f is defined, denoted by
(
Vu

L
)T

, constitutes the total configuration space.
So,

f ∈
(
Vu

L
)T

. (4.8)

Every fault configuration function f defined in
(
Vu

L
)T

constitutes a dis-
tinct fault configuration, which describes a sequence of spatial-value config-
urations for consecutive time intervals.

The fault configuration function f that maps every T i ∈ T to ϕu ∈ VuL
represents the fault-free case and is denoted by fu. In the fault-free case all

58 CHAPTER 4. META FAULT CONFIGURATION MODEL

fault injection locations l ∈ L remain unaffected for all time intervals, and
therefore, no fault is injected.

∀ T i ∈ T : fu(T i) = ϕu. (4.9)

Since the fault configuration function maps any time interval to arbitrary
forcing functions, it allows to coherently define and handle all configuration
possibilities. This includes arbitrary multiple fault injection times for which
different or the same spatial and value configurations can be applied, which in
turn includes arbitrary fault durations. This is further detailed in Section 4.4,
where I discuss the fault injection complexity. In order to treat uniformly
fault configuration functions that configure single or multiple affected time
intervals, the temporal property of a fault configuration is defined as follows.

Definition 4.1.14 (Temporal Fault Configuration). The set Ta denotes the
temporal fault configuration, which models the temporal property of physical
faults. Ta includes all affected time intervals and is a subset of T , which
includes all time intervals. So

Ta = { T i | T i is affected by faults, T i ∈ T } , (4.10)

where Ta ⊆ T .

Next, to determine the temporal fault configuration Ta of a known fault
configuration function f, the operator T a (f) is defined.

T a (f) = { T i | f(T i) 6= ϕu } , (4.11)

where 0 ≤ i < NT and T i ∈ T and ϕu ∈ VuL and f ∈
(
Vu

L
)T

.

4.2 Fault Multiplicities

In this section I introduce terms commonly used in literature to describe
the multiplicity of faults w.r.t. both the spatial and the temporal fault prop-
erty. First, I discuss the spatial fault multiplicity, after which I discuss the
temporal fault multiplicity.

Faults can be injected at single or multiple locations and at single or
multiple times. Configuring multiple fault injection times is relevant from a
practical point of view, e.g. for mimicking multiple event effects (MEE). Fur-
thermore, in a security context, second order fault attacks using for example
a single laser or multiple lasers to inject faults at two different times [TK10]
motivate such configuration possibilities. In this case, multiple faults are in-
jected physically in a time-displaced manner. Respective fault experiments

4.2. FAULT MULTIPLICITIES 59

are covered by the presented fault configuration model by means of config-
uring the composition of spatial and temporal properties of to be modeled
faults.

4.2.1 Spatial Fault Multiplicity

The term spatial fault multiplicity (often referred to as fault multiplicity in
literature), is commonly used in literature to clearly describe the number of
affected fault injection locations.

Definition 4.2.1 (Spatial Fault Multiplicity). The number of affected fault
injection locations of a spatial fault configuration La is referred to as spatial
fault multiplicity, denoted by m. The spatial fault multiplicity m is evaluated
by the cardinality of the spatial fault configuration La. La can be determined
with the operator La (ϕ) (refer to Definition 4.1.6 and Equation 4.6). So,

m = |La| = |La (ϕ) | , (4.12)

where m ∈ {0, ..., NL}.

Note, since different time intervals may map to different forcing functions,
the spatial fault multiplicity can be different for each time interval. This is
relevant when considering transient faults, especially when multiple fault
injection times are considered.

Definition 4.2.2 (No Fault). If m = 0, then a fault-free (unaffected) case
is described. In this case, the fault-free forcing function ϕu maps every given
fault injection location l ∈ L to the fault-free value u ∈ Vu, i.e. not a single
fault injection location is affected, and therefore, no fault is injected.

Definition 4.2.3 (Single Fault). If m = 1, then the respective fault is re-
ferred to as single fault since exactly one fault injection location is affected.

Definition 4.2.4 (Multiple Fault). If m > 1, then the respective fault is
referred to as multiple fault since multiple fault injection locations are simul-
taneously affected.

4.2.2 Temporal Fault Multiplicity

In order to clearly describe the number of affected time intervals of fault
experiments, the term temporal fault multiplicity (also referred to as tem-
poral multiplicity in literature) is commonly used in literature. That is, the
temporal fault multiplicity describes a property of an entire fault experiment,
which maps to a particular fault configuration in the context of the presented
model.

60 CHAPTER 4. META FAULT CONFIGURATION MODEL

Definition 4.2.5 (Temporal Fault Multiplicity). The number of affected
time intervals of a fault configuration is referred to as temporal fault mul-
tiplicity, denoted by k. The temporal fault multiplicity k is evaluated by
the cardinality of the temporal fault configuration Ta, which includes all af-
fected time intervals and can be determined with the operator T a (f) (refer
to Definition 4.1.14 and Equation 4.11). So,

k = |Ta| = |T a (f) | , (4.13)

where k ∈ {0, ..., NT}.

Definition 4.2.6 (Fault-free Configuration). If k = 0, then a fault-free (un-
affected) case is described. In the fault-free case, the fault configuration
function fu maps every given time interval T i to the fault-free forcing func-
tion ϕu ∈ VuL . Hence, not a single fault injection location is affected at any
time, and therefore, no fault is injected.

Definition 4.2.7 (Single Affected Time Interval). If k = 1, then the re-
spective fault configuration function f configures exactly one affected time
interval, i.e. one time interval maps to a forcing function ϕ 6= ϕu.

Definition 4.2.8 (Multiple Affected Time Intervals). If k > 1, then the
respective fault configuration function f configures multiple affected time
intervals, i.e. more than one time interval map to a forcing function ϕ 6= ϕu.

4.3 Practice-Oriented Interpretation

The presented meta fault configuration model defines fault injection for dis-
crete time intervals. Whether or not a fault configuration actually results
into errors depends on the circuit’s input and its internal state, modeling
of which is not part of the presented model. That is, the model does not
describe the behavior of the system to which it can be applied, neither its
fault-free nor its faulty behavior. This is intended to decouple modeling cir-
cuit behavior and modeling fault injection, which maximizes the flexibility
in terms of applicability.

For the remainder of this work, a fault configuration function f and the

function space
(
Vu

L
)T

in which it is defined are interpreted as follows: Every
defined time interval maps to a forcing function ϕ, which in turn maps all
fault injection locations to an individual value for the respective time inter-
val. This way, permanent and transient faults can be modeled, which includes
faults that affect multiple, arbitrary locations for multiple, arbitrary fault in-
jection times and arbitrary fault durations. Note that this allows to model

4.3. PRACTICE-ORIENTED INTERPRETATION 61

physical faults that are injected using two or more independent sources, e.g.
second-order attacks and even more sophisticated attacks. Moreover, the
fault model type can be chosen arbitrarily from the defined value configura-
tion space.

Next, I discuss the temporal fault properties fault injection time, fault
release time and fault duration in the context of the presented meta fault
configuration model. This closes the gap between the common understanding
of what a fault is, as discussed in Section 2.2.2, and how these are described
with the meta fault configuration model. Then, I introduce the term number
of fault injection times, which I clearly distinguish from the temporal fault
multiplicity. Finally, a description for a parametrized fault is given, which
can be used to describe fault experiments with a single fault injection time.

4.3.1 Mapping Temporal Properties of Faults

The terms fault injection time and fault release time can be used to describe
temporal properties of physical faults and modeled faults (refer to the dis-
cussion in Section 2.2.2). This makes sense as well in the context of the meta
fault configuration model, however, only when considering a single time in-
terval or multiple consecutive time intervals that map to the same ϕ 6= ϕu.
Then, for all these consecutive time intervals the same spatial and value
properties are considered, i.e. a single fault injection time is considered.

Definition 4.3.1 (Fault Injection Time). A fault injection time of a fault
configuration is denoted by tinj and is the instance of time when the spatial
or value property of a fault configuration changes such that the time interval
T i that includes tinj maps to a ϕ 6= ϕu. Moreover, if a fault injection time
is included in T i, so tinj ∈ T i, then the respective time interval is hereinafter
referred to as a fault injection interval and tinj is the instance of time that
defines the lower closed interval bound of the fault injection interval T i =
[ti, ti+1). So tinj = ti, where 0 ≤ i < NT , i.e. ti < tNT

, and hence, tinj < tNT
.

The instance of time ti of a time interval T i is a fault injection time if the
time interval T i in which ti is included corresponds to either

• the very first time interval T 0 in case that T 0 maps to a ϕ 6= ϕu, so
f (T 0) 6= ϕu, or

• a time interval T i that maps to a ϕ 6= ϕu and T i−1 maps to ϕu, so
f (T i) 6= ϕu and f (T i−1) = ϕu, or

• a time interval T i that maps to a ϕ 6= ϕu and T i−1 maps also to a ϕ 6=
ϕu, however, the respective consecutive time intervals map to different
ϕ 6= ϕu , so f (T i) 6= ϕu and f (T i−1) 6= ϕu and f (T i) 6= f (T i−1).

62 CHAPTER 4. META FAULT CONFIGURATION MODEL

Note that the third case covers the second case. However, the second case is
listed separately in order to highlight the difference between the transition
from the fault-free configuration to a faulty configuration and the transition
from one faulty configuration to another faulty configuration. A minimized
description covering both the second and the third case is f (T i) 6= ϕu and
f (T i) 6= f (T i−1), which is used hereinafter.

All fault injection intervals of a fault configuration are gathered in the set
T inj. So, T inj = { T i | tinj ∈ T i }, where T inj ⊆ Ta. Next, in order to deter-
mine the set of fault injection intervals T inj from a given fault configuration
function f, the operator T inj (f) is defined.

T inj (f) = { T i | f (T i) 6= ϕu and f (T i) 6= f(T i−1) }
∪ { T 0 | f (T 0) 6= ϕu } ,

(4.14)

where 0 < i < NT and T i ∈ T and ϕ ∈ VuL and f ∈
(
Vu

L
)T

.

Definition 4.3.2 (Fault Release Time). A fault release time of a fault con-
figuration is denoted by trelease and is the instance of time when the spatial
and value property of a fault configuration is released. Moreover, if a fault
release time is included in T i, so trelease ∈ T i, then the respective time interval
is hereinafter referred to as a fault release interval and the fault release time
is the instance of time that defines the upper open interval bound of the fault
release interval T i = [ti, ti+1) in which the fault is released. So trelease = ti+1,
where tinj < trelease ≤ tNT

. The instance of time ti+1 of a time interval T i is a
fault release time if the time interval T i in which ti+1 is included corresponds
to either

• the very last time interval TNT−1 in case that TNT−1 maps to a ϕ 6= ϕu,
so f (TNT−1) 6= ϕu, or

• a time interval T i that maps to a ϕ 6= ϕu and T i+1 maps to ϕu, so
f (T i) 6= ϕu and f (T i+1) = ϕu, or

• a time interval T i that maps to a ϕ 6= ϕu and T i+1 maps also to a
ϕ 6= ϕu, however, the respective consecutive time intervals map to
different ϕ , so f (T i) 6= ϕu and f (T i+1) 6= ϕu and f (T i) 6= f (T i+1).

Note, if two consecutive time intervals map to different spatial or different
value properties, i.e. they map to different forcing functions ϕ, then the old
spatial-value configuration is released while the new spatial-value configura-
tion is applied. Hence, a specific instance of time can be both a fault release
time and a fault injection time.

4.3. PRACTICE-ORIENTED INTERPRETATION 63

Next, the fault duration is introduced. So far, I intentionally omitted
to consider the fault duration as temporal property of fault configurations.
In the context of the presented meta fault configuration model, the fault
duration implicitly follows from a sequence of the same spatial-value fault
configuration for consecutive time intervals.

Definition 4.3.3 (Fault Duration). The fault duration, denoted by d, of a
fault configuration is defined by a fault injection time tinj and the next fault
release time trelease (refer to Definitions 4.3.1 and 4.3.2), where d = trelease−tinj

and d ∈ R and tinj < trelease. The fault duration interval, denoted by T d =
[tinj, trelease), includes the respective affected consecutive time intervals T i.
All time intervals included in the fault duration interval map to the same ϕ,
where ϕ 6= ϕu. That is,

∀ T i ⊆ [tinj, trelease) : T d =
⋃

T i

and

∀ T i+1, T i ⊆ T d : ϕ = f(T i) and f(T i) = f(T i+1)

(4.15)

where T i ∈ T and ϕ ∈ VuL and f(T i) ∈
(
Vu

L
)T

.

In case of modeling physical faults with multiple fault injection times,
the respective physical fault durations may overlap in time. This is mod-
eled as composition of all fault properties. As a consequence, additional
fault release times and fault injection times are created when physical fault
durations start and end to overlap. Hence, several fault duration intervals
T d exists. Furthermore, if multiple physical sources affect the same loca-
tions, an application specific resolution function would be required to resolve
this. Note that this is not relevant for the remaining content of this thesis,
and therefore, I omit to introduce a description for multiple fault duration
intervals and a resolution function.

As far as single fault injection times are concerned, a particular physical
fault is mapped onto affected fault injection locations at the fault injection
time tinj until the fault release time trelease. Both together, tinj and trelease,
describe temporal properties of the modeled fault, from which also follows the
fault duration d. Note that for single injection times a single fault duration
interval T d exists and it equals the set of affected time intervals Ta, so T d = Ta
for single fault injection times.

Hereinafter, I consider the term fault duration only in case that a single
fault injection time is considered. For this purpose, the Definition 4.3.3 is
sufficient without introducing multiple fault duration intervals since proper-
ties of physical faults can be mapped directly to properties of the presented

64 CHAPTER 4. META FAULT CONFIGURATION MODEL

fault configuration model and vise verse. Note that the ability to model
arbitrary multiple fault injection times is nevertheless covered by the total
configuration space.

4.3.2 Number of Fault Injection Times

Changing spatial or value fault configurations during fault experiments is
modeled by mapping the respective time intervals to a different forcing func-
tions, which was introduced as fault injection time in Definition 4.3.1. The
number of fault injection times describes how often the spatial or value fault
configurations is changed during fault experiments. The number of fault
injection times is also used later in Section 4.4 to derive equations for de-
termining fault injection spaces and the respective fault injection complexity
when considering a certain spatial fault multiplicity and a certain number of
fault injection times. For this, the equations, developed in Section 4.4, are
parametrized with the spatial fault multiplicity and with the number of fault
injection times. As discussed in Section 4.3.1, when modeling time-displaced
fault injection of physical faults, the number of modeled fault injection times
is greater than the number of physical fault injection times in case that the
physical fault injections overlap in time.

Definition 4.3.4 (Number of Fault Injection Times). The number of fault
injection times n is determined by the cardinality of the set of fault injec-
tion times T inj which is determined by the operator T inj (f) (refer to Defini-
tion 4.3.1), where tinj ∈ T inj. So,

n = |T inj| = |T inj (f) | , (4.16)

where n ∈ {0, ..., NT}. Furthermore, n ≤ k since T inj ⊆ Ta.

Definition 4.3.5 (No Fault Injection Time). If n = 0, then a fault-free
(unaffected) case is described. In the fault-free case, the fault configuration
function fu maps every given time interval T i to the fault-free forcing function
ϕu. Hence, not a single fault injection location is affected at any time, and
therefore, no fault is injected.

Definition 4.3.6 (Single Fault Injection Time). If n = 1, then the respective
fault configuration f describes a single fault injection time. The modeled
fault is originated either from a single source or from multiple sources that
simultaneously causes the fault. Multiple consecutive time intervals may be
affected (refer to Definition 4.2.8) in case that these map to the same forcing
function ϕ (refer to Definition 4.3.3).

4.3. PRACTICE-ORIENTED INTERPRETATION 65

Definition 4.3.7 (Multiple Fault Injection Times). If n > 1, then the re-
spective fault configuration f describes multiple fault injection times. The
modeled faults are originated from a single source or multiple sources in a
time-displaced manner. This is modeled as a composition of these faults,
where two different cases can be separated. Either the fault durations of to
be modeled faults do not overlap in time or overlap in time. In case that
consecutive time intervals are affected, at least two time intervals map to
different spatial properties and/or different value properties, so ϕ = f(T i)
and f(T i) 6= f(T i+1) (refer to Definition 4.3.1).

4.3.3 Permanent vs. Transient Faults

Permanent faults are described by fault configurations that map all time
interval T i ∈ T to the same forcing function ϕ ∈ Vu

L \ ϕu. Hence, every
affected fault injection location l maps to an individual value v 6= u from
the very first instance of time t = t0 until the very last instance of time
trelease = tNT

. That is, all time intervals are affected, so Ta = T . From
this also follows that the temporal fault multiplicity of permanent faults is
k = |T |, whereas the number of fault injection times is n = |Tinj| = 1.

In contrast, a transient fault is described by fault configurations that
map at least one T i ∈ T to the fault-free forcing function ϕu. In case that a
composition of transient faults is modeled, at least one T i ∈ T exists which
maps either to the fault-free forcing function ϕu or to a forcing function ϕ that
is different to the one mapped to in the next time interval, i.e. f(T i) 6= f(T i+1)
where ϕ = f(T i). Hence, the temporal fault multiplicity of transient faults
is k ≤ |T |, whereas the number of fault injection times is n ≥ 1.

4.3.4 Parametrized Fault

Based on previous considerations, a family of fault configuration functions fF
is introduced for the purpose of describing fault configurations that consider
solely single fault injection times, i.e. n = 1, with a variable fault duration.

First, I introduce a parametrized fault F as a tuple, which constitutes the
short description of a particular fault configuration included in fF .

Definition 4.3.8 (Parametrized Fault). A parametrized fault, denoted by F,
is a tuple composed of a particular forcing function ϕ′ ∈ VuL , which maps the
spatial property onto a value configuration space, and the temporal properties
represented by the fault duration interval T d = [tinj, trelease).

F = (ϕ′, T d) (4.17)

66 CHAPTER 4. META FAULT CONFIGURATION MODEL

Note that all time intervals included in T d map to the same ϕ′. Furthermore,
all other time intervals not included in the defined fault duration interval T d

map to the fault-free forcing function ϕu, i.e. all l /∈ La map to the fault-free
value v = u, so

∀ T i 6⊆ T d : f(T i) = ϕu

and

∀ T i ⊆ T d : f(T i) 6= ϕu.

(4.18)

The parametrized fault F is the corresponding description to the one used
in literature to describe faults. In contrast to descriptions usually used in
literature, the parametrized fault F can be used to describe permanent as
well as transient faults uniformly.

Finally, the parametrized fault F is described in the context of the meta
fault configuration model as a family of fault configuration functions fF de-

scribing the subset of the total configuration space
(
Vu

L
)T

that includes all
fault configurations with single fault injection times, i.e. n = 1.

Definition 4.3.9 (Fault Configuration Function for Single Fault Injection
Time). The fault configuration function for single fault injection times with

configurable fault duration, denoted by fF , where fF ∈
(
Vu

L
)T

, defines a
family of fault configuration functions that maps a fault duration interval
T d = [tinj, trelease) to a particular forcing function ϕ′ 6= ϕu, where tinj, trelease ∈
R and tinj < trelease and T d = Ta. All the other time intervals T i 6⊆ T d, where
T i ∈ T , map to ϕu. So,

fF (T i) =

{
ϕ′ 6= ϕu for T i ∈ T d

ϕu otherwise
. (4.19)

This way, an arbitrary spatial fault configuration for a single fault injection
time tinj with the fault duration d = trelease − tinj is configurable.

4.4 Fault Injection Complexity

In this section I discuss the complexity of fault injection campaigns along
with the presented fault configuration model, separated into spatial, spatial-
value and total fault injection complexity. Formal descriptions are presented
that allow to evaluate the fault injection complexity when the sets L, Vu and
T are given. One goal here is to create a comprehensive understanding about
the presented meta fault configuration model’s power.

The following discussion also aims on highlighting the complexity of fault
modeling, here shown along with the presented configuration model. As also

4.4. FAULT INJECTION COMPLEXITY 67

known from literature, the spatial fault injection complexity already results
in a combinational explosion. I am going to show that the total fault in-
jection complexity when considering value and temporal fault configurations
in addition can be expressed by applying the binomial theorem three times.
Note that fault injection is only one discipline that is involved for fault model-
ing; There are also others like modeling circuit behavior and test generation,
which add further dimensions to it. This emphasizes the importance of ro-
bust fault selection strategies allowing to focus on relevant situations. But
it also shows the importance of developing powerful and fast fault modeling
tools, such as the methods I present in Chapters 6 to 8. These, on the one
hand, require to provide configuration ability for relevant and, as appropri-
ate, complex situations for security verification. On the other hand, fault
modeling tools require to provide high performance.

The equations presented subsequently are derived from the presented
meta fault configuration model and provide a powerful tool to determine
the fault injection complexity. I am going to evaluate the fault injection
complexity for practice-oriented subsets of the configuration space that fol-
low from considering faults with a certain spatial fault multiplicity m (m-
location fault) and a certain number of fault injection times n (n-injection
times). This allows to evaluate for example the fault injection complexity
when injecting all single faults or all multiple faults with a certain spatial
fault multiplicity m for an arbitrary number of n fault injection times. Such
complexity calculations are especially of importance to determine whether or
not more complex fault injection campaigns are feasible in given verification
time.

Important to note is that all configuration spaces of the presented meta
fault configuration model include a fault-free case. When determining the
complexity of fault injection campaigns, only cases where actually faults are
injected are of interest. Therefore, to get the fault injection spaces, the fault-
free cases need to be excluded from the corresponding configuration spaces.

4.4.1 Spatial Fault Injection Complexity

Next, the spatial fault multiplicity m is used to determine subsets of the
spatial configuration space for m-location faults (e.g. all 2-location faults).

m-Location Faults The spatial configuration space P(L), defined in Def-
inition 4.1.4, can be split into disjoint subsets that are expressed in terms of
the spatial fault multiplicity m. Then, the m-th subset, denoted by F spatial,m,
where F spatial,m ⊂ P(L), defines all spatial configuration possibilities where
exactly m fault injection locations are affected. That is, F spatial,m includes

68 CHAPTER 4. META FAULT CONFIGURATION MODEL

all possible sets of affected fault injection locations La, where La ∈ P(L) and
|La| = m, i.e. all m-combinations of l ∈ L according to combinatorics. So,

F spatial,m = { La | |La| = m, La ∈ P } , (4.20)

where m ∈ { 1, . . . , NL }. Note that m 6= 0. La can be determined with
the operator La (ϕ) , so La = La (ϕ) , where ϕ ∈ Vu

L . The configuration
possibilities covered by F spatial,m are then referred to as fault with spatial
fault multiplicity m, or short m-location fault. This is a generic description
for both single and multiple faults, which were defined in Definition 4.2.3 and
Definition 4.2.4. This way, the fault-free case (no fault as per Definition 4.2.2)
is excluded. The spatial fault injection space is introduced next.

Spatial Fault Injection Space The union of all F spatial,m , where m > 0,
evaluates the entire spatial fault injection space, which includes only config-
urations where fault locations are actually affected (exclusion of the empty
set).

F spatial = P(L)− ∅ =

NL⋃
m=1

F spatial,m (4.21)

The first subset F spatial,m=1 includes all spatial configuration possibilities
where exactly one fault injection location is affected (single fault), and the
second subset F spatial,m=2 includes all spatial configuration possibilities where
exactly two fault injection locations are affected (2-location fault), and so on.

The spatial fault injection complexity, equals the number of spatial fault
configurations included in F spatial. It is evaluated by the cardinality of
F spatial.

|F spatial| = |P(L)| − 1 (4.22)

There are two possibilities for each fault injection location; These are either
affected or unaffected, and hence, |F spatial| is evaluated by

|F spatial| = 2|L| − 1. (4.23)

Spatial Fault Injection Complexity for m-Location Faults From
Equations 4.21 and 4.22 follows that the sum of all |F spatial,m | evaluates to
the spatial fault injection complexity. The m-th summand, so the cardinality
of the F spatial,m , corresponds to the spatial fault injection complexity of all
m-location faults.

|F spatial| =

∣∣∣∣∣∣
|L|⋃
m=1

F spatial,m

∣∣∣∣∣∣ =

|L|∑
m=1

|F spatial,m | (4.24)

4.4. FAULT INJECTION COMPLEXITY 69

From combinatorics we know, when applying the binomial theorem, the num-
ber of q-elements subsets (q-combinations) of a p-element set is evaluated by
the binomial coefficient

(
p
q

)
. In order to apply the binomial theorem, the

term 2|L| in Equation 4.23 is expressed as power of a binomial in the form
(x+ y)p. Considering that each fault injection location lj has one out of two
possibilities, which are ’affected’ and ’unaffected’, we can assign x = 1 and
y = 1, so

(x+ y)p = 2|L| = (1 + 1)|L|, (4.25)

where p = |L|. By applying the binomial theorem with p = |L| and q = m
we get

|F spatial| = (1 + 1)|L| − 1

=

|L|∑
m=1

(
|L|
m

)
· 1|L|+m · 1m

=

|L|∑
m=1

(
|L|
m

)
.

(4.26)

Note that
(|L|

0

)
= 1 corresponds to the fault-free case, which is already ex-

cluded by evaluating the sum from m = 1 instead of from m = 0. Each
summand, so the binomial coefficient

(|L|
m

)
, corresponds to the spatial fault

injection complexity when considering only faults with a specific spatial fault
multiplicity m. That is, the spatial fault injection complexity of the m-th
subset of F spatial evaluates the spatial fault injection complexity of m-location
faults. So,

|F spatial,m | =
(
|L|
m

)
. (4.27)

At this point I want to emphasize that the spatial fault injection com-
plexity for moderate circuits with for example 1000 gates where each is con-
sidered to be a fault injection location, so m = 1000, yet alone cannot be
handled exhaustively. That can be concluded from the fact that the spa-
tial fault injection complexity is expressed as sum of binomial coefficients in
Equation 4.26. However, it is still possible to select subsets for m = 2 for
moderate circuits and m = 3 for important units of e.g. a processor. Further-
more, Equation 4.26 can be consulted for approximating the complexity for
fault selection strategies based on layout information, where usually groups
of cells are selected in which then multiple faults are configured.

Note that I have chosen to split F spatial in subsets corresponding to a
specific m, so F spatial,m . However, arbitrary subsets that can be expressed by
m can be chosen. For instance, when considering all 2-location and 3-location

70 CHAPTER 4. META FAULT CONFIGURATION MODEL

faults, so F spatial,m=2 ∪F spatial,m=3, the spatial fault injection complexity can
be determined by just adjusting the sum to iterate from m = 2 to 3.

Spatial Fault Injection Complexity for Single Faults The spatial
fault injection complexity for single faults is then evaluated by the first sum-
mand according to Equation 4.26, so

|F spatial,m=1| =
1∑

m=1

(
|L|
m

)
= |L| .

(4.28)

Compared to multiple faults, the complexity of single faults is drastically
reduced, and can also be handled with rather slow fault modeling techniques.
It also constitutes the reason why fault injection campaigns usually start with
single fault injection.

4.4.2 Spatial-Value Fault Injection Complexity

Next, the spatial-value fault injection space is discussed.

m-Location Faults Analogously to the considerations for the spatial con-
figuration space presented in Section 4.4.1, the spatial-value configuration
space F spatial,value can be split into disjoint subsets that are expressed in
terms of the spatial fault multiplicity m. The m-th subset of F spatial,value,
denoted by F spatial,value,m , includes all forcing functions ϕ ∈ Vu

L that map
exactly m = |La (ϕ) | fault injection locations to a value v 6= u, i.e. all con-
figuration possibilities where exactly m fault injection locations are affected.
So,

F spatial,value,m =
{
ϕ
∣∣ |La (ϕ) | = m, ϕ ∈ VuL

}
. (4.29)

Spatial-Value Fault Injection Space The union of all F spatial,value,m ,
where m > 0, constitutes the entire spatial-value fault injection space, which
covers only configurations where at least one fault location is affected. There-
fore, the forcing function ϕu, which leaves all fault injection locations unaf-
fected, has to be excluded. So,

F spatial,value = Vu
L \ ϕu =

NL⋃
m=1

F spatial,value,m . (4.30)

4.4. FAULT INJECTION COMPLEXITY 71

The spatial-value fault injection complexity is evaluated by the cardinality
of the spatial-value fault injection space F spatial,value. It equals the number of
forcing functions defined in the function space Vu

L \ ϕu. So,

|F spatial,value| =
∣∣VuL \ ϕu

∣∣ = |Vu||L| − 1. (4.31)

Spatial-Value Fault Injection Complexity for m-Location Faults
Analogously to the spatial fault injection complexity, the binomial theorem
is applied to determine the spatial-value fault injection complexity of m-
location faults. According to Equations 4.31, the first term of |F spatial,value|
is evaluated by the |L|-th power of |Vu|. Since Vu = u ∪ V , and therefore,
|Vu| = (1 + |V |), this can be expressed as power of a binomial in the form
(x + y)p. Let x = 1, y = |V |, p = |L| and q = m, and by applying the
binomial theorem we get

|Vu||L| = (1 + |V |)|L|

=

|L|∑
m=0

(
|L|
m

)
· 1|L|+m · |V |m.

(4.32)

To get the spatial-value fault injection complexity, the forcing function ϕu

that leaves all fault injection locations unaffected is excluded from Vu
L ac-

cording to Equation 4.31. Therefore, one is subtracted from |Vu||L|, which
corresponds to excluding the case m = 0 from the sum, so

|F spatial,value| = |Vu||L| − 1

=

|L|∑
m=1

(
|L|
m

)
· (|Vu| − 1)m.

(4.33)

The summands of the sum in Equation 4.33 consists of two factors. The
first factor

(|L|
m

)
was already explained with Equation 4.26 and constitutes

the spatial fault injection complexity for m-location faults. The second factor
constitutes the contribution of the value configuration space to the spatial-
value fault injection complexity. Each summand corresponds to the spatial-
value fault injection complexity of the m-th subset of F spatial,value, which is
denoted by |F spatial,value,m | and is evaluated by

|F spatial,value,m | =
(
|L|
m

)
· (|Vu| − 1)m. (4.34)

So, Equation 4.34 evaluates all possibilities to choose m out of |L| fault
injection locations to be affected, and furthermore, it considers all possible

72 CHAPTER 4. META FAULT CONFIGURATION MODEL

value assignments v 6= u for affected locations. For instance, Equation 4.34
can be consulted to evaluate the fault injection complexity of all possible
2-location stuck-at faults, when plugging in m = 2 and |Vu| − 1 = 2.

Note, for the bit-flip fault model the contribution of the value granularity
is eliminated since Vu includes only two elements, namely bit-flip and un-
affected. For the stuck-at fault model, however, this factor is 2m since Vu
includes three elements, namely stuck-at-1, stuck-at-0 and unaffected. At
this point, the contribution of the temporal properties is not yet considered.
However, from this relation it can already be concluded that when modeling
transient faults for the shortest possible duration of one time interval, the
bit-flip fault model is considerably more efficient than the temporary stuck-at
fault model.

Spatial-Value Fault Injection Complexity for Single Faults The
spatial-value fault injection complexity for single faults is evaluated by the
first summand according to Equation 4.33, so

|F spatial,value,m=1| =
1∑

m=1

(
|L|
m

)
· |V |

= |L| · (|Vu| − 1).

(4.35)

Analogously to the discussion of m-location faults, the contribution of the
value granularity is eliminated for bit-flip faults, whereas it is effective if Vu
includes two or more elements, e.g. for stuck-at faults. However, for single
faults it’s contribution is not expressed as a power of a binomial anymore
and therefore the Spatial-Value Fault Injection Complexity increases linearly
with the value granularity. Note, when considering single faults, this allows
to increase the value granularity of, e.g., fault models for analog circuits.

4.4.3 Total Fault Injection Complexity

Next, the number of fault injection times n is used to determine subsets of
the total configuration space that include all fault configurations to configure
n fault injection times during fault experiments.

n-Injection Times The total configuration space
(
Vu

L
)T

, defined in Equa-
tion 4.8, can be split into subsets described by the number of fault injection
times n. Then, the n-th subset, denoted by F total,n, defines all configura-
tion possibilities where exactly n fault injection times are considered, where

n = |T inj (f) | and f ∈
(
Vu

L
)T

. That is, F total,n includes all configuration

4.4. FAULT INJECTION COMPLEXITY 73

possibilities that are n-combinations of T i ∈ T according to combinatorics.
So,

F total,n =
{
f
∣∣∣ |T inj (f) | = n, f ∈

(
Vu

L
)T }

, (4.36)

where n ∈ { 1, . . . , NT }. Configuration possibilities included in F total,n are
then referred to as fault configuration with a number of fault injection times
n, or short fault configurations for n-injection times. Note that n 6= 0. This
way, the fault-free configuration fu (refer to Equation 4.9) is excluded.

Next, the total fault injection space is discussed, which includes all total
configurations that actually represent fault injection.

Total Fault Injection Space The configuration function f ∈
(
Vu

L
)T

maps every time interval T i to an individual, arbitrary forcing function ϕ ∈
Vu

L . Excluding the fault-free configuration fϕu , so the fault configuration
function that maps all time intervals to ϕu as defined earlier in Equation 4.9,
gives us the total fault injection space F total. This is equal to the union of
all n-th subsets F total,n, where n ∈ { 1, . . . , NT }. So,

F total =
(
Vu

L
)T \ fϕu =

|T |⋃
n=1

F total,n. (4.37)

F total includes all configuration possibilities w.r.t. spatial, value and temporal
properties where for at least one time interval a faulty value is mapped to at
least one location. That is, for at least one time interval f(T i) 6= ϕu. So,

∃ T i ∈ T : f(T i) 6= ϕu. (4.38)

The number of fault configuration functions defined in F total evaluates
the total fault injection complexity of a fault model and corresponds to the
number of fault experiments desired to be performed during fault injection
campaigns.

|F total| =
∣∣∣(VuL)T \ fϕu

∣∣∣
=
(
|Vu||L|

)|T |
− 1

(4.39)

Now, Equation 4.39 demonstrates that it is impossible already for very small
circuits to cover the total fault injection space exhaustively. Let |Vu| =
2, which is the case for the bit-flip fault model, |L| = 100, which means
that the considered circuit has 100 fault injection locations and |T | = 100
representing the duration of a fault experiment. To cover all possible fault
configurations for this very small circuit, already |F total| = 1, 995 · 103010

74 CHAPTER 4. META FAULT CONFIGURATION MODEL

distinct fault configurations can be considered for fault injection campaigns,
which motivates using fault selection strategies to select relevant subspaces.

Subsequently, I am going to split the total fault injection complexity with
help of both the spatial fault multiplicity and the number of fault injection
times into practice-oriented fractions relevant for fault selection based on for
example layout information. The goal is to formulate m and n into a single
equation, which allows determining the total fault injection complexity when
considering m-location faults that are injected at n-injection times, which
constitutes the m, n-th subset of F total.

First, I represent F total in a form that depends on the spatial fault multi-
plicity m analogously to previous considerations for F spatial and F spatial,value.
This allows to determine the total fault injection complexity when consider-
ing m-location faults according to Equation 4.20. Then, F total is represented
in a form that depends on the number of fault injection times n. This allows
to determine the total fault injection complexity when considering n-injection
times according to Equation 4.36. Finally, I represent F total in a form that
depends on both parameters m and n. Based on these three equations, three
corresponding equations are derived, allowing to parametrize |F total| either
with a particular m, a particular n or a combination of both.

First, I plug in |F spatial,value| from Equation 4.33 into Equation 4.39 to get
|F total| dependent on the spatial fault multiplicity m. So,

|F total| =
(
|Vu||L|

)|T |
− 1

=
(
|Vu||L| − 1 + 1

)|T |
− 1

= (1 + |F spatial,value|)|T | − 1

=

1 +

|L|∑
m=1

(
|L|
m

)
· (|Vu| − 1)m

|T | − 1.

(4.40)

Then, second, the binomial theorem is applied to Equation 4.39 to get
|F total| dependent on the number of fault injection times n. So,

|F total| = (−1) +

|T |∑
n=0

(
|T |
n

)
· |F spatial,value|n

=

|T |∑
n=1

(
|T |
n

)
·
(
|Vu||L| − 1

)n
.

(4.41)

Finally, I plug in |F spatial,value| from Equation 4.33 into Equation 4.41

4.4. FAULT INJECTION COMPLEXITY 75

to get |F total| dependent on both the spatial fault multiplicity m and the
number of fault injection times n.

|F total| = (−1) +

|T |∑
n=0

(
|T |
n

)
· |F spatial,value|n

=

|T |∑
n=1

(
|T |
n

)
·

 |L|∑
m=1

(
|L|
m

)
· (|Vu| − 1)m

n

.

(4.42)

In Equation 4.40 to Equation 4.42, the total fault injection complexity now
depends on the spatial fault multiplicity m and the number of fault injec-
tion times n. Next, three corresponding equations are derived that allow to
parametrize the considered subset of F total with m or n or both m and n,
respectively. These parametrized equations are discussed and used to deter-
mine the complexity of specific subsets of the fault injection space that are
relevant for following implementations of fault injection campaigns and the
result chapter (Chapter 9).

Since I am going to choose the m-th, n-th and m, n-th subsets of F total,
the sums iterating m and n in Equation 4.40 to 4.42 are collapsed to a single
summand. So, we get

|F total,m | =
(

1 +

(
|L|
m

)
· (|Vu| − 1)m

)|T |
− 1, (4.43)

|F total,n| =
(
|T |
n

)
·
(
|Vu||L| − 1

)n
, (4.44)

and

|F total,m,n| =
(
|T |
n

)
·
((
|L|
m

)
· (|Vu| − 1)m

)n

. (4.45)

Now, |F total| is parametrized with either m or n or with both parameters m
and n. Based on these parametrized equations, the complexity of perform-
ing fault injection campaigns for practice-oriented subsets of F total can be
determined.

Subsequently, I am going to discuss the complexity when considering par-
ticular fault multiplicities (m-location and single faults) and particular num-
ber of fault injection timess (n-injection times and single fault injection time)
with a fixed fault duration of d = 1 as well as configurable fault durations.

Total Fault Injection Complexity for m-Location Faults Evaluating
|F total,m | for a specific m according to Equation 4.43 determines the fault in-
jection complexity when considering all configuration possibilities that map

76 CHAPTER 4. META FAULT CONFIGURATION MODEL

all time intervals to all possible m-location faults. That is, for every possi-
ble time interval there are 1 +

(|L|
m

)
· (|Vu| − 1)m possibilities considered. For

example, evaluating |F total,m | for a particular m = 2 determines the fault
injection complexity of the subset of the total fault injection space that in-
cludes all possible 2-location faults. Note, the left summand 1+ in the outer
parentheses in Equation 4.43 corresponds to the contribution of fault-free
time intervals, i.e. respective time intervals map to ϕu ∈ Vu

L . The right
summand −1 corresponds to excluding the fault-free configuration fu.

Total Fault Injection Complexity for Single Faults The total fault
injection complexity for single faults, denoted by |F total,m=1|, is then evalu-
ated by plugging in m = 1 into Equation 4.43. So,

|F total,m=1| =
(

1 +

(
|L|
1

)
· (|Vu| − 1)1

)|T |
− 1

= (1 + |L| · (|Vu| − 1))|T | − 1.

(4.46)

Total Fault Injection Complexity for n-Injection Times Evaluating
Equation 4.44 for a specific n determines the fault injection complexity for
considering exactly n fault injection times. For example, plugging in n = 2
in Equation 4.44 allows to determine the total fault injection complexity of
modeling all possible second order fault attacks, i.e. two time-displaced fault
injections.

Total Fault Injection Complexity for Single Fault Injection Times
To evaluate the total fault injection complexity for single fault injection times,
denoted by |F total,n=1|, n = 1 is plugged into Equation 4.44. This gives us

|F total,n=1| = |T | ·
(
|Vu||L| − 1

)
. (4.47)

Note that the fault duration interval T d, and therefore, the fault duration
d is not specified and also its variation possibilities are not considered in the
complexity calculations. Variable fault durations for single fault injection
times are discussed later in this section.

Total Fault Injection Complexity for m-Location Faults and n-
Injection Times So far, I discussed the fault injection complexity when
|F total| is parametrized by either m or n. However, when choosing a specific
number of fault injection times n, only the temporal configuration possibili-
ties are constraint, but the fault injection complexity is still determined for

4.4. FAULT INJECTION COMPLEXITY 77

the entire spatial-value configuration space. Further, when choosing a spe-
cific m, a subset of the spatial-value configuration space is considered, but
all possible temporal configurations are still considered for the fault injection
complexity. As a consequence, most fault configurations contributing to the
fault injection complexity are not relevant from a practical-oriented point of
view and, hence, results of corresponding fault injection campaigns would be
too pessimistic. For instance, due to the spot size of a laser, a laser fault
attack may affect only a view cells at once and not all cells of the a circuit.
In order to consider this, |F total| needs to be parametrized with both m and
n according to Equation 4.45. This way, we can determine the fault injection
complexity for the case that n arbitrary fault injection times are chosen at
which m arbitrary locations are affected. This constitutes the most powerful
description and provides a tool to determine the complexity of fault injection
campaigns that mimic complex situations such as second-order laser attacks.

Example 4.4.1 (Second Order Fault Attack). Assume a laser is used to con-
duct a second order fault attack, for which two independent time-displaced
shots are required. Furthermore, matching the spot size onto the layout, one
can approximate how many cells may be affected at most. We now assume
five cells are affected at most. Then, by plugging in m = 5 and n = 2, we
can determine how many possibilities we have to consider for fault injection
campaigns. Considering that a shot may also affect only subsets of five cells,
we could also consider m = 4, m = 3, m = 2 and m = 1 and sum the
respective complexities. Note that in this example it is assumed that both
laser shots would affect the same amount of cells.

It is also possible to consider all possible combinations, where the first
shot may affect a different amount of cells than the second shot. Instead of
parametrizing F total based on a particular m and n, another subset of F total

that can be described by these parameters can be chosen as well. For exam-
ple, a range of fault multiplicities can be considered. Note that considering a
range of multiplicities results in a corresponding sum of binomial coefficients
again. This is especially important to note for the spatial fault multiplicity
m since the corresponding sum is part of a binomial to the power of |T |
(power of n for the parametrized form).

Assume that a laser shot affects two to three cells and the laser shoots at
two distinct times. Now, we chose m in the range 2, . . . , 3 and n = 2, where∣∣F total,m∈{2,3},n

∣∣ denotes the corresponding fault injection space. Then we get

∣∣F total,m∈{2,3},n=2

∣∣ =

(
|T |
2

)
·

(
3∑

m=2

(
|L|
m

)
· (|Vu| − 1)m

)2

. (4.48)

78 CHAPTER 4. META FAULT CONFIGURATION MODEL

Let us further assume that Vu includes two elements, one value representing
the faulty and one value representing the unaffected case (this applies e.g.

for bit-flip faults). Then we get
∣∣F total,m∈{2,3},n=2

∣∣ =
(|T |

2

)
·
(∑3

m=2

(|L|
m

))2

.

Evaluating the sum gives us a binomial of the form (a+ b)2 = a2 + 2ab+ b2,
which means that either both shots affect two locations (a2), both shots affect
three locations (b2) or one shot affects two locations whereas the other shot
affects 3 locations or vise verse (2ab).

Total Fault Injection Complexity for Single Faults and Single Fault
Injection Time The total fault injection complexity for single faults and
single fault injection times, denoted by |F total,m=1,n=1|, is evaluated by plug-
ging in m = 1 and n = 1 into Equation 4.45, resulting in

|F total,m=1,n=1| = |T | · |L| · (|Vu| − 1). (4.49)

Note that the fault duration interval T d and the fault duration d are still
not considered, and therefore, also its variation possibilities are not consid-
ered in the complexity calculations. Configurable fault durations for single
fault injection times are discussed next.

Total Fault Injection Complexity for Single Fault Injection Times
and Varying Fault Durations The fault duration interval T d can last
from the fault injection time tinj up to the very last discrete time tNT

, i.e.
T d ⊆ [tinj, tNT

) and d ≤ (tNT
− tinj). Now, to get the total fault injection

complexity when considering all configuration possibilities for fault durations,(|T |
2

)
valid fault durations need to be considered. According to combinatorics,

this follows from choosing all possible two-combinations of discrete times,
namely tinj and trelease, from all possible times. To consider single fault in-
jection times and all possible configurations defined in the spatial-value fault
injection complexity as well as all possible fault durations for the complexity
calculations, in Equation 4.47 NT = |T | possible fault injection times are
replaced by

(|T |
2

)
valid fault durations. So,

|F total,n=1,∀d| =
(
|T |
2

)
·
(
|Vu||L| − 1

)
, (4.50)

where |F total,n=1,∀d| indicates that all possible fault durations are considered.
The same consideration can be applied to all Equations that consider single
fault injection times. Applying it to, e.g., Equation 4.49, which describes
single faults and single fault injection times, results in |F total,m=1,n=1,∀d|.

|F total,m=1,n=1,∀d| =
(
|T |
2

)
· |L| · (|Vu| − 1) (4.51)

4.5. SUMMARY 79

4.5 Summary

A meta fault configuration model was developed, which constitutes a su-
perset of fault models known from literature. For this purpose, its spatial
configuration space, value configuration space and temporal properties as
well as its granularity were defined independent of specific abstraction levels.
The relation between the spatial and value configuration space have been de-
scribed as forcing function, which maps fault injection locations individually
to values defined in the value configuration space, resulting in a spatial-value
configuration space. Finally, the relation between spatial-value configuration
space and temporal properties was described as fault configuration function,
which maps time intervals to arbitrary forcing functions. This way, a meta
model was created that has the flexibility to be further specified for specific
abstraction levels and fault model types, while it covers any fault config-
uration relevant to mimic physical fault behavior and especially arbitrary
physical fault attacks.

Moreover, commonly used terms such as single and multiple faults, tran-
sient and permanent faults, the spatial and temporal fault multiplicity, fault
injection spaces, the temporal properties fault injection and fault release time
as well as multiple fault injection times and fault durations were formulated
in the context of this model and their practical relevance was discussed.

The fault injection complexity was determined for the spatial, spatial-
value and total fault injection spaces. These configuration spaces have been
split, parametrized by both the spatial fault multiplicity and the number of
fault injection times, into subsets relevant from a practical point of view. This
way, fault injection spaces and the corresponding fault injection complexity
for sophisticated fault injection campaigns that for example mimic second
order fault attacks can be determined. Hence, besides a very flexible meta
fault configuration model, powerful and practice-oriented tools have been
presented.

80 CHAPTER 4. META FAULT CONFIGURATION MODEL

Chapter 5

State-of-the-Art of
FPGA-based Fault Emulation

In this chapter I detail the concepts of FPGA-based fault emulation along
with the related work. The focus lies on creating an overview and reviewing
existing implementations for the different tasks involved in fault emulation. I
also discuss possibilities to implement components of fault emulation environ-
ments either in software or hardware, where I focus on respective advantages
and disadvantages. In the process, I discuss which design decisions I have
made to improve existing work with respect to configurability, performance
and applicability to security verification.

I start with a simplified illustration in Section 5.1 to give an overview.
In Section 5.2, I discuss different fault injection methodologies. Section 5.3
to Section 5.5 detail fault generation, test generation and fault classification
for fault emulation.

After reviewing the existing work in this chapter, in the next Chapter 6 I
present concepts and implementation details of the FPGA-based fault emu-
lation environment that I propose for security verification. Fault injection in
combinational logic is improved by extending fault emulation by a software-
based pre-processor in Chapter 7. Performance optimizations are introduced
in Chapter 8, which close the gap between performance and configurabil-
ity. Furthermore, these enable to configure arbitrary multiple fault injection
times.

5.1 Concept

For FPGA-based fault emulation the Circuit Under Verification (CUV) is
synthesized onto an FPGA. Usually, fault emulators are embedded into a

81

82 CHAPTER 5. FPGA-BASED FAULT EMULATION

reset

fault

selection

fault setfault

generation

testtest

generation

CUV
Ne×

golden

reference result

faulty

response

fault-free

response

arbitrary

abstraction level

fault

classification

HW

HW or SW

applied in HW

Ne× Number of experiments

observation

comparison

Figure 5.1: Concept of FPGA-based fault emulation.

fault emulation environment composed of additional software components.
These control the communication with the fault emulator and take care of
pre- and post-processing steps, such as FPGA synthesis, adding fault injec-
tion capability to the CUV, test and fault generation as well as upload, and
result download. To sensitize the CUV during fault injection campaigns, the
CUV processes input stimuli, which are either a structural test or a functional
test software (depends on the CUV’s architecture). During test execution,
faults are injected into the CUV based on a fault model implementation in
hardware, which is the key task of fault emulation. In the process, the CUV’s
response is observed and compared to a fault-free reference. Based on this
comparison, fault classification is performed, whose result is reviewed by a
verification engineer.

The concept of FPGA-based fault emulation is depicted in Figure 5.1.
Characterizing for fault emulation is that the CUV is implemented in an
FPGA, indicated by the gray colored blocks. Fault injection and test ex-
ecution is also implemented in hardware on the FPGA, and therefore, it
is required that at least one fault configuration as well as one test pattern
is stored and then applied in hardware, indicated by the half-gray colored
blocks in Figure 5.1. However, various tasks can be implemented either
in hardware or software (white colored blocks). These include fault selec-
tion, fault generation, test generation, generation of a fault-free references,
response observation, comparison versus a fault-free reference and fault clas-
sification.

Since the communication interface is the performance limiting factor of

5.2. FAULT INJECTION METHODOLOGIES 83

fault emulation, communication between software and hardware components
needs to be minimized [LGPE05]. The more is implemented in software, the
more data is frequently exchanged between software and hardware compo-
nents. This causes idle times in hardware execution during which the fault
emulation is waiting for new fault configurations. In the worst case, the hard-
ware is waiting for new data in between all consecutive fault experiments.
Hence, it is preferred to integrate as much as possible into hardware to mini-
mize the communication overhead. However, implementing parts in software
provides more flexibility, which might be required for example when con-
sidering layout information for fault generation. In summary, implementing
parts in software is more flexible but slower, whereas corresponding hardware
implementations are faster but less flexible.

The subsequent sections give detailed descriptions for the basic compo-
nents depicted in Figure 5.1 and related tasks of fault emulation. The focus
lies on discussing advantages and drawbacks of software and hardware im-
plementations.

5.2 Fault Injection Methodologies

Fault injection capability is realized by altering the hardware of the CUV,
which can be realized at three different hardware abstraction levels: RTL,
gate level or FPGA configuration bitstream level.

Three corresponding techniques for fault injection are reported in the
literature, based on which fault emulation techniques are roughly divided:

• partial FPGA-reconfiguration (configuration bitstream level)

• mutant- and saboteur-based HDL modification (RT level)

• instrumented circuit technique (gate level)

These are subsequently detailed along with the related work.

5.2.1 Partial FPGA-reconfiguration

Exploiting FPGA-reconfiguration for fault grading was the initial fault em-
ulation approach. It is suitable for fault injection in combinational and se-
quential cells. Cheng et al. [CHD95, CHD99] proposed compile-time FPGA
reconfiguration to model permanent faults based on the stuck-at fault model.
Antoni et al. [ALF00] proposed local (also known as partial or dynamic) real-
time FPGA reconfiguration in order to also enable modeling transient faults.
Basically, this methodology implements a read-modify-write scheme for the

84 CHAPTER 5. FPGA-BASED FAULT EMULATION

frame of the FPGA configuration RAM in which the fault is injected. In case
of transient faults, the hardware execution has to be interrupted in order to
alter the FPGA configuration, which causes a time overhead, and therefore,
results in performance loss.

This methodology is considered to be slow and less flexible compared
to the other two approaches, especially when multiple faults are considered.
Since the other fault injection methodologies better suit my goals with respect
to applicability for security verification and performance, I do not consider
this approach in this thesis.

5.2.2 Mutant-based and Saboteur-based HDL
Modification

Mutants and saboteurs were originated in the RTL fault simulation domains
[GC91, JAR+94]. For fault emulation these techniques are applied by HDL
modifications.

Mutants replace the original component RTL description by a description
that is capable of injecting faults. In contrast, saboteurs are components that
are capable of altering signal behavior and extend an RTL design without
replacing the original description [JAR+94]. Leveugle [Lev00] utilized mu-
tant generation for an FPGA-based emulation environment. Baraza et al.
[BGGG05] present an emulation environment capable of placing saboteurs
and generating mutants. Baraza et al. also propose an automatic saboteur
placement and mutant generation in order to gain a better performance,
which was implemented by e.g. Grinschgl et al. [GKS+11a, GKS+11b] for
saboteurs.

The advantage of mutant- and saboteur-based emulation environments
is enabling early dependability analysis by using well known HDL, resulting
in high flexibility with respect to implementing different fault models. Since
HDL modifications are done pre-synthesis, this approach is only suitable for
fault injection in sequential cells and signals described at RTL. Hence, this
approach does not allow to model arbitrary faults in combinational cells at
gate level, which is necessary for exhaustive fault injection in combinational
logic. Further drawbacks are the required HW-overhead and synthesis time
overhead [GKS+11a]. Due to the high HW-overhead, fault injection capabil-
ity cannot be added to every possible location at once. Therefore, already
multiple synthesis runs would be necessary to provide a full coverage of single
faults. This does not only limit the overall performance drastically, it also
renders the capability to select arbitrary multiple faults impossible. There-
fore, these techniques are unattractive for fault selection strategies based on

5.2. FAULT INJECTION METHODOLOGIES 85

e.g. layout information, for which the selection of arbitrary multiple faults is
mandatory. Since I am aiming for a fast and complete solution for modeling
fault attacks in gate level netlists, I do not consider this approach.

5.2.3 Circuit Instrumentation Technique

Contrary to partial FPGA-reconfiguration and mutant- and saboteur-based
HDL modifications, the instrumented circuit technique only requires a single
time-consuming synthesis run and FPGA-configuration to prepare the CUV
for fault injection. Furthermore, the instrumented circuit technique does not
require HDL or library modifications, is applicable to gate level netlists and
is fast. Therefore, I consider this technique in this thesis.

Circuit instrumentation focuses on adding fault injection capability for
flip flops (FFs) or combinational cells within a gate level description. For this
purpose, FFs or combinational cells are extended by additional logic in order
to support fault injection based on fault models. This is referred to as circuit
instrumentation. At runtime, either a single gate (single fault) or a set of
instrumented gates (multiple fault) is selected to be faulty during a particular
fault experiment. All the other gates keep their fault-free functionality.

Civera et al. [CMR+01, CMR+02] propose a register implemented as
scan-chain to select faulty gates at runtime, the so called fault mask regis-
ter. When the fault injection time is reached, all faults selected in the fault
mask register are enabled for one clock cycle. For each fault experiment the
entire content of the fault mask register is uploaded over the communication
interface. The performance of this implementation depends on the number
of instrumented gates since larger CUVs require more data for updating the
fault mask register.

López-Ongil et al. [LGPE05, LGPE07] present two new techniques: the
state-scan technique and the time-multiplexed technique. These techniques
connect all FFs of the CUV to a scan-chain. The scan-chain is then loaded
with a faulty state of the CUV, representing the fault injection.

Vanhauwaert et al. [VLR06] propose to load the fault mask register in
parallel instead of using a scan chain approach. This reduces the time spent
for preliminary configuration phases of fault experiments. Furthermore, Van-
hauwaert et al. propose to represent the value of the fault mask register in
binary code, instead of using an individual bit for each fault injection loca-
tion in order to save sequential logic. However, a single binary coded fault
mask register only allows to address single faults. Vanhauwaert et al. men-
tion that introducing several binary coded fault mask registers, e.g. two fault
mask registers for two bit faults, would fix this issue.

Janning et al. [JHSS11] propose to set an individual bit within the fault

86 CHAPTER 5. FPGA-BASED FAULT EMULATION

mask register for single fault selection. The location within the fault mask
register is addressed by its corresponding index. Instead of uploading the
entire fault mask register content, only the corresponding index of the fault
injection location needs to be uploaded over the communication interface.
This reduces the data upload on the communication interface for single faults.
Janning et al. update the entire content of the fault mask register for multiple
fault selection.

Earlier in 2011 [NR11], I proposed a more generalized concept that allows
to also address arbitrary multiple locations for multiple fault injection. A
refined and even more generalized approach and its implementation is pre-
sented in Section 6.3. It allows to implement different fault models for fault
injection in sequential as well as combinational logic in a generic way. The
subsequent sections discuss methods related to fault generation, test gener-
ation, response observation and fault classification.

5.3 Fault Generation and Upload

As discussed in Section 3.2, in order to use limited verification times effi-
ciently, fault configurations are generated based on fault selection strategies.
As depicted in Figure 5.1, fault generation can be realized either in software
or hardware.

For fault injection of single or randomly selected multiple faults, it is
possible to generate fault configurations automatically in hardware on the
FPGA. This is also known as autonomous fault emulation, which was intro-
duced by López-Ongil et al. [LGPE05, LGPE07]. However, autonomous fault
emulation does not suit more complex fault injection campaigns, e.g. based
on layout or structural information, which require capability to configure
arbitrary multiple faults.

Fault emulation environments supporting arbitrary multiple fault injec-
tion therefore generate fault lists (also known as fault dictionaries) in software
and upload these onto the fault emulator. Memory (dedicated block-RAM or
external SRAM/DRAM) can be used as buffer for fault configurations to opti-
mize communication between software and hardware components [LGPE07].
Unfortunately, especially when considering multiple faults, memory is likely
to be exceeded by fault configurations and need to be updated frequently,
causing again idle times in hardware. As a result, the communication be-
tween software components and the FPGA is still the performance limiting
factor of fault emulation.

In this work, I address this issue with new performance optimizations. In
Section 8.2 I focus on optimizations that remove the communication bottle-

5.4. TEST GENERATION, UPLOAD AND EXECUTION 87

neck while maintaining the flexibility to configure arbitrary multiple faults,
and hence, close the gap between performance configurability.

5.4 Test Generation, Upload and Execution

The circuit altered for fault injection is sensitized by a test during fault
emulation. As outlined in Section 3.4, a test sensitizes and propagates faults
through a sensitized path, without which faults are not observable at primary
or pseudo primary outputs. In the literature of emulation domains, a test is
often also referred to as testbench [LGPE05] or workload [EMEM14]. Both
structural and functional tests can be used to sensitize the emulated circuit.

In a security context, a test is used as representative of relevant situations,
which is required to make use of to be verified hardware components by
performing, e.g., encryption and decryption.

5.4.1 Structural Test

Structural tests can be generated using automated test pattern generation
(ATPG) tools, available from industry and academia. To chose circuit in-
put representing relevant situations in a security context, e.g., input of an
hardware-implemented cryptographic algorithm [JHSS11], structural tests
can be generated manually or using other strategies. However, for the appli-
cation during security verification, structural tests are only applicable effi-
ciently to module level, i.e. for security (sub-)components that are separated
from complex architectures such as processor-based security designs in which
these are usually integrated. After test generation, either a single test pat-
tern is uploaded previously to performing corresponding fault experiments,
or all tests are uploaded in advance and buffered in hardware.

Alternatively, in order to increase performance, structural tests can be
automatically and autonomously generated on the FPGA. This completely
removes communication overhead for test upload at the cost of acceptable
hardware overhead for test generation. For instance, López-Ongil et al.
[LGPE05] and Raik et al. [RETU05] use a linear feedback shift register
(LFSR) for test generation.

5.4.2 Functional Test

Functional tests are usually used when the CUV executes code from mem-
ory, e.g., processor and microcontroller designs. To sensitize processor-based
security designs, functional tests are usually built following a programming

88 CHAPTER 5. FPGA-BASED FAULT EMULATION

guidance and may additionally implement software-based fault countermea-
sures, hence, resulting in long and complex test sequences. Commercial tool-
support is not available for automated test generation of functional tests
[Reo15], and therefore, functional tests are written manually by a test engi-
neer.

Once a functional test is built, it is loaded into the CUV’s code memory,
from where it is executed during fault experiments. An upload is required
only once in advance because fault injection into the CUV usually does not
corrupt code (read-only, except for architectures that support self-modifying
code).

Important to note is that fault injection may affect the program’s data
flow and instruction sequence, e.g., by executing corrupted instructions or
by executing corrupted jumps, which even may result in executing endless
loops. Deviation of the data flow due to fault injection simply represents
propagation of fault effects, which need to be propagated to observable lo-
cations. Deviation of the instruction sequence due to fault injection may
also be observed this way. However, such fault effects constitute corrupted
test execution. That is, in contrast to a structural test sequence, the test
sequence of a functional test itself depends on fault behavior. This consti-
tutes a serious issue, especially in case that faulty response observation and
following fault classification depend on the timing of test execution. In this
case, emulation results are unreliable, which possibly cause false positives
during fault classification.

5.5 Response Observation and Fault

Classification

As indicated in Figure 5.1, during fault emulation the CUV’s response is
observed in hardware on the FPGA. Following tasks and generation of fault-
free references (golden reference) can be implemented in software as well. In
general, it is preferable to implement fault classification, including genera-
tion of fault-free references, in hardware on the FPGA in order to minimize
data exchange between software and hardware components. However, there
are also approaches reported in literature that realize fault classification in
software, e.g., [JHSS11].

After fault classification, the results need to be evaluated manually by
a designer or verification engineer. Often, a logic simulation is necessary
to track fault behavior to comprehend circuit behavior. This is a very time-
consuming task for which knowledge of the CUV’s architecture is required. It

5.5. RESPONSE OBSERVATION AND FAULT CLASSIFICATION 89

is therefore a necessity to prevent false positives in emulation results, allowing
to use limited verification times efficiently.

Subsequently, approaches for response observation and fault classification
reported in literature are reviewed.

5.5.1 Comparison of Two Circuit Instances

If fault emulation is used as accelerator for classical fault simulations, e.g., for
determining fault coverage of manufacturing tests, fault emulation typically
uses a second fault-free instance of the CUV as fault-free reference. Then,
both fault-free and faulty emulations are executed in parallel. A comparator
is used to observe and compare their responses at top level outputs of both
CUV instances in each clock cycle of a given test. The comparator signalizes
whether the fault is detected or not, which basically realizes a fault classifi-
cation in detected (failure) and undetected (pass), as outlined in Section 3.2.
For instance, Raik et al. [RETU05] and Ellervee et al. [ERTU07] present such
an approach.

Comparing two CUV instances is easy to implement, however, it requires
a lot of hardware resources on the FPGA. As a consequence, the circuit size
for which fault emulation is applicable using this approach is limited because
of limited hardware resources on FPGAs.

Since comparison is performed in a cycle accurate fashion, timing devi-
ation in test execution caused by fault injection are not tolerated. This is
similar to fault simulation, where faults are typically only categorized into
detected and undetected faults for fault grading of manufacturing tests. In a
security context, however, it is of importance to tolerate fault-induced tim-
ing deviation in test execution to some extend. For example, a fault could
trigger an error correction measure that prolongs test execution just slightly
by e.g. one single clock cycle, which constitutes uncritical desired behavior
in the presence of faults. However, the fault would be observed at an output
and is therefore classified as failure when, in fact, the service is actually de-
livered. Such cases need to be considered for response observation and fault
classification in order to prevent that emulation results are bloated with false
positives.

In conclusion, because of the generated hardware overhead and also be-
cause of the lack to tolerate fault-induced timing deviation of fault emulation,
comparison of two CUV instances does not suit fault classification for security
designs.

90 CHAPTER 5. FPGA-BASED FAULT EMULATION

5.5.2 Alternative Approaches

Alternatively to using a second instance of the CUV, a fault-free emulation
and a faulty emulation can be executed time-serially using the same CUV
instance. Such an approach is proposed by e.g Shirazi et al. [SMS13]. While
the hardware overhead is considerably reduced, the emulation is executed
twice for each fault, once fault-free and once faulty. As a consequence, the
performance is reduced by factor two.

Fault-free CUV responses can also be determined and stored as reference
once in advance to executing fault experiments. Then, the stored reference
can be used for fault classification either in the controlling software or on the
FPGA. This approach provides the most advantages when the CUV generates
a single, specific output per fault experiment. For example, this approach is
suitable when output is transferred with a communication interface [NR11]
or when output of a cryptographic algorithm is observed [JHSS11].

Note, approaches that are sensitive to specific output require to introduce
an additional timeout to terminate the fault emulation in case that the CUV
does not respond anymore due to fault injection [NR11, JHSS11, PSC+12]. A
timeout can also be used to determine whether a service, e.g. a safety-critical
service, is performed in time. In a security context, however, a timeout does
not necessarily point to a violated security requirement. For instance, the
CUV may stall completely, and therefore, does not respond anymore. Al-
though availability is violated, a stalled security device does not leak secrets.

5.5.3 Response Observation for Processor Designs

Processor designs usually provide only very limited top-level interfaces. There-
fore, the typical concept of observing CUV responses at top-level is unattrac-
tive for processor designs. When top-level outputs are used for comparison
of faulty and fault-free responses, the test executed by the processor needs to
explicitly write to output ports in order to sensitize a path to these. This rep-
resents a performance bottleneck, especially when top-level ports are bound
to specific protocols, e.g. UART or even more complex ones such as Ethernet.
This motivates the demand for alternative techniques that suit processor de-
signs. Furthermore, it is often required to get detailed information about
faulty behavior in order to analyze possible issues in such complex designs
[PSC+12].

Sauer et al. [ST+11] and Pellegrini et al. [PSC+12] apply their FPGA-
based fault emulator (circuit instrumentation) to microprocessors, namely
OpenSparc T1 core and a MIPS-like processor respectively. Sauer et al. apply
a functional test that stores calculated results in the processor’s memory on

5.6. SUMMARY AND DISCUSSION 91

the FPGA. Since this memory is in the address space of the CUV, undesired
side-effects such as writing the result to a different location or overwriting
results are likely to happen. Hence, dedicated memory should be used to store
emulation results. Pellegrini et al. observe fault effects by using different fault
detectors for e.g. traps, kernel panics and hardware stalls, partially based on
observing the processor’s program counter. This allows to track fault and
circuit behavior and, in turn, allows to find design issues.

In the next Chapter 6 I propose a robust and efficient method for response
observation and fault classification suitable for processor designs. It evaluates
circuit behavior and observes fault effects based on the processor’s program
counter, which is supported by a functional test (software-based self-test)
that propagates faults to internal observation points. This way, advantages
of generating a single reference for fault classification apply, a second CUV
instance is not required and fault-free and faulty responses are not generated
time-serially.

5.6 Summary and Discussion

For the purpose of modeling fault attacks, the circuit instrumentation tech-
nique constitutes the most effective and most efficient technique. The com-
plete circuit can be prepared for arbitrary multiple fault injection by per-
forming a single circuit synthesis run. Software-based fault selection and
generation provide the required flexibility for mimicking fault attacks based
on, e.g., layout information, and hence, suits the purpose of emulating fault
attacks the best. Therefore, the fault emulator, optimized for mimicking
fault attacks, proposed next in Chapter 6 utilizes circuit instrumentation
and software-based fault selection and generation.

In the following, I discuss in which directions I am going to improve exist-
ing work with the goal to emulate arbitrary fault attacks on security designs.
The main focus lies on supporting the required configurability without per-
formance loss compared to fault-free emulation. Moreover, the applicability
is an important factor, which is closely entangled with hardware requirements
because of limited hardware resources on FPGAs.

Applicability In Section 6.6, I present how fault classification can be real-
ized without using a second instance of the CUV, saving hardware resources
on the FPGA and increasing applicability for larger designs. For this pur-
pose, a fault-free golden emulation is performed once in advance to perform-
ing fault experiments. The proposed method improves the approach that
is sensitive to a single output by means of observing internal signals of the

92 CHAPTER 5. FPGA-BASED FAULT EMULATION

CUV during fault experiments. These are used to monitor a manageable
set of design- and test-related events. This allows to tolerate fault-induced
timing deviation during fault emulation and to identify timeouts caused by
hardware stalls caused by fault injection to reduce false positives in emula-
tion results. Fault classification for security designs is realized by introducing
two sets of observation points, one to observe the functional behavior of the
verified circuit and one to observe the effectiveness of fault countermeasures.

As I am going to detail in Chapter 7, there are issues when instrumenting
combinational cells in hardware, e.g. high hardware overhead and issues fix-
ing timing constraints. Therefore, for fault injection in combinational logic I
propose in Chapter 7 to extend fault emulation by a software-based method
in order to avoid the instrumentation of combinational cells. This way, the
applicability of emulation-based fault injection in combinational cells is en-
hanced in terms of hardware requirements and the issues w.r.t. to fixing
timing constraints are eliminated.

In contrast to available alternatives, namely software- and simulation-
based fault modeling methods, once fault configurations are transferred to
the FPGA, the runtime for fault emulation equals the test duration, i.e. the
duration of the workload. This corresponds to a constant complexity and
enables real time test execution. Hence, fault emulation suits long functional
tests, and in fact, benefits from these as I am going to show with experimental
results in Chapter 9, whereas software-based approaches struggle.

Configurability In contrast to approaches that generate fault configura-
tions autonomously in hardware on the FPGA, the proposed fault emulation
environment implements fault selection and fault generation in software. This
enables to configure arbitrary faults, for which all fault properties are con-
figurable at runtime.

Performance of Fault Emulation The performance of fault emulation
depends on the operating clock frequency applied to the synthesized CUV.
Since additional logic for fault injection is inserted into combinational paths,
it might be necessary to reduce the clock frequency to fix setup time vio-
lations. This is usually negligible for fault injection into FFs since just a
few additional cells are inserted once per FF, i.e. once in a critical com-
binational path. In case of instrumenting combinational cells, the impact
on performance is usually less than an order of magnitude. For instance,
a clock divider of five is used in [PSC+12] for a SPARC-V9 architecture.
Hence, this impact can also be neglected in comparison to software-based
alternatives, since fault emulation is three to five orders of magnitude faster

5.6. SUMMARY AND DISCUSSION 93

[EMEM14, EVC+09].
Because of data exchange between software and hardware components,

the runtime for fault emulation develops in the worst case linearly with the
data throughput of the communication interface, as I am going to show in
Chapter 9. Configuring multiple faults generates more data, which is fre-
quently transferred to the FPGA. I am also going to show later that this
causes idle times in hardware that easily exceed many times the net test
duration of the executed workload. Hence, this aspect poses a considerable
performance bottleneck, and therefore, I tackle this issue by proposing ap-
propriate optimization measures in Chapter 8. These allow to reduce the
runtime of fault emulation such that it equals the duration of the sensitizing
test.

94 CHAPTER 5. FPGA-BASED FAULT EMULATION

Chapter 6

Fault Emulation Environment
for Security Verification

In this chapter I am going to present the FPGA-based fault emulation envi-
ronment that I propose for modeling fault attacks during security verification.
I presented a fault emulation environment in [NR11] that I implemented for
my Master’s thesis, which therefore does not contribute to this thesis. In
[NR11] I also published an approach for modeling multiple bit-flip faults in
sequential logic using synchronous fault injection cells, which was not part of
my Master’s thesis and contributes to this thesis. I published a major rework
of these concepts including refinements of basically all aspects involved by
the implemented fault emulation environment in [NHN+14, NHRS15]. The
formal description of the implemented gate level fault model is published in
this thesis for the first time.

The fault emulation environment that I propose for modeling fault attacks
is illustrated in Figure 6.1. It is implemented using the circuit instrumen-
tation technique. This allows arbitrary multiple fault injection in combina-
tional and sequential logic. Furthermore, this fault injection methodology
guarantees high performance and requires only a single synthesis run to pre-
pare the complete circuit for fault injection.

The fault emulation environment consists of a software part executed by
a host computer (depicted on the left of Figure 6.1) and a hardware part
implemented using an FPGA (depicted on the right of Figure 6.1). The
software initiates and controls the fault emulation and realizes fault genera-
tion, upload of fault configurations and test upload. This provides maximum
flexibility for fault selection and fault generation, and therefore, suits so-
phisticated fault selection strategies based on, e.g., layout information. A
communication interface (UART in Figure 6.1) connects the host computer
with an FPGA-board.

95

96 CHAPTER 6. FAULT EMULATION ENVIRONMENT

FPGA-board

fault

configurations

control

software

observation /

classification

CUVUART

results

fault injection

control unit

reset

host computer

0 1 2

N

f_en

f_func
N fault

injection

cells

time & duration

fault model

2

fault mask register

N-3 N-2 N-1

programm

counter

alarm

fault counter-

measures

response

FPGA

test

memory

test

Figure 6.1: The fault emulation environment utilizing a host computer and
an FPGA-board. Note that N corresponds to NL.

Next, in Section 6.1, a gate level fault configuration model is presented,
which is described by means of refining properties of the meta configuration
fault model introduced in Chapter 4. Section 6.2 describes the hardware com-
ponents that implement the gate level fault configuration model and controls
fault injection into the circuit under verification (CUV). Then, in Section 6.3,
I present a completely automated synthesis setup, which instruments a CUV
for fault injection and maps the instrumented CUV as well as the control-
ling hardware components onto an FPGA. After this, in Section 6.4, I discuss
how fault injection campaigns are realized using the presented fault emulation
environment. In Section 6.5, I present a new efficient method for response
observation, allowing to interpret emulation results for security designs in a
robust and efficient way, which constitutes the base for fault classification of
security designs, which I present in Section 6.6.

6.1 Fault Configuration Model at Gate Level

The fault emulation environment can be applied to synchronous sequential
circuits, which can be represented as finite state machine. I therefore give a
brief description of finite state machines, which is then used as base to apply
the fault configuration model presented in Chapter 4 at gate level. The re-

6.1. FAULT CONFIGURATION MODEL AT GATE LEVEL 97

sulting gate level fault configuration model is implemented for fault injection
in sequential and combinational logic using FPGA-based fault emulation,
presented next in Section 6.2. Chapter 7 implements the gate level fault
configuration model for combinational logic using a software-based method,
which is then combined with FPGA-based fault emulation to accelerate se-
quential fault propagation.

6.1.1 Finite State Machine

The following description is mainly inline with [KKJ10]. Finite state ma-
chines (FSM) describe a finite number of internal states and state transitions
to model the input-output behavior of software and digital circuits. The FSM
is defined as tuple M = (I, O, S, s0, δ, λ), which includes an input alphabet
I, an output alphabet O representing the external state, a set of internal
states S, a transition (next-state) function δ and an output function λ. The
FSM starts from an initial state s0 ∈ S in which an initial input is applied.
At any discrete instance of time t, the FSM is in a defined current state.
The transition function δ : S × I → S determines the state transition to the
next state dependent on the current state and the current input. The output
function λ determines the output of the FSM either dependent on only the
current state (Moore λ : S → O) or dependent on both the current state
and the current input (Mealy λ : S × I → O). The FSM generates a finite
next-state sequence and a finite output sequence in response to a finite input
sequence.

A typical hardware implementation of an FSM is depicted in Figure 6.2,
which is composed of sequential cells (depicted as positive edge-triggered
DFFs) representing the state s[t] of the circuit and combinational logic cells
(depicted as comb), realizing the state transition function δ and output func-
tion λ. Combinational and sequential cells are connected with logic lines in
a netlist, which transport cell’s logical output from one cell to other cell’s
inputs. In each state s[t], the combinational logic generates the respective
next-state s[t + 1] which is latched by sequential cells at the discrete time
t + 1. Discrete times correspond to clock edges of the circuit’s clock signal.
The circuit remains in a state until the next sensitive clock edge arrives at
sequential cells. That is, the state is active for the entire clock cycle if either
positive or negative edge sensitive sequential cells are used. If both types of
sequential cells are combined, then the state is active for half a clock cycle.
Note, in the remainder of this work it is assumed that one type of sequential
cells is used exclusively. Input patterns x are binary representatives of the
input alphabet I, which are applied at primary inputs (PI). Analogously, in-
put patterns of the combinational circuit part, denoted by xC [t], are applied

98 CHAPTER 6. FAULT EMULATION ENVIRONMENT

comb

x[ti] y[ti]

DFF

xC[ti]

s[ti+1]

s[ti]
(d,l)

l1

l0

lj

Figure 6.2: FSM, composed of DFFs and combinational logic (comb). Logic
lines L = { l0, . . . , lj−1 } that are connected to combinational cell’s outputs
are indicated. l1 is exemplary connected to data inputs of DFFs.

at pseudo primary inputs (PPI). The outputs y are binary representatives of
the output alphabet O, which are driven at primary outputs (PO).

6.1.2 Fault Configuration Model at Gate Level

Subsequently, I refine properties of the meta fault configuration model pre-
sented in Chapter 4 for gate level. This way, I derive the fault configuration
model that I am going to implement at gate level in this chapter. This
fault configuration model covers single and multiple permanent and tran-
sient faults in combinational and sequential logic (SEU, MEU, SET, MET).
For transient faults, a cycle accurate fault model similar to the one for single
transient faults presented in [PHRB11] is used. That is, fault injections as
well as releasing faults are aligned with the sensitive clock edge and only log-
ical masking is considered (refer to Section 3.5). In contrast to [PHRB11],
stuck-at, set/reset and bit-flip fault model types and multiple faults are con-
sidered, for which a single fault injection time (number of fault injection times
n = 1) and the fault duration are configurable. Note that this allows to model
physical fault attacks that inject faults at a single point in time. Modeling
more advanced fault attacks that exploit multiple fault injection times, such
as second order attacks using time-displaced laser shots, are enabled with an
optimization that I am going to propose in Section 8.2.2. Although, the im-

6.1. FAULT CONFIGURATION MODEL AT GATE LEVEL 99

plemented fault configuration model is implemented at gate level, note that
fault injection in flip flops also suits fault injection at RT level.

First, I define the spatial properties of the implemented fault model by
means of defining fault injection locations for combinational and sequential
logic. Next, the value configuration space and the temporal properties of
the fault model are specified. After this, I join the specified properties by
defining appropriate forcing functions and configuration functions allowing
to configure bit-flip, stuck-at and set/reset faults, where also the respective
subsets for single faults and permanent faults are discussed.

Refining Spatial Properties Cell’s input and output pins and logic lines,
i.e. nets connecting pins, constitute adequate fault injection locations at gate
level. Note that a fault modeled for a cell’s output pin is meant to model a
fault in the output circuitry of a cell and affects the entire connected net of
logic lines as well as the input pins connected to it. Hence, a fault modeled for
an output pin is equivalent to a fault modeled for the connected net of logic
lines and it is equivalent to a multiple fault modeled for all connected input
pins. In contrast, a fault modeled for a cell’s input pin is meant to model a
fault in the input circuitry of a cell without coupling the fault into the con-
nected net. That is, faults modeled for input pins do not affect the connected
net of logic lines. In case that a fault modeled for an input pin is propagated
through the respective cell, there exists an equivalent fault for the output
pins of this cell. As a consequence, it would be sufficient to model faults for
output pins only. For combinational logic I therefore decided to model faults
for output pins, however, for sequential logic I model faults for input pins.
Modeling faults at inputs of sequential cells has the advantage that faults at
the bound from combinational to sequential logic can be described, which
especially helps to determine fault equivalences of faults in combinational
and sequential logic. Determining fault equivalence constitutes the base for
extending fault emulation by a software-based pre-processing for enhancing
fault injection in combinational logic, which is further detailed in Chapter 7.
If outputs of sequential cells had been chosen as fault injection locations,
then the time delay of sequential cells would have been required to be con-
sidered when mapping faults from combinational logic to equivalent faults in
sequential logic. Strictly speaking, this would already correspond to model-
ing the circuit behavior, which I keep separated from the fault configuration
model. Based on these considerations, the Definition 4.1.3 for fault injection
locations is refined for gate level as follows:

Fault injection locations for combinational logic, denoted by lj ∈ LC, are

100 CHAPTER 6. FAULT EMULATION ENVIRONMENT

now specified as the set of output pins of computational cells, so

LC = { lj | lj is an output pin of a combinational cell } , (6.1)

where LC is a subset of the set of all fault injection locations L, so LC ⊆ L.
This is, for combinational logic, faults are injected at output pins, affecting
the connected net of logic lines.

The set of fault injection locations for sequential logic, denoted by lj ∈
LFF, is defined as the set of input pins of sequential cells. So,

LFF = { lj | lj is a data input pin of FFs } , (6.2)

where LFF ⊆ L.
The union of both sets, LC and LFF, is the set of all fault injection

locations L, so LC ∪ LFF = L.

Refining Temporal Properties With respect to the state machine de-
picted in Figure 6.2, clock cycles correspond to the time interval for which a
circuit remains in a state. Based on this consideration, the Definition 4.1.1
for time intervals and related temporal properties are further specified for
gate level as follows: The shortest time interval T i ∈ T for which fault injec-
tion can be performed is chosen to be one clock cycle. Then, it is sufficient
to specify T i as subset of N0 (instead of R0), so T i ⊂ N0, where T i = [ti, ti+1)
and ti, ti+1 ∈ N0. It is sufficient to consider only clock cycles in which the
circuit under consideration is sensitized by a test. At the sensitive edge of a
clock cycle the circuit can transition into an other state, so s[ti] → s[ti+1].
Therefore, the set of time intervals T is now refined respectively. So

T = { T i | [ti, ti+1) ⊂ N0 and T i is a clock cycle } , (6.3)

where ti is the discrete time when state transitions s[ti]→ s[ti+1] occur.
Since ti and ti+1 are discrete consecutive times, where ti, ti+1 ∈ N0, the

discrete time ti is the only element in the time interval T i = [ti, ti+1), so
[ti, ti+1) = {ti}. Hence, the fault injection time tinj and the fault release
time trelease can be clearly used as a synonym for their respective intervals in
which they are included. Note that this is similar to using a time t instead
of a time interval when describing a state s[t] of a state machine (see also
Section 6.1.1).

According to Definition 4.3.3, the fault duration d defines the number of
consecutive time intervals, i.e. clock cycles which map to the same forcing
function ϕ 6= ϕu. This is, for the fault duration d the same fault injection
locations are affected, and all lj ∈ La map to an individual value v 6= u. The
fault duration is at least one cycle (d ≥ 1).

6.1. FAULT CONFIGURATION MODEL AT GATE LEVEL 101

Specifying the Value Configuration Space The implemented fault
model at gate level covers a value configuration space that allows to configure
the fault models stuck-at-0, stuck-at-1, reset, set and bit-flip. Therefore, the
Definition 4.1.7 for the value configuration space is refined for gate level as
follows:

Vu = { 0, 1, b, h, u } , (6.4)

where v ∈ Vu and

• v = 0 : force logic level zero, used for stuck-at-0 and reset faults,

• v = 1 : force logic level one, used for stuck-at-1 and set faults,

• v = b : force inverted logic level of fault-free fault injection location lj,
used for bit-flip faults,

• v = h : hold logic level of fault injection location lj of previous time
interval T i−1, used for fault duration

• v = u : unaffected (fault-free) according to Definition 4.1.10.

If lj maps to v = h, then lj is forced the logic level of lj that was driven
in the previous time interval T i−1, where T i−1 = [ti−1, ti) and T i−1 ∈ T .
This allows to configure the sequence of inverting the logic level of a fault
injection location lj (bit-flip with v = b) for one clock cycle followed by
holding this initially forced logic level (hold with v = h) for additional d− 1
clock cycles as it would be a temporary stuck-at (set/reset) fault. Such a
configuration is necessary for bit-flip faults when considering fault durations
d > 1. Without the ability to hold the same faulty logic level for d− 1 clock
cycles the resulting faulty logic level would toggle dependent on the original
fault-free logic level, which does not reflect actual physical fault behavior in
a realistic way.

6.1.3 Multiple Transient and Multiple Permanent
Faults

Subsequently, the family of fault configuration functions that allows to con-
figure stuck-at, set/reset and bit-flip faults is specified, where single fault
injection times and configurable fault durations are considered. Note, ac-
cording to the fault configuration model, permanent faults just constitute
the special case where tinj = t0 and trelease = tNT

. Therefore, the following
definitions include both permanent and transient faults.

The relevant subsets of the value configuration space Vu = { 0, 1, b, h, u }
for stuck-at and bit-flip faults when considering single fault injection times

102 CHAPTER 6. FAULT EMULATION ENVIRONMENT

and configurable fault durations are denoted by VSA and VBF respectively,
where

VSA = { 0, 1, u } , v ∈ VSA

and

VBF = { b, u } , v ∈ VBF.

(6.5)

In order to hold the forced values, required to realize fault durations, the
subset VH is defined, where

VH = { h, u } , v ∈ VH. (6.6)

Note, in order to model unaffected fault injection locations, all value config-
uration spaces include the unaffected value u.

These specific value configuration spaces allow to define families of forcing
functions, i.e. subspaces of the spatial-value configuration space Vu

L , dedi-
cated to the purpose of either injecting stuck-at faults, injecting bit-flip faults
or holding the forced value, denoted by ΦSA, ΦBF and ΦH, respectively, where

ΦSA =
{
ϕ
∣∣∣ ϕ ∈ (VSA)L

}
, ϕSA ∈ ΦSA,

ΦBF =
{
ϕ
∣∣∣ ϕ ∈ (VBF)L

}
, ϕBF ∈ ΦBF,

ΦH =
{
ϕ
∣∣∣ ϕ ∈ (VH)L

}
, ϕH ∈ ΦH,

(6.7)

where ϕ ∈ VuL and (VSA)L, (VBF)L, (VH)L ⊂ Vu
L .

Finally, analogously to the fault configuration function for single fault
injection times (Definition 4.3.9), these forcing functions are used to define a
family of fault configuration functions for stuck-at faults, denoted by fSA, and
bit-flip faults, denoted by fBF, where SA = (ϕ′SA, T d) and BF = (ϕ′BF, T d)
and T d = [tinj, trelease) and T d ⊆ T and tinj, trelease ∈ N0 and tinj < trelease.
A single fault injection time tinj and fault durations d = trelease − tinj are
configurable.

fSA(T i) =


ϕ′SA for T i = T inj

ϕ′H for T i ∈ (T d \ T inj)
ϕu otherwise

and

La (ϕ′SA) = La (ϕ′H)

(6.8)

fBF(T i) =


ϕ′BF for T i = T inj

ϕ′H for T i ∈ (T d \ T inj)
ϕu otherwise

and

La (ϕ′BF) = La (ϕ′H) ,

(6.9)

6.1. FAULT CONFIGURATION MODEL AT GATE LEVEL 103

where fSA, fBF ∈
(
Vu

L
)T

and T i ∈ T and T i = [ti, ti+1) and ti ∈ N0. These
fault configuration functions define a single injection interval T inj = [ti, ti+1),
where ti = tinj, that maps to a particular forcing function ϕ′SA for stuck-at
faults and to a particular forcing function ϕ′BF for bit-flip faults. In case
of stuck-at fault injection, affected fault injection locations lj ∈ La map
individually to either v = 0 or v = 1, which allows to combine stuck-at-0 and
stuck-at-1 faults when configuring multiple faults. In case of bit-flip fault
injection, affected fault injection locations lj ∈ La map to v = b. Note that
all lj 6∈ La map to v = u, so these are unaffected.

Since a single fault injection time is described, the time intervals T d \
T inj = [ti+1, trelease) map to the respective ϕ′H. Note that for stuck-at faults
La (ϕ′SA) = La (ϕ′H) and for bit-flip faults La (ϕ′BF) = La (ϕ′H). This describes
that after mapping fault injection locations lj ∈ La to individual values v 6= u
fault injection is being held for the same fault injection locations.

All other time intervals map to the fault-free forcing function ϕu, so in all
other time intervals all fault injection locations map to the fault-free value
v = u. This way, a configuration sequence is defined which either results in
a stuck-at or a bit-flip fault with a configurable fault duration. Although
the ability to hold the same value is only necessary for bit-flip faults, it
is defined this way for both stuck-at and bit-flip faults in order to allow a
generic implementation in hardware.

If the fault duration is less than tNT
− t0, so d < tNT

− t0, then a transient
fault is configured, otherwise a permanent fault is configured. Temporary
stuck-at-0 and stuck-at-1 faults correspond to reset and set faults, respec-
tively. The spatial fault multiplicity m determines whether a single or mul-
tiple fault is configured, according to the discussion in Section 4.2.1. Single
faults and permanent faults are further discussed subsequently.

In the remainder of this work the short description of the fault configu-
ration functions is used, i.e. the notation for a particular parametrized fault
according to Definition 4.3.8. For example, a particular bit-flip fault is de-
noted by BF1, where BF1 = (ϕ′BF, T d), T d = [tinj, trelease) and ϕ′BF ∈ ΦBF is a
particular forcing function for bit-flip faults.

6.1.4 Single Transient and Single Permanent Faults

According to the discussion in Sections 4.2.1 and 4.4.1, single faults describe
the m-th subset of F spatial where m = 1. With respect to the presented
gate level fault configuration model, a single stuck-at fault considering single
fault injection times and configurable fault durations is defined according to
Equation 6.8 when

|La (ϕSA)| = |La (ϕH)| = 1. (6.10)

104 CHAPTER 6. FAULT EMULATION ENVIRONMENT

A single bit-flip fault considering single fault injection times and configurable
fault durations is defined according to Equation 6.9 when

|La (ϕBF)| = |La (ϕH)| = 1. (6.11)

If the fault duration is less than tNT
−t0, so d < tNT

−t0, then a single transient
fault is configured, otherwise a single permanent fault is configured. Single
temporary stuck-at-0 and stuck-at-1 faults correspond to single reset and set
faults, respectively.

6.2 Hardware Implementation

As depicted earlier in Figure 6.1, the Circuit Under Verification (CUV), e.g.
a security controller, a fault injection control unit, an observation / classifi-
cation unit, a UART interface and a test memory are loaded into an FPGA
(depicted as a dashed rectangle). Faults, configured by the fault injection
control unit according to fault configurations received over the UART inter-
face, can be injected at fault injection locations, which are either inputs of
FFs or combinational cells’ outputs located in the CUV. The UART is also
used to transmit the test to be executed during fault experiments into the
test memory.

The observation / classification unit is used to monitor the response of
the CUV in presence of faults. It also generates the fault-free reference,
which is used for comparison versus faulty responses to allow fault classifi-
cation. Contrarily to the conventional approaches that uses two instances of
the CUV, the CUV is instantiated only once to reduce hardware overhead.
The fault-free reference is generated by performing a single fault-free emu-
lation (golden run) in advance, and its result is used for all following fault
experiments.

Response observation and fault classification are further outlined in Sec-
tions 6.5 and 6.6. In the remainder of this section the hardware components
of the fault emulation environment that implement the gate level fault config-
uration model, namely the fault injection control unit and fault injection cells
for combinational and sequential cells implementing fault injection locations,
are presented.

6.2.1 Fault Injection Control Unit

The fault injection control unit makes use of a fault mask register in which
each bit determines whether a fault is injected at an associated fault injection
location lj ∈ L. Bits of the fault mask register are addressed by their index

6.2. HARDWARE IMPLEMENTATION 105

Q

Q
SET

CLR

S

R

D CD

fault injection cell - FF
rst

clk

data_i

f_func

0

1

f_en

00

01

11

10

0

1

data_o

2

(a) instrumented flip flop

fault injection cell - AND

a

b

f_en

y
0

1

Q

Q
SET

CLR

S

R

&

f_func (open)
2

(b) instrumented AND gate

Figure 6.3: Fault injection cells replace original FFs and combinational cells
in the CUV. (a) Fault injection cell for sequential cells. (b) Fault injection
cell for combinational cells with an example of a two-input AND gate.

j ∈ {0, . . . , NL − 1}, are sorted in ascending order and can be set separately
for multiple fault selection. The number of its bits NL = |L| corresponds to
the spatial granularity of the implemented fault model, which is consistent
with the discussion before.

In case that a bit in the fault mask register is set to logical ’0’, fault
injection is disabled at respective fault injection locations and the fault mask
register implements the assignment lj 7−→ u, where u ∈ Vu according to
Equation 6.4. In the other case that a bit is set to logical ’1’, a value as-
signment lj 7−→ v is selected and v 6= u, where v ∈ Vu \ u. The actually
forced value is then determined by the fault model type according to the
implementation of fault injection cells, as explained in the next section.

Incremental selection of multiple fault injection locations in the fault mask
register, i.e. setting multiple of its bits to logical ’1’, results in a respective
multiple fault.

6.2.2 Fault Injection Cells

The CUV’s fault injection locations include FFs or combinational cells, which
are replaced by fault injection cells during circuit instrumentation in order to
provide fault injection capability. This replacement is done during synthesis,
which is detailed in Section 6.3. Basically, fault injection cells constitute
the hardware implementation of the fault model’s value configuration space

106 CHAPTER 6. FAULT EMULATION ENVIRONMENT

and temporal activation of fault injection realizes the temporal properties
of the implemented fault model. A fault injection cell for FFs is depicted
in Figure 6.3a and one fault injection cell for combinational cells with an
example of a two-input AND gate is depicted in Figure 6.3b.

Fault injection cells for FFs can be configured to either represent a bit-
flip, stuck-at-0 or stuck-at-1 fault. The fault duration and fault injection
time can be configured as well. This allows to emulate bit-flip faults which
hold the initial forced value for multiple clock cycles. Note that bit-flip
faults always invert the value of a fault injection location, i.e. bit-flip faults
always cause errors, whereas stuck-at faults do not manifest as error without
sensitization. Furthermore, temporary stuck-at faults, also known as set
and reset faults, can be configured. This is for example useful to mimic
fault effects at asynchronous pins and to mimic physical fault effects in a less
pessimistic fashion, compared to bit-flip faults. A configurable fault duration
allows to model e.g. long duration laser-induced faults at gate level or RTL,
which were recently investigated at transistor level [LDCDN+15].

Fault Injection in FFs The signal f en of each fault injection cell is asso-
ciated with an individual bit of the fault mask register (sorted in ascending
order). If the corresponding bit in the fault mask register is set to logical
’1’ and the configured fault injection time tinj ∈ Tinj is reached, then f en is
activated for a duration d, and therefore, selects a faulty behavior of the asso-
ciated fault injection cell for the duration d. This is realized by an additional
AND gate per fault injection cell, as depicted in Figure 6.1.

As long as f en = ’1’, the control signals f func select one of four possible
fault model types, represented by the value assignment lj 7−→ v, where v ∈
Vu \ u = { 0, 1, b, h } . These value assignments select the fault model types
stuck-at-0, stuck-at-1, flip and hold, respectively.

In case of a configured d > 1, the fault injection control unit configures
a sequence of assigning a v ∈ {0, 1, b} for one clock cycle and assigning
v = h for the remaining duration of d − 1 clock cycles. Holding the value
assignment is implemented by the back coupling from the Q-pin to the D-pin
of the FF depicted in Figure 6.3a. This is necessary for bit-flip faults in order
to guarantee that the forced value is flipped only once. Otherwise it would
flip whenever the data input changes its value.

The just discussed configuration possibilities together with fault-free con-
figuration, which is realized by the fault injection control unit, implement the
fault configuration functions for stuck-at faults fSA and bit-flip faults fBF,
where a single fault injection time and variable fault durations are config-
urable, as defined in Equations 6.8 and 6.9, respectively.

6.2. HARDWARE IMPLEMENTATION 107

In Figure 6.1, the width of f func is depicted as a bus of 2 lines. These are
controlled by two FFs, which are shared for all fault injection cells. Note that
this setup does not allow to configure individual fault model types for each
fault injection location, which is required for combinations of stuck-at-0 and
stuck-at-1 faults when configuring multiple stuck-at faults. In order to allow
combinations of stuck-at-0 and stuck-at-1 faults, a second setup is supported
that enables the fault injection control unit to individually configure the
function of each fault injection cell. For this purpose, a bus of 2 · NL lines
is controlled by two individual FFs per fault injection cell, which completes
the implementation of the forcing function ϕSA.

Fault Injection in Combinational Cells The applicability of FPGA-
based fault injection in combinational cells is limited, mainly due to limited
hardware resources on FPGAs. This aspect is discussed in detail in the next
Chapter 7, where I tackle this issue with a methodology that maps faults
from combinational logic to equivalent faults in sequential logic, utilizing a
software-based pre-processing. However, the conventional emulation-based
approach similar to the one presented in [PHRB11] that I expected to gener-
ate the least hardware overhead is outlined briefly. This setup is used later to
benchmark the method proposed in Chapter 7 for enhancing fault injection
in combinational logic.

As depicted in Figure 6.3b, fault injection cells for combinational cells
are kept very simple. This is necessary to reduce hardware overhead and
to minimize the additional logic for circuit instrumentation inserted in com-
binational paths. Consequently, this implementation is only able to inject
bit-flip faults, and hence, the implemented value configuration space for com-
binational cells, denoted by VC, is limited to VC ⊂ Vu, where VC = { b, u } .
Furthermore, since back coupling is not implemented, which would imple-
ment the hold functionality, the fault release time is fixed to trelease = tinj +1.
So, a fault duration of exactly one clock cycle (d = 1) is realized, which is
controlled by assigning f en to ’1’ for one clock cycle.

In the remainder of this chapter, fault injection in FFs is considered
solely. Fault injection in combinational logic is further discussed in the next
Chapter 7.

6.2.3 Concrete Fault Configuration Possibilities

In this section, I briefly outline concrete configuration examples covering all
configuration possibilities of the implemented gate level fault configuration
model. These cover the fault configuration functions ϕSA and ϕBF defined in
Section 6.1.

108 CHAPTER 6. FAULT EMULATION ENVIRONMENT

Example 6.2.1 (Bit-flip fault, d = 1). A standard bit-flip fault is realized
by inverting the data input of the FF (f func = ’11’) while fault injection is
enabled (f en = ’1’) for exactly one clock cycle when the fault injection time
tinj ∈ Tinj is reached.

Example 6.2.2 (Bit-flip-hold fault, d ≤ NT). A bit-flip-hold fault for the
duration of d ≤ NT clock cycles is realized by enabling fault injection (f en
= ’1’) for the duration d when the fault injection time tinj ∈ Tinj is reached.
During this, the configuration sequence of inverting the data input of the FF
(f func = ’11’) for the first clock cycle followed by holding the faulty value
(f func = ’10’) for a configurable number of x = d−1 clock cycles is assigned.

Example 6.2.3 (Reset/set fault, d < NT). Analogously to the example
for bit-flip-hold faults, it is also possible to configure a reset or set fault for
a duration of d < NT clock cycles. It is realized by enabling fault injection
(f en = ’1’) for the duration d when the fault injection time tinj ∈ Tinj is
reached. During this, the configuration sequence of forcing the data input
of the FF for one clock cycle to ’0’ (f func = ’00’) for reset faults or to ’1’
(f func = ’01’) for set faults, followed by holding (f func = ’10’) the faulty
value for a configurable number of x = d− 1 clock cycles is assigned.

Example 6.2.4 (Stuck-at-0/1 fault, d = NT). Permanent stuck-at-0 and
stuck-at-1 faults are realized analogously to reset and set faults, however,
with tinj = t0 and trelease = tNT

, and therefore, d = NT . Hence, stuck-at-0/1
faults are realized by the sequence of forcing the data input to ’0’ (f func =
’00’) or to ’1’ (f func = ’01’) during the very first cycle t0 ∈ Tinj, respectively,
followed by holding (f func = ’10’) the faulty value until the emulation is
terminated trelease = tNT

. Additionally, the fault injection is enabled (f en =
’1’) for the entire emulation (d = NT).

6.3 Circuit Instrumentation

The presented fault emulation environment uses commercial synthesis tools
to implement circuit instrumentation. During this process, combinational or
sequential cells (fault injection locations) are replaced by a representation
that adds fault injection capability, the fault injection cells presented earlier
in Section 6.2.2.

There would be two alternative approaches, namely direct modifications
in gate level netlists, e.g., presented in [PSC+12], or library modifications,
e.g., presented in [JHSS11]. However, the former approach implements tasks
that are already integrated in synthesis tools, e.g. design parsing and re-
moving and creating cells. Using synthesis tools instead, powerful build-in

6.3. CIRCUIT INSTRUMENTATION 109

synthesis commands are already available, which can be called from a syn-
thesis script to automate circuit instrumentation. The latter approach uses
a modified library, in which all FFs are replaced by cells that add fault in-
jection capability. As a consequence, the library needs to be maintained
whenever it is updated because of technology changes. Furthermore, using a
modified library, all cells in a CUV are instrumented by means of mapping
the design to the modified library. However, often it is necessary to exclude
specific cells or entire design hierarchies from circuit instrumentation. This is
not only useful to restrict fault injection to specific security relevant compo-
nents, e.g. hardware implemented cryptographic algorithms. Often response
observation of the CUV depends on debug or monitoring logic. In this case
fault injection has to be prevented in these circuit parts since it may falsify
emulation results.

The method I am going to present is completely based on build-in com-
mands of synthesis tools, does not require direct netlist or library modifica-
tions and provides good flexibility by means of controlling circuit instrumen-
tation.

Selection of Fault Injection Locations First, the CUV’s design files are
analyzed and elaborated using a synthesis tool, e.g. Synopsys Design Com-
piler. In a second step, either combinational or sequential cells are selected
for circuit instrumentation. This step, excludes specific cells or entire de-
sign hierarchies from circuit instrumentation. This is automated by means
of executing a configuration script.

Circuit Instrumentation In the next step, selected fault injection loca-
tions are replaced by a black box of the appropriate fault injection cell. For
instance, any selected flip flop is replaced by a black box of the fault injection
cell depicted in Figure 6.3a. For this purpose, build-in synthesis commands
provided by a synthesis tool are used to remove cells, instantiate fault in-
jection cells and reconnect these in the design. Moreover, the controlling
signals f en and f func of fault injection cells are wired through hierarchical
designs to ports that are created at the top level of the instrumented CUV.
It is important to note that these ports constitute the interface to the fault
injection control unit. The output of circuit instrumentation is a netlist in
which fault injection locations are still instantiated as black box.

FPGA Synthesis After circuit instrumentation, the instrumented netlist
is passed together with the implementation of fault injection cells to a FPGA
vendor specific synthesis tool, e.g., Quartus II for Altera FPGAs. The ad-

110 CHAPTER 6. FAULT EMULATION ENVIRONMENT

vantage of this methodology is that different fault model implementations
can coexist. In this way, only the vendor specific FPGA synthesis has to be
re-invoked in order to change the implementation of fault injection cells. Ad-
ditionally, the design files of the fault emulator, including the fault injection
control unit, the observation / classification unit, the communication inter-
face (UART) as well as the test memory, are fed to the FPGA synthesis tool
to complete circuit instrumentation and to connect the respective hardware
components. Then, the FPGA synthesis tool synthesizes everything together
and configures the FPGA with the resulting bit-stream file.

6.4 Fault Injection Campaign

The emulation-based fault injection campaign used for security verification
is implemented as a flow of consecutive executed fault emulations, referred
to as fault emulation flow in the following. Additional preparation steps,
namely fault generation, test upload and generating a fault-free reference by
means of performing a golden run, complete the implementation of the fault
injection concept.

A fault emulation flow iterates all fault configurations received over the
communication interface, which represent Ne fault experiments executed
in a consecutive manner. Since single fault injection times with variable
fault durations are configurable, Ne ≤ |F total,n=1,∀d| different fault config-

urations can be iterated, where |F total,n=1,∀d| =
(|T |

2

)
· |F spatial,value| accord-

ing to Equation 4.50. Furthermore, |F spatial,value| = |Vu \ h||L| − 1, where
Vu \h = {0, 1, b, u}. The holding mechanism is realized as a sequence of forc-
ing a logic level and then holding this logic level. Therefore, it is necessary
to remove h from Vu for the complexity calculations. In total,

(|T |
2

)
valid

fault durations can be considered, which follows from choosing all possible
two-combinations of the set of discrete times T to represent all combinations
of the fault injection time tinj and the fault release time trelease. The contribu-
tion of h to the spatial-value fault injection complexity is therefore covered
by the binomial coefficient

(|T |
2

)
instead. The spatial-value fault injection

space F spatial,value can be replaced by any of its subspaces.

Note that the optimization that will be presented later in Section 8.4
enables the fault emulation environment to configure multiple fault injection
times as well, which allows to configure every fault configuration included in
the total fault injection space F total.

When considering just few different fault durations with low numbers d,

6.4. FAULT INJECTION CAMPAIGN 111

the number of performed fault experiments Ne can be approximated by

Ne ≈ |F spatial,value| ·NT ·ND, (6.12)

where ND is the number of considered fault durations and NT = |T | is the
temporal granularity.

Due to the FPGA-based implementation, besides iterating the fault ex-
periments, also the tasks with frequent data exchange between FPGA-board
and control software required to configure a particular fault experiment are
iterated. These tasks together with the fault experiment constitute a fault
emulation, which is discussed next.

A single fault emulation consists of the following four phases.

• Fault configuration upload

• Configuration

• Fault experiment

• Fault classification and result download

These four phases cover all tasks with frequent data exchange between FPGA-
board and control software as well as a single fault experiment, during which
either a particular bit-flip or stuck-at fault is being injected. Subsequently,
an unoptimized setup is presented, during which these phases are executed
in a sequence as listed above, which is repeated for each fault emulation.
Performance optimization measures minimizing communication overhead, re-
ducing runtime for fault experiments or skipping entire fault emulations are
presented later in Chapter 8.

All fault emulation phases performed by the fault emulation environment
are detailed subsequently. Since fault emulation phases are repeated Ne

times, I give formal descriptions of their runtimes, which are used later in
Chapter 8 to define performance benchmarks. After that, the preparation
steps are detailed. Test generation itself is out of scope of this work, and
therefore, it is assumed that either a functional test or structural test pattern
are available for upload. However, in Section 6.5 I detail how a software-based
self-test is used to support efficient response observation for processor-based
designs.

Fault Configuration Upload Prior to performing a particular fault ex-
periment, the host computer initiates the upload of the respective fault con-
figuration onto the FPGA. Note that without utilizing performance opti-
mization measures the hardware is idling meanwhile, waiting for a new fault

112 CHAPTER 6. FAULT EMULATION ENVIRONMENT

configuration. The time in clock cycles that it takes to upload the fault
configuration tupload is defined in Equation 6.13.

tupload = (m + 2) · 4 Byte · fFPGA

sinterface

+ tlatency (6.13)

The configuration upload time tupload depends on the spatial fault multiplic-
ity m, the speed of the communication interface sinterface in Byte

s
and the clock

frequency fFPGA used on the FPGA. The constant 4 Byte is caused by the
implementation of configuration commands which require 4 Byte each. The
constant 2 is the consequence of considering two temporal properties per
fault, namely fault injection time tinj and fault duration d. Note that Equa-
tion 6.13 also considers the latency for write access on the communication
interface tlatency, given in clock cycles. This latency is caused by the operating
system of the host computer and prolongs tupload of each fault experiment.
Depending on the used operating system and the actual communication in-
terface, tlatency increases the upload time tupload drastically. I experienced a
latency of about 10 ms in average during my experiments. An optimization
that removes this performance bottleneck is presented in Section 8.2.2.

Fault Configuration The fault injection control unit fetches fault config-
urations and applies these to the next fault experiment. The time in clock
cycles that it takes to do this is the configuration time tconfig, which is defined
in Equation 6.14.

tconfig = m · tl + tt + td + tr (6.14)

The configuration time tconfig is composed of the implementation specific
times given in clock cycles it takes to configure the fault model and affected
fault injection locations (tl = 7), the fault injection time (tt = 8), the fault
duration (td = 8) and to reset the fault mask register (tr = 1).

Fault Experiment The CUV starts processing the test while the config-
ured fault is being injected at the configured time for the configured fault
duration. This fault experiment including all relevant timings is illustrated
in Figure 6.4. The test duration ttest is the time in clock cycles needed by
the CUV to process the test. Also the timing for the fault-free reference
is depicted, which is determined during the golden run. A timeout ttimeout

determines when the fault experiment is terminated in case that the CUV
does not respond due to the fault injection, e.g. when the device stalls in a
state from which it cannot recover.

As illustrated in Figure 6.4, a failure response can be detected at any time
between the moment of the fault injection and a configurable timeout. Hence,

6.4. FAULT INJECTION CAMPAIGN 113

d
fault-free
reference

possible

faulty behavior

time
[cycle]

tinj

fault- free

failure possible

fault injection

ttest ttimeout

trelease

pass possible

Figure 6.4: Timing diagram for a particular fault experiment.

for a particular fault experiment the actual test duration and also the timeout
varies between zero and their maximum value, respectively. Equation 6.15
evaluates the time in clock cycles it takes to perform a single fault experiment.

texperiment ≤ ttest + ttimeout (6.15)

Note, due to the fault behavior of injected faults, the timing of fault experi-
ments may differ from fault-free fault emulation (fault-induced deviation of
timings).

Fault Classification and Result Download The CUV’s response is ob-
served and the emulation result is interpreted in hardware for fault classifi-
cation. This is further discussed in Sections 6.5 and 6.6, where methods for
response observation and fault classification are presented in detail. After
fault classification, the emulation result is downloaded from the FPGA by
the control software. The result download is performed once after completing
the fault emulation flow. Note that by taking advantage of the full-duplex
communication interface, result download could also be performed in parallel
to performing fault experiments.

Next, the preparation steps are outlined. Note that these steps are re-
quired to be performed only once before performing fault injection cam-
paigns.

Fault Generation Fault configurations are generated by the control soft-
ware. The control software provides configuration commands for selecting the

114 CHAPTER 6. FAULT EMULATION ENVIRONMENT

fault duration, the fault injection time, the fault model and for configuring
affected fault injection locations. Each configuration command requires in
total 4 Byte, where 1 Byte is used for a command field and 3 Byte are used for
associated data. This is important to note for the performance benchmarks
and optimization measures introduced later on.

To perform a fault emulation flow, fault configurations are generated in
software covering the desired subset of the total fault injection space1 F total.
For this, fault selection strategies, such as strategies to select all single faults
or specific m-location faults can be applied to select the corresponding subset
of the spatial fault injection space F spatial,n=1. By applying the desired fault
model type and additionally iterating all temporal fault properties, i.e. all rel-
evant fault injection times tinj ∈ T i and if required different fault durations
(single fault injection time with variable fault durations), fault configura-
tions are generated that then represent the selected subset of the total fault
injection space F total,n=1,∀d. Using the optimization that will be presented
later in Section 8.4, the fault emulation environment is enabled to config-
ure multiple fault injection times as well, i.e. arbitrary fault configuration
included in the total fault injection space F total are configurable. To sup-
port this feature, instead of iterating all relevant single fault injection times,
a set of arbitrary combinations of multiple fault injection times is iterated.
A sequence of fault configuration commands implements a particular fault
configuration function, hereinafter referred to as fault configuration, which is
then uploaded onto the FPGA during the corresponding fault configuration
phases of fault experiments and executed as a particular fault experiment.

Test Upload and Golden Run Once the circuit instrumentation and
FPGA synthesis is done, the control software uploads a test into a dedicated
test memory, from where the test is applied to the CUV during a golden
run and also during following fault experiments. The golden run is executed
only once in advance to executing fault experiments in order to determine
the fault-free reference. This is further detailed in the next section.

6.5 Response Observation

As discussed in Section 5.5, conventional approaches for response observation
are unattractive. Approaches that instantiate the CUV twice are unattrac-
tive because of limited hardware resources on FPGAs and performing fault-
free and faulty emulations in a time-serially fashion constitutes a performance

1Without the optimization that will be presented later in Section 8.4 fault configura-
tions are limited to single fault injection times with variable fault durations.

6.5. RESPONSE OBSERVATION 115

bottleneck. Furthermore, in case of executing functional tests, fault injection
may change the program’s instruction sequence, which constitutes the test
sequence. This causes fault-induced timing deviation in test execution, which
may falsify emulation results. Storing results of functional tests in observable
memory locations in the memory map of the CUV is also unattractive since
it is likely that these are corrupted due to fault propagation.

The methodology for response observation presented subsequently tack-
les these issues. Moreover, I propose using internal signals as observation
points to increase observability. In case that the CUV is a processor design,
I present how this concept is supported by software-based self-tests. Com-
plex and often unreliable result evaluation of functional tests is enhanced by
means of comparing observation points to at runtime configurable immedi-
ate output. For security designs, I propose using a second set of observation
points to monitor internal alarm signals of fault countermeasures to enable
fault classification for security designs.

The presented methodology is also optimized in several other directions.
Neither a second CUV instance is required nor a time-serially execution
of golden and faulty emulations is performed. Hence, it is more efficient
in terms of both performance and hardware requirements compared to the
conventional approaches discussed in Section 5.5. Therefore, the proposed
methodology is especially attractive for larger CUVs such as processor-based
designs sensitized by functional tests, however, it is not limited to these
designs. Furthermore, it allows to configure to what extend fault-induced
timing deviation in test execution is tolerated. This is a necessity to prevent
false positives during fault classification.

6.5.1 Using Adequate Observation Points

Instead of using only top-level interfaces, internal signals are used as response
observation points to check the CUV response in presence of faults. This
increases observability and, in turn, also testability.

For security designs deploying fault countermeasures, I propose to split
observation points into two categories. The first category indicates whether
faults corrupt the CUV’s functionality and the second category indicates
whether hardware fault countermeasures detect a corrupted functionality:

• Alarm observation points for monitoring fault countermeasures

• Response observation points for monitoring functional behavior

The combination of these two sets of observation points allows the observa-
tion / classification unit of the fault emulator to evaluate whether faults affect

116 CHAPTER 6. FAULT EMULATION ENVIRONMENT

the CUV’s functionality critically and should be detected by fault counter-
measures. This way, fault classification is enabled for security designs.

Alarm Observation Points Usually, fault countermeasures implemented
in hardware indicate with internal alarm signals whether a fault has been de-
tected (refer to Section 3.1). Hence, alarm signals are sufficient for reliably
observing the effectiveness of fault countermeasures. For instance, an inter-
nal alarm signal could be raised when a faulty value has been detected by
error detection on the data bus of a microprocessor or when a state machine
transitions into an illegal state. For this purpose, the observation / clas-
sification unit implements an edge detection for alarm observation points,
observing whether an alarm was raised.

Response Observation Points Response observation points are required
to detect the incorrect functionality of a CUV in presence of faults. In case
of non-processor architectures, these observation points are monitored for
appropriate events, e.g. the output of a calculation such as the cypher text
of an encryption algorithm which is then compared to the fault-free reference
(refer to Section 5.5.2).

6.5.2 Determining the Fault-Free Reference

The expected fault-free reference at response observation points is configured
into the observation / classification unit in advance to executing the fault-free
golden run, which is initiated by the control software. One observable event
is the fault-free reference generated by the CUV at the end of the sensitizing
test. Then, the golden run is used to monitor the response observation
points to determine the corresponding cycle in which the test ends. This
information constitutes the timing of the fault-free reference (depicted in
Figure 6.4), which is stored for following fault experiments. A timeout is
also configurable, which is realized as offset to the determined timing of the
fault-free reference.

6.5.3 Determining Fault Emulation Results

During fault experiments, the observation / classification unit observes the
response at observation points and compares it to the previously configured
expected fault-free reference. A corrupted circuit behavior, i.e. a failure
response, results in a timeout, if the fault-free reference is not detected until
the configured timeout. As depicted in Figure 6.4, the fault-free reference

6.5. RESPONSE OBSERVATION 117

can only be detected in the time frame defined by the expected timing of the
fault-free reference and the timeout, which is then interpreted as pass. This
way, the test result is either pass or timeout, where a timeout corresponds
to a failure.

In the next section this concept is improved by introducing a second ob-
servable event for a failure response. Since security designs are often realized
by processor-based architectures, I present a solution optimized for these
circuits.

6.5.4 Observation of Processor Designs

In case of processor architectures, incorrect functionality may exhibit as a
corrupted instruction sequence or corrupted data access. Therefore, data and
address buses as well as communication interfaces can be used as response ob-
servation points. Since utilization of communication interfaces in functional
tests constitutes a performance bottleneck, buses should be preferred.

The presented methodology uses the program counter (address bus) of
a processor-based CUV to observe its functionality. A test software is used
to propagate faults to the program counter. The program counter reflects
the addresses of fetched instructions with which the deviation from a correct
instruction sequence can be determined. However, the program counter can
also be exploited to detect corrupted data access, when the executed func-
tional test is organized as a software-based self-test (SBST). For example,
if the functional test double checks the register value versus an immediate
value after a write access on it and a jump follows dependent on the test
result, then corrupted data is indirectly observable as deviation in the pro-
gram’s instruction sequence. This way, the test software sensitizes a path
to the program counter when either the program’s instruction sequence or
data access is corrupted, i.e. corrupted functionality can be observed at the
program counter. In order to prevent that the observation / classification
unit is required to compare the entire sequence of the program counter to a
fault-free reference, the software-based self-test is written in such a way that
only specific values are relevant, each representing an observable event, as
detailed next.

In general, software-based self-tests (SBST) are used to sensitize pro-
cessors when structural testing of processors is technically or economically
infeasible (refer to Paragraph Functional Tests in Section 3.4). Software-
based self-tests add redundancy in software which allows to check whether
an operation fails or passes. There are different ways to add redundancy.

For instance, an operation, e.g. writing a specific value to a register, is
performed and then the same register is read back to validate it versus an

118 CHAPTER 6. FAULT EMULATION ENVIRONMENT

immediate value. In this way, the functional test is able to check whether
the operation passed or failed indicating whether the functional behavior was
affected by the fault injection. Another approach is to execute the operation
twice and compare the results. The software stores the test result for each
operation. At the end of the test, i.e. after testing all operations, the soft-
ware jumps to either a fail-label or pass-label depending on the test results.
These jumps are directly reflected on the program counter. This allows the
observation / classification unit of the fault emulator to evaluate the test re-
sult in a very generic way by comparing the program counter to two different
values, representing the pass- and failure events.

Besides the discussed evaluation of test results, which is the main purpose
of the SBST, there is also a trade-off for the following points:

• Reliably evaluating test result (pass, fail)

• High fault coverage

• Short test duration

• High robustness

In order to obtain high fault coverage, the test requires to use all accessible
hardware resources in terms of instructions, registers and memory. On the
other hand, in order to maintain a good performance, the test needs to be
as compact as possible. Basically, this leads to the classic fault coverage
problem known from manufacturing testing. Functional tests need to be
written in a robust way to prevent that it hangs up too often due to the fault
injection. This is important to allow the evaluation of the test result even in
case where very active and critical faults are injected.

In general, it is preferable to build tests dedicated to testing specific units
and use-cases. The SBSTs used in this thesis makes extensive use of the
instruction set, special function registers and perform encryption/decryption
to sensitize crypto-processors.

SBST-supported Response Observation In case of applying a func-
tional test to processor-based architectures, the proposed concept for re-
sponse observation is used to observe the program counter for an address
that corresponds to the end of the functional test (pass event) and an ad-
ditional address that corresponds to a routine that is executed in case of a
failure (fail event). Subsequently, these addresses are referred to as pass-label
and fail-label, respectively, which correspond to the fault-free reference and
the failure response, configured in advance to performing the golden run.

6.5. RESPONSE OBSERVATION 119

During fault experiments the observation / classification unit observes
the program counter and simultaneously compares it to both the previously
configured pass-label and fail-label. If neither the configured fault-free re-
sponse (pass-label) nor the failure response (fail-label) is detected until the
configured timeout, then the emulation is terminated. This way, as depicted
in Figure 6.4, a failure response can be detected at any time from fault injec-
tion until the timeout and a fault-free response (pass-label) can be detected
at any time in between the expected timing of the fault-free reference and
the timeout. This way, the test result is either pass, fail or timeout, based
on which fault classification is performed, as detailed after discussing the
advantages of the proposed methodology.

6.5.5 Discussion of Advantages

Subsequently, the advantages of the proposed methodology for response ob-
servation are discussed. These include the ability to tolerate timing devia-
tion of fault experiments and the ability to introduce circuit- and test-related
events, which increases the applicability of fault emulation, as well as hard-
ware savings and performance gain.

Tolerating Fault-Induced Timing Deviation of Fault Experiments
The presented methodology prevents false positives caused by varying timing
behavior of fault experiments, which might occur due to the fault injection.
For instance, the test could basically pass and the only difference due to
the fault injection is that the test execution has been delayed by one cycle.
However, in the end the service is provided and also security requirements are
not violated. Using the conventional approach that compares the responses
of two CUV instances (one faulty instance, one fault-free instance), would
cause false positives in emulation results since it is likely that the timing
of both emulations differs. As a consequence, these false positives need to
be sorted out manually by a test engineer, which is very time-consuming,
and hence, needs to be prevented in order to use limited verification times
efficiently.

Since very active signals are used as observation points, the conventional
approach that expects a single output (refer to Section 5.5.2) cannot be ap-
plied either. I addressed this issue by configuring the expected fault-free
reference (pass-label), the expected failure response (fail-label) and a con-
figurable timeout. This concept allows to monitor very active signals, while
tolerating timing deviation in test execution for which it does not matter
whether the test fails or passes. Only in case that the test execution is too
corrupted such that the device hangs or the timing is completely off, the

120 CHAPTER 6. FAULT EMULATION ENVIRONMENT

timeout is actually reached. This way, the configurable timeout allows to
constrain to which extend a timing deviation is tolerated, and hence, helps
to prevent false positives in emulation results.

Observing Test-related Events The concept of observing internal sig-
nals such as the program counter of a processor can be exploited to create
checkers for additional test-related events. A detection of hardware stalls
is realized this way, by means of monitoring whether the program counter
stalls. This is used to separate timeouts from hardware stalls during fault
classification, as further discussed in the next Section 6.6.

Furthermore, this method can be exploited to introduce additional events
during fault emulation, which for example is used to define a time frame in
which security-relevant operations are executed without manually determin-
ing the absolute timing of it. This is realized by extracting the start and
end address of a security-critical section of the functional test. These are
configured into the observation / classification unit in advance to executing
the fault-free golden run, used to determine the corresponding absolute tim-
ing as for the pass- and fail-labels. This information is provided in special
function registers, enabling the control-software to automatically determine
all relevant fault injection times tinj ∈ T i during fault generation. Moreover,
time frames of varying length can be excluded from fault injection, such as
execution of uncritical software parts that set the design into a certain state
of interest for security verification. This way, fault configurations do not have
to be updated to take new absolute fault injection times into account after
adapting the setup software and, as a result, emulation results of different se-
tups remain comparable. Further, this mechanism is used to constrain fault
injection times for a performance optimization discussed in Section 8.2.3.

Hardware Savings and Performance Gain In contrast to existing ap-
proaches that uses two CUV instances to generate the fault-free reference and
the faulty response in parallel (refer to Section 5.5.1), the golden run needs
to be performed only once in advance to performing fault experiments. Since
fault injection campaigns execute a huge amount of fault experiments, the
additional runtime for a single golden run is negligible. Only a single CUV
instance is required for this method, and therefore, the presented method
saves about 50% hardware resources on the FPGA. The freed resources en-
ables to apply the fault emulation to larger circuits, such as processor-based
security designs, and hence, increases applicability.

Conventional approaches are required to wait for the timeout in all cases
except of detecting the fault-free response. This constitutes a considerable

6.6. FAULT CLASSIFICATION FOR SECURITY DESIGNS 121

performance bottleneck. In contrast, the presented fault emulation environ-
ment allows to also configure a failure response that is likely to be generated
due to the structure of software-based self-tests. This way, the emulation can
already be terminated as soon as either the fault-free response or the failure
response is detected. As indicated in Figure 6.4, the failure response can be
detected at any time between fault injection and the configurable timeout.
This can be explicitly exploited by using a software-based self-test that per-
forms the jump to the fail-label as soon as one of its checks fails. This results
in a considerable performance gain. Furthermore, compared to approaches
that alternate between golden run and fault experiments, the runtime is con-
siderably decreased by about 50%, i.e. the performance is doubled.

6.6 Fault Classification for Security Designs

The presented methodology for response observation is especially useful to
perform fault classification for security designs, for which it is required to
decide whether a fault causes a critical CUV behavior. Table 6.1 summarizes
all fault classification possibilities and their interpretation within a security
context.

A fault causes a critical behavior if the CUV responses with a failure
response and the countermeasures of the device do not raise an alarm, and
hence, are not detecting the fault. A timeout is interpreted as uncritical
within a security context only in case that the device stalls since a stalled
device is also not leaking secrets. If a timeout is reached while the processor
is not stalling, then it is still executing code. From a security point of view, as
long as an alarm has not been raised, their is still a risk for violating security
requirements after the defined timeout. Hence, this has to be considered a
critical case. All other cases are interpreted as uncritical.

Table 6.1: Fault classification for security designs by interpretation of fault
emulation results observed at response observation points and alarm obser-
vation points.

response alarm no alarm

failure uncritical critical
pass uncritical uncritical
timeout & stalled uncritical uncritical
timeout & not stalled uncritical critical

122 CHAPTER 6. FAULT EMULATION ENVIRONMENT

6.7 Summary and Discussion

I presented a fault emulation environment used for modeling fault attacks
during security verification. The hardware implementation covers single and
multiple stuck-at-0/1, set/reset and bit-flip faults, where a single fault in-
jection time and the fault duration are configurable. I used the circuit in-
strumentation technique, which I completely automated using synthesis-tools
while still featuring the ability to control the instrumented design parts. This
way, the fault emulation environment supports arbitrary multiple fault injec-
tion in combinational and sequential logic. The implemented fault model was
formally described for gate level by means of specifying properties according
to the the meta fault configuration model presented in Chapter 4.

I implemented fault generation and upload as well as test upload in soft-
ware to achieve the flexibility required for modeling arbitrary fault attacks.
Compared to approaches that generate fault configuration autonomously in
hardware, this implementation comes at the cost of performance loss, which
motivated me to develop performance optimization measures, presented in
Chapter 8.

The presented method for response observation suits processor-based ar-
chitectures, enabling and optimizing fault classification for security designs.
I proposed a very efficient implementation in terms of both performance and
hardware requirements. This implementation does not only allow to deter-
mine the test result, but also provides the flexibility to define and observe
additional events. I used this ability to enable the control software to auto-
matically determine relevant fault injection times during fault generation.

Although the fault emulation environment allows fault injection in combi-
national cells, I focused on fault injection FFs so far. During my experiments
I experienced that circuit instrumentation for combinational logic raises un-
acceptable issues. Most importantly, because of the huge hardware overhead
generated by instrumenting a huge number of combinational cells, its appli-
cability is limited to small circuits. An extensive demand for buffers required
to meet setup time constraints, whose availability is limited on FPGAs, often
requires to consider only few combinational cells for circuit instrumentation.
As a consequence, this renders modeling arbitrary fault attacks in combi-
national logic impracticable. Furthermore, the clock frequency needs to be
reduced in order to meet setup time constraints, resulting in a reduced per-
formance. Since fault emulation performs orders of magnitude better than
all other alternatives, I was motivated to develop a concept that still benefits
from this high performance and at the same time provides the capability to
configure arbitrary multiple faults in combinational logic. These thoughts
are picked up and further discussed in detail next in Chapter 7.

Chapter 7

Enhancing Fault Injection in
Combinational Logic

This chapter is dedicated to enhancing fault injection in combinational logic
and presents an efficient alternative to the conventional stand-alone fault
emulation approach presented in Section 6.2.2. I published the idea of the
following concepts in [NHS15] and a detailed version of it in [NHHS16].

Next, in Section 7.1, I discuss issues that are encountered when imple-
menting fault injection in combinational logic using FPGA-based fault em-
ulation. This motivates the proposed concept for fault injection in combi-
national logic, which is presented in Section 7.3 after reviewing conventional
approaches briefly in Section 7.2. I extend fault emulation by a software-
based pre-processor for fault injection and propagation in combinational
logic. For this purpose, combinational and sequential fault propagation is
separated. Combinational fault propagation is performed for the fault du-
ration using a software-based method incorporating a SAT-solver in order
to determine equivalent faults in sequential logic. Then, the fault emulator
presented in the previous chapter is used for further sequential fault prop-
agation by means of injecting the determined equivalent faults into FFs. I
outline the implemented fault model in Section 7.3.1, after which I detail the
proposed concept in Section 7.3.2. I discuss state equivalence and fault equiv-
alence along with the literature to derive the equivalent relation of transient
faults in Section 7.3.3, demonstrating the validity of the presented concept.
Implementation details are outlined in Section 7.3.4. Finally, Section 7.4
summarizes and concludes this chapter.

123

124 CHAPTER 7. FAULT INJECTION INTO COMB. LOGIC

7.1 Motivation

Emulation-based fault modeling demands additional logic for controlling fault
injection on the FPGA. This is the case for both fault injection in sequential
and combinational logic. However, digital designs usually comprise consid-
erably more combinational cells than sequential cells. Additional logic is
inserted into the data path, not only once per register but for each combina-
tional cell. This causes the following issues:

1. The hardware overhead caused by instrumenting a huge amount of com-
binational cells restricts fault emulation to smaller circuits because of
limited hardware resources on the FPGA.

2. The critical timing path gets longer; I experienced a 68% reduced (divided
by 3) operating frequency after having instrumented the combinational
logic of an 8051-like micro-controller, and Pellegrini et al. [PSC+12] even
reported an 80% reduced (divided by 5) operating frequency for a SPARC-
V9 architecture.

3. Resources for adding path delays required to fix hold time violations are
likely to be exhausted. The reason is the huge number of wires for con-
trolling the fault injection which are routed to combinational cells. These
are more likely violating the hold time as the instrumented combinational
cell gets closer to the capturing flip-flop.

This renders emulation-based approaches for fault injection in combinational
logic unattractive and raises the demand for alternatives.

The method presented subsequently overcomes the discussed issues with
respect to combinational fault modeling. I achieve this with a combined
approach that utilizes a software-based method to inject faults into combi-
national cells and to propagate these into sequential cells and then proceeds
with fast FPGA-based fault emulation for faults in sequential cells. In this
way, the hardware overhead for instrumenting combinational cells is com-
pletely removed. As a result and in contrast to existing work, the presented
method can be applied to much bigger circuits. Furthermore, the critical tim-
ing path of the emulator is not increased, which would be the consequence
of instrumenting combinational cells, resulting in a considerable performance
improvement, as will be demonstrated in the result section. Hence, it still
benefits from the high performance that FPGA-based fault emulation pro-
vides, i.e. it is three to five orders of magnitude faster [EMEM14, EVC+09]
than simulation and software-based symbolic approaches. Moreover, the pre-
sented method is able to inject multiple transient faults into combinational

7.2. RELATED WORK 125

and sequential cells, whereas existing work often focuses on either one or
restricts fault injection by instrumenting a subset of combinational cells.
Hence, it is perfectly suitable for accelerating complex fault injection cam-
paigns based on layout or structural information.

7.2 Related Work

To limit the hardware overhead, existing emulation-based approaches ei-
ther instrument only few combinational cells, e.g. [EVC+09, PSC+12] and
[KLPB05], or consider fault injection in sequential cells only, e.g. [EMEM14]
and [LGPE07]. As a consequence, the former approaches are not able to se-
lect arbitrary multiple faults, and hence, these are not suitable as accelerator
for extensive multiple fault injection in combinational logic based on selection
strategies using e.g. layout information. There is also a second motivation to
restricting instrumentation; Pellegrini et al. [PSC+12] reported issues to meet
timing constraints when instrumenting random locations in a SPARC-V9 ar-
chitecture. To evade this problem, they had to partition some of its modules
into smaller sub-modules in which they were then able to randomly select
few fault locations for circuit instrumentation. That is, they constrained the
distribution of fault injection locations in order to meet timing constraints.
There are approaches reported in literature that map large designs into mul-
tiple FPGAs or on industrial prototyping platforms [DBG+09]. However,
the communication between different boards significantly reduces the opera-
tional frequency, and hence, the speedup [ESRT15]. Using approaches that
only allow fault injection into sequential cells, the vulnerability to faults of
the combinational logic cannot be analyzed at all.

There are also simulation- and other software-based approaches available,
as reviewed in Section 3.6. Simulation-based implementations that provide
fault injection in combinational cells, e.g. [AZS12] and [DNFLR12], are too
slow to use limited verification times efficiently. And symbolic software-based
approaches, such as presented by Miskov-Zivanov et al. [MZM10] do not scale
for industrial circuits, especially when functional tests lasting thousands or
ten-thousands of clock cycles or multiple faults are considered.

To increase simulation performance, Aguirre et al. [ABTV07] propose to
use fault emulation for sequential fault propagation once fault propagation
in combinational logic is simulated. For this, a logic simulator is used to
simulate the CUV executing a test until the fault injection time is reached.
Built-in simulator commands are used to inject a single fault into combi-
national logic. After simulating the respective fault injection interval, the
errors manifested in sequential logic are captured and mapped onto a fault

126 CHAPTER 7. FAULT INJECTION INTO COMB. LOGIC

emulator. Since every simulation starts from the beginning, in average half of
simulation time is spent for repeated fault-free simulations. The tool perfor-
mance could be considerably increased by applying the simulation algorithm
proposed by Alexandrescu et al. [AAN02]. Basically Alexandrescu et al. pro-
pose to implement a checkpoint for the first time interval. The simulation
falls back to this checkpoint after simulating a fault of a given fault set. This
is repeated for all faults in this set of faults after which a checkpoint for the
next time interval is created for which everything is repeated again. This
way, simulation effort is mainly spent for simulating fault effects, but not for
repeated simulations of fault-free time intervals. However, Alexandrescu et
al. were only interested in analyzing the probability of faults originated in
combinational logic to be latched in sequential cells, and therefore, techniques
for sequential fault propagation are not considered.

In a security context, it is very likely that physical fault attacks cause
multiple faults, as discussed in Section 2.3.2, and has therefore to be consid-
ered during security verification. However, when considering multiple fault
injection in combinational logic in addition an even larger fault space has to
be handled. Hence, fast fault injection environments are required to benefit
as much as possible from limited verification times. Unfortunately, fast fault
injection environments capable of injecting multiple faults in combinational
logic are not available, neither from industry nor academia.

In summary, existing work lacks at least one of the following requirements:

• acceptable performance to benefit from limited verification times,

• arbitrary multiple fault injection to mimic arbitrary physical fault at-
tacks,

• applicability for fault selection strategies based on e.g. layout,

• applicability for industrial designs and long functional tests.

7.3 A Pre-Processor for Combinational

Faults

The proposed method is applicable to model single and multiple event tran-
sients (SET, MET), which correspond to single and multiple faults in com-
binational logic. Basically, in the very first cycle of fault propagation, SETs
and METs are mapped to equivalent faults at inputs of sequential cells by
utilizing Boolean constraint propagation provided by a SAT-solver. Single

7.3. A PRE-PROCESSOR FOR COMBINATIONAL FAULTS 127

and multiple event upsets (SEU, MEU), which correspond to single and mul-
tiple faults in sequential logic, can be modeled with the used fault emulator
by default and without any software-based pre-processing, as presented in
Chapter 6.

A cycle accurate transient fault model similar to the one for single tran-
sient faults presented in [PHRB11] is used. Fault configuration is limited
to one clock cycle and only logical masking is considered. In contrast to
[PHRB11], multiple event transients are considered in addition.

The following concept is generalized such that it does not depend on
implementation-specific limitations. In order to consider all masking effects,
the presented implementation of fault propagation can be replaced by ap-
proaches that allow to consider circuit timing. To consider arbitrary fault
durations, the presented combinational fault propagation step can be adapted
to handle multiple clock cycles of fault propagation. For this it would be re-
quired to derive iteratively faulty stimuli for the combinational logic for the
fault duration based on the faulty response of the combinational logic.

7.3.1 Fault Configuration Model for Combinational
Cells

Subsequently, I define the fault configuration model for combinational cells,
which is going to be implemented in this chapter. Similarly to the fault
configuration model at gate level and the hardware implementation of com-
binational fault injection cells presented in Sections 6.1.2 and 6.2, multiple
and single bit-flip faults are realized. Only single fault injection times with a
fault duration of one clock cycle are considered and the hold functionality is
therefore not realized. Moreover, stuck-at fault model types are not consid-
ered since only one out of two possible values per fault injection location is
relevant when a fault duration of exactly one clock cycle is modeled, which
is already covered by the bit-flip fault model.

Since only a single time interval T i ∈ T is affected, the set of affected time
intervals (temporal fault configuration) Ta equals both the fault duration in-
terval T d and the set of fault injection intervals T inj, so Ta = T d = T inj, where
Ta, T d, T inj ⊆ T and T inj = [tinj, trelease) and tinj, trelease ∈ N0. Furthermore,
d = trelease − tinj = 1, where ti and ti+1 of the time interval T i correspond to
tinj and trelease, respectively, where ti, ti+1 ∈ N0.

The implemented fault model covers the subset VC ⊂ Vu of the value
configuration space implemented for fault injection in sequential cells, where

VC = { b, u } , v ∈ VC. (7.1)

128 CHAPTER 7. FAULT INJECTION INTO COMB. LOGIC

comb

x[ti] y[ti]

DFF

xC[ti]

s[ti+1]

s[ti]
(d,l)

l1

l0

lj

(a) Fault-free

comb‘

x[ti] y[ti]

DFF

xC[ti]

s‘[ti+1]

s[ti]
(d,l)

l1

l0

lj

(b) Faulty

Figure 7.1: Fault effect in sequential logic caused by a transient fault in
combinational logic. (a) Fault-free CUV illustrated as FSM, composed of
DFFs and combinational logic. (b) Faulty state transition s[t1] → s′[t1 + 1]
caused by a transient bit-flip fault cBF = (ϕ′BF, T inj).

Hence, the subset of the total configuration space
(
Vu

L
)T

for bit-flip fault
configurations in combinational logic, denoted by fcBF, can be simplified to

fcBF(T i) =

{
ϕ′BF for T i = T inj

ϕu otherwise
, (7.2)

where fcBF ∈
(
Vu

L
)T

defines a family of fault configuration functions that
maps a single time interval included in T inj to a particular forcing function
ϕ′BF 6= ϕu. All other time intervals map to the fault-free forcing function
ϕu, where ϕ′BF, ϕu ∈ Vu

L . The forcing function ϕ′BF maps fault injection
locations lj ∈ LC, where LC = { l0, l1, . . . , lNL−1 }, to values v ∈ VC. During
the fault injection interval T inj, affected fault injection locations lj ∈ La,
where La = La (ϕ′BF), are mapped to b ∈ VC. Unaffected fault injection
locations, so lj 6∈ La, map to the fault-free value v = u.

The corresponding description for a parametrized fault, denoted by cBF,
is then given by the tuple cBF = (ϕ′BF, T inj).

7.3.2 Concept

In Figure 7.1a, the state machine (FSM) introduced in Section 6.1.1 is de-
picted. A faulty state transition of the same FSM is illustrated in Fig-
ure 7.1b. Since a cycle accurate fault model is utilized, fault injection into
the CUV’s combinational logic is possible once per state s[ti] of the cir-
cuit. Therefore, the time index ti of the state s[ti] corresponds to a possi-

7.3. A PRE-PROCESSOR FOR COMBINATIONAL FAULTS 129

ble fault injection times. In Figure 7.1b, affected fault injection locations
La = La (ϕBF) = { l0, lj } are depicted as red-colored lightning bolts at the
outputs l0 and lj of combinational logic gates. Fault propagation through
combinational logic is indicated by a dashed red arrow.

A propagated fault may result in a faulty next-state s′[ti+1] (depicted in
red), if latched by DFFs with the next sensitive clock edge. After latching
the fault in sequential cells, the fault is present at the corresponding sequen-
tial cells’ outputs in the next cycle, corrupting the internal state. Hence,
the consequence of the transient fault cBF affecting La in cycle ti = tinj is a
faulty state transition s[ti] → s′[ti+1]. An equivalent fault is now present in
sequential cells causing further faulty state transitions, i.e., the fault propa-
gates as an error through the circuit. Note that implementations for a fault
duration d > 1 and for multiple fault injection times have to consider that
the initially injected fault cBF does not only affect the first state transition,
but all state transitions during the affected time intervals Ta. When consid-
ering timing constraints and electrical masking, fault propagation from the
fault site to sequential cells is completed after a respective path delay, which
has to be considered in addition.

I propose to split the problem of fault modeling in combinational logic
into two steps, as depicted in Figure 7.2. A software-based method is used
to inject faults in combinational logic and to propagate these into sequen-
tial cells (depicted left). This way, an equivalent sequential fault can be
determined (indicated by XOR on the left), which is then mapped onto an
FPGA-based fault emulator for further sequential fault (error) propagation
(depicted right). This method benefits from both the flexibility of software-
based methods and the high performance of emulation techniques.

Subsequently, fault injection in combinational logic, combinational fault
propagation, extraction of equivalent faults for fault injection into sequential
logic as well as sequential fault propagation are detailed.

Combinational Fault Propagation First (depicted left in Figure 7.2),
the assumption2 function of a SAT-solver is used to model SETs or METs
as transient fault cBF in the combinational logic comb’. Bit-flips (v = b)
are injected at affected fault injection locations La. The fault injection time
is represented by applying the stimulus xC [t] (composed of top level stimuli
x[t] and states s[ti]) at combinational inputs (PPI).

In the very first cycle ti = tinj of fault propagation, i.e. the fault injection
time, the propagate function of a SAT-solver is used to map cBF to equivalent
transient faults at inputs of sequential cells. As depicted in Figure 7.2, equiv-
alent sequential faults are determined by XORing the fault-free next-state

130 CHAPTER 7. FAULT INJECTION INTO COMB. LOGIC

Fault effect

on next-state s[ti+1]

x[ti]

DFF

s[ti+1]

comb‘
x[ti]

s[ti]

 xC[ti]

s‘[ti+1]

s[ti+1]
combcomb

combinational fault propagation sequential fault propagation

s[ti]

LF

s‘[ti+1]

XOR XOR

Figure 7.2: Separating fault propagation: (left) software-based combina-
tional fault injection and propagation of the fault cBF = (ϕ′BF, T inj) in state
s[ti]. (right) sequential fault propagation, processed by FPGA-based fault
emulation, depicted for the first faulty state transition s[ti]→ s′[ti+1].

s[ti+1], generated by a fault-free instance of the combinational logic comb,
and the faulty next-state s′[ti+1], generated by the faulty combinational logic
comb’.

Sequential Fault Propagation The fault emulator performs fault-free
state transitions in advance until the fault injection cycle ti = tinj is reached.
Then, the determined transient fault at inputs of sequential cells is mapped
onto the fault emulator by means of XORing it with the fault-free next-
state s[ti+1], which is depicted right in Figure 7.2 for the first faulty state
transition s[ti]→ s′[ti+1]. The result is the faulty next-state s′[ti+1], which is
latched by DFFs. That is, an equivalent sequential fault is injected, which is
present at outputs of DFFs in the next clock cycle. Now, the fault injection
is deactivated and the sequential fault emulation is continued, performing
error propagation until the end of the executed test.

7.3.3 Fault Equivalence

Since the proposed method maps faults from combinational logic to equiv-
alent faults in sequential logic, the term fault equivalence needs to be in-
troduced, which goes together with state equivalence and the definitions of

2The assumption function can be used to constrain input variables by means of assum-
ing values of Boolean variables.

7.3. A PRE-PROCESSOR FOR COMBINATIONAL FAULTS 131

distinguishable and indistinguishable faults. The following definitions are
inline with [KKJ10, BHF97] and were originated for the purpose of opti-
mizing test pattern generation for permanent stuck-at faults in synchronous
sequential circuits.

Kohavi et al. define distinguishable states as follows:

Citation 1 (Distinguishable States [KKJ10]). Two states, Si and Sj, of a
machine M are distinguishable if and only if there exists at least one finite
input sequence that, when applied to M, causes different output sequences
depending on whether Si or Sj is the initial state.

Furthermore, Kohavi et al. define state equivalence as follows:

Citation 2 (Equivalent States [KKJ10]). The states Si and Sj of machine
M are said to be equivalent if and only if, for every possible input sequence,
the same output sequence is produced regardless of whether Si or Sj is the
initial state. Thus, Si and Sj are equivalent if there is no input sequence that
distinguishes them.

Note, considering advanced testing concepts that observe pseudo primary
outputs (PPO), the output sequence also includes the state sequence pro-
duced by a state machine. Now based on these considerations, Boppana et
al. [BHF97] derive the definition for distinguishable faults.

Citation 3 (Distinguishable Faults [BHF97]). A fault pair (F1, F2) is said
to be distinguishable if there exists an input sequence such that for every
pair of initial states SF1 and SF2 of the faulty machines corresponding to
faults F1 and F2, respectively, the output sequence produced by the faulty
machine corresponding to F1 in response to the input sequence when the
machine starts in state SF1 is different from the output sequence produced
by the faulty machine corresponding to F2 in response to the input sequence
when the machine starts in state SF2 .

3

The definition for fault distinguishability says that two faults can be
distinguished, when each fault is separately injected into an identical state
machine and the corresponding state machines generate different output se-
quences in response to the same input sequence.

The proposed method maps transient faults from combinational to se-
quential logic. Based on the discussed definitions, I will derive the relation

3The identifier for faults F1, F2 (original f1, f2) and faulty states SF1 , SF2 (original
Sf1 , Sf2) are adapted to match the nomenclature of this thesis. In the context of the
presented fault configuration model, F1, F2 are two arbitrary parametrized faults (see
Definition 4.3.8).

132 CHAPTER 7. FAULT INJECTION INTO COMB. LOGIC

of fault equivalence between transient faults in combinational and sequential
logic as well as distinguishability and indistinguishability of transient faults.
These definitions constitute the base for the proposed method, allowing to
map transient faults from combinational to sequential logic. Furthermore, an
optimization that collapses the number of faults considered for further fault
emulation is derived based on these considerations, which is presented and
discussed in Section 8.3.2.

The fault initially injected in combinational logic results in a faulty state,
when the fault is not masked, and therefore, is latched into sequential cells.
Since the state machine is fault-free until the fault injection time ti = tinj,
the state s[ti] in which the fault is injected can be considered the initial state,
which then in turn may cause a faulty next-state, which results in a faulty
sequence of states according to the definition for fault distinguishability given
by [BHF97]. As far as fault durations d > 1 are considered, the faulty state
sequence caused by the faulty state s′[ti+1] is further affected by the injected
fault for the remaining fault duration d − 1. That is, the fault manifests as
additional errors in already faulty states. Note, the propagation delay from
the fault site to sequential logic has to be considered in addition, possibly
resulting in latching-window masking of fault effects in the last time interval
of the fault duration interval, so in time interval [tinj + d− 1, trelease) ⊆ T d.
Note, for the presented implementation d = 1. Hence, the last and only
time interval of the fault duration interval is the injection interval Tinj =
[tinj, trelease), where trelease = tinj + 1.

Based on these considerations, definitions for indistinguishable, distin-
guishable and equivalent transient faults are given. These definition can be
simplified when a single input sequence (particular test) is considered and
when the same fault injection time and the same fault duration are consid-
ered for the considered faults. The goal is to show that fault equivalence can
already be determined as soon as the fault site La stops affecting the circuit.
Without considering circuit timing, this corresponds to the fault release time
trelease.

Indistinguishability of Transient Faults Assume the state sequence is
observed at pseudo primary outputs in addition to the output sequence. Two
transient faults F1 and F2 (independent of spatial and temporal properties)
injected into identical state machines MF1 and MF2 , respectively, are said to
be indistinguishable if the corresponding state machines generate in response
to every possible input sequence equivalent state sequences and equivalent
output sequences. Now, assuming two transient faults with identical fault in-
jection time and identical fault duration, to determine indistinguishability of

7.3. A PRE-PROCESSOR FOR COMBINATIONAL FAULTS 133

the faults under consideration only the fraction of state and output sequences
that correspond to the fault duration interval and in addition the propaga-
tion delay have to be considered. That is, if the two state machines MF1 and
MF2 generate in response to every possible input sequence equivalent state
sequences and equivalent output sequences until the moment when the re-
spective faults F1 and F2 are released plus the propagation delay, then F1 and
F2 are said to be indistinguishable. Furthermore, for the state sequence the
response of combinational logic is only relevant during the latching-window.

The presented method is applied to perform fault injection campaigns
for security verification, where the verified circuit is sensitized by the same
input sequence (particular test) during all respective fault experiments. For
this purpose, the definition for indistinguishability of transient faults can be
relaxed such that indistinguishability is determined only for this test instead
of considering all possible input pattern.

Distinguishability of Transient Faults By implication, two faults F1

and F2 injected into identical state machines MF1 and MF2 , respectively, are
said to be distinguishable if the corresponding state machines generate in
response to every possible input sequence nonequivalent state sequences or
output sequences. When considering a particular test, the definition for dis-
tinguishability of transient faults can be relaxed such that distinguishability
is determined only for this particular test.

Transient Fault Equivalence in Combinational and Sequential Logic
A transient fault in sequential logic that is equivalent to a transient fault in
combinational logic can be determined the moment when indistinguishabil-
ity can be determined. Therefore, fault equivalence of the initial injected
fault in combinational logic and the resulting fault in sequential logic can
be determined the moment when state transitions, taking latching-windows
into account, are not further affected by the fault site, i.e. the instance of
time when fault propagation from the fault site to sequential logic is com-
pleted after the fault is released. Note, as far as circuit timing is considered,
latching-window masking has to be taken into account in addition.

This can be exemplified with Figure 7.1b. The multiple bit-flip fault at the
two locations l0 and lj in state s[ti] is equivalent to a single fault at location l1,
when all inputs of the first stage of AND-gates are sensitized simultaneously
by logical ’0’. Since l1 is connected to a PPO, it directly affects the next-
state s[ti+1] when it is latched, and hence, an equivalent transient fault in
sequential logic can be determined. Note that the used fault emulator injects
faults at data inputs of FFs, and therefore, it is sufficient to determine fault

134 CHAPTER 7. FAULT INJECTION INTO COMB. LOGIC

equivalence for input pins of sequential cells. This way, the delay of FFs,
which would be part of circuit modeling is not a matter for determining
transient fault equivalence in combinational and sequential logic.

The implementation that I present in the next section is cycle accurate
and fault injection is aligned with the clock. This way, circuit timing and elec-
trical masking has not to be considered, and hence, latching-window masking
for DFFs is trivial. That is, in case that a sensitized path to sequential logic
exists, faults propagated through this path are not mitigated and, hence,
always arrive at inputs of sequential cells. Therefore, trelease = tinj + 1 is the
time when fault equivalence is determined. Since fault injection is limited
to a duration of exactly one clock cycle, so d = 1, faults are only affecting a
single state instead of a sequence of possibly already faulty states spanning
multiple time intervals. Nevertheless, once a fault manifests as an error in
a state, it may propagate sequentially through consecutive states, which I
propose to handle with FPGA-based fault emulation.

7.3.4 Implementation

This section presents the tool flow implementing the fault injection envi-
ronment for transient faults in combinational logic. Implementation details
about combinational fault injection and propagation with a SAT-solver is
outlined as well. The proposed method suits as a pre-processor for fault
emulators that are able to model SEUs and MEUs in sequential cells, as the
one presented in Chapter 6.

The software-based pre-processor is implemented using Boolean constraint
propagation, provided by the open source SAT-solver MiniSAT [ES]. Boolean
constraint propagation of MiniSAT is used instead of fault simulation because
fault simulators supporting METs were not available, neither from academia
nor industry. Furthermore, fault simulators usually drop a fault from simula-
tion as soon as it is detected at observation points without providing further
information such as logic levels of PPOs. The proposed method, however,
requires to extract the exact output levels of the combinational logic part for
each fault. Propagate functions of SAT-solvers are highly optimized (linear
complexity). As long as the circuit input is completely constraint, which is
the case in the presented application, conflicts do not occur, and MiniSAT is
able to solve the problem with unit clause propagation. Additionally, using
multiple instances of MiniSAT, the effort spent is well scalable, where, in
contrast to using commercial simulators, license models and license costs can
be left out of consideration.

7.3. A PRE-PROCESSOR FOR COMBINATIONAL FAULTS 135

Tool Flow The fault injection environment is depicted in Figure 7.3. The
red-colored items highlight the implementation of fault propagation accord-
ing to Figure 7.2. The tool flow utilizes two EDA tools, a customized version
of MiniSAT 2.2.0, an FPGA-based fault emulator and custom scripts written
in Perl and TCL.

First, a preparation step is performed to generate the input of our method-
ology. A synthesis tool (Synopsys Design Compiler) divides the CUV into
sequential and combinational logic, writes a complete netlist and writes the
pure combinational part of the circuit into a second netlist. The synthe-
sis tool is also used to generate a fault list composed of SETs, based on
which fault lists composed of METs are generated. Input stimuli for the
combinational logic are generated through gate level simulation of the com-
plete netlist. These input stimuli are then used together with the other pure
combinational netlist, which is translated into DIMACS4 CNF5 format, for
combinational fault propagation with MiniSAT. MiniSAT performs a combi-
national fault propagation flow, which is outlined in this section. The result
is a list of fault effects captured at inputs of sequential cells, i.e. a sequen-
tial fault list, which covers all determined SEUs and MEUs. The sequential
fault list can be collapsed to distinguishable faults, referred to as dSEUs and
dMEUs, fed to the fault emulator for sequential fault propagation. This op-
timization is detailed in the next Section 8.3.2 together with performance
optimizations for fault emulation. Synthesis and logic simulation are auto-
mated using TCL scripts. Several scripts, written in Perl, combine all tools
and subscripts into a completely automated flow, handle file format conver-
sion and perform result analysis.

Combinational Fault Injection and Propagation The fault injection
and propagation flow is implemented using Boolean constraint propagation,
provided by the open source SAT-solver MiniSAT [ES]. The source code
of MiniSAT was modified to automatically add fault injection capability for
each output of combinational cells in its internal CNF representation of the
circuit, as depicted for an example AND-gate in Figure 7.4. The original gate
is duplicated with an inverted output. An additional multiplexer is used to
chose between the original fault-free gate and the duplicated, faulty gate.
This can be represented in CNF in a very efficient and easy to generate way.

The same modification is performed for each combinational cell in the cir-
cuit. Each gate output is assigned a consecutive number j ∈ {0, . . . , NL−1},
where NL is the number of combinational fault locations |L|. Values assigned

4Center for Discrete Mathematics and Theoretical Computer Science
5Conjunctive Normal Form, excepted by MiniSAT as input

136 CHAPTER 7. FAULT INJECTION INTO COMB. LOGIC

synthesis

tool

logic

simulator

fault list

SEU, MEU

fault

emulator
design

combinational
part of netlist

fault list

SET, MET

combinational fault

propagation

sequential fault

propagation

preparation step

test

complete netlist

MiniSAT

list of comb.
top-lvl. pins

DIMACS
CNF

combinational

stimuli list

CNF

conversion

Figure 7.3: Tool flow combining a software-based pre-processor and a fault
emulator to enhance fault emulation of faults in combinational logic.

to fault locations are gathered in a vector (v1, v2, . . . , vNL−1) with vj ∈ {u, b}.
Each component of this vector defines whether the corresponding gate pin
is faulty (v = b) or fault-free (v = u) by applying it to the corresponding
multiplexers, using MiniSAT’s assumption function. This way, SETs as well
as METs can be modeled in a very generic way.

The described approach is effective for single-output gates only. If a gate
has multiple outputs, e.g. adders, the gate will be instantiated multiple times.
For example, the gate will be instantiated twice for gates with two outputs.
For each instance, only one output is connected in the netlist, i.e. the first
output of the first instance and the second output of the second instance and
so on. Corresponding inputs of all instances are connected in parallel. In this
way, the concept of adding fault injection capability to single-output gates is
still valid.

The modified version of MiniSAT iterates a combinational fault list com-
posed of configurations for SETs and METs and a list of combinational stim-
uli, consisting of one stimulus xc[t] for each fault injection time tinj. A fault-
free propagation for each stimulus is performed in advance in order to deter-
mine a fault-free reference for all next-states s[ti+1]. Then, MiniSAT iterates
both the list of combinational stimuli and the fault list in a double nested
loop. For each iteration, MiniSAT determines the fault effect on the next-
state (s[ti+1] xor s′[ti+1]) according to Figure 7.2, resulting in a sequential
fault list composed of configurations for SEUs and MEUs. Two lists of CNF
variables specify the appropriate top-level inputs and outputs where stimuli
are applied and the result is captured, respectively. As already mentioned

7.4. SUMMARY AND DISCUSSION 137

xC1

xC2

fault-

free

faulty duplicate

s [t+1] if Fk=0

s‘[t+1] if Fk=1

1

0

Fk

xC1

xC2

s[t+1]

original

Figure 7.4: Adding fault injection capability to an AND-gate.

and further discussed in Section 8.3.2, the resulting fault list is optimized by
collapsing it to distinguishable representatives before it is then used as input
for sequential fault emulation. In order to increase the tool performance,
multiple MiniSAT instances are executed in parallel for independent subsets
of the combinational fault list.

Sequential Fault Propagation The fault emulator presented in Chap-
ter 6 and illustrated in Figure 6.1 is utilized for sequential fault propagation.

7.4 Summary and Discussion

In this chapter I proposed to use a software-based method to mimic transient
faults in combinational logic (SETs and METs). Boolean constraint prop-
agation provided by the SAT solver MiniSAT was used to inject transient
faults and to propagate these through combinational logic into sequential
cells. The implementation is based on the gate level fault configuration
model introduced in Section 6.1, which was restrained for fault injection
in combinational logic and matches the conventional stand-alone emulator-
based implementation presented in Section 6.2.2. This way, comparison to
conventional existing work is enabled when discussing the results.

The proposed software-based method is able to determine transient faults
in sequential cells that are equivalent to the initially injected transient faults
in combinational logic. This way, a software-based pre-processor for the
FPGA-based fault emulator presented in Chapter 6 was developed that en-
ables to benefit from the high performance fault emulation provides without
instrumenting combinational logic for fault injection. I demonstrated the va-
lidity of the proposed method by means of deriving the equivalence relation
of transient faults from definitions for state equivalence and fault indistin-
guishability given in literature.

138 CHAPTER 7. FAULT INJECTION INTO COMB. LOGIC

As I am going to show with the results in Chapter 9, I successfully re-
moved the discussed disadvantages of emulation-based fault injection in com-
binational logic, increasing its applicability for larger circuits. Contrarily to
conventional approaches, hardware overhead and timing constraints are not
an issue anymore, and therefore, fault injection in combinational logic is
not restricted to few locations selected at random. As a result, the presented
method allows to perform fault injection campaigns using selection strategies
e.g. based on layout, and hence, suits mimicking physical fault attacks. Next
in Chapter 8, I am going to propose performance optimizations which make
the proposed method also faster than conventional stand-alone emulation-
based fault injection in combinational logic.

A cycle accurate fault model is used, which in general poses a more pes-
simistic approach compared to fault models with finer temporal granularity.
It is assumed that transient faults are caused synchronously with the clock
and for a duration that matches the clock period, such that electrical masking
has not to be considered and latching-window masking is trivial. However,
using cycle accurate fault models the computational effort is drastically re-
duced, which enables exhaustive fault injection. Furthermore, cycle accurate
fault models allow to focus on cases where faults actually lead to errors and
are already applicable early in the development cycle when low-level infor-
mation such as timings are not available [PHRB11]. This is of importance
for validating fault countermeasures [PHRB11] and for identifying security
flaws early during circuit design [PTH+15].

The concepts are generalized to allow refined implementations that may
enable the configuration of fault durations and may consider more detailed
circuit models that consider timings and all masking effects. For example, to
consider a fault duration where multiple consecutive clock cycles are affected
by a fault, for each affected clock cycle one iteration of SAT-solving can
be implemented. For this, the fault effect at outputs of the combinational
logic together with the fault-free stimulus of unaffected inputs needs to be
considered as stimulus for fault injection in the combinational logic in the
next affected clock cycle. Recent advances in SAT-solving enable to consider
timing models in Boolean functions [SBP15], which could pose a promising
alternative to simulation-based approaches in order to apply fault models
that consider a more precise time granularity for fault durations (shorter than
a clock cycle). Alternatively, it is possible to cover fault effects of low-level
fault models including electrical and latching-window masking as well with
the proposed method by means of modeling setup and hold time violations
for an acceptable amount of affected FFs. For this, all possible combinations
of multiple faults in the affected FFs determined by the SAT-based method
could be mapped onto the fault emulator to cover these effects.

Chapter 8

Performance Optimizations and
a Feature for Multiple Fault
Injection Times

I presented the performance optimization measures that aim on fighting the
communication bottleneck in [NHN+14] and in [NHRS15]. I published per-
formance optimization measures that aim on skipping equivalent fault exper-
iments when applying the software-based pre-processing for enhancing fault
injection in combinational logic in [NHHS16]. I discussed performance opti-
mization measures that aim on reducing the emulation runtime using a silent
fault optimization in [NR11].

My goal in this thesis is to build a fault emulation environment that
can be used to model arbitrary fault attacks, for which complex fault injec-
tion campaigns need to be performed requiring to iterate huge sets of fault
configurations. So far, I presented concepts and respective implementations
capable of injecting arbitrary multiple faults with a configurable single fault
injection time and configurable fault durations (the implementation of fault
injection in combinational logic is limited to fault duration d = 1). That
is, the proposed concepts support the total fault injection space F total com-
pletely with the exception of multiple fault injection times.

The supported configurability comes at the cost of performance loss be-
cause of data exchange between the controlling software components and
the FPGA-based fault emulator. The goal of this chapter is to close the
gap between speed and configurability of fault emulation environments. For
this purpose, I introduce performance optimization measures, which allow
to reach the optimal performance, so far only provided by autonomous ap-
proaches, while supporting all fault configurations included in the total fault
injection space F total at runtime.

139

140 CHAPTER 8. OPTIMIZATIONS

Next, performance benchmarks are introduced, which are used in Chap-
ter 9 to determine the performance gain provided by the proposed perfor-
mance optimizations. Performance optimization measures presented in Sec-
tion 8.2 aim on fighting the communication bottleneck between software com-
ponents and FPGA, for which I provide experimental results in Section 9.2.
In Section 8.3, performance optimization measures are presented that focus
on shortening fault experiments and skipping equivalent fault experiments.
The effectiveness of one of these measures is demonstrated and its limits are
discussed in Section 9.3.

Finally, a feature for enabling multiple fault injection times as generic
as possible is proposed. This feature allows to configure all temporal fault
properties including an arbitrary number of fault injection times. It therefore
enables to configure any arbitrary fault configuration included in the total
fault injection space F total without limitations.

8.1 Performance Benchmarks

The time in clock cycles it takes to execute an entire fault emulation flow,
denoted by tflow, is evaluated by

tflow = Ne · (tupload + tconfig) +
Ne∑
i=1

texperiment i
. (8.1)

Ne, tupload, tconfig and texperiment were introduced earlier in Section 6.4. Note
that tupload and tconfig depend on the spatial fault multiplicity m of injected
faults, which is assumed to be constant for a fault emulation flow. Moreover,
texperiment varies dependent on the fault effects of injected faults, i.e. depen-
dent on whether and when the respective faults manifest as internal error
or failure (external error). The average runtime for one fault emulation, de-
noted by trun and given in clock cycles, is a benchmark for the performance,
which is evaluated by Equation 8.2. The theoretical optimal performance is
reached if the average runtime trun equals the test duration ttest , which is the
time needed by the CUV to process the sensitizing test, as introduced earlier
in Section 6.4.

trun =
tflow

Ne

(8.2)

With increasing spatial fault multiplicity m more data needs to be up-
loaded and configured onto the FPGA-based fault emulator. Therefore,
tupload and tconfig, and as a consequence also the average runtime trun, in-
crease with m. Hence, the performance of a fault emulation flow gets worse

8.2. FIGHTING THE COMMUNICATION BOTTLENECK 141

the more fault injection locations are considered to be affected when modeling
multiple faults.

I define the workload of the hardware as a second performance benchmark
given in percent. Equation 8.3 defines the workload as the fraction of the
time in which the fault emulation environment is actually performing fault
experiments, i.e. the net execution time for fault experiments excluding com-
munication and configuration overhead. It is the ratio of the time it takes to
perform all fault experiments to the time it takes to perform an entire fault
emulation flow including communication and configuration overhead. So,

workload =

(
1

tflow

·
Ne∑
i=1

texperiment i

)
· 100

=

(
1−Ne ·

tidle + tconfig

tflow

)
· 100,

(8.3)

where for an unoptimized emulation environment tidle = tupload. As shown
by Equation 8.3, either the configuration time tconfig or the idle time tidle has
to be minimized in order to maximize the workload. Therefore, Section 8.2
presents three different measures for minimizing idle times and configuration
times in hardware resulting in a performance improvement.

8.2 Fighting the Communication Bottleneck

Performance optimization measures presented subsequently aim on removing
the communication bottleneck between software components and hardware
components of the fault emulation. In contrast to autonomous approaches
that handle fault generation autonomously in hardware like the one presented
in e.g. [LGPE05, LGPE07], I propose to generate faults in software and to
upload these onto the FPGA. This way, the required ability to configure
arbitrary faults at runtime is provided. However, I utilize three different
optimization measures to reach the theoretical optimal performance that was
so far only reached by autonomous approaches. Note that just increasing
the speed of the communication interface would not be sufficient enough to
reach this high performance. Idle times in between consecutively executed
fault experiments and latencies caused by the operating system of the host
computer executing the control software would still prevent reaching such a
performance. But in fact, the presented measures would benefit from a faster
communication interface.

142 CHAPTER 8. OPTIMIZATIONS

8.2.1 Configuration Data Overhead Reduction

Data overhead reduction is realized by optimizing the communication proto-
col of the controlling software components and the FPGA. For this purpose,
configuration commands are optimized and only the delta between fault con-
figurations of two consecutive fault experiments is configured.

Optimized Configuration Commands A sequence of configuration com-
mands is transmitted by the control software to the fault injection control
unit, which is synthesized onto the FPGA. These configure the fault proper-
ties fault model type, affected fault injection locations, fault injection time
and the fault duration. A configuration sequence is finalized by a run com-
mand, which starts the fault experiment.

The selection of the fault model type and configuring the affected fault
injection locations is combined together in a single command, which has to
be issued individually for each affected fault injection location. This com-
mand also has the ability to reset the fault mask register in advance because
the old value is not reset by default. This allows incremental configuration
of multiple faults, where configurations of previous fault experiments can
be reused to reduce communication overhead, as detailed in the next para-
graph. This concept is also applied to the other configuration commands.
Furthermore, the ability to automatically start the fault experiment with ev-
ery configuration command prevents calling an additional start command per
fault experiment. Note that this optimization does not limit configurability
at all. The way the configuration protocol and its commands are constructed
reduces communication overhead drastically, and therefore, constitutes a per-
formance optimization.

Delta Configuration Additionally, I reduce the data overhead of the com-
munication by incremental fault configuration where only the delta between
fault configurations of two consecutive fault experiments is configured. Thus,
less data has to be considered for fault configurations, which reduces the up-
load time and the configuration time. In the best case only a single config-
uration command needs to be issued to reconfigure e.g. a temporal property
or to configure an additional affected fault injection location and automat-
ically starts execution of the fault experiment, while reusing all the other
fault properties previously configured for preceding fault experiments. Since
the configuration of multiple affected fault injection locations generates the
highest amount of data, the configuration of the spatial fault property in the
fault mask register needs to be changed as seldom as possible when mini-
mizing configuration data, to maximize the performance. In order to achieve

8.2. FIGHTING THE COMMUNICATION BOTTLENECK 143

this, I utilize loop structures during fault generation performed by the control
software so that for each multiple fault (outer loop) different fault durations
(inner loop) and fault injection times (most inner loop) are applied.

A new definition for the optimized average upload time tupload per fault
configuration of a fault emulation flow that iterates ND fault durations and
NT single fault injection times is given by Equation 8.4. Note that a constant
spatial fault multiplicity m is assumed in Equation 8.4, i.e. the optimized
average upload time tupload is given for the m-th subset of the spatial-value
fault injection space F spatial,value,m . The respective average configuration time
tconfig is given by Equation 8.5. Refer to Equation 6.13 and 6.14 for the def-
initions that apply to the unoptimized fault emulation presented in Chap-
ter 6. The new definitions now consider the utilized loop-structures, where
the terms m

NT ·ND
, 1

NT
and 1 correspond to the impact of the outer loop, the

impact of the inner loop and the impact of the most inner loop on the per-
formance, respectively. The more different fault injection times NT and fault
durations ND are considered for a fault injection campaign, implemented as
fault emulation flow, the more tupload and tconfig decrease. This results in a
considerable performance improvement compared to the unoptimized fault
emulation, as further discussed in the result chapter (Chapter 9). The defini-
tions for the constants tl = 7, tt = 8, td = 8 and tr = 1 defined in Section 6.4
still apply to this measure.

tupload =

(
m

NT ·ND

+
1

NT

+ 1

)
· 4 Bytes · f

sinterface

+ tlatency (8.4)

tconfig =
tl ·m + tr
NT ·ND

+
td
NT

+ tt (8.5)

The optimizations presented in this section were based on reducing the
generated configuration data, where configurability is not limited at all. How-
ever, although the data uploaded onto the FPGA is minimized there are still
idle times in which the hardware is waiting for new configurations. Note that
increasing the speed of the communication interface would also reduce idle
times in hardware, however, a faster communication interface cannot elimi-
nate idle times. The next section aims on eliminating idle times completely.

8.2.2 Parallelizing Fault Experiments and
Configuration Upload

The second measure focuses on reducing idle times in hardware. I add the
ability to perform fault experiments in parallel to uploading a stream of fault
configurations. For this purpose, a FIFO is utilized in hardware to buffer

144 CHAPTER 8. OPTIMIZATIONS

fault configurations. Once the first fault configuration is uploaded onto the
hardware, the fault injection control unit fetches fault configurations from
the FIFO until a run command is fetched and applies these for the next
fault experiment. The fault experiment is then executed according to Fig-
ure 6.4, after which the fault configurations for the next fault experiment are
fetched immediately. In parallel to this, the control software is continuously
uploading further configurations over the communication interface, while it
also monitors the fill level of the FIFO. The upload is only interrupted if
the buffer is full or no more fault configurations are available. The control
software starts uploading fault configurations again when the fill level of the
buffer drops below a set value. Since a full duplex communication interface is
used, the same concept can be applied to the download of emulation results.

This measure optimizes fault emulation flows in two different ways. First,
the parallelization eliminates idle times (tidle = 0) in between fault experi-
ments if the average experiment time is longer than or equal to the average
upload time (texperiment ≥ tupload). If the average experiment time is shorter
than the upload time (texperiment < tupload), then the idle time is still de-
creased, however, it is then evaluated by tidle = tupload − texperiment . Mini-
mization of idle states maximizes the workload of the hardware according to
Equation 8.3 and also shortens the runtime trun. Second, uploading a stream
of fault configurations minimizes write accesses on the communication inter-
face. Therefore, latency for write accesses caused by the operating system
of the host computer influences the upload time tupload and the performance
only once per fault emulation flow instead of once per fault configuration. I
combined this measure with the measures for data overhead reduction de-
scribed in Section 8.2.1 and measured the resulting performance. The results
are discussed in Section 9.2.

8.2.3 Sub-Selection of Fault Injection Cells

This measure comes as a trade-off between performance and configurability.
It adds the ability to select a subset Lsub of all fault injection cells (locations)
L, i.e. Lsub ⊂ L. Depending on the implementation, a specific number of fault
injection locations |Lsub| = K can be selected, where K = 32 in the following
description. Only fault injection cells included in Lsub are considered for
configuring the spatial property of faults. This allows to reduce the required
configuration data when configuring multiple faults. Because of the reduction
in configuration data, this fault selection technique is faster than state-of-
the-art fault masking approaches. However, it comes at the cost of limiting
configurability to faults with spatial fault multiplicity m ≤ K since K = 32
fault injection cells are ’sub-selected’. That is, only faults with a spatial fault

8.2. FIGHTING THE COMMUNICATION BOTTLENECK 145

multiplicity in the limits m = 1 to m = 32 can be configured.
Figure 8.1 illustrates an example for configuring a two-location fault uti-

lizing this measure. From left to right is depicted: a subset of all fault injec-
tion cells Lsub, a subset mask and the instrumented CUV containing NL = |L|
fault injection cells. In the depicted example, the subset of fault injection
cells Lsub selects the first 32 fault injection cells, so Lsub = { l0, . . . , l30, l31 }.
A subset mask including K = 32 bits, which are addressed by the index
k ∈ {0, ..., K− 1}, determines which of these selected fault injection cells are
affected and are hence faulty during a particular fault experiment. If a bit is
set to ’1’ in the subset mask, then the corresponding entry in the subset of
fault injection cells Lsub is enabled (f en=’1’). As depicted by the red colored
entries in the example in Figure 8.1, the entries of Lsub with index k = 0 and
k = 1 are enabled by the subset mask. That is, the subset mask selects l0
and l1 to be affected. The fault injection cells { l32, . . . , lNL−2, lNL−1 } (dashed
gray rectangles) are not selected and remain fault-free by default (f en=’0’).
This way, a 2-location fault with spatial fault property La = { l0, l1 } and
spatial fault multiplicity m = |La| = 2 is configured, where La ⊆ Lsub ⊂ L.

This concept is used to configure the fault mask register depicted ear-
lier in Figure 6.1, which is able to select any arbitrary multiple fault cov-
ered by F spatial, for which |F spatial| = 2NL − 1 possibilities exist (refer to
Equation 4.23). However, when using the sub-selection of fault injection
cells, single to K-location faults are configurable by configuring both the
appropriate subset of fault injection cells Lsub and the subset mask. The
number of different subset masks, denoted by nmasks, that can be applied
without re-configuring the entries included in Lsub can be anywhere in the
limits 0 < nmasks < 2K , which covers every spatial fault property included
in the power set P(Lsub). This is, for each configuration of Lsub one out
of |P(Lsub)| = 2K − 1 faults can be configured. Hence, according to Equa-
tion 4.21, the spatial fault injection space is limited to

⋃K
m=1F spatial,m , where

K = 32.
The subset of fault injection cells as well as the subset mask are config-

urable at runtime without re-synthesizing the design. Note that the entries
of Lsub are binary coded (24 bit each). They can point to any fault injection
cell and do not have to be put in order.

The data reduction, and hence, the performance of this measure increase
the more subset masks are applied without re-configuring Lsub, i.e. with in-
creasing nmasks per La. When configuring faults with spatial fault multiplicity
m ≥ 2 the data overhead for configuring a new Lsub is already eliminated
when configuring 32 different multiple faults without re-configuring Lsub, so
when nmasks ≥ 32. In fact, configuring a new multiple fault for an already
configured Lsub is then more efficient as configuring a single fault when us-

146 CHAPTER 8. OPTIMIZATIONS

ing the other two measures for optimizing the performance presented in the
previous Sections 8.2.1 and 8.2.2.

Figure 8.1 is a simplified illustration. In the actual implementation, mul-
tiple configurations of Lsub are stored in a RAM. Multiple configurations of
subset masks are stored in a second RAM. The fault injection control unit
fetches configurations from these RAMs in order to configure fault experi-
ments. The RAM contents are uploaded preliminary to executing the first
fault experiment, representing an entire fault emulation flow. Similar to au-
tonomous approaches, like the one discussed in [LGPE05], this measure loops
over all possible fault injection times in hardware, resulting in a further data
reduction. However, the first and the last fault injection time to be considered
in this loop can be configured at runtime using the mechanism presented and
discussed earlier in Section 6.5.5 (Observing Test-related Events). Hence, a
set of considered fault injection times can be chosen individually to focus on
a relevant time frame of the executed test such as encryption and decryp-
tion of a crypto-accelerator. The fault duration is configured as described in
Section 6.4.

Note that this measure is not combined with the measure for parallelizing
fault experiments and configuration upload, presented in Section 8.2.2. In
comparison to the measure presented in Section 8.2.1, the data overhead is
further reduced since less data is generated for configuring spatial as well as
temporal fault properties.

8.2.4 Summary

In this section, I presented performance optimizations that minimize data
overhead and eliminate idle times in hardware. Next, in Chapter 9, I am
going to discuss the performance results of these measures. I am going to
demonstrate that fault emulation reaches the optimal performance when ap-
plying these optimizations, i.e. the performance of fault-free emulations is
reached, even if faults with a spatial fault multiplicity in the hundreds are
configured. Note that I observed such a high spatial fault multiplicity rarely
when propagating multiple faults from combinational logic into sequential
cells using the software-based pre-processing proposed in Chapter 7 for en-
hancing combinational fault injection. In order to further optimize perfor-
mance, the emulation runtime can be reduced, on which I focus next.

8.3 Reducing Emulation Runtime

Basically, there are two different ways to reduce the fault emulation runtime:

8.3. REDUCING EMULATION RUNTIME 147

CUV

1

l31

1

0

subset
mask

l0

l1

FI
cell 1

FI
cell 31

FI
cell 0

FI
cell N-1

FI
cell 33

FI
cell 321

K-1

0

l2 02

FI
cell 2

Lsub

selected & faulty

selected & fault-free

not selected by Lsub

f_en

f_en

f_en

f_en

'0'

f_en

f_en

f_en

Figure 8.1: Performance optimization measure based on sub-selection of
fault injection cells. A subset Lsub including K fault injection cells is se-
lected in which the spatial fault property La ⊆ Lsub of multiple faults can be
configured by applying a subset mask (depicted for a 2-location fault).

• Shorten the execution time for fault experiments by determining emu-
lation results earlier than it takes to execute the test in the fault-free
case, i.e. texperiment < ttest .

• Skipping equivalent fault experiments entirely, i.e. texperiment = 0.

Concepts for both cases are detailed in the next two subsections.

8.3.1 Shorten Fault Experiments

Subsequently, I present two concepts that allow to shorten the execution time
of fault experiments.

Optimized Software-based Self-test When sensitizing the circuit under
verification (CUV) with a software-based self-test (SBST), the test can be
built such that faults are propagated as soon as possible to observation points.
Instead of storing the test result of a tested operation and performing the
final jump to either the pass-label or fail-label at the end of the test, a jump
to the fail-label can be performed as soon as the first operation fails. Note
that this optimization does not introduce any communication or hardware
overhead. Furthermore, it is more effective if less faults are detected by fault

148 CHAPTER 8. OPTIMIZATIONS

countermeasures. Therefore, this optimization helps to reduce turnaround
times during the development phase of the CUV when countermeasures are
missing or when countermeasures still require improvement.

Silent Fault Optimization The next optimization needs to be imple-
mented in hardware. The idea is to terminate the emulation as soon as a
fault disappears from the CUV due to masking and overwriting effects, which
is also referred to as silent fault as discussed in Section 3.5.2. For this, it is
necessary to compare the entire state of the faulty CUV to a golden reference
in a bit-wise fashion. In order to achieve a performance gain, the comparison
needs to be performed in hardware at runtime, and therefore, a second CUV
instance is required as golden reference. Such an optimization was already
proposed by Lopéz-Ongil et al. [LGPE05]. However, Lopéz-Ongil et al. did
not consider processor-based architectures. These are especially challenging
since faults can propagate into memory. In this case, the entire memory
content of the faulty and the fault-free memory needs to be compared at
runtime [NR11]. For this, the data of each memory line needs to be fetched
to be compared, which would take at least a clock cycle per line during which
the emulation would be required to be halted. The emulation time would be
prolonged by a factor that equals the number of compared memory lines. In
order to avoid this, write operations of both CUV instances to the respective
memories can be observed at the memory interfaces.

Neelesh Halinge, a student who I supervised during his Master’s thesis
[Hal14], implemented a concept in hardware on the FPGA that is able to
determine at runtime whether and which memory locations are affected by
faults. Basically, a flag per memory line is stored in the block RAM on the
FPGA, identifying corrupted memory locations. Unfortunately, this memory
as well as the CUV memories need to be flushed in advance to performing the
next fault experiment to invalidate the stored data. This would again require
to access every memory location, however, now once per fault experiment
instead of once per clock cycle. To prevent this, an additional run count
incremented for every fault experiment is stored per memory line, which
indicates whether its data and the associated valid flag was stored in the
actual or in a previous run. This way, only if the run count overflows the
flags and the CUV memory needs to be reset.

By adjusting the width of the run counter a trade-off between performance
and hardware overhead can be controlled. When using, e.g., a 16 bit counter,
every 216-th fault experiment the run counter overflows, and therefore, the
memories need to be reset. Furthermore, dual-ported RAMs and a twice as
high clock frequency than the CUV clock was used to increase performance.

8.3. REDUCING EMULATION RUNTIME 149

With this setup it takes only 1
4

clock cycle in average per fault experiment
to reset the 216 memories lines and associated valid flags of an 8051-like
microcontroller, which is negligible. An additional counter is used to trace
the number of corrupted memory lines.

In summary, this optimization proved to be effective also for processor-
based architectures. The execution time for fault experiments is reduced
in average such that texperiment < ttest . However, it comes with a consid-
erable hardware overhead due to duplicating the CUV, adding huge com-
parators and adding additional memory blocks. Note that this is accept-
able only in case that there are enough hardware resources available on the
FPGA. For further implementation details and detailed performance results
as well as the hardware requirements, I refer to the Master’s thesis of Neelesh
Halinge [Hal14].

8.3.2 Skipping Equivalent Fault Experiments

The performance optimizations discussed subsequently focus on skipping
equivalent fault experiments entirely.

Latent Fault Optimization I propose the concept of an optimization
that is able to determine equivalent fault experiments in case that a fault is
temporarily latent for a time frame and because of this the next consecutive
fault experiment would configure an equivalent fault. For this to work, the
fault properties in between consecutive fault experiments are required to be
identical except of the fault injection time, which has to be incremented.
So, tinj = ti, where i is incremented from zero to ttest − 1 in between fault
experiments. Then at least one of the other fault properties, namely fault
duration, fault model type and spatial properties is changed and the fault in-
jection time is reset to t0 and incremented again in between consecutive fault
experiments. This is how fault injection campaigns can be configured when
using the delta configuration optimization presented earlier in Section 8.2.1.

The latent fault optimization basically traces the fault propagation for
fault experiments. Based on this, the clock cycle in which the fault is prop-
agating the first time, denoted by tp, is determined. As long as tinj < tp of
following fault experiments, the fault injection would result in an equivalent
transient fault since the respective circuit’s state sequences of both fault ex-
periments with fault injection times ti < tp and ti + 1 < tp are equivalent
(refer to Section 7.3.3). The latent fault optimization measure detects such
equivalent fault experiments and skips these entirely. For fault experiments
with ti ≥ tp the trace of fault propagation is updated to determine the next
tp.

150 CHAPTER 8. OPTIMIZATIONS

fault list

dMEU

fault

emulator

fault generation

for all SEUs,

emulated once

MiniSAT

SEU,

indistinguishabled MEU

Figure 8.2: Performance optimization for modeling SETs and METs based
on selecting distinguishable faults (dMEUs) from MiniSAT’s result for se-
quential fault propagation and emulating all SEUs once in advance.

The implementation of the latent fault optimization is built on the silent
fault optimization measure, which allows to trace fault propagation into
memory of processor-based architectures. To determine fault propagation,
the state difference of the faulty CUV and the golden reference is stored,
representing the state difference of the previous cycle. An additional com-
parator determines the difference of the state difference of the previous cycle
and the current cycle, which is zero when the fault has not propagated. For
implementation details and performance results as well as the hardware re-
quirements, I refer to the Master’s thesis of Neelesh Halinge [Hal14].

Using this optimization, about 70% of fault experiments when inject-
ing single faults are skipped entirely, which constitutes a good performance
optimization. As for the silent optimization, the hardware overhead is con-
siderable. However, when already using the silent fault optimization, the
latent fault optimization adds an acceptable hardware overhead.

Emulating Distinguishable Faults This optimization measure reduces
the amount of faults mapped onto the fault emulator when utilizing the
software-based pre-processing proposed in Chapter 7 for enhancing combina-
tional fault injection. The concept is depicted in Figure 8.2.

The idea is to only map distinguishable faults in sequential logic onto the
fault emulator. That is, only faults whose temporal properties (fault injection
time) and spatial properties (affected sequential cells) differ from any other
determined fault (refer to Section 7.3.3) are considered for further fault emu-
lation. Furthermore, I propose to emulate all single faults in sequential cells
(SEUs) for all possible fault injection times once in advance to performing
fault injection campaigns for multiple faults in combinational logic (METs).

8.4. MULTIPLE FAULT INJECTION TIMES 151

This way, all SETs and METs that result in SEUs are already covered for
subsequent fault injection campaigns, and hence, only distinguishable MEUs
(dMEUs) need to be further considered for sequential fault propagation using
the fault emulator. Thus, all SEUs and indistinguishable MEUs determined
with MiniSAT can be removed from the fault list that is fed to the fault
emulator, as indicated in Figure 8.2. These optimizations were derived from
the following fault propagation results.

Among other experiments, which are further detailed in Chapter 9, I per-
formed a fault injection campaign during which 22.4 million SETs are injected
into an 8051-like microcontroller. In total, only 46.9% of these SETs are prop-
agated and latched by sequential logic (37.6% SEUs and 9.3% MEUs). Only
3.8% of analyzed SETs result in distinguishable MEUs (dMEUs). When con-
sidering only dMEUs for further fault emulation on the FPGA, this provides
a considerable optimization. I performed similar fault injection campaigns
for 2-location METs, 3-location METs and 10-location METs, generated at
random. When increasing the spatial fault multiplicity of METs, it is more
likely that MEUs are latched, while the number of SEUs decreases and dis-
tinguishable faults in sequential logic are generated less frequently. I noticed
that equivalent MEUs with fault multiplicities in the tens and rarely in the
hundreds are latched. Because of this, it is important that the fault emulator
handles single as well as multiple faults in sequential cells with fault multi-
plicities in the hundreds without performance loss compared to fault-free test
runs. As discussed earlier and will be shown in the result chapter, I achieved
this with the previously presented optimizations for data overhead reduction
(Section 8.2.1) and parallelizing fault experiments and configuration upload
(Section 8.2.2).

8.4 Multiple Fault Injection Times

The implementation of the fault emulation environment presented in Chap-
ter 6 is limited to single fault injection times. In this section, I present a
feature that enables to configure arbitrary multiple fault injection times, for
which I propose an efficient implementation.

The obvious solution would be to add multiple configuration registers to
store the considered fault injection times. For instance, five registers would
allow to configure five different fault injection times. The problem here is
that for each fault injection time also the other fault properties need to
be configured such as the affected fault injection locations. Otherwise, the
fault properties cannot be varied for different fault injection times. However,
implementing the fault mask register multiple times is not a viable option

152 CHAPTER 8. OPTIMIZATIONS

due to the hardware overhead that would be generated. Also, requesting the
required configurations from software is not a viable solution since it would
reintroduce a communication bottleneck, not only once per fault experiment,
but once per configured fault injection time. That is, this implementation
would not scale for multiple fault injection times.

Therefore, I propose a different solution that is enabled by the hardware
buffers for configuration commands, arranged as FIFO. The idea is to stop
the emulation briefly when the next fault injection time is reached to fetch
the associated configurations from the FIFO. For this purpose, I introduced
an additional configuration command, pause@time, which is configured dur-
ing the configuration phase and causes the emulator to pause at a configured
time. Whenever the emulator pauses, it starts fetching commands from the
FIFO again until a run command is fetched. This way, any fault property
associated to the respective fault injection time can be reconfigured. Fur-
thermore, when also reconfiguring pause@time during the re-configuration
phases, arbitrary multiple fault injection times can be configured.

This feature now enables fault emulation in general and the presented
fault emulator to model any arbitrary fault configuration defined in the total
fault injection space F total without any limitations. Furthermore, the chosen
implementation is efficient since simply an additional register for storing the
time to pause the emulation and a comparator to determine whether the
configured pause time is reached is required to be implemented.

8.5 Summary and Discussion

I introduced several performance optimization measures that aimed on reduc-
ing the communication bottleneck, shorten fault experiments and skipping
equivalent fault experiments. As I am going to demonstrate next in Chap-
ter 9, these optimizations enable an emulation performance that was by now
only reached by approaches that generate fault configurations autonomously
on the FPGA. Autonomous fault generation on the FPGA limits however
configurability, which renders these approaches impracticable for mimicking
fault attacks.

Maintaining the ability to configure arbitrary faults is mandatory in the
security context to allow the selection of faults that can be caused by physical
fault attacks. Applying the presented performance optimization measures
to the presented FPGA-based fault emulator, the optimal performance is
reached. Moreover, this way unlimited configurability is provided at the
same time, making it suitable for mimicking arbitrary fault attacks in the
security context.

8.5. SUMMARY AND DISCUSSION 153

Implementing buffers for fault configurations on the FPGA and intro-
ducing the additional configuration command for pausing the emulation at a
configurable time allows to support fault configurations with multiple fault
injection times. Thus, this feature enables fault emulation to model any
fault configuration defined in the total fault injection space F total without
limitations. As long as the buffer does not run out of configurations, the
performance is only reduced by an additional configuration time tconfig per
fault injection time. This is acceptable since usually it is only required to
configure a few fault injection times and the introduced time overhead is
small compared to the test duration ttest of realistic functional tests.

In summary, besides closing the gap between speed and configurability
of multiple fault emulation environments, I presented the first FPGA-based
fault emulation environment that supports arbitrary fault configuration in-
cluding multiple fault injection times.

154 CHAPTER 8. OPTIMIZATIONS

Chapter 9

Experimental Results

I published the results I am going to present in Section 9.2 in [NHN+14]
and in [NHRS15]. Results for the software-based pre-processing, proposed to
enhance fault injection in combinational logic, were published in [NHHS16].

In this chapter I am going to discuss the results of experimental evaluation
of the proposed emulation techniques, including the proposed software-based
pre-processing enhancing fault injection in combinational logic as well as se-
lected performance optimization measures. I demonstrate with the results
that the proposed techniques increase applicability and performance, while
the required configurability for emulating arbitrary fault attacks is also sup-
ported. This includes fault attacks on sequential and combinational logic in
complex designs such as processor-based security designs, which are usually
sensitized by long functional tests. For this purpose it is important to evalu-
ate how the performance develops dependent on varying test durations and
also dependent on varying fault multiplicities.

Next, in Section 9.1 I outline the circuits under verification (CUV) for
which I performed fault injection campaigns. Then, in Section 9.2 I focus on
fault injection in sequential logic (SEUs and MEUs). I demonstrate the effec-
tiveness of the performance optimization measures proposed in Section 8.2 to
fight the communication bottleneck of fault emulation environments. These
enable to maximize configurability without performance loss compared to
fault-free emulations. This is required to benefit from limited verification
times as much as possible when mimicking arbitrary fault attacks.

After this, in Section 9.3, I present results of fault injection campaigns
that inject single and multiple faults in combinational logic (SETs and METs)
as well as single faults in sequential logic (SEUs). I present fault propagation
results to discuss the effectiveness of the performance optimizations proposed
in Section 8.3.2 to skip equivalent fault experiments based on determining
distinguishable faults in sequential logic (dMEUs). Finally, in Section 9.3.1 I

155

156 CHAPTER 9. EXPERIMENTAL RESULTS

demonstrate the applicability of the method proposed in Chapter 7 for fault
injection in combinational logic, discuss its performance and provide compar-
ison to existing work. Compared to existing work, the proposed technique is
applicable to larger circuits and provides a considerably better performance.

9.1 Verified Security Controllers

I applied the presented fault emulation, including the software-based pre-
processing for enhancing fault injection in combinational logic and the FPGA-
based fault emulation, to two different microcontroller designs used for se-
curity applications, namely 80251-mc and 8051-mc. These are the circuits
under verification (CUV) for which I demonstrate applicability, configura-
bility and performance. For fault injection in sequential cells, all FFs are
replaced by fault injection cells during circuit instrumentation. The respec-
tive setups are detailed next. Changes to these setups for fault injection in
combinational logic are detailed in Section 9.3.

80251 Microcontroller Circuit 80251-mc is an 80251-like test design with
a hardware accelerator for AES (Advanced Encryption Standard) and triple
DES (Data Encryption Standard), provided by Infineon Technologies AG
for this study. Circuit 80251-mc is composed of NFF = 8051 FFs and
NC = 56, 641 combinational cells. This circuit is an industrial design, which
implements state-of-the-art fault countermeasures, for which I demonstrate
the industrial applicability of proposed fault emulation techniques.

To sensitize the relevant circuit parts, either one of three different func-
tional tests, namely cpu, aes and des, with test durations ttest of 79,000, 6800
and 5553 clock cycles, respectively, were executed by circuit 80251-mc during
fault injection campaigns.

8051 Microcontroller The second circuit is an 8051-like microcontroller
(8051-mc), which is smaller than circuit 80251-mc. Circuit 8051-mc is based
on the IP core of Oregano Systems [Ore02]. The control unit, the ALU
and parts of the data paths of the processor core are protected by fault
countermeasures based on Hemming codes, parities and component dupli-
cation, which have been implemented by Stephan Janssen as part of his
Diploma thesis [Jan09]. Circuit 8051-mc is composed of NFF = 1911 FFs
and NC = 10, 029 combinational cells. This circuit is used for performance
benchmarks and comparison to existing work.

Since not all components were protected by fault countermeasures, a sig-
nificant proportion of emulated faults were identified as critical faults during

9.2. FAULT INJECTION IN SEQUENTIAL LOGIC 157

my experiments. Therefore, circuit 8051-mc was suitable for sanity checks
and for evaluating the effectiveness of the proposed fault emulation tech-
niques during their development.

I built a set of tests with test durations ttest of 256, 1000, 2000, 3000
and 4000 clock cycles, which is used to benchmark the performance of fault
injection in sequential logic. Two tests, namely test isax1 and isax2, last-
ing 11,851 and 23,811 clock cycles, respectively, are used to benchmark the
performance of fault injection in combinational logic. These tests cover the
instruction set architecture and are chosen to evaluate the impact of the
test duration on the performance. Either one of these tests sensitizes circuit
8051-mc during fault injection campaigns.

9.2 Fault Injection in Sequential Logic

In this section I discuss results for fault injection in sequential logic of circuit
8051-mc using the FPGA-based fault emulator presented in Chapter 6. First,
the hardware requirements are discussed. Then, I am going to present per-
formance results to demonstrate that optimal performance is achieved with
the proposed fault emulation techniques while the configurability required
for mimicking arbitrary fault attacks is provided. Focus lies on evaluating
the effectiveness of the three performance optimization measures proposed
in Section 8.2 to fight the communication bottle neck when increasing the
spatial fault multiplicity.

Hardware Requirements Table 9.1 outlines the amount of logic cells
needed on the FPGA for implementing three different setups for circuit 8051-
mc. The first row (CUV) lists the hardware required by the CUV including
the UART used as communication interface, but without any fault injection
capability and without the emulator’s hardware components. The UART is
included since it is required to setup the CUV including test upload. This
setup is used as the reference for calculating the hardware overhead. The
hardware overhead is listed in column ∆ LEs (logic elements).

The second row CUV, measure 1+2 lists the hardware requirements for
the setup that includes the instrumented CUV and the hardware of the fault
emulation environment. The first and the second performance optimization
measures - data overhead reduction (Section 8.2.1) as well as parallelizing
fault experiments and configuration upload (Section 8.2.2) - are applied in
this setup. Compared to the reference in the first row, this setup results
in a hardware overhead of 134%. This is reasonable and comparable to
other state-of-the-art implementations since introducing a fault mask register

158 CHAPTER 9. EXPERIMENTAL RESULTS

already doubles the required FFs. Further hardware overhead is caused by
fault injection cells and for implementing the fault injection control unit
and observation / classification unit, which manage the communication and
control the fault experiments. In addition, several special function registers
are implemented, which are assessable from the control software to monitor
the progress of the fault emulator.

The implementation of the third performance optimization measure - sub-
selection of fault injection cells (Section 8.2.3) - is built on the implementa-
tion of the first and second optimization measures. Therefore, the third row
CUV, measure 1+2+3 lists the total hardware requirements when imple-
menting all three performance optimization measures proposed to fight the
communication bottleneck. The implementation of the third measure causes
an additional hardware overhead of 26% resulting in a total of 160% hard-
ware overhead. Note that using this setup for modeling fault attacks during
security verification, the verification engineer can choose at runtime without
re-synthesizing the design to use either the combination of the first and the
second optimization measures or the third performance optimization mea-
sure. In addition to the hardware overhead listed in Table 9.1, block-RAM
on the FPGA is used for implementing communication buffers and realizing
the sub-selection of fault injection cells. The amount of block RAM can be
adapted pre-synthesis in HDL.

Table 9.1: Hardware requirements of the fault emulation environment when
applying performance optimization measures fighting the communication
bottleneck: flip flops (FFs), combinational functions (CFs), logic elements
(LEs) and hardware overhead (∆ LEs).

FFs CFs LEs ∆ LEs [%]

CUV 2053 6575 7172 0
CUV, measure 1+2 4887 16,400 16,806 134
CUV, measure 1+2+3 5731 18,300 18,653 160

Performance of Measures 1 and 2 I measured the performance in terms
of runtime and workload when applying the first two optimization measures.
For each measurement point, a fault injection campaign consisting of con-
secutive fault experiments is performed. The spatial fault multiplicity m is
constant per flow and is plotted on the x-axes of every result plot. During a
fault injection campaign, spatial fault properties are configured for NT = 255
fault injection times and for a single fault duration of one clock cycle, i.e.
d = 1 and ND = 1. I chose this configuration to keep the measurements

9.2. FAULT INJECTION IN SEQUENTIAL LOGIC 159

0.2 0.4 0.6 0.8 1.0

fault multiplicity m [103]

103

104

105

106

107

ru
n
ti
m

e
[c

y
cl

es
]

unoptimized (calculated)

measure 1 (calculated)

measure 1+2 (measured)

Figure 9.1: Development of the performance dependent on the spatial fault
multiplicity for three different setups for a test duration ttest = 4000: unop-
timized, measures 1 and measure 1 + 2 combined.

reasonable and comparable to state-of-the-art approaches that do not sup-
port configurable fault durations. Note that according to Equation 8.5, all
optimization measures (also measure 3) would perform better if higher values
would have been chosen for NT and ND. Time measurements are in clock
cycles and start when the first fault configuration command is received by
the fault injection control unit.

In Figure 9.1 the runtime trun of three different setups for a test du-
ration ttest of 4000 clock cycles with increasing spatial fault multiplicity is
depicted. Figure 9.1 illustrates how the runtime depends on the spatial
fault multiplicity and how the runtime is improved when applying the first
two performance optimization measures. The first curve illustrates the per-
formance of an unoptimized setup (unoptimized), calculated according to
Equations 6.13, 6.14 and 8.2. The second curve shows the performance when
the first measure (measure 1) - data overhead reduction - is applied, cal-
culated according to Equations 8.2, 8.4 and 8.5. For these calculations the
UART is setup with 912.384 Baud, which corresponds to sinterface = 81 KByte

s

using one start bit and two stop bits. The average write access latency on the
UART caused by the operating system is about 10 ms, which corresponds to
tlatency = 250.000 cycle at a clock frequency fFPGA = 25 MHz. The third curve
illustrates the performance, measured within the FPGA, when combining the
first and the second measure (measures 1+2) - data overhead reduction as
well as parallelizing fault experiments and configuration upload. Note that
a logarithmic scale is used on the y-axes. The runtime for the unoptimized

160 CHAPTER 9. EXPERIMENTAL RESULTS

0.2 0.4 0.6 0.8 1.0

fault multiplicity m [103]

0

1

2

3

4

5

6
ru

n
ti
m

e
t r
u
n

[c
y
cl

es
·1

03
] ttest =4000

ttest =3000

ttest =2000

ttest =1000

ttest =256

(a) runtime measures 1 and 2

0.2 0.4 0.6 0.8 1.0

fault multiplicity m [103]

0

20

40

60

80

100

w
or

k
lo

ad
[%

]

ttest =4000

ttest =3000

ttest =2000

ttest =1000

ttest =256

(b) workload measures 1 and 2

5 10 15 20 25 30

fault multiplicity m

0

1

2

3

4

5

ru
n
ti
m

e
t r
u
n

[c
y
cl

es
·1

03
] ttest =4000

ttest =3000

ttest =2000

ttest =1000

ttest =256

(c) runtime measure 3

5 10 15 20 25 30

fault multiplicity m

40

50

60

70

80

90

100

w
or

k
lo

ad
[%

]

ttest =4000

ttest =3000

ttest =2000

ttest =1000

ttest =256

(d) workload measure 3

5 10 15 20 25 30

fault multiplicity m

40

50

60

70

80

90

100

w
or

k
lo

ad
[%

]

ttest =4000

ttest =3000

ttest =2000

ttest =1000

ttest =256

Figure 9.2: Development of the performance for measure 1 + 2 combined
and measure 3 in terms of runtime and workload dependent on the test
duration ttest and the spatial fault multiplicity m.

9.2. FAULT INJECTION IN SEQUENTIAL LOGIC 161

setup is dominated by the communication interface, resulting in a linear
curve with a high slope. As more fault injection locations are affected in a
fault experiment, i.e. with increasing spatial fault multiplicity m, the runtime
increases, which results in a decreased performance. By applying the data
overhead reduction (measure 1), the slope is decreased drastically resulting in
a performance gain. Note that both curves (unoptimized and measure 1) are
actually linear and have a slope that is greater than zero. When the second
measure (measure 1+2) - parallelizing fault experiments and configuration
upload - is additionally applied, then the runtime is decreased by two orders
of magnitude. The performance gain is achieved due to uploading a stream
of configurations and introducing buffers in hardware. This minimizes idle
times in hardware and write access latency caused by the operating system
gets negligible since it influences the performance only once per fault emula-
tion flow instead of once per fault configuration command. Furthermore, the
runtime is constant until faults with a spatial fault multiplicity of m ≥ 600
are modeled. This is the break point where the communication interface lim-
its the performance again, causing idle times in hardware. For the executed
tests the communication bottleneck is completely eliminated if faults with
m ≤ 600 are injected. Until this break point is reached, the fault emulation
environment performs as good as the theoretical optimum, i.e. the runtime
equals the test duration of fault-free emulations, so trun = ttest = 4000. So
far, this performance was only supposed to be reached by autonomous ap-
proaches, which are not suitable for modeling fault attacks because of lacking
configurability. Contrarily, the presented fault emulation environment does
not limit configurability at all and performs as good as the fastest state-of-
the-art environments for a wide range of multiple faults. Note that a spatial
fault multiplicity of m = 600 is high enough to model fault attacks that
affect hundreds of cells at once without performance loss. Usually security
verification focus on faults with one to two orders of magnitude lower spatial
fault multiplicities. Furthermore, I noticed during the experiments that tar-
get on fault injection in combinational logic, which I am going to detail later,
that even multiple faults in combinational logic (MET) with a multiplicity
m = 10 rarely cause multiple faults in sequential logic (MEU) with multiplic-
ities in the hundreds. Note that all configurations are supported at runtime
without re-synthesizing the design. Hence, the configurability is comparable
to simulation-based approaches, which closes the gap between performance
and configurability of FPGA-based fault emulation.

Figure 9.2a illustrates the impact of the test duration ttest on the run-
time, where ttest is varied between 255 and 4000 clock cycles. Note that now
a linear scale is used on the y-axes. The curve for ttest = 4000 in Figure 9.2a
and the curve (measure 1+2) in Figure 9.1 are the exact same curves but

162 CHAPTER 9. EXPERIMENTAL RESULTS

with different scales on the y-axes. The curves for the two shortest tests
ttest = 256 and ttest = 1000 overlap in Figure 9.2a. For these tests, the com-
munication interface dominates the performance because it takes more time
to transmit the configurations than the hardware needs to process the test.
Therefore, the runtime only depends on the spatial fault multiplicity, and it
is independent of the test duration. For tests longer than 1200 clock cycles,
determined by the intersection between the curve ttest = 1000 and the y-
axes, there is a range of fault multiplicities for which the runtime is constant
and almost equals the test duration, which is the theoretical optimum. The
range of multiple faults for which a constant performance can be expected
gets wider as the test duration gets longer. Hence, the optimization measures
1 and 2 perform better as the test gets longer. Note, for setups for which the
performance does not reach the theoretical optimum the impact of the com-
munication interface on the performance is nevertheless drastically decreased
over the entire range of all possible multiple faults (compared to the unop-
timized setup in Figure 9.1), even if high fault multiplicities and short tests
are considered. Moreover, note that I only performed rather short tests for
benchmarking the runtime. For tests longer than approximately ttest = 15000
cycles, the runtime is constant, reaching the theoretical optimum over the
entire range of all possible multiple faults (m ≤ NL).

Figure 9.2b illustrates how the workload of the hardware depends on the
test duration. The workload of the hardware gets better for longer tests and
is close to 100% when the runtime in Figure 9.2a is constant. For very short
tests (ttest = 256) the workload is not better than 23% even for single faults.

Performance of Measure 3 The third performance optimization mea-
sure - sub-selection of fault injection cells - provides a further performance
optimization, especially for short tests. The runtime and the workload when
applying only this measure are illustrated in Figure 9.2c and Figure 9.2d,
respectively. Since the presented implementation is limited to m ≤ 32, the
x-axis is limited to 32. As shown, the runtimes are close to the actual test
durations used in the measurements, even for the shortest test (ttest = 256).
Compared to Figure 9.2b, the workload of the hardware is drastically in-
creased starting at 94% for the shortest test. Note that I measured a worst
case scenario in which a very low number of subset masks nmasks ≤ 32 is
utilized. The increasing slope, especially for m ≥ 30, is the consequence of
this. Note that in the best case scenario nmasks = 2K − 1 = 232 − 1 for the
discussed implementation.

9.3. FAULT INJECTION IN COMB. AND SEQ. LOGIC 163

9.3 Fault Injection in Combinational and

Sequential Logic

In this section I am going to discuss results for fault injection campaigns dur-
ing which single and multiple faults were injected into combinational logic
(SETs and METs) using the software-based pre-processing for enhancing
fault injection in combinational logic, which was proposed in Chapter 7. Ad-
ditionally, single faults are injected into sequential logic (SEUs) in advance,
as proposed in Section 8.3.2 to maximize the performance of the presented
techniques. I performed fault injection in both circuits, namely 8051-mc and
80251-mc, with varying fault multiplicities and varying tests. In all follow-
ing experiments, faults were injected with a duration of exactly d = 1 clock
cycle, i.e. the number of considered fault durations is ND = 1. Moreover,
the performance optimization measures 1 and 2 - data overhead reduction
(Section 8.2.1) as well as parallelizing fault experiments and configuration
upload (Section 8.2.2) - are applied. The respective setups of fault injection
campaigns including the purpose of sensitizing tests, iterated fault sets and
considered fault injection times are detailed in the corresponding sections.

9.3.1 Combinational Fault Propagation Results

In this section I evaluated how faults propagate from combinational logic
into sequential logic to determine the fraction of faults that result in SEUs
and MEUs, which are then collapsed to respective subsets including only
distinguishable SEUs (dSEUs) and distinguishable MEUs (dMEUs). Along
with the presented fault propagation results, I show the benefit and limits
of the performance optimizations that aim on reducing the amount of faults
mapped onto the fault emulator by means of considering only distinguish-
able faults, as proposed in Section 8.3.2. These optimizations are based on
skipping equivalent fault emulations by means of considering only distin-
guishable faults in sequential logic for further sequential fault propagation
after combinational fault propagation.

Table 9.2 outlines the number of faults caused by SETs and METs in
combinational logic that are latched by sequential cells, exemplary for cir-
cuit 8051-mc, which was sensitized by test isax1. These results constitute a
summary of fault lists consisting of faults in sequential cells that are equiv-
alent to the injected faults in combinational logic, which were determined
for further sequential fault propagation using fault emulation. In the first
row of Table 9.2 the results of a fault injection campaign are outlined, dur-
ing which 22.40 million SETs (spatial fault multiplicity m = 1) were being

164 CHAPTER 9. EXPERIMENTAL RESULTS

injected in combinational logic during 22.40 million individual fault experi-
ments. As listed in column total, 46.9% of injected SETs were propagated
and latched by sequential logic, where 37.6% of injected SETs were latched
as equivalent SEUs in sequential cells and 9.3% of injected SETs were latched
as equivalent MEUs in sequential cells. 53.1% of all injected SETs were not
latched, and thus, were masked logically. Only 21% of the injected SETs
led to distinguishable faults in sequential cells, including both dSEUs and
dMEUs. If SEUs are injected in advance, as proposed in Section 8.3.2, only
dMEUs need to be considered for further fault emulation on the FPGA. This
provides a very good optimization for SETs since only 3.8% of injected SETs
resulted in dMEUs, and hence, further fault emulation can be skipped for
96.2% of performed fault experiments. In summary, considering only SEUs
and dMEUs during sequential fault propagation when performing fault in-
jection campaigns for SETs and METs reduces the effort spent during fault
emulation drastically, which constitutes a considerable optimization.

In order to analyze the impact on the performance when increasing fault
multiplicity, I performed three different fault injection campaigns for METs.
METs were generated at random with a constant fault multiplicity m, where
m = 2 for the first, m = 3 for the second and m = 10 for the third fault
injection campaign. With increasing spatial fault multiplicity of METs, it
was more likely that MEUs were latched, while the number of latched SEUs
decreased drastically. Furthermore, distinguishable faults in sequential logic,
so both dSEUs and dMEUs, were generated less frequently with increasing
spatial fault multiplicity of METs. As a consequence, the optimization po-
tential is only effective for lower fault multiplicities (< 10). For example,
in the fault injection campaign during which METs with spatial fault mul-
tiplicity m = 10 were injected, almost all injected METs were latched by
sequential cells (99.8%), which branch into 1.4% latched SEUs and 98.3%
latched MEUs.

Note that METs were generated at random only for benchmark purposes
and it is likely that several different circuit functions are affected with higher
multiplicities of randomly generated METs. Contrarily, when using layout or
structural information to model for example laser fault attacks as presented
in [PTH+15, PHB+14, VML+14], METs would be injected in a local area
with a high probability to affect the same circuit functionality. METs with
a high locality considerably limit fault propagation into other circuit areas,
which, in turn, generates less pessimistic results w.r.t. latched MEUs and
dMEUs. Note that precise attacks with high locality of faults are assumed
to be more powerful [PHB+14, PTH+15]. That is, the proposed optimiza-
tions are nevertheless effective for fault injection campaigns that mimic, e.g.,
precise laser fault attacks.

9.3. FAULT INJECTION IN COMB. AND SEQ. LOGIC 165

Table 9.2: Faults in combinational cells latched by sequential cells after
combinational fault propagation, determined with four fault injection cam-
paigns performing 22.4 million fault experiments each, for which spatial fault
configurations are generated at random with a dedicated spatial fault multi-
plicity m. Numbers are given in millions (106).

m #SEU #MEU total #dSEU #dMEU

1 8.42 (37.6%) 2.08 0(9.3%) 10.50 (46.9%) 3.85 (17.2%) 0.84 0(3.8%)
2 8.93 (39.9%) 7.08 (31.6%) 16.01 (71.4%) 2.77 (12.4%) 5.19 (23.2%)
3 7.07 (31.6%) 11.97 (53.4%) 19.04 (85.0%) 2.49 (11.1%) 10.19 (45.5%)

10 0.32 0(1.4%) 22.03 (98.3%) 22.36 (99.8%) 0.24 (1.1%) 21.97 (98.1%)

Next, I demonstrate the applicability for industrial designs of the pro-
posed method for fault injection in combinational logic, utilizing MiniSAT
and FPGA-based fault emulation.

9.3.2 Applicability for Industrial Circuits

In my experiments I wanted to emulate all single faults in combinational
and sequential logic for the time frame in which security relevant opera-
tions are executed. This way all fault attacks that aim on exploiting single
points of attack in circuit 80251 are modeled. Therefore, I used the fault
emulator to inject all SEUs in advance, as proposed in Section 8.3.2. Addi-
tionally, I injected all distinguishable faults (dMEUs) that were determined
after combinational fault propagation of SETs, which were injected into the
combinational logic using the software-based pre-processing for enhancing
fault injection in combinational logic.

For this purpose, I performed three fault injection campaigns injecting
SETs and SEUs in circuit 80251, as outlined in the columns #MET 4 and
#SEU in Table 9.3. In the first fault injection campaign faults were in-
jected in the CPU, which consists of NFF = 5726 FFs and NC = 39, 038
combinational cells, while the circuit was sensitized by test cpu. In the
second and the third fault injection campaign faults were injected into the
crypto-accelerator, which consists of NFF = 2775 FFs and NC = 17, 603 com-
binational cells, while the circuit was sensitized by either test aes or test des.
Circuit 80251-mc was instrumented for fault injection in sequential logic.
The instrumented design including |LFF| = NFF = 8501 instrumented FFs
as well as additional hardware for the emulator’s communication interface,
fault injection control unit and observation / classification unit fit into 55,526

4For simplification, SETs are assumed to be METs with spatial fault multiplicity m = 1.

166 CHAPTER 9. EXPERIMENTAL RESULTS

adaptive logic modules (ALMs) on a Stratix II FPGA5, which corresponds to
77.4% hardware usage in terms of ALMs. For comparison to newer Altera
FPGAs, circuit 80251-mc fits into 138,815 equivalent logic elements (LEs)
[Alt06, Alt07]. The design was clocked with fFPGA = 26.5 MHz.

For comparison to existing work, I wanted to perform fault injection cam-
paigns using the conventional standalone emulation-based approach for cir-
cuit 80251-mc where fault injection in combinational logic is implemented in
hardware on the FPGA using appropriate fault injection cells (refer to Sec-
tion 6.2.2). This circuit instrumentation technique for combinational logic is
similar to the one presented by Kundu et al. [KLPB05], which I expected to
generate the least hardware overhead. Still, I could not fit the instrumented
circuit 80251-mc into the FPGA. Therefore, column speed-up in Table 9.3
indicates with an ∞ sign that the conventional approach (instrumenting all
combinational cells) fails for circuit 80251-mc.

In contrast, my approach only required to instrument FFs, and therefore,
the instrumented circuit fitted into the FPGA. The runtimes of three fault in-
jection campaigns performed for circuit 80251-mc are listed in column time
in Table 9.3. Note that the measured runtime includes the time required
for the software-based fault injection and propagation of SETs and METs
utilizing MiniSAT as well as sequential fault propagation of all SEUs and de-
termined equivalent dMEUs utilizing FPGA-based fault emulation. Columns
#MET and #SEU list the number of injected faults. The three fault injec-
tion campaigns for circuit 80251-mc were executed in about 19 hours, during
which in total 60.3 million SETs and 9.1 million SEUs were injected. This
demonstrates the applicability of the proposed techniques, whereas conven-
tional stand-alone fault emulation fails. Note that stand-alone software- or
simulation-based methods would not be an option either because of the cir-
cuit’s and tests’ complexity.

Fault injection was concentrated to cycles in which cryptographic opera-
tions, security operations or the actual operations under test were executed
by the CUV, i.e. NT < ttest . For this purpose, the initialization of the circuit,
which is steady for all tests and sets the circuit into an initial state, as well as
the software-based test result evaluation, which checks the test execution for
failures, were excluded from fault injection. This was realized using the fea-
ture for observing test-related events, as proposed in Section 6.5.5. This way,
unrealistic fault emulation results caused by corrupted initialization or, even
worse, corrupted test result evaluation are prevented. Furthermore, this re-
duces the required time for fault injection campaigns drastically by avoiding

5The device EP2S180F1020C3 from the Intel Altera Stratix II family with 71.760 ALMs
(179.400 equivalent LEs) was used.

9.3. FAULT INJECTION IN COMB. AND SEQ. LOGIC 167

equivalent fault experiments. Potential vulnerabilities during initialization
can be analyzed by performing a dedicated fault injection campaign that
executes a respective test.

Table 9.3: Total runtime for performing fault injection campaigns, utilizing
both FPGA-based fault injection and the software-based pre-processor for
faults in combinational logic and covering all possible SEUs and all deter-
mined dMEUs caused by SETs (m = 1) or METs (m > 1). The runtime is
given in hour:minute.

circuit test #MET·106 #SEU·106 m time speed-up

80251-mc cpu 35.95 5.27 1 13:43 ∞
” aes 15.88 2.50 1 3:48 ∞
” des 8.43 1.33 1 1:45 ∞

8051-mc isax1 22.40 4.27 1 3:05 3.64
” ” ” ” 2 3:36 3.12
” ” ” ” 3 4:21 2.58
” ” ” ” 10 6:01 1.87

8051-mc isax2 ” ” 1 3:51 5.87
” ” ” ” 2 5:01 4.50
” ” ” ” 3 6:59 3.23
” ” ” ” 10 8:00 2.82

8051 Microcontroller Since I was not able to fit circuit 80251-mc into
the FPGA when using the conventional emulation-based approach, i.e. instru-
menting all combinational cells, I also performed fault injection campaigns
for the smaller circuit, circuit 8051-mc. For these experiments, performance
results are discussed and compared to the conventional approach in the next
section after comparing the hardware setups of the proposed method and the
conventional approach.

Using the proposed method, only FFs need to be instrumented. The
instrumented circuit 8051-mc including NFF = 1911 instrumented FFs and
additional hardware for controlling fault injection (performance measures 1
and 2 applied) fit into 16,806 logic elements (LEs) of an Altera Cyclone IV
FPGA6, which corresponds to 11.2% hardware usage in terms of LEs. The
FPGA was clocked with fFPGA = 20 MHz in following experiments.

6The device EP4CGX150 from the Intel Altera Cyclone IV family with 149,760 LEs
was used.

168 CHAPTER 9. EXPERIMENTAL RESULTS

Using the conventional setup, where all NC = 10, 029 combinational cells
are instrumented instead, 30,232 LEs are required to fit the instrumented
design into the FPGA, i.e. about 79% more LEs compared to the proposed
method. Furthermore, because of additional logic in combinational paths,
the maximum operating frequency of the conventional setup is limited to
fFPGA = 7 MHz, which is a reduction of 69%. The implementation of the
conventional approach only allows fault injection in combinational logic, in
contrast to my method, which is able to inject faults into FFs as well. Note
that instrumenting FFs in addition would considerably increase the hardware
overhead and would decrease the operating clock frequency further.

9.3.3 Performance

Circuit 8051-mc is smaller than 80251-mc, and therefore, the conventional
approach can be applied to it for comparison to existing work. This enabled
me to compare the efficiency of the method that I proposed in Chapter 7
for enhancing fault injection in combinational logic to existing work with 1)
increasing test durations ttest and 2) increasing fault multiplicities m.

Setup of Fault Injection Campaigns Fault injection campaigns for
8051-mc were constructed in such a way that these allow to analyze the
impact of the test duration and the spatial fault multiplicity on the perfor-
mance. For this purpose, eight fault injection campaigns were performed,
listed in Table 9.3, where four different fault sets were iterated, and either
one of the two functional tests isax1 and isax2 lasting ttest = 11, 851 and
ttest = 23, 811 clock cycles, respectively, sensitized the circuit.

Although two tests with different durations were used to sensitize the
circuit, during each of these fault injection campaigns, 22.40 million SETs
or METs as well as 4.27 million SEUs were injected. I chose this setup
to keep the number of fault experiments Ne per fault injection campaign
constant, allowing to evaluate the impact on the performance of the test
duration ttest and the spatial fault multiplicity m. More precisely, for fault
injection in combinational logic, I chose the same number of fault injec-
tion times NT = 2234 and the same number of spatial fault configurations
|F spatial,value| = NC = 10.029 for all fault injection campaigns. Note that
the number of spatial fault configurations matches the number of fault injec-
tion locations in combinational logic. For this purpose, I generated sets of
spatial-value configurations including NC = 10.029 spatial configurations in
combinational logic each, where I chose a different spatial fault multiplicity
m ∈ { 1, 2, 3, 10 } for each of these sets. Sets of spatial fault configurations

9.3. FAULT INJECTION IN COMB. AND SEQ. LOGIC 169

with multiplicities m > 1 were generated at random, whereas the set for sin-
gle faults included all possible SETs. Using the proposed software-based pre-
processing for fault injection in combinational logic, the sets of spatial fault
configurations and all considered fault injection times were iterated. That
way, NC ·NT = 22.40 · 106 SETs or METs were injected, as listed in column
#MET of Table 9.3, for which equivalent dMEUs were determined. Then,
the determined dMEUs were injected in sequential cells using the FPGA-
based fault emulator. Note that METs were generated at random only for
benchmark purposes. I suggest to use layout or structural circuit information
for multiple fault selection, as presented in [PTH+15, PHB+14, VML+14].

As proposed in Section 8.3.2, I additionally generated all possible single
faults in sequential logic (SEUs), so NFF = 1911 spatial-value configura-
tions. During fault generation, I iterated these as well as all considered
fault injection times, which resulted in NFF · NT = 4.27 · 106 SEUs, as
listed in column #SEU of Table 9.3. According to Equation 6.12, Ne =
|F spatial,value| ·NT ·ND = (22.40 + 4.27) · 106, where ND = 1 and NT < ttest .

For comparison to existing work, I performed the same fault injection
campaigns using the conventional stand-alone emulation-based approach.
For fault injection in combinational logic all combinational cells were in-
strumented, whereas for fault injection in sequential logic all sequential cells
were instrumented.

Total Performance The runtime when using the conventional approach
was independent of the spatial fault multiplicity and constant with respect
to the executed tests. This is due to activating performance optimization
measures 1 + 2, as detailed earlier in Section 9.2. Fault injection campaigns
for combinational logic using the conventional approach took about 11 min-
utes when circuit 8051 was sensitized by test isax1 and 23 minutes when
sensitized by test isax2.

In contrast, when using the proposed method, the runtime was depen-
dent on both the spatial fault multiplicity and the test duration, as listed
in column time in Table 9.3. It can be seen, that the performance of the
proposed method decreases (increased runtime) for the longer test isax2 and
it also decreases with increasing fault multiplicities. Note that all presented
runtimes include the time it takes for combinational fault propagation uti-
lizing MiniSAT as well as sequential fault propagation utilizing FPGA-based
fault emulation. Results for SEUs need to be generated only once and could
have been reused for following fault injection campaigns, decreasing the run-
time of respective fault injection campaigns. Furthermore, sequential fault
propagation and combinational fault propagation could have been performed

170 CHAPTER 9. EXPERIMENTAL RESULTS

in parallel as soon as the first results are generated by MiniSAT. Note that
these optimization possibilities are not considered in Table 9.3 to enable
comparison of fault injection campaigns.

As can be seen in Table 9.3, my method performed noticeably better than
the conventional approach (speed-up 1.9 to 5.9). I noticed that the speed-up
of my method is the best for test isax2, which lasts about two times longer
than test isax1, whereas the speed-up was decreased with increasing fault
multiplicities. In order to explain the test-dependency and the dependency
on the spatial fault multiplicity, I am going to discuss the performance of
solely the software-based pre-processing for fault injection in combinational
logic, which incorporates MiniSAT.

Performance of MiniSAT Table 9.4 lists the respective times required by
MiniSAT for fault injection and performing combinational fault propagation
during eight fault injection campaigns for circuit 8051-mc. Again, each fault
injection campaign covered 22.40 million fault injections in combinational
logic. Note that MiniSAT was executed in 20 independent instances, which
processed equal fractions of to be considered fault sets and were executed by
a single Intel(R) Xeon(R) X5660 CPU clocked with 2.80 GHz.

As shown, the time required by MiniSAT was similar in all experiments,
although the spatial fault multiplicity was increased. Furthermore, the per-
formance of solely MiniSAT did not depend on the test duration. It was
only dependent on the number of iterations required to perform fault in-
jection campaigns. This is reasonable, since fault injection campaigns were
constructed such that the same number of NC · NT = 22.40 · 106 iterations
with MiniSAT was required for each fault injection campaign. Although, the
effort for injecting faults using MiniSAT’s assumption function increases with
the spatial fault multiplicity, its contribution to the total runtime is negligi-
ble and did not explain the increased runtime for higher fault multiplicities.
Remember that more distinguishable faults were generated as the spatial
fault multiplicity m was increased, as discussed before with fault propaga-
tion results. As a consequence, the efficiency of the proposed performance
optimizations decreased since less emulations were skipped, resulting in the
performance loss. However, when executing longer tests, longer emulations
are skipped, which resulted in a better speed-up compared to the conven-
tional approach. That is, the proposed method performed better for longer
tests.

9.4. SUMMARY AND CONCLUSIONS 171

Table 9.4: Time required by MiniSAT for performing fault injection and
fault propagation in combinational logic of circuits 80251-mc and 8051-mc,
which are sensitized by the tests listed in column test. The time is given in
hour:minute.

circuit test m = 1 m = 2 m = 3 m = 10

8051-mc isax1 2:22 2:20 2:26 2:23
” isax2 2:26 2:34 3:13 2:22

80251-mc cpu 9:08 n.a. n.a. n.a.
” aes 3:33 n.a. n.a. n.a.
” des 1:39 n.a. n.a. n.a.

9.4 Summary and Conclusions

I demonstrated the applicability of proposed fault emulation techniques with
two different microcontroller designs, varying tests and varying fault sets.
Emphasize was put on evaluating proposed performance optimizations. I was
able to show that the proposed optimization measures enable fault emulation
to provide maximum configurability while providing optimal performance.

Furthermore, I evaluated the method proposed to enhance fault injection
in combinational logic, where I was able to show the applicability for an
industrial design, for which the conventional stand-alone emulation-based
approach failed. In order to compare the performance to existing work,
several fault injection campaigns were performed for a smaller circuit, in
which a huge number of faults were injected. In total, eight fault injection
campaigns for fault injection in combinational logic of circuit 8051-mc were
performed, during which 213 million faults were injected in total. Compared
to the conventional approach, the proposed method performed better in all
fault injection campaigns with a speed-up of up to factor six.

On top of a good performance, the proposed method enables to model the
four fault types SET, MET, SEU and MEU exhaustively, without restricting
fault injection to few locations, which makes it suitable for multiple fault se-
lection based on layout or structural information. Moreover, it requires 45%
less hardware on FPGAs, increasing applicability for large circuits. Thus,
the proposed method for enhancing fault injection in combinational logic
constitutes a solution for complex circuits and tests that provides the con-
figurability and the performance required for mimicking fault attacks. Note,
the complexity of MiniSAT’s propagate function (Boolean constraint prop-
agation without conflicts) is linear with the circuit size and the runtime for

172 CHAPTER 9. EXPERIMENTAL RESULTS

sequential fault propagation increases linearly with the test duration. Hence,
the proposed fault injection environment is also suitable for even more com-
plex circuits and tests.

Considering the high probability of, e.g., a laser shot to inject multiple
faults into a circuit [PTH+15, VML+14], not only security concepts are re-
quired to deal with single faults as well as multiple faults with varying fault
multiplicities. Also, fault injection tools, such as the presented one, able to
handle arbitrary multiple faults efficiently in order to mimic arbitrary fault
attacks are required to verify security concepts and their implementations.
This allows to maximize the benefit from limited verification times. During
my experiments I experienced that single faults injected into combinational
logic (SETs) of a circuit that is sensitized by a test may propagate rarely
into several hundred sequential cells. That is, during sequential fault propa-
gation utilizing fault emulation equivalent MEUs with fault multiplicities of
several hundreds need to be injected. Due to the proposed fault emulation
techniques and optimizations, this can be handled with the presented fault
emulation without performance loss compared to fault-free test runs.

Chapter 10

Conclusions

In this thesis, I looked into fault injection concepts used to mimic fault
attacks in order to verify countermeasures of security circuits. Similar to
functional verification it is important to verify the design against security
flaws pre-silicon to avoid redesigns, decreasing design costs and time to mar-
ket. I worked out that for mimicking arbitrary fault attacks it is mandatory
to provide the ability to configure arbitrary faults. Unfortunately, the huge
variety of combination possibilities for spatial and temporal attack points
lead to a fault injection space infeasible to be analyzed completely. Analysis
therefore need to focus on subsets of the fault injection space, which have to
be selected based on their relevance for the specified security level. Further-
more, respective tools need to provide high performance in order to reduce
the required verification time respectively to maximize the security verifica-
tion coverage within a limited available time for it. Besides configurability
and performance, applicability for processor-based security designs is a key
requirement. Processor-based designs are usually sensitized with functional
tests for security verification, which the corresponding tools need to handle. I
propose using FPGA-based fault emulation as pre-silicon fault modeling tool
since it fits all these requirements. To remove existing disadvantages and
limitations of FPGA-based fault emulation, I proposed new fault emulation
techniques in this thesis. My focus was on closing the gap between config-
urability and performance of FPGA-based fault emulation and to achieve
industrial applicability for security related designs.

The proposed fault emulation techniques and implemented fault models
are described with a fault configuration model, which I introduced at a meta
level. The meta fault configuration model is independent of specific levels of
abstraction of a circuit and constitutes a superset of fault models known from
literature. It covers all configuration possibilities required to mimic arbitrary
fault attacks. For this purpose, a spatial-value configuration space, temporal

173

174 CHAPTER 10. CONCLUSIONS

properties and the respective granularity were defined independently of spe-
cific abstraction levels of the circuit under verification. The relation between
spatial-value configuration space and temporal properties was described as a
fault configuration function, which maps time intervals to arbitrary forcing
functions. This way, a meta model was created that has the flexibility to be
further specified for specific abstraction levels and fault model types, while
it covers any fault configuration relevant to mimic arbitrary physical fault
attacks.

Then, I presented an FPGA-based fault emulation environment suitable
for modeling multiple faults in sequential cells based on the stuck-at and
bit-flip fault models. It supports fault configuration at runtime, which in-
cludes configurable fault model types, single and multiple faults and variable
fault durations. Fault configurations can be applied at arbitrary discrete
times during fault experiments. For fault injection in combinational logic,
I presented a new method. It uses a software-based pre-processor, based
on Boolean constraint propagation provided by a SAT-solver, to model sin-
gle and multiple event transients (SETs and METs) and to propagate these
to the inputs of sequential cells. Equivalent single and multiple event up-
sets (SEU and MEU) in sequential cells are then determined and mapped
onto the FPGA-based fault emulator for sequential fault propagation. More-
over, equivalence relations between the mapped faults are exploited to drop
equivalent faults from further fault emulation. This optimization consider-
ably increased the performance, although an additional pre-processing step
is added. In contrast to existing work, the proposed method provides de-
signers a tool to perform extensive fault emulations for SETs, METs, SEUs
and MEUs in significantly reduced time. The proposed method for fault
injection in combinational logic reduces hardware overhead for circuit in-
strumentation on FPGAs by 45% and is, hence, still applicable to larger
circuits for which conventional approaches require significantly more hard-
ware resources, which may not fit into the available FPGAs. Moreover, the
proposed method for fault injection in combinational logic performs up to six
times faster for analyzed fault injection campaigns compared to conventional
stand-alone FPGA-based fault emulation.

The performance for fault injection in sequential logic was increased
with three optimization measures that fight the communication bottleneck
of FPGA-based fault emulation. The first two optimization measures do
not limit configuration capabilities at all and tend to perform better as the
test duration increases. For a wide range of multiple faults the performance
is close to the test duration of fault-free fault emulation runs, which is the
theoretical optimum. The third measure comes as a trade-off between per-
formance and configurability and provides runtimes close to the theoretical

175

optimum even for very short tests. Additional performance optimization
measures for shortening fault experiments and skipping equivalent fault ex-
periments were proposed.

Furthermore, I proposed a feature to support fault configurations with
multiple fault injection times, which enables fault emulation to model any
fault configuration defined in the total fault injection space in an efficient way
without limitations. I presented the first FPGA-based fault emulation envi-
ronment that provides such powerful configuration possibilities at run time.
Thus, I closed the gap between performance and configurability of multiple
fault emulation environments. The presented fault emulation environment
therefore poses a high performance tool that is suitable for simple as well as
sophisticated fault selection strategies and enables to evaluate new ones. It
suits fault selection based on layout or structural information and multiple
fault injection times can be configured to mimic, e.g., multiple laser fault
injection with a time offset.

Further, I proposed a hardware-efficient and performance-efficient concept
for evaluating emulation results in hardware. A single fault-free emulation
is used to generate a golden reference for following fault emulations. This
way, the reference for result comparison has not to be generated by a second
instance of the circuit to be verified. Moreover, the fault emulator is sen-
sitive to events on dedicated observation points, which allows to judge the
circuit behavior in a more flexible manner and reduces false positives in the
emulation results. This method is supported by a self-testing functional test
software for processor-based security designs. Based on this feature, tempo-
ral fault injection settings can be configured relatively to dedicated events on
the defined observation points. For instance, time frames of varying length
in which security-relevant operations are executed can be selected for fault
injection without manually determining the absolute timing of it.

I demonstrated the applicability of the proposed fault emulation tech-
niques with two different circuits used for security applications, varying tests
and varying fault sets, including varying fault multiplicities. Special em-
phasis was put on evaluating the proposed performance optimizations when
increasing the fault multiplicity of the modeled faults. I was able to show
that the proposed optimization measures provide fault emulation, on the one
hand, a maximum degree of configurability and, on the other hand, feature
an optimal performance.

The increased performance, the improved applicability for larger circuits,
and the high configurability of FPGA-based fault emulation can be used by
the semiconductor industry to analyze more faults in given and typically
limited time. This way, the proposed techniques help to find and prevent
security flaws in devices that we use in our daily life already during circuit

176 CHAPTER 10. CONCLUSIONS

design, i.e. before these are manufactured and shipped to end users respec-
tively fail post silicon certification.

Bibliography

[AAN02] Dan Alexandrescu, Lorena Anghel, and Michael Nicolaidis.
New methods for evaluating the impact of single event tran-
sients in vdsm ics. In Defect and Fault Tolerance in VLSI
Systems, 2002. DFT 2002. Proceedings. 17th IEEE Interna-
tional Symposium on, pages 99–107. IEEE, 2002.

[ABF94] M. Abramovici, M.A. Breuer, and A.D. Friedman. Digital
Systems Testing and Testable Design. Electrical engineering,
communications and signal processing. IEEE, 1994.

[ABH+02] Christian Aumüller, Peter Bier, Peter Hofreiter, Wieland Fis-
cher, and Jean-Pierre Seifert. Fault attacks on rsa with crt:
Concrete results and practical countermeasures. IACR Cryp-
tology ePrint Archive, 2002:73, 2002.

[ABTV07] MA Aguirre, V Baena, J Tombs, and Massimo Violante. A
new approach to estimate the effect of single event transients
in complex circuits. Nuclear Science, IEEE Transactions on,
54(4):1018–1024, 2007.

[ADN+10] Michel Agoyan, Jean-Max Dutertre, David Naccache, Bruno
Robisson, and Assia Tria. When clocks fail: On critical paths
and clock faults. In Dieter Gollmann, Jean-Louis Lanet, and
Julien Iguchi-Cartigny, editors, CARDIS, volume 6035 of Lec-
ture Notes in Computer Science, pages 182–193. Springer,
2010.

[AK96] Ross Anderson and Markus Kuhn. Tamper resistance: A cau-
tionary note. In Proceedings of the 2Nd Conference on Pro-
ceedings of the Second USENIX Workshop on Electronic Com-
merce - Volume 2, WOEC’96, pages 1–1, Berkeley, CA, USA,
1996. USENIX Association.

177

178 BIBLIOGRAPHY

[ALF00] Lörinc Antoni, Régis Leveugle, and Béla Fehér. Using Run-
Time Reconfiguration for Fault Injection in Hardware Proto-
types. In Defect and Fault Tolerance in VLSI Systems, pages
405–413, 2000.

[ALR01] Algirdas Avizienis, Jean C. Laprie, and Brian Randell. Fun-
damental Concepts of Dependability. In Proceedings of the
3rd Information Survivability Workshop, pages 7–12, Boston,
USA, 2001.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and
Carl E. Landwehr. Basic Concepts and Taxonomy of Depend-
able and Secure Computing. IEEE Transactions on Depend-
able and Secure Computing, 1:11–33, 2004.

[Alt06] Altera. FPGA architecture (online). https://www.intel.

com/content/dam/us/en/pdfs/literature/wp/wp-01003.

pdf, 2006.

[Alt07] Altera. Stratix II device handbook, volume 1 (on-
line). https://www.intel.com/content/dam/us/en/pdfs/

literature/hb/stx2/stratix2_handbook.pdf, 2007.

[AZS12] Hamed Abbasitabar, Hamid R. Zarandi, and Ronak Salamat.
Susceptibility analysis of LEON3 embedded processor against
multiple event transients and upsets. In CSE, Paphos, Cyprus,
December 5-7, 2012, pages 548–553, 2012.

[Bau05] R. C. Baumann. Radiation-induced soft errors in advanced
semiconductor technologies. IEEE Transactions on Device and
Materials Reliability, 5(3):305–316, Sept 2005.

[BBC+09] Souheib Baarir, Cécile Braunstein, Renaud Clavel, Em-
manuelle Encrenaz, Jean-Michel Ilié, Régis Leveugle, Isabelle
Mounier, Laurence Pierre, and Denis Poitrenaud. Comple-
mentary formal approaches for dependability analysis. In 24th
IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems, DFT 2009, Chicago, Illinois, USA, October
7-9, 2009, pages 331–339, 2009.

[BCN+04] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tun-
stall, and Claire Whelan. The sorcerer’s apprentice guide
to fault attacks. IACR Cryptology ePrint Archive, 2004:100,
2004.

https://www.intel.com/content/dam/us/en/pdfs/literature/wp/wp-01003.pdf
https://www.intel.com/content/dam/us/en/pdfs/literature/wp/wp-01003.pdf
https://www.intel.com/content/dam/us/en/pdfs/literature/wp/wp-01003.pdf
https://www.intel.com/content/dam/us/en/pdfs/literature/hb/stx2/stratix2_handbook.pdf
https://www.intel.com/content/dam/us/en/pdfs/literature/hb/stx2/stratix2_handbook.pdf

BIBLIOGRAPHY 179

[BDES14] Bernd Becker, Rolf Drechsler, Stephan Eggersglüß, and
Matthias Sauer. Recent advances in sat-based atpg: Non-
standard fault models, multi constraints and optimization. In
DTIS, pages 1–10. IEEE, 2014.

[BDL97] Dan Boneh, Richard A. Demillo, and Richard J. Lipton.
On the Importance of Checking Cryptographic Protocols for
Faults (Extended Abstract). In Theory and Application of
Cryptographic Techniques, pages 37–51, 1997.

[BDN08] Alberto Bosio and Giorgio Di Natale. LIFTING: A Flexible
Open-Source Fault Simulator. In ATS’08: Asian Test Sympo-
sium, pages 035–040, Saporro, Japan, November 2008.

[BGGG05] J. C. Baraza, J. Gracia, D. Gil, and P. J. Gil. Improvement of
fault injection techniques based on VHDL code modification.
In IEEE International High-Level Design Validation and Test
Workshop, pages 19–26, 2005.

[BHF97] Vamsi Boppana, Ismed Hartanto, and W. Kent Fuchs. Char-
acterization and implicit identification of sequential indistin-
guishability. In VLSI Design, pages 376–380. IEEE Computer
Society, 1997.

[BMM00] Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential
Fault Attacks on Elliptic Curve Cryptosystems. In Interna-
tional Crytology Conference, pages 131–146, 2000.

[BS97] E. Biham and A. Shamir. Differential fault analysis of secret
key cryptosystems. In CRYPTO, pages 513–525, 1997.

[BS03] Johannes Blömer and Jean-Pierre Seifert. Fault based crypt-
analysis of the advanced encryption standard (aes). In Re-
becca N. Wright, editor, Financial Cryptography, volume
2742 of Lecture Notes in Computer Science, pages 162–181.
Springer, 2003.

[BSH75] D. Binder, E. C. Smith, and A. B. Holman. Satellite anoma-
lies from galactic cosmic rays. IEEE Transactions on Nuclear
Science, 22, 1975.

[CDR+16] Stephan De Castro, Jean-Max Dutertre, Bruno Rouzeyre,
Giorgio Di Natale, and Marie-Lise Flottes. Frontside versus

180 BIBLIOGRAPHY

backside laser injection: A comparative study. J. Emerg. Tech-
nol. Comput. Syst., 13(1):7:1–7:15, November 2016.

[CET13] Liang Chen, Mojtaba Ebrahimi, and Mehdi Baradaran
Tahoori. CEP: correlated error propagation for hierarchical
soft error analysis. J. Electronic Testing, 29(2):143–158, 2013.

[CHD95] Kwang-Ting Cheng, Shi-Yu Huang, and Wei-Jin Dai. Fault
emulation: a new approach to fault grading. In International
Conference on Computer Aided Design, pages 681–686, 1995.

[CHD99] Kwang-Ting Cheng, Shi-Yu Huang, and Wei-Jin Dai. Fault
emulation: A new methodology for fault grading. IEEE Trans-
actions on Computer-aided Design of Integrated Circuits and
Systems, 18:1487–1495, 1999.

[CMD01] Li Chen, Student Member, and Sujit Dey. Software-based
self-testing methodology for processor cores. IEEE Trans.
Computer-Aided Design, 20:369–380, 2001.

[CMR+01] Pierluigi Civera, Luca Macchiarulo, Maurizio Rebaudengo,
Matteo Sonza Reorda, and Massimo Violante. Exploiting
FPGA for Accelerating Fault Injection Experiments. In In-
ternational On-Line Testing Symposium, pages 9–13, 2001.

[CMR+02] Pierluigi Civera, Luca Macchiarulo, Maurizio Rebaudengo,
Matteo Sonza Reorda, and Massimo Violante. An FPGA-
Based Approach for Speeding-Up Fault Injection Campaigns
on Safety-Critical Circuits. Journal of Electronic Testing,
18:261–271, 2002.

[Com12] Common Criteria. Common criteria for information technol-
ogy security evaluation. Technical report, Common Criteria,
September 2012.

[Con03] C. Constantinescu. Trends and challenges in vlsi circuit relia-
bility. Micro, IEEE, 23(4):14–19, July 2003.

[CP95] Jeffrey A. Clark and Dhiraj K. Pradhan. Fault Injection: A
Method for Validating Computer-System Dependability. IEEE
Computer, 28:47–56, 1995.

BIBLIOGRAPHY 181

[DBG+09] J. M. Daveau, A. Blampey, G. Gasiot, J. Bulone, and P. Roche.
An industrial fault injection platform for soft-error depend-
ability analysis and hardening of complex system-on-a-chip.
In 2009 IEEE International Reliability Physics Symposium,
pages 212–220, April 2009.

[DDRT12] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and
Assia Tria. Electromagnetic transient faults injection on a
hardware and a software implementations of AES. In 2012
Workshop on Fault Diagnosis and Tolerance in Cryptography,
Leuven, Belgium, September 9, 2012, pages 7–15, 2012.

[Dia75] Francisco J. O. Dias. Fault masking in combinational logic
circuits. IEEE Trans. Computers, 24(5):476–482, 1975.

[DLV03] Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differ-
ential fault analysis on a.e.s. IACR Cryptology ePrint Archive,
2003:10, 2003.

[DNFLR12] Giorgio Di Natale, Marie-Lise Flottes, Feng Lu, and Bruno
Rouzeyre. tLIFTING : A Multi-level Delay-annotated Fault
Simulator for Digital Circuits. In DCIS’2012: XVII Confer-
ence on Design of Circuits and Integrated Systems, page 1,
November 2012. Poster.

[EAT13] Mojtaba Ebrahimi, Hossein Asadi, and Mehdi Baradaran
Tahoori. A layout-based approach for multiple event tran-
sient analysis. In DAC ’13, Austin, TX, USA, May 29 - June
07, 2013, pages 100:1–100:6, 2013.

[EMEM14] Mojtaba Ebrahimi, Abbas Mohammadi, Alireza Ejlali, and
Seyed Ghassem Miremadi. A fast, flexible, and easy-to-develop
fpga-based fault injection technique. Microelectronics Reliabil-
ity, 54(5):1000–1008, 2014.

[ERTU07] Peeter Ellervee, Jam Raik, K. Tammemäe, and Raimund
Ubar. FPGA-based fault emulation of synchronous sequen-
tial circuits. Iet Computers and Digital Techniques, 1, 2007.

[ES] Niklas Eén and Niklas Sörensson. The MiniSAT Page (online).
http://www.minisat.se/.

http://www.minisat.se/

182 BIBLIOGRAPHY

[ESRT15] Mojtaba Ebrahimi, Nour Sayed, Maryam Rashvand, and
Mehdi Baradaran Tahoori. Fault injection acceleration by ar-
chitectural importance sampling. In 2015 International Con-
ference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS 2015, Amsterdam, Netherlands, October 4-9,
2015, pages 212–219, 2015.

[EVC+09] Luis Entrena, Mario Garćıa Valderas, Raúl Fernández Carde-
nal, Marta Portela Garcia, and Celia López Ongil. Set emula-
tion considering electrical masking effects. IEEE Transactions
on Nuclear Science, 56(4):2021–2025, 2009.

[FT09] Toshinori Fukunaga and Junko Takahashi. Practical fault at-
tack on a cryptographic lsi with iso/iec 18033-3 block ciphers.
In Luca Breveglieri, Israel Koren, David Naccache, Elisabeth
Oswald, and Jean-Pierre Seifert, editors, FDTC, pages 84–92.
IEEE Computer Society, 2009.

[Gai97] Jiri Gaisler. Evaluation of a 32-bit microprocessor with built-
in concurrent error-detection. In FTCS, pages 42–46. IEEE
Computer Society, 1997.

[Gar15] Gartner, Inc. Gartner Says 6.4 Billion Connected ”Things”
Will Be in Use in 2016, Up 30 Percent From 2015 (online).
http://www.gartner.com/newsroom/id/3165317, 2015.

[Gar17a] Gartner, Inc. Gartner Says 8.4 Billion Connected ”Things”
Will Be in Use in 2017, Up 31 Percent From 2016 (online).
http://www.gartner.com/newsroom/id/3598917, 2017.

[Gar17b] Gartner, Inc. Gartner Says Worldwide Sales of Smartphones
Grew 7 Percent in the Fourth Quarter of 2016 (online). http:
//www.gartner.com/newsroom/id/3609817, 2017.

[GC91] Sumit Ghosh and Tapan J. Chakraborty. On behavior fault
modeling for digital designs. Journal of Electronic Testing,
2:135–151, 1991.

[Gir03] Christophe Giraud. Dfa on aes. IACR Cryptology ePrint
Archive, 2003:8, 2003.

[GJKC06] Rajesh Garg, Nikhil Jayakumar, Sunil P. Khatri, and Gwan
Choi. A design approach for radiation-hard digital electronics.
In Ellen Sentovich, editor, DAC, pages 773–778. ACM, 2006.

http://www.gartner.com/newsroom/id/3165317
http://www.gartner.com/newsroom/id/3598917
http://www.gartner.com/newsroom/id/3609817
http://www.gartner.com/newsroom/id/3609817

BIBLIOGRAPHY 183

[GKS+11a] Johannes Grinschgl, Armin Krieg, Christian Steger, Rein-
hold Weiss, Holger Bock, and Josef Haid. Automatic sabo-
teur placement for emulation-based multi-bit fault injection.
In International Workshop on Reconfigurable Communication-
Centric Systems-on-Chip, 2011.

[GKS+11b] Johannes Grinschgl, Armin Krieg, Christian Steger, Reinhold
Weiss, Holger Bock, and Josef Haid. Modular Fault Injector
for Multiple Fault Dependability and Security Evaluations. In
Euromicro Symposium on Digital Systems Design, 2011.

[GT04] Christophe Giraud and Hugues Thiebeauld. A survey on fault
attacks. In Jean-Jacques Quisquater, Pierre Paradinas, Yves
Deswarte, and Anas Abou El Kalam, editors, CARDIS, vol-
ume 153 of IFIP, pages 159–176. Kluwer/Springer, 2004.

[Hal14] Neelesh Halinge. Performance optimization of a fault emula-
tion environment, 2014.

[Hen61] F. C. Hennie. Iterative Arrays of Logical Circuits. MIT Press,
Cambridge Mass., 1961.

[Jan09] Stephan Janssen. Erweiterung einer 8051 CPU um digitale
Fehlererkennungsmaßnahmen, 2009.

[JAR+94] Eric Jenn, Jean Arlat, Marcus Rimén, Joakim Ohlsson, and
Johan Karlsson. Fault Injection into VHDL Models: The
MEFISTO Tool. In Symposium on Fault-Tolerant Comput-
ing, pages 66–75, 1994.

[JHSS11] Angelika Janning, Johann Heyszl, Frederic Stumpf, and Georg
Sigl. A cost-effective fpga-based fault simulation environment.
2013 Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy, pages 21–31, 2011.

[KE15] Hans G. Kerkhoff and Hassan Ebrahimi. Intermittent resis-
tive faults in digital cmos circuits. In Zoran Stamenkovic,
Witold A. Pleskacz, Jaan Raik, and Heinrich Theodor Vier-
haus, editors, DDECS, pages 211–216. IEEE, 2015.

[KHP04] Tanay Karnik, Peter Hazucha, and Jagdish Patel. Charac-
terization of Soft Errors Caused by Single Event Upsets in
CMOS Processes. IEEE Transactions on Dependable and Se-
cure Computing, 1:128–143, 2004.

184 BIBLIOGRAPHY

[KJP14] Raghavan Kumar, Philipp Jovanovic, and Ilia Polian. Precise
fault-injections using voltage and temperature manipulation
for differential cryptanalysis. In IOLTS, pages 43–48. IEEE,
2014.

[KKJ10] Zvi Kohavi and Niraj K. Jha. Switching and Finite Automata
Theory. Cambridge University Press, 3rd edition, 2010.

[KLPB05] Sandip Kundu, Matthew DT Lewis, Ilia Polian, and Bernd
Becker. A soft error emulation system for logic circuits. In
DCIS, 2005.

[KP74] S. Kamal and C. V. Page. Intermittent Faults: A Model and
a Detection Procedure. IEEE Transactions on Computers, C-
23:713–719, 1974.

[KRL15] Bradley T. Kiddie, William H. Robinson, and Daniel B. Lim-
brick. Single-event multiple-transient characterization and
mitigation via alternative standard cell placement methods.
ACM Trans. Des. Autom. Electron. Syst., 20(4):60:1–60:22,
September 2015.

[LCMV09] Régis Leveugle, A. Calvez, Paolo Maistri, and Pierre Van-
hauwaert. Statistical fault injection: Quantified error and
confidence. In DATE, Nice, France, April 20-24, 2009, pages
502–506, 2009.

[LDCDN+15] Feng Lu, Stephan De Castro, Giorgio Di Natale, Marie-Lise
Flottes, and Bruno Rouzeyre. Dynamic fault model for long
duration laser-induced fault simulation. In TRUDEVICE
Workshop, Grenoble, France, March, 2015.

[LDJK94] Peter Lidén, Peter Dahlgren, Rolf Johansson, and Johan
Karlsson. On latching probability of particle induced tran-
sients in combinational networks. In FTCS, pages 340–349.
IEEE Computer Society, 1994.

[Lev00] Régis Leveugle. Fault Injection in VHDL Descriptions and
Emulation. In Defect and Fault Tolerance in VLSI Systems,
pages 414–419, 2000.

[Lev05] Régis Leveugle. A new approach for early dependability eval-
uation based on formal property checking and controlled mu-
tations. In 11th IEEE International On-Line Testing Sym-

BIBLIOGRAPHY 185

posium (IOLTS 2005), 6-8 July 2005, Saint Raphael, France,
pages 260–265, 2005.

[Lev07] Régis Leveugle. Early analysis of fault-based attack effects in
secure circuits. IEEE Trans. Computers, 56(10):1431–1434,
2007.

[LGPE05] Celia López-Ongil, Mario Garćıa-Valderas, Marta Portela-
Garćıa, and Luis Entrena-Arrontes. Autonomous Transient
Fault Emulation on FPGAs for Accelerating Fault Grading. In
International On-Line Testing Symposium, pages 43–48, 2005.

[LGPE07] Celia López-Ongil, Mario Garćıa-Valderas, Marta Portela-
Garćıa, and Luis Entrena-Arrontes. Autonomous Fault Emu-
lation: A New FPGA-Based Acceleration System for Hardness
Evaluation. IEEE Transactions on Nuclear Science, 54:252–
261, 2007.

[LH92] H. K. Lee and D. S. Ha. Hope: An efficient parallel fault
simulator for synchronous sequential circuits. In Proceedings
of the 29th ACM/IEEE Design Automation Conference, DAC
’92, pages 336–340, Los Alamitos, CA, USA, 1992. IEEE Com-
puter Society Press.

[LH07] Daniel Larsson and Reiner Hähnle. Symbolic fault injection.
In Bernhard Beckert, editor, Proc. 4th International Verifica-
tion Workshop (Verify) in connection with CADE-21 Bremen,
Germany, volume 259, pages 85–103. CEUR Workshop Pro-
ceedings, 2007.

[LNF+14] Feng Lu, Giorgio Di Natale, Marie-Lise Flottes, Bruno
Rouzeyre, and Guillaume Hubert. Layout-aware laser fault in-
jection simulation and modeling: From physical level to gate
level. In DTIS, pages 1–6. IEEE, 2014.

[May78] A New Physical Mechanism for Soft Errors in Dynamic Mem-
ories, May 1978.

[MDH+13] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno
Robisson, and Emmanuelle Encrenaz. Electromagnetic fault
injection: Towards a fault model on a 32-bit microcontroller.
In 2013 Workshop on Fault Diagnosis and Tolerance in Cryp-
tography, Los Alamitos, CA, USA, August 20, 2013, pages
77–88, 2013.

186 BIBLIOGRAPHY

[MDH+14] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno
Robisson, and Emmanuelle Encrenaz. Electromagnetic fault
injection: towards a fault model on a 32-bit microcontroller.
CoRR, abs/1402.6421, 2014.

[MEEM12] Abbas Mohammadi, Mojtaba Ebrahimi, Alireza Ejlali, and
Seyed Ghassem Miremadi. SCFIT: A fpga-based fault injec-
tion technique for seu fault model. In Wolfgang Rosenstiel and
Lothar Thiele, editors, DATE, pages 586–589. IEEE, 2012.

[MLB+14] Paolo Maistri, Régis Leveugle, Lilian Bossuet, A. Aubert, Vik-
tor Fischer, Bruno Robisson, Nicolas Moro, Philippe Mau-
rine, Jean-Max Dutertre, and Mathieu Lisart. Electromagnetic
analysis and fault injection onto secure circuits. In 22nd In-
ternational Conference on Very Large Scale Integration, VLSI-
SoC, Playa del Carmen, Mexico, October 6-8, 2014, pages 1–6,
2014.

[MM07] Natasa Miskov-Zivanov and Diana Marculescu. Soft error rate
analysis for sequential circuits. In 2007 Design, Automation
and Test in Europe Conference and Exposition, DATE 2007,
Nice, France, April 16-20, 2007, pages 1436–1441, 2007.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
analysis attacks - revealing the secrets of smart cards. Springer,
2007.

[MVS08] Silvio Misera, Heinrich Theodor Vierhaus, and André Sieber.
Simulated fault injections and their acceleration in systemc.
Microprocessors and Microsystems - Embedded Hardware De-
sign, 32:270–278, 2008.

[MZM10] Natasa Miskov-Zivanov and Diana Marculescu. Multiple tran-
sient faults in combinational and sequential circuits: A system-
atic approach. IEEE Trans. on CAD of Integrated Circuits and
Systems, 29(10):1614–1627, 2010.

[NHHS16] Ralph Nyberg, Johann Heyszl, Dietmar Heinz, and Georg Sigl.
Enhancing fault emulation of transient faults by separating
combinational and sequential fault propagation. In Ayse Kivil-
cim Coskun, Martin Margala, Laleh Behjat, and Jie Han, ed-
itors, ACM Great Lakes Symposium on VLSI, pages 209–214.
ACM, 2016.

BIBLIOGRAPHY 187

[NHN+14] Ralph Nyberg, Johann Heyszl, Jürgen Nolles, Dirk Rabe, and
Georg Sigl. Closing the Gap Between Speed and Configura-
bility of Multi-Bit Fault Emulation Environments for Security
and Safety-Critical Designs. In Euromicro Symposium on Dig-
ital Systems Design, pages 114–121, 2014.

[NHRS15] Ralph Nyberg, Johann Heyszl, Dirk Rabe, and Georg Sigl.
Closing the gap between speed and configurability of multi-bit
fault emulation environments for security and safety–critical
designs. Microprocessors and Microsystems, May 2015.

[NHS15] Ralph Nyberg, Johann Heyszl, and Georg Sigl. Efficient fault
emulation through splitting combinational and sequential fault
propagation. In 1st International Workshop on Resiliency in
Embedded Electronic, 2015.

[Nic10] Michael Nicolaidis. Soft Errors in Modern Electronic Systems.
Springer Publishing Company, Incorporated, 1st edition, 2010.

[NJJ06] André K. Nieuwland, Samir Jasarevic, and Goran Jerin. Com-
binational logic soft error analysis and protection. In IOLTS,
pages 99–104. IEEE Computer Society, 2006.

[NR11] Ralph Nyberg and Dirk Rabe. Verifikation von Fehlererken-
nungsmaßnahmen in Security-Controllern per Emulation. In
DACH Security 2011. Peter Schartner and Jürgen Taeger,
2011.

[NtCP92] Thomas M. Niermann, Wu tung Cheng, and Janak H. Pa-
tel. PROOFS: a fast, memory-efficient sequential circuit fault
simulator. IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems, 11:198–207, 1992.

[OGST+14] Sébastien Ordas, Ludovic Guillaume-Sage, Karim Tobich,
Jean-Max Dutertre, and Philippe Maurine. Evidence of a
larger em-induced fault model. In Marc Joye and Amir Moradi,
editors, CARDIS, volume 8968 of Lecture Notes in Computer
Science, pages 245–259. Springer, 2014.

[Ore02] Oregano Systems Design & Consulting GesmbH. MC8051
IP Core Synthesizeable VHDL Microcontroller IP-Core User
Guide, 2002.

188 BIBLIOGRAPHY

[PGSR10] Mihalis Psarakis, Dimitris Gizopoulos, Edgar E. Sánchez, and
Matteo Sonza Reorda. Microprocessor software-based self-
testing. IEEE Design & Test of Computers, 27(3):4–19, 2010.

[PHB+14] Athanasios Papadimitriou, David Hély, Vincent Beroulle,
Paolo Maistri, and Régis Leveugle. A multiple fault injection
methodology based on cone partitioning towards RTL mod-
eling of laser attacks. In DATE, Dresden, Germany, March
24-28, pages 1–4, 2014.

[PHRB11] Ilia Polian, John P. Hayes, Sudhakar M. Reddy, and Bernd
Becker. Modeling and Mitigating Transient Errors in Logic
Circuits. IEEE Transactions on Dependable and Secure Com-
puting, 8:537–547, 2011.

[PKE+11] Samuel Pagliarini, Fernanda Kastensmidt, Luis Entrena, Al-
mudena Lindoso, and Enrique San Millan. Analyzing the Im-
pact of Single-Event-Induced Charge Sharing in Complex Cir-
cuits. IEEE Transactions on Nuclear Science, 58:2768–2775,
2011.

[PNKI13] Karthik Pattabiraman, Nithin Nakka, Zbigniew T. Kalbar-
czyk, and Ravishankar K. Iyer. Symplfied: Symbolic program-
level fault injection and error detection framework. IEEE
Trans. Computers, 62(11):2292–2307, 2013.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A differential fault
attack technique against spn structures, with application to
the aes and khazad. In Colin D. Walter, Çetin Kaya Koç, and
Christof Paar, editors, CHES, volume 2779 of Lecture Notes
in Computer Science, pages 77–88. Springer, 2003.

[PSC+12] Andrea Pellegrini, Robert Smolinski, Lei Chen, Xin Fu, Siva
Kumar Sastry Hari, Junhao Jiang, Sarita V. Adve, Todd M.
Austin, and Valeria Bertacco. Crashtest’ing swat: Accurate,
gate-level evaluation of symptom-based resiliency solutions. In
Wolfgang Rosenstiel and Lothar Thiele, editors, DATE, pages
1106–1109. IEEE, 2012.

[PTH+15] Athanasios Papadimitriou, Marios Tampas, David Hély, Vin-
cent Beroulle, Paolo Maistri, and Régis Leveugle. Validation
of RTL laser fault injection model with respect to layout in-
formation. In HOST, Washington, DC, USA, 5-7 May, pages
78–81, 2015.

BIBLIOGRAPHY 189

[QS02] Jean-Jacques Quisquater and David Samyde. Eddy current for
Magnetic Analysis with Active Sensor. In Esmart 2002, Nice,
France, 9 2002.

[RCS+15] Andreas Riefert, Riccardo Cantoro, Matthias Sauer, Mat-
teo Sonza Reorda, and Bernd Becker. On the automatic gen-
eration of sbst test programs for in-field test. In Proceedings
of the 2015 Design, Automation & Test in Europe Conference
& Exhibition, DATE ’15, pages 1186–1191, 2015.

[Reo15] Matteo Sonza Reorda. In-field test of safety-critical systems:
is functional test a feasible solution? In 16th Latin-American
Test Symposium, LATS 2015, Puerto Vallarta, Mexico, March
25-27, 2015, pages 1–2, 2015.

[RETU05] Jaan Raik, Peeter Ellervee, Valentin Tihhomirov, and
Raimund Ubar. Improved Fault Emulation for Synchronous
Sequential Circuits. In Euromicro Symposium on Digital Sys-
tems Design, pages 72–78, 2005.

[RSDT13] Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, and
Assia Tria. Fault model analysis of laser-induced faults in sram
memory cells. In Wieland Fischer and Jörn-Marc Schmidt,
editors, FDTC, pages 89–98. IEEE Computer Society, 2013.

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault
induction attacks. In CHES, pages 2–12, 2002.

[SBHS15] Bodo Selmke, Steffan Brummer, Johann Heyszl, and Georg
Sigl. Precise laser fault injections into 90 nm and 45 nm sram-
cells. In CARDIS, Bochum, Germany, November 4-6, 2015,
2015.

[SBP15] Matthias Sauer, Bernd Becker, and Ilia Polian. Phaeton:
A SAT-based framework for timing-aware path sensitization
(pre-print). In IEEE Transactions on Computers. IEEE, (ac-
cepted) 2015.

[SGD08] Nidhal Selmane, Sylvain Guilley, and Jean-Luc Danger. Prac-
tical setup time violation attacks on AES. In Seventh European
Dependable Computing Conference, EDCC-7 2008, Kaunas,
Lithuania, 7-9 May 2008, pages 91–96, 2008.

190 BIBLIOGRAPHY

[SH07] Jörn-Marc Schmidt and Michael Hutter. Optical and em fault-
attacks on crt-based rsa: Concrete results. In Johannes Wolk-
erstorfer Karl C. Posch, editor, Austrochip 2007, 15th Austrian
Workhop on Microelectronics, 11 October 2007, Graz, Austria,
Proceedings, pages 61 – 67. Verlag der Technischen Universität
Graz, 2007.

[Shi00] R. Shirey. Internet security glossary. RFC 2828, The Internet
Society, May 2000.

[Sko05] Sergei P. Skorobogatov. Semi-invasive attacks – a new ap-
proach to hardware security analysis, 2005.

[Sko09] Sergei P. Skorobogatov. Local heating attacks on flash mem-
ory devices. In Mohammad Tehranipoor and Jim Plusquellic,
editors, HOST, pages 1–6. IEEE Computer Society, 2009.

[SMS13] Mohammad Shokrolah Shirazi, Brendan Morris, and Henry
Selvaraj. Fast fpga-based fault injection tool for embedded
processors. In International Symposium on Quality Electronic
Design, ISQED 2013, Santa Clara, CA, USA, March 4-6,
2013, pages 476–480, 2013.

[ST+11] Matthias Sauer, Victor Tomashevich, Jörg Müller 0004,
Matthew D. T. Lewis, A. Spilla, Ilia Polian, Bernd Becker,
and Wolfram Burgard. An fpga-based framework for run-time
injection and analysis of soft errors in microprocessors. In
IOLTS, pages 182–185. IEEE, 2011.

[TK10] Elena Trichina and Roman Korkikyan. Multi fault laser at-
tacks on protected crt-rsa. In Luca Breveglieri, Marc Joye,
Israel Koren, David Naccache, and Ingrid Verbauwhede, edi-
tors, FDTC, pages 75–86. IEEE Computer Society, 2010.

[TMS+13] Nikolaus Theißing, Dominik Merli, Michael Smola, Frederic
Stumpf, and Georg Sigl. Comprehensive analysis of software
countermeasures against fault attacks. In Design, Automation
and Test in Europe, DATE 13, Grenoble, France, March 18-
22, 2013, pages 404–409, 2013.

[VLR06] Pierre Vanhauwaert, Régis Leveugle, and Philippe Roche. Re-
duced Instrumentation and Optimized Fault Injection Control
for Dependability Analysis. In Very Large Scale Integration,
pages 391–396, 2006.

BIBLIOGRAPHY 191

[VML+14] Pierre Vanhauwaert, Paolo Maistri, Régis Leveugle, Athana-
sios Papadimitriou, David Hély, and Vincent Beroulle. On
error models for RTL security evaluations. In DTIS 2014,
Santorini, Greece, May 6-8, pages 1–6, 2014.

[WX11] Feng Wang and Yuan Xie. Soft error rate analysis for com-
binational logic using an accurate electrical masking model.
IEEE Trans. Dependable Sec. Comput., 8(1):137–146, 2011.

[Zie96] James F. Ziegler. Terrestrial cosmic rays. IBM Journal of
Research and Development, 40(1):19–40, 1996.

[ZMM+06] Ming Zhang, Subhasish Mitra, T. M. Mak, Norbert Seifert,
Nicholas J. Wang, Quan Shi, Kee Sup Kim, Naresh R.
Shanbhag, and Sanjay J. Patel. Sequential element design
with built-in soft error resilience. IEEE Trans. VLSI Syst.,
14(12):1368–1378, 2006.

	Abstract
	Kurzfassung
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	My Contribution
	Thesis Structure

	Attacks on Integrated Circuits
	Taxonomy of Attacks
	Basics of Faults in Integrated Circuits
	A Historical Perspective
	Causality Relationship of Fault, Error and Failure
	Persistence of Faults

	Fault Attacks
	Fault Analysis at Algorithm Level
	Methods for Physical Fault Injection

	Summary

	Modeling Fault Attacks during Security Verification of Fault Countermeasures
	Security Requirements and Countermeasures
	Fault Injection Concept
	Abstracting Faults with Fault Models
	Abstraction Level of Fault Models
	Properties of Fault Models
	Fault Model Types
	Transient Fault Models
	Permanent Fault Models
	Summary and Conclusion

	Testing Concepts
	Testability of Faults in Combinational Logic
	Testing Concepts for Sequential Circuits
	Tests and Test Generation

	Propagation and Classification of Transient Faults
	Masking Effects
	Detailed Fault Classification

	Pre-Silicon Fault Modeling Tools
	Relevance for this Thesis

	Meta Fault Configuration Model
	Fault Configuration Space
	Temporal Granularity
	Spatial Configuration Space
	Value Configuration Space
	Spatial-Value Configuration Space
	Total Configuration Space

	Fault Multiplicities
	Spatial Fault Multiplicity
	Temporal Fault Multiplicity

	Practice-Oriented Interpretation
	Mapping Temporal Properties of Faults
	Number of Fault Injection Times
	Permanent vs. Transient Faults
	Parametrized Fault

	Fault Injection Complexity
	Spatial Fault Injection Complexity
	Spatial-Value Fault Injection Complexity
	Total Fault Injection Complexity

	Summary

	State-of-the-Art of FPGA-based Fault Emulation
	Concept
	Fault Injection Methodologies
	Partial FPGA-reconfiguration
	Mutant-based and Saboteur-based HDL Modification
	Circuit Instrumentation Technique

	Fault Generation and Upload
	Test Generation, Upload and Execution
	Structural Test
	Functional Test

	Response Observation and Fault Classification
	Comparison of Two Circuit Instances
	Alternative Approaches
	Response Observation for Processor Designs

	Summary and Discussion

	Fault Emulation Environment for Security Verification
	Fault Configuration Model at Gate Level
	Finite State Machine
	Fault Configuration Model at Gate Level
	Multiple Transient and Multiple Permanent Faults
	Single Transient and Single Permanent Faults

	Hardware Implementation
	Fault Injection Control Unit
	Fault Injection Cells
	Concrete Fault Configuration Possibilities

	Circuit Instrumentation
	Fault Injection Campaign
	Response Observation
	Using Adequate Observation Points
	Determining the Fault-Free Reference
	Determining Fault Emulation Results
	Observation of Processor Designs
	Discussion of Advantages

	Fault Classification for Security Designs
	Summary and Discussion

	Enhancing Fault Injection in Combinational Logic
	Motivation
	Related Work
	A Pre-Processor for Combinational Faults
	Fault Configuration Model for Combinational Cells
	Concept
	Fault Equivalence
	Implementation

	Summary and Discussion

	Performance Optimizations and a Feature for Multiple Fault Injection Times
	Performance Benchmarks
	Fighting the Communication Bottleneck
	Configuration Data Overhead Reduction
	Parallelizing Fault Experiments and Configuration Upload
	Sub-Selection of Fault Injection Cells
	Summary

	Reducing Emulation Runtime
	Shorten Fault Experiments
	Skipping Equivalent Fault Experiments

	Multiple Fault Injection Times
	Summary and Discussion

	Experimental Results
	Verified Security Controllers
	Fault Injection in Sequential Logic
	Fault Injection in Combinational and Sequential Logic
	Combinational Fault Propagation Results
	Applicability for Industrial Circuits
	Performance

	Summary and Conclusions

	Conclusions
	Bibliography

