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Abstract

Today, optical networks are typically statically configured and provide customers with
dedicated, fixed-bandwidth connections for long periods of times. Dynamic reconfigura-
bility could benefit the infrastructure providers as well as their customers. Two promising
concepts increasing the flexibility of computer networks are Software-Defined Network-
ing (SDN) and Network Virtualization (NV). At its core, SDN describes the separation
of the control and the data plane. It hands over the responsibility for forwarding deci-
sions to a logically centralized controller. Even though optical networks follow a similar
separation, they lack unified open interfaces, which are a corner stone of the SDN con-
cept. NV follows a different approach that benefits from SDN without relying on it. NV
enables multiple tenants to share a common infrastructure, thereby passing over partial
control of the network to tenants. Common network abstractions for various technolo-
gies are one prerequisite. In the case of networks, abstraction removes details either for
security reasons or to lighten the task of management by hiding complexity. Here, SDN
interfaces are beneficial for controlling the hardware as well as virtual networks. Finally,
flexible grids in Dense Wavelength Division Multiplexing (DWDM) transmission are an
emerging technology improving the granularity in the assignment of spectral resources,
with which the control and abstractions need to cope.
The definition of architectures and protocols for Software-Defined Optical Networks
(SDONs) is currently an ongoing process and is far from being complete at the time be-
ing. This thesis investigates, through analytical methods and via experimental system
implementation and evaluation, how optical networks with flexible DWDM grids can be
transformed into SDONs in terms of dynamic lightpath provisioning and network virtu-
alization. The analysis of existing models for the control of optical networks identified
the need for a way of requesting virtual topologies from an infrastructure provider. A
contribution of this thesis is the specification of a novel virtual topology intent interface.
Later, an algorithm is described that covers all the intermediate steps from receiving the
intent to exposing the resulting virtual network topology. One of the critical points in
this transformation is the creation of virtual links. It maps physical link and spectrum
resources to virtual links in the tenant’s topology. In a two-step approach, a (shortest)
path computation is required before spectrum is assigned. This thesis presents an exten-
sion of a shortest path algorithm based on precomputed information, which represents
a trade-off between query time and memory space. The concepts are implemented and
evaluated in a prototypical software called the Optical Virtualization Controller (OVC),
which also provides a migration strategy for legacy networks. Finally, this thesis show-
cases the applicability of the developed solutions to use cases in the management and
orchestration of multilayer networks.
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Kurzfassung

Heutzutage werden Glasfasernetze überwiegend statisch betrieben. Neue Verbindungen
werden selten hinzugefügt und sind anschließend über lange Zeiträume in Verwendung.
Eine dynamische Administration würde sowohl dem Betreiber der Infrastruktur als auch
dessen Kunden zugutekommen. Zwei vielversprechende Konzepte, die zu einer Flexibi-
lisierung von Rechnernetzen führen können, sind Software-basierter Netzbetrieb (SDN)
und Netzvirtualisierung (NV). Das Kernkonzept von SDN umfasst die Trennung der
Steuerungsschicht von der Übertragungsschicht. Obwohl bei Glasfasernetzen diese Auf-
teilung inhärent ist, fehlen offene Schnittstellen, welche einen wichtigen Bestandteil von
SDN darstellen. NV verfolgt einen anderen Ansatz, welcher zwar von SDN unabhängig
ist, aber von dessen Konzepten profitiert. NV erlaubt es mehreren Kunden eine geteilte
Netzinfrastruktur gemeinsam zu nutzen und gibt hierfür einen Teil der Steuerung an
ebendiese weiter. Eine zentrale Voraussetzung sind gemeinsame Abstraktions-Modelle
für die verfügbaren Technologie-Optionen. Diese Abstraktionen verstecken Details in
Rechnernetzen entweder aus Sicherheitsgründen oder um die Konfigurationskomplexität
zu reduzieren. Dafür sind offene SDN-Schnittstellen hilfreich, um eine einheitliche Dar-
stellung und Steuerung der Hardware als auch virtueller Netze zu gewährleisten. Ab-
schließend ist die Einführung von flexiblen Rastern in der Übertragung, die auf dichtem
Wellenlängen-Multiplex (DWDM) beruht, zu erwähnen. Sie verbessern die Granularität
für die Unterteilung des optischen Spektrums, womit allerdings auch die Steuerungskon-
zepte und Abstraktions-Modelle zurechtkommen müssen.
Die Definition einer Architektur für Software-basierte Glasfasernetze (SDONs) ist ein
fortschreitender Prozess, der im Moment noch weit von einer Fertigstellung entfernt
ist. Die vorliegende Arbeit untersucht durch analytische Methoden sowie experimentelle
Implementierungen und deren Auswertung, wie Glasfasernetze mit flexiblen Rastern in
SDONs überführt werden können, insbesondere wenn es um einen dynamischen Auf-
bau von Lichtpfaden und Netzvirtualisierung geht. Die durchgeführte Untersuchung der
bestehenden Modelle für die Konfiguration von Glasfaser-Equipment identifiziert einen
Missstand in Form eines fehlenden benutzerfreundlichen Konzepts zur Anforderung von
virtuellen Topologien. Dieser Missstand wird in dieser Arbeit durch die Definition einer
entsprechenden absichtsorientierten Schnittstelle behoben. Im weiteren Verlauf wird ein
Algorithmus vorgestellt, der in der Lage ist, aus diesen Absichten eine virtuelle Topo-
logie zu erzeugen und dem Kunden anzubieten. Ein kritischer Punkt dieses Prozesses
ist die Erzeugung von virtuellen Kanten, welcher die Abbildung von physikalisch ver-
fügbaren auf virtuelle Ressourcen darstellt. Bei einem zweistufigen Verfahren wird dazu
zuerst ein (kürzester) Pfad für die anschließende Zuweisung des Spektrums berechnet.
Ein wichtiger Beitrag dieser Arbeit in diesem Zusammenhang ist die Erweiterung eines
Algorithmus zur Berechnung von kürzesten Pfaden, der auf vorberechneten Informatio-
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nen basiert und damit einen Kompromiss zwischen Laufzeit und Speichermenge darstellt.
Die Konzepte wurden in Form des Optical Virtualization Controllers (OVC), der zeit-
gleich eine Übergangslösung für Bestandsgeräte darstellt, implementiert und evaluiert.
Abschließend zeigt die Ausarbeitung die Anwendbarkeit der Lösung auf das Management
und die Orchestrierung von Netzen mit mehreren Schichten auf.
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1. Introduction
Optical networks have been considered a conglomeration of large static pipes for a long
time. New technologies like Software-Defined Networking (SDN), Network Virtualiza-
tion (NV) and flexible Dense Wavelength Division Multiplexing (DWDM) grids have
started changing that picture. SDN has triggered a paradigm shift in the overall net-
work control. Its basic idea is to separate the control plane from the data plane and
to hand over the forwarding decisions to a logically centralized controller. One goal
is to give network operators a standardized interface for implementing forwarding be-
havior in Network Elements (NEs) and thereby providing opportunities for automation
and efficiency improvement. Optical networks, which are responsible for high data rate
transmission over long distances, are following a similar control separation by default.
In optical networks, SDN is a driver for the definition and implementation of open inter-
faces for the control of optical network equipment. There, the goal is to develop unified
interfaces and to increase the dynamicity of the network. NV is another promising area
in networking. NV enables the sharing of a physical network between clients by creating
virtual networks, which are then exposed to client controllers. This feature is not de-
pendent on SDN, but NV benefits from open control interfaces. When defining virtual
networks in the case of optical networks, the analog nature of optical networks needs
to be taken into account. Finally, a new standard emerged introducing flexible DWDM
grids. They allow for a more efficient use of spectral bandwidth and support higher data
rates per channel. These grids need to be handled by (optical) network controllers.
All these recent developments point to a future with a more dynamic and cost-efficient
operation of optical networks. Before this can become reality, preliminary work and
adaptations need to be carried out. A fluid transition toward the new networking ap-
proach is the most likely path of action. In this chapter, the motivation for the thesis
is established. The limitations of current optical networks are pointed out, the three
mentioned technologies — SDN, NV and flexible DWDM grids — are explained in more
detail and their applicability to the existing challenges is introduced. Finally, the con-
tribution of this thesis is summarized by giving an overview of the following chapters
and putting them into context.

1.1. Motivation
Optical networks are commonly deployed by incumbent operators, network service pro-
viders, Internet Service Providers (ISPs) and data center operators as well as businesses,
banks or governmental institutions with their own infrastructure. They use lasers to
transmit data through a fiber by modulating the emitted wavelength. One of the major
advantages of optical networks is that they transfer huge amounts of data over a long
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1. Introduction

distance. Typically, current systems support 100 Gbit/s per wavelength. There are al-
ready modules available that achieve 200 Gbit/s per channel and the next generation will
tackle 600 Gbit/s to 1 Tbit/s. Multiple wavelengths can be multiplexed on a single fiber
using Wavelength Division Multiplexing (WDM), e.g., 80 or 96 channels with 50 GHz
spacing in the C-band. Assuming an appropriate modulation format and a continuous
amplification, the signal can be transferred up to a few thousand kilometers without
leaving the optical domain. Staying in the optical domain eliminates the cost and delay
induced by the conversion and processing on the electrical level. On the downside, the
transmission is analog in nature and physical effects need to be taken into account, which
adds complexity to the control and management of the network.

1.1.1. Limitations of Optical Networks

Optical networks are a rather small part of the whole network ecosystem. Through their
capability to transport large amounts of data — in the order of multiple Tbit/s per fiber
— they are a prominent part of networks with high capacity demands. Due to their
special application area and inherent properties resulting from their analog nature, they
suffer from a number of shortcomings.
One of the major limitations of today’s optical transport networks is their rigid nature.
Optical networks are often static with established connections being deployed for months
or even years [Sim14]. One reason for the static nature is the complexity involved in
provisioning. Often manual steps are needed for setting up or tearing down an optical
connection. Even with the support of a Network Management System (NMS), which
is not used in many cases, and remote access, the setup is still a lengthy process. Ad-
ditionally, the lightpath needs to be configured hop-by-hop and the signal needs to be
equalized to avoid interference with other neighboring signals. With the current mode
of operation, it is not possible to request new connections from a provider within hours
or minutes. This inflexibility prevents the optical network from reacting to fluctuations
in demand, which are typical in today’s traffic, e.g., due to time zones. Also, short-term
requests for connectivity between endpoints cannot be satisfied. The low dynamicity
is also caused by the fact that optical networks are planned for long time periods, i.e.,
few years [Muk06]. They do not only have to accommodate current demands but also
forecast future requirements. The slow setup times and the long-term planning lead
to overprovisioning and a low utilization of the available bandwidth. This means that
transponders are operated at a low load to be able to mitigate high demands. Addi-
tionally, the interoperability of the NEs of different vendors is quite limited. On the
data layer, the hardware implementations differ so that an interworking on that level is
complicated. On the control layer, vendors use proprietary information models for stan-
dardized protocols and offer vendor specific NMSs for their devices. Therefore, similar
network elements are grouped together and form vendor islands, which only interact at
the edges. So far, optical networks relied on a rigid DWDM grid. It specifies a fixed
amount of spectral bandwidth that can be used by a signal, e.g., 50 GHz. If a channel
occupies less than the defined range, the remaining bandwidth is wasted. If a channel
requires more spectrum, then multiple independent wavelengths, of which each includes

12



1.1. Motivation

Figure 1.1.: Two domains managed by individual NMSs.

guard bands, have to be chosen and efficiency benefits from having a continuous part of
the spectrum cannot be gained.

1.1.2. Problem Statement
In general, the control of optical equipment is a complex task and optical networks are
rather static [Alv+17]. The presented limitations lead to the following challenges that
need to be overcome: (i) Complex and vendor-specific control of optical equipment,
(ii) no dynamic control of assigned network resources by the client, (iii) Open Systems
Interconnection (OSI) layers are operated independently, (iv) inefficient use of spectrum
due to fixed DWDM grids.
(i) The complexity of control results from heterogeneous and vendor-specific commercial
systems and the analog nature of optical transmission. First of all, the equipment is
modular, which leads to node constraints based on the hardware configuration. One
example are fixed filters, which assign a fixed wavelength to a particular transponder. In
addition, components from different vendors offer unique implementations and features
in order to differentiate from each other. On a physical network level, the analog nature
leads to network constraints, e.g., optical signal-to-noise ratio, crosstalk, and dispersion
affect the maximum signal reach. They have to be taken into account before setting
up services through the network. As a result, every vendor has his own closed NMS
accessing the devices through proprietary interfaces, which leads to the aforementioned
vendor islands. Typically, optical networks are divided into domains [GE13]. Domains
group network elements by administrative unit, common characteristics, like technology
and vendor, or control plane instance. These groups are then managed by an individual
NMS for each domain (see Fig. 1.1). Even though the NMS is a centralized entity, it lacks
standardized and open interfaces so far. Furthermore, unlike IP-networks, the optical
domain most commonly deploys circuit switching. Existing techniques used in the OSI
layer 2 & 3 are frame & packet oriented and not easily transferable to optical circuit
switched networks, which represent a layer 0/1 technology. New protocol definitions and
configuration models that go along with them need to deal with the inherent complexity.
The required steps will cover an abstraction of device models and a unification of control
interfaces for optical equipment.
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1. Introduction

(ii) A customer (of any kind) requesting connectivity through an optical network has
only limited control over the provided resources and the connectivity. Usually, it is
a lengthy process that is triggered by an inquiry for a connection between selected
endpoints. Often, the network operator processes the request manually before it is
installed. The installation involves a certain amount of manual configuration as well,
depending on the deployed software and the available level of custom automation. At the
end of this process, the customer receives a connection between the specified endpoints,
which remains active for an extended time period. Today’s requirements for connectivity
services expect shorter delays between request and instantiation than days or weeks. For
example in the field of broadcasting, connections between the central studio and event
locations need to be set up on demand for the time of the event. After the event, the
connection is no longer needed and can be torn down. Another example are data centers
that want to react quickly to traffic peaks by activating additional bandwidth. The time
required for setting up connections as well as their life span need to be reduced in order to
allow a dynamic and efficient utilization of the network. One approach for this problem
is to give the customer a restricted view of the network that he requested including the
ability to control it. The customer can then react to changes on his own, without having
to go through the network operator. Ideally this is done via open interfaces. Of course,
safety precautions have to be in place to avoid interruptions of other traffic or to prevent
the use of resources other than the assigned ones. To achieve this flexibility, mechanisms
that enable the creation of network partitions and hand over the control to the customer
need to be developed.
(iii) In transport networks, the packet layer (2/3) and the optical layer (0/1) are operated
individually, sometimes even by different business units. These layers are split into
separate domains and only the transition at the edge is considered in operations. This
means aggregated packet streams enter the optical network at an entry point and leave
it at an exit point. These packets use existing optical tunnels without dynamically
adjusting connections in the underlying layer. One reason is that an optical connection
is thought of as being a static pipe without a unified way of changing connectivity on
demand. Therefore, routing decisions are made on the higher layers assuming the entry
and exit points of the optical layer to be given. This approach does not allow for efficient
management of the overall network resources. Without considering both domains in
conjunction, the decision is based on partial information and does not take into account
a joint configuration. For more resource-efficient decisions, common abstractions and a
joint control need to be introduced.
(iv) The commonly deployed fixed DWDM grid limits the options for efficient use of the
spectrum. Only for a small range of bit rates, fixed grids represent a good solution. For
most bit rates, the grid is either wasting spectral bandwidth or it would be more efficient
to get a larger piece of the spectrum instead of multiple independent wavelengths with
individual guard bands. A recently standardized approach introduces the notion of flexi-
ble DWDM grids, which partition the spectrum into discrete units, i.e., slots. The size of
a single slot is smaller than the channel spacing in a fixed grid and an arbitrary number
of continuous slots can be chosen for a data channel. This leads to variable portions
of the spectrum that can be selected, but at the same time the flexibility introduces
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Meiningen

Augsburg München

München

(a) Distributed control.

Meiningen

Augsburg München

München

(b) Centralized control.

Figure 1.2.: Difference between a distributed and a centralized control using a mail de-
livery analogy. Road system: data plane, brains: control plane.

new issues like fragmentation, i.e., parts of the spectrum that effectively cannot be used.
This evolution of optical networks needs to be considered by the upcoming generation
of controllers and models.

1.2. State of the Art
The main drivers of change in this field that can help to overcome the presented short-
comings are SDN — Software-Defined Optical Networks (SDONs) in particular —, NV
and flexible DWDM grids. SDN is a networking paradigm proposing the separation of
control and data plane with a logically centralized controller including open interfaces.
In SDONs, the concepts of SDN are extended toward optical networks. NV defines
the creation of virtual topologies based on an underlying physical topology for exposing
them to a client. This approach is facilitated by SDN but does not strictly depend on
it. Finally, flexible DWDM grids introduce the flexibility to optimize the utilization of
the optical spectrum.

1.2.1. Software-Defined (Optical) Networking
SDN is a networking approach that separates the control plane from the data plane.
It introduces a (logically) centralized controller for the configuration of the forwarding
devices. The approach will be explained using an analogy related to mail delivery. The
difference between a centralized and a distributed control is explained using Fig. 1.2. The
links represent a road system between the cities, which is mapped to the data plane,
while the brains represent the control plane, which makes the forwarding decisions. We
assume that we want to send a letter from Meiningen to München. In a delivery system
with distributed control (Fig. 1.2a), the mail would be forwarded toward the destination
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1. Introduction

Figure 1.3.: General SDN concept (layers and interfaces).

based on local information (local brain), e.g., using the next hop along the shortest
path toward the destination. Only limited information about the system as a whole is
included in the decision, e.g., present traffic or free capacities along other paths might
not be accessible. With a centralized location for the control with globally available
knowledge about the system (central brain in Fig. 1.2b), traffic jams or construction
sites on the shortest delivery path are taken into consideration and a better solution is
found. This means that using the additional hop through Augsburg can lead to a better
overall result according to an objective, like minimizing the delivery time.
A more formal definition is shown in Fig. 1.3 [Ope18c]. The infrastructure layer (or data
plane) at the bottom comprises NEs that are forwarding traffic. In the middle sits the
control layer that includes the logically centralized controller. In this context, it means
that the controller acts as a centralized entity even though it might be distributed, e.g.,
across multiple servers and locations, due to scalability and performance reasons. The
term Southbound Interface (SBI) is used for the interface between the controller and the
infrastructure. The uppermost layer is the application layer. It includes applications that
rely on information that are offered by the controller, e.g., firewall, metering or analytics.
The interface between the controller and the applications is called Northbound Interface
(NBI).
One of the initial drivers of SDN is the OpenFlow (OF) protocol [McK+08]. OF is a
protocol for configuring forwarding devices that maintain a flow table. Early applica-
tions of OF focused on switches and routers. A flow table entry contains header fields,
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Figure 1.4.: Hypervisor in server and network virtualization.

actions and statistics. The header fields are used to match packets and assign them to
flows. The actions of the matching rule are then applied to the packets of the respective
flow. They range from selecting an output port to header manipulations. Additionally,
statistics about packets are collected on a per rule basis as well as in an aggregated form.
For packet-switched networks, OF is the emerging standard and multiple versions are
maintained in parallel by the Open Networking Foundation (ONF) in their specification
library [Ope18b].

No standardized Application Programming Interface (API) description is available for
the NBI, which presents an access point for applications. Even though all controllers
provide their own implementation of this API, most of them rely on Representational
State Transfer (REST) protocols.

Transport SDN (T-SDN) is the extension of SDN to transport networks. A transport
network comprises multiple layers, domains and vendors [Alv+17]. The available layers
may span from Layer 0 (optical) to Layer 3 (packets) and the network is split into several
domains — not only based on the layer but also based on technology and vendors. One
part of transport networks are optical networks. Applying SDN to them leads to SDONs.
Since optical networks naturally follow the main idea of a separated and centralized
control, the SDN concept is easily applicable. Still, fundamental requirements for SDONs
are common abstractions and interfaces. Apart from NMSs, specialized software tools
such as scripts, need to be maintained by providers in order to automate the control
of these networks. Today, diverse technologies and interfaces increase the complexity
of this task. Therefore, the objective is to create common abstractions and interfaces
similar to what OF offers for higher layer networks. Control protocols and models for
optical networks are discussed in more detail in Chapter 2.
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Figure 1.5.: Example for NV with two clients.

1.2.2. Network Virtualization

Generally speaking, hypervisor is not a new term and is well-known in the field of server
virtualization (Fig. 1.4 left-hand side) where it is also called virtual machine monitor
[Gol74]. This field abstracts hardware into virtual resources and exposes them in the
form of virtual servers or machines. These virtual machines are then exposed to a guest
Operating System (OS) that operates on top of those virtual resources. In general,
the OS should not be able to detect any difference based on how it interacts with the
hardware. The hypervisor is in some sense a mediation layer between the hardware
resources and the virtual resources. It is also responsible for isolating individual virtual
machines from each other. A similar concept can be applied to networks, where a
network hypervisor abstracts physical network resources into virtual ones (Fig. 1.4 right-
hand side). This concept is called NV and the virtualized network comprises switches,
routers, Reconfigurable Optical Add-Drop Multiplexers (ROADMs), etc. These devices
provide network resources of different kinds, e.g., packet processing capabilities, ports
or wavelengths. The resources are shared among the clients that are using the network.
The clients receive a virtual network, which is assigned a set of these resources. Like in
a virtual server machine, the client is allowed to configure and use his virtual network
according to his needs. The network hypervisor ensures client isolation and prevents any
undesired interaction between them. Due to the standardized interfaces, SDN controllers
represent a good option for the control of virtual networks. Similar to an OS, controllers
should be able to operate a virtual network in the same way as any other network based
on physical hardware.
Previously, NV was done by means of Virtual Local Area Networks (VLANs), Virtual
Private Networks (VPNs), active and programmable networks and overlay networks
[CB09; CB10; JP13]. They enable the creation of virtual partitions but they involve
a proprietary configuration process for the hardware, e.g., handling of VLAN tags, or
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Figure 1.6.: Fixed grid with 50 GHz channel spacing (top), and flexible grid with
6.25 GHz central fequency spacing and 12.5 GHz slot width (bottom).

additional software, e.g., VPN server and clients. There are multiple reasons for deploy-
ing NV [Fis+13; JP13]. The most important one is sharing resources between clients.
Shared infrastructure and resources require a strict separation that can be easier achieved
with virtual networks. It also involves less overhead to assign resources to a client or
to remove them. Additionally, the management of virtual devices is simplified through
unified interfaces implemented in software. An example for a virtualized network is given
in Fig. 1.5. It shows a network operator offering parts of his network to two clients. One
possible mapping of the virtual topology to the physical one is indicated by the dashed
(client A) and dotted lines (client B). It can be seen that both clients may share the same
network elements and links. Therefore, the hypervisor needs to ensure that isolation is
guaranteed.
In general, a user is allowed to request an arbitrary (virtual) network layout, which
needs to be mapped to the available physical resources of the underlying network. The
process is called Virtual Network Embedding (VNE) [Fis+13]. It comprises two tasks:
the mapping of virtual links and the mapping of virtual nodes. The virtual links are
not necessarily realized by a single physical link but can also be mapped to a path —
a sequence of links — through the network. The virtual nodes are typically assigned to
physical nodes, which can host multiple virtual counterparts. Both tasks can be either
handled separately or jointly, which influences the result and the computational com-
plexity. In optical networks, the link mapping needs to consider wavelength continuity
constraints as well as physical layer impairments. Also, it is likely that the endpoints are
predetermined and do not need to be mapped because of the client’s hardware location.

1.2.3. Flexible DWDM Grids
Many optical networks are based on DWDM, which is a form of WDM. They typically
use a fixed grid — defined by the International Telecommunication Union (ITU) in
recommendation G.694.1 [ITU12] — with a common nominal central frequency spacing
of 50 GHz or 100 GHz, which is anchored to 193.1 THz. Signals can only be transmitted
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on one of these central frequencies in that grid, e.g, for 50 GHz the grid is defined by
193.1 + n ∗ 0.05 in THz where n ∈ Z. An example is shown in the top part of Fig. 1.6.
Due to this definition, the hardware is commonly fixed to one spacing and does not
support signals spanning multiple central frequencies in this grid.
Assuming that there will not be a large deployment of new fibers in the next decade,
the focus is on optimizing the currently available infrastructure [Zha+13d]. Spectral
efficiency is one way of quantifying the progress, although the total bit rate and the reach
need to be taken into account too. It is defined as bit/s/Hz, translating to the bit rate
that can be transmitted per frequency unit. For efficient transmission of 400 Gbit/s and
beyond, a fixed grid is no longer the best option [Ger+12; WLV13]. This means that by
using a variable portion of the optical spectrum the spectral efficiency can be improved,
even though it is also possible to transmit such bit rates using inverse multiplexing with
a fixed grid. The ITU Telecommunication Standardization Sector (ITU-T) published
the definition of the flexible DWDM grid in 2012 [ITU12]. It adds the concept of slots
which have a nominal central frequency of 193.1 + n ∗ 0.00625 in THz and a slot width
of 12.5 ∗m in GHz where n ∈ Z,m ∈ N∗. Any combination of n and m is allowed as
long as slots do not overlap. An example is given in the bottom part of Fig. 1.6.
The benefit of a flexible grid is not only the finer granularity but also the ability to
concatenate adjacent slots to form larger spectrum slices [WLV13]. The goals are to
allow mixed bit rate signals and different modulation formats, while at the same time
optimizing the spectral efficiency. On the one hand, a reduction of the required spec-
trum can be achieved for low bit rates. On the other hand, high-bit-rate signals, i.e.,
400 Gbit/s and beyond, can utilize the spectrum in a more efficient way by being as-
signed a larger number of slots. Additional benefits can be gained from the use of higher
order modulation formats like Quadrature Phase-Shift Keying (QPSK) or Quadrature
Amplitude Modulation (QAM), e.g., 8-QAM or 16-QAM. The definition of flexible grids
is backward compatible by choosing appropriate values for n and m. Even though the
full definition allows for more flexibility, not all possible combinations have to be sup-
ported by the hardware, e.g., a reduction of slot widths and positions to even multiples
is perfectly fine [ITU12]. One drawback of flexible grids is the fragmentation of the
optical spectrum. Similar to hard disks, fragmentation describes unused fragments of
spectrum which might be hard to use because of their size or continuity constraints for
multi-hop connections [Ger+12; WLV13]. They occur when channels are torn down or
added to the network and gaps are created between existing channels. There are two
ways of dealing with this issue: either by applying defragmentation or by developing
new Routing and Spectrum Assignments (RSAs) schemes. The first one can be achieved
by hitless spectrum reallocation by tuning the central frequency without affecting the
ongoing transmission. The latter one is derived from the Routing and Wavelength As-
signment (RWA) for fixed grid networks. RSA is the process of finding a path through
the network and assigning a suitable part of the spectrum to the channel. It is easier to
implement than defragmentation but it leads to increased computational complexity.
A network deploying flexible transponders and grids is also called Elastic Optical Net-
work (EON) [Ger+12; LV16]. The elasticity refers to the flexible spectrum assignment
and the variable bit rate [Ger+12]. An elastic optical network offers multiple ways to
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satisfy a demand. The appropriate modulation format as well as the Forward Error Cor-
rection (FEC) overhead is chosen according to the distance and the link characteristics.
The application of superchannels, which bundle multiple carriers into a single chan-
nel, increases the flexibility even further [Zha+13d]. Bandwidth Variable Transponders
(BVTs) are one important technology to take full advantage of the flexible DWDM grids
[WLV13]. They are able to vary their bit rate by changing the modulation format or
the baud rate [Sam+15]. By tuning these parameters for a given bit rate and reach,
an operator is able to optimize the spectral efficiency. Sliceable BVTs (S-BVTs) are an
extension of BVTs. They are able to support a number of virtual transponders that
generate independent optical flows toward different destinations [Sam+15]. Technolo-
gies that are needed to enable EONs are Wavelength Selective Switches (WSSs) with a
finer granularity, BVTs or even S-BVTs. The flexible control of these new technologies
is an open issue [WLV13]. Many of the aforementioned technological advantages are not
achievable without SDN [Zha+13d]. For example, a dynamic change of a bit rate or
modulation format is impractical with current control mechanisms.

1.2.4. Goals

Applying the concepts of SDONs, NV and flexible DWDM grids will change the land-
scape of optical networks. Foremost, the operation of optical networks is about to
become more dynamic and flexible and it will bring network operators one step closer
to an automated control and management of the whole network [Zha+13d].
SDN introduces a centralized control with open interfaces and promises network pro-
grammability for controllers and applications alike. Centralized control is already best
practice in optical networks and does not require fundamental changes in the current
approach. The standardization of interfaces is the next step toward the deployment of
SDN controllers in the optical domain. The development of SBIs is progressing quickly
and potential candidates for the long run are already available. As soon as an agreement
is reached, vendors are likely to implement the agreed on interface in their devices and
thereby enable the integration into the SDN environment. Network operators need a
well-defined NBI to be able to automate tasks related to network control. So far, every
available controller is offering its own NBI. Compared to the SBI, not much work is
carried out on its definition and unification. In the end, it is important to unify both
interfaces to avoid a multiplicity of definitions which would lead to similar challenges cur-
rently faced. Common abstractions for optical equipment are another important puzzle
piece to enable interaction with SDN controllers. It is crucial for controllers to apply the
same (or similar) model for the managed devices. Without common abstractions, it will
be difficult to exchange the right information through the offered interfaces. There are
already extensive models available for the management of optical equipment, e.g., ITU-
T G.874.1 [ITU16], but they need to be abstracted to fit into the SDN view. Unified
abstractions and interfaces lead to improved interoperability and control of heteroge-
neous equipment. Generic models identify a minimal set of functionality that needs to
be supported by the devices and can be adequately used by the controllers too. There is
still room left for extensions of the generic models to include additional features on both
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ends. With such abstractions and interfaces in place, a joint control and management of
multilayer networks is close to being reality. It gives the network operator the capability
of further optimizing the network based on all available information.
The sharing of a common infrastructure through NV benefits the client as well as the
network operator. It provides fully-controllable virtual topologies to the client that are
created by the network operator. The client is able to control his portion of the network
according to his requirements and can react to changes without explicitly involving the
operator. Together with SDN controllers and open interfaces synergies are achieved.
The client is able to use any compliant controller with the previously described benefits,
in order to control his (virtual) network. Handing over the rights to the client is a
major contribution to the dynamic control of optical networks. At the same time, the
operator is able to optimize his operations by reducing the overhead for provisioning
new connections. The operator’s work is reduced to assigning and verifying the creation
of virtual networks. With open interfaces in place, this task can be automated, giving
the client full control over changes to his virtual network.
Both, SDN and NV, lead to a reduction of overprovisioning. Due to the improved
dynamicity, the need for keeping active connections underutilized or on standby is re-
duced. Additional capacities can be activated or added as a timely reaction to changes
in demand or for short term use.
On the one hand, flexible DWDM grids enable improvements of the spectral efficiency
for traffic going through the optical network. The occupied bandwidth of the spectrum is
optimized for the requested bit rate and reach while maintaining the transmission quality.
On the other hand, they increase the complexity of the control task by introducing new
parameters like number of slots, modulation format, baud rate, etc. The additional
flexibility needs to be handled by the controller, which requires new algorithms that are
able to include these additional parameters, e.g., in RSA. Also, the interface definitions
and abstraction models have to be capable of representing this technology appropriately.
In summary, these are the goals that will be addressed by the presented paradigms,
including their mapping to the problem statements listed in Sec. 1.1.2:

• dynamic and flexible (software-defined) control of optical networks {(i), (ii)}

• unification of southbound and northbound APIs {(i)}

• control and interoperability of equipment based on a generic model {(i)}

• automatic creation of virtual networks based on intents {(ii)}

• control and management of multilayer networks {(iii)}

• support for flexible DWDM grids {(iv)}

• reduction of overprovisioning {(i), (ii), (iii), (iv)}
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1.3. Key Contributions
This thesis investigates the applicability of SDN and NV to optical networks. It involves
the analysis of existing models and the identification of gaps in their definition, the
creation of virtual networks, starting from intents, and the integration into a multilayer
environment. The results are implemented in a new software platform and evaluated
using commercial hardware. These are the main outcomes of this thesis:

• Analysis of existing models for control and virtualization of optical net-
works: A comprehensive analysis of the most prominent available models for
optical networks is provided. This work investigates the capabilities of the models,
offers a classification for them and identifies existing gaps in the current defini-
tions. Their applicability to certain areas of control and virtualization of SDONs
is shown.

• Intent-based NBI for requesting virtual topologies: An easy-to-use client
interface for defining virtual topologies is identified as a gap in current models. An
interface model description for closing that gap is proposed. It defines an interface
that provides a way of requesting virtual topologies based on intents. Intents
describe what the client wants without bothering him with technological details.

• Shortest path algorithm extension: Shortest path algorithms play a promi-
nent role in optical networks for calculating routes through the network as part of
RSA. An algorithm that partially precomputes the distances is extended to be able
to react to changes in the network, like added and removed edges. Precomputation
presents a trade-off between computation time and memory requirements.

• Procedure for automatic creation of virtual networks: Requests submitted
through the proposed intent interface need to be processed in order to receive a
virtual network. The presented procedure describes the intermediate steps needed
between the intent submission and the usage of the virtual topology. It involves
multiple tasks: processing the intent, assigning resources utilizing the shortest path
algorithm and exposing the created topology.

• Architecture for control and virtualization of optical networks: A software
architecture is introduced to enable the application of SDN and NV to currently
deployed optical networks. It can be integrated into the existing environment
and helps migrate the equipment that does not support the newly developed or
experimental interfaces yet. It is implemented as part of this work.

• Experimental evaluation of the presented approaches: The developed
model/interface, the shortest path algorithm and the architecture are evaluated
based on a software implementation. Commercial hardware is used whenever pos-
sible to obtain a realistic evaluation that takes properties of the optical equipment
into consideration. The results from the proof of concept implementation confirm
the viability of the overall approach.
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Figure 1.7.: General concept for applying SDN and NV to optical networks.

• Verification of applicability to multilayer scenarios and orchestration:
Selected examples, in which optical networks are integrated into a multilayer or-
chestration context, are presented. Typical work flows like data center automation
as well as forward-looking secure service deployment are explained. These proofs
of concept verify that it is possible to combine the optical and the packet layer
into a joint control with these new tools.

1.4. Conceptual Approach
The general concept used in this thesis for including optical networks in an SDN environ-
ment and exposing NV capabilities is presented in Fig. 1.7. A solution that can support
the transition from proprietary control protocols for network equipment to open stan-
dardized interface is the use of a mediation layer. For current deployments a mediation
layer translates existing protocols into SDN ones. In the future, the translation is no
longer needed and the focus is only on the control, since the SBI interfaces are unified. It
is represented by the software component Optical Virtualization Controller (OVC). The
OVC combines two functionalities: it is the (SDN) domain controller for the underlying
optical network and it provides the virtualization capabilities of a hypervisor. In its
function as an SDN controller it is capable of communicating with the optical network
equipment to execute control tasks. Examples are topology discovery, service instanti-
ation and tear down of lightpaths. It is able to communicate directly with the devices,
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to interact with a control plane or to go through an NMS. The right choice depends on
the availability of the control functionality and the exact existing deployment. Based on
the southbound communication, it is able to create a physical topology to capture all
available information about the underlying network. The hypervisor capabilities estab-
lish a way of creating virtual topologies based on the physical representation. These can
be used to expose virtual networks to clients or an orchestrator through an (SDN) NBI.
Then the client is able to operate his virtual network with an SDN controller (mostly)
without noticing a difference to a physical one. Ignoring the virtualization functionality,
the OVC can be seen as a translation layer between closed interfaces and the SDN world.
An illustrative example in Fig. 1.7 shows a simple scenario with a single physical network
with four nodes. Three ports are assigned to each client as indicated by the prefixes A
and B. Through an SBI the physical network is discovered and translated into a generic
internal representation called physical topology. Based on that, the OVC is able to
create virtual topologies that are exposed to the clients through an NBI. The NBI is not
bound to any particular protocol or interface definition. Typically, an SDN protocol is
chosen that is supported by the client controller. The controller is then able to control
the virtual network like any physical network. The OVC is implemented as a proof of
concept for the experimental evaluation of the presented results.

1.5. Structure of the Thesis

The remaining thesis is structured as follows:

• Chapter 2 proposes an intent model for an NBI that facilitates the creation of
virtual topologies and hereby complements the existing model ecosystem. First,
this chapter introduces the control and modeling of optical networks. Then, de-
tails on optical equipment and how SDN is applied to this domain are given. The
chapter evaluates the existing models for optical network management and iden-
tifies a gap for the creation of virtual topologies, which is closed by the proposed
model/interface definition.

• Chapter 3 introduces new extensions to a shortest path algorithm that uses pre-
computation and balances the computation time and the memory requirements. A
comprehensive definition is provided for the extension of the update procedures for
dynamic changes of the graph. This is followed by proofs for the most important
properties of the algorithm. Besides the algorithm, NV is discussed in the context
of optical networks, including the resource assignment. The chapter finishes with
a description of a procedure for an automatic creation of virtual topologies.

• Chapter 4 presents the developed OVC that combines the functionality of a
controller with a hypervisor layer. The software architecture as well as design
decisions are explained. The chapter specifies, how the concepts, presented in the
previous parts of the thesis, fit into the architecture and how they are implemented.
It concludes with an experimental performance evaluation of the software stack.
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• Chapter 5 provides information on successfully conducted proofs of concept that
showcase the integration of optical networks into multilayer scenarios. Examples
include the automation of data center workflows and in-flight encryption for se-
cure services. These examples are explained from an architectural as well as an
implementational point of view. Each use case concludes with an evaluation.

These chapters are followed by a conclusion, the appendices and all references used in
this thesis.

26



2. Models for Control and Virtualization of
Optical Network Resources

The raise of SDN is leading to a paradigm shift in network operations. The separation
of control and data plane pushed the development of (logically) centralized controller
entities. These (SDN) controllers are responsible for the configuration of the data (or
forwarding) plane. In the case of optical networks, every vendor has his own centralized
NMS with access to the devices through proprietary interfaces. Here, SDN promises a
simplification and unification of network management for optical networks. It allows the
automation of operational tasks, despite the highly diverse and vendor-specific commer-
cial systems and the complexity and analog nature of optical transmission. Fundamental
components for Software-Defined Optical Networks (SDONs) are common abstractions
and control interfaces. Currently, a growing number of models for optical networks are
available, claiming an open and vendor-agnostic management of optical equipment. Such
open models will pave the way for the introduction of Network Virtualization (NV) to
optical networks. Nevertheless, some challenges in software-defined network operations
remain unsolved. This chapter introduces the northbound control of optical network
resources by controllers, applications and orchestrators alike and compares the most
important existing optical models. Then, a mapping of these models to the concept of
an optical network hypervisor is established. Finally, an intent interface for creating
virtual topologies is proposed that is incorporated into the existing model ecosystem.
The chapter is based on results that have been published in [SAE15] and [SAK17].

2.1. Control of Optical Equipment
The preferred technology option for long distances and high bandwidth demands is
optical fiber transmission. In most of the current SDN developments, circuit-switched
optical transport networks and specifically lambda-switched WDM networks have been
neglected and are only slowly gaining attention. One factor is the layer of operation:
whereas switches and routers process packet traffic on higher layers in the OSI model
(2+), Optical Circuit Switching (OCS) is a layer 0/1 technology which is transparent
to higher layers and unaware of any packet information. This means that a physical
connection is assumed to be present without the need to establish it first.
Optical networks typically comprise vendor islands. One reason for this fragmentation
is that every island has its own proprietary control plane making routing and forwarding
decisions based on its limited intra-domain knowledge. In addition, every equipment
vendor has his own closed NMS running on top, accessing the devices through proprietary
interfaces. Although the communication builds on top of standardized protocols, it
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Figure 2.1.: Examples for ROADM structures: colored; directionless; directionless and
colorless; directionless, colorless and contentionless [GE13].

contains vendor specific extensions. This leads to interoperability issues between different
vendors, which equally apply to software and hardware components. Even though the
NMS looks like a centralized controller and standardized models, e.g., ITU-T M.3000
[ITU00], are available, the NMS lacks open — southbound and northbound — interfaces
so far. On the one hand, open northbound interfaces would allow the integration with
applications and orchestrators. On the other hand, southbound communication toward
the devices through standardized interfaces would enable the NMS to take over the role
of a controller in multi-vendor scenarios. Unlike current Internet Protocol (IP)-based
networks, the optical domain most commonly employs circuit switching. Therefore,
packet-switching oriented protocols like OF are not naturally applicable. OF missed
an opportunity in the beginning to include circuit-switched networks and has started
a belated attempt to gain traction in this field with its optical extensions [Ope15].
Additionally, optical equipment is modular, which leads to node constraints based on
the hardware configuration. The assumption that every (cross-) connection between
input and output ports is possible does not suffice for a realistic model that will be
adopted by vendors and operators. On a physical network level, the analog nature leads
to network constraints, e.g., optical signal-to-noise ratio, crosstalk, and dispersion affect
the maximum signal reach. They have to be taken into account before setting up services
through the network and therefore need to be modeled correctly.

2.1.1. Reconfigurable Optical Add-Drop Multiplexers

ROADMs are one of the key elements for enabling a flexible optical network [Gri+10].
In general, a ROADM is connected to multiple fiber directions, which are also referred
to as degrees, carrying a DWDM signal. The purpose of the ROADM is to flexibly
direct incoming wavelengths to either another degree (pass through or express) or to a
drop port and to add wavelengths coming from the node’s client ports. The unit that
allows for adding wavelengths (or lambdas) to an outgoing fiber and dropping them from
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an incoming one is called add/drop. It developed from Optical Add-Drop Multiplexers
(OADMs) with a fixed assignment for express and add/drop wavelengths. With wave-
length blockers and later WSSs, the node structure became software controllable and
thereby reconfigurable. A WSS is able to direct a wavelength from one of its input ports
to the output port or to direct a wavelength from the input port to one of its output
ports, if used in the opposite direction. Initially, ROADMs had two directions and were
arranged in ring or linear structures. Today, much higher degrees can be achieved and
the layout is more flexible.
There are three main properties that can be used to describe a ROADM [GE13; Gri+10]:
colorless, directionless and contentionless. In simple setups, a fixed color is assigned to
every add/drop port (Fig. 2.1a). Such configurations are called colored. Additionally,
a separate add/drop is needed for every direction, making the configuration directed.
Today, ROADMs are typically directed [Zha+13d]. This makes them inflexible due to
the fixed assignment of transponders to directions, but wavelength contention can be
avoided. By adding a WSS, which is connected to all degrees, the structure can be
converted into a software-controlled directionless setup (Fig. 2.1b). This reduces the
number of needed add/drop groups to service all degrees, although this setup introduces
wavelength contention, which refers to the fact that every lambda can only be used once
per add/drop group. By adding a second WSS (Fig. 2.1c), a colorless configuration can
be achieved, always assuming that tunable lasers are used for transmitting. Any color
that arrives at the lower WSS of the add/drop group can be directed toward any of
the directions and vice versa by configuring the upper switch of the same group. One
drawback is wavelength contention. With a contentionless extension of the ROADM,
multiple copies of the same lambda can be added and dropped at the same group —
as long as every wavelength is used only once per degree and other network constraints
do not apply. This is typically achieved by means of an Optical Cross-Connect (OXC),
which basically allows to direct any wavelength from an incoming port to any outgoing
port. The exact realization of such an OXC is out of the scope of this thesis and can be
found in literature [GE13]. This so-called Colorless, Directionless, Contentionless (CDC)
ROADM solves this issue but is expensive and not scalable [Zha+13d].
For higher data rates, a flexible and programmable spectral bandwidth is beneficial
[Gri+10]. For the migration toward flexible DWDM grids, it is not only required that the
transponders support them but also the intermediate nodes, i.e., ROADMs [Zha+13d].
These flexible grid ROADMs have to be capable of redirecting any valid frequency band
without introducing attenuation dips [GE13].

2.1.2. Optical Network Management Functions

An infrastructure provider, managing his network, needs different levels of granularity
for his operations. On the one hand, calculating paths and installing services is prefer-
ably executed with a network-wide view, which hides low-level device details. On the
other hand, device-specific settings and monitoring need a fine-granular node view with
access to each device and its modules. For an RSA, a combination of both views might
be needed to identify the internal node constraints as well as the network constraints.
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Table 2.1.: Assignment of optical network management functions to scopes.
Network scope Topology discovery, path computation, connectivity man-

agement, network monitoring, topology virtualization, mul-
tilayer operations

Node scope Inventory discovery, device configuration, device monitoring

An overview of the management functions in optical networks and their mapping to a
primary scope is given in Tab. 2.1.

From an SDN controller’s point of view, the first and most important task is to establish
a topology. This means discovering the devices and links of the managed infrastructure.
Depending on the abstraction level, this may also include a detailed inventory discovery.
It is a prerequisite for many tasks that rely on a network scope. One of them is path
computation, which is performed on a topology representation of the network and needs
to be aware of constraints. In a subsequent step, the computed paths are typically used
to establish services or to optimize current assignments. Preferably, a service setup is
executed on a network scope, defining the endpoints and a number of constraints, in a
similar manner to an NMS. Nevertheless, a service setup can also be done on a per-device
basis, leading to an increased complexity, due to the hop-by-hop setup, power balanc-
ing etc. The configuration of individual devices is also important for provisioning new
equipment, changing fiber maps or defining port capabilities. In addition, monitoring is
a major part of operations. On a device level, optical characteristics, like signal prop-
erties, can be captured and evaluated. If a controller or an NMS aggregates monitoring
data from different sources, additional information and metrics with a network scope
can be calculated, e.g., the location of a fiber break by correlating alarms.

The virtualization of networks is a field of growing interest and will become a more
prominent part of network management (see Sec. 1.2.2). Virtual networks are defined
by assigning virtual resources to their physical counterparts. Then, they are exposed to
the respective clients, who are in control of their individual virtual resources. Likewise,
(virtual) configuration and service requests need to be translated to hardware directives.
An intuitive way of requesting virtual networks could be realized by an intent interface.
An intent specifies what the user wants to achieve, without the need of being aware of
how it is done. Even though the focus is on optical networks, other network layers at
the edge are not ignored and the transitions, which are needed for efficient multilayer
operations [Tom+14], are briefly considered. Finally, network management should be
able to adapt to new technologies. One example for a current development are the
standardized flexible DWDM grids (Sec. 1.2.3), which require different parameters for
the spectrum assignment.

Depending on the scope, a subset of the presented management functions needs to be
considered when designing new models and protocols, especially in the context of SDN.
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2.1.3. SDN in the Context of Optical Equipment
An SDON is an optical network — OSI Layer 0 (photonic) and Layer 1 (Synchronous
Optical Networking (SONET) / Synchronous Digital Hierarchy (SDH), Optical Trans-
port Network (OTN)) — that applies SDN techniques. Such networks are mostly used
for long-distance connections with high bandwidth demands, e.g., between data cen-
ters [Aus+14]. Service guarantees and dynamically changing traffic patterns lead to
new requirements for these two layers [Kin+16]. The prospects of SDONs include an
improved network utilization and a better multilayer and multi-domain control. Those
objectives are accompanied by more agility in service provisioning and network optimiza-
tion, which leads to lower operational costs and faster revenue recognition. Additionally,
enabling optical network virtualization will allow multiple tenants (customers, applica-
tions, departments, etc.) to concurrently use shared network assets, in a fine-grained
and spectrally efficient manner based on flexible WDM grids. Typical use cases have
been described in detail in many places [ADH12; Aus+14; STR14]:

• Bandwidth on demand

• Virtual operators without own infrastructure

• Data center work flow automation, e.g.,
– Storage migration and replication
– Virtual machine migration
– Distributed applications

• Multilayer interworking

• Network analysis and visualization

• Multi-vendor interoperability

The introduction of SDONs is the first step toward tackling these use cases. SDN is not
a silver bullet solving all problems but it can facilitate some long overdue progress by
improving network control, management and maintenance. Generalized Multi-Protocol
Label Switching (GMPLS) control planes started moving toward SDN architectures with
logically centralized controllers [Kin+16]. These SDN controllers collect information
about the network, its topology and its state from all available sources, e.g., NMS and
network elements. Based on this knowledge about the available resources, applications
and network functions can be implemented on top of the controller. For that, standard-
ized protocols between the controller and the network elements have to be in place first.
The most promising protocols will crystallize based on the adoption by vendors and
operators over the next years. SDN is able to improve the flexibility of optical networks
by simplifying and automating the complex task of a manual connection setup through
proprietary interfaces. While SDN improves the operations side, it misses features to
allow a sharing of the infrastructure and giving direct access to tenants. This gap needs
to be filled by other approaches that are discussed later in this thesis.
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Figure 2.2.: Concept of a Path Computation Element.

The ONF tried to define an SDN architecture for transport networks [Vis+16]. They
name two recursive concepts that simplify the description of transport networks. The
first one is layering, which describes the utilization of an independent underlying layer
— server layer — to transmit data of a client layer. The second one is the partitioning
of networks into disjoint subnetworks. On top, they introduce the application plane as
an additional component. For multi-domain scenarios, a top-level SDN controller, called
orchestrator, is defined. In the case of multiple layers divided into separate domains per
layer, a parent controller is coordinating the managed domains. For a single domain, the
multilayer adaptations can be covered by one controller. Even though it is suggested to
reuse flow identifiers to encode a center frequency and slot size, the concept of defining
flows on a device level does not come natural for OCS.
One viable option for controlling optical networks and Elastic Optical Networks (EONs)
is a Path Computation Element (PCE) [Dio17; VFA06]. It is an already available option
for path calculations through a circuit-switched network that can be reused in the context
of SDN. The PCE responds to path computation requests from clients with a Label
Switched Path (LSP), satisfying the supplied constraints. To do so, the PCE queries
a Traffic Engineering Database (TED), which contains information about the network
status. The process of populating this database is out of the scope of this short overview.
This general concept is visualized in Fig. 2.2. There are different incarnations of PCEs
depending on the offered functionality. The most basic one is the stateless PCE, which
only calculates paths based on the received constraints and the TED, which may be
out of sync at the time of the computation. A stateful PCE [Cra+17a] additionally
includes information about requested and existing LSPs. The last incarnation is an
active stateful PCE [Cra+17b]. It provides the ability to initiate the setup of calculated
paths. Therefore, the client no longer needs to trigger a setup in a subsequent step. A
PCE by itself will not fulfill all SDN requirements, like topology dissemination, but it
can be used as part of an architecture to compute paths through the managed network.
One solution that embeds the PCE into a larger context is Application-Based Network
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Operations (ABNO) [KF15; Kin+16]. Since ABNO is not widely deployed yet, a detailed
description is omitted and the interested reader is referred to the referenced documents.

2.1.4. Control Protocols

All layers of an SDN architecture (see Fig. 1.3) depend on common protocols and inter-
faces. The ONF defines two generic interfaces: Control Data Plane Interface (CDPI)
and Control Virtual Network Interface (CVNI) [Aus+14]. The CDPI is used for the
direct communication between the provider’s controller and his infrastructure, i.e., SBI.
The CVNI defines the communication between the provider’s controller and the client,
i.e., NBI. Information exchanged through the CVNI describes a potentially virtualized
view of the network. There is a number of protocols available which can be used for
specific tasks. Most of the presented protocols are not limited to one of the interfaces,
but they may be more suited for one of them.
Two examples for currently deployed protocols in optical networks are the Simple Net-
work Management Protocol (SNMP) and GMPLS [GE13]. SNMP is defined by the
Internet Engineering Task Force (IETF) and is used for the communication between
network elements and the NMS. The protocol does not define which information is man-
aged, but offers a way of defining it through Management Information Bases (MIBs).
Control planes for Wavelength Switched Optical Networks (WSONs) usually utilize GM-
PLS and are typically separated from the data plane. It is a protocol suite that acts in
a distributed way and covers three main tasks: routing, signaling and link management
[Tom+14]. Examples for protocols are Open Shortest Path First with Traffic Engineering
(OSPF-TE), Resource Reservation Protocol with Traffic Engineering (RSVP-TE) and
Link Management Protocol (LMP) respectively. These days, it is commonly deployed in
combination with a PCE, which takes over the path computation. Even though GMPLS
follows the separation principle of SDN, it is not considered a viable option for SDN
in general due to its complexity and the mainly distributed nature [DPM12; Pen+14].
In addition, the performance and the amount of communication has been shown to be
worse with GMPLS than with an SDN approach [Gio+12; Zha+13e].
Coming from the field of packet switching, OF [McK+08] is the first protocol that
emerged together with SDN, following the new concepts. OF is now governed by the
ONF and it is briefly introduced in Sec. 1.2.1. One of its drawbacks is that it was
originally designed to control packet-based equipment and is not easily usable with
circuit-switched networks. Even though efforts have been made to integrate OF with
circuit-switched networks in the beginning [Gud+10; Ji+14; Liu+11], it became clear
that OF is not the best choice for this technology. Often, extensions have to be applied
[Gud+10], or a mediation layer is required to make it applicable [EA12]. In version 1.4.0
[Ope13], OF introduced the notion of optical ports that represent the configuration of
transceivers without considering node constraints. Further extensions are suggested in
a separate description [Ope15]. Those attempts to promote OF for the optical domain
did not succeed because other protocols had already filled this gap.
The network configuration protocol NETCONF [Enn+11] is a mechanism for applying
Create, Read, Update and Delete (CRUD) operations to the configuration of network
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devices. The available information is split into state and configuration data. While the
former cannot be modified externally and only captures information about the state,
the latter can be manipulated, assuming the client is authorized. All this data is stored
in a datastore, which contains all available information about the network element. In
general, NETCONF is an API that applications can use to interact with the datastore
of every device. It uses Extensible Markup Language (XML) to represent and exchange
data. The transmission itself is done through Remote Procedure Calls (RPCs) and
is connection oriented. The RESTCONF protocol [BBW17] is a way of accessing a
datastore that is compatible with NETCONF via Hypertext Transfer Protocol (HTTP).
The intention is to allow web applications to perform a similar set of CRUD operations
on the datastore. RESTCONF relies on independent (stateless) requests and allows an
encoding of data in JavaScript Object Notation (JSON), in addition to XML.

Both protocols — NETCONF and RESTCONF — rely on YANG [Bjo15; Bjo16] models
for the datastore. The models cover the configuration as well as state data. Additionally,
available RPCs, which are operations with an input and an output, and notifications
are defined. The data is organized in modules and submodules. Modules are allowed to
import/include parts of other modules or submodules and extend existing data units by
means of augmentation. Inside of modules, the data is organized hierarchically, building
a tree-like structure. The nodes are assigned a name and either a single value or a set of
children. Apart from built-in types, it is possible to provide own type definitions. Data
structures like lists, which identify their elements by unique keys, are also included.
Based on the model, the internal configuration of devices is described and a transport
representation for protocols can be derived, which corresponds to an interface definition.
Originally designed for devices, the models can also be used as an interface description
for centralized network controllers, if modeled accordingly.

Some existing special-purpose protocols are also applicable to SDN. Two examples are
Path Computation Element Protocol (PCEP) and BGP with Link-State (BGP-LS),
although they are primarily defined for interacting with a PCE. PCEP [VR09] defines
the communication between a path computation client and the PCE as well as between
two PCEs. It is mainly used for path computation requests and the corresponding
replies, which translate to LSPs. PCEP describes the messages and objects needed for
these operations, while staying extensible for application specific requirements. A set
of constraints can be included to restrict the selection of one or more LSPs. BGP-
LS [Gre+16] is one option for collecting Traffic Engineering (TE) information from the
network and sharing it. BGP-LS is based on the Border Gateway Protocol (BGP) and
is well suited for filling a TED or a Link-State Database (LSDB).

There are various REST-based interfaces available northbound of the controller, which
lead to a dependency between the application on top and the underlying controller. They
triggered ongoing discussions on how to extract a unified set of directives for a common
NBI. At the moment, the most promising approach seems to be using YANG models in
combination with NETCONF and RESTCONF.
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Figure 2.3.: Network terminology.

2.2. YANG Models for Optical Networks

Techniques for applying SDN to optical networks have been surveyed comprehensively
in [Thy+16]. Thyagaturu et al. conclude that simplified management strategies are
required, but they do not cover models for a centralized optical network management.
Modeling optical network resources has been identified as an important research topic
recently [Kin+16]. The modeling language YANG [Bjo15] facilitates the creation of new
models and was already updated to version 1.1 [Bjo16]. It was originally defined as a data
model for the configuration protocol NETCONF and inherently RESTCONF. YANG
simplifies the creation of models that can be easily applied to protocols as well as code
generation. All models have the goal of establishing an open unified network management
for the base functionality of optical equipment, independent of vendors. The applicability
of SDN to optical networks relies on such configuration and topology models in order to
offer controllers for the optical domain or to include optical networks in a multilayer and
multi-domain environment. For this reason, existing management models are ported to
YANG, e.g., ITU-T G.874.1 [ITU16], and currently undergo a unification process, i.e.,
they are based on the ONF core model [LD15] and follow the same modeling guidelines.
Extensions of these models provide the flexibility of adapting them to particular needs
or technologies. This is done by means of augmentation — a mechanism provided by
YANG. Operators expect to optimize their operations through unified models, assuming
that controllers with a global view simplify network management and make it more
dynamic and efficient through automation.
A variety of optical network models, covering diverse aspects of optical networks, has
been published in recent years. They range from generic descriptions of optical network
elements, in order to unify the configuration process, to network controller orchestration
models, to allow the management of network-wide services [Vil+15b]. In this section, the
most relevant models defined by standardization bodies and open industry alliances are
surveyed and characterized. The focus is on specialized models that are trying to cap-
ture properties of optical networks and abstract them to a set of parameters — the least
common denominator. An overview is given of the ones that currently receive the most
attention among vendors, providers and operators. The selected models are ONF Trans-
port API (TAPI), IETF TE Topology (TET), OpenConfig and OpenROADM. Before
the analysis and evaluation of the models, the used network terminology is introduced.
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Figure 2.4.: TAPI main concepts and terminology.

Network Terminology

This section provides some general definitions of commonly used terms (see Fig. 2.3),
which are mapped to specific definitions in the model comparison. First, a graph is
defined as a set of vertices interconnected by edges. A network topology is a graph
containing nodes (vertices) and links (edges). For the models, links are assumed unidi-
rectional, if not stated otherwise. A generic node contains a number of Link Termination
Points (LiTPs). LiTPs, also referred to as endpoints, represent attachment points for
links. In general, they are not assigned to any particular layer, even though some models
redefine them for special purposes and then assign them to layers. Links represent an
adjacency between two LiTPs of two distinct nodes. A path lists the traversed nodes and
links in a sorted order. The exact definition of a path differs in the presented models,
e.g., its endpoint types. Virtual topologies, sometimes called abstracted or customized,
refer to a network view, which is different from the underlying physical network topology
(see Fig. 1.5). This is typically achieved by hiding details of the underlying network.

2.2.1. ONF Transport API

The ONF defines an API for transport networks, called Transport API (TAPI) [Ope18a;
Qia+16]. The ONF Core Information Model (CoreModel) [LD15], which describes a
generic network model, serves as a starting point for this purpose. The TAPI exposes
information that is relevant for applications and controllers. Applications may use this
interface to control network resources whereas orchestrators and controller hierarchies
may interact with underlying controllers through this API. Even though the model is
originally created in Unified Modeling Language (UML), the provided toolchain allows a
mapping to YANG for an easier integration with protocols like NETCONF and REST-
CONF as well as code generation.
The topology is defined as a set of network resources that consists of nodes and links,
including extended Logical Termination Point (LoTP) from the CoreModel (see Fig. 2.4).
Three LoTP types are defined in the TAPI. Node-edge-points cover the inward facing
aspects, i.e., forwarding capabilities. Being the entry and exit points of a node, the
endpoints are responsible for encapsulation. Service-end-points are concerned with the
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Figure 2.5.: Structure of the ONF TAPI.

outward facing aspects. They provide an abstracted view to the client and can map to
multiple node-edge-points. Connection-end-points are the last type. They cover ingress
and egress aspects of connections, which represent enabled forwarding capabilities, and
have a client-server relationship with node-edge-points.
The TAPI covers a set of five control-plane functions and services (see Fig. 2.5). The
topology service is concerned with the retrieval of information about topologies. Different
granularities are defined, ranging from the whole topology down to individual node-edge-
point details. The connectivity service is used to create and manage services between
service-end-points. Connectivity is realized by underlying connections which represent
forwarding behavior and are associated with connection-end-points. Connections can be
built recursively and contain routes. At higher layers, a route is a list of connections in
the underlying topology. At the lowest layer, they correspond to a switch matrix. The
service interface does not necessarily require prior knowledge of the topology. The path
computation service’s main purpose is to compute and optimize point-to-point paths.
The virtual network service allows the user to request virtual network topologies based
on traffic constraints between pairs of service-end-points. They are implemented by
reserved resources that can be controlled by the client. Finally, the notification service
is one of the latest additions to the model. The notification types are currently limited
to created and deleted objects and changed parameter values and states. Support for
alarms and performance monitoring is scheduled for a future release. Any information
exchanged through the TAPI is only valid in a particular context (see Fig. 2.5). It is
shared between the (API) provider or server and its client.

2.2.2. IETF TE Topology

The IETF defines a number of different network and topology models. One prominent
protocol, describing the topology of generic networks and extensible toward optical net-
works, is the TE Topology (TET). The TET is presented and explained following the
hierarchical import dependencies summarized in Fig. 2.6. From top to bottom the fol-
lowing models are shown: a base network representation, a base network topology, the
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Figure 2.6.: Hierarchy of the considered IETF network and topology models.

TET and extensions for WSONs and flexible DWDM grids and media channels.

The ietf-network [Med+17] describes simple network hierarchies and their relation to
each other. A network consists just of nodes and supporting networks, which correspond
to underlay networks. The nodes are defined relative to a network and cannot be reused
for multiple network instances. Nodes may have supporting nodes, which have to be
part of one supporting network.
The ietf-network-topology, defined in the same draft [Med+17], extends the pure network
model by adding termination points to the nodes and links that are interconnecting
them. Therefore, topologies are supported while the previously defined hierarchies are
preserved. Termination points and links may have supporting entities of the same type.
Keeping the generic nature, there are no constraints on the particular implementation,
e.g., physical port or logical port.
Both models need to be augmented for any technology-specific network or topology type.
Some parts of the model are explicitly expected to be augmented by models implement-
ing a particular technology, e.g., the network type attribute.

The TET defined in ietf-te-topology [Bee+16] describes one way of storing TE data
in a TED. This representation supports path computation that is aware of physical
constraints while being independent of any protocol. The vanilla TET defines a generic
view of a given network that is discovered using any available technique or protocol. In
general, the TET is the control-plane representation of the data-plane topology. The
TET can have more than one data source and captures static attributes as well as
dynamic ones that need to be updated regularly. The representation of a topology for a
single provider may contain one or more layers corresponding to different network layers.
The topology provider can create virtual overlay topologies for clients. In this context, a
overlay topology is called abstract or customized TET and typically enriches the client’s
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native view by augmenting the provider’s native topology. In the case of augmentation,
the path computation is executed on top of the client’s native TET which may contain
customized views.
Every TET comprises TE nodes and links, which are terminated at one LiTP on each
side. A TE node represents a fraction of one or multiple underlying nodes and is bound
to a particular topology. Multilayer TE nodes can be decomposed into a client and server
layer. A layer transition is represented by a link between those nodes — the transitional
TE link. This kind of link represents a potential connectivity and is removed as soon
as the connection is established. It is replaced by a TE link in the client layer topology.
A Tunnel Termination Point (TTP) represents a transport service endpoint such as a
WDM transponder. The accessibility between server LiTPs and TTPs is captured in the
local link connectivity list, while the connectivity matrix shows valid interconnections
between LiTPs. A calculated TE path based on this representation describes the nodes
and links of a potential connection.
TETs can build hierarchies in which an underlay topology, a native topology at the lowest
level, serves as a base for an overlay topology. Multiple overlay topologies can be built
on top of the same underlay topology, e.g., views for different clients. Also, multiple
underlay topologies can be the input for one overlay representation, e.g., views from
different providers. A slight variation are topologies provided by multiple data sources
which need to be merged before they can be used. The process of combining multiple
views includes three main steps: identifying neighboring domains, renaming identifiers
to make them unique and finally capturing layers. The TET can be used to represent
and transport all described types of topologies as well as to manipulate abstract ones.
Notifications are an important part of topologies, therefore the model relies on a sub-
scription and push mechanism for YANG datastores. The TET is also compatible with
scheduling parameters and supports a set of optional features. One was presented before:
the overlay/underlay relationship, which is particularly useful for vitualization purposes.
Another feature is the template configuration that allows for a definition of default tem-
plates for TE objects. Since the TET description is technology-agnostic, any particular
technology needs to augment the model to manage any technology-specific information.

To implement a network representation, the TET needs to be augmented with technology-
specific details. Next, two models that are relevant for optical networks are presented.
The first one focuses on the rigid DWDM grids and the second one addresses flexible
frequency slots (see Sec. 1.2.3).
The ietf-wson-topology [Lee+17] adds a description of impairment-unaware WSONs. The
goal is to support RWA. Important extensions are node types for fixed and reconfigurable
optical nodes (ROADMs) and the augmented WSON connectivity matrix for describing
available cross connections.
The flexi-grid extension (ietf-flexi-grid-ted / media-channel) is defined in [Mad+16]. It
comprises two definitions: a TED definition for flexi-grid equipment and a media chan-
nel description for paths. The TED part defines three types of flexi-grid nodes: node,
transponder and sliceable transponder. The node represents a wavelength switch based
on a connectivity matrix. A transponder defines transmission parameters, e.g., modu-
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lation format. The actual grid information is stored inside the links. A separate media
channel description extends the TED representation by a path definition including the
spectrum assignment.

2.2.3. OpenConfig

OpenConfig is a project by network operators to define model-driven network manage-
ment interfaces, which are vendor-independent. The models try to capture configuration
and state parameters. Additionally, performance monitoring is a central part of the mod-
els. Only the five models related to optical transport that are available in version 0.4.0
are considered [Ope18d]. Two of them cover general definitions and types, while the
others correspond to amplifiers, terminal devices and wavelength routers.
The openconfig-transport-type model is a collection of types and identities for optical de-
vices. The first common data elements are defined in openconfig-transport-line-common.
Optical line ports are assigned a certain type, i.e., in, out, add or drop. The Optical
Supervisory Channel (OSC) configuration captures the available OSC interfaces.
The openconfig-optical-amplifier model describes optical amplifiers that are deployed
as part of the transport line system, e.g., Erbium Doped Fiber Amplifier (EDFA) and
Raman amplifiers. The gain parameters, output power and mode of operation can be
configured and the actual gain values and the input power are captured.
Terminal systems — client and line side — are defined in openconfig-terminal-device. The
terminal system description is following the client-to-line direction, while the opposite
direction is implicit. The physical port represents a physical, pluggable client port on the
device with operational state and performance monitoring. Each physical port has one or
more physical channels. Their main purpose is to allow individual monitoring of channels
that build up the full port capacity. From a model perspective, the logical channel ingress
defines the contributing transceiver and the corresponding physical channels. Logical
channels are a grouping used for representing logical grooming elements. They are either
assigned to another logical channel, in order to add another stage of multiplexing (or
de-multiplexing), or to an optical channel that corresponds to the line side transmission
and assigns a carrier with a wavelength or frequency. The two defined protocol types for
logical channels are Ethernet and OTN. In general, the model assumes that the NMS
will verify correct combinations of protocols.
Finally, the openconfig-wavelength-router model contains a definition for optical trans-
port line system nodes or ROADMs. A wavelength router is defined as a configurable
switching element. A media channel is described by a lower and upper frequency, there-
fore specifying a frequency band. This media channel is then assigned an input and
output port, thereby defining the flow inside of the node.

2.2.4. OpenROADM

OpenROADM is an initiative defining a white-box model (version 1.1) for ROADM-based
optical equipment that can be used by a control plane, i.e., OpenROADM controllers
[Ope16; Ope18f]. It creates a network view that abstracts vendor-specific devices to
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a generic device representation, which can be used for service instantiation or path
computation. The modeling is closely coupled to the structure of a ROADM node,
leading to two basic building blocks, direction/degree and add/drop group. A direction
or degree is the block that is connected to the degree of another ROADM node on the one
side and the internal structure on the other side. Add/drop groups are units that allow
adding and dropping wavelengths between fibers and client ports. In the model, these
client ports are grouped together based on Shared Risk Groups (SRGs). The connected
client equipment, including transponders and routers, is called tail.
Degrees have two types of (logical) Termination Points (TPs): trail and connection TPs.
The trail TPs are facing toward a degree of an adjacent ROADM and terminate Optical
Multiplex Section (OMS) trails. Connection TPs, on the other hand, are used to connect
add/drop ports and pass express traffic inside of a node.
An add/drop group is a construct consisting of WSSs, amplifiers and splitters/combiners
for transmit and receive. Transponders are connected to add/drop ports and Connection
Points (CPs) are facing the degrees. Add/drop groups are assigned one or more SRG
depending on the hardware configuration, e.g., Colorless, Directionless (CD) or CDC.
Every SRG contains one pair of CPs. In addition, various alarms and performance
measurements are available at this level.
Logical connectivity links are a tool to represent the connectivity/cabling between build-
ing blocks. They cover external connectivity between degrees and the internal cabling
between degrees and SRGs. Express links are used for transit traffic, internally passing
from one degree to another (connection TPs). The connectivity map is based on input
from planning. Wavelengths are represented as fan-out at the connection points. Each
wavelength receives an own node. It multiplies the number of TPs by the number of
available wavelengths per direction.
The path computation for a service can be performed between either tails or nodes. In the
second case, appropriate SRGs and transponders (if available) are returned. The services
are purely wavelength-based ignoring any other parameters. Only routing constraints
may be applied to influence the outcome of the path computation, e.g., diversity, include,
exclude.

2.2.5. Comparison and Evaluation

The models are first classified and then evaluated based on the management functions
described in Sec. 2.1.2. The results are summarized in Tab. 2.2.
The applied classification is following the description in [BCM17]. It covers two di-
mensions: the module’s abstraction layer and its origin type. The abstraction layer
describes the scope of the module, i.e., network service or network element. Available
origins are standardization, vendors or users. The TAPI and TET are standard models
for network services. OpenROADM and OpenConfig, on the other hand, are models
at the network-element level and are vendor-specific, according to the definition. Even
though, OpenROADM can be seen as having a network scope to some extent. Three of
the surveyed models are able to represent topologies. Only OpenConfig is lacking the
notion of links or equivalent entities. This makes it unsuitable for path computation on
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2.2. YANG Models for Optical Networks

its own. While the TAPI provides an application interface for retrieving paths, TET and
OpenROADM are representations that can be used to perform the actual computation.
The calculated paths can be installed through the connectivity service of the TAPI or
the service RPCs of OpenROADM. The TET can only be used in combination with
an active stateful PCE to manage services. OpenConfig is not capable of such network
wide operations without an additional entity that has knowledge about the topology.
However, both device-oriented models, i.e., OpenConfig and OpenROADM, are able to
configure individual network elements. The TET is limited to the information avail-
able for the path computation, whereas the TAPI focuses on network-wide operations
but individual devices are out-of-scope. Notifications and performance monitoring are
management tasks that the protocols centered on network elements support very well.
Being intended for a TED representation, the TET does provide notification mechanisms
about changes. The same is true for the TAPI, and further extensions toward alarms
and performance monitoring are planned. Virtual topologies are only supported by the
TAPI and TET.
At the edge of the optical network, an interworking with other layers is required. The
TAPI defines a set of known signals, e.g., OTN and Ethernet. The generic TET re-
quires extensions to support any technology specifics but is very flexible in using them.
OpenConfig comprises models for many protocols, like IP, Ethernet, Multiprotocol La-
bel Switching (MPLS), but the interworking takes place at an individual device level.
Finally, OpenROADM supports transponders and pluggables at its edge. For external
devices, additional information needs to be handed over to the controller.
The final point that is investigated is the consideration of current developments. Flexible
DWDM grids are picked as an example that has been standardized but is not widely
deployed yet. Most of the models do not provide any information on the applicability to
flexible-grid scenarios. Therefore, the current definition and the needed adjustments are
evaluated. In the TAPI, a very generic definition of a central frequency or wavelength
is provided. This is not enough to describe flexible grids but it can be a starting point
for augmentation. For the TET, a specialized extension is already available. In the case
of OpenConfig, one frequency value per optical channel is available. Therefore, it is not
capable of representing the new grids without changes. OpenROADM is focused on cap-
turing the current generation of ROADMs. Especially the representation of wavelengths
by individual connection points makes an adaptation very hard without major changes
of the model.
Now, the conceptual approach presented in Sec. 1.4 is revisited. As a reminder, it intro-
duced a mediation layer that allows applying SDN and NV to optical networks, while
at same time providing a migration strategy for legacy equipment. The original concept
(see Fig. 1.7) does not define any models and interface implementations. Since all the
presented models have a particular application area in mind, they are mapped to this
concept. The resulting assignment is shown in Fig. 2.7 (right-hand side). Starting from
the top, the TAPI covers a wide range of interfaces needed for applications and con-
trollers. This makes it a good fit for the NBI of the hypervisor, which requires support
of network-wide operations. In general, the IETF TET is an extendable representation
of networks for TEDs. This makes it applicable to the internal representation of the
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Figure 2.7.: Generic optical network hypervisor architecture with a virtual topology in-
tent interface (left-hand side) and the model assignment (right-hand side).

hypervisor. The overlays are a good fit for creating virtual topologies for clients. The
functionality that is usually added by an attached PCE is taken over by the hypervisor.
For the configuration of the network elements, i.e., the SBI, OpenConfig and Open-
ROADM are possible solutions. The optical part of OpenConfig is still in an early stage
and focuses on the configuration and monitoring of individual components of an optical
transport line system. Unfortunately, many parts of the optical model are currently un-
defined. OpenROADM provides a device as well as a network view. It is very operations
oriented, meaning all components have associated management parameters like physical
location and vendor information.

Two of the presented models, i.e., TAPI and TET, allow a creation of virtual topologies.
Chowdhury and Boutaba identify defining interfaces for network virtualization as one
key research challenge [CB09; CB10]. So far, there is still no intuitive and user-friendly
way for a customer or an application to define a topology by simply indicating his or
her requirements (intent). Compared to network embedding, creating a virtual topology
for optical networks, which can then be controlled by a client SDN controller, does not
include an assignment of nodes in the network. The endpoints for potential connections
are allocated to the customer by the infrastructure provider beforehand. The remaining
task is to create links based on impairment-aware RSA in order to receive a topology
that is exposed to the tenant.
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2.3. Definition of Virtual Topologies

2.3. Definition of Virtual Topologies

A way of defining virtual topologies is an important requirement for pushing the vir-
tualization and slicing of optical networks for multiple tenants and scenarios. Current
work at the IETF [Zha+16] mentions two ways of creating a virtual topology: the first
one is a direct definition in one of the topology models and the other one is based on a
traffic matrix, whose structure has not been defined yet. The first approach requires an
administrator, most likely the provider, to explicitly specify the virtual topology follow-
ing the used topology model. Such manual configuration processes are cumbersome and
error-prone. The second approach is based on a traffic matrix estimating the needed
bandwidth between endpoints. Based on this information, an appropriate topology will
be generated, assuming the expected traffic is known beforehand. Nevertheless, this
requires a standardized definition of the traffic matrix. The first approach is supported
by the TET, and the TAPI follows an approach similar to the second one.

Some work on intent interfaces for network virtualization has been carried out recently.
Cohen et al. suggest an intent-based network definition using directed graphs [Coh+13].
Those graphs are called network blueprints and capture the connectivity as well as the
policies. In a blueprint, endpoints are grouped in policy domains (nodes) and connected
via policies (links). No details about the available parameters, the assignment of nodes
and an exchange model have been published. Policy domains bundle endpoints that
need to be treated similarly regarding policies like intrusion detection or latency. The
policies are applied when transitioning between domains. Due to the application of
packet encapsulation, the architecture is only applicable to packet-switched networks.
An exact list of the available parameters, the assignment of endpoints to domains and
an interface model toward the client have not been published.

Han et al. introduce a platform that uses an intent interface for defining virtual networks
in an SDN environment [Han+16]. Their goal is to automate the process of composing
and embedding virtual networks. The platform’s architecture follows a layered approach
and combines the functionality of a hypervisor with an SDN controller. Three groups
of virtual topology intents are introduced in the sense of high-level policies. A topol-
ogy intent describes a connectivity between endpoints. Endpoint intents capture the
requirements for relations between endpoints, like bandwidth. Finally, chain intents
extend the previous one by chaining intermediate middle boxes and Virtual Network
Functions (VNFs). The implementation is based on OpenVirteX [AlS+14] and Open
Network Operating System (ONOS) [Ber+14; ONO18b], reusing its intent framework.
Unfortunately, no details on the intents or their modeling is given. Since the slices
are managed through the OF protocol, the proposed architecture is only applicable to
switches.

Neither of the proposed ways of defining virtual networks has enough details for an
adoption. This makes it hard to judge the ease of use, especially for the intent-based
approaches. The presented work focuses mainly on packet-switched networks using en-
capsulation or the OF protocol and does not take into account OCS.
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2.3.1. Model for an Intent-Based Definition of Virtual Networks

Current solutions for creating virtual topologies, like entering the network layout manu-
ally, are overly complex, error-prone and most of all cannot be easily defined and modified
by the client. The customer should be able to express his topology request based on a
set of simple intents. An intent specifies what the user wants to achieve without the need
of being aware of how it is done. This interface is a missing piece in the management
of SDONs . This work proposes an intent interface model to solve it [SAK17]. The
intents that describe the high-level requirements defined by the customer are the main
outcome of this chapter. Then, the resulting topology can be represented, exchanged
and controlled based on existing optical models like the TET and the TAPI. The needed
input for the virtual topology creation are the assigned client ports, provider constraints
and the client’s intents. The creator is shown on the left-hand side of Fig. 2.7. Provider
constraints are out of the scope of this thesis but may constrain the visibility of network
details. The created topologies can then be managed by the client’s SDN controller.
The proposed interface model enables the user to define virtual topologies expressing his
requirements in the form of intents. In Fig. 2.7, it corresponds to the virtual topology
intent that is the northbound input to the virtual topology creator. The interface is
defined in the modeling language YANG. Therefore, it can be easily translated into
a protocol implementation based on NETCONF or RESTCONF. The full model that
describes this interface that can be used for defining, requesting and manipulating virtual
topologies can be found in App. B. Two main data entry points are available: endpoints
and topologies.
The entry point endpoints and its children represent state that cannot be changed by
the user. It contains a list of all assigned-endpoints that the client who is querying
the interface is allowed to use. It is important to give the client a way to access this
information as a starting point for his virtual topology requests. The assignment is read-
only and is maintained by the provider based on existing agreements. The endpoints
themselves are generic and can represent nodes, modules or ports, depending on the
level of abstraction that is used for representing the topology. Additional information
can be added by means of augmentation, e.g., user-friendly descriptions. From the point
of view of virtual-topology creation, only a unique endpoint identifier is needed.
The configuration and therefore the creation is carried out through the data stored
in topologies and the respective subtree. This top-level element contains a list of
installed-topologies for the querying user. These topologies comprise an identifier
(topology-id) as well as a list of intents. The uniqueness of the topology’s identifier
is enforced by the key property for the list in the YANG model. This is also true for
the other identifiers. The individual intents combine a set of endpoints with require-
ments that need to be fulfilled by these endpoints. The available parameters include the
dedicated-bandwidth, which is exclusively reserved, and the flexible-bandwidth,
which is shared with others and might not always be available. Both are expressed in
Mbit/s and thereby give the user an easy way to define a topology based on a bit rate
instead of expecting him to be familiar with technology-dependent details, like flexible
WDM grids and modulation formats. Additionally, parameters addressing properties
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{
"endpoints": {

"assigned-endpoints": [
{"endpoint-id": "A1"},
{"endpoint-id": "A2"},
{"endpoint-id": "A3"}

]
},
"topologies": {

"installed-topologies": [
{

"topology-id": "Client A",
"intents": [
{

"intent-id": "Intent A",
"endpoints": ["A1", "A2", "A3"],
"dedicated-bandwidth": 10000,
"flexible-bandwidth": 5000,
"minimum-paths": 2,
"disjoint-paths": "link",
"protection": false,
"maximum-active-connections": 2,
"satisfied": true

}
]

}
]

}
}

Figure 2.8.: JSON representation of an example for a virtual topology configuration for
“Client A” resulting in the depicted virtual topology in Fig. 2.7.

of the available paths, i.e., links in the virtual topology, are included. Those comprise
the minimum number of parallel paths (minimum-paths) and their disjointness require-
ments (disjoint-paths), e.g., link or node disjoint. It is also possible to request an
optical protection. Finally, the maximum number of parallel connections is included
(maximum-active-connections). It defines how many connections may be active at
any given point in time. This means that the links define potential connections but only
a certain number of them can be provisioned by the user at the same time. Each intent
contains a read-only flag (satisfied) that indicates if the virtual topology creator was
able to satisfy all requirements of the intent. Based on a number of one or more such
intent groups, a topology is created and exposed to the client’s SDN controller, which is
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then able to control the virtual network on demand. An example for assigned endpoints
and a topology based on one intent is shown in Fig. 2.8. If the described YANG model
was used to define a RESTCONF interface, the JSON representation would match a re-
sponse to a request for the current configuration of the virtual topologies. The example
corresponds to client A’s topology in Fig. 2.7.
The proposed model complements the model landscape by providing a way of maintain-
ing virtual topologies. While the existing models are used to control the network and
expose (physical and virtual) topologies, the new intent interface offers capabilities for
changing the mapping between topologies according to the client’s needs. Being defined
in YANG, the developed model can be easily translated to protocols.

Summary
This chapter evaluates existing models for the management of optical networks. An
interface for manipulating virtual topologies is identified as a gap. Therefore, an intent
model is proposed to offer a solution that makes it easy for clients to request, change
and delete virtual topologies. The creation of virtual topologies from the received intents
requires mapping physical resources to virtual ones. For the links, a calculation of paths
through the network is required, which is the topic of the next chapter.
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Resources

Network Virtualization (NV) is gaining an increasing amount of attention in the field
of networking. The idea is to split and share physical network resources between dif-
ferent tenants, while giving them control over their network slice, i.e., the part of the
network assigned to them. To abstract from the underlying technology and to offer
isolation between tenants, the network is exposed as a virtual network. Based on the in-
teraction with an (SDN) controller, a virtual network is (mostly) indistinguishable from
a physical network comprising hardware. Optical networks have different properties
than packet-switched networks, e.g., the transmission is analog and they are typically
circuit-switched. This needs to be taken into consideration by the virtualization process.
Usually, a network hypervisor is used as a mediation layer between the physical network
and the tenant’s controller. Before a virtual network can be exposed, a resource assign-
ment needs to be carried out. It starts with a request that is submitted by the tenant,
describing the expected network. The associated requirements need to be mapped to the
infrastructure. For optical networks, the node mapping is assumed to be given because
the tenant’s equipment is available at a predefined location. Only the links require a
mapping, which can be achieved by means of Routing and Spectrum Assignment (RSA).
In a two-step approach, the routing and the spectrum assignment are split into individ-
ual tasks. The first step, i.e., the routing, usually involves a shortest path computation.
The naive procedure calculates a path for every link of a virtual topology request using
one of the well-known algorithms, e.g., Dijkstra’s algorithm. Since it can be expected
that many requests (and links per request) have to be handled by the hypervisor, a
more efficient solution is needed. Based on the shortest path the spectrum is assigned,
which represents the second step. This concludes the mapping of virtual links before
exposing the virtual topology to a tenant. This chapter covers NV in optical networks,
proposes novel extensions for a shortest path algorithm and describes the process of
virtual topology creation.

3.1. Network Virtualization
NV is seen as one of the important properties for next-generation networks [CB09; CB10].
A basic definition has been given in Sec. 1.2.2. Chowdhury and Boutaba define a virtual
network as a set of virtual nodes and virtual links, which build up a virtual topology.
This topology is a subset of the underlying physical infrastructure. Each virtual node
is hosted by one physical node, whereas virtual links are paths through the physical
topology, potentially passing multiple nodes in between. NV enables the sharing of
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Figure 3.1.: Roles and dependencies in a virtualized network.

network resources between multiple tenants, including the recursive creation of virtual
networks, i.e., the virtualization of virtual network resources. The introduction of NV
also leads to new roles in the provider landscape [Sch+09]. A summary of the roles
and dependencies is presented in Fig. 3.1. The original split between ISPs and Service
Providers (SPs) is extended by specialized roles. The ISP is primarily responsible for
providing access to the Internet based on own or leased infrastructure. Since the role of
the ISP often includes multiple tasks, e.g., providing infrastructure and services, a clear
naming convention is introduced. The Physical Infrastructure Provider (PIP) operates
its own infrastructure and offers it to customers. The Virtual Network Provider (VNP)
is a type of infrastructure provider without an own network. He relies on a leased
infrastructure from a PIP or another VNP. The difference between a VNP and a PIP is
that the VNP provides connectivity on top of a leased network and thereby, introduces an
additional layer of indirection. Both network providers expose virtual resources through
programmable interfaces. The SP offers a service of any kind based on infrastructure. His
network may comprise slices provided by different sources, i.e., infrastructure providers.
The SP then exposes services to the end-user, who terminates the service. Multiple
provider roles might be covered by the same entity. NV especially plays a role between
the PIP and his tenants as well as the VNP and the SP.

3.1.1. Network Hypervisor

For the realization of network virtualization, a concept similar to virtual machines can be
applied to networks, where a hypervisor abstracts physical network resources into virtual
ones. Previously available technologies that are related to virtualization in networks,
e.g., VPN, MPLS or VLAN, provide link virtualization instead of network virtualization
[4WA09]. Also, attempts have been made to virtualize hardware like routers in software
and to deploy them on commodity servers [Egi+10; KG08], which differs from the original
goal of virtualizing the network hardware itself. Fueled by SDN and its centralized
control and unified interfaces, a new generation of hypervisors emerged. The first SDN

50



3.1. Network Virtualization

network hypervisor that abstracted packet switches is FlowVisor [She+09; She+10]. It is
an intermediate layer between an OF controller and OF switches, intercepting messages
and translating them according to the slice definition. The FlowVisor assigns a flowspace,
which is defined by a number of OF headers, to every slice. It makes sure that these
flowspaces do not interfere with each other and that the clients are isolated.
An extensive survey on hypervisors for SDN has been presented in [Ble+16]. The focus
is on packet-oriented hypervisors for OF networks, even though a few special-purpose
hypervisors are briefly mentioned. Blenk et al. identified three main network attributes
that can be abstracted, i.e., topology, physical node resources and physical link resources.
These three attributes form the basis, i.e., input, of the hypervisor. The survey also
presents three types of network attributes that are relevant for isolation, i.e., the control
plane, the data plane and the virtual SDN addressing. All three of them require different
methods for ensuring that no unwanted interference between tenants occurs. Finally, a
classification of the surveyed hypervisors is presented based on their architecture —
centralized vs. distributed — and the execution platform they are running on. The
platforms include general-purpose hardware, generic NEs as well as special NEs with
included hypervisor functionality. This classification schema is also applicable to optical
network hypervisors, even though some factors are less relevant, e.g., the addressing.
Most hypervisors do not consider optical networks and therefore, do not take into account
optical transmission and its implications. Circuit switching and optical constraints have
to be explicitly considered by NV in order to provide correct results. Examples are
wavelength continuity, optical impairments and connectivity constraints [Guo14]. On
a network scope, the level of abstraction is an important parameter [Aut+14; Guo14].
While (a part of) a network virtualized into a single switch is easy to expose, it might
hide too many details of the underlying network. At the other extreme, a direct, i.e.,
one-to-one, mapping exposes the full complexity of the network, which needs to be
handled by the controller. Intermediate virtual topologies present a trade-off between
both extremes and are a suitable option in many cases. On a node level, optical layer
constraints need to be captured in order to provide a meaningful topology [Guo14].
These constraints are related to internal configuration of the hardware and may limit
the viable options, e.g., for the applicable wavelengths or directions. One of the first
attempts of providing a NV mechanism, while capturing the impairments of an optical
network, was done in [Azo+12]. This optical FlowVisor followed the FlowVisor approach
that was used for packet switches and communicated through OF. A summary of other
existing virtualization techniques and hypervisors for optical networks is available in
[Thy+16].
Since OF is considered unfit for optical networks [Cas+18] and new protocol definitions
are emerging (see Sec. 2.2), a discussion regarding the best protocol(s) for NV is ongoing.
The general concept of a mediation layer still persists, only the OF protocol is no longer
considered for the control of optical NEs and therefore, as the SBI of the hypervisor.
Martinez et al. suggested to use the Control Orchestration Protocol (COP) [Mar+17],
which has been an influence on the TAPI. The TAPI itself is also considered a viable
option [Jan+16]. In addition, the previously presented TE Topology (TET) is capable
of representing virtualized optical networks, even though it is not very prominent in
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publications. In summary, more investigation is needed before an agreement can be
reached. Only if a virtual network is defined and resources are assigned, it can be
exposed through a hypervisor. These two topics are discussed next.

3.1.2. Defining Virtual Networks

Defining a virtual network is an indispensable step before it can be used by a client.
A general approach for requesting a virtual network is to define its structure based on
nodes, links and some resources offered by both, e.g., bit rate or wavelength. Typi-
cally, this is employed by Virtual Network Embedding (VNE), which is introduced in
Sec. 1.2.2. The requested network description is handed over to the embedding algo-
rithm, which tries to accommodate it in the existing network. This embedding algorithm
maps two entities: nodes and links. The embedding itself is a computationally hard task
(NP-hard), even if limited to assigning the links [Fis+13]. For smaller problem sets
optimal solutions can be computed but for larger instances heuristics are applied. A
general survey on methods and their classification is presented in [Fis+13]. It shortly
discusses optical networks without going into details, acknowledging that physical layer
impairments apply. Additionally, wavelength continuity constraints and transmission
settings need to be considered. Attempts for including them in the VNE have been car-
ried out [Pen+11]. Existing Integer Linear Programming (ILP) solutions for allocating
Virtual Optical Networks (VONs) [Pag+12a; Pag+12b] are too slow to be applicable to
network management. Several minutes for just a few nodes are not acceptable. Current
work for optical networks mostly focuses on mapping nodes according to some heuristics
[Wan+15; Zha+13c; Zhu+15; ZSB13] and uses a shortest path calculation for the links.
Vilalta et al. compare a shortest path with a subsequent spectrum allocation with a
spectrum-aware shortest path [Vil+14]. The spectrum-aware shortest path iterates all
central frequencies, removes all edges that do not have enough slots for the respective
central frequency and checks the shortest path on top of this pruned graph. Their results
are not very detailed and the scalability of this approach is not verified. RWA in con-
junction with VNE has been considered by [Zha+13b]. Even though the paper mostly
focuses on the flexible assignment of nodes, it applies RWA based on a fixed shortest
path in the mapping process. Thereby, it tries to reduce the number of wavelengths
used.
For optical networks, it is unlikely that the nodes need to be mapped based on compu-
tational resources. The equipment is usually not directly connected to servers and it is
mostly used to transfer big amounts of data between selected endpoints. Therefore, this
thesis assumes that the endpoints are assigned to tenants, who can choose the kind of
topology they need based on the assigned endpoints. This reduces the definition of a
virtual network to the mapping of virtual links.

3.1.3. Assigning Optical Resources to Virtual Entities

Virtual networks always rely on a mapping to an underlying network, irrespective of
its physical or virtual nature. The resources of the underlying network are mapped to
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their respective virtual resource. There are two main (physical) resources that need to
be assigned to their virtual counterparts: nodes and links. The nodes can be further
partitioned, e.g., into ports. Since this thesis assumes that in optical networks, nodes
and ports are preassigned to tenants, the mapping of these resources is not further
examined. Therefore, only virtual links need to be mapped. Virtual links correspond
to paths through the network and need to be assigned a wavelength or a part of the
spectrum. This is done by either RWA in the case of fixed grids or RSA for flexible
DWDM grids. In most cases, wavelength conversion is not available because of the cost
and limited blocking reduction [ZJM00]. For this reason, the wavelength or spectrum
continuity constraint has to be taken into account. To reduce the complexity of this task,
the process can be split into two stages: finding one or more valid routes and assigning
a wavelength or a portion of the spectrum.
Natural options for the first step are fixed routing, fixed alternate routing and adaptive
routing [Hua+12; ZJM00]. Fixed routing, e.g., shortest-path, leads to higher blocking
probabilities because it only considers one path and ignores the current state of the
network. Fixed alternate routing uses an ordered list with a predefined number of paths,
e.g., link- or node-disjoint paths, and uses the first path that allows for a valid wavelength
assignment. A way of obtaining the shortest k disjoint paths is described in [Bha97].
Two variations are explained that either result in node or link disjoint paths. Adaptive
routing takes the state of the network into account, i.e., the existing connections and
the occupied spectrum. This also means that more information needs to be exposed by
the NMS or the control plane.
Zang et al. state that the routing is more important than the wavelength assignment
for RWA [ZJM00]. None of their presented wavelength assignment heuristics, such as
first-fit, random or more elaborate ones, leads to noticeable improvements. This means
that using a simple heuristic — complexity wise — such as first-fit does not lead to
high penalties regarding blocking probability. RSA examples for one-step and two-step
approaches are shown in [Wan+11]. The authors of [Li+14] present a heuristic for VNE
in optical networks based on k-shortest paths that tries to minimize the number of used
wavelengths. By doing so, they show that the acceptance ratio improves and that a
growing number of k is beneficial up to some point. This thesis only considers dynamic
RSA, i.e., requests arrive at one point in time and may disappear after a time period.
Additionally, the two-step methodology is applied: first a shortest path is calculated and
then the spectrum is assigned.

3.2. Shortest Path Algorithms for Networks

Application areas for shortest distance or path calculations include road networks, web
graphs, biological networks, computer networks, ranked keyword searches, databases
and social networks. Sometimes, only the distance is relevant, e.g., to determine the
closeness of a node in a social network. Other cases, such as navigation through road
networks, require the whole path. The path is also relevant for computer networks, in
order to route traffic.
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A few basic definitions are needed for further discussion of the algorithms. Let G =
(V,E) be a graph with vertices V and edges E. The number of vertices is denoted as
n = |V | and the number of edges as m = |E|.
The default approach for conducting a shortest path calculation between two nodes is
running Breadth-First Search (BFS) or Dijkstra’s algorithm [Dij59] from one of them
until the other node is reached. The main difference is that BFS calculates a shortest
path based on the least hops, i.e., it is only applicable to graphs with uniform edge
weight, whereas Dijkstra takes into account weights assigned to edges. This leads to a
difference in the implementation and computational complexity. For BFS, it is sufficient
to use a simple list for queuing nodes because the nodes are by definition inserted in
the right order. Since Dijkstra processes the weights of edges, nodes in the queue may
reduce their distance and move further to the front. A priority queue is needed to keep
track of the correct ordering. The choice of the queue reflects in the computational
complexity: while the BFS has a complexity of O(n + m), Dijkstra with a Fibonacci
heap leads to O(n logn + m). The advantages of both shortest path algorithms are a
simple implementation and that no memory is needed to store additional information.
The drawback is that every query requires a computation from scratch, even if it was
calculated before. Depending on the number of queries, the repeated recalculation leads
to a substantial computational overhead. In addition, the query time increases with a
growing network size.
One naive way of reducing the query time is precomputing All-Pairs Shortest Paths
(APSP). In this case, the shortest paths between all nodes are available and can be
queried in constant time O(1) by performing a lookup. On the downside, precomputing
APSP is computationally complex and results in high memory requirements for storing
the distances. For small networks, precomputation is a viable option to improve the
query processing time while the memory is still manageable. For larger networks, it
leads to excessive requirements on the hardware side.
A graph representation that is related to shortest paths are Shortest-Path Trees (SPTs).
They are a type of spanning tree, which forms a subgraph of G containing all vertices of
G [WC14]. An SPT is rooted in a source and connects “all nodes such that the sum of
the edge lengths from the source to each node is minimized” by selecting a set of edges
from G [WC14]. An SPT can be computed using Dijkstra’s algorithm and represents a
solution to the Single-Source Shortest Paths (SSSP) problem. SPTs can be applied to
different use cases, e.g., to improve the speed of a bidirectional BFS [HAK16].
There are two categories of shortest-path distance computations: exact methods and
approximations. An approximation provides an upper bound on the exact distance and
is applied in order to reduce complexity or save memory compared to exact methods.
One group of algorithms approximates the distance based on landmarks. They try to
estimate the distance between two nodes based on precomputed paths connected to the
landmarks. One example for a landmark-based estimation for shortest-path distances
has been presented in [Tre+11]. It uses SPTs rooted in landmarks as a starting point for
the estimation and improves the result by taking into account common ancestors as well
as shortcuts. An update procedure after insertion and deletion of edges is also explained.
These procedures are needed to update the SPTs. In practical terms, approximations
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are not a good approach for shortest path calculations in (optical) networks. Usually,
those methods just provide a distance and this is not sufficient for a connection setup.
Even if the path was reconstructed it might be much longer, especially for nodes which
are close to each other. Using such a path would potentially waste resources. For this
reason, the thesis focuses on exact methods.
Partial precomputation takes the middle ground between Dijkstra and APSP. It im-
proves the query times while at the same time keeping the memory overhead reasonable.
The result of the precomputation is any kind of helper data structure, which then im-
proves the response time for queries. Of course, this computation needs some additional
time beforehand. Two examples for this class are tree decomposition and labeling meth-
ods. The first uses a divide and conquer approach and decomposes the graph into a
tree. It then precomputes shortest paths for parts of the tree. Queried distances are
calculated based on these partial results. The second one creates labels, which contain
distances to particular nodes. Based on these distances, the shortest path can always be
computed because it is part of the labels by construction. Both approaches are discussed
in more detail next.

3.2.1. Tree Decomposition

An approach for indexing graphs based on tree decomposition and answering shortest-
path queries is presented in [Wei10]. The tree decomposition is used for creating the
index, while bottom-up operations are applied to find the shortest paths. A tree decom-
position describes the transformation of a graph into a tree representation. After the
decomposition, the tree consists of nodes, which are called bags and contain vertices and
edges from the original graph. There are three important properties that need to be
fulfilled by this representation: (i) every vertex needs to be at least in one bag, (ii) every
edge including both endpoints needs to be at least in one bag and (iii) bags that contain
the same vertex need to form a connected subtree. Every vertex can be present in mul-
tiple bags as long as the last rule is not violated. Common vertices in neighboring bags
along the tree represent transitions between these bags. APSP between the vertices
of every bag is precomputed. Paths between vertices in different bags are calculated
on demand by traversing the tree. This approach offers a parameter for balancing the
trade-off between query time and index size. The initial formulation only supports static
data and no weighted edges are mentioned [Wei10].
An extension of this algorithm is presented in [RLL12] as part of an idea for a shared
graph library that can be used inside SDN controllers to provide all graph-related al-
gorithms. The extension adds support for dynamicity in the network by allowing the
insertion and removal of vertices and edges. This extension makes the algorithm appli-
cable to SDN networks that are dynamic in nature. In general, the algorithms of the
proposed library are expected to work with physical and virtual network graphs.
Another shortest path algorithm that applies tree decompositions and aims at SDN
controllers as an application area is presented in [Xu+16]. It supports weighted edges
but needs to run the full preprocessing after every update. The algorithm improves the
time for preprocessing compared to previously available tree decompositon and labeling
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Figure 3.2.: The concept of 2-hop labels for a shortest path between v and w passing
through u.

methods. Additionally, it covers batch processing of queries by exploiting tree overlaps
in the calculation.

3.2.2. Labeling Methods

2-hop labels “are based on 2-hop covers of the shortest paths” [Coh+02; Coh+03]. They
can be used to calculate the reachability, distance or paths in directed or undirected
graphs yielding exact or approximate results. 2-hop labels define shortest paths through
a label at both endpoints that defines a common intermediate hop. Fig. 3.2 is used as
an example to explain the general idea. Let us assume that a shortest path between the
nodes v and w needs to be calculated. First, the labels of both nodes are scanned for
common hops. Further, we assume that both nodes contain a label for node u, which
results in the lowest total distance dv + dw. This means that the shortest path between
v and w is passing through u and has the calculated distance.
Hierarchical hub labeling is one approach that follows the 2-hop label definition [Abr+12].
Hubs are another name for known hops that belong to a node and are part of the label.
The hierarchy relates to the relationship between nodes based on their availability as
a hub of another node. This relationship creates a ranking of the nodes and leads to
an order. The ordering is then provided as an input to the calculation of the labeling
which only contains the highest-ranked node for each shortest path. An extension of this
scheme is proposed in [Del+14]. The most important improvements comprise finding a
better ordering efficiently and compressing the labeling.
Pruned Landmark Labeling (PLL) is an algorithm based on 2-hop labels that is intro-
duced in [AIY13] together with a bit-parallel labeling method. PLL is an index-based
approach for accelerating the query time for exact distance queries between arbitrary
nodes in the graph. Like in the original definition of 2-hop labels, every node maintains
a set of labels. Each label contains a hop and the respective distance. The construction
of the labeling guarantees that the labels of two nodes contain a common hop along one
shortest path [AIY13]. Therefore, by comparing the total distance of common hops, i.e.,
nodes that are part of the intersection of both label sets, the minimal distance along
the shortest path can be found. One of the key characteristics contributing to the al-
gorithm’s scalability is the pruning during the BFS run for every node. The pruning

56



3.2. Shortest Path Algorithms for Networks

reduces the requirements for computation time and memory space compared to a full
APSP. It stops exploring the graph at vertices that can be already reached via a shorter
or equally long path that is available in the labeling. The presented bit-parallel labeling
enables the calculation of multiple labels in parallel but it relies on bit-level parallelism
This feature is not available in all programming languages, and is just applicable to
unweighted graphs. In summary, the focus of PLL is on computing shortest distances in
static undirected graphs. Akiba et al. provide hints on extensions, in order to support
the shortest path as an output as well as weighted and directed graphs [AIY13]. Results
show that PLL outperforms state-of-the-art methods based on distance labeling and tree
decomposition, and it is applicable to very large data sets with millions of vertices and
edges [AIY13].
An extension of PLL to road networks is presented in [Aki+14]. It defines so-called
highways, which describe main routes going through a (road) network. Their classifica-
tion relies on the length of an edge and its travel speed. Then, the labels are calculated
taking into account the highways. This approach could be mapped to the length and
capacity of links in computer networks but it is not further investigated in this thesis.
Akiba et al. propose two extensions to PLL [AIY14]. One allows adding new nodes
and edges to the graph and the other one adds the capability of answering historical
queries. Without the update extension it was necessary to rerun the preprocessing after
every change, which takes considerably more time. The algorithm only adds new label
entries and updates distances where needed. This avoids processing more vertices than
necessary to provide correct responses. After an update, the size of the labeling is usually
no longer minimal. This extension is also compatible with the previously described bit-
parallel labeling. Historical queries answer shortest-path queries for the past and enable
queries for points in time when changes occurred. The extension toward adding nodes
and edges forms the basis of the algorithm that is presented in this chapter. Historical
queries however are not relevant for computer networks.

3.2.3. k-Shortest Paths

In the context of optical networks, the k-shortest paths can be used to provide multiple
potential paths to the spectrum assignment of the RSA, thereby reducing the blocking
probability. Not all the presented approaches are applicable to the computation of the
k-shortest paths. A naive implementation of Dijkstra’s algorithm visits every vertex up
to k times. This means it has a computational complexity of O((n logn+m) ∗ k). Even
the improvements published by Eppstein only reduce it to O(n logn+m+ k) [Epp98].
Both algorithms are too slow to be applied to large graphs with many incoming queries.
Therefore, approaches taking advantage of precomputation are a better option. Using
tree decomposition, it is not clear how to tackle k-shortest paths.
The first indexing method calculating the top-k distances or k-shortest paths is an
adaptation of PLL [Aki+15]. It is based on the idea of a 2-hop cover and only considers
static graphs, like the initial definition of PLL. Due to the consideration of loops, one of
the main challenges here is the correct count of paths. The algorithm not only needs to
keep track of intermediate nodes but also of loops that are available at every node. The
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Table 3.1.: Notation for the algorithms’ description.
G = (V,E) A graph with a set of vertices V and a set of edges E
v A vertex v ∈ V
vk The root of the k-th Dijkstra run
duv The distance between vertex u and v
wuv The weight of the edge between u and v
pv The parent/predecessor of vertex v along a tree or a path
l A label represented by (v, vk, dvkv, p)
vertex(l) The labeled vertex v of a label l
root(l) The root vk of a label l
dist(l) The distance dvkv of a label l
parent(l) The parent p of a label l
L The labeling (or index), i.e., all labels for all vertices
Lk The labeling after the k-th Dijkstra run
L[v] All labels for a vertex v
L(v) All root vertices for a vertex v
L[v][vk] The label of vertex v for the hop/root vk
N(v) The set of neighbors of vertex v
order(V ) A set of vertices V sorted by a defined ordering (e.g. degree)
PQ Priority queue that sorts the entries by key, i.e., distance d

first step is to calculate up to k loop labels for every node. After this step, the pruned
BFS calculates the labels for the top-k distances. To support weighted graphs, BFS
needs to be replaced by Dijkstra’s algorithm. The presented results indicate that the
query time can be substantially improved with this technique, while keeping the index
size reasonable, fitting into the memory of modern computers [Aki+15]. A hierarchical
and dynamic approach for maintaining a k-all-path cover [AYM16], which contains all
paths of length k, is not efficiently applicable to k-shortest paths. The main difference is
that the former one refers to the exact length of paths and the latter one to the number
of shortest paths.

3.3. Extensions to Pruned Landmark Labeling

The shortest path algorithm used as a starting point for this work is PLL. It represents a
trade-off between the required precomputation — time and memory — and the response
times for queries. The original definition does not support changes in the graph [AIY13].
It is only applicable to a static graph, or a full preprocessing is required in case an edge
or vertex is added or removed. In order to avoid the expensive precomputation, an
approach is needed to react to changes in the underlying graph by applying updates
to the labeling. The update procedure should reestablish the correctness, while being
less costly than a precomputation. An extension supporting the insertion of new edges
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Figure 3.3.: Example of a labeling and its mapping to a colored SPT representation.

has been presented in [AIY14]. However, the algorithm neglects the cleanup of obsolete
entries, i.e., the size is no longer minimal (with respect to the given ordering) and the
number of labels increases with every update. These entries force the user to execute
the preprocessing again, when the index size exceeds a certain threshold. Work on the
removal of edges is not available currently.
For the upcoming description of the algorithms and the representation in figures a com-
mon terminology is required. The notation that will be used throughout this section is
summarized in Tab. 3.1.
One way of representing SSSP rooted in a given source are SPTs. If they support edge
updates in the form of increased or decreased weights and the insertion and deletion
of edges, they are said to be fully dynamic. The structure of the labels calculated by
PLL is similar to SPTs. In fact, the labels for a given root represent a pruned SPT
that only contains entries relevant for the calculation of the shortest path. In this work,
SPTs are used to visualize the labeling calculated by PLL and available algorithms for
SPTs [FMN00] are adapted for maintaining fully dynamic networks. An example for the
representation that is used throughout this chapter is shown in Fig. 3.3. On the left-hand
side, a representation listing the labels that are available at each node is shown. If we
want to calculate a shortest path between v5 and v4, both lists of labels are scanned for
common hops, i.e., root vertices. v1 and v2 are available in the lists of both vertices.
The first vertex results in a distance of 3.0 by summing both distances toward v1, and
the second one sums up to 2.0. Therefore, the shortest path between v5 and v4 passes
through v2 and has a length of 2.0. In order to make the drawing clearer and more
concise, the pruned SPT representation on the right-hand side is used. Every vertex
that contains a label from a given root vertex is connected to the colored root vertex by
edges of the same color, i.e., every SPT corresponds to a color. For example, v5 has a
label for hop v2 (blue node). For this reason, v5 is connected to v2 by a blue dashed line.
In this work, a way of supporting edge insertions and deletions for PLL is introduced that
keeps the labeling correct and minimal. The main challenge after an insertion of a new
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Algorithm 3.1: PrunedDijkstra(vk)
Data: Graph G, labeling Lk−1, root vertex vk
Result: labeling Lk

1 PQ ← priority queue with one element (0,vk);
/* P is a tentative shortest path map that contains distances and

parents (along vk's SPT) for all v ∈ V . */
2 P [vk]← (0, none) P [v]← (∞, none) ∀v ∈ V \ {vk};
3 Lk[v]← Lk−1[v] ∀v ∈ V ;
4 while PQ is not empty do
5 u← PQ.RemoveMin();
6 (dvku, pu)← P [u];
7 if query(vk, u, Lk−1) ≤ dvku then continue;
8 Lk[u]← Lk[u] ∪ {(u, vk, dvku, pu)};
9 foreach w ∈ N(u) do

10 (dvkw, pw)← P [w];
11 dupdate ← dvku + wuw;
12 if dupdate < dvkw then
13 P [w]← (dupdate, u);
14 PQ.DecreaseOrInsert(dupdate, w);
15 end
16 end
17 end

edge is the removal of entries that would have been pruned if the new shorter path existed
from the start. In contrast, a deletion of an edge may only lead to an increase in distance
for the shortest paths. Therefore, all affected nodes have to be identified and invalid
entries have to be removed in order to compute correct results based on the labeling. In
addition, pruned branches may need to be resumed because a shorter path that led to
a pruning before is no longer available. This thesis assumes that (optical) networks are
mapped to undirected graphs with edge weights because a bidirectional communication
is required and the weight/length of edges has an influence on the chosen path. Further,
the initial node degree is used for the ordering throughout this work. This means that
nodes with a higher degree get a smaller index and are processed earlier. Next, the base
algorithm for creating the labeling as well as the update procedures including helper
functions are introduced.

3.3.1. Base Algorithm - Pruned Dijkstra

The base algorithm for the preprocessing that implements Dijkstra’s algorithm with
pruning, from now on called “pruned Dijkstra”, is presented in Alg. 3.1. In a nutshell,
Dijkstra’s algorithm is run from every node and it is stopped, i.e., pruned, whenever
an existing pair of labels provides an equal or shorter path. Pruning means that a
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particular branch of the search tree is cut off because the new path does not provide
any improvement. The implementation is an adaptation of the pruned BFS taking
into account the hints for links with weights and for the retrieval of paths (instead of
distances) from [AIY13; AIY14]. A partially applicable example of a pruned Dijkstra
has been presented in [AY16]. It uses different data structures and does not store all the
required information to reconstruct paths. Additionally, the pruned BFS’s definition
has been fixed because the presented pseudocode [AIY13; AIY14] contains mistakes:
(i) the wrong index is used (line 10: L′

k−1 → L′
k), (ii) the wrong distance is accessed

(line 10: P [vk] → P [u]) and (iii) an undefined node is used for searching neighbors
(line 11: NG(v)→ NG(u)).
The definition of a label follows the suggestion of [AIY13] and includes the parent along
the path, so that not just the shortest distance but also the shortest path can be queried.
A label L[v][vk] is a quadruple of the form: (v, vk, dvkv, pv), where v is the labeled vertex,
vk is the hop vertex and the root of the pruned SPT, duv is the distance between the
labeled vertex and the root and pv is the parent node along the path toward the root.
The vertex v that this label is attached to is only included for convenience reasons. Given
two nodes with a common label, the shortest path can be reconstructed by starting from
both endpoints and following the parent entries toward the common root.
Alg. 3.1 summarizes the preprocessing for a single root. The algorithm needs to be
repeated for all vertices v ∈ V according to the ordering. In more detail, vk is the root
of the k-th pruned Dijkstra run and Lk−1 comprises the labels that have been computed
by previous runs. First, the priority queue PQ, which is sorted by distance representing
the key, and the tentative shortest path map P are initialized in lines 1 to 2. The latter
contains the tentative distances to the root and the respective parent vertex along the
path to vk for the current k. Additionally, the labels that have been computed so far are
included in the result of this step because the labeling is built gradually. The while-loop
processes all elements of the priority queue until it is empty. In line 5, the element
with the minimum distance is retrieved from the priority queue. If the queried distance
between vk and u based on the labels Lk−1 is lower than or equal to the stored value
in P , further processing is omitted for this element. This branch of the if-statement
corresponds to an existing path with equal or shorter distance. Else, we found a new
shortest path and need to add a label to nodeu’s list and process its neighbors. For
every neighbor w, whose distance is reduced by the new path, we update the stored
distance and add it to the queue or decrease its key, i.e, reduce the stored distance, in
case it was already available in the queue. After the execution is finished, the updated
labels are available in Lk. The proof of correctness was already provided by Akiba et al.
[AIY13].

3.3.2. Adding Edges

An insertion of new edges has been presented in [AIY14]. Akiba et al. resumed their
pruned BFS for all labels that are available on both sides of the new edge. The idea
is that only labels that are present on either side of the new edge might use it for
a shorter path. All other labels have been pruned before and never reached the new
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Algorithm 3.2: edgeAdded(e)
Data: Graph G with E ∪ {e}, labeling L, new edge e from a to b
Result: Updated minimal labeling L for the new graph G

1 R ← ∅ ; /* vertices with reduced distance */
2 foreach vk ∈ order(L(a) ∪ L(b)) do
3 if vk ∈ L(a) then
4 R ← R ∪ resumePrunedDijkstra((b, vk, dvka + wab, a));
5 end
6 if vk ∈ L(b) then
7 R ← R ∪ resumePrunedDijkstra((a, vk, dvkb + wab, b));
8 end
9 end

10 foreach r ∈ R do pruneUpdatedTree(r);
11 foreach r ∈ R do removePrunedLabels(r);

edge. Therefore, we need to continue the labels located at the edge’s endpoints on the
opposite side and check if they result in new labels. By applying this procedure, the
correct labeling is restored since PLL always chooses the pair of labels with the shortest
distance. This approach has one major drawback: labels that are no longer used are still
kept and lead to a growing size of the labeling. Therefore, the minimality of the original
labeling is not maintained. This thesis presents extensions to the algorithm that make
it applicable to Dijkstra and restore the minimal size of the labeling through a cleanup
procedure. Even though it increases the running time, it leads to space savings and is a
requirement for the proposed deletion of edges.
The handling of an inserted edge is presented in Alg. 3.2, in which the selection of labels
and resumePrunedDijkstra are based on [AIY14]. It is assumed that the algorithm has
access to the graph G that already contains the new edge and the existing labeling L that
was correct and minimal before e was added. The new edge e is inserted between vertices
a and b. First, the set R is initialized. At the end, it contains all nodes whose distance has
been reduced throughout the runs of resumePrunedDijkstra. These nodes are relevant
for the subsequent cleanup procedure. The pruned Dijkstra is resumed for all labels that
are available on both sides of the new edge, i.e., L(a) and L(b). In line 4 new labels
passing through the edge from a to b are resumed, while in line 7 the opposite direction
is handled. The procedure resumePrunedDijkstra is called with the new label that
potentially needs to be resumed. It contains the labeled node, the root vk, the distance
through the new edge and the parent on the opposite side. The result of this procedure
is a set of vertices that decreased their distance toward the root. It is merged with the
already stored vertices in set R. After finishing resumePrunedDijkstra for all available
labels, the vertices in R need to undergo a two-step cleanup. First, pruneUpdatedTree is
run to prune the tree rooted in r for every element of R. Second, all vertices are checked
by removePrunedLabels for labels that are no longer needed. This refers to entries that
would not have been added if the shorter path was available from the start. As a result
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Procedure resumePrunedDijkstra(l)
Data: Graph G, labeling L, label l = (v, vk, dvkv, pv)
Result: Updated labeling L based on l, vertices with reduced distance R

1 PQ ← priority queue with one element enqueued by distance (dvkv, v, p);
2 R ← ∅;
3 while PQ is not empty do
4 (dvku, u, pu)← PQ.RemoveMin();
5 if restrictedQuery(vk, u, k) ≤ dvku then continue;
6 L[u][vk]← (u, vk, dvku, pu);
7 R ← R ∪ {u};
8 foreach w ∈ N(u) do
9 PQ.InsertByDistance(dvku + wuw, w, u);

10 end
11 end
12 return R;

of this algorithm, L is again a correct and minimal labeling for the graph with the new
edge e.

Resume Pruned Dijkstra

The pruned Dijkstra is resumed for all labels that are available on both sides of the new
edge e, i.e., at node a and b. The algorithm is based on the resumed BFS presented in
[AIY14]. Differences include the use of Dijkstra, the definition of the labels and that the
nodes with a reduced distance are collected. In general, the idea is that labels might have
used the new edge if it was there from the start. Therefore, they are continued on the
other side of the new edge and added wherever needed until the search is stopped, i.e.,
pruned, or the whole graph has been walked. Before going into detail, a helper method
restrictedQuery(a,b,k) needs to be introduced. It queries the current labeling L for
the shortest distance between a and b using only labels that belong to a node with a
position in the ordering smaller than or equal to k.
The complete procedure is defined in resumePrunedDijkstra. The algorithm needs the
graph G and the labeling L to process the label that is passed as an argument. This label
contains the labeled vertex v, the root of the tree vk, the distance dvkv between vk and
v and the parent pv. A subset of values from this label is used for the initial element
of the priority queue PQ. They are enqueued according to the associated distance. R is
initialized and collects all vertices, whose distance is reduced. Then, the while-loop is
repeated until the queue is empty. The minimum element is removed from the queue
and the distance dvku, the labeled vertex u and its parent pu are extracted. If there is a
shorter or equal path resulting from a query that is restricted to vertices with a smaller
index than k (line 5), we prune this label and skip further processing for it. Else, we
found a shorter path and need to store the new label in L[u][vk]. It is either added or
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Figure 3.4.: Example for a labeling, in which the two highlighted nodes changed their
distance and multiple labels belonging to v2 need to be pruned (dotted lines).

replaces the existing label. This is safe because it provides a shorter path and only one
label per root is maintained for the shortest path computation. Additionally, the node u
is added to R because its distance has been reduced. Then, the neighbors w of vertex u
are iterated and inserted into the queue. It is possible that multiple labels for the same
node are available in the queue. Since the distance of a new path is compared to a query
answered by the existing labels, a shorter path cannot be overwritten by a longer one.
As soon as the queue is empty, the set R is returned.
After the execution of resumePrunedDijkstra, all labels for the root vk passing through
the new edge have been updated. If this is done for all labels on both sides of the edge,
future queries will return the correct shortest path [AIY14]. However, the labeling might
no longer be minimal and therefore, contains unnecessary labels. These obsolete labels
existed before and are no longer needed for the computation of the shortest path. The
labeling will be cleaned up in the next two steps. For this reason, all nodes with a
reduced distance have to be collected and returned by resumePrunedDijkstra.

Prune Updated Tree

The first step of the cleanup is concerned with pruning trees, i.e., (pruned) SPTs, whose
root node vk has at least one new or updated label lnew that leads to a shorter path
than the one available before the edge was added. This label lnew may introduce a path
to a node vcut of vk’s tree that is shorter than the initially available path, when the tree
was calculated. As a result, this shorter path may lead to pruning at vcut that needs to
be applied now. The basic idea is to walk the tree and check if the labels of the tree
need to be pruned because of a shorter path along a different tree. This only applies to
shorter paths that are spanned by trees that occur earlier in the ordering.
An example for this case is shown in Fig. 3.4. On the left-hand side, we see the original
graph and the labeling visualized by the dashed lines indicating the pruned SPTs. The
ordering of the vertices corresponds to their index. Then, an edge between node v1 and
v2 is inserted. This results in a recalculation of the labels by resumePrunedDijkstra.
The highlighted vertices, v2 and v8, have reduced their distance toward v1 (new green
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Procedure pruneUpdatedTree(vk)
Data: Graph G, labeling L, root vk
Result: Labeling L with a correctly pruned tree for vk

1 Q ← queue with one element (vk);
2 while Q is not empty do
3 u← Q.Dequeue();
4 if restrictedQuery(vk, u, k − 1) ≤ dist(L[u][vk]) then
5 L[u]← L[u] \ {L[u][vk]}
6 end
7 foreach w ∈ N(u) do
8 if u = parent(L[w][vk]) then
9 Q.Enqueue(w);

10 end
11 end
12 end

dashed lines). Therefore, both vertices need to be processed by the cleanup procedure.
In the first step, pruneUpdatedTree removes three labels which are represented by the
dotted lines. In particular, these entries are located at node v3, v4 and v7 and belong to
the tree rooted in v2. The reason for this is that the new v1 label at v2 provides shorter
or equal distances to the affected nodes and it is processed before v2.

The procedure walking the tree from the root vertex and pruning labels is called prune-
UpdatedTree. It needs access to the graph G and the currently non-minimal labeling L.
A root node vk is handed over as a parameter to the procedure and it is the starting
point for the algorithm. A queue (first in, first out) is initialized with this root node. At
this point, it is not mandatory to use a priority queue since we are walking an existing
tree and the order, in which the nodes are traversed, is not important as long as all
nodes are visited at least once. For every node in the queue the distance is queried by
exclusively using labels that are smaller than k. The retrieved distance is compared to
the one stored in label L[u][vk] (line 4). If the query returns a smaller or equal value,
the label needs to be removed because it would have been pruned in the original search.
Remember that a label for root node vk is only added to u if it provides a shorter path
than any available label of the labeling Lk−1. Finally, all children need to be added to
the queue, i.e., neighbors w that have a label L[w][vk] with parent u. At the end of
this procedure, all unnecessary labels that are part of the tree rooted in vk have been
pruned. From the definition, it can be seen that labels are pruned (pruneUpdatedTree
line 4) if and only if they had been skipped by the original pruned Dikjkstra (Alg. 3.1
line 7). This approach automatically prunes the whole subtree because a new label that
causes a pruning at any node of the tree must have been propagated along the subtree by
resumePrunedDijkstra, since it provides a shorter path toward the root. This finalizes
the first step of the cleanup process.
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Figure 3.5.: Example for a labeling, where the label for v2 at vertex v5 needs to be pruned
after the insertion of the new edge (dotted line).

Procedure removePrunedLabels(v)
Data: Graph G, labeling L, vertex v
Result: Labeling L without pruned entries at v

1 foreach l ∈ L[v] do
2 vk ← root(l);
3 if restrictedQuery(vk, v, k − 1) ≤ dist(l) then
4 L[v]← L[v] \ {l};
5 end
6 end

Remove Pruned Labels

The second step of the cleanup inspects vertices that changed their distance for labels
that are no longer needed because a shorter path was introduced by a new or updated
label. This can only be the case if the new label belongs to an SPT spanned by a vertex
that was processed earlier according to the ordering. The cleanup is carried out for all
vertices whose distance has been reduced. It removes obsolete labels belonging to trees
of root vertices that did not change any label. Therefore, the corresponding tree was
not traversed in the first step. These labels must be removed from the labeling in order
to achieve a minimal size again.
An example for this case is given in Fig. 3.5. On the left-hand side, we see the original
graph with a vertex ordering given by the vertices’ subscript and the labeling visualized
by the dashed lines showing the pruned SPTs. An edge between v1 and v5 is inserted
into the graph. After resumePrunedDijkstra is finished, only the highlighted node v5
has reduced its distance (right-hand side of Fig. 3.5). Since it does not span a tree, the
first step of the cleanup does not lead to any changes. Now, we can see that there is
a label for v2 that is no longer needed because the node v1 with a lower index in the
ordering provides an equidistant path. This entry for v2 at v5 can be pruned (dotted
line) and is removed from the labeling by removePrunedLabels.
The second step of the cleanup is covered by removePrunedLabels. It is applied to all
nodes whose distances changed and iterates all available labels at these nodes (line 1).
Then, the distance provided by the labels with an index that is smaller than the label’s
root vk is queried. In case a smaller or equal path is available, the label is removed from
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the labeling. It follows the same argumentation as for the first step. Only labels that
are shorter than the previously existing ones are part of the labeling. After this step is
finished for all nodes, the labeling is minimal again with regard to the given ordering. It
corresponds to the labeling that would be calculated by the preprocessing for the same
graph with the same ordering. The overhead introduced by the cleanup procedure is
evaluated experimentally in the next chapter.

Proof of Correctness

We assume that the original labeling that is available before Alg. 3.2 is applied is correct
and minimal. The goal is to show that after the algorithm finishes, the labeling is
still correct and minimal. In particular, the focus is on the newly introduced cleanup
procedure. The following lemma provided by [AIY14] is reused for the proof:

Lemma 1. If the distance between two nodes decreased, then the new shortest path
between them passes through the new edge.

In order to prove the correctness of the cleanup approach, it is necessary to show that
there is no label left that is not needed for the calculation of the correct shortest path.
For the sake of clarity, the labels are reduced to tuples, comprising the root vertex and
the respective distance, in this proof. First, we show that only one of the two labels that
lead to a new shortest path is new.

Lemma 2. Only exactly one of the labels that lead to a new shortest path between
two vertices and result in an existing label being removed has been added to one of the
endpoints of the shortest path.

Proof. We assume that there exists a label (vk, dkl) ∈ L[vl] (k < l) that needs to be
pruned because of a new shortest path between vk and vl going through vj (j 6= k) based
on the labels (vj , djk) ∈ L[vk] and (vj , djl) ∈ L[vl]. If none of the labels was added,
then the original labeling was not minimal, which contradicts the initial assumption. If
both labels for vj were added due to the edge insertion, then a new shorter path exists
between vj and vk as well as vj and vl. According to Lemma 1, this means that both new
shortest paths pass through the added edge. For this reason, one of the root nodes vi
with j < i ≤ k would have labeled the path without passing through the new edge twice
before those labels were added. Therefore, the new labels cannot be the reason for the
pruning, since another shorter path, without the detour through the new edge, existed
before. This contradicts the assumption that the labels (vj , djk) and (vj , djl) result in a
pruning of label (vk, dkl).

From Lemma 2 it follows that a new shortest path that leads to a pruning of a label can
only be introduced by a new label at one of its endpoints. This finding is used to prove
the minimality of the resulting labeling by contradiction.

Theorem 1. After running pruneUpdatedTree and removePrunedLabels, there is no
label left that needs to be deleted.
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Proof. Let us assume that there exists a label (vk, dkl) ∈ L[vl] (k < l) that needs to
be removed because it should have been pruned. This means that there exists a hop
vj that provides a shorter path with the labels (vj , djk) ∈ L[vk] and (vj , djl) ∈ L[vl].
Since the label (vk, dkl) needs to be pruned because of the label (vj , djl), it follows that
j < k and dkl ≥ djk + djl. Otherwise, the assumption is contradicted that the label
needs to be pruned. Using Lemma 2, we know that either (vj , djk) or (vj , djl) is new or
updated. If (vj , djk) is new, then the new shortest path passes through vj . The old path
cannot have passed through vj because j < k. For this reason, the label (vk, dkl) cannot
have existed without violating the minimality. Therefore, the distance between vk and
vj changed and vk received a new label (vj , djk). As a result, pruneUpdatedTree would
have walked the tree and deleted the label (vk, dkl). This contradicts the assumption
about the existence of (vk, dkl). If (vj , djl) is new, then (vk, dkl) would have been pruned
by removePrunedLabels because by adding a new label, the distance of vl to vj changed.
This is again contradicting the assumption that the label exists. Following from those
contradictions, there cannot be any label that needs to be removed after running the
two steps of the cleanup.

Since the cleanup only removes labels that are not needed, the correctness of re-
sumePrunedDijkstra is maintained. Together with Theorem 1 the conclusion is that
the labeling is correct and minimal at the end of Alg. 3.2.

3.3.3. Removing Edges

Support for a dynamic removal of edges from the graph in PLL has not been presented
yet. Akiba et al. mention that in many cases, a removal of edges is not needed and the
complexity outweighs its benefits [AIY14]. However, in computer networks, a failure of
a link or port can lead to edges that need to be removed, at least until the problem
is solved. Work about SPTs proposes solutions for the (addition and) removal of edges
[CY09; FMN00]. These methods are also partially applicable to PLL. The labels created
by PLL correspond to a partial (or pruned) SPT. The main difference is that PLL prunes
labels (SPTs) if a path with an equal or shorter distance is already available. Two phases
are required after an edge is removed from the graph in order to achieve a correct and
minimal labeling. First, labels that traversed this edge need to be removed or reattached
to another path with the same distance. Second, existing labels need to be continued,
if the reason for pruning, i.e., another shorter path, is no longer given. This work
introduces an algorithm that is able to handle edge removals for PLL while keeping the
labeling correct and minimal.
The processing that is required after an edge is removed is presented in Alg. 3.3. Access
to the graph G without the removed edge and the labeling L is needed for the removal
process. The edge e between a and b that is no longer part of the graph is handed
over as a parameter. A set C storing vertices whose distance changed is initialized first.
In case of an edge removal, we are only interested in the labels that are available on
both sides of the edge and therefore, their SPT potentially traverses the removed edge.
All labels that have been pruned before and are not available on both sides are not
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Algorithm 3.3: edgeRemoved(e)
Data: Graph G with E \ e, labeling L, removed edge e from a to b
Result: Updated minimal labeling L for the new graph G

1 C← ∅ ; /* vertices with changed distance */
/* Phase I: remove or reattach labels */

2 foreach vk ∈ L(a) ∩ L(b) do
3 if Tree of vk passing through e from a to b then
4 C← C ∪ removeOrReattachSubtree(L[b][ vk ]);
5 else if Tree of vk passing through e from b to a then
6 C← C ∪ removeOrReattachSubtree(L[a][ vk ]);
7 end

/* else vk not passing through e → no processing */
8 end
/* Phase II: resume previously pruned labels */

9 ResumeLabels← findResumeLabels(C);
10 foreach w ∈ order(C ∪ ResumeLabels.keys) do
11 if w ∈ C then
12 extendUpdatedTree(w);
13 else
14 foreach l ∈ ResumeLabels[w] do
15 resumePrunedDijkstra(l);
16 end
17 end
18 end

affected by the removal. If the tree is passing from a to b through e then its subtree
needs to be removed (or reattached) starting from the label L[b][vk]. If it passes in the
opposite direction, i.e., from b to a, we start with label L[a][vk]. Otherwise, a label
is available on both sides but the tree itself does not traverse e and therefore remains
unaffected by the removal. In the first two cases removeOrReattachSubtree is called
for the respective label. The changed vertices are aggregated until all labels have been
processed and the loop finishes. Now, findResumeLabels is called for the vertices in C.
The procedure searches for all labels that potentially need to be resumed and returns
them grouped by their root vertex. “Resumed” means that for these labels, Dijkstra’s
algorithm needs to be continued at the spot at which it has been pruned before. All the
affected (root) vertices need to be handled to reestablish a correct and minimal labeling.
First, an ordered union of the vertices whose distance changed and the keys for the labels
that need to be resumed is created. The keys correspond to the root vertices that the
ResumeLabels are grouped by. Then, for each vertex either the whole tree is checked
for pruned branches that need to be resumed or a set of selected labels is inspected and
resumed if needed. If the vertex is part of C, then the whole tree needs to be scanned
by extendUpdatedTree. Individual labels stored in ResumeLabels are omitted, since
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Procedure removeOrReattachSubtree(l)
Data: Graph G, labeling L, label l to start from
Result: Labeling L with handled subtree of l, redVertices with removed labels

1 redVertices← ∅; /* all vertices white */
2 PQ ← priority queue with one element enqueued by distance (l);
3 while PQ is not empty do
4 lmin ← PQ.RemoveMin();
5 (u, vk, dvku, p)← lmin ;
6 L[u]← L[u] \ {lmin};
7 if dist(L[w][vk]) + wwu = dvku s.t. w ∈ N(u) ∧ w /∈ redVertices then
8 L[u]← L[u] ∪ {(u, vk, dvku, w)}; /* pink vertex */
9 else

10 redVertices← redVertices ∪ {u}; /* red vertex */
11 foreach w ∈ N(u) s.t. parent(L[w][vk]) = u do
12 PQ.InsertByDistance (L[w][vk]);
13 end
14 end
15 end
16 return redVertices;

they are implicitly covered by scanning the whole tree. In the other case, only the labels
that are stored in ResumeLabels are evaluated using resumePrunedDijkstra. After the
algorithm finishes, the labeling L is correct and minimal for the graph G without edge e.
It corresponds to the same labeling that a preprocessing applied to the new graph with
the same ordering would calculate.

Remove or Reattach Subtree

The removeOrReattachSubtree procedure adapts an approach for SPTs, shown in
[FMN00]. It classifies vertices into three categories: (i) not affected by the removal,
(ii) the parent changed but the distance is the same, and (iii) the parent and the dis-
tance changed. Following the classification of vertices by color presented in [FMN00],
these types are assigned the colors white (i), pink (ii) and red (iii), respectively. In the
procedure description, the red vertices are collected in the set redVertices. In line 2, a
priority queue is initialized with the label l that represents the root of the subtree. The
while-loop is repeated until the queue is empty. The minimum label is extracted to lmin

and removed from the labeling because the existing label used the deleted edge and is
no longer valid. Next, we have to classify the vertex. If a neighbor exists that provides
the same distance and is not itself a red vertex, then we found a pink vertex (line 7).
This vertex can be simply reattached to this particular neighbor, and all its children are
unaffected, i.e., white. Pruning does not need to be considered in this case because the
distance did not change and we assume that the initial labeling was minimal. Else, the
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Figure 3.6.: Example for a subtree removal, in which v5 (pink vertex) and v4 (red vertex)
are affected by the removed edge.

vertex cannot be reattached to the currently processed SPT and lost a label. Therefore,
it changed the parent and the distance and represents a red vertex, which needs to be
handled later on. Since the distance changed, all children of this vertex need to be
considered. They are traversed (line 11) and added to the priority queue by distance.
Finally, after the whole subtree has been checked, the redVertices, i.e., vertices who
changed their distance, are returned. At the end, the labeling does not contain any
invalid entries that belong to the subtree spanned by l. After this procedure is finished
for all labels, the labeling does not contain any labels traversing the removed edge, but
it is still incorrect because of missing labels that need to be added by phase II.
An example for removeOrReattachSubtree is given in Fig. 3.6. On the left-hand side,
the graph is shown in its initial state with the index of the nodes representing their
ordering. The edge between v1 and v4 is removed and removeOrReattachSubtree is run
for the label of root vertex v1 at node v4. As a result of this process, v4 is colored red
because it cannot be reattached and lost its parent, and the distance changed. On the
other hand, v5 is colored pink because we are able to reattach it to the SPT of v1 via
v2 while keeping the distance (dotted line on the right-hand side). This example only
shows an intermediate result on the way to restoring a correct labeling.

Find Labels to be Resumed

In addition to vertices that changed their distance, we also need to consider labels that
have been pruned before and need to be continued now. This applies to labels that were
pruned because of a shorter path that no longer exists because it used the removed edge.
These labels are exclusively located at neighbors of vertices whose distance changed,
i.e., increased. For this purpose, we need to check if any neighboring labels need to be
(potentially) resumed and collect them.
This is done by the procedure findResumeLabels. It takes a graph G, a labeling L and
a set of nodes whose distance changed. The set R of labels that need to be resumed
is initialized first by assigning the empty set to every root vertex. Then we iterate all
labels lw of all neighbors w of the nodes vr that have been provided as input. To make
it clearer, all nodes whose distance changed are processed one after another. We need to
look at their neighbors w and the labels lw that are available at w. From these labels, we
extract the root node vk. If the distance from vk to vr using the label lw including the
edge weight wwvr is lower than the one that can be queried, then this label potentially
needs to be resumed. The query considers only nodes with an index up to k. In other
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Procedure findResumeLabels(C)
Data: Graph G, labeling L, label l, vertices with changed distance C
Result: Set R of labels that need to be resumed grouped by root vertex

1 R[v]← ∅ ∀v ∈ V ;
2 foreach vr ∈ C do
3 foreach w ∈ N(vr) do
4 foreach lw ∈ L[w] do
5 vk ← root(lw);
6 if dist(lw) + wwvr < restrictedQuery(vk, vr, k) then
7 R[vk]← (vr, vk, dist(lw) + wwvr , w);
8 end
9 end

10 end
11 end
12 return R;

words, we check if the label was pruned because of a shortest path that is no longer
available in the labeling, i.e., removed as part of phase I. These labels that potentially
need to be resumed are collected in R and returned after processing all input nodes. At
this point, we are not able to tell which of the labels will be resumed in the end. Due
to the ordering that is applied later on, other resumed trees or labels may lead to them
being pruned.

Extend Updated Tree

Trees rooted in vertices whose distance increased need to be checked for branches that
have been pruned before but need to be resumed now. This happens if a label that was
previously available at the root provided a shorter path to a node that is part of the tree
and caused the Dijkstra to prune the tree at this node before. This constellation is fixed
by extendUpdatedTree, which walks the tree from a given root vk and checks all pruned
ends if they need to be continued. It is similar to the pruned Dijkstra (Alg. 3.1) but it
exploits information about the existing tree, e.g., children that are already available do
not need to be recalculated. The procedure has access to the graph G and the labeling L
and takes a root vertex vk as a parameter. The own label of the root vertex is enqueued
as the first element of the priority queue, which is looped until no further element is
available. In each iteration of the loop, the minimal label l is extracted from the queue.
If there is no label available so far, l is added to the labeling (line 5). In case a label
already exists, we need to verify that it is the same as the stored one, because there
could be multiple labels for the same vertex in the queue (line 7). Only the matching
labels need to be further processed to avoid redundant calculations. The neighbors of
these nodes are iterated next. If the neighbor is a child of u along the SPT of vk, it is
added to the queue, so that we keep walking the tree. Else, a new label is only created
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Procedure extendUpdatedTree(r)
Data: Graph G, labeling L, root vertex vk
Result: Labeling L with correct labels for the SPT of vk

1 PQ ← priority queue with one element enqueued by distance (L [vk][vk]);
2 while PQ is not empty do
3 l← PQ.RemoveMin();
4 (u, vk, dvku, pu)← l;
5 if L[u][vk] = empty then
6 L[u]← L[u] ∪ {l};
7 else if L[u][vk] 6= l then continue;
8 foreach w ∈ N(u) do
9 if parent(L[w][vk]) = u then

10 PQ.InsertByDistance(L[w][vk]);
11 else if dvku + wuw < restrictedQuery(vk, w, k) then
12 PQ.InsertByDistance((w, vk, dvku + wuw, u));
13 end
14 end
15 end

and inserted into the priority queue if a shorter distance than the one that is available
through roots with an index up to k is found. This corresponds to previously pruned
labels that are hereby resumed. After the whole tree has been walked and all new labels
(if any) have been pruned, the correct labeling for vk is restored in L.

Proof of Correctness

Before the edge is removed, the labeling is assumed to be correct and minimal. After
phase I is finished, all invalid labels are either reattached or removed. This means that
there are no labels that use the deleted edge, even though there might exist labels that
need to be added by phase II in order to achieve a correct labeling again. After all invalid
subtrees have been removed, phase II processes all labels that are potentially affected by
the distance changes and need to be resumed.

Lemma 3. If the distance between two nodes increased, then the old shortest path between
them passed through the removed edge.

In other words, Lemma 3 summarizes the obvious fact that an increased distance can
only be triggered by a shortest path that used the removed edge. It is used to show
that only one of the labels defining a shortest path that is no longer valid results in the
insertion of a new label. To improve the readability, the labels have been reduced to the
root vertex because the remaining three components are irrelevant for the proof.

Lemma 4. A removed label for a root vertex that leads to new shortest path between two
vertices and results in a new label being added can only have been removed from exactly
one of the endpoints.
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Proof. We assume that there exists a label (vk) ∈ L[vl] (k < l) that needs to be added
because the old shortest path between vk and vl going through vj (j 6= k) based on the
labels (vj) ∈ L[vk] and (vj) ∈ L[vl] no longer exists. If none of the labels was removed,
then the assumption that the path no longer exists is violated and leads to a contra-
diction. If both labels were removed, Lemma 3 states that the shortest paths between
vl and vk as well as between vl and vj passed through the removed edge. Therefore,
one of the root vertices vi, so that j < i ≤ k, would have labeled the path between vk
and vl without passing through the removed edge twice. So either there is a label for
vi at either of the nodes that has been removed or the label (vk) existed before. Both
contradict the assumption that the labels (vj) and (vj) are the reason for (vk) not being
available.

Based on the result of Lemma 4, we will now prove that after applying phase II of the
insertion, no label is missing.

Theorem 2. After finishing phase II of Alg. 3.3, there is no label missing that needs to
be added.

Proof. We assume that there exists a label that is missing for root node vk at node vl
(k < l) and it provides a shorter path between both nodes. Since the label is missing,
it must have been pruned somewhere along the path from vk to vl. Without loss of
generality, we assume that vi is the last node that contains the label along this path
and vi+1 is its successor without the label. Two cases need to be considered now:
(i) vi+1 changed its distance or (ii) vi+1 did not change its distance. In case (i), vi+1

changed its distance, the vertex is processed and its neighbors’ labels are extended
byresumePrunedDijkstra. This includes vk because it provides a shorter path according
to the assumption. Therefore, the procedure also reaches vl and the missing label leads
to a contradiction. In case (ii), the distance of vi+1 did not change. This means that
the tree of vk was cut at vi+1 because a label for a root vertex vj (j < k) provided a
shorter path between vk and vi+1. Following the assumption that vk is missing at vl, the
labels for vj no longer provide the shortest path and, according to Lemma 4, must have
been removed at vk or vi+1. If the label was removed at vi+1 then case (i) is applicable.
If it was removed at vk,extendUpdatedTree would be applied and the new label for vk
would be added to vl, which contradicts the assumption that the missing label for vk at
vl exists.

Theorem 2 shows that all required labels are added by phase II and therefore, the labeling
is correct. Since we removed all invalid entries in phase I and the methods used to add
missing labels are applying the same approach as Alg. 3.1, the result of Alg. 3.3 is a
correct and minimal labeling.

3.4. Automatic Creation of Virtual Optical Networks
In this section, a workflow for the automatic creation of VONs is defined. It demonstrates
how the results of the thesis can be combined into a software component that creates
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Figure 3.7.: Overview of virtual topology creation.

Algorithm 3.4: Virtual topology creation based on a set of intents.
Data: Set of Intents I
Result: Virtual links satisfying I

1 virtualLinks ← ∅ ;
2 foreach intent i ∈ I do
3 constraints← Preprocessing(i);
4 paths← ShortestPaths(constraints);
5 virtualLinks← virtualLinks ∪ AssignSpectrum(constraints, paths);
6 end
7 return CreateTopology(virtualLinks);

virtual topologies up to the point when it is ready to be exposed to the client. An
overview and the larger context are given in Fig. 3.7. The virtual topology creator is
the software component that builds a virtual topology form intents and the physical
topology. Additional input are provider constraints and the port assignment. Both are
not further discussed in this thesis. The virtual topology intents are submitted by the
client and need to be processed by the creator. The expected output is a virtual topology
that satisfies the intents. This is a multi-step process that is explained next.

All steps are summarized in Alg. 3.4. The processing starts from a set of intents that
are submitted by the user specifying his high-level requirements for the topology. These
intents need to be taken into consideration by the algorithm. They are preprocessed and
transformed into requirements that can be evaluated by the algorithm. This step mostly
consists of extracting constraints for the creation of the topology. In the next step,
resources need to be assigned to every intent, i.e., lightpaths through the network. The
nodes and ports are assigned by the network operator beforehand. For the subsequent
RSA, a two-step approach is chosen. The first step calculates one or more shortest
paths and the second step assigns an appropriate part of the spectrum. The result of
the assignment is collected in the set virtualLinks. Finally, the virtual links and their
corresponding lightpaths through the network are merged into a (virtual) topology.
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3.4.1. Preprocessing the Intents

The intents that are submitted to this algorithm are high-level requirements, defining
what is expected but not how it is achieved. They hide implementational details from
the client, while giving more freedom to the network provider with regard to the exact
realization. An interface definition for the intents, which describes the input, has been
shown in Sec. 2.3.1. One request may consist of a set of intents, which bundle endpoints
and connection requirements between them. These requirements need to be translated
into a representation, i.e., constraints, that the algorithm can use to create the correct
number of virtual links with the expected properties. The preprocessing should exploit
optimization options for every intent, e.g., reuse links and spectrum for multiple virtual
links if only one of them is allowed to be active at any given time. Further synergies
between intents of a request are out of the scope of this thesis. The output of this stage
are constraints that define the involved endpoints for the virtual links as well as any
interdependencies between them that need to be considered for the assignment.

3.4.2. Assignment of Network Resources

After the constraints have been extracted from the intents, the algorithm can start pro-
cessing them. For each intent group, a number of virtual links needs to be created in
order to satisfy the constraints. The available endpoints are by definition fixed because
they are preassigned to clients. The remaining task is to create virtual links, which
correspond to a path through the network and need a spectrum assignment. This corre-
sponds to an RSA in optical networks. A two-step approach is commonly chosen in order
to reduce the complexity. In the first step, a number of paths, e.g., shortest or disjoint
paths, is calculated. The second step tries to accommodate the required spectrum on
one of those paths, usually starting with the shortest one to save resources. The two
steps are explained in more detail next.

Calculation of Shortest Paths

Before the spectrum can be assigned in the two-step approach, a number of viable
paths needs to be calculated. A new computation for every request is not an efficient
approach because it increases the response time. Precalculating APSP is expensive in
two ways: the time it takes to compute all paths and the memory needed to store
them. For small networks, this approach might be applicable, but it does not scale for
large networks. Partial precomputation covers some middle ground between both. It
precalculates helper information that requires an acceptable amount of time and memory.
With this information, requests can be handled faster. This approach represents a
good compromise because intents require multiple queries for shortest paths and several
clients need to be served in parallel. Since the network topology does not change very
often in optical networks, the precomputation amortizes across a number of requests.
Nevertheless, the following changes of the physical network topology should be covered:
1. edge insertion (optionally: weight decrease), 2. edge deletion (optionally: weight
increase), 3. vertex insertion and 4. vertex deletion. The edge insertion and deletion are
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important features for optical networks to cope with failures and to offer flexibility for
new deployments. Weight changes are usually not very prominent in this field because
they are closely related to the link length. Vertex insertion and deletion are not very
important scenarios neither because optical networks are planned for long periods with
only minor changes in between.
This thesis presents extensions to PLL that cover a subset of these operations. Edge
insertions and deletions are explained earlier in this chapter. Weight manipulations
are not explicitly defined. They could be achieved by increasing/decreasing the weight
and applying similar cleanup procedures to deleting/adding an edge. For now, a dele-
tion of the edge with the old weight and an insertion with the new weight represent a
workaround. Vertex insertion or removal is not available as a single operation. However,
it can be split into multiple edge changes. An insertion of a vertex can be represented
by adding an unconnected node to the graph, only with its own label, and then inserting
the attached edges. A deletion works in the opposite direction. First, all attached links
are removed from the graph and then the unconnected vertex can be simply deleted.
The presented algorithm provides one shortest path. Multiple paths are assumed to
reduce the blocking probability for requests. Ramamurthy and Mukherjee conclude
that an alternate-route is more beneficial than wavelength conversion if the number of
routes is less than the edge connectivity [RM02]. Additionally, fixed-alternate routing
converges toward adaptive-shortest-cost routing for a growing number of alternate routes.
Therefore, further work in the direction of an adaptation for k-shortest paths might yield
better results. It has been shown that PLL is able to compute k-shortest paths [Aki+15].
This is achieved by visiting the same node multiple times. Here, the main task would
be to remove loops and adapt the cleanup procedures to k paths.

Spectrum Assignment

The spectrum assignment itself is less critical than the selection of the route. Even
simple assignment methods like first-fit do not result in much worse assignments. The
spectrum-assignment process iterates all calculated paths and finishes as soon as the
first valid assignment is found. If none of the provided paths has enough free spectrum,
the assignment fails and the intent is rejected. The required spectrum can be calculated
based on a simple lookup table that provides values for the path length and the requested
bit rate. Limitations of the hardware may apply and need to be considered by this step.

3.4.3. Output of the Virtual Optical Network

The final step merges all calculated virtual links into a single virtual topology. This hap-
pens for individual intents as well as for the complete set of virtual links. Optimizations
may be applicable but are not considered here. The VON is then maintained inside of
the hypervisor and exposed via an appropriate NBI (see Chapter 2). The client is then
able to control his VON with an SDN controller. Any connection setups across virtual
links are translated into the calculated paths in the underlying physical network. The
virtualization layer also needs to verify that the restrictions of the requested topology
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are met, e.g., maximum number of parallel connections. In case the topology needs to
be adjusted, the creation process can be rerun with new or updated intents.

Summary
This chapter identifies the computation of virtual links as the most relevant task for
creating VONs. In order to assign the links, a (shortest) path needs to be calculated
and spectrum needs to be assigned. A shortest path algorithm based on precomputation
is introduced and newly developed extensions to support the addition and removal of
edges are defined. Finally, a complete workflow for the creation of VONs is presented.
The next chapter shows how the algorithm can be included in the OVC and evaluates
its performance.
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The introduction of two concepts — SDN and NV — affects packet-switched networks
as well as optical networks that rely on circuit switching. The first concept refers to net-
work elements that can be programmed by SDN controllers and the second facilitates the
sharing of resources between network tenants. A hypervisor is an abstraction unit that
virtualizes the existing hardware. In contrast to OF hypervisors for switches, optical
network hypervisors are uncommon and mostly of theoretical nature. With the intro-
duction of open protocols, created from a common subset of the individual capabilities,
a unified control and virtualization becomes more likely. The ultimate goal is multilayer
network operation. As long as these control protocols are neither in place nor exposed by
the hardware, the virtualization layer needs to be able to communicate southbound with
the hardware through proprietary device interfaces. It must also expose open or experi-
mental protocols toward northbound clients. At the same time, this approach presents a
migration strategy that can be used to enable virtualization and SDN control for legacy
equipment. With open protocol descriptions becoming available, the virtualization layer
can adopt these interfaces to talk to the hardware in a vendor-independent manner.
This chapter introduces a new distributable Optical Virtualization Controller (OVC)
that supports control of the network as well as virtualization. The control is mostly
related to the translation of protocols and building an SDN adaptation layer for propri-
etary protocols, while exposing open protocols to SDN controllers. The virtualization
enables to split a network into slices and distribute them to clients. First, the OVC is
introduced by presenting the general architecture and the design choices. Then, the per-
formance is evaluated. This final step examines the shortest path algorithm, the delay
introduced by the virtualization layer and deployment options for its components.

4.1. Architecture
This section introduces the architecture of the OVC — an actor-based implementation
of a unified controller and hypervisor for optical networks. An embedding in the general
context and the main functional blocks are summarized in Fig. 4.1. The OVC is de-
signed to fully virtualize optical networks based on lambda switching and supports the
whole spectrum from a single network element representation to a direct mapping. The
mapping also includes subsets of the network that are assigned to the respective clients.
Like many other hypervisors, the OVC acts as a proxy or mediation layer between the
controllers and the hardware in the physical network. It is built up of actors, which are
programmatic base units that contain an internal state and communicate with each other
through messages. They are a convenient way of handling concurrency and improving
the performance by parallelizing sequential tasks. Since the message exchange can take
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Figure 4.1.: General architecture of the OVC.

place using a network, a high flexibility of deploying the components is achieved, leading
to a potentially distributed system. The OVC is able to slice and control an optical
network and is built following a layered architecture. The layers cover functional blocks
and are also inspired by the actor hierarchy, which describes a supervision dependency
between the actors. North- and southbound communication utilizes REST interfaces
and accesses resources through HTTP. Southbound an open device interface is used.
Northbound a number of open (and mostly experimental) protocols is exposed toward a
controller or an orchestrator.

4.1.1. Layers

The OVC follows a layered architecture built around functional blocks. A functional
block is a group of actors that have a particular purpose that is independent of neigh-
boring layers. The four (logical) layers (see Fig. 4.2) — from top to bottom — are:

Northbound Interface This layer includes different implementations for the communi-
cation toward clients’ controllers or orchestrators. The NBI offers open protocol descrip-
tions, which are preferably standardized, and exposes the topology together with the
control of the network through them. It represents an entry point to the OVC from the
outside world, usually a controller or an orchestrator.

Virtual Network This layer manages the representation of every client’s custom slice,
which is controlled by the client through one NBI. The abstraction model decides on the
exposed details and ranges from a single node abstraction to a direct mapping, which
has implications on the granularity of control. The client is able to retrieve the assigned
portion of the network and control it according to the agreement.
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Northbound Interface

Virtual Network

Physical Network
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Figure 4.2.: Logical layers of the OVC.

Physical Network This layer collects information about all domains and resources man-
aged by the hypervisor. The network elements are disseminated through the underlying
SBI and stored in a generic representation. This enables the control of different network
elements and technologies without unnecessary details. The work is mainly concerned
with optical equipment even though other layers could be included too.

Southbound Interface This layer comprises implementations for specific interfaces to
communicate with the hardware, directly or through a mediator, such as an NMS or a
domain controller. The available hardware and resources are abstracted and a general-
ized representation is reported upward. As soon as standardized hardware interfaces are
available, a single SBI implementation can talk to hardware of different vendors.

Most of the presented layers group many actors that are responsible for subtasks. The
communication between layers is carried out exclusively through messages. The handled
messages at the border of a layer represent an interface in the classical sense.

4.1.2. Topologies

The logical units, i.e., layers, are not limited to a single instance or actor, e.g., NBI
instances for different customers. This fact is reflected in the topology representations
shown in Fig. 4.3. The boxes represent topology instances consisting themselves of one
or more actors. Every layer uses a different representation that is best-suited for the task
at hand. At the SBI, it makes a difference if a single device or a whole network domain
is managed. For a single device, the focus is on providing a proper abstraction to the
upper layer. In this case, it is superfluous to capture and represent topology information
except for neighboring nodes. This is not true for a network domain, which needs to
capture the topology in order to allow the upper layer a correct representation of the
managed network.
The physical infrastructure is the heart of the controller that contains all the available
(abstracted) information that has been collected by the SBIs. The OVC is only aware of
the whole topology at this part of the architecture. This layer needs to build a topology
from the input by aggregating all incoming data from the underlying layer. The physical

81



4. Optical Virtualization Controller

Virtual
Infrastructure

Physical Infrastructure

SBI SBI …

Virtual
Infrastructure

NBI NBI … NBI NBI …

…

Mapping

Figure 4.3.: Topology instances at different layers.

representation forms the basis for a virtualization of the available resources. It is used
to calculate paths through the network that are mapped to virtual links.
The virtual infrastructure comprises network slices that are subsets of the physical in-
frastructure with regard to network elements, links, ports etc. There is an assignment
of the aforementioned resources to every client. Based on these resources and the re-
quirements of the client, defined by an intent, a virtual topology is created. This virtual
network is then exposed to the client. The assigned resources can be either exclusive or
shared. In the first case, they are reserved and in the second case, they may be con-
sumed by others too. The client has full control over the exposed virtual infrastructure,
according to the agreement or contract in place.
At the uppermost layer, the (virtual) topology is exposed toward the client through
one of the supported protocols. The controller or orchestrator is able to interact with
the OVC through this interface. Therefore, at least one NBI needs to be chosen and
exposed. It is possible to use multiple interfaces by design. This can be useful if a
specialized interface for different tasks is needed, e.g., for topology dissemination. The
NBI abstracts the protocol details from the virtual representation and allows the client
to choose the most appropriate one.

4.2. Design Choices
The architecture is the underlying blueprint for the OVC. To implement the presented
architecture, multiple decisions had to be made about the design. These range from
high-level decisions like the right programming framework to details about the right
protocol and algorithm. In this section, the most important ones are introduced and
explained.

4.2.1. Mediator Approach

Hypervisors are typically deployed as a mediation layer. One additional reason for
the mediator approach is the legacy equipment. To introduce open interfaces to these
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Figure 4.4.: Interaction and message exchange between actors.

network elements, a translation layer is needed. This limitation might be solved by the
next generation of equipment that supports open interfaces by default. Still, it is likely
that a domain controller will expose standardized interfaces with a network scope to
hide the complexity of configuring an optical network and its elements. Therefore, it is
important to be aware that the optical network requires some time to apply changes.
Ongoing configuration tasks need to be taken into account when handling new incoming
requests.

4.2.2. Actor Model

Actors are a model for concurrent programming and can be seen as building blocks for
software applications. Each actor itself runs sequential code. In contrast, the set of actors
that form an application is executed in parallel, i.e., a parallelization of sequential tasks.
The actor model has been adopted by programming languages like Erlang and is also
available as an extension through libraries, e.g., akka for Scala and Java [Lig18]. In the
akka library, an actor has a state, an exchangeable behavior, one mailbox and optionally
children. Actors communicate with each other only through messages and are otherwise
isolated. This is illustrated in Fig. 4.4. The internal state should exclusively be accessed
and changed through messages. For this reason, all activity is triggered by messages.
The behavior of an actor decides how an actor reacts to a particular message and may be
different depending on the state. All actors have their own mailbox, which allows message
exchange between actors who know each others reference, which roughly corresponds to
an address. Actors are structured hierarchically with an arbitrary degree per node. It
means that every actor has exactly one parent and can have multiple children. This is
necessary to have a chain of command and a responsible entity for handling failures of
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children or subtrees. Due to their decoupled existence, actors allow for a distributed
deployment as long as the message exchange can take place, e.g., through a network.
This enables a horizontal scaling and migrations to improve access times. It means that
arbitrary actors or subtrees can be deployed on separate machines, sending messages
through the network. Each layer is a potential candidate for deployment on a separate
machine. By reducing the granularity, each layer can be subdivided into smaller portions
that, again, can be distributed. This gives the OVC the ability to be very flexible and
(horizontally) scalable.

4.2.3. Extensibility

Extensibility is a characteristic of a software that enables it to be extended by providing
a custom implementation for one of its existing components. Typically, extensibility is
achieved by providing programmatical interfaces that need to be implemented. Applying
the actor model, this is handled differently. Compared to a typical interface in Java, no
methods are defined that have to be implemented, but a number of messages has to be
accepted, handled and replied to. This way, the NBI and the SBI can be easily extended
by following the messaging contract, which allows for the integration of future proto-
cols. Throughout this thesis, a number of protocols for the NBI has been implemented,
verifying the extensibility. The SBI supports only one implementation so far.

Northbound Interface

Northbound, an interface for controlling the assigned slices is required. In packet-
switched networks, a prominent protocol — with limited applicability to circuit switching
— is OF. Common choices for transport networks such as PCEP, BGP-LS, NETCONF
and RESTCONF are introduced in Sec. 2.1.4. The following protocols have been imple-
mented and are part of the OVC.
Early on, OF 1.0 and 1.3 were adopted. The goal was to use existing SDN controllers,
such as Floodlight [Pro18] or OpenDaylight [Ope18e], that were mostly limited to OF.
Initially, to expose optical networks, a single switch was used. In this representation,
the whole network is abstracted into a single big switch covering all available (client)
ports. Port-based flows are directly translated into lightpaths between the corresponding
client ports. When the flow is removed, the lightpath is torn down. A direct mapping
results in a more detailed representation. Each optical network element is mapped
to a switch, which includes the client and the line ports. A topology is created by
announcing links between the line ports, according to the network topology. It is then
necessary to correlate flows on individual switches, to create a lightpath. This can be
achieved, e.g., by using the cookie field for attaching an identifier. By concatenating
these flows, the source and destination ports can be identified and a setup is triggered.
These workarounds confirm that OF is not very well suited for the control of an optical
network.
Next, the Control Orchestration Protocol (COP) was added to the available interfaces.
It is an open source model, developed in the European project STRAUSS [STR16] and
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Figure 4.5.: Structure of the SBI controlling the ADVA equipment.

is an early approach for orchestrating networks [Vil+15b]. COP is defined as a YANG
model that can be easily used in combination with NETCONF or RESTCONF and
provides a basic tooling for code generation. The model definition abstracts the functions
that an SDN controller needs to orchestrate networks employing heterogeneous control
plane paradigms and data plane technologies. Models for topology dissemination, service
management and path computation have been published. For simplicity reasons and
because the available toolchain provided classes and stubs for a REST implementation,
a RESTCONF-like protocol was chosen. COP is one available NBI of the OVC for
exposing the topology as well as triggering the lightpath setup and tear down.
The TAPI is an effort by the ONF [Qia+16] that uses concepts developed in COP. It is
the third protocol that is exposed northbound. The TAPI is more mature than COP and
offers additional and extended interfaces, e.g., for notifications, path computation and
virtual networks. In order to receive more flexible code stubs than the ones generated by
the provided toolchain, a plug-in for pyang was developed. The changes and extensions
are described in App. A. In summary, the YANG models are provided as input and the
generated output comprises Java beans and code stubs for a Java implementation with
akka.
The final addition to the set of NBIs is the virtual topology interface (App. B) introduced
in Sec. 2.3.1. It can be called by clients to manage their slices. The interface is capable
of providing virtual topologies based on the intents submitted by the client. It enables
the user to modify existing virtual networks and remove topologies that are no longer
needed. The created topologies are exposed through any available protocol for the NBI.

Southbound Interface

Only one SBI was implemented throughout this work. It is an open but proprietary
REST interface for ADVA devices, ROADMs in particular. This interface manages a
network section that is under the control of a single control plane. A simplified overview
is given in Fig. 4.5. The figure represents the logical components rather than individual
actors. An ADVA network captures all devices that are part of the controlled network.
It comprises one or more ADVA elements and the links interconnecting them. The links
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provide information about adjacencies between elements. Network elements maintain
two things: the inventory and the REST device interface. The inventory contains all
the information about the present hardware and its capabilities. Due to the modular
structure of a ROADM, components like modules or plugs need to be captured. The
device discovery as well as the configuration are carried out through the device interface.
It is the gateway for the communication with the hardware.
Southbound extensions for other protocols can easily be added by implementing the
messages that are expected by the physical infrastructure. In the foreseeable future,
common protocols for optical equipment will be standardized, e.g., OpenConfig. Then,
the proprietary actor stack can be replaced by a vendor-independent one that follows
the description of the standardized interface.

4.2.4. Graphs and Algorithms

Generally speaking, all network topologies can be represented by a graph. From the
topology instances presented in Fig. 4.3, the virtual and physical infrastructure rely on
graphs, while the NBI and the SBI use simplified representations. To avoid implementing
a graph representation from scratch, the Java library JGraphT [NC17] was chosen. It
is a library that provides a graph representation, algorithms to operate on top of them
and visualization tools. It is based on Java 8 and receives regular updates. The included
algorithms cover many areas like cliques, cycles, shortest paths and spanning trees.
These algorithm classes are implementing interfaces that group them by functionality,
e.g., shortest path algorithms. A graph representation is used to manage the physical
as well as the virtual topology. The main difference is the abstraction level of nodes.
While mapping the nodes of the physical layer to the virtual layer is straight forward,
the virtual links are mapped to paths through the physical network. This is enabled
by a shortest path computation that utilizes the offered interfaces for algorithms. This
choice makes it easy to integrate already existing algorithms that support this interface
or to apply new ones. For example, default implementations can be compared to newly-
developed algorithms without major changes in the code. The PLL implementation
based on the description in Sec. 3.3 was implemented that way.

4.3. Performance Evaluation

This section evaluates the performance of the prototypical implementation of the OVC.
To be more precise, it focuses on selected aspects, which represent the most important
capabilities of the OVC. The three main parts are: the shortest path algorithm, the delay
of the mediation layer and a distributed deployment / migration of OVC components.
The shortest path algorithm is evaluated based on a number of representative optical
networks and compared to Dijkstra’s algorithm. The delay introduced by the mediation
layer is measured in a local testbed with physical equipment for typical tasks. Finally,
a distributed deployment spanning two geographically dispersed testbeds is considered,
including a migration between both locations.
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Network Nodes Links Avg. Degree
cost266 37 57 3.1
dfn-bwin 10 45 9
geant 22 36 3.3
germany50 50 88 3.5
giul39 39 172 8.8
janos-us-ca 39 122 6.3
nobel-eu 28 41 2.9
nobel-germany 17 26 3.1
polska 12 18 3
sun 27 102 7.6
ta2 65 108 3.3
zib54 54 81 3

p2p-Gnutella04 10876 39994 7.4

Table 4.1.: Properties of selected reference telecommunication networks [Zus06] and one
large computer network [LK14].

4.3.1. Evaluation of Shortest Path Algorithm

The shortest path algorithm is part of the virtual topology creator (see Fig. 4.1). It is
used to calculate paths between nodes in the network. These paths correspond to virtual
links and are exposed to the client as part of his virtual topology. In this regard, a major
contribution was making the algorithm capable of coping with change in the network.
After edges are added or removed, the developed cleanup procedure needs to update
the tables that contain the precomputed hop values. Without this procedure a removal
of edges was impossible. These extensions are the focus of the evaluation but first a
baseline is established. This is achieved by assessing the preprocessing and the shortest
path calculation and comparing the run time to Dijkstra’s algorithm, which represents
the default choice in controllers, for individual queries. Second, the edge removal and
the cleanup procedures are compared. Both are the focus of the algorithm’s evaluation.
The first step creates a baseline to be able to estimate the factor that is introduced by
the prototypical implementation of the existing base algorithm. Since the prototype has
been developed in Java and only limited optimizations have been applied, the run times
are considerably higher than the ones presented by the original authors. However, the
goal of this thesis is to present a proof of concept in order to verify that the developed
cleanup procedures only contribute a limited amount of overhead. The absolute time
values can be significantly reduced by an optimized implementation in a programming
language like C++. Nevertheless, the presented results give an indication on the viability
of the approach. For the evaluation a number of reference telecommunication networks
and one larger computer network are used. Their properties are summarized in Tab. 4.1.
The networks cover typical sizes for optical networks as well as one larger network in
order to estimate the algorithm’s scalability.
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Figure 4.6.: Time for preprocessing each reference network.

The machines used to run these experiments, if not stated otherwise, were HP ProDesk
400 G2 Mini PCs equipped with an Intel Core i5-6500T @ 2.50 GHz (turbo frequency
3.10 GHz) and 16 GB of RAM (DDR4-2133 MHz). They were exclusively used for the
measurements to avoid any interference by other users or processes. Each machine was
running an Ubuntu Server 16.04.4 LTS 64-Bit Linux for the OS. The Oracle Java Virtual
Machine (JVM) version used throughout the measurements is 1.8 (64-Bit, Update 161).

To get meaningful results, the JVM is provided with a warm-up time by discarding the
first measurements — roughly around 10 %. The number of runs mentioned throughout
this section always excludes the warm-up time. Mainly box plots are used to present
the measured results. The bottom of the box represents the first quartile and the top of
the box corresponds to the third quartile. The median is marked by an orange line and
its actual value is captured in a box (per column of the graph). It has been chosen as
an indicator because it is less sensitive to outliers than a mean value. The end of the
upper and lower whisker represents the highest and the lowest datum within 1.5 times
the interquartile range. Outliers are marked by crosses. Extreme outliers are assumed
to be peculiarities of the JVM and could be removed by a programming language that
is not relying on a virtual environment and automatic garbage collection.
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Preprocessing and Shortest Path Calculation

The first step of the performance evaluation is establishing a baseline by evaluating the
preprocessing time and the query time. They are compared to Dijkstra’s algorithm,
which performs a new calculation for every query and represents the default choice
in most controllers. First, the reference networks are tested and afterwards one large
computer network is benchmarked.
The preprocessing times for the reference networks are shown in Fig. 4.6. The x-axis
lists the processed networks, while the y-axis indicates the time in µs. 10 000 runs per
network have been conducted for the presented results. The median values range from
54.9 µs to 559.2 µs. In general, large networks, i.e., with a larger number of nodes and
links, lead to higher preprocessing times. The reason is that one search using Dijkstra’s
algorithm is started from every node, even if it is pruned immediately, and more links
lead to more options that need to be explored during the search. Therefore, the lowest
preprocessing times are achieved for polska and nobel-germany — two networks with
a small number of nodes and links. The highest times are accounted to germany50,
giul39 and ta2. This is an expected result because of the high number of nodes and
links. By comparing germany50 (50 nodes, 88 links) and janos-us-ca (39 nodes, 122
links) it can be seen that more links and thereby a higher average node degree leads to
a better run time than a higher number of nodes with a lower degree. This indicates
that the number of nodes has more influence on the preprocessing’s run time than the
number of links.
Next, the query time for each graph is evaluated, i.e., the time that is needed to answer
a shortest path query between two random endpoints in the network. The nodes have
been varied for every query and a total of 10 000 queries has been conducted. Fig. 4.7
summarizes the results in the form of box plots. The x-axis lists the tested networks
and the y-axis shows the time in µs for every query.
Fig. 4.7a covers the measurements using PLL for the queries, which requires a preceding
preprocessing. It can be seen that the median values are all below 2 µs for the reference
networks. In general, it takes longer to answer queries for larger graphs than for smaller
graphs. The size is not the only factor playing a role. The query time mostly depends
on the number of labels per node, since calculating a shortest path translates to finding
a common hop with the lowest total distance (see Sec. 3.2.2). However, the number of
labels is not only influenced by the number of nodes and links but also dependent on
the structure of the network. For example selecting central nodes, through which many
shortest paths pass and that are processed early on, can reduce the size considerably.
The exact relationship between the structure of the network and the number of labels
is out of scope. It is one explanation why cost266 has the highest query time of all
reference networks, even though it neither has the most nodes nor the most links. A
similar argument can be used to explain, why geant is faster than dfn-bwin. The
outliers are assumed to be connected to the JVM. The times could be improved by
adopting memory- and speed-optimized techniques for “join” operations in data bases.
In order to receive a base for the evaluation, Dijkstra’s algorithm is used for every query.
In contrast to PLL, this approach does not require any preprocessing and is executed
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(a) Using PLL queries based on precomputation.
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Figure 4.7.: Time for running queries between two nodes in the reference networks.
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Table 4.2.: Summary of measurements for reference networks (time in µs) and number
of queries for break-even point.

cost266 dfn-bwin geant germany50 giul39

Dijkstra query time 8.174 2.188 4.086 10.109 8.338
PLL query time 1.783 1.116 1.103 1.374 1.35
Query time difference 6.391 1.072 2.983 8.735 6.988
Preprocessing time 309.926 104.743 111.799 559.224 525.264
Break even (# queries) 49 98 38 65 76

janos-us-ca nobel-eu nobel-germany polska sun ta2 zib54

7.122 4.787 2.786 1.852 5.008 14.508 10.9
1.311 1.221 1.212 1.15 1.194 1.272 1.216
5.811 3.566 1.574 0.702 3.814 13.236 9.684
392.178 215.341 77.882 54.881 254.87 532.25 357.572
68 61 50 79 67 41 37

without any prior knowledge, except for the current state of the graph. The results
are shown in Fig. 4.7b. Here, the size of the network heavily affects the measured time
for the Dijkstra search. Big networks like ta2, zib54 and germany50 have the highest
median with more than 10 µs. The only network with a median below 2 µs is the small
polska network due to its small overall size. Due to Dijkstra’s nature, the run time
mostly depends on the network’s size.
The results achieved by PLL need to be put into perspective by comparing them to Dijk-
stra’s algorithm. Tab. 4.2 summarizes the captured median values and offers additional
insights. The table shows the times needed to answer queries using PLL and Dijkstra.
Both have been presented in Fig. 4.7 before. The time difference between them is shown
in the third row, capturing the time advantage of using PLL. The last two rows list
the preprocessing times and the number of queries required to break even, i.e., compen-
sate the preprocessing. First of all, it can be seen that the implementation of PLL is
faster than using Dijkstra for all reference networks. The absolute time improvement is
higher for larger networks, e.g., ta2 or zib54. Timewise, this means an improvement
of 13.236 µs and 9.684 µs. These values translate to savings of about 91 % and 89 %,
respectively. However, for very small networks like polska the benefit is just around
0.702 µs or 38 %. The time difference divided by the processing time decides how many
queries it takes before a break-even point is reached. For the selected reference networks,
the break-even point is reached after 37 to 98 queries. Smaller networks tend to needing
more queries due to the lower time difference, while larger networks reach this point
earlier. Some previously described network properties, e.g., the node degree, implicitly
play a role in this regard. Keeping in mind that a virtual topology consists of multiple
nodes and links and every link results in at least one query, it can be safely assumed
that the savings will quickly outweigh Dijkstra’s initial advantage.
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Figure 4.8.: Time for preprocessing and shortest path queries for p2p-Gnutella04.

The benefits of PLL for the reference networks, which represent rather small graph
instances, have been demonstrated. Therefore, one could argue that precomputing APSP
is even faster because a query corresponds to a simple lookup. The clear drawback is
the memory space that is needed to store these values. For small networks, this might
not be an issue, depending on the used hardware, but as the network size grows, this
approach becomes impractical. Evaluating the memory size is out of scope for this
work and some data is available in the original work [AIY13]. Nevertheless, in order to
prove the scalability of the chosen approach, a larger network needs to be considered.
For this purpose, the p2p-Gnutella04 network is chosen with more than 10 000 nodes
and slightly less than 40 000 edges (see Tab. 4.1). For this graph, the results based
on 1250 runs for the preprocessing and 10 000 runs for the queries are summarized in
Fig. 4.8. The preprocessing for a graph of this scale takes roughly 3 min (Fig. 4.8a).
Afterwards the queries are reduced to 40 µs (Fig. 4.8b), while a Dijkstra query takes
6.784 ms (Fig. 4.8c). This means that the time difference is 6.744 ms, which corresponds
to 99.4 %. With these savings per query, it takes about 26 500 queries to break even after
performing the preprocessing. Considering the size of the graph, especially the number
of nodes, it seems reasonable that the value is reached quickly. For example, this number
corresponds to queries from every node to only three other nodes in the graph. Since
every link can host many channels, even the same pairs might be queried multiple times.
Taking into account that a full preprocessing is only needed once in the beginning and
the query times are notably improved, the approach is also applicable to larger graphs.
To get a feeling for the factor that can be gained by an optimized implementation, the
results of this thesis are compared to the numbers presented by Akiba et al. [AIY13].
They evaluated a bigger Gnutella network with 63 000 nodes and 148 000 links. It takes
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them 53 s to preprocess the network and 5.2 µs to answer queries. Disregarding the
difference in size for the moment, we can assume that at least a factor of 3 can be gained
in the preprocessing stage and a factor of 7 is achievable in query time. The speedup for
preprocessing can be treated as a lower bound because the number of nodes is 6 times
higher than the one in p2p-Gnutella04. Also, the number of links is 3 times higher.
From the results in this thesis, it can be seen that the preprocessing depends on the
network size and therefore, the gain for the smaller p2p-Gnutella04 network should be
higher. For these reasons, improvements of one order of magnitude by optimizing the
code seem realistic. The growth of the query time is harder to predict but at least their
presented measurement gives a rough idea of the achievable improvements.

Adding Edges

In this subsection, the contribution of this thesis to the PLL algorithm is evaluated.
The presented extensions are needed in order to support dynamic changes of the graph.
In particular, the contribution comprises the cleanup of obsolete entries after an edge
has been added to the graph as well as the handling of an edge deletion including the
cleanup. The presented measurements were captured by doing one preprocessing and
then removing a random edge and re-adding it again. Every run captured one removal
and insertion of an edge. After that, a new edge was selected and the procedure was
repeated. One graph captures the time needed to finish the operation on the edge
and another one summarizes the number of operations applied to the labeling, i.e., the
number of added and deleted labels in order to re-establish a correct labeling.
Fig. 4.9 shows the run times (in µs) and the number of operations on the labeling for
the reference networks. The data was collected over 10 000 runs. It can be seen that the
times range from 19.693 µs to 81.411 µs (see Fig. 4.9a). The values here are influenced by
two major factors: the (average) degree of the nodes and the number of operations. A
high degree means that many neighboring nodes have to be visited even if no updates are
required in this direction. The number of operations is an indicator of how many entries
and nodes are affected by the update, i.e., each change requires to check the neighbors for
updates that need to be propagated. A higher number of operations results in a longer
cleanup and total processing time. The number of operations, namely the sum of added
and removed labels, is depicted in Fig. 4.9b. It can be seen that janos-us-ca needs
the longest time to finish the process of adding an edge. This result is a combination
of applying many updates to the labeling as well as having a high average degree. The
influence of a high node degree can be seen by comparing germany50 and guil39 or sun
and ta2. Both pairs have approximately the same run time. While germany50 and ta2
require more operations, guil39 and sun need a lower number of updates. Nevertheless,
a notably higher node degree leads to similar run times. One extreme example in this
regard is dfn-bwin. It is a fully meshed network that only needs one operation but due
to the high node degree, it needs longer to finish than nobel-germany, which has more
nodes and operations but a lower average degree. In the end, the labeling itself, which
in turn depends on the chosen ordering, influences the number of labels that need to be
changed.
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Figure 4.9.: Results for adding edges to the reference networks (with cleanup).
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Table 4.3.: Time for adding an edge to reference networks, the speedup factor compared
to a full preprocessing and the number of queries to break even.

cost266 dfn-bwin geant germany50 giul39

Adding an edge (in µs) 51.574 36.779 21.972 67.67 67.976
Speedup factor (Preprocessing) 6 2.8 5.1 8.3 7.7
Break even (# queries) 9 35 8 8 10

janos-us-ca nobel-eu nobel-germany polska sun ta2 zib54

81.411 43.824 19.693 24.719 48.787 47.458 33.879
4.8 4.9 4 2.2 5.2 11.2 10.6
15 13 13 36 13 4 4

Next, the improvements compared to a full preprocessing are examined. The numbers
are presented in Tab. 4.3. It is obvious that adding an edge and cleaning up is faster
than applying a full preprocessing. The speedup factors range from 2.2 to 11.2. The
larger a network the bigger the speedup factor because most often, the changes are just
affecting a limited region. That is the reason why the smallest networks experience the
lowest speedup, e.g., polska, while big networks such as ta2 benefit the most. Because
of all speedup factors being larger than 1, the break-even point occurs earlier than with
executing a preprocessing. It can be reached as soon as after 4 queries or take up
to 36 queries for the reference networks. These results demonstrate the benefits of a
dynamic update: the correct labeling is re-established noticeably faster than with a new
preprocessing.
As a last step, the overhead introduced by the cleanup procedure is quantified. As
described in Sec. 3.3, an algorithm for adding edges was already available but it was
in need of an extension that supports a cleanup. Therefore, the same implementation
with a deactivated cleanup procedure is used to identify the overhead. The results for
adding an edge without a subsequent cleanup are shown in Fig. 4.10. The median run
times in Fig. 4.10a range from 11.983 µs to 39.092 µs. All timing results are of course
lower because the cleanup is omitted. They are more connected to the size of the network
than their counterparts with a cleanup. This is an effect caused by (resuming) Dijkstra’s
algorithm that is used to update the labeling. Hence, small networks are handled faster
than large networks. Nevertheless, the time also depends on the number of updated
entries because an update at a node results in all its neighbors being checked even if
they are pruned. In general, the number of changes, which is shown in Fig. 4.10b, is
reduced due to the cleanup. As expected, the cleanup removes obsolete labels from the
labeling. Thereby, the number of changes is lower without a cleanup. This can be seen
by comparing both box plots (with and without cleanup), even though the median is
not always affected.
Even more interesting is the overhead that is introduced by the cleanup procedure, which
is captured in Tab. 4.4. The absolute value varies between 7.611 µs and 51.678 µs. Since
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(a) Run time comparison for adding an edge without cleanup.
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Figure 4.10.: Results for adding edges to the reference networks (without cleanup).
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Table 4.4.: Impact of the cleanup procedure on adding edges (time in µs).
cost266 dfn-bwin geant germany50 giul39

Adding an edge (no cleanup) 27.472 23.053 13.079 39.092 32.9
Cleanup time overhead 24.102 13.726 8.893 28.578 35.08
Slowdown factor for cleanup 1.9 1.6 1.7 1.8 2.1

janos-us-ca nobel-eu nobel-germany polska sun ta2 zib54

29.733 21.429 12.082 11.983 27.136 22.063 19.614
51.678 22.395 7.611 12.736 21.651 25.395 14.265
2.8 2.1 1.7 2.1 1.8 2.2 1.8

the run time for adding an edge also varies, it is not easy to classify the results. By
calculating the slowdown factor caused by the cleanup, i.e., how many times longer it
takes to finish the addition, the picture gets clearer. It can be seen that in most cases, the
factor fluctuates around 2. One higher deviation can be observed for janos-us-ca with
a factor of 2.8. This is related to the fact that for this particular network structure and
the chosen ordering, the cleanup needs to remove more labels than in any other case.
The median increased from 5 to 9, which means that the number of changes almost
doubled. All in all, the cleanup on average only doubles the time needed for an addition.
Compared to the benefits that can be gained by not having to run a new preprocessing
and being able to remove edges, this slowdown seems still acceptable.

Removing Edges

Removing edges is an extension of PLL that was not available before and makes the al-
gorithm fully dynamic with regard to edges. One reason why this feature was previously
missing is that after adding an edge, a cleanup is required for the proposed removal to
work. In addition, it is not only necessary to remove no longer valid labels after removing
an edge but also to add missing ones, in order to maintain a correct labeling.
The measurements are captured in Fig. 4.11. Again, 10 000 runs have been conducted.
The timing results are shown in Fig. 4.11a. The x-axis lists the reference networks and the
y-axis shows the measured time in µs. Fig. 4.11b summarizes the number of changes that
occurred in the labeling, when an edge was removed. The median values for the removal
time range from 17.3 µs to 84.409 µs. Small networks such as nobel-germany, geant
and polska experience the fastest cleanup times. These three have a similar amount of
changes in the labeling. The differences result from different network structures, which
lead to varying numbers of labels that are processed but not removed, thus not resulting
in an operation. On the other hand, larger networks, e.g., giul39 or janos-us-ca, need
more time for the removal. The median number of changes is much higher for these
networks. The outliers indicate that many entries in the labeling are affected in some
cases.
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(a) Run time comparison for removing an edge.
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Figure 4.11.: Results for removing edges from the reference networks (with cleanup).
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Table 4.5.: Time for removing an edge from reference networks, the speedup factor com-
pared to a full preprocessing and the number of queries to break even.

cost266 dfn-bwin geant germany50 giul39

Removing an edge (in µs) 50.561 56.964 17.653 60.966 84.41
Speedup factor (Preprocessing) 6.1 1.8 6.3 9.2 6.2
Break even (# queries) 8 54 6 7 13

janos-us-ca nobel-eu nobel-germany polska sun ta2 zib54

72.487 34.305 17.3 22.115 40.829 35.314 26.172
5.4 6.3 4.5 2.5 6.2 15.1 13.7
13 10 11 32 11 3 3

Tab. 4.5 gives an overview of the results for removing an edge from the reference networks,
the speedup factor compared to a full preprocessing and the break-even point for this
procedure compared to using Dijkstra. The speedup factors range from 1.8 to 15.1.
This indicates a behavior similar to adding an edge. The larger the network the higher
the speedup because often, only a part of the network needs to be updated. For dfn-
bwin, the factor is small due to the high node degrees in a fully-meshed network. From
the larger networks, ta2, zib54 and germany50 experience the largest speedup. This
observation is related to the rather low average node degree around 3. For two of them
this leads to a break even after as early as 3 queries. The network with the smallest
speedup factor requires 54 queries. Finally, it can be stated that the removal procedure
is faster than a preprocessing for all networks and more beneficial for larger ones.
Comparing the addition and removal of edges, there are two cases in which adding an
edge is faster than removing it, i.e., dfn-bwin and giul39. From their properties, it is
likely that adding is faster than removing for networks with a high average node degree.
This observation requires further investigation and is deferred to future work.

Scalability

In order to evaluate the scalability of the developed extensions, adding and removing
edges is also applied to the p2p-Gnutella04 network. The measured time for adding
an edge as well as the required operations on the labeling are summarized in Fig. 4.12
(10 000 runs). Fig. 4.12a shows that it takes 1240.238 ms (median) to add an edge to the
graph. This means that the procedure is 144 times faster than doing a full preprocessing,
and a break-even point is reached after 184 queries. The number of changes that need to
be applied to the labeling has a median value of 340 (see Fig. 4.12b). Compared to the
number of nodes and edges, these changes only concern a small amount of the labels,
even though higher values can occur as indicated by the outliers.
The results for removing edges are captured in Fig. 4.13. It summarizes the time and the
number of operations on the labeling (10 000 runs). Fig. 4.13a indicates that the median
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Figure 4.12.: Results for adding an edge to the Gnutella graph.

value for removing an edge is 4422.174 ms. Compared to a full preprocessing, it is still
more than 40 times faster and it takes 656 queries to reach a break-even point. Also in
this case, the outliers indicate that higher values can occur leading to worse results. The
deletion requires 436 operations (see Fig. 4.13b), which is more than for the addition.
To conclude the scalability evaluation, we can see that in all cases, the extensions provid-
ing a cleanup and the ability to add and remove edges are faster than a full preprocessing.
Also, they considerably reduce the number of queries needed to break even compared to
a preprocessing and thereby provide benefits to using Dijkstra’s algorithm. Considering
the previously estimated factors for a non-optimized implementation, it can be assumed
that the run time for adding and removing edges in a network of this size can be reduced
to seconds or even milliseconds. Since queries are typically the dominating operation
in a network, the presented results verify that the extensions are well-suited for this
application area.

4.3.2. Mediation Layer Delay

This section evaluates the delay introduced by the virtualization layer, i.e., the OVC. The
measurements are performed using the same hardware as for the algorithm’s evaluation
in Sec. 4.3.1. Due to the exclusive use and the low load throughout the measurements,
the obtained results provide reliable insights on the introduced delay by the OVC and
its layers. The whole software stack of the OVC is deployed on one machine. Two
use cases are investigated: installing and deleting a lightpath. On the left-hand side of
Fig. 4.14, the total delay of the OVC (in µs) is shown. It shows that the median value
for installing a lightpath is 3.5 times higher than the one for deleting a lightpath. This
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Figure 4.13.: Results for removing an edge from the Gnutella graph.

means in numbers that the installation takes 682.55 µs and the deletion 191.25 µs. The
differences are examined by assigning portions of the total run time to the layers of the
OVC (see Sec. 4.1.1).
The break down for installing a lightpath is captured in the upper right box plot of
Fig. 4.14. It shows the time in µs that it takes to process the request at every layer. The
processing of the connection request is started at the NBI. This layer takes 47.16 µs for
parsing the JSON content of the request. Next, it is handed over to the virtual topology,
which is responsible for finding the requested endpoints and sending the mapped request
to the physical topology. The step completes in 38.857 µs before the physical topology
needs to find the network elements and the designated SBI. After 35.628 µs, the request
is forwarded and the southbound implementation takes over. This is the most complex
part of the processing because it involves all the preparations for configuring the devices.
Apart from finding the correct modules and ports, it involves the creation of new objects
for maintaining the tunnel and channels. Only after these preparations are finished, the
first message is sent to the device, which concludes the measurement.
Deleting a lightpath follows a similar order of events and the measured times are shown
in the lower right box plot of Fig. 4.14. The NBI only needs 13.067 µs to finish the
processing because the request does not contain a body that needs to be parsed. The
identifier of the service that should be deleted is encoded in the Uniform Resource
Locator (URL). Following the northbound processing, the request is routed through the
virtual topology as well as the physical topology, which takes 40.578 µs and 36.564 µs,
respectively. These two layers have very similar processing times for both cases, i.e.,
installing and deleting a lightpath. The slightly higher times for the deletion are related
to the lookup and verification of the service at each layer. Finally, the SBI processes
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Figure 4.14.: Total delay introduced by the OVC for installing and deleting a lightpath
as well as a break down to the four layers.

the request and triggers the right actors needed for the deletion. The tear down starts
by deactivating the channels first. Therefore, the channel actors are responsible for
the first outgoing message, which concludes the measurement. The processing at this
layer takes 96.048 µs. The big difference, compared to the installation, results from the
already available actors and objects, which do not need to be initialized. This heavily
contributes to the shorter overall run time.
Currently, one typical way of achieving either an installation or a deletion of a lightpath
is using a Network Management System. We ignore the option of configuring the devices
manually, which is done for simple point-to-point connectivity, because it is even more
cumbersome. With an NMS, an operator needs to select the proper endpoints, choose
the connection parameters and trigger the setup. In more detail, he selects the devices,
the modules and the ports that represent the endpoints of the lightpath. The correct
transport protocol settings are one example for connection parameters. Finally, the
setup can be triggered. From this description it can be seen that depending on the
network size and the experience of the operator, this task takes at least tens of seconds.
If the lightpath needs to be ordered first, the maximum setup times are even higher
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Figure 4.15.: Total delay introduced by the OVC for installing and deleting a lightpath
as well as a break down to the different layers.

[Faw+04]. Giving the control to the user and automating the setup and tear down
avoids this bottleneck. The user selects the endpoints from a smaller set of assigned
endpoints and sends his request to the operator. If custom values are not specifically
allowed and requested by the client, default values defined by the operator can be used
for the connection parameters. This automates the setup procedure and improves the
request times significantly. The time needed is below 1 ms, which is much faster than
seconds. Taking into account the time it takes to set up or tear down the connection
itself, the delay introduced by the OVC can be safely neglected.

4.3.3. Distribution of OVC Components

The OVC offers the flexibility of being deployed on multiple server machines including
remote deployments interconnected by a network. This property is enabled by akka and
the actor model. Due to the message-based exchange, it is possible to deploy individual
actors at any JVM independent of its location. In addition, akka provides all features
needed in order to communicate through a network. Using remote locations for deploying
OVC components remotely can be done from the start of an actor’s lifetime or later on
by means of a migration.
In order to evaluate a distributed deployment, a distributed testbed is used. It comprises
an optical network and a virtual server in Madrid as well as one machine in Munich (see
Fig. 4.15). Both locations are connected through a VPN tunnel. The machine in Munich
(local) is running the main parts of the OVC, while the server in Madrid (remote) is used
for remotely deploying actors. The local machine is able to access the optical equipment
through the tunnel. The round-trip time between the two locations was measured to
be roughly 45 ms based on 500 pings minus 12 lost packets. The machine in Munich is
the previously described computer used for the previous measurements in this section.
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Figure 4.16.: Comparison of migration and startup for a migration to Munich and
Madrid and the relationship between the startup and the migration over-
head.

A virtual machine is used in Madrid equipped with 2 cores of an Intel Xeon CPU E5-
2660 @ 2.20 GHz and 2 GB of RAM. It used Ubuntu 16.04.4 LTS 32-Bit for the OS.
Two scenarios are considered in this setup: a migration of an SBI actor and a remote
deployment of all SBI actors.

Migration

A migration procedure can be used to migrate single actors or parts of an actor hierarchy
to a remote location. Results for migrations of an individual SBI network element in
the distributed testbed are shown in Fig. 4.16. On the left-hand side, the startup time
and the migration time are shown for each direction, i.e., Munich to Madrid and vice
versa. The startup time includes the initialization of the actor as well as a full update
of the relevant inventory information. In addition, the full migration time contains the
overhead of creating the actor and transferring data, if needed, for a remote instantiation.
From Munich to Madrid, the migration time (median) is 1.613 s. 1.548 s of the migration
time is used by the startup time. This means that about 65 ms are overhead of the
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migration. The opposite direction, i.e., from Madrid to Munich, results in higher values.
The full migration takes 4.724 s, while 4.723 s are just part of the startup. Therefore,
the migration overhead toward the main machine is only about 1 ms. This ratio is
summarized for both directions on the right-hand side of Fig. 4.16. To explain the
difference in startup time, we need to take a closer look at the startup procedure. The
main task of the actors is to update their knowledge of the managed devices. This
means, discovering the configuration, updating the status and creating new actors for
subcomponents. This task requires communication with the device. Being in Madrid and
thereby close to the devices improves the communication delay and only an abstracted
view of the device needs to be sent on to the main machine in Munich. This results
in a time improvement by a factor of almost three. The Overhead on the other hand
is higher for a migration to a remote location. The reason is that information needed
for the actor’s instantiation needs to be exchanged between the locations. For a local
creation of an actor, the overhead is minimal.
There is not only an improvement in time but also in the amount of data that needs
to be exchanged between both locations. For one exemplary device, the data needed to
be transferred between Munich and Madrid is 75 kB for the local deployment and 30 kB
for the remote one. The migration saves 60 % of the data. Since an update is not only
required in the beginning but also to synchronize the state throughout the lifetime, a
migration is beneficial for such equipment deployments.

Distributed Deployment

Next, the influence of deploying parts of the SBI in a remote location is evaluated. In
particular, the effect on the installation and tear down time of a lightpath is examined.
The same setup as shown in Fig. 4.15 is used. The only difference to the previous
measurement is that all SBI network elements are deployed at their final location from
the start. Three scenarios are considered: a centralized deployment of all components
(in Munich), all SBI network element actors are deployed remotely (in Madrid) and
finally the tunnel actor as well as the SBI network element actors are deployed remotely.
1000 runs have been conducted per scenario and operation, i.e., installing and tearing
down a lightpath. The time is measured starting with an incoming request at the NBI
and it is stopped when the NBI receives the confirmation that the task was successfully
completed. The collected results for a lightpath with a single hop are shown in Fig. 4.17.
The results for installing a lightpath are shown on the left-hand side of Fig. 4.17. For
a centralized setup, we can see that it takes 9.486 s (median) to install a lightpath. If
all three SBI element actors are moved to the remote location, the time is reduced to
9.253 s. Moving also the actor responsible for the tunnel to Madrid reduces the time
even further to 9.161 s. By deploying all actors related to the network elements and the
tunnel remotely, savings of more than 300 ms can be achieved. However, most of the
time spent for the lightpath setup is actually related to physical properties of the optical
network, e.g., power equalization.
Numbers for deleting a lightpath are shown on the right-hand side of Fig. 4.17. For a
centralized setup, forming the baseline, the deletion takes 7.594 s. In general, the time it
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Figure 4.17.: Timing results for different deployments when installing (left-hand side)
and tearing down (right-hand side) a lightpath.

takes to tear down a lightpath is lower than the time it takes to establish it. Moving the
SBI element actors to the remote location, the time is reduced to 7.411 s. If the tunnel
actor is moved too, the time is further reduced to 7.36 s. This means that more than
200 ms can be saved by moving these components to the remote location. Again, most of
the time is related to the characteristics of the optical equipment, e.g., deactivating the
tunnel and powering down the transceivers. It has to be mentioned that the equipment
is not optimized for fast power-on and power-down.
One observation in both scenarios is that the measurement for a distributed SBI contains
fewer outliers than the other two. Since the VPN passes through the Internet and the
lab in Madrid is also used for other activities, it is hard to predict the best time for
the measurements, which need to run for an extended amount of time. It is likely
that the time chosen for this particular measurement, i.e., Sunday night, was less busy.
Nevertheless, the measurements are still representative because it appears more likely
to experience interference during operations. The difference in traffic is additionally
mitigated by the median value, which is less sensitive to outliers than a mean value.
Another remark is that many of these steps require a polling to check if a configuration
change was successful. The reason for this is that so far, only the REST interface is
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used, which does not provide a way of pushing information to the OVC in its current
implementation. Therefore, the polling interval was set to 100 ms. This can be improved
with technologies that are able to push data like WebSockets or Server-Sent Events.
Alternatively, registering for existing SNMP traps could be another solution.
Most of the savings result from the fact that the connection between the sites has to
be used less often. All accesses that no longer require passing through the VPN tunnel
are improved regarding the introduced delay. This also means for locations with a
higher delay that the savings will also increase, but that is not the only benefit. Due
to the deployment on different machines, a horizontal scaling can be achieved. Even
though, further investigation on the deployment of other layers or actors is needed. Some
actors are especially critical in the sense that they store the state of the infrastructure,
i.e., physical and virtual. They represent bottlenecks and probably need to be scaled
differently. This will require synchronization between actors that share a common task
or duplicate data.

Summary
The OVC is one approach to expose control to the user and provide virtualization ca-
pabilities to the operator. This chapter validated the mediator approach and applying
actors to achieve performance and flexibility. It has been verified that the algorithmic
extensions to PLL are applicable to the optical domain and can be easily scaled to larger
networks with further optimizations. The delay introduced by the virtualization layer
has been found to be negligible, especially taking into account the optical layer. Finally,
it has been shown that different deployment options for the components of the OVC are
beneficial for scenarios with distant locations. Having proved the standalone viability of
the approach, the next step is to include it in a larger context.
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5. Including the Optical Layer in Multilayer
Networks

Multilayer in the context of this thesis refers to multiple network layers of the OSI model.
In particular, multilayer is often used interchangeably with IP-over-optical, which are IP
connections utilizing an underlying optical network. This can be implemented, e.g., by IP
routers that are connected to transponders via gray interfaces. If every layer is operated
individually, then the optical layer offers connectivity between selected endpoints based
on the (maximum) bandwidth without considering other service requirements. On the
other hand, the IP layer treats the optical connection as a static big pipe between Layer
3 (L3) devices. This restricted view does not allow for optimization techniques that
need to be aware of both layers at the same time. Better decisions and more efficient
operations are only possible if an overall view is embraced.
This chapter shows how SDN-enabled optical networks can be included in multilayer
environments and discusses the benefits of joint control. First, multilayer networks are
introduced and a selection of application areas is presented. Then, two scenarios are
discussed: a data-center automation and the automatic creation of secure services. The
first showcases the migration of legacy equipment to the SDN world, while the second
explores unified control and new opportunities for application-oriented networking. Both
scenarios highlight advantages of joint multilayer operations and each is validated by a
proof of concept with commercial hardware.

5.1. Multilayer Networks
In general, multilayer networks span multiple layers between L0 and L3. A common
case for optical networks is IP-over-optical. Currently, network planning in this kind of
networks does not jointly consider both layers. The upper layer is just used to provide
information on the demands that need to be satisfied by the lower layer. Even though
there are practical ways for including multilayer information in planning [Aut16], typi-
cally a two-step process is applied. This process handles the IP layer first and performs
an independent step for the optical layer afterwards [Lop+17a]. Originally, the capacity
required by applications was magnitudes smaller than the granularity provided by the
optical network. Therefore, it was — and often still is — necessary to groom multiple
IP connections into a single optical connection. Because of the ever-increasing band-
width requirements of applications and the advent of EONs introducing finer granular-
ity, multilayer planning is of growing interest, especially in combination with application
awareness [Lop+17a]. Without considering the IP and optical layer in conjunction, the
network operator misses out on Capital Expenditure (CAPEX) savings resulting from
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multilayer optimizations, especially for EONs in the optical layer [Kle12]. Further sav-
ings can be achieved through the inclusion of the control plane in planning (including
protection) [IGL13a]. This idea can be extended to an integrated management and con-
trol architecture based on a PCE [IGL13b]. An evaluation of architectures for planning
a protection, comparing a single layer approach to a multilayer procedure, indicates
significant CAPEX savings when considering both layers. Finally, managing multiple
layers also influences the IP routing that needs to consider costs for taking an optical
lightpath, e.g., hop- or distance-based [Pal+14].
Multilayer resilience — covering protection and restoration — is another prominent
showcase for the importance of interaction between layers [Sch12]. Protection relies
on resources that are reserved beforehand. They are either shared between multiple
connections or dedicated to one connection. In contrast, restoration tries to find and
instantiate a solution after a failure occurred. It can only use resources that are free
at the time of the failure. For this reason, protection provides faster recovery times
than restoration. In general, there are different approaches for recovery in IP-over-
optical networks [Pic+06]: (I) single-layer recovery, (II) static multilayer recovery and
(III) dynamic multilayer recovery. The first case (I) considers only a single layer, e.g., the
bottom or the top layer. This may lead to recovery problems or increased complexity. If
multiple layers are considered, an uncoordinated or a sequential approach can be applied.
The first one allows every layer to apply countermeasures on its own, while the second
one is escalating either from bottom to top or the other way around. An uncoordinated
recovery, triggered at both the optical and the IP layer, may lead to slow convergence
[Sim14]. A coordinated approach can be used to introduce a fixed structure, e.g., from
bottom to top. Then, only if the first layer fails to recover, the next one is triggered.
Multilayer recovery not only needs to coordinate the individual steps but also to assign
resources. In the static case (II), resources are preassigned to every connection and
activated in case of failure to maintain the original topology. The dynamic techniques
(III) allow for the setup of new connections by using the control plane of the underlying
network. Applying multilayer recovery leads to a more efficient recovery with regard to
time and resources. These benefits can extend beyond the network itself. By increasing
the allowed maximum time to repair through multilayer restoration, the number of
service teams needed for repairs can be reduced, which leads to savings in Operating
Expenditure (OPEX) [Cru+14].
Multilayer interaction is also important for the implementation of application-centric
networking [GLS15]. In-operation optimizations are improved by including application
awareness compared to current bandwidth-driven approaches [Lop+17a]. Applications
not only rely on a particular bandwidth but may also have other service requirements,
such as latency. Service requirements define which properties need to be met by the
network in order to satisfy the request. Based on this, an application-aware framework
for a dynamic multilayer resource allocation and optimization can be defined calculat-
ing tailored solutions for the requested service requirements [Lop+17a]. In this context,
application-aware planning in multilayer networks comprises multilayer planning, opti-
cal resilience and multilayer reroute [Lop+17a]. These building blocks can be applied
incrementally in order to maximize savings.
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Most benefits can only be utilized if EONs become available and foremost optical net-
works are integrated into the overall SDN control framework. The development and
deployment of new technologies is out of the scope of this thesis. The SDN integration,
on the other hand, is a central topic. To validate the migration toward SDONs and show
opportunities that arise from multilayer operations, two scenarios are discussed in detail
next.

5.2. Data-Center Automation
This section summarizes the first SDN-based orchestration of data-center and optical
network resources over field-installed optical fiber using exclusively Open-Source Soft-
ware (OSS). It presents an intermediate step on the way to SDONs. The proof of concept
demonstrates a migration path for legacy equipment, in which a mediation layer, called
the Optical Network Controller (ONC), provides an OF interface to an SDN controller.
The validation focuses on the orchestration of elastic data-center and inter-data-center
transport network resources. For this scenario, OpenStack and OF are used to con-
trol commercially available equipment and to allow network automation. Programmatic
control enables a data-center operator to dynamically request optical lightpaths from
a transport network provider to accommodate rapid changes of inter-data-center work-
flows, such as the migration of virtual machine clusters. The results indicate that pro-
visioning times are reduced to tens of seconds compared to typical provisioning times of
days or weeks, even though OF is not a natural option for optical networks. This section
is based on results published in [Szy+13] and [Szy+14b].

5.2.1. Data-Center Use Case
Currently, optical transport networks are statically configured and provide customers
with dedicated, fixed bandwidth connections for extended time durations (years). Data-
center operators are well-versed in exploiting dynamic compute and storage resources
through virtualization. They anticipate the same flexibility from their data-center net-
work. Network operators appreciate an opportunity to utilize automation and would like
to apply virtualization techniques to provide customers with dedicated, fixed bandwidth
connections for shorter time periods. A prerequisite is a dynamic, reconfigurable optical
transport network that permits the release of idle statically configured connections in
order to redistribute bandwidth, flatten peak network load and increase network utiliza-
tion. Clearly, a mechanism to orchestrate cloud resources within and optical transport
resources between data centers is required [EA13; GBX13; Mcd13].
OpenStack [Ope18g] is the leading open-source data-center orchestration platform used
within data centers operated by cloud service providers and large enterprises alike. It
comprises an expanding collection of independent service modules that include the man-
agement and dynamic orchestration of virtualized compute (nova), storage (cinder &
swift) and networking (neutron) resources hosted on hardware servers. Neutron was
conceived to automate virtualized Layer 2 (L2) & L3 connectivity services between Vir-
tual Machines (VMs) and the underlying physical servers within a data center. Neutron
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plug-ins provide various options for the control of the network, e.g., through an SDN
controller. Indeed, publications at that time have reported experiments using OpenStack
with OF-enabled L2 switches where the Wide Area Network (WAN) between data center
locations consisted of fixed optical connections [Miz+12] or reported the orchestration
of data-center and optical-transport resources, but were based on proprietary software
and confined to a laboratory environment [Zha+13a].
Typical workflows inside data centers include storage migration, virtual machine mi-
gration, active-active storage replication and distributed applications [ADH12]. Storage
migration involves either the backup or transfer of data for future usage, e.g., to reduce
access time. VMs with live workflows are typically migrated because of the need for
more computational resources that can be met elsewhere. Active-active storage replica-
tion ensures the synchronization and coherence of replicated data across different loca-
tions. Finally, distributed applications require communication between virtual machines
hosted on physically separate, dispersed hardware servers. These workflows highlight the
importance of having a reliable and elastic connectivity between data centers deployed
across multiple geographical locations. This interconnection is most often provided by an
infrastructure provider. To maximize the utilization of the network, the infrastructure
provider might offer virtual slices to his customers, e.g., data-center operators, who can
increase and decrease the bandwidth or redirect the communication channel to another
data center.
End-to-end workflow automation offers many benefits. It reduces the lead time for
tenants and data-center operators to access innovative services across a geographically
distributed pool of resources. Automation also removes the barriers imposed by statically
configured optical transport to better match the usage of all available resources. On the
one hand, a data-center operator could accommodate variable bandwidth demands and
temporary increases within workflows by closely tracking the aggregated requirements of
his tenants using flexible bandwidth. On the other hand, he could be provided access to
a fixed quantity of bandwidth that can be moved between his demarcation points based
on workload. The data-center operator is then able to control his network through an
SDN controller to maintain the packet forwarding state. Currently, the optical network
requires an Optical Network Controller (ONC), which is a mediation layer, to establish
lightpaths between data centers. The ONC exposes an SDN interface and effectively
acts as a domain controller and a hypervisor for the optical network. This approach
exposes an appropriate level of control over the resources northbound to a data-center
orchestrator. To evaluate the benefits of SDN-controlled automation, a demonstrator is
introduced.

5.2.2. Demonstrator Setup

The setup focuses on the interaction between the data-center orchestrator and the trans-
port network. The ONC presents the optical ring topology, consisting of three ROADMs,
as one (virtual) switch to the Floodlight OF controller. By applying port-based flow
modifications (flow mods) to this virtual switch, a lightpath setup or teardown is trig-
gered in the optical network. This enables OpenStack to create lightpaths on demand
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Figure 5.1.: Hardware and software components of the demonstrator.

Table 5.1.: Optical paths between the three data centers chosen by the control plane.
Requested connectivity Optical path assignment

DC1 to DC2 Node A ↔ Node B
DC1 to DC3 Node A ↔ Node B ↔ Node C
DC2 to DC3 Node B ↔ Node A ↔ Node C

through an interface offered by Floodlight. A number of subsequent steps in the optical
layer are handled by the ONC and hidden from the orchestrator.
Fig. 5.1 outlines the main components of the demonstrator. Three discrete data centers
(DC1, DC2 & DC3) were emulated with HP DL380p G8 servers. All three servers ran
Open vSwitch (OVS) 1.4.0 and the nova compute component, which provides the ability
to instantiate multiple virtual machines. The server representing DC1 was nominated as
the primary server that in addition hosted the OpenStack cloud management application
and the Floodlight OF controller.
The inter-data-center network comprised three ADVA FSP3000 colorless ROADM nodes
interconnected to form a ring using field-installed, ducted optical fiber within BT’s
network. A 10GbE client-side port of each ROADM was connected to a GbE Network
Interface Card (NIC) in the server of the data center via an ADVA FSP150CC-XG210
demarcation/aggregation device (not shown in the figure). Two of the ROADMs were
directionless (Node A and Node C) and one node was directed (Node B). Tab. 5.1 shows
the optical paths chosen by the control plane for this setup.
The measurements were conducted with the configuration described in [Szy+14b]. The
installed OS was Ubuntu server 12.04 LTS (3.5.0-41-generic kernel) due to the more
stable and extensive driver support compared to release 13.04, which was reported in
[Szy+13] before. OpenStack 2013.1.3 (Grizzly release) from the Ubuntu Cloud Archive

113



5. Including the Optical Layer in Multilayer Networks

Private
Applications

neutroncinder nova

Openstack Orchestration

Floodlight Controller
+ Extension Modules

REST API

ONC

OpenFlow

Public
Applications

REST API

Application
Layer

Orchestration
Layer

Control
Layer

Resource
Layer

Transport

vNIC

Networking

10010…

ComputeStorage

REST API

plugin

Figure 5.2.: Layers and logical components of the demonstrator.

was used. QEMU/KVM was deployed on each server as the virtualization environment
together with OVS 1.4.0, enabling the creation and interconnection of the VMs created
by OpenStack. An out-of-band management network was used for controlling the Open-
Stack cloud. A Dynamic Host Configuration Protocol (DHCP) relay was installed at
DC2 and DC3 to distribute IP addresses via this management network when no optical
path was available through the data network.

Logical Components

Fig. 5.2 summarizes four layers with the main logical components present in the demon-
strator. From top to bottom, the Application Layer, which includes the OpenStack
Horizon dashboard, uses a REST API to invoke services through OpenStack. The
Orchestration Layer, which offers an NBI to applications, provides access to storage
and compute pools on the servers via OpenStack cinder and nova, respectively. The
Control Layer comprises the Floodlight controller and the ONC. Floodlight is accessed
through a REST API via the Virtual Network Filter that acts as the network backend for
OpenStack’s neutron plugin. Additional extension modules that are incorporated into
Floodlight access ADVA’s ONC. The ONC acts as an OF virtual switch, which, in turn,
communicates with each FSP3000 node via SNMP. The Resource Layer comprises four
resource pools: compute, storage, networking (emulated by virtual NICs and switches)
and optical transport. The Floodlight controller discovers the devices and inventory
automatically via Link Layer Discovery Protocol (LLDP) for OVSs and the attached
VM instances running on the server. Forwarding-plane connectivity of the FSP3000
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nodes was advertised via GMPLS and polled (using SNMP) by the ONC. A Link In-
serter application provided the static connectivity mapping (patch cabling) between the
client ports of the FSP3000 nodes and the L2 network elements via a REST API or
configuration file. At the same time, it advertised the connectivity to Floodlight. The
compute and storage inventory pools were accessible via the default OpenStack Horizon
dashboard.

Steps of the Measurement Procedure

The measurements for a flexible bandwidth assignment recorded the time needed for
the setup of a lightpath. Before each measurement, all preexisting connections were
torn down. The measurements started with the creation of a flow using the REST
interface. A traffic source — one VM — continuously sent 100 User Datagram Protocol
(UDP) packets per second. As soon as the first packet arrived at the receiver, the
measurements concluded and the elapsed time was captured. The reception of the first
UDP packet verifies the instantiation of the lightpath and indicates that connectivity
has been established at the transport layer. This test was repeated 100 times to obtain
the average setup time.
To measure a steering of the available bandwidth, which corresponds to changing one
endpoint of a lightpath, two traffic sources and one destination (receiver) were chosen.
The receiver triggered a redirection of the lightpath. Each measurement comprised three
components: 1. the deletion of any existing connection, 2. the creation of a lightpath
between the new source and the destination and 3. finally the waiting time for the first
UDP packet to be received to confirm the data flow. This was followed by a measurement
of the switch over in the opposite direction. The senders followed the same description
and packet creation rate as above. Again, each measurement was repeated 100 times.

5.2.3. Measurements of Data-Center Workflows

The measurements are divided into three sections: I. flexible bandwidth II. steered
bandwidth and III. storage migration.
The first set of measurements examined the time required for flexible bandwidth (I.).
Due to the limitations of the software and hardware back then, it was simply modeled
as a lightpath setup. Measurements commenced with a request issued by the user for a
new bidirectional connection between two data centers, e.g., DC1 ↔ DC2. An optical
connection was established following this request and the time was stopped when the first
packet arrived at the receiver’s side. The setup time mostly depended on the number
of hops along the route that was chosen for the lightpath by the control plane and
included all the intermediate steps following the request. The frequency distribution of
the recorded time values is shown on the left-hand side of Fig. 5.3. For DC1 ↔ DC2 the
direct one-hop path was chosen according to Tab. 5.1. 15.8 s were measured on average
for the connection setup. The optical path for DC1 ↔ DC3 and DC2 ↔ DC3 included
an additional optical hop, i.e., two hops in total. This increased the mean setup time
to 24.3 s and 25.2 s respectively. The additional hop imposed a penalty of roughly 8 s to
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Figure 5.3.: Frequency distribution for bandwidth flexing (left-hand side) and steering
(right-hand side).

10 s. The differences in the group of two-hop cases can be traced back to different fiber
and hardware properties on the two routes.
The second set of measurements evaluated the steering of connections (II.) in order to
reroute a connection and reuse resources. Measurements commenced with the request
for a teardown of the existing connection, immediately followed by a request to establish
a lightpath to the other data center while keeping one endpoint fixed. Each run ended
with the reception of the first incoming packet from the remote data center. Fig. 5.3
(right-hand side) illustrates that the results can be grouped into three regions, each
one containing two peaked distributions. The regions are discussed from left to right.
Region 1 (green curves) was centered around 44 s and exhibits the fastest toggle times.
The reason is that a one-hop optical path can be set up more rapidly than a two-hop
path. Region 2 (brown curves) was centered at 48 s. The main difference here was that
a one-hop optical path had to be torn down, while a new optical path with two hops
was created. This led to slightly slower setup times, which, in turn, caused an additional
delay of 4 s compared to region 1. Region 3 (blue curves) covers a two-hop teardown
and a two-hop setup. It resulted in the slowest times and accounted for a mean of 52 s.
At last, a data transfer between two data centers, representing a storage migration (III.),
was investigated. The identified steps for simulating this transfer are visualized by the
flowchart on the left-hand side in Fig. 5.4. With the source VM running in DC1, the
actual workflow started with the creation of a second VM in DC2. This was followed
by a request for a lightpath. 100 GiB of data were transferred using the Linux shell tool
nc. The lightpath was released upon conclusion of the data transfer and the source VM
was terminated afterwards. A wireshark representation of selected packets captured
with tcpdump throughout the measurement are shown on the right-hand side of Fig. 5.4.
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Figure 5.4.: Flowchart for data transfer and wireshark trace.

The first box summarizes the setup of the lightpath. The user interface (pusherAgent)
is called via an HTTP-request and its timestamp is taken as reference point for the
subsequent packets. It triggers Floodlight through the staticflowentrypusher to send
the flow mod to the optical virtual switch. The message is confirmed in line 4. This
process is repeated because a lightpath corresponds to flows in both directions and the
second request ends in line 7. The user interface updates its information in the next lines
until the initial request is confirmed by the last HTTP-message. The second box shows
the start of the data transmission. It starts with the Transmission Control Protocol
(TCP) [SYN] request to initialize the transfer. This leads to a packet-in at the first OVS
and is answered by the controller with a packet-out. Additionally, a flow mod is sent
to the OVS at the second node. The packet reaches the second node in the next lines
and triggers another packet-in and packet-out. Then the TCP connection is confirmed
by the other side with a [SYN,ACK]. The transmission starts with the following [ACK]
message. The end of the transmission is captured in the third box. The transmission in
this exemplary recording took 921 s and the TCP connection is torn down at the end by
[FIN,ACK]. After this, the user interface is used once again for deleting the flows and
thereby tearing down the lightpath. The steps are shown in the fourth box. There are
two calls to the pusherAgent interface, one for every direction. The script sends a delete
request to Floodlight’s staticflowentrypusher, which results in a flow mod in order
to delete the flow. The measurements revealed that 16 min 24 s were needed to complete
the data migration. As expected, a high proportion (approximately 93 %) of the elapsed
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time, namely 15 min 21 s, was spent exclusively on the data transfer, limited only by the
GbE NICs used in the experiments.

Assessment

The emulated data migration shows that for transferring large amounts of data, it can
be very attractive to acquire additional bandwidth for a limited time. The improvement
will be more pronounced if higher-performance NICs with greater data throughput are
used. Additionally, with the possibility of flexible and steerable bandwidth, a reduced
amount of equipment can be used more efficiently and the utilization of underused fiber
resources can be increased. In the case of OpenStack, a solution for including SDN-
controlled optical networks, e.g., for VM migration, is essential. It leads to fast and
flexible lightpath setups, enabling the dynamic usage of the available bandwidth capac-
ity. With high bandwidth-on-demand services new revenue streams become possible for
data-center operators. Nevertheless, this was an early demonstration and the used OF
protocol has major drawbacks, if applied to OCS. Flows need to be set up (and removed)
in both directions in order to satisfy the forwarding concept of OF controllers. The sin-
gle switch representation is very abstracted and hides details about the chosen path.
Even if the topology is extended to multiple switches, a correlation between single flows
on different devices needs to be derived and optical constraints cannot be represented.
Therefore, the next scenario demonstrates recent developments in the field of SDONs.

5.3. Automatic Intent-Based Secure Service Creation

Growing traffic demands and increasing security awareness are driving the need for secure
services. Current solutions require manual configuration and deployment based on the
customer’s requirements. Applications need a way of describing requirements directed
at an underlying network in a technology-agnostic manner. In future SDN-controlled
IP-over-optical networks, service requirements should be considered to provision services
tailored to the application’s needs and to optimize network resource usage. This section
presents the concept of an automatic selection of the appropriate encryption layer in a
multilayer — IP, Ethernet and optical — network based on requirements that are ex-
pressed by an application through intents. Intents define the application’s requirements,
e.g., bandwidth, without specifying the actual realization. The goal is to move the
decision complexity away from the application requesting the service toward the orches-
trator, which also acts as an SDN controller for all devices. The controller is responsible
for receiving an application’s intent and translating it into network requirements, evalu-
ating the related trade-offs and (technological) constraints, and eventually provisioning
a secure service that can be used by the application. This concept is experimentally
validated with an implementation using an open-source SDN controller, which is aware
of the available layers, and commercial SDN-enabled hardware. This network equipment
is controlled using an open interface, i.e., TAPI with extensions. The section is based
on the results published in [Szy+16], [Cha+17] and [Szy+18].
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5.3.1. Secure Services

Service providers used to deploy separate networks to host enterprise and end customer
services. However, such an approach is not scalable in economic terms as the infrastruc-
ture is duplicated and underutilized. Current deployments are based on unified networks,
which means that all traffic flows share the same infrastructure. Additionally, compa-
nies have to contend with higher risk and potential costs associated with data breaches
of $3.6 million on average [IBM17]. As a result, it is critical for businesses to deploy
solutions to secure their distributed and potentially virtualized network or cloud infras-
tructure. Encryption is a key component in this regard and responsible for ensuring the
confidentiality of a communication between two trusted endpoints. Network encryption
is one crucial element for data transfer over an untrusted public infrastructure. End-
to-end encryption is flexible and independent of the underlying network infrastructure,
making it relatively easy to deploy. One example is the widespread utilization of Hy-
pertext Transfer Protocol Secure (HTTPS) for Internet traffic, mainly driven by the
over-the-top providers. This flexibility comes at the cost of higher processing require-
ments on both — server and client — communication endpoints, which consequently
induces more latency and reduces the throughput of the network.
Given the large number of communication protocols, a deployment of specialized mech-
anisms for each individual protocol is not feasible and in-flight encryption is used as a
standard mechanism to secure these protocols. In-flight encryption is applied to traffic
on one of the lower layers of the OSI model, i.e., physical (Layer 1 (L1)), data link
(L2) and network layer (L3). Protocol solutions operating at these network layers (e.g.,
Internet Protocol Security (IPsec), Media Access Control Security (MACsec), physical
layer) have inherent technical (e.g., cost of deployment, latency, effective throughput)
and cost trade-offs. In-flight encryption assumes that protocols that do not support
security mechanisms will be encapsulated into one of these protocols. When performing
such tasks at the network level, requirements on endpoint capabilities and processing
complexity are relaxed. Moreover, this allows the network operators to optimize the cost
per bit for encrypting traffic between two remote sites. Network service providers typi-
cally deploy infrastructure with multiple, potentially vendor-specific, choices for in-flight
encryption. Manually evaluating the technical, cost and security trade-offs between the
possible solutions for an application, requesting a secure connectivity service from the
infrastructure, poses a significant overhead. Furthermore, applications are interested in
satisfying their own requirements, which commonly do not match the priorities of the
network operator: while applications are concerned about bandwidth, latency, availabil-
ity, security, etc., management systems are optimized to minimize the usage of resources,
energy consumption and so on. In theory, applications should be able to clearly define
their needs without getting into details on how the service is created, i.e., via an intent.
The selection of the best encryption mechanism for the applications is a feature that the
network must provide in order to optimize the application’s experience, while providing
the most cost-effective solutions on the operator’s side. This is called a Secure Transmis-
sion as a Service [Lop+16b]. Throughout this section, the term “in-flight encryption”
describes the process of applying a technology to encrypt traffic. The term “secure ser-
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Table 5.2.: Overview of encryption layer properties.
Requirement IPsec (L3) MACsec (L2) Physical (L1)

Latency high medium low
Data Throughput low medium line speed (no overhead)
Protocol Transparency low medium high
Flexible Encrypted Payload Size restricted restricted 1G – 100G
End-to-End Compatibility IP only L2 only OTN or SONET/SDH
Flexibility (Meshed) high low medium

vice” is used in the context of a connection that is transferring traffic that needs to be
secured by some kind of (in-flight) encryption mechanism.
Current research on security in SDN is focusing on controllers and the communication
between the control and data plane [DK15; Sco15; SOS13]. Even though the data plane
is also considered in isolation, the work is mostly limited to OF switches [KRV13]. There-
fore, it is concerned with preserving the integrity of flow tables and flow rules [SOS13].
Eavesdropping is a general threat in computer networks and it applies to the electrical
[SZ16] as well as the optical domain [Fur+14]. A natural and effective countermeasure
is encryption. In OF networks, encryption of packets may result in matching issues
because some headers are no longer accessible. This section proposes an architecture for
enabling the intent-based creation of secure services, providing encryption, in multilayer
environments.

5.3.2. Encryption mechanisms

The main purpose of an encryption mechanism is to protect the user data against eaves-
dropping and therefore ensure its confidentiality. The choice of the encryption mech-
anism depends on the requirements of the application. This section summarizes the
general idea of in-flight encryption and compares various properties of physical layer
encryption, MACsec and IPsec. They are summarized in Tab. 5.2. These properties
are used by the orchestrator to assign an appropriate encryption mechanism to the re-
quested secure service. The configuration of an encrypted connection is a multi-step
process. First, the two endpoints need to be authenticated, which means identifying the
other side as the expected communication partner by a pre-shared key, username/pass-
word based authentication or using certificates. The encryption mechanism needs two
cryptographic primitives: a symmetric-key algorithm and a key exchange protocol. A
symmetric-key algorithm is used to provide data confidentiality. It uses the same key
for encryption and decryption. The most popular symmetric-key algorithm today is
Advanced Encryption Standard (AES), which is also used in the experiments. A key
exchange protocol, on the other hand, is based on public-key cryptography and is used
to establish a symmetric session key over a public channel for the AES encrypted com-
munication. Note that the symmetric key is regularly refreshed in order to limit the
amount of data that is encrypted with the same key.
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ADVA’s physical-layer encryption is a point-to-point L1 encryption over the optical fiber.
The hardware encrypts the Optical Channel Data Unit (ODU) payload before inserting
it into the Optical Channel Transport Unit (OTU) frame, which is decrypted at the other
side. Because the payload of an OTN frame is encrypted with no additional overhead,
it offers a high protocol transparency. This approach provides the lowest latency and
highest throughput, i.e., line speed, among the presented mechanisms. The bulk data
encryption is typically done by a symmetric-key algorithm, such as AES, and the session
key can be established by a key exchange protocol, such as authenticated Diffie-Hellman
(DH) key exchange. The drawback of physical layer encryption is that it is bound to
custom hardware at both endpoints of the infrastructure and the setup time roughly
corresponds to a lightpath provisioning.
MACsec is a security protocol for Ethernet links (L2) and enables secure communication
between neighboring nodes. Each packet is encrypted using symmetric key cryptography
so that the communication cannot be monitored or altered while traversing the link.
The symmetric key is established by a higher-level protocol that is part of Institute of
Electrical and Electronics Engineers (IEEE) Std 802.1X-2010 [IEE10]. The MACsec data
frame, defined by IEEE Std 802.1AE [IEE06], adds a security tag and an integrity check
value to the Ethernet frame. Both are checked by the receiver to ensure that the data
has not been compromised during transmission. Since MACsec is a simple protocol, it
is able to achieve a high data throughput with low latency/overhead on Ethernet links.
However, if data traverses multiple Ethernet links with enabled MACsec, then each
L2 device must encrypt/decrypt the frame. This may cause performance degradation,
compatibility problems and security issues, if an intermediate device is untrusted. Also,
addressing/reachability limitations of L2 apply.
IPsec [SK05] is an end-to-end security protocol on the network layer (L3). Also, unlike
others, the communication in IPsec typically uses multiple secure channels and has
separate keys to communicate with different destinations. For these reasons, IPsec forms
the basis of many VPN solutions. Services encrypted with IPsec are more independent
from the infrastructure and flexibly deployable at many points of the network. In IPsec,
the entire IP packet is encrypted and authenticated by the initiator and a new IP header
is added to route the packet to its destination. Encrypted IP packets pass through the
network unchanged until they reach their destination. Intermediate routers have no
means of decrypting the packets. A major drawback of IPsec is its complexity and
the introduced latency [RWW04]. It also significantly enlarges the size of the IP header,
which causes network inefficiencies and adds penalties in the form of latency and reduced
throughput to the overall solution cost.

5.3.3. System Architecture

The intent-based multilayer orchestrator was developed in the ACINO project and is an
open-source effort built on top of ONOS [Ber+14]. Many extensions, with the goal of
making it more application-centric, have been introduced to the original controller. The
ACINO orchestrator’s simplified high-level architecture is presented in Fig. 5.5. Start-
ing from the top, Application Centric Intents (ACIs), issued by a client application,
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Figure 5.5.: Basic system architecture of the ACINO orchestrator.

are submitted through a REST NBI or a command-Line Interface (CLI). The ACI is
an incarnation of ONOS’ intents that supports additional constraints and needs to be
processed by a specialized compiler. The orchestrator routes all requests through the
intent framework, compiles the submitted ACI and selects the actions that need to be
taken in order to satisfy the intent. Before returning the required actions, an interme-
diate representation is created: a domain intent. On a high level, they represent intents
that a domain controller that is responsible for a part of the network can execute, in
contrast to device-level intents. A more detailed explanation of this extension is given
in App. C. Domain intents represent installable actions that need to be mapped to the
appropriate transport representation. Then they are sent through southbound protocols
to the devices that need to be configured. The devices themselves are either accessed
directly or through a mediation layer like an intermediate controller, e.g., a NMS. Pro-
tocols for southbound interactions include OF, NETCONF and RESTCONF. The latter
two define only the transport protocol and require YANG models for the description
of the content, e.g., the ONF TAPI [Qia+16]. In any case, specialized drivers are im-
plemented to handle the device-specific behavior that is not covered by the common
protocol definition. For this reason, a TAPI driver was implemented in ONOS (App. C)
using the REST southbound protocol, which is based on the REST proxy (App. C) and
provides a basic set of methods for accessing web resources. The communication with
the optical devices is done through ADVA’s NMS, which exposes an experimental TAPI
interface. The hardware side comprises optical equipment with physical-layer encryp-
tion capabilities — on a subset of the ports — as well as switches which are able to
install encrypted tunnels, i.e., MACsec. Even though routers could be easily included,
they were omitted because of missing support for IPsec in the available hardware. The
extended explanation of changes that have been applied to ONOS in order to support
encryption is available in App. C.
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Figure 5.6.: Testbed setup in the lab based on commercial networking hardware.

5.3.4. Experimental Validation

As shown in Fig. 5.6, the presented system architecture was implemented and evaluated
with commercial hardware in a lab. The testbed comprised two off-the-shelf computers,
representing the hosts, and two servers. One server was running the ADVA NMS and the
other the ACINO orchestrator. In addition, the two computers hosted an OVS instance
each. These virtual OF switches were under ONOS’ control and steered the traffic
into the right direction depending on the encryption scheme. Both servers (not shown in
Fig. 5.6) were connected to the optical equipment as well as the OVS instances through a
management network. The testbed included an ADVA FSP3000 ROADM ring consisting
of three nodes at the optical layer. Two of them were equipped with 10G AES cards,
which encrypt all traffic on the physical layer. Also, two ADVA FSP150CC-XG210 were
part of the setup. These Ethernet demarcation devices are capable of encrypting traffic
using MACsec and were connected directly to each other. The hardware equipment is
controlled and configured by the NMS. The secret keys for the encrypted connections
were preconfigured by the administrator. For the unencrypted connection two 100G
multiplexer cards were used. We evaluated three scenarios, of which two requested a
secure service and one needed an unencrypted connection. For the first two, the best
suited layer for the encryption was chosen automatically by the orchestrator based on
the required bandwidth.
Now a workflow for installing an ACI is given to explain the process in more detail.
The ACI presented in Fig. 5.7 is submitted through the NBI. It defines the requirements
of the application. This intent comprises three constraints: 1. The DomainConstraint
activates the creation of domain intents. 2. The EncryptionConstraint indicates that
the service needs to be encrypted. 3. The BandwidthConstraint specifies the required
bandwidth in bit/s. The endpoints are defined by one and two and the L2 addresses
belong to the two computers. This intent is handed over to a specialized compiler that
is able to handle ACIs. Since in the case of the testbed devices are controlled through
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{
"type": "AciIntent",
"appId": "org.onosproject.cli",
"priority": 100,
"constraints": [
{"type": "DomainConstraint"},
{"type": "EncryptionConstraint"},
{

"type": "BandwidthConstraint",
"bandwidth": 10000000

}
],
"one": "7E:1D:D7:77:7E:06/-1",
"two": "CA:B8:53:D4:2A:84/-1"

}

Figure 5.7.: Request for an encrypted service in a JSON representation that can be
submitted through the NBI.

a single entry point, i.e., the domain controller, the compiler needs to be able to create
domain intents. These intents are then installed through a protocol, e.g., REST, and
the corresponding driver, e.g., TAPI. Devices outside this domain, like the OVSs, are
still configured individually via OF.

5.3.5. Measurements of Secure Service Creation

Two layers of encryption, i.e., physical and MACsec, and an unencrypted WDM connec-
tion are evaluated. Due to the software based implementation relying on OVS and
therefore limited comparability, the previously presented IPsec is omitted [Szy+16].
More than 595 test runs are done for each of the three experiments. The resulting
graphs are presented in Fig. 5.8 and the findings are discussed next.
First the time between the submission and the end of the compilation process was
captured (see Fig. 5.8a). The goal is to evaluate if an additional delay is introduced by
adding the encryption processing to the pipeline. The measured times for the forwarding
and processing of all three intents are about the same. For the encrypted intents both
mean values are 11.7 ms and for the unencrypted connection the mean value is 12.1 ms.
This might be related to the slightly different implementation of the unencrypted branch.
The margin of error for all of them is below 0.14 ms for a confidence level of 95 %. The
compilation time itself was below 1 ms on average and is only responsible for less than
10 % of the processing time. As a result, we can state that the processing time remains
about the same independent of the encryption handling.
The second graph (Fig. 5.8b) shows the time it took the SBI to complete the installation
of the connection. There is a big difference when it comes to the installation time of
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Figure 5.8.: Measurements for the compilation, installation and deletion.

a connection. For the unencrypted case, the mean value is about 99.1 s. On the other
hand, the encrypted WDM connection only needs 28.4 s. The significant difference in
setup time is a result of the used technologies. While the unencrypted multiplexed
100G connection uses coherent detection, the encrypted 10G applies direct detection.
If both used the same technology, the results would be similar because the encryption
has no influence on the setup time. As expected, the MACsec setup, being based on an
Ethernet connection, needs the least amount of time (1.3 s) for setting up the connection
for a single hop. The purpose of this graph is to visualize the difference in establishing
a connection with growing capacity. Switching from Ethernet to optical increases the
delay by a factor greater than 20. Delays in setup might lead to a preference of another
technology option and should be considered when fulfilling applications’ intents.
The last graph (Fig. 5.8c) captures the time it takes to delete an existing connection
through the SBI. These values decide how long it takes before the resources are available
again. The teardown of a lightpath in the testbed takes 12.6 s for an unencrypted and
11.8 s for the encrypted connection. Here, the difference between a 100G and a 10G
connection is not very prominent. With 401 ms, MACsec is also the fastest when it
comes to the cleanup afterwards. The conclusion is similar to the installation: the time
for a deletion should be taken into account. This time, a factor of about 30 is introduced
by switching to optical, although the absolute difference is lower than before.
In conclusion, even though the optical setup — encrypted and unencrypted — takes
longer in the beginning, it is required for an efficient serving of higher bandwidths or to
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satisfy latency constraints. Even from an economical point of view, it can be better to
assign a dedicated lightpath instead of reusing higher layer transmission. MACsec has
some drawbacks on its own, like the encryption/decryption of every frame at each hop
along the path. While the optical transmission can be used for long distances without
intermediate processing, L2 technologies need multiple hops to reach endpoints that are
further apart and the reachability is limited to a L2 domain by default. Another result
is that the selection of an appropriate encryption should also consider the setup and
teardown times. For short-lived connections or demands that need to be fulfilled as soon
as possible, optical connections might be unfit or need to be preprovisioned.

Summary
The presented scenarios showcase the integration of SDONs into multilayer networks
and demonstrate their feasibility through proof-of-concept implementations. The data-
center automation shows the benefits of a flexible control of optical network resources
and multilayer operations by a data-center orchestrator, even though it also illustrates
the drawbacks of packet-switching protocols and controllers with regard to OCS. The
second scenario, representing an evolutionary step, uses an SDN controller that is able
to recognize the different layers. In addition, a protocol for transport networks allows a
more natural way of controlling the optical network. Both instances show how optical
networks can be part of a multilayer network and thereby enhance the efficiency of
control and augment the available options for applications. Still, there is more time
needed until the techniques from these proofs of concept find their way into production
networks.
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Conclusion
This thesis investigated the introduction of SDN and NV to optical networks with flexible
DWDM grids. The presented results and use cases pave the way toward a new era of
dynamic optical networking. In particular, the thesis has shown that currently available
models for the control of optical models lack a way of easily creating virtual topologies.
The proposed intent interface provides a solution for these requests, while existing models
can be leveraged for representing the physical and virtual topology inside of controllers.
For the creation of virtual topologies, a procedure is defined focusing on the mapping of
virtual links. A two-step process — first a (shortest) path calculation, then a spectrum
assignment — has been chosen for the mapping of virtual links. For the shortest path
computation, an algorithm utilizing precomputed data has been selected as a starting
point. The results conclude that the provided extensions, which enable the addition and
deletion of edges, work correctly and that the overhead is significantly smaller compared
to performing a new precomputation. Measurements for optical networks and a large-
scale computer network verify the algorithm’s feasibility and indicate its scalability.
The developed Optical Virtualization Controller (OVC) shows how SDN and NV can be
applied to optical networks and provides a migration strategy for legacy equipment at the
same time. The delay introduced by this mediation layer is identified to be very small,
especially compared to set-up times in optical networks. Simultaneously, the architecture
provides great flexibility in distribution and extensibility. Different deployment options
for the SBI have been explored and are found to provide benefits with regard to the
experienced delay and the transferred data for geographically distributed deployments.
This thesis has also documented and confirmed the feasibility of an embedding into a
multilayer environment by proofs of concept. A data-center integration showcased the
advantages of a combined control of all data-center resources. Secure service creation
demonstrated the control of multiple layers, including optical, through intents in the
larger context of application-centric networking.

Future Work
The definition of models for the control and management of optical networks is an
ongoing process. It will be important to keep track of updates and changes in the
models in order to reevaluate the classifications and ratings. This includes the presented
model for requesting virtual topologies, which should be thoroughly evaluated, possibly
revised and brought into standardization. An exploration in the direction of further
abstracting this interface to make it application-centric is desirable.
The implemented shortest path algorithm presents a starting point and an extension
toward k-shortest paths is the obvious next step. By doing so, the blocking probability
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for the resource assignment can be reduced. Also, an optimization and a potential
parallelization of the code are required in order to achieve better comparability with
existing algorithms and their implementations.
A large-scale evaluation of the OVC is another interesting field, which had to be omitted
because of missing access to bigger networks and the absence of a suited emulator. Such
an evaluation will also include other deployment options and migrations on a larger
scale.
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A. Code Generation from YANG Models

YANG facilitates the creation of models for configuration and state data (see Sec. 2.2).
For an efficient workflow based on these models, a tool chain for the code generation is
essential. Commonly used tool chains for YANG do not generate code with sufficient
details. For example, the tool chain provided with the TAPI uses two steps to generate
code. First, the YANG files are parsed by pyang, which is a YANG validator and
converter [Pya18], and converted to Swagger’s JSON format [Sma18]. Swagger is an
API framework for designing, testing and deploying interfaces. Second, the available
Swagger code generators for various programming languages are subsequently used to
create stubs based on the previously created JSON representation. These stubs can
then be filled with code and included in a server or client application. Unfortunately,
the representation used by Swagger is not as expressive as the YANG modeling language.
In this thesis, another approach was chosen. A plug-in for pyang was implemented
that is able to generate all the data structures and stubs required for client and server
applications. Directly extending a YANG converter has the benefit of having access to
all details of the modeling language. Therefore, no information is lost in translation and
all information can be used for the code generation process. Java was the first output
language because it was needed for the implementation of the OVC. Java beans are the
primary output for the data structures. In addition, code stubs for akka web interfaces
are created and only need to be attached to existing code. For this reason the plug-in
was named “alpakka”. It has been used and extended throughout this thesis and ADVA
will release it as an OSS soon.
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B. Virtual Topology API YANG model

This is the YANG definition of the developed intent interface for requesting virtual
topologies:

module virtual-topology-api {
yang-version 1;
namespace "http://www.advaoptical.com/virtop";
prefix "virtop";

organization "ADVA Optical Networking";
contact "Thomas Szyrkowiec (tszyrkowiec@advaoptical.com)";

description "Definition of an intent interface for requesting
virtual topologies.";↪→

revision 2017-02-16 {
description "Initial revision.";

}

/*******************
* Type Definitions *
*******************/

typedef endpoint-identifier {
type string;
description "Unique identifier for an endpoint, e.g. node,

module, port, interface.";↪→

}

typedef intent-identifier {
type string;
description "Unique identifier for an intent group.";

}

typedef topology-identifier {
type string;
description "Unique identifier for a (virtual) topology.";

}
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typedef bit-rate {
type uint64;
units "Mbit/s";
description "Data rate in Mbit/s.";

}

typedef disjoint {
type enumeration {

enum no;
enum link;
enum node;
enum partially;

}
description "Types of disjoint paths.";

}

/************
* Groupings *
************/

grouping intent-group {
leaf intent-id {

type intent-identifier;
description "Unique intent ID.";

}
leaf-list endpoints {

type endpoint-identifier;
min-elements 2;
description "The intents are applied to this set of

endpoints.";↪→

}
leaf dedicated-bandwidth {

type bit-rate;
description "Reserved (always available) bandwidth between

endpoints.";↪→

}
leaf flexible-bandwidth {

type bit-rate;
description "Shared (best-effort) bandwidth between

endpoints.";↪→

}
leaf minimum-paths {

type uint8;
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default 1;
description "The minimum number of parallel paths.";

}
leaf disjoint-paths {

type disjoint;
default no;
description "The type of disjointness for parallel paths.";

}
leaf protection {

type boolean;
default "false";
description "True if optical protection is required.";

}
leaf maximum-active-connections {

type uint8;
description "The maximum number of installed lightpaths at

the same time.";↪→

}
leaf satisfied {

config false;
type boolean;
description "Indicates if the intent is satisfied.";

}
description "An intent group describes the requirements for the

connectivity between a set of endpoints.";↪→

}

/*************
* Containers *
*************/

container topologies {
config true;
list installed-topologies {

key topology-id;
leaf topology-id {

type topology-identifier;
description "Unique topology ID.";

}
list intents {

key intent-id;
uses intent-group;
description "A list of intent groups that need to be

satisfied by the topology.";↪→
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}
description "A topology consists of an identifier and the

intents that need to be satisfied by it.";↪→

}
description "Starting point for the virtual topologies.";

}

container endpoints {
config false;
list assigned-endpoints {

key endpoint-id;
leaf endpoint-id {

type endpoint-identifier;
}
description "List of all assigned endpoints that can be used

for requesting virtual topologies.";↪→

}
description "Starting point for the state data about assigned

endpoints.";↪→

}
}
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C. Contribution to ONOS

Multiple extensions to ONOS have been developed throughout this thesis, especially in
the project ACINO. Some of them have been already contributed back to the community.
Others are just available in the project repository [ACI18] or are about to be submitted.
The most noteworthy contributions are the REST proxy, the domain intents, the TAPI
drivers and the extensions for encryption.

REST Proxy

One of the initial issues in ONOS was the missing concept of a mediator or domain
controller that controls parts of the network. The default approach in ONOS is to con-
figure devices individually. This method might be feasible in a network with switches
and routers but for optical networks and other domains managed by controllers, it leads
to increased complexity. One reason is for example the setup of lightpaths through a
network. Besides configuring analog parameters, like launch power, the process itself
needs a particular structure, e.g., equalization and hop-by-hop setup of lightpaths. Ad-
ditionally, a local controller might have a better knowledge about the domain because
of additional information or a view without abstractions. Therefore, a mediator or a so-
called proxy was introduced. This proxy is responsible for a set of devices, e.g., an optical
domain, and exposes all devices and links to the controller through one connection. Due
to available HTTP interfaces, a REST implementation was chosen. It followed the COP
description initially. This REST proxy was developed in ACINO and later contributed
to ONOS by a project partner.

TAPI Driver

Even though ONOS provides numerous protocols out of the box, they only cover the
common behavior in most cases. To apply a protocol based on a YANG description, it
is currently necessary to extend one of those protocols with the details of a particular
implementation. The TAPI version 1.1 [Ope18a] was implemented based on the output
of the code generator presented in App. A. The REST southbound protocol was used as
a starting point because it supports intermediate controllers (see previous section). The
TAPI is used for topology discovery, which includes nodes and links, as well as service
setups. Topologies are exposed by the underlying controller. The driver extracts and
exposes the individual elements and their adjacencies to ONOS. Most information is
directly mapped to available entities, some additional data is needed in order to be able
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to set up connections. This information is stored in the form of annotations, compliant
with ONOS’ architectural requirements.

Domain Intents
Domain intents are an important prerequisite for installing services in an optical domain.
They have been developed in the ACINO project in collaboration with other institutes,
contributed to ONOS [ONO18a] and merged in version 1.10.0 (Kingfisher). The main
idea behind these intents is to configure parts of the network that are under control of a
single controller and therefore, part of a domain. A domain intent specifies the ingress
and egress points and optionally contains information on a preferred path inside the
domain. It is assumed that the local controller is able to cover all steps for fulfilling the
incoming requests. Without an included path the domain controller is free to choose any
valid path for provisioning. In order to activate the domain processing, an NBI intent
has to use a DomainConstraint flag.

Extensions for Encryption
The task of introducing an intent-based secure service setup to ONOS, which automat-
ically assigns the best layer of encryption, includes many steps. The enhancements of
the existing ONOS-based ACINO orchestrator [San+16] affect in particular the NBI,
the intent processing and the SBI. Since these extensions have been presented in several
publications [Cha+17; Szy+16; Szy+18], only a short summary is given.
First, the Application Centric Intents (ACIs) have been extended so that encryption can
be requested via ONOS’ NBI and CLI. It is noteworthy that a DomainConstraint and an
EncryptionConstraint are part of a request for a secure service. The ACI compiler was
extended to support the processing of such intents. A restriction or selection of the layer
is considered a technological detail and therefore, not included in the intent. The best
layer for encryption is currently chosen based on the bandwidth. If the encryption flag is
missing, the (existing) unencrypted handling is applied. Devices and ports are annotated
with information about encryption capabilities. This way, the compiler can check if an
option satisfying all constraints is available. Otherwise, the intent fails and the user has
to decide how to proceed. After the compilation, the compiler communicates the need
for an encryption to the underlying network. The SBI implements new functionality to
discover encryption capabilities. It also propagates encryption requests to the underlying
hardware or mediation layer. TAPI’s label fields are used for the retrieval of information
about the encryption capabilities and the encryption layer of devices and ports.
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Acronyms

ABNO Application-Based Network Operations.

ACI Application Centric Intent.

AES Advanced Encryption Standard.

API Application Programming Interface.

APSP All-Pairs Shortest Paths.

BFS Breadth-First Search.

BGP Border Gateway Protocol.

BGP-LS BGP with Link-State.

BVT Bandwidth Variable Transponder.

CAPEX Capital Expenditure.

CD Colorless, Directionless.

CDC Colorless, Directionless, Contentionless.

CDPI Control Data Plane Interface.

CLI command-Line Interface.

COP Control Orchestration Protocol.

CP Connection Point.

CRUD Create, Read, Update and Delete.

CVNI Control Virtual Network Interface.

DH Diffie-Hellman.

DHCP Dynamic Host Configuration Protocol.

DWDM Dense Wavelength Division Multiplexing.

EDFA Erbium Doped Fiber Amplifier.
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Acronyms

EON Elastic Optical Network.

FEC Forward Error Correction.

GMPLS Generalized Multi-Protocol Label Switching.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

IEEE Institute of Electrical and Electronics Engineers.

IETF Internet Engineering Task Force.

ILP Integer Linear Programming.

IP Internet Protocol.

IPsec Internet Protocol Security.

ISP Internet Service Provider.

ITU International Telecommunication Union.

ITU-T ITU Telecommunication Standardization Sector.

JSON JavaScript Object Notation.

JVM Java Virtual Machine.

L1 Layer 1.

L2 Layer 2.

L3 Layer 3.

LiTP Link Termination Point.

LLDP Link Layer Discovery Protocol.

LMP Link Management Protocol.

LoTP Logical Termination Point.

LSDB Link-State Database.

LSP Label Switched Path.

MACsec Media Access Control Security.
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Acronyms

MIB Management Information Base.

MPLS Multiprotocol Label Switching.

NBI Northbound Interface.

NE Network Element.

NIC Network Interface Card.

NMS Network Management System.

NV Network Virtualization.

OADM Optical Add-Drop Multiplexer.

OCS Optical Circuit Switching.

ODU Optical Channel Data Unit.

OF OpenFlow.

OMS Optical Multiplex Section.

ONC Optical Network Controller.

ONF Open Networking Foundation.

ONOS Open Network Operating System.

OPEX Operating Expenditure.

OS Operating System.

OSC Optical Supervisory Channel.

OSI Open Systems Interconnection.

OSPF-TE Open Shortest Path First with Traffic Engineering.

OSS Open-Source Software.

OTN Optical Transport Network.

OTU Optical Channel Transport Unit.

OVC Optical Virtualization Controller.

OVS Open vSwitch.

OXC Optical Cross-Connect.
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Acronyms

PCE Path Computation Element.

PCEP Path Computation Element Protocol.

PIP Physical Infrastructure Provider.

PLL Pruned Landmark Labeling.

QAM Quadrature Amplitude Modulation.

QPSK Quadrature Phase-Shift Keying.

REST Representational State Transfer.

ROADM Reconfigurable Optical Add-Drop Multiplexer.

RPC Remote Procedure Call.

RSA Routing and Spectrum Assignment.

RSVP-TE Resource Reservation Protocol with Traffic Engineering.

RWA Routing and Wavelength Assignment.

S-BVT Sliceable BVT.

SBI Southbound Interface.

SDH Synchronous Digital Hierarchy.

SDN Software-Defined Networking.

SDON Software-Defined Optical Network.

SNMP Simple Network Management Protocol.

SONET Synchronous Optical Networking.

SP Service Provider.

SPT Shortest-Path Tree.

SRG Shared Risk Group.

SSSP Single-Source Shortest Paths.

T-SDN Transport SDN.

TAPI Transport API.

TCP Transmission Control Protocol.
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Acronyms

TE Traffic Engineering.

TED Traffic Engineering Database.

TET TE Topology.

TP Termination Point.

TTP Tunnel Termination Point.

UDP User Datagram Protocol.

UML Unified Modeling Language.

URL Uniform Resource Locator.

VLAN Virtual Local Area Network.

VM Virtual Machine.

VNE Virtual Network Embedding.

VNF Virtual Network Function.

VNP Virtual Network Provider.

VON Virtual Optical Network.

VPN Virtual Private Network.

WAN Wide Area Network.

WDM Wavelength Division Multiplexing.

WSON Wavelength Switched Optical Network.

WSS Wavelength Selective Switch.

XML Extensible Markup Language.
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