
TECHNISCHE UNIVERSITÄT MÜNCHEN
Fakultät für Elektrotechnik und Informationstechnik

Professur für Methoden der Signalverarbeitung

Criticality Labeling via Optimal Control and Machine Learning
in Automotive Active Safety

Dipl.-Ing. Univ. Stephan Herrmann

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzende: Prof. Dr.-Ing. Sandra Hirche
Prüfer der Dissertation:

1. Prof. Dr.-Ing. Wolfgang Utschick
2. Prof. Dr.-Ing. Matthias Althoff

Die Dissertation wurde am 23.04.2018 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 23.01.2019
angenommen.

Für meine Töchter Elisabeth und Charlotte.

iii

Danke.

Diese Dissertation ist im Rahmen meiner Arbeit als Kooperationsdoktorand der Ingol-
stadt Institute der Technischen Universität München (INI.TUM) am Fachgebiet für
Methoden der Signalverarbeitung im Auftrag der Audi AG entstanden.
Mein aufrichtiger Dank gilt meinem wissenschaftlichen Betreuer Professor Dr.-Ing.
Wolfgang Utschick. Durch Detailverliebtheit und viele kreative Anregungen hat er
maßgeblich zum Gelingen dieser Arbeit beigetragen und meine Art zu Denken nach-
haltig geprägt. Ich hatte bei der Audi AG mehrere kompetente Projektleiter, denen ich
danken möchte. Prof. Dr.-Ing. Michael Botsch und Dr. rer. nat. Frank Keck haben
das Thema der Doktorarbeit erdacht und die Durchführung im Rahmen von INI.TUM
ermöglicht. Dr. rer. nat. Frank Keck hat die Arbeit von Anfang bis Ende hervorragend
betreut. Prof. Dr.-Ing. Andreas Gaull und Dr.-Ing. Tobias Dirndorfer haben die
Ausrichtung der Arbeit durch ihre Anregungen und Diskussionen geschärft und mir
stets ermutigt, eigene Ideen durchzuziehen. Meine Kollegen am Fachgebiet Methoden
der Signalverarbeitung waren immer aufgeschlossen, kritisch und konstruktiv; eine
bessere Umgebung für eine wissenschaftliche Arbeit kann ich mir schwer vorstellen.
Ich danke Dr.-Ing. Christoph Hellings für viele hilfreiche Diskussionen zu Technik
und Stilistik. Besonders möchte ich Thomas Wiese erwähnen, der die Arbeit durch
einige wichtige Hinweise positiv beeinflusst hat. Ich bedanke mich bei den Kollegen
der betreuenden Abteilung Entwicklung PreCrash Funktionen unter der Leitung von
Quirin Sterner und der Abteilung Erprobung PreCrash Funktionen. Es herrschte
immer eine offene und intensive Atmosphäre und die Kollegen waren stets bereits,
Erkenntnisse aus der Vor- und Serienentwicklung zu diskutieren. Ich erinnere mich
gerne an viele Praxistipps und aufschlussreiche Diskussionen mit Christian Wendel,
Stefan Katzenbogen, Werner Niedermeier und Dr.-Ing. Patrick Gräbel.

Das Wichtigste für mich ist meine Familie. Ich danke meinen Eltern Marina und
Wolfgang Herrmann für ihre Liebe und bedingungslose Unterstützung. Besonders
danke ich meiner Frau Anne, die mir mit ihrem Humor, ihrer Liebe und Freude immer
wieder Energie gibt.

Stephan Herrmann, München, den 29. Oktober 2017

v

Zusammenfassung

Die Kritikalität ist ein zentrales Merkmal der Situationsinterpretation für Systeme
der aktiven Sicherheit und des autonomen Fahrens. Sie beschreibt die Gefahr der
aktuellen Fahrsituation und dient als Entscheidungskriterium für Sicherheitsfunkti-
onen, wie zum Beispiel Gefahrenwarnungen oder das automatische Notbremsen und
Ausweichen. Für die virtuelle Entwicklung von Situationsinterpretationsalgorithmen
werden Referenzlabels der Kritikalität benötigt. Diese Labels können als Vergleichs-
größen verwendet werden um die Performance von echtzeitfähigen Algorithmen
zu bewerten, sowie zum Trainieren von Algorithmen, die auf Machine Learning
basieren. Um eine Referenzkritikalität für Auffahrsituationen zu berechnen, wird
in dieser Arbeit ein Optimalsteuerungsproblem (OSP) für kombinierte Brems-Lenk-
Manöver formuliert und numerisch gelöst. Die Kritikalität der Fahrsituation ergibt
sich aus dem minimierten Maximalwert der Beschleunigung der Vermeidungstrajek-
torie. Die Problemformulierung berücksichtigt die Kollisionsvermeidung für bewegte
Hindernisse, sowie gekrümmte Spurbegrenzungen. Als Fahrdynamikmodell dient
ein nichtlineares Einspurmodell. Im zweiten Teil der Arbeit wird ein Verfahren
vorgestellt, in dem ein echtzeitfähiger Kritikalitätsschätzer auf Basis der Referenz-
werte trainiert wird. Hierzu wird das OSP für eine große Anzahl stochastisch erzeugter
Kollisionsszenarien gelöst, um deren Kritikalität zu bewerten. Diese Kritikalitäten,
zusammen mit den Parametern der Fahrsituation, dienen als Trainingsdatensatz für
die Regressionsanalyse mittels Random Forests. Die Prädiktionsgüte des Random
Forest wird durch Merkmalsselektion deutlich verbessert. Die Eigenschaften des
OSP und die Güte des Kritikalitätsschätzers werden in simulierten Kollisionsszena-
rien untersucht. Zur weiteren Validierung wird die Methodik auf Realdaten eines
aufgezeichneten Vermeidungsmanövers angewendet. Die Simulationen demonstrieren
die Eignung der numerischen Optimalsteuerung für die Erzeugung von Referenz-
trajektorien und -Kritikalitäten für Brems-Lenk-Manöver. Random Forest-Regression
erweist sich in den simulierten Szenarien als zuverlässige und rechenzeiteffiziente
Methode der Kritikalitätsschätzung. In allen Auswertungen werden die Limitationen
der Optimalsteuerungs- und Lernverfahren herausgearbeitet.

Abstract

Criticality is a key metric in situation interpretation algorithms for active safety
and self-driving systems. It describes the threat of the current driving situation
and serves as a decision criterion for safety functions, e.g., warning the driver and
automatic emergency braking and steering. Simulation studies for the development
and validation of situation interpretation algorithms require labels of the ground-truth
criticality of a driving situation. These labels can be used as a reference to quantify
and compare the performance of real-time algorithms and for the training of situation
interpretation algorithms based on machine learning. To find such a ground-truth
criticality for rear-end collision avoidance, we propose an optimal control problem
(OCP) formulation of criticality labeling for a prediction horizon of a few seconds.
We minimize the maximum-norm of the acceleration of the avoidance trajectory. The
OCP formulation considers lane-keeping constraints for clothoidal lanes, a nonlinear
single-track model for the host vehicle and anti-collision constraints. Next, we present
a labeling and learning approach to real-time criticality estimation. We numerically
solve the criticality OCP for stochastically generated critical driving scenes to obtain
a large labeled dataset. Using Random Forest regression with supervised feature
selection, we harness this dataset to find a set of features that best predict the criticality
of the driving scenes. The performance of the OCP labeling algorithm and the Random
Forest regression are evaluated on simulated collision scenarios and in a resimulation
of a driving experiment on a test track. Our experiments demonstrate that our OCP
formulation yields quality, interpretable criticality labels and evasion trajectories and
that Random Forest regression reliably predicts the criticality labels. We analyze
shortcomings and extensions of the labeling approach.

Contents

1 Introduction 1

1.1 Automotive Active Safety Systems 2

1.2 Ground-Truth Criticality Labeling using Optimal Control 6

1.3 Machine Learning for Real-Time Criticality Estimation 8

1.4 Publications and Supervised Theses 10

1.5 Notation . 11

2 Modeling of Collision Scenarios and Vehicle Dynamics 13

2.1 Coordinate Systems . 13

2.2 Collision Scene Model . 16

2.3 Nonlinear Single-Track Vehicle Model 18

2.4 Tire Models . 23

3 Numerical Optimal Control using Direct Shooting Methods 29

3.1 Direct Single Shooting . 30

3.2 Direct Multiple Shooting . 31

3.3 Primal-Dual Interior-Point Optimization 34

3.4 Alternative Numerical Methods for OCPs 37

4 Optimal Control Formulation of Ground-Truth Criticality 41

4.1 Lane Keeping Constraints . 44

4.2 Anti-Collision Constraints . 46

4.3 Input and State Constraints . 49

4.4 Initial and Final State Constraints 49

4.5 Optimal Control Problem Formulations 52

4.5.1 Infeasibility and Interpretability 56

4.5.2 Considered OCP Variants and Parameters 59

4.6 A Counterexample and some Extensions 60

ix

Contents

5 Numerical Criticality Labeling and Simulation Results 63
5.1 Multiple Shooting and Nonlinear Optimization Problem 63
5.2 Initial Guess for the Optimization Variables 65
5.3 Regularization, Scaling, and Multi-Start 69
5.4 Simulation Results and Comparison of OCP Formulations 71

6 Criticality Estimation via Supervised Machine Learning 79
6.1 Random Forest Regression . 81

6.1.1 Classification and Regression Trees 81
6.1.2 The Bias-Variance Trade-off for Random Forest Regression . 83
6.1.3 Bootstrap Aggregation and Random Feature Selection 85
6.1.4 Out-of-bag error estimates 87

6.2 Stochastic Scene Sampling . 87
6.2.1 Training and Validation Datasets 91

6.3 Feature Extraction . 93
6.4 Feature and Model Selection . 97

6.4.1 Greedy Forward Feature Selection 98

7 Validation of Criticality Labeling and Regression 103
7.1 Generalization Error . 103
7.2 Evaluation on Synthetic Collision Scenes 106
7.3 Resimulation of a Dynamic Avoidance Maneuver 107

7.3.1 Experimental Setup and Data Processing 107
7.3.2 Results of Resimulation . 110

8 Conclusion and Outlook 113

A Extraction of Scene Data 117
A.1 (d)GPS and the Local Tangent Plane 118
A.2 Obstacles and Lane Markings . 121

List of Symbols 125

List of Figures 129

List of Tables 131

Bibliography 133

x

Chapter 1

Introduction

The safety and comfort of modern series production cars have been improved signifi-
cantly through the introduction of so-called active safety systems (ASS). For example,
in the United States, Forward Collision Warning and Automatic Emergency Braking
systems have led to a reduction of police-reported front-to-rear crash rates by around
40 percent [1]. An ASS measures the environment of the host vehicle1 using sensors
like video and radar, analyzes the criticality of the situation, and prevents accidents,
e.g., by warning the driver or by braking automatically. Criticality is a measure of
the threat inherent in a driving situation. It is a vital component of any situation
interpretation algorithm for ASS and self-driving.

In this work, we propose a criticality labeling and learning approach where the
criticality of a driving scene is determined by computing optimal evasion trajectories.
First, we derive an optimal control problem (OCP) for computing physically-motivated
ground-truth labels of the criticality of collision avoidance maneuvers by braking
and steering. While we can elegantly encode the available expert knowledge about
collision avoidance in the OCP, it is not suitable for real-time application due to
the high computational complexity of numerically solving the OCP. To obtain a
computationally efficient criticality estimator, we generate a dataset of collision
scenarios and OCP criticality labels, which we exploit using supervised machine
learning techniques. We quantify and validate the performance of the criticality
estimator by comparing against the OCP labels on synthetic and real-world data. In
the following, we introduce the required terminology, prior art, and contributions.

1The host vehicle refers to the vehicle in which the active safety system is operating. It is also referred
to as the EGO vehicle.

1

Chapter 1. Introduction

1.1 Automotive Active Safety Systems

The goal of active safety systems (ASS) is to either completely prevent an imminent
collision or to reduce the collision impact. In contrast, passive safety systems, e.g.,
airbags and seat belts, decrease the risk of injury for passengers and traffic participants
after the time of impact of a collision. The main components of an ASS are the
environment perception, situation interpretation, and actuation.

Environment Perception Environment perception is the signal processing step that
creates a model of the environment from the raw sensor data of the exteroceptive
sensors. This environment model provides all information necessary for the situation
interpretation of the safety function. Core tasks in environment perception are object
detection and classification as well as the estimation and tracking of the kinematic
state of moving objects2.

A critical part of environment perception is the detection and classification of
static and moving obstacles. The detection of objects in visual images roughly consists
of two steps, feature extraction and classification. Typical methods to compute a
feature vector from image patches are, e.g., the histogram-of-oriented-gradients [2]
and the Scale-invariant feature transform [3]. The feature vectors are computed for a
large training set of images and object labels for training supervised machine learning
classifiers (e.g., Support-Vector Networks [4], AdaBoost [5]). The classifiers detect
whether an image or image patch contains an object and to which object class (e.g.,
pedestrian, car, tree) it belongs. An extensive survey and comparison of pedestrian
detection algorithms for monocular images is provided by [6], [7] and [8]. With radar
sensors, the disambiguation between object types relies on tracking and classifying
the kinematics of the object [9]. State-of-the-art object recognition relies on Deep
Learning [10] where large neural networks take the raw image pixel data as input
vectors to detect the presence of objects. The Deep Learning approach does not
explicitly separate between the feature extraction and classification steps. Instead,
feature extraction is part of the neural network layers and is therefore adapted to the
available data during the training phase of the deep network.

The detection and tracking of lane markings has enabled driver assistance systems
like Lane-Departure-Warning and Lane Keeping [11]. In [12], two multi-focal cameras
towards the front and rear of the test vehicle were used to track lane markings modeled
as segments of clothoids (a type of spiral). This vision system was central for the
first prototypical demonstration of autonomous driving, VaMoRs-P [13], on a German
Autobahn. For the detection and tracking of 2D lane markings using mono video and

2The distinction of the discrete steps detection, classification, and tracking in this overview merely
serves as a guide and can blur significantly in complex real-world systems.

2

1.1. Automotive Active Safety Systems

particle filters, see [14, 15]. In [16], an extension to a 3D representation of the lane is
presented that takes the height profile of the lane into account.

Another significant part of environment perception is the estimation and tracking
of the state of the environment. Adaptive cruise control systems, as well as some
pre-crash collision avoidance systems, rely on millimeter-wave radar [17, 18] to
detect and track other vehicles. The distance of a reflection point is determined using
frequency-modulated continuous waveforms, where the change in frequency between
the transmitted and received signal allows to compute the time-of-flight of the wave.
For moving obstacles, the Doppler shift of the frequency is also part of the total
frequency shift between transmitted and received signal and is used to measure the
relative velocity of the EGO vehicle and the obstacle. Multiple frequency sweeps can
be used to determine the distance and speed of the obstacle at the same time [18].

State-of-the-art ASS use sensor fusion of radar, video, and lidar (light detection
and ranging) data. The tracking and fusion of objects, as well as the estimation of
different types of occupancy maps, are treated in depth in [19] and [20]. Occupancy
maps provide information about which parts of the environment can be traversed
without collision. For vision-based environment perception, [21] surveys the literature
on pedestrian detection comparing preprocessing, segmentation, and tracking. A
survey of vision-based vehicle detection, tracking, and behavior analysis can be found
in [9]. While radar and camera-based systems currently dominate the commercial
market for driver assistance and safety systems, lidar technology is widely used in
research-grade autonomous driving [22], and first series production cars with lidar are
announced for 2017 and 2018, e.g., the 2017 Audi A8. Lidar measurements are often
fused with camera images to aid with object classification, see, e.g. [23].

Situation Interpretation and Criticality Measures The task of analyzing the available
information about the EGO vehicle and the environment, to detect imminent collision
threats, and to trigger suitable counter-measures is commonly referred to as situation
interpretation (SI). The SI requires information about the current state of the EGO
vehicle and the environment perception, e.g., other dynamic and static objects, lane
markings, and occupancy grids. Based on these inputs, SI algorithms predict the future
trajectory of the host vehicle and obstacles in the environment with a prediction horizon
of a few seconds. More advanced ASS, as well as autonomous driving functions, also
compute evasion trajectories that keep the EGO vehicle on a collision-free path. The
prediction of the driving scenario is the basis for estimating the threat or criticality
of the driving scenario. The criticality is a key metric for choosing an appropriate
safety intervention. A higher value of the criticality should correspond to a higher
threat inherent to the driving situation which in turn requires a more severe safety
intervention from a warning to emergency braking.

A significant challenge of criticality estimation is that the criticality is not an

3

Chapter 1. Introduction

objective, measurable quantity. Thus, there exists a multitude of definitions of critical-
ity and diverse algorithmic approaches to its computation3. We briefly survey three
common, physics-based criticality metrics, i.e.,

• time-to-X measures, which indicate the time left to a critical event,

• the probability of collision,

• and the intensity of avoidance maneuvers.

For further reading on criticality measures and their computation, we recommend the
dissertation [26, Ch. 5.3] and the more recent survey paper [27].

Time reserves measure the time left until a relevant event happens if the driving
scenario continues as predicted. In adaptive cruise control systems, a typical time
reserve is the headway time, which is the time until the host vehicle has traversed the
distance to the vehicle in the front [28]. While the headway time is a useful measure
of the potential of traffic conflicts, it is not suitable for detecting imminent collision
threats. Imminent collision threats are better detected by the so-called time-to-collision
[29]. Another version of time reserves are the time-to-react measures [30], [31]. It
measures the time that is left before the collision becomes unavoidable by braking,
steering, or a combination thereof.

The probability of collision is a criticality measure that takes into account the
uncertainty of the prediction of the traffic scenario. To this end, a priori-assumptions
are made about the probability distributions of the state estimate of the host vehicle
and the environment and the future actions of the traffic participants. For simple
kinematic models, Gaussian probability distributions, and neglecting road boundaries,
the probability density functions of the traffic participants can be propagated forward
in time in closed form [32]. A more common and flexible approach is the Monte Carlo
sampling of future trajectories as used, e.g., in [33], [34], [35]. There, random samples
are generated from the probability distributions of the state estimates and future
actions. For each sample, the trajectories of the host vehicle and the environment are
simulated and checked for collisions; the collision probability is the fraction of samples
that result in a collision. The Monte Carlo method allows incorporating nonlinear
vehicle dynamics as well as road boundaries, albeit at an increased computational cost
proportional to the number of simulated trajectory samples. Probabilistic reachability
analysis has been used in [36], [37] to compute collision probabilities of trajectory
plans. This method computes so-called reachable sets for future time instants by
over-approximating the set of states and the possible actions of the host and obstacle

3The subjectivity of the criticality of a driving scene can be taken into account by a driver model,
e.g., for lowering activation thresholds in case of driver inactivity. Driver modeling is an emerging field
spanning driver attention estimation, position- and pose estimation, intent recognition, and more [24],
[25].

4

1.1. Automotive Active Safety Systems

vehicles. The probability density of the state and future actions is incorporated such
that the reachable sets correspond to an enclosing hull of the density distributions.

A third approach to criticality estimation is to compute the intensity of avoidance
maneuvers. The avoidance intensity quantifies the minimum control intervention that
is necessary to avoid a collision. In [38, 39, 40] the lateral and longitudinal avoidance
accelerations are computed, and the criticality is given by the ratio of avoidance
acceleration to the maximum possible acceleration. The maximum acceleration
depends on the friction coefficient as well as on the steering or braking system of the
host vehicle. An alternative intensity measure is the jerk, i.e., the rate of change of
the acceleration as used, e.g., in [41, 42]. The avoidance intensity approach requires
assumptions about the future behavior of the obstacle vehicle. Compared to the
probability of collision criticality metric, we can compute the avoidance intensity
without specifying probability distributions for the state and action of host and obstacle
vehicle.

Actuators for Active Safety Depending on the state of the host vehicle, the driver
behavior, and the criticality estimate, an Active Safety System can trigger different
actors to warn the driver of the impending collision or to mitigate the collision
automatically. In the case of an impending collision, the warning of the driver by
haptic feedback of the steering wheel or by sound can allow them to avoid the collision
on their own. Pre-filling the brakes reduces the dead time, and the reversible tightening
of the seat belts can reduce the injury risk in case of a crash. The risk of secondary
collisions can be reduced by flashing the tail lights or warning flasher. If the criticality
is very high, i.e., the collision is almost inevitable, Automatic Emergency Braking
(AEB, see, e.g., [39]) automatically triggers the brakes. Slowly, systems for automatic
steering interventions are coming to market.

While this work concentrates on braking and steering, there are many more actua-
tors that can help avoid a collision or mitigate its severity. The entire Human-Machine-
Interface between the host vehicle and the driver can and should be considered a
safety-critical actuator. This is highlighted by the hand-over-phase in conditional
autonomous driving (SAE Level 3, see, [43]). Conditional automation will allow
the driver to concentrate on tasks other than driving or monitoring the road, e.g.,
watching a video, surfing the internet, or turning towards other passengers. In case of
a disengagement of a level 3 system, the driver still has to take control of the vehicle
within a time interval in the range of ten to 30 seconds (for now, there is no industry
standard for this time interval). If the driver does not take over control of the car
immediately, the entire car interior could be engaged to get the driver to retake control,
e.g., by dynamic interior lighting, sound, moving the steering wheel or using seat
position actuators.

5

Chapter 1. Introduction

1.2 Ground-Truth Criticality Labeling using Optimal Control

In the first chapters of this thesis, we develop a Numerical Optimal Control formulation
for labeling the ground-truth criticality of rear-end collision scenarios. Optimal
control theory offers an appealing framework for criticality labeling as it allows
including a model of vehicle dynamics in terms of a differential equation constraint
and facilitates an elegant and convenient modeling of additional constraints in the
problem formulation, e.g., lane keeping and collision avoidance. The criticality
labels are defined as the minimized maximum-norm of the vehicle dynamics during a
prediction horizon of a few seconds, allowing a straightforward interpretability of the
labels in terms of the physics of the collision avoidance problem.

When we say that a label is the ground-truth, we mean that it uses the most detailed
models possible for the available budget of computational resources and engineering
effort. Specifically, a reference algorithm or simulation is not constrained by having
to run in real-time in an electronic control unit (ECU) in a vehicle, which is often the
focus in the literature on situation interpretation algorithms.

Outline In Chapter 2, we define the coordinate systems used for modeling clothoidal
lane segments and introduce the nonlinear single-track vehicle model for the host
vehicle as well as its tire models. We also define the model of the driving scenario
which comprises the state of the host vehicle and obstacle, the road geometry, and
simple assumptions for the prediction of the movement of the obstacle. Chapter 3
reviews the basics of numerical optimal control using the direct multiple shooting
[44] (DMS) method. DMS is a state-of-the-art approach to the numerical solution
of optimal control problems (OCP) that proceeds in two steps: first, the OCP is
transformed to a finite dimensional optimization problem by solving the differential
equations on time-intervals with constant control inputs. Then, the optimization
problem is solved using numerical optimization solvers. In Chapter 4, we formulate
the optimal control problem for the criticality labeling of rear-end collision avoidance
maneuvers with braking and steering using the scenario model defined in Chapter
2. To this end, we derive the constraint formulations for lane keeping, collision
avoidance, as well as the initial and final state constraints. We propose a novel
formulation for lane keeping that allows to model curvilinear roads by incorporating
the parameterization of the road boundaries as control variables in the optimization
problem. We formulate the collision avoidance constraint in terms of finding a
separating hyperplane between convex polytopes. While separating hyperplanes have
been used in the robotics literature to detect collisions, see, e.g., an early application
in [45], to the best knowledge of the author, this work presents the first application of
the separating hyperplane as an optimization variable in an optimal control collision
avoidance problem. This general formulation allows modeling moving obstacles

6

1.2. Ground-Truth Criticality Labeling using Optimal Control

with convex shapes. The design of the cost function and constraints allows a trade-
off between the interpretability and feasibility of the optimal control problem (ref.,
Chapter 4.5.1). Chapter 5 details the concrete application of the DMS method to the
problem of criticality labeling. It includes the finite-dimensional approximation of
the OCP, the initial guess for all optimization variables, and the regularization of the
cost function. We also compare the effect of the choice of the cost-function and tire
models on the interpretability of the criticality labels and the ability to find a feasible
solution to the OCP approximation using example scenarios.

Related Work and Use Cases Optimal control has been used for collision avoidance
algorithms in several previous works, e.g., [46], [47], [48], [49], [50]. While being
methodologically comparable, we contribute a problem formulation that is more
general regarding the lane and obstacle model and that yields labels that are more
interpretable. We refer to these works throughout the appropriate sections of Chapter 4.

Reference datasets with ground-truth labels can be used in multiple contexts.
First, they enable quantifying the performance of real-time capable algorithms when
confronted with the driving scenarios in the dataset. Comparing the ground-truth
criticality to the behavior of the algorithm under test allows computing a performance
score. In [51], naturalistic driving data recorded from 15 drivers is partitioned into
threatening and safe situations based on thresholds on signals like braking level and
time-to-impact. These labels are then used to score and compare the performance
of a variety of collision warning and avoidance algorithms. The authors of [52]
propose a benchmark for motion planning algorithms that consists of driving scenarios,
score functions, and vehicle models. Such benchmarks could eventually serve the
active safety and autonomous driving communities for transparently comparing and
improving algorithms. This would compare to the way that labeled image datasets like
MNIST [53] (recognition of handwritten digits) or ImageNet [54] (object recognition)
have fostered competition and improvement in the area of image recognition.

Second, such performance scores can be optimized to find parameterizations of
real-time capable algorithms, see, e.g., [30, 55]. In [30], stochastic simulations are
used for finding proper activation thresholds for a collision mitigation algorithm,
considering the uncertainty of the behavior prediction of an obstacle. The performance
of a parameterization is measured in terms of the gained reaction time and decreased
collision velocities, as well as false alarms for stochastically generated collision scenes.
In a similar vein, the authors of [55] formulate the problem of finding activation
thresholds for a collision warning system as maximizing the trade-off between false-
positive and false negative activations in simulation data.

The third use case for driving datasets with ground-truth criticality labels is the
training of machine learning algorithms for situation interpretation. This is the use
case we concentrate on in the later chapters of this work.

7

Chapter 1. Introduction

Offline

Training
Scenes Feature

Generation

Optimal Control
Labeling Random Forest

Regression

Criticality Estimate

Collision
Scene

Feature
Generation

Ch. 6.2

Ch. 4, Ch. 5

Ch. 6.1

Ch. 6.3

Ch. 7.3

Figure 1.1: Overview of supervised learning and prediction of criticality

1.3 Machine Learning for Real-Time Criticality Estimation

In the second part of this thesis, the goal is to train a criticality estimator using
supervised machine learning that closely matches the optimal control-based criticality
labels. The criticality estimator profits from the model detail devoted to the optimal
control model while being computationally efficient, which allows it to be used in
real-time applications, e.g., on an electronic control unit.

Outline Figure 1.1 outlines the main components of the supervised training of the
criticality estimator. We train a Random Forest (RF) [56] for regression on a dataset
of driving scenes and associated criticality labels. This training is done offline, i.e.,
before the trained RF is used to predict the criticality of new driving scenes.

For the generation of a large set of rear-end collision scenes, we propose a stochas-
tic model of the state of the host vehicle and the obstacle as well as the lane geometry,
see Chapter 6.2. This model allows us to simulate critical driving scenarios with
realistic lane geometries and dynamics. We label the criticality of the generated
driving scenes by solving the collision avoidance optimal control problem as detailed
in Chapters 4 and 5.

Chapter 6.1 recapitulates the theoretical basis of Random Forests and their applica-
tion to nonlinear regression. Apart from their empirically good performance, Random
Forests have multiple desirable properties that make them a suitable choice for the
criticality regression, e.g., their robustness to parameter settings and fast training time.
When many candidate features are available, Random Forests provide a very natural
way of ranking the importance of those features and performing feature selection.

The performance of the criticality estimator can be improved significantly by
generating and selecting informative features from the driving scenario as detailed in
Chapters 6.3 and 6.4. These features, e.g., avoidance accelerations or time-to-collision,
are nonlinear transformations of the quantities that define the scenario. To decide

8

1.3. Machine Learning for Real-Time Criticality Estimation

which features to use for training and prediction, we use supervised feature selection.
We quantify the performance of the criticality prediction techniques in Chapter 7

in terms of the generalization error, i.e., the prediction error of the estimator on driving
scenes that were not part of the training dataset. While this approach to quantifying
the quality of estimators is typical in the supervised learning community, it is far
less frequent in the area of situation interpretation for vehicle safety and illustrates
the usefulness of automatic ground-truth criticality labeling which enables this type
of performance analysis. We validate the real-world applicability of the proposed
methods using a resimulation of a collision avoidance maneuver on a test track. We
demonstrate that the scene model can be derived from series production sensors and
that the labeling and prediction techniques produce reliable and intuitive results. On
the other hand, we identify current shortcomings of the approach which become visible
in our experiments.

Related Work and Use Cases Machine learning has been used for the prediction of
crash severity of vehicle-to-vehicle or vehicle-to-structure crashes. In this application,
the motivation is to obtain a prediction model for the crash severity that is real-time
capable, in contrast to finite element model simulations which are time and cost
intensive. In [57], a dataset consisting of time-series of chassis acceleration sensors
from front-crash experiments was analyzed to derive reliable features for the robust
activation of airbags. The reference labels, in that case, are the correct airbag activation
times before an unbelted passenger moves forward by a maximum distance. Using
logistic regression, the authors of [58] predict the Abbreviated Injury Scale (AIS,
a measure of occupant injury), from crash geometry, seat belt status, and occupant
posture. In [59], the mechanical impact of a crash with other vehicles and crash
barriers is predicted using Decision Trees, Support Vector Machines, and Neural
Networks. Both papers use finite element simulations of the vehicle chassis to create
the underlying dataset of crash constellations and crash severity measures, with [58]
also incorporating a finite element model of the occupant. In [60], the reliability
of crash severity estimation during the pre-crash phase is predicted using Random
Forest Regression using a dataset generated by traffic simulations and analytical crash
models. There, the machine learning model provides a measure of uncertainty of the
crash severity prediction which can be used for the activation of occupant restraint
actuators.

In the area of collision avoidance, machine learning methods have been employed
for subtasks of, e.g., trajectory planning [61], feedback control [62], and the predic-
tion of occupancy grids [63]. The authors of [64] use machine learning to improve
the sampling efficiency of a trajectory planner based a Rapidly Exploring Random
Tree (RRT, [61]). This reduced sampling complexity is achieved by biasing the
trajectory sampling strategy towards promising regions of the state space using a

9

Chapter 1. Introduction

Deep Convolutional Neural Network (ConvNet). In [63], Deep Neural Networks and
Random Forests are combined to predict occupancy grids, i.e., the probability that
points around the vehicle will be occupied by an obstacle at a future time. These
occupancy grids can be used, e.g., to check if predicted or planned trajectories are
collision-free. Neural Networks have also been applied to synthesize feedback con-
trollers for collision avoidance, e.g., [62]. There, the neural network is used to learn a
mapping from the state space of the vehicle, the environment, and oncoming traffic to
steering and deceleration controls. The training set of optimal avoidance trajectories
is derived from the solution of a so-called differential game, where it is assumed that
the oncoming vehicle has the objective of colliding with the host vehicle, which leads
to worst-case optimal controls.

More recently [65], Deep Neural Networks are applied to self-driving by learning
a mapping from raw video data to control inputs from large corpora of recordings of
human driving. Proponents of this end-to-end learning approach posit that the task of
self-driving is too complex to be modeled as a control task in a state space and should
be inferred from raw data instead. Thus, compared to the feedback control in [62], the
end-to-end approach skips the state-space representation of the host vehicle and the
environment entirely.

Another possible use case for machine learning is data mining, i.e., the analysis
of large amounts of recorded driving data for interesting segments. In the context of
data mining, the runtime of the data analysis task is proportional to the computational
complexity of situation interpretation (SI) algorithm. Supervised learning could
be used to replace a computationally demanding algorithm with a fast prediction
algorithm comparable to the criticality prediction method proposed in this work.

Note that deploying a machine learning based algorithm in a safety-critical func-
tion is very challenging from the perspective of functional safety requirements and
testing methodology [66]. A possible solution was proposed in [67] in the form of a
complementary use of statistical and analytical algorithms: the statistical algorithm
would be responsible for maximizing the field performance of the safety function by
minimizing false-positive and false-negative activations. Meanwhile, a physics-based
model serves as a validation path for suppressing spurious behavior of the machine
learning algorithm.

1.4 Publications and Supervised Theses

We have published parts of this thesis as peer-reviewed conference papers.

• In [68], we give an overview of criticality labeling by optimal control in combi-
nation with Random Forest classification. Contrary to this thesis, the criticality
labels are discretized in that work into few criticality classes.

10

1.5. Notation

• In [69], we compare alternative criticality cost functions regarding their inter-
pretability and of the feasibility of solving the OCP. That publication is the basis
of Section 4.5.1.

The author commends Michael Knödlseder for his Bachelor’s thesis [70], which treats
regression with monotonicity constraints as a way to incorporate a priori-knowledge4

about the predicted variable, increasing the reliability and generalization of criticality
estimators based on machine learning.

1.5 Notation

Vectors and Matrices are written in bold face with vectors as lower case and matrices
as upper-case letters, [a]i denotes the i-th scalar element of a vector a and [A]i,j is
the element in the i-th row and j-th column of a matrix A. The all-ones vector is
written as 1, all-zero vectors and matrices are written as 0, and the identity matrix
is denoted by I. We write the Euclidean norm of a vector as ‖ • ‖ and •T denotes
transposition. Rounding up is written as d•e, rounding down is b•c. Sets other than the
real numbers R and natural numbers N are typeset in calligraphic upper-case letters,
e.g., A. The cardinality of a set is written as | • |. A probability density function is
written as pX(X = x) and abbreviated as pX(x). The support of a probability density
function is noted as supp(•). For a discrete random variable X with realization x
the probability mass function is written as P(x). The expected value and variance
of a random variable are noted as E[•] and Var(•). In formulations of optimization
problems subject to constraints, we abbreviate subject to as s.t..

4For example, criticality is always increasing with the closing velocity between the obstacle and the
EGO vehicle - at least in rear-end collision scenarios.

11

Chapter 2

Modeling of Collision Scenarios and
Vehicle Dynamics

In the following, we define a model for the prediction and criticality estimation
of rear-end collision scenes that includes a curvilinear road representation and a
nonlinear single-track vehicle model. We also introduce the scene tuple as the minimal
description of the collision scene.

2.1 Coordinate Systems

Clothoids, also referred to as Euler spirals, play an important role for the construction
of road segments since their shape leads to a linear increase in the lateral acceleration
of a vehicle that drives with constant velocity along the clothoid [71, 72]. This is due
to the curvature of the clothoid (i.e., the inverse turning radius) increasing linearly
with the arc length l, i.e.,

c(l) = lκ, (2.1)

where κ is the constant rate of change of the curvature. Clothoids have previously
been used for tracking and predicting the movement of other vehicles [73], for 3D
lane modeling [74, 16], and trajectory planning [75].

In Figure 2.1, we depict a Cartesian coordinate system which has its origin at
l = 0. The unit vectors are given by the tangent and normal vectors of the clothoid
at the origin. For a given rate of change of the curvature, κ, the clothoid path is a

13

Chapter 2. Modeling of Collision Scenarios and Vehicle Dynamics

κ < 0

κ > 0

l ≥ 0l < 0

Ir(l)l = 0

Ip

Ix

Iy

I F

In(l)
It(l)

Cy

Cx

Figure 2.1: Two clothoid segments with positive (blue) and negative (blue, dashed)
rates of change of the curvature κ, inertial coordinate system I, the Frenet frame F, and
curvilinear coordinates C of a point Ip

function of the arc length l, and is defined by the so-called Fresnel integrals,

Ir(l) =

[∫ l
0 cos

(
κ
2 ξ

2
)
dξ∫ l

0 sin
(
κ
2 ξ

2
)
dξ

]
. (2.2)

Since there is no closed form solution for these integrals, in practice, the terms are
approximated by a truncated Taylor expansion around l = 0 [72]. Consider the
depiction of the two clothoids in Figure 2.1. The clothoid which extends to the first
and third quadrants (top-right and bottom-left) has a positive rate of change of the
curvature κ, while the clothoid in the second and fourth quadrants (top-left and bottom-
right) has a negative rate of change of the curvature of −κ. The clothoid angle Iτ ,
between the unit vector in the x-direction and the tangent vector at the arc length l, is
a function of the arc length and rate of change of the curvature, i.e.,

Iτ(l) = 0.5l2κ. (2.3)

Note that we use the convention that the arc length variable is positive for the clothoid
paths in the first and fourth quadrant. We posit that the host vehicle always drives in
the direction of an increasing arc length of the lane. Consequently, the four quadrants
correspond to a tightening left turn in the first quadrant, a widening left turn in the
second quadrant, as well as widening and tightening right turns in the third and fourth
quadrants.

14

2.1. Coordinate Systems

Curvilinear coordinates Since we represent lane segments using clothoids, it is
convenient to give the coordinates of a point in R2 in the curvilinear coordinate system
(CS) of the clothoid, which we denote by the superscript C. In this CS, Cx is the arc
length along the clothoid, and Cy is the orthogonal complement. Such an aligned CS
has previously been used in [73] to express the dynamics of a vehicle that performs
lane keeping.

Given a point Ip ∈ R2 in the inertial CS (see Figure 2.1), we can compute its
coordinates in the curvilinear CS of the clothoid. To this end, we must find a point
Ir(l) on the clothoidal path that has the minimal Euclidean distance to Ip, i.e.,

Cx = arg min
l

∥∥Ip− Ir(l)
∥∥2

2 . (2.4)

There are many local optima for the distance of the clothoid path to any point in R2.
Therefore, this optimization is not convex and thus any local solution might not be
the global optimum. We alleviate this problem by restricting the tangent angle to the
interval [−0.5π, 0.5π], which is equivalent to a restriction of the absolute value of
the arc length. This restriction is not overly conservative concerning realistic lane
segments, where the tangent angle of the clothoid typically is smaller than 90 degrees
[76, Ch.4.3]. We can now compute the arc length coordinate by solving

Cx = arg min
l

∥∥Ip− Ir(l)
∥∥2

2 , s.t. l ∈
[
−
√

π

|κ|
,

√
π

|κ|

]
, (2.5)

where the bounds for the optimization variable result from solving (2.3) for angles
±0.5π. This optimization problem can be solved using standard optimization routines.

To obtain the offset coordinate Cy, we must project the vector complement from
the clothoid path to Ip onto the normal vector at the arc length Cx, i.e.,

Cy = InT (τ)
(Ip− Ir(Cx)

)
, InT (τ) = [cos(τ) sin(τ)], (2.6)

where τ is the tangent angle of the curve evaluated at l = Cx, cf. Equation (2.3).
The inverse transformation from the aligned CS (Cx, Cy) to the inertial CS is[

Ix
Iy

]
= Ir(Cx) + Cy In

(Cx
)
. (2.7)

The Frenet frame For the expression of lane keeping constraints in Chapter 4.1, we
need a local Cartesian coordinate system (CS), in addition to the curvilinear CS defined
above. The tangent and normal vectors of a smooth curve form a local orthonormal
basis called the Frenet frame [77, Ch. 2.4]. Denoted by the superscript F, we depict
this CS in Figure 2.1. The origin is the point of the curve at arc length l, Ir(l), whereas

15

Chapter 2. Modeling of Collision Scenarios and Vehicle Dynamics

Iy Ix

Bl

Br

Cxobs

vobs, aobs

Figure 2.2: Geometry and states of the scenario model: host vehicle (gray), obstacle
(red), and restricted area (dashed)

the basis vectors are given by the Frenet equations, i.e.,

It(l) =
Ir′(l)
‖Ir′(l)‖

, Ir′(l) =
d Ir(l)

dl

In(l) =
It′(l)∥∥It′(l)

∥∥ . (2.8)

The normal vector is perpendicular to the tangential vector, i.e.,

In(l) =

[
0 −1
1 0

]
It(l). (2.9)

We can write the Frenet frame of a clothoid as a function of the clothoids tangent
angle Iτ(l), i.e.,

In(l) =

[
cos(Iτ(l))

sin(Iτ(l))

]
, It(l) =

[
− sin(Iτ(l))

cos(Iτ(l))

]
. (2.10)

2.2 Collision Scene Model

We define a collision scene, illustrated in Figure 2.2, as the entirety of

• state vectors s(t) and sobs(t) describing, respectively, the state of the host vehicle
and the obstacle at the time t,

• the lane geometry, given by a curvilinear path r(l) with arc length l and lane
widths Br, Bl that represents the lane boundaries that constrain the movement
of the host vehicle.

The state vector s of the host vehicle is given by the states of the nonlinear single-track
model as defined in Chapter 2.3. For the definition of the obstacle state vector, we
make the simplifying assumption that it follows the lane with a constant longitudinal
acceleration. The obstacle state vector writes as

Csobs =
[

Cxobs
Cyobs vobs aobs

]T
, (2.11)

16

2.2. Collision Scene Model

where the Cxobs,
Cyobs are the curvilinear coordinates defined in Section 2.1, vobs is

the scalar velocity of the obstacle along the lane center, and aobs is its acceleration.
For a compact description of the collision scene, we collect these values in a scene

tuple S, which provides unique and sufficient information for the criticality labeling
and prediction techniques described throughout this work:

S = (s, sobs, c0, κ, Bl, Br) , (2.12)

where sobs is given in (2.11), Bl, Br are the lane widths to the left and right of the lane
center, c0 is the initial curvature of the clothoid, and κ is the curvature change rate.

Obstacle prediction and restricted area For computing trajectories that avoid a rear-
end collision, we further have to define a restricted area, i.e., an area Bobs ⊂ R2 that
must not overlap with the host vehicle body. For simplicity, we assume that the host
vehicle body must not enter the entire lane occupied by the obstacle. In Figure 2.2,
this area is marked by the shaded red texture. We approximate the restricted area as a
polytope, as detailed in Chapter 4.

We predict the restricted area of the obstacle vehicle with a prediction horizon of
about two seconds using a simple prediction model. To this end, we assume that the
obstacle vehicle stays on a trajectory that is parallel to the lane center (c.f., [78]) and
to retain a constant longitudinal acceleration, i.e.,

˙yobs(t) = 0, ˙aobs(t) = 0. (2.13)

We must also consider that vehicle or bicycle cannot immediately go backward after
coming to a halt. If the obstacle decelerates, it comes to a halt at the stopping time

t̄ = −vobs,0

aobs,0
, (2.14)

where vobs,0, aobs,0 are the initial obstacle velocity and acceleration. Consequently,
the longitudinal position of the rear end of the obstacle over time is given by

Cxobs(t) =

{
Cxobs,0 + tvobs,0 + 0.5t2aobs,0, if t ≤ t̄

Cxobs(t̄) if t > t̄
. (2.15)

This rather simple description of the dynamics of the obstacle which is due to the
inability - at least in the absence of reliable and fast car-to-car communication - to
directly measure the dynamic states of an obstacle using environment sensors like
radar, lidar, and video. For longer prediction horizons of more than a few seconds,
the assumption of a constant lane following by the obstacle would not be adequate.
Instead, a set of maneuver hypotheses would have to be evaluated, e.g., the lane change
maneuver by the obstacle.

17

Chapter 2. Modeling of Collision Scenarios and Vehicle Dynamics

2.3 Nonlinear Single-Track Vehicle Model

We use a nonlinear single-track model to represent the dynamics of the host vehi-
cle during a collision avoidance maneuver. This model is based on the following
simplifications [79, Ch. 10], [80, Ch. 10],

• the vehicle geometry is projected onto the two-dimensional plane,

• the front and rear tire pairs are represented by, respectively, a single tire along
the longitudinal axis of the vehicle,

• the vehicle mass is a point-mass at the center-of-gravity (COG),

• roll and pitch dynamics are neglected.

The state variables represented by the model as depicted in Figure 2.3 are

• the Cartesian coordinates x, y of the center-of-gravity,

• the norm v of the velocity of the COG,

• the body slip angle β between the longitudinal axis of the vehicle and the
velocity vector of the COG,

• the yaw angle ψ of the longitudinal axis of the vehicle geometry,

• the yaw rate ω,

• the sum of the tangential tire forces Ft = Ft,f + Ft,r along the roll direction of
the tires,

• the steering angle δ.

These states define the state vector of the host vehicle in a road-fixed inertial coordinate
system I, i.e.,

s =
[

Ix Iy v β Iψ ω δ Ft

]T
. (2.16)

The vehicle is controlled by the rates of change of the total tangential tire Ft force and
steering angle. Thus, the control vector is

u = [u1, u2], u1 = Ḟt, u2 = δ̇. (2.17)

Using these state and control variables, we can take into account the body slip dy-
namics of the host vehicle during braking and steering maneuvers. We consider
limitations on the speed of steering and braking by constraining the rates of change
and magnitudes of the tire force and steering angle.

18

2.3. Nonlinear Single-Track Vehicle Model

Ix

Iy
Iψ

Iex,V

Iey,V a

alon

alat v
β

COG

v
vf
lfω

αf

δ

Ft,f
Fs,f

Fs,r

Ft,r

v

vr

lrω

αr

Figure 2.3: Nonlinear single-track vehicle model

Figure 2.3 illustrates the geometry and forces necessary to derive an ordinary
differential equation (ODE) of the vehicle dynamics. The coordinates Ix, Iy give the
position of the COG of the host vehicle in a road-attached coordinate system I. We
also define a coordinate system V that is located at the COG, with one unit vector Iex,V
pointing along the longitudinal axis towards the front of the vehicle. Perpendicular to
Iex,V , the second unit vector, Iey,V, points from the COG to the left of the host vehicle.
The yaw-angle Iψ is the angle of Iex,V in the road-fixed CS.

During turning maneuvers, the longitudinal axis Iex,V of the vehicle is not aligned
with the velocity vector of the COG, Iv. The angle from Iex,V to Iv is called the body
slip angle β, while the angle of the velocity vector is the heading angle,

Iθ = Iψ + β. (2.18)

Denoting the absolute velocity over ground as v, we can now write the velocity vector
of the COG as

Iv =

[
v cos

(Iψ + β
)

v sin
(Iψ + β

)] . (2.19)

Longitudinal and lateral acceleration The dynamics of the host vehicle are deter-
mined by the longitudinal and lateral acceleration of the COG as well as the angular
acceleration ω̇. Neglecting air drag, we only have to consider the tire forces to compute
the COG acceleration. In the following, the front and rear tires will be indexed by
f, r. Additionally, forces in the direction of rotation of the wheel have an index t while
side forces perpendicular to the turning direction of the wheel are indexed by s. To
compute the acceleration of the COG, we use Newton’s second law of motion, i.e.,

m Va = VFf + VFr, (2.20)

19

Chapter 2. Modeling of Collision Scenarios and Vehicle Dynamics

where m is the mass of the vehicle and VFf,
VFr are the tire force vectors expressed in

the vehicle coordinate system1. The front tire is rotated by the steering angle δ relative
to the longitudinal vehicle axis, which is expressed by applying a rotation matrix Rδ

to the front tire force vector, i.e.,

VFf = Rδ

[
Ft,f

Fs,f

]
=

[
cos(δ) − sin(δ)

sin(δ) cos(δ)

][
Ft,f

Fs,f

]
. (2.21)

The rear tire is aligned with the longitudinal vehicle axis, so the tire forces write as

VFr =

[
Ft,r

Fs,r

]
. (2.22)

By substituting the tire forces VFf and VFr into (2.20), we obtain the acceleration
vector of the COG as

Va =
1
m

(VFr + VFf
)

=
1
m

[
Ft,r + cos(δ)Ft,f − sin(δ)Fs,f

Fs,r + sin(δ)Ft,f + cos(δ)Fs,f

]
. (2.23)

Next, we need to determine the acceleration component alon in the direction of
the velocity vector v and the lateral acceleration alat that is perpendicular to v. These
accelerations are needed to compute the rate of change of the absolute velocity v̇ = alon

and the yaw rate ω. To compute alon and alat, we need to project the acceleration
vector Va onto the velocity vector. The velocity vector of the COG is rotated by the
body slip angle β with respect to the longitudinal axis of the vehicle, i.e.,

Vv = v

[
cos(β)

sin(β)

]
. (2.24)

The longitudinal and lateral accelerations can now be computed by projecting onto
the direction of Vv, i.e.,

alon =
1
v

VvT Va

=
1
m

[cos(β) (Ft,r + cos(δ)Ft,f − sin(δ)Fs,f)

+ sin(β) (Fs,r + sin(δ)Ft,f + cos(δ)Fs,f)]

=
1
m

[Ft,r cos(β) + Fs,r sin(β)

+ Ft,f(sin(β) sin(δ) + cos(β) cos(δ))

+ Fs,f(sin(β) cos(δ)− cos(β) sin(δ))] (2.25)

1 The coordinate system (CS) V is an inertial CS with the origin at the vehicle COG and units vectors
according to Figure 2.3. Since the CS is attached to the road, the acceleration vector does not vanish.

20

2.3. Nonlinear Single-Track Vehicle Model

and by the orthogonal complement

alat = (R0.5π
1
v

Vv)T Va =

([
0 −1
1 0

][
cos(β)

sin(β)

])T

Va

=
1
m

[− sin(β) (Ft,r + cos(δ)Ft,f − sin(δ)Fs,f)

+ cos(β) (Fs,r + sin(δ)Ft,f + cos(δ)Fs,f)]

=
1
m

[− sin(β)Ft,r + Fs,r cos(β)

+ Ft,f(− sin(β) cos(δ) + cos(β) sin(δ))

+ Fs,f(sin(β) sin(δ) + cos(β) cos(δ))] . (2.26)

Using angle sum identities2, these expressions can be simplified to

alon =
1
m

[Ft,r cos(β) + Fs,r sin(β) + Ft,f cos(β − δ) + Fs,f sin(β − δ)] ,

alat =
1
m

[Fs,r cos(β)− Ft,r sin(β)− Ft,f sin(β − δ) + Fs,f cos(β − δ)] . (2.27)

Assuming that the vehicle does not drive backward, i.e., v > 0 ∀t, we write the rate of
change of the velocity over ground as

v̇ = alon. (2.28)

Given the lateral acceleration alat and the velocity over ground, we can compute the
yaw rate of the vehicle. Since alat is equal to the centripetal acceleration of the COG,
we can relate it to the rate of change of the heading angle, i.e.,

alat = vθ̇ = v(ω + β̇). (2.29)

We can now write the rate of change of the body slip angle as

β̇ =
alat

v
− ω. (2.30)

At this point, we have derived the differential equations for the position, the velocity,
and the body slip angle.

Angular Acceleration The angular momentum of the vehicle around its center-of-
gravity is related to the yaw rate ω by

L = Iω = I
[
0 0 ω

]T
, (2.31)

2sin(β) sin(δ) + cos(β) cos(δ) = cos(β − δ), sin(β) cos(δ)− cos(β) sin(δ) = sin(β − δ) [81]

21

Chapter 2. Modeling of Collision Scenarios and Vehicle Dynamics

where I is the so-called moment of inertia. The rate of change of the angular momen-
tum is proportional to the sum of torques qf, qr ∈ R3 ∈, i.e.,

L̇ = Iω̇ = qf + qr. (2.32)

Let V′ denote the three-dimensional inertial coordinate system of the vehicle defined
by the basis ex,V , ey,V, and ez,V = ex,V × ey,V (ref., Figure 2.3). Then, the torques
acting on the COG write as

qf = V′rf × V′Ff, qr = V′rr × V′Fr, (2.33)

where × is the cross-product and V′rf,
V′rr denote the positions where the forces act

on the vehicle body, relative to the COG. Denoting the distances of the wheel centers
from the COG as lf and lr, the wheel positions in the vehicle CS are given by

V′rf =
[
lf 0 0

]T
, V′rr =

[
−lr 0 0

]T
. (2.34)

The resulting torques are

qf =

lf0
0

×
cos(δ)Ft,f − sin(δ)Fs,f

sin(δ)Ft,f + cos(δ)Fs,f

0

 =

 0
0

lf sin(δ)Ft,f + lf cos(δ)Fs,f

 , (2.35)

qr =

−lr0
0

×
Ft,r

Fs,r

0

 =

 0
0

−lrFs,r

 . (2.36)

By inserting the torques of the front and rear tires into (2.32), we can compute the
yaw acceleration, i.e.,

Iω̇ = I

0
0
ω̇

 =

 0
0

lf sin(δ)Ft,f + lf cos(δ)Fs,f

+

 0
0

−lrFs,r

 ,
ω̇ =

1
I

(lf sin(δ)Ft,f + lf cos(δ)Fs,f − lrFs,r) . (2.37)

The derived dynamic equations all depend on the contact forces between the front
and rear tire of the single-track model. As in [48], we assume that the total tangential
tire force Ft, introduced at the beginning of this chapter, is distributed proportionally
to the front and rear wheel, i.e.,

Ft,f = kbFt, Ft,r = (1− kb)Ft, (2.38)

with the proportional braking factor kb given as a model parameter. The tire side
forces Fs,f, Fs,r depend on the choice of a tire model, which is detailed in Section 2.4.

22

2.4. Tire Models

Differential equations By collecting (2.17), (2.19), (2.19), (2.30), (2.37), we are
now able to give an ordinary differential equation for the trajectory of the nonlinear
single-track model,

Iẋ
Iẏ

v̇

β̇

ψ̇

ω̇

Ḟt

δ̇


=



v cos
(Iψ + β

)
v sin

(Iψ + β
)

alon

alat/v − ω
ω

1
I (Fs,f cos(δ)lf + Ft,f sin(δ)lf − Fs,rlr)

u1

u2


. (2.39)

In the remainder, this ODE is abbreviated as

ṡ = f(s, u). (2.40)

This nonlinear single-track model has previously been used in [46, 49, 48] in the
context of optimal control. There, the control input is the steering angle and tangential
tire force instead of their derivatives. It would be worthwhile to use a two-track model
that considers roll and pitch dynamics for the simulations due to its even better fidelity
(c.f., [79, Ch. 10] and [80]). Most importantly, the roll and pitch dynamics influence
the distribution of forces among the tires of the vehicle and thus change the control
variables necessary for performing a particular evasion trajectory. Taking roll and
pitch into account would require a larger number of dynamic states that would have to
be simulated and optimized, as well as more model parameters.

2.4 Tire Models

We consider linear and nonlinear tire models for the tire side forces Fs,f, Fs,r as well
as the coupling of side and tangential forces. The tire models are illustrated in Figure
2.4 and explained in the following.

Side slip angle All tire models depend on the so-called side slip angle of the tire.
The side slip angle is defined as the angle between the roll direction of the tire and the
velocity vector of the tire over ground as illustrated in Figure 2.3. The velocity of the
tire has a rotation component due to the yaw rate of the vehicle as well as a translatory
component due to the velocity over ground of the COG, i.e.,

Vvf = Vv + Vvrot,f
Vvr = Vv + Vvrot,r (2.41)

23

Chapter 2. Modeling of Collision Scenarios and Vehicle Dynamics

By inspection, the rotational components are given by

Vvrot,f =
[
0 lfω

]T
, Vvrot,r =

[
0 −lrω

]T
, (2.42)

whereas the translatory component is the COG velocity in the vehicle CS which is
common to the front and rear tires, i.e.,

Vv =
[
v cos(β) v sin(β)

]T
. (2.43)

The tire velocities become

Vvf =

[
v cos(β)

v sin(β) + lfω

]
, Vvr =

[
v cos(β)

v sin(β)− lrω

]
. (2.44)

To obtain the tire slip angle α, we need to compute the angle of the tire velocity
vectors, i.e.,

V∠vf = arctan

(
v sin(β) + lfω

v cos(β)

)
,

V∠vf = arctan

(
v sin(β)− lrω
v cos(β)

)
, (2.45)

where ∠v maps the vector v to its polar angle. The tire slip angles are given by the
differences of the steering angles of the front and rear tire and the tire velocity angles,
i.e.,

αf = δ − arctan

(
lfω + v sin(β)

v cos(β)

)
,

αr = 0− arctan

(
v sin(β)− lrω
v cos(β)

)
= arctan

(
lrω − v sin(β)

v cos(β)

)
. (2.46)

Linear Model and Magic Tire Formula The simplest model for the tire side force is
a linear function of the tire side slip angle, i.e.,

Fs,f = kfαf, Fs,r = krαr, (2.47)

where the proportionality constants kf, kr are referred to as the cornering stiffnesses
of the tires. For simplicity, we use the same cornering stiffness for the front and rear
tires, kf = kr = k.

Compared to more complex tire models, an essential deficiency of the linear tire
model is that it does not limit the magnitude of the tire forces. For real tires, the side
forces are limited by the fact that the tire starts to slide on the road surface as the side
slip angle α increases, depending on the tire and load.

24

2.4. Tire Models

−14−12−10 −8 −6 −4 −2 2 4 6 8 10 12 14

−10

−5

5

10

1
kf

αf[
◦]

Fs,f[kN]linear tire model, ref. (2.47)
force coupling, ref. (2.52),
Ft,f ∈ {0, 0.25, . . . , 1} · Fz,f

Figure 2.4: Linear and nonlinear models for the tire side force Fs,f for varying
tangential tire forces Ft,f. Vertical tire force Fz,f = lr

lf+lr
mg. Cornering stiffness for

the linear model kf = 2BCD. Parameters are given in Tables 2.1 and 4.2.

The so-called magic tire formula [82] is an empirical model (as opposed to a
physics-based model) designed to fit the side forces measured under various experi-
mental conditions. The general shape of the magic tire formula is depicted in Figure
2.4. It models the saturation of the side force as a function of the side slip angle and is
given by

Fs(α) = D sin (C arctan(BΦ)) , (2.48)

Φ = (1− E)α+

(
E

B

)
arctan(Bα).

Due to its simplicity and its low computational cost, it is widely used in the active
safety domain.

The cornering stiffness of the tire kf,r corresponds to the derivative of the side force
around α = 0 and is given by [82] as k′f,r = BCD. Since we use a single-track model,
each tire represents the two tires of the front or rear axle of the vehicle, respectively.
Thus, it has twice the vertical load and exerts twice the side force as a front or rear tire
in a model with four wheels. For the cornering stiffness in the linear tire model, we
account for this observation by doubling the cornering stiffness, i.e.,

kf,r = 2BCD. (2.49)

The tire parameters used throughout this work are listed in Table 2.1 and are
derived from [82, Tbl. 1]. These parameters depend on the vertical tire forces

25

Chapter 2. Modeling of Collision Scenarios and Vehicle Dynamics

Table 2.1: Parameters used for the magic tire formula (2.48)

parameter symbol value unit

stiffness factor B 0.239 1/◦

shape factor C 1.19 1

peak factor D 3750 N

curvature factor E -0.678 1

Fz,f, Fz,r and, thus, are affected by load transfer between the front and rear axles.
Choosing constant tire parameters can therefore only be considered an approximation
of the tire behavior during evasion maneuvers.

Force Ellipse Next, we consider the limitation of the norm of the tire force vector
due to the limited tire-to-surface friction [82, 83]. To this end, we adopt the force
coupling model used in [48]. The norm of the tire force vector is limited by√

F 2
s + F 2

t ≤ µFz, (2.50)

where µ is the friction coefficient between the tire and the road surface and Fz is the
vertical tire force. Typical limits for the friction coefficient µ are up to 0.8 to 0.9 for
dry asphalt and in the range of 0.5 to 0.7 for wet asphalt [84, Tbl. 1]. To satisfy this
inequality, the tangential tire force has to be constrained to

−µFz ≤ Ft ≤ µFz. (2.51)

The tire side force satisfying the force ellipse constraint can now be computed as [48],

Fs(α, Ft,f) = fs

√
1−

(
Ft

µFz

)2

, (2.52)

where fs is the uncoupled side force. It is a modified version of the magic formula
where the peak parameter D of the magic formula (2.48) is replaced by the friction
coefficient and vertical load, i.e.,

fs(α) = µFz sin (C arctan(BΦ)) , (2.53)

Φ = (1− E)α+

(
E

B

)
arctan(Bα).

26

2.4. Tire Models

We can check that the norm of the force vector never exceeds µFz , i.e.,

F 2
s + F 2

t = f2
s (α)

(
1−

(
Ft

µFz

)2
)

+ F 2
t

≤ (µFz)
2

(
1−

(
Ft

µFz

)2
)

+ F 2
t ,

F 2
s + F 2

t ≤ (µFz)
2 − F 2

t + F 2
t = (µFz)

2. (2.54)

It remains to compute the load on the front and rear tire of the single-track model, i.e.,

Fz,f = mg
lr

lf + lr
, Fz,r = mg

lf
lf + lr

, (2.55)

where m is the lumped mass at the center of gravity of the vehicle. Figure 2.4 depicts
the coupled tire model of the front tire of the single-track model for varying tangential
tire forces and side slip angles.

Estimation of the Friction Coefficient For active safety systems and autonomous
driving, the friction coefficient of the surface in front of the vehicle must be estimated
and predicted. Model-based parameter estimation techniques like the Kalman filter
are prominent approaches for the estimation of the friction coefficient [85, 86]. Other
approaches include the use of near-infrared spectroscopy [87] and the analysis of the
tire acoustics [88]. In [89], the recognition of luminance patterns of a front-facing
mono video camera is combined with analyzing peaks of the acoustic spectrum of
the tire for varying vehicle speeds and road surface characteristics like dry, wet, and
snowy. The reader is referred to [90] and [91] for a survey of tire modeling and online
parameter estimation.

27

Chapter 3

Numerical Optimal Control using
Direct Shooting Methods

This chapter introduces direct shooting methods for numerical optimal control with
a focus on Direct Multiple Shooting [44] as used for the computation of criticality
labels throughout this work. A general form of the continuous time optimal control

T

s(0)

rend(s(T))

s(t)

u(t)

path constraints gpath(s(t),u(t)) ≤ 0 ∀t

t

Figure 3.1: Illustration of an optimal control problem [92]

29

Chapter 3. Numerical Optimal Control using Direct Shooting Methods

problem writes as [92],

max
s,u,T

∫ T

0
L(s(t),u(t))dt+ E(s(T)), s.t.

s(0)− s0 = 0,

ṡ(t)− f(s(t),u(t)) = 0, ∀t ∈ [0, T],

gpath(s(t),u(t)) ≤ 0, ∀t ∈ [0, T],

rend(s(T)) = 0, (3.1)

which comprises a fixed initial value s0, the ordinary differential equation (ODE)
constraint ṡ(t) = f(s(t), u(t) as well as path and endpoint constraints encoded by the
functions gpath(s(t),u(t)) and rend(s(T)), respectively. The shorthand s.t. stands for
subject to. Figure 3.1 provides an illustration of this OCP adapted from [92].

In this formulation, the length of the time horizon T is a free optimization variable
in the OCP. Such variable horizon problems have many applications throughout
robotics and are used, e.g., in [50] for finding minimal time evasion maneuvers for
active safety systems. In the following, as throughout this work, we consider the case
of a fixed horizon length.

Direct shooting methods are one way of numerically solving optimal control
problems by discretizing the prediction horizon into subintervals and integrating the
ODE constraint. The discretization yields a nonlinear optimization problem that is
then solved using nonlinear optimization solvers. We assume that the time interval is
divided into N subintervals of equal length such that

tn = n∆t, ∆t =
T

N
, n = 0, . . . , N. (3.2)

In direct methods of numerical optimal control, the control inputs u(t) are param-
eterized using piecewise constant functions on subintervals of the time interval,

u(t) =
N−1∑
n=0

u[n] Ind[tn,tn+1)(t), Ind[tn,tn+1)(t) =

{
1 if t ∈ [tn, tn+1)

0 otherwise,
(3.3)

where Ind[tn,tn+1)(t) is the indicator function on the subinterval [tn, tn+1) and u[n]

are the control parameters1 .

3.1 Direct Single Shooting

In direct single shooting, the optimal control problem is solved by expressing the state
over the entire time interval [0, T] as the solution of an initial value problem (IVP)

1 The piecewise constant model can represent smoother control functions on each subinterval by
introducing additional state variables.

30

3.2. Direct Multiple Shooting

T

s0

F(t; s0,U)

u[0] u[N − 1]

path constraints gpath(F(tn; s0,U),u(tn)) ≤ 0 ∀n

t

r(F(T ; s0,U))

Figure 3.2: Illustration of direct single shooting [92]

starting with the initial state s0, i.e.,

ŝ(t; U) = F(t; s0,U),∀t ∈ [0, T], U = u[0], . . . ,u[N − 1]. (3.4)

The function F(t; s0,U) represents numerical integration with the initial value s0. The
single shooting method leads to the finite dimensional optimization problem illustrated
in Figure 3.2 and written as [92]

min
U=u[0],...,u[N−1]

∫ T

0
L(ŝ(t; U),u(t; U))dt+ E(ŝ(T ; U)), s.t.

gpath(ŝ(tn; U),u(tn; U)) ≤ 0, i = 1, . . . , N − 1,

rend(ŝ(T ; U)) = 0. (3.5)

In this problem formulation, the path constraints are enforced at the beginning of
each subinterval at the discrete times t = tn. This leads to a coupling over the entire
time interval between the initial state s0, path constraints at times tn, and the control
variables u[m], m ≤ n. Consequently, the resulting optimization problem often turns
out to be highly nonlinear and unstable [92].

3.2 Direct Multiple Shooting

In comparison to the single-shooting formulation, the multiple shooting formulation
[44] also optimizes the state variables s[0], . . . , s[N], thus introducing a larger number
of optimization variables and constraints. Instead of solving a single initial-value
problem as in the single-shooting formulation, the ODE is solved on each subinterval
starting at the states s[n] which leads to a set of N − 1 initial value problems, i.e.,

ṡ(t) = f(s(t),u[n]), s(tn) = s[n], ∀n = 0, . . . , N − 1. (3.6)

31

Chapter 3. Numerical Optimal Control using Direct Shooting Methods

T

s0 s[n]
F(t; s[n],u[n])

s[N]

u[n] u[N − 1]

path constraints gpath(s[n],u[n]) ≤ 0 ∀n

t

r(s[N])

s[0]

Figure 3.3: Illustration of direct multiple shooting [92]

The decoupling of the state trajectory into shooting intervals alleviates the high
nonlinearity of the single-shooting formulation [92].

As illustrated in Figure 3.3, the IVPs are solved using numerical integration on
each subinterval,

ŝn(t) = F(t; s[n],u[n]),∀t ∈ [tn, tn+1], ∀n = 0, . . . , N − 1, (3.7)

where F(•) represents a suitable numerical integration method. To still obtain a
continuous solution of the differential equations, a set of continuity or shooting
constraints are introduced which enforce that the solution of the state integration at
the end of each subinterval [tn, tn+1) matches the state variable s[n+ 1] of the next
subinterval,

s[n+ 1]− F(s[n],u[n]) = 0, ∀n = 0, . . . , N − 1. (3.8)

By comparison to (3.4), we can see that direct multiple shooting solves many IVPs
with a short integration interval compared to single shooting, where the ODE is
integrated over the entire time horizon.

The necessary complexity of the integration routine depends primarily on what
is referred to as the stiffness of the ODE f(s,u). A stiff ODE designates an ODE
whose matrix ∂ f(s,u)

∂s is poorly conditioned [93, Ch. 12.1]. When solving optimal
control problems, this instability can lead to slow convergence or a complete lack of
convergence. The fact that the multiple shooting method integrates the ODE over
many small subintervals [tn, tn+1] instead of a one long integration interval [0, T]

alleviates the problem of the numerical integration of stiff ODEs.
The cost function of the OCP is written as the sum of the costs on each time

interval, which the cost contribution of the n-th interval written as

ln(s[n],u[n]) =

∫ tn+1

tn

L(s[n],u[n])dt. (3.9)

32

3.2. Direct Multiple Shooting

The nonlinear optimization problem resulting from the multiple shooting discretization
reads as,

min
s[n],n=0,...,N

u[n],n=0,...,N−1

N−1∑
0

ln(s[n],u[n]) + E(s[N]) s.t.

s[0]− s0 = 0,

s[n+ 1]− F(tn+1; s[n],u[n]) = 0, n = 0, . . . , N − 1,

gpath(s[n],u[n]) ≤ 0, n = 0, . . . , N − 1,

rend(s[N]) = 0. (3.10)

Compared to single shooting, the multiple shooting formulation introduces a lot
of additional variables in the form of the state parameters s[n] and additional shooting
constraints. However, the nonlinearity of the optimization problem and the coupling
between the optimization variables is significantly reduced compared to the single
shooting formulation. This is due to the short integration intervals of the IVPs and the
fact that the shooting constraints only have to be fulfilled once the optimization has
converged. Additionally, using the states as optimization variables has the advantage
that knowledge about the state trajectory s(t) can be used as an initial guess for
iterative solvers.

An important algorithmic component for the solution of large NLP is the use
of automatic differentiation for obtaining the gradient and Hessian matrices of the
Lagrangian of the NLP. We use the CasADI [94] library which provides automatic
differentiation coupled with a Python interface for the programmatic formulation of
optimal control problems.

Another property of multiple shooting that reduces its computational complexity
is the fact that the resulting optimization problem is highly sparse. This can be seen
by analyzing the Lagrangian of (3.10), i.e.,

L(s,u, λ, z) =
N−1∑
n=0

ln(s[n],u[n]) + E(s[N]) + λT
start(s[0]− s0) + λT

end(rend(s[N]))

+
N−1∑
n=0

zT
ngpath(s[n],u[n]) +

N−1∑
n=0

λT
n (s[n+ 1]− F(tn+1; s[n],u[n])).

(3.11)

Collecting the primal optimization variables as

wn =

[
s[n]

u[n]

]
∀n = 0, . . . , N − 1, wN = s[N],

w =
[
wT

0 . . . wT
N

]T
, (3.12)

33

Chapter 3. Numerical Optimal Control using Direct Shooting Methods

the Lagrangian of the multiple-shooting problem can be written as the sum of terms
that only depend on the subsets wn of w, i.e.,

L(w, λ, z) =
N∑
n=0

Ln(wn, λ, z). (3.13)

From here it is easy to deduce the block-diagonal structure of the Hessian matrix
∇2

wL(w, λ, z) of the Lagrangian [92], i.e.,

∇wnL(w, λ, z) = ∇wnLn(wn, λ, z)

∇wm∇wnL(w, λ, z) = 0 ∀m 6= n. (3.14)

Like the Hessian of the Lagrangian, the Jacobian of the equality constraints has a
block-sparse structure.

To achieve a high computational efficiency, a sparsity-exploiting optimization
solver must be used for finding solutions to the multiple shooting formulation. We use
the sparse optimization solver IPOPT [95] which implements a primal-dual interior-
point method as described in the following. Other popular solvers in this context are
based on sparse sequential quadratic programming, e.g., SNOPT [96] and MUSCOD-
II [97].

3.3 Primal-Dual Interior-Point Optimization

Interior-point methods are an attractive choice for solving inequality constrained
nonlinear optimization problems if there is a large number of inequality constraints as
it is often the case for nonlinear optimal control problems. Following the expositions
in [95] and [98, Ch. 11], we introduce the algorithmic basis of the primal-dual
interior-point (PDIP) algorithm for solving nonlinear optimization problems of the
type

min
w∈Rm

f(w) s.t. b(w) = 0, w ≥ 0, (3.15)

where we assume that the cost function f and equality function b are twice continuously
differentiable. Problems with general nonlinear inequality constraints c(w) ≥ 0 can
be rewritten in this form by introducing slack variables [95].

The Karush-Kuhn-Tucker (KKT) optimality conditions express necessary condi-
tions that have to be fulfilled by optimizers w of (3.15) [98]. The Lagrangian function
of (3.15) is given by

L(w, λ, z) = f(w)− λT b(w)− zTw, (3.16)

34

3.3. Primal-Dual Interior-Point Optimization

whereas the KKT conditions write as

∇wL(w, λ, z) = ∇w f(w)−∇wλ
T b(w)− z = 0, Stationarity

diag(z)w = 0, Complementary Slackness

w ≥ 0, b(w) = 0, Primal Feasibility

z ≥ 0. Dual Feasibility (3.17)

For a large number of optimization variables and inequality constraints, a direct
solution of the KKT conditions is typically impractical.

The barrier method Before treating the primal-dual interior-point method, it is
instructive to consider the barrier approximation to (3.15). Barrier methods solve
this nonlinear optimization problem by solving a sequence of equality constrained
problems where the inequality constraints are included in the cost function, i.e.,

min
w

f(w)− µ
m∑
i=1

ln(wi) s.t. b(w) = 0. (3.18)

The logarithm term of the cost function assigns a rapidly increasing cost to optimiza-
tion variables that get close to the boundary of the feasible set. The optimal value of
the barrier problem (3.18) is an upper bound to the optimal value of (3.15) [98]. For
convex problems, it is shown in [98] that the optimizer w∗µ of (3.18) is suboptimal
by mµ. Since the log-barrier cost function is not defined outside of the feasible set,
barrier methods must be initialized with a strictly feasible initial point w0.

Each barrier problem with barrier parameter µ is solved, e.g., using Newton
iterations. Starting with an initial value for the barrier parameter µ and a strictly
feasible initial point, the barrier method proceeds as summarized in Algorithm 1. For
each iteration step, the associated log-barrier problem is solved using Newtons method
and the obtained optimizers w∗µ are used as the initial values for the subsequent barrier
problem. Each successive barrier problem reduces the barrier parameter by a factor
0 < ν < 1. The resulting sequence of optimizers w∗µ is commonly referred to as the
central path and - for convex problems - converges to the optimal value of the original
optimization problem.

Modified KKT conditions of the primal-dual interior-point method The PDIP algo-
rithm implemented in IPOPT [95] is a variant of the interior-point method that solves
a modified version of the Karush-Kuhn-Tucker (KKT) optimality conditions of the
original problem (3.15). Compared to the log-barrier method, notable advantages of
the PDIP algorithm are a better than linear convergence speed [98] and the ability
to converge from poor starting points that are not strictly feasible without solving a
feasibility problem [95].

35

Chapter 3. Numerical Optimal Control using Direct Shooting Methods

Algorithm 1 Barrier method adapted from [98, Ch. 11.3]

Require: strictly feasible w > 0, barrier parameter µ, sub-optimality ε, update factor
ν ∈ (0, 1)

while mµ ≥ ε do
Centering Step: compute w∗µ by solving (3.18) with Newtons steps using the
initial point w
Update: w← w∗µ
Decrease µ: µ← νµ

end while

To derive the modified KKT conditions, we compare the stationarity condition of
the original problem (3.17) to the stationarity condition of the barrier problem (3.18).
For the barrier method, the stationarity condition reads as

0 = ∇wLµ(w, λ) = ∇w f(w)− µ∇w

m∑
i=1

ln(wi)−∇wλ
T b(w) (3.19)

= ∇w f(w)− µ
m∑
i=1

1
wi
−∇wλ

T b(w). (3.20)

By coefficient comparison to (3.17), we note that this corresponds to a particular
choice of the dual variables zi in the original stationarity condition (3.17), i.e.,

zi = µ
1
wi
, i = 1, . . . ,m (3.21)

⇔ ziwi = µ, i = 1, . . . ,m. (3.22)

Letting the barrier parameter go to zero µ→ 0, we can see that this is a modified com-
plementary slackness condition that converges to the exact complementary slackness
condition in (3.17). Therefore, we can interpret the barrier method as a solution of
modified KKT conditions [95], i.e.,

∇wL(w, λ, z) = ∇w f(w)−∇wλ
T b(w)− z = 0, Stationarity

diag(z)w− µ1 = 0, Complementary Slackness

w ≥ 0, b(w) = 0, Primal Feasibility

z ≥ 0. Dual Feasibility (3.23)

The primal-dual interior-point (PDIP) method implemented in IPOPT proceeds by
performing Newton steps on the primal and dual variables, i.e.,

wk+1 = wk + α(k)∆wk, (3.24)

λk+1 = λk + α(k)∆λk, (3.25)

zk+1 = zk + α
(k)
z ∆zk, (3.26)

36

3.4. Alternative Numerical Methods for OCPs

where ∆wk, ∆λk, ∆zk are the step directions and α(k) and α
(k)
z are step sizes

factors. Given an iterate (wk, λk, zk), the step directions are computed by solving a
linearization of the KKT conditions which is given by

∇wL(wk, λk, zk) +∇2
wL(wk, λk, zk)∆w +∇w b(wk)∆λ−∆z = 0, (3.27)

b(wk) +∇w bT(wk)∆w = 0, (3.28)

diag(zk)wk − µ1 + diag(zk)∆w + diag(wk)∆z = 0. (3.29)

Thus, to compute the step directions, the following equations must be solved [95], Lk Ck −I
CT
k 0 0

diag(zk) 0 diag(wk)


∆w

∆λ

∆z

 =

−∇wL(wk, λk, zk)
−b(wk)

−diag(zk)wk + µ1

 , (3.30)

where Lk = ∇2
wL(wk, λk, zk) and Ck = ∇w b(wk) are the Hessian of the Lagrangian

and the Jacobian matrix of the equality constraint at the kth iterate. In contrast to the
barrier method, the PDIP method does not require that the optimization variables z are
strictly larger than zero for all optimization steps since no logarithm functions must
be evaluated. To satisfy the primal and dual feasibility constraints w ≥ 0 and z ≥ 0,
respectively, IPOPT alternates between optimality updates as described above and
feasibility updates which reduces primal and dual feasibility violations.

While the preceding equations capture the basic idea of the PDIP method, their
algorithmic implementation poses important additional challenges. In particular, the
step sizes α(k) α

(k)
z in each iteration step k crucially influence the local convergence

speed and the global convergence behavior of the method, i.e., the ability to converge
to a solution from any starting point [99]. Also, in practice, the system of equations
(3.30) can be poorly scaled, making it necessary to carefully chose regularization
schemes to obtain the step directions. The details on the algorithmic procedures of
choosing these step sizes, as well as the solution of (3.30) in cases where the system
of equations is poorly scaled or rank-deficient, is detailed in [95].

3.4 Alternative Numerical Methods for OCPs

The direct multiple shooting (DMS) method is an efficient and popular method for
the solution of constrained optimal control problems. Here, we mention alternative
numerical techniques used throughout the literature and point towards suitable survey
papers. Numerical optimal control methods can be broadly classified as direct methods
and indirect methods. A detailed discussion and comparison of direct and indirect
methods can be found, e.g., in [100], [101].

37

Chapter 3. Numerical Optimal Control using Direct Shooting Methods

Direct methods Direct methods of numerical optimal control discretize the control
functions or the control and state functions to obtain a finite dimensional nonlinear
optimization problem as discussed in the previous sections. Apart from the single
and multiple shooting methods, the pseudospectral method [102] is a well-developed
and popular direct solution method. The pseudospectral method is also referred to as
global orthogonal collocation [100]: Instead of meshing the time horizon into separate
intervals as in direct shooting, the control and state variables are approximated by
global orthogonal polynomials which are defined over the entire time horizon of
the optimal control problem. The differential equation constraints are solved by
collocation. This means, that the derivatives of the global polynomials of the state
trajectory are set to be equal to the differentials of the ODE at specific collocation
points along the time horizon. The pseudospectral method is prominent in the area
trajectory optimization for space applications, e.g., satellites trajectories or spacecraft
reentry [102].

Indirect methods Indirect methods of numerical optimal control do not discretize
the optimal control problem (OCP) itself. Instead, they solve first-order necessary
optimality conditions of the OCP. These are given by Pontryagin’s Maximum Principle
(PMP), which is derived in detail, e.g., in [103]. The PMP leads to a boundary
value problem which can be solved using methods like indirect single and multiple
shooting. One reason why indirect methods are less prominent in the vehicle trajectory
optimization literature is that they require an initial guess for the so-called adjoint
variables of the boundary value problem. Compared to the initial guess required for
direct methods, coming up with a guess for the adjoint variables can be significantly
more difficult. As proposed in [103], the solution of the OCP obtained with a direct
method could be used to find an initial guess for the adjoint variables of the boundary
value problem of an indirect method.

Evolutionary Algorithms A third approach to numerically solving OCPs is based on
so-called Evolutionary Algorithms (EA) that iteratively sample and improve a large
set of candidate solutions. Popular algorithms of this type are Genetic Algorithms
and Particle Swarm Optimization, see the survey paper [101]. Applying an EA
algorithm to optimal control problems requires a finite dimensional (and preferably
low dimensional) parameterization of the control variables. The candidate solutions
are obtained by solving the ODE with candidate realizations of the control variables.
A score function, which contains penalty terms for constraint violations, is used to
measure the quality of the candidate solutions. Iteratively, the candidate solutions
are altered, discarded, and mixed to improve the overall quality of the candidates.
EA-based solutions to OCP problems tend to be easier to program than direct or
indirect method. Additionally, EA itself does not require an initial guess for the

38

3.4. Alternative Numerical Methods for OCPs

control or state variables. Thus, it can be used to compute an initial guess to use in a
direct method. Disadvantages of the EA method of numerical optimal control, among
others, are the necessity to use a low-dimensional control parameterization, the lack
of a measure of (local) optimality, and the dependence on several tunable parameters
which are unrelated to the OCP itself but have a significant influence on the quality of
the obtained solutions [101].

39

Chapter 4

Optimal Control Formulation of
Ground-Truth Criticality

The goal in this chapter is to define a labeling function that assigns a criticality c to a
driving scenario represented by the scene tuple S (ref. (2.12)), i.e.,

c = c(S). (4.1)

We propose that the following properties are desirable when designing or choosing a
labeling function:

• The labeling function should be easily interpretable to a human expert. During
the design, development, and use of the labeling function, the amount of detail
and the application areas are likely to increase significantly. For example, a
physics simulation could be extended from two to three-dimensional models
of the world, or it could be extended to include intersection scenarios. To
facilitate this development process, it should be easy to judge by a human expert
whether the obtained labels appear to make sense. Another important reason for
interpretable labels is the need to communicate and justify the label generation
to non-experts, e.g., due to regulatory issues of the introduction of new driver
assistance systems.

• The labeling function should be based on the simulation of physics. While this
property appears obvious, it is not the only reasonable way to label the criticality
of a driving scene. An alternative approach would be the labeling by human
experts who could judge a driving scene as being threatening or not based on
their subjective evaluation of, e.g., video recording or by driving in a simulator.

41

Chapter 4. Optimal Control Formulation of Ground-Truth Criticality

The subjectivity of this type of label generation can lead to what is commonly
referred to as label noise in the machine learning literature (see, e.g., [104]).
This is illustrated by the observation that, given the same driving scene, a group
of human labelers can have vastly different reactions and experiences of threat.
By generating simulation based labels, we avoid this source of label noise.

• The labeling function should have as few tunable parameters as possible. By
tunable parameters, we mean parameters that are not determined by the physics
of the driving scenes. A typical example of tunable parameters in ADAS is the
a priori assumptions made about the driving behavior of the host vehicle driver
and the obstacle. On the other hand, parameters like the mass of the ego vehicle
are determined by the physics and are therefore not tunable. The number of
tunable parameters directly influences the interpretability of the label and the
ability to communicate and justify the labels to non-experts.

We propose the solution of an optimal control problem (OCP) as a labeling function
c(S) for the ground-truth criticality labeling of longitudinal collision scenarios. The
basic idea is to find an avoidance trajectory for the host vehicle that minimizes the
maximum criticality during a prediction horizon T of a few seconds.

To obtain a criticality cost function for trajectory optimization, we first define a
cost function for the criticality at a specific time t ∈ [0, T], and then extend it to the
entire prediction horizon [0, T]. We define the instantaneous criticality as a function
ct(s(t), u(t)) which assigns a criticality to the state and control vectors s(t), u(t) at a
specific time t ∈ [0, T] within the prediction horizon.

Without loss of generality, we first consider the norm of the acceleration vector as
the instantaneous criticality measure, i.e.,

ct(s(t),u(t)) =
‖a(t)‖
µg

, a(t) =

[
alon(t)

alat(t)

]
, (4.2)

where the longitudinal and lateral accelerations alon and alat are given by (2.25) and
(2.26), and µ and g are the friction coefficient and the gravitational acceleration. This
choice is motivated by the ease of interpretation of acceleration values relative to the
gravitational acceleration g. In physics and aerospace engineering, the term g-force1

is used to refer to multiples of the acceleration g due to gravity [106]. By dividing
the acceleration norm by g, we obtain a normalized criticality measure where values
greater than one indicate a highly critical driving state.

For trajectory optimization, our cost function has to assign a criticality to the state
and control trajectories throughout the prediction horizon. We define the criticality

1The representation of the intensity of driving maneuvers in terms of g is also well established in
popular culture: in the motor sport simulator Project CARS [105], the g-force vector is a prominent part
of the user interface.

42

cost function for trajectories as

c[0,T](s,u) = max
t∈[0,T]

ct(s(t),u(t)), (4.3)

where ct is the instantaneous criticality function defined above and s, u are the state
and control trajectories,

s : [0, T]→ R8, u : [0, T]→ R2. (4.4)

The states and controls for the nonlinear single-track vehicle model are defined in
Section 2.3.

Equations (4.2) and (4.3) define the criticality cost function of an avoidance
maneuver as a function of the maximum dynamics of the host vehicle during the
prediction horizon. This is an intuitive definition since it relates to the intensity or
instability of the avoidance maneuver. For the criticality of an evasion maneuver,
it doesn’t matter whether the host vehicle becomes unstable at the start, middle, or
end of the avoidance maneuver, only the peak instability is relevant. Owing to its
straight-forward interpretability, the maximum value over time of the host vehicle
dynamics has been used as a cost function, e.g., in [46] and [48].

We can now find the criticality c(S) of a collision scene S by minimizing the
criticality function (4.3), i.e.,

c(S) = min
s,u

c[0,T](s,u), (4.5)

subject to a set of constraints on the state trajectory and control inputs:

• Lane keeping constraints, introduced in Chapter 4.1, enforce that the trajectory
of the host vehicle does not veer off the lane.

• Anti-collision constraints, as detailed in Chapter 4.2, encode that the avoidance
trajectory must be collision-free.

• Actor and tire limits constrain the maximum dynamics of an avoidance trajectory
and are discussed in Chapter 4.3.

Assuming that the control inputs of a human driver will be less optimal than the
control inputs computed by trajectory optimization, we can interpret the criticality
value c(S) as a lower bound of the threat that a human driver is going to be exposed
to in a particular driving situation S.

Optimal control formulations of the collision avoidance problem have been suc-
cessfully used in the past. The closest relationship to the formulation presented in
this work is [46], where an OCP collision avoidance problem is solved to determine

43

Chapter 4. Optimal Control Formulation of Ground-Truth Criticality

In(l)

It(l)

F∆x(l)

F∆y(l)

Iy

Ix

l

Cx

Cy

Figure 4.1: Lane keeping constraint with curvilinear path

whether to trigger automatic emergency braking. Said work shares the vehicle dy-
namics model and max-norm acceleration cost-function and treats the special case
of straight road boundaries and a standing obstacle. A nuisance of that approach is
the reliance on solving the OCP online to obtain criticality values, which imposes
significant computational cost at runtime.

In [47], a hazard avoidance system based on model predictive control is proposed
which gradually takes over control of the vehicle as the collision avoidance trajectory
becomes harder to execute. It uses a complex threat model that combines the squared
weighted norms constraint violation and control inputs. In [48], a two-level model
predictive controller is proposed for the same application that combines path planning
using a point mass model with decoupled longitudinal and lateral dynamics with path
tracking using the nonlinear single-track model described in Chapter 2.

Avoidance trajectories are used in [49, 50] to approximate save reachable sets,
which comprise the set of all collision-free trajectories. While the general setting of
optimizing a cost function subject to lane keeping and collision avoidance is very
comparable to this work, the cost functions is a weighted sum of maneuver execution
time (which is not fixed) and control inputs. As such, it is neither intended nor suitable
for criticality labeling as the optimized cost is hardly interpretable as a criticality.
These works contain a treatment of the sensitivity analysis of the computed avoidance
trajectories to estimate the influence of measurement errors on the safety of the
trajectories.

4.1 Lane Keeping Constraints

We consider lane segments represented by smooth curves l 7→ Ir(l) ∈ R2, where l is
the path variable and Ir(l) is referred to as the parameterization of the curve given in a
road-fixed inertial coordinate system I. Figure 4.1 illustrates the following derivations.

To obtain a formulation of the lane keeping constraint, we have to find a Frenet

44

4.1. Lane Keeping Constraints

frame2 for all t ∈ [0, T] that has its origin at the projection of the COG of the host
vehicle onto the path of the lane segment. We define the difference from the path
coordinate r(l) to the position of the host vehicle as

∆r(l) = Irh − r(l), (4.6)

where Irh is the position of the COG of the host vehicle. This difference vector can be
expressed in the coordinate system of a Frenet frame at the arc length l as

Fx(l) = It(l)T∆r(l), (4.7)
Fy(l) = In(l)T∆r(l). (4.8)

By inspection of Figure 4.1, we can deduce that the COG position expressed in the
Frenet frame at the projection of Irh onto the path would be orthogonal to the normal
vector of the path n(l). Thus, we obtain an implicit equation for the aligned coordinate
of the host vehicle l = Cx, i.e.,

Fx(l) = It(l)T∆r(l) = 0. (4.9)

We can determine the Frenet frame by adding the path variable l as an auxiliary variable
to the OCP (4.5) together with the constraint (4.9). The lane keeping constraints now
read as

Fx(l) = 0,

−Br +B∆ ≤ Fy(l) ≤ Bl −B∆, (4.10)

where Bl, Br are the maximum distances to the left and right of the lane center, and
B∆ is a safety margin, which we chose as half of the host vehicle width, B∆ = 0.5Wh.
An alternative to constraining the host vehicle COG position would be a constraint on
all corners of the host vehicle body. This would, however, lead to an increase in the
number of constraints by a factor of the number of considered corners.

While this formulation of the lane keeping is applicable for any smooth path, we
have implemented it for lane keeping on clothoidal lanes. Refer to Chapter 2.1 for the
formulae of the curve r(l) and the associated Frenet basis It(l), In(l).

Curvilinear coordinates have previously been used for the prediction and tracking
of obstacles in lane-following scenarios [73]. The authors of [107, 108] use a so-
called path-parametric system reformulation, i.e., the differential equations of the host
vehicle are reformulated using the path variable l as an independent variable instead
of the time t. As in (4.10), this has the advantage of a simple formulation of the lane
keeping constraint in terms of upper and lower bounds on the offset to the lane center.

2The Frenet frame is an orthonormal basis consisting of the unit-norm tangent and normal vectors of
the path r(l) as introduced in Chapter 2.1.

45

Chapter 4. Optimal Control Formulation of Ground-Truth Criticality

t1 t2

t1 t2

In(t1)

Ib(t1)

In(t2)

Ib(t2)

Figure 4.2: Separating hyperplane and auxiliary variables for collision avoidance

Further, the path variable l does not have to be added to the OCP in those approaches.
However, these path-parametric formulations only treat static obstacles. The author
is not aware of any path-parametric OCP formulations that combine curvilinear lane
keeping with the treatment of dynamic obstacles. In [50, Ch. 2.2], different road
geometries are represented as intersections of level sets which are used as constraints
in the OCP. This approach is comparable to the collision-avoidance formulation of
[109] which uses unions of polyhedrons to describe non-convex obstacle geometries.

4.2 Anti-Collision Constraints

To find collision-free trajectories, we must formulate constraints that ensure that the
body geometry of the host vehicle never overlaps with the obstacle geometry during
the prediction interval. In [46, 49, 107], the obstacle has a fixed position with respect
to the road. In those cases, the anti-collision constraint is merely a lower or upper
bound on the COG position along the lane. For a straight lane model, the authors of
[110] formulate the collision avoidance constraint for a time-optimal lane-change as
a constraint on the COG distance to the obstacle at t = T . While straight-forward
for time-optimal trajectories, the approach is not applicable to find trajectories with
minimal dynamics, since the constraint only applies to the final state instead of the
whole time interval. In [111, 112], the host vehicle geometry is approximated as a
circle, whereas a weighted p-Norm is used to compute distances from the host vehicle
to the obstacle centers. The weights of the p-norm and the chosen p itself are used to
model different obstacle geometries. This approach is closely related to the artificial
potential field methods used for trajectory planning in robotics [113].

Separating Hyperplane Constraint Here, we propose a collision avoidance constraint
formulation that applies to convex polytope models of obstacles. Denoting the sets of
points belonging to the host and vehicle body geometries as Bh : t 7→ Bh(t) ⊂ R2

46

4.2. Anti-Collision Constraints

and Bobs : t 7→ Bobs(t) ⊂ R2, we can write the anti-collision constraint as

Bh(t) ∩ Bobs(t) = ∅ ∀t ∈ [0, T]. (4.11)

We approximate the geometries of the host and obstacle by closed convex polytopes,
which we write as the convex hull of the set of corner points, i.e.,

Bh = chull{Ich,1, . . . ,
Ich,Nh}, (4.12)

Bobs = chull{Icobs,1, . . . ,
Icobs,Nobs}, (4.13)

where Nh, Nobs are the number of points used to describe the geometries and chull is
the convex hull operator which assigns to a set of points the smallest convex set that
contains them [98].

For defining the geometry of the restricted area, we assume without loss of
generality, that the obstacle drives on the right-hand side of the center line. Let
Ic1,obs = [x1,obs, y1,obs]

T denote the projection of the inner corner of the rear of the
obstacle onto the center line. Further, let In1 and It1 be the normal and tangential
vectors of the lane center path at Ic1,obs. In road-fixed coordinates, this point is denoted
as Ic1,obs

3 . The geometric definition of the restricted area can now be stated as

Bobs = chull
{Ic1,obs,

Ic2,obs,
Ic3,obs,

Ic4,obs
}
,

Ic2,obs = Ic1,obs −Br
In1,

Ic3,obs = Ic1,obs + L It1,
Ic4,obs = Ic2,obs + L It1, (4.14)

whereL is the length of the obstacle and chull is the convex hull as above. The position
of the obstacle over time is given by the constant acceleration and lane-following
assumption detailed in Chapter 2.

Rigid-body transformations give the corner positions of the host vehicle over time,
i.e.,

Ich,i(t) = R(Iψ(t)) Vch,i + Irh(t), (4.15)

where Vch,i are the corners points of the host vehicle, and Irh(t) and Iψ(t) are the
position and yaw angle of the host vehicle at time t.

Since the obstacle and host vehicle geometries are assumed to be convex, we
can employ the separating hyperplane theorem (SHT) [98] to obtain an algebraic
formulation of the anti-collision constraints. The SHT states that if two closed convex

3The transformation between road fixed coordinates I and clothoidal coordinates C used in this
definition given in Chapter 2.1.

47

Chapter 4. Optimal Control Formulation of Ground-Truth Criticality

sets A,B ⊂ RN are disjoint then there exists a hyperplane given by a scalar b and
normal vector n ∈ RN such that

InTa− Ib ≤ 0 ∀a ∈ A,
InTb− Ib ≥ 0 ∀b ∈ B. (4.16)

In the two-dimensional case, illustrated in Figure 4.2, we can parameterize the normal
vector by its polar angle Iφ, i.e.,

Inφ =
[
cos
(Iφ
)

sin
(Iφ
)]T

. (4.17)

Since we define the body geometries as convex polytopes, we can write the anti-
collision constraints as Nh +Nobs inequality constraints for the OCP (4.5), i.e.,

InT
φ ch,i − Ib ≤ 0 ∀ch,i ∈ Bh,

InT
φ cobs,j − Ib ≥ 0 ∀cobs,j ∈ Bobs. (4.18)

As in the case of the path variable l for the lane keeping constraint, the hyperplane
angle Iφ and scalar Ib become auxiliary variables.

An alternative formulation of the anti-collision constraint based on Farkas lemma
is proposed in [109]. Further, the authors of [109] propose a generalization to non-
convex obstacles by decomposition into unions of convex sets. The convex sets
A,B ⊂ R2 are defined by the inequalities

A =
{

r ∈ R2 : Ar ≤ b
}
, A ∈ RNA×2,b ∈ RNA (4.19)

B =
{

r ∈ R2 : Cr ≤ d
}
, C ∈ RNB×2,d ∈ RNB . (4.20)

If A and B are disjoint, there is no solution to the system of inequalities,[
A
C

]
r ≤

[
b
d

]
. (4.21)

According to Farkas lemma, this is equivalent to the existence of a vector w ∈
RNA+NB that solves the system of equations [109, Proposition 1]

w ≥ 0,

[
A
C

]T

w = 0,

[
b
d

]T

w < 0. (4.22)

To be able to optimize over a closed set, the authors of [109] replace the strict inequality
in (4.22) by the non-strict inequality

[
bT dT

]
w ≤ −ε, where ε > 0 is a small fudge

factor. This set of inequalities is then added as constraints to the OCP and the vector
w becomes an auxiliary variable.

The hyperplane formulation in (4.18) adds two control variables - Iφ and Ib - and
Nh +Nobs constraints. With NA = Nh, NB = Nobs, the formulation based on Farkas
lemma adds Nh +Nobs auxiliary variables and Nh +Nobs + 3 constraints (see (4.22))
as well as a tunable fudge factor ε. Thus, the proposed SHT formulation compares
favorably to the formulation in [109].

48

4.3. Input and State Constraints

4.3 Input and State Constraints

The braking and steering actors are limited in the rate with which they can build up
the braking force and steering angle, which significantly influences the feasibility of
collision avoidance. These actor limitations are reflected by the box constraints

|u1| ≤ u1,max, |u2| ≤ u2,max. (4.23)

We constrain the steering rate to u2,max = −u2,min = 2π
15 rad/s. This choice amounts to

about one turn of the steering wheel per seconds with a steering ratio4 of 15 : 1. We set
the bounds on the force rate to u1,min = −µmg

0.2 and u1,max = −5u1,min, which allows
a deceleration of µg in two hundred milliseconds. The value of u1,max corresponds to
a sudden release of the brake. We bound the total tangential tire force from below by

Ft ≥ Ft,min, Ft,min = −µmg, (4.24)

which allows a maximum deceleration of µg.
We don’t impose an upper bound on the tangential tire force, since we only

consider braking-and-steering evasion maneuvers where an upper bound would never
be tight. Similarly, we also don’t impose upper and lower bounds on the steering
angle. This allows us to get a feasible solution and criticality label for small velocities
where we would otherwise not be able to obtain a label. We discuss the trade-off
between actor and state constraints and feasibility in Section 4.5.1, where we propose
alternatives to directly constraining the control or states of the host vehicle.

These constraint values are a guess on what a modern braking and steering system
might achieve, and, in practice, we would have to adapt them to a concrete vehicle
and use case. A valuable extension of the actor constraints would be a model for the
dead time of the actors.

4.4 Initial and Final State Constraints

The initialization proposed here assumes stationary lane-following by the host vehicle.
This assumption holds true whenever a safety maneuver is necessary due to the
inattentiveness of the driver or due to an obstacle that suddenly becomes visible, e.g.,
due to prior visual occlusion. By using implicit equations for yaw and steering angles,
we let the OCP solver find a suitable initial state instead of providing plausible initial
values for all states. For straight lanes, we position the origin of the inertial coordinate
system I at the projection of the COG onto the lane center. The initial state constraint
writes as

s(0) = s0, s0 =
[
0 Iy0 v0 0 0 0 0 0

]T
. (4.25)

4The steering ratio relates the turning angle of the steering wheel to the resulting turning angle of the
tire. In modern vehicles, it is dynamically adapted to the speed of the vehicle and other factors.

49

Chapter 4. Optimal Control Formulation of Ground-Truth Criticality

For curvilinear lane segments, we fix the origin of I to the origin of the curve, see
Chapter 2.1. Choosing a different origin for I, e.g., at the projection of the COG onto
the curve, would make it necessary to transform the parameterization of the curve to
that coordinate system - an avoidable nuisance.

First, we compute the initial value of the yaw rate, taking into account the speed of
the vehicle as well as the lane curvature. Given a parameterization of r(l) of the lane
segment, the curvature is given by the Frenet equation for planar curves [77, Ch. 2.5],

It′ = c(l) In(l). (4.26)

For clothoids, the signed curvature is a linear function of the arc length, i.e.,

c = κl, (4.27)

with a constant rate of change of the curvature κ, ref. Chapter 2.1. Note that the sign
of the curvature depends on the sign of the arc length variable l.

We denote by l0 the arc length of the clothoid that corresponds to the projection of
the host COG onto the lane center, see Figure 4.1. Cy0 denotes the initial lateral offset
of the host vehicle relative to the lane center. Since we assume that the host vehicle
follows the lane at a constant velocity at the beginning of the simulation, the rate of
change of the body slip angle is negligible compared to the yaw rate, i.e., β̇ << ω.
Thus, we can determine the initial value of the yaw rate from the initial curvature of
the trajectory of the host vehicle, c̃0, and its velocity, i.e.,

ω0 = v0c̃0. (4.28)

The curvature c̃0 of the host trajectory is the inverse of the initial turning radius, i.e.,

c̃0 =
1
r0
. (4.29)

Under the simplifying assumption that the initial velocity vector is parallel to the lane
center marking, we can compute the initial turning radius r0 as,

r0 =
1
c0

+ Cy0, (4.30)

where Cy0 is the offset of the COG from the lane center.
We can now write a first set of initial state constraints,

1eqs(0) =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0

 s(0) =


Ix0
Iy0

v0

ω0

Ftot,0

 = seq. (4.31)

50

4.4. Initial and Final State Constraints

The linear state constraints in (4.31) only initialize five out of eight states. Thus, we
need three more implicit equations for the remaining states, i.e., the body slip angle
β(0), the yaw angle ψ(0), as well as the steering angle δ(0). Due to the velocity vector
being parallel to the curve, the heading angle Iθ = Iψh + β is equal to the angle Iτ 0 of
the curve tangent,

Iψh(0) + β(0) = Iτ 0,
Iτ 0 = Iτ(l0), (4.32)

where the tangent angle is given by

Iτ(l) = arctan

(
[It]y
[It]x

(l)

)
, (4.33)

with the x and y components of the tangent written as [It]x and [It]x, respectively. For
the special case of clothoidal lane segments, the tangent angle is given in (2.3).

Due to the nonlinearity of the ODE of the host vehicle, we cannot give explicit
equations for the initial body slip angle β0 and steering angle δ0. Instead, we constrain
the states β(0) and δ(0) by implicit equations. To this end, we approximate the body
slip angle and yaw rate as stationary. From the ODE equations for the single-track
model (2.39), we can give the resulting constraints as

β̇(0) = 0 =
alat

v
− ω,

ω̇(0) = 0 =
1
I

(Fs,f cos(δ)lf + Ft,f sin(δ)lf − Fs,rlr). (4.34)

We collect equations (4.31), (4.32) and (4.34) in the nonlinear initial state constraint

rinit(s(0)) =


1eqs(0)− seq

Iψh(0) + β(0)− Iτ 0
alat
v (0)− ω(0)

1
I (Fs,f(0) cos(δ(0))lf + Ft,f(0) sin(δ(0))lf − Fs,r(0)lr)

 = 0,

(4.35)

which imposes eight constraints for eight variables in s(0) leading to well-defined
initial states.

Final state constraints At the end of the prediction horizon t = T we want the
vehicle body to be aligned with the driving direction of the lane to allow a safe
continuation of the evasion trajectory for t > T . This is encoded by a constraint on
the yaw angle and the arc length variable at the time t = T ,

Iψ(T)− Iτ(l(T)) ≤ ψend,
Iψ(T)− Iτ(l(T)) ≥ −ψend, (4.36)

51

Chapter 4. Optimal Control Formulation of Ground-Truth Criticality

where Iτ(l) is given in (4.33) and ψend is an upper bound on the deviation from the
lane direction. We have chosen ψend = 10◦ throughout our simulations, see Table 4.2.
The host vehicle is forced to end on the side of the lane marking that is not occupied
by the obstacle. Let Cyobs,0 6= 0 denote the y coordinate of the center of the rear end
of the obstacle, which we assume to be unequal to zero. We can then express the lane
change constraint using a case distinction,

Cy(T) = ≥ Wh

2
if Cyobs,0 < 0,

Cy(T) = ≤ −Wh

2
if Cyobs,0 > 0. (4.37)

A more compact form without the case distinction is the inequality

Cy(T) Cyobs,0 ≤ −
Wh

2
| Cyobs,0|. (4.38)

In the criticality OCP with curved lane segments, we use the Frenet frame (see, 2.1) to
express the lane-change constraint. Thus, we have

Fx(l(T)) = 0,

Fy(l(T)) Cyobs,0 ≤ −
Wh

2
| Cyobs,0|. (4.39)

We collect the final state constraints (4.36) and (4.39) for curved lanes segments in
the inequality

rend(s(T)) =


Fx(l(T))

− Fx(l(T))
Iψ(T)− Iτ(l(T))− ψend
Iτ(l(T))− Iψ(T)− ψend

Fy(l(T)) Cyobs,0 + Wh
2 |

Cyobs,0|

 ≤ 0. (4.40)

4.5 Optimal Control Problem Formulations

Having derived lane keeping, anti-collision, state, and control constraints, we can
now state the labeling OCP. We formulate the OCPs straight and curvilinear lane
segments, identify the path constraints, and reformulate the OCPs for numerical
optimization. In Section 4.5.1, we discuss an alternative criticality OCP with relaxed
control constraints.

For straight lane segments, we collect Equations (2.39), (4.25), (4.36), (4.39),
(4.18), and (4.10) in the OCP formulation. We use an inertial coordinate system I with
the x-Axis aligned with the lane direction, so the tangent angle of the lane is always

52

4.5. Optimal Control Problem Formulations

zero, τ = 0. The origin is located at the projection of the COG onto the lane center,
see Figure 2.2. The OCP becomes

min
s(t),u(t),
b(t),φ(t),
∀t∈[0,T]

max
t∈[0,T]

ct(s(t),u(t)), s.t.

˙s(t)− f(s(t),u(t)) = 0, ODE constraints, see (2.39)

s(0)− s0 = 0, initial state constraints, see (4.35)
Iψ(T)− ψend ≤ 0, final state constraints, see (4.40)

− Iψ(T)− ψend ≤ 0,

Iy(T) Iyobs,0 +
Wh

2
| Iyobs,0| ≤ 0,

Iy(l(t))−Bl +B∆ ≤ 0, path constraints

−Br +B∆ − Iy(l(t)) ≤ 0,
InT
φ (t) Ich,i − Ib(t) ≤ 0, ∀i = 1, . . . , Nh,

Ib(t)− InT
φ (t) Icobs,j ≤ 0, ∀j = 1, . . . , Nobs,

Ft,min − Ft(t) ≤ 0,

u1(t)− u1,max ≤ 0,

u1,min − u1(t) ≤ 0,

u2(t)− u2,max ≤ 0

u2,min − u2(t) ≤ 0 ∀t ∈ [0, T]. (4.41)

Compared to the OCP for straight lanes, the curvilinear formulation requires the
auxiliary optimization variable l, i.e., the arc length along the lane segment, and the
expression of the constraints in two different coordinate systems I and C. Also, the
initial state constraints are now given by the nonlinear equation rinit(s(0)) = 0 as
defined in (4.35). Collecting equations (2.39), (4.35), (4.40), (4.9), (4.10), and (4.18),

53

Chapter 4. Optimal Control Formulation of Ground-Truth Criticality

the collision avoidance OCP for curvilinear lane segments writes as

min
s(t),u(t),

l(t),b(t),φ(t),
∀t∈[0,T]

max
t∈[0,T]

ct(s(t),u(t)), s.t.

˙s(t)− f(s(t),u(t)) = 0, ODE constraints, see (2.39)

rinit(s(0)) = 0, initial state constraints, see (4.35)

rend(s(T)) ≤ 0, final state constraints, see (4.40)
Fx(l(t)) = 0, path constraints

Fy(l(t))−Bl +B∆ ≤ 0,

−Br +B∆ − Fy(l(t)) ≤ 0,
InT
φ (t) Ich,i − Ib(t) ≤ 0, ∀i = 1, . . . , Nh,

Ib(t)− InT
φ (t) Icobs,j ≤ 0, ∀j = 1, . . . , Nobs,

Ft,min − Ft(t) ≤ 0,

u1(t)− u1,max ≤ 0,

u1,min − u1(t) ≤ 0,

u2(t)− u2,max ≤ 0,

u2,min − u2(t) ≤ 0 ∀t ∈ [0, T]. (4.42)

In the following, we concentrate on OCP (4.42) for curvilinear lane segments
and derive a compact notation of the OCP that is suitable for numerical optimization.
For the straight-lane case, the same reformulation steps apply. First, as in [46, 48],
we restate the minimization of the maximum value of the criticality over time as the
minimization of an upper bound5 z, i.e.,

c(S) =
√
zopt,

zopt = min
z,

s(t),u(t),
l(t),b(t),φ(t),
∀t∈[0,T]

z s.t. c2
t (s(t),u(t)) ≤ z ∀t ∈ [0, T]. (4.43)

Optimizing an upper-bound of the cost function instead of the maximum-value of the
cost function yields smooth gradients and Hessians during numerical optimization.
Note that we have replaced the instantaneous criticality ct(s(t),u(t) by its squared
value. This also serves to obtain smooth gradients and Hessians. Consider, e.g., the
acceleration norm criticality in Equation (4.2), whose gradient is discontinuous at
zero. Optimizing the squared norm fixes this problem. A precondition for optimizing
the squared criticality instead of the criticality is that the criticality is greater or equal

5The minimization minz z can be cast as an instance of the general OCP problem (3.1) by writing it
as minz(t)

∫ T
0 z(t), s.t. ż(t) = 0.

54

4.5. Optimal Control Problem Formulations

to zero, which is obviously satisfied for the criticality considered here. To recover the
criticality value, we take the square-root of the optimized upper-bound zopt.

Next, for conciseness, we subsume the state and auxiliary variables in an aug-
mented state vector

s̃ =
[
sT Iφ Ib l

]T
, (4.44)

and collect the initial, final, and path constraints. The path constraints read as

gpath(s̃(t),u(t)) =



Fx(l(t))

− Fx(l(t))
Fy(l(t))−Bl +B∆

−Br +B∆ − Fy(l(t))
InT
φ (t) Ich,1 − Ib(t)

...
InT
φ (t) Ich,Nh −

Ib(t)
Ib(t)− InT

φ (t) Icobs,1
...

Ib(t)− InT
φ (t) Icobs,Nobs

Ft,min − Ft(t)

u1(t)− u1,max

u1,min − u1(t)

u2(t)− u2,max

u2,min − u2(t)



≤ 0 ∀t ∈ [0, T], (4.45)

where we have expressed the equality constraint Fx(l(t)) = 0 by the equivalent of two
inequalities with inverted sign. The initial and final state constraint functions, rinit and
rend are given in (4.35) and (4.40), respectively, so we have

rinit(s̃(0)) = rinit(s(0)) = 0,

rend(s̃(T)) = rend(s(T)) ≤ 0. (4.46)

For the acceleration criticality (4.2), i.e., ct = 1
µg ‖a(t)‖, we can now compactly

55

Chapter 4. Optimal Control Formulation of Ground-Truth Criticality

state the problem of finding a label c = c(S) for a driving scene S as,

MinMax Acceleration OCP

c(S) =
√
zopt,

zopt = min
z,̃s(t),u(t)
∀t∈[0,T]

z, s.t.

1
µ2g2 ‖a(t)‖2 ≤ z,

ṡ(t)− f(s(t),u(t)) = 0,

rinit(s̃(0)) = 0,

rend(s̃(T)) ≤ 0,

gpath(s̃(t),u(t)) ≤ 0 ∀t ∈ [0, T], (4.47)

where the functions rinit, rend, and gpath are all parameterized by the entries of the
scene tuple S .

4.5.1 Infeasibility and Interpretability

When the geometry and kinematics of a driving situation are such that a collision
is unavoidable, the optimal control problem 4.47 becomes infeasible, i.e., it is not
possible to compute a collision avoidance trajectory that satisfies the ODE-, anti-
collision-, and lane keeping constraints. Here, we describe the consequences of
infeasibility. We also discuss alternative OCP formulations that trade-off between
infeasibility, model detail, and interpretability.

For an application in criticality regression, the infeasibility reduces the amount of
training and test data we can generate. For a criticality classifier that has to discriminate
between Fire and No-Fire decisions, the inability to solve c(S) could be interpreted
as a Fire label since a high criticality correlates with the inability to find a collision
avoidance trajectory. However, it is important to distinguish the kinds of conclusions
we can draw from successful or failed optimization attempts, i.e.,

• finding a feasible solution proves the feasibility of the OCP,

• not finding a feasible solution does not prove that the OCP is infeasible.

Typically, proving the infeasibility of a non-convex optimization problem is not
possible as it would require checking the feasibility of all possible state and control
functions. Consequently, it is possible that a driving scenario S would allow a feasible
avoidance trajectory, but the solver reports the problem as infeasible. In that case,
we cannot compute a reference criticality label c(S) for the driving scenario S. It is
possible to obtain more feasible solutions for varying driving scenes by considering

56

4.5. Optimal Control Problem Formulations

alternative formulations for the criticality OCP. In the formulation of an OCP for
criticality labeling, we have two main degrees of freedom to influence the feasibility
of the OCP, i.e., the representation of the actor limitations and the choice of the tire
model. In the problem formulation (4.47), we minimize the peak acceleration of the
avoidance trajectory of the host vehicle. The actor limitations are incorporated through
upper and lower bounds on the rates of change of the tangential tire force and steering
angle inputs u1, u2.

An alternative problem formulation consists of minimizing the constraint viola-
tion of the inputs u1, u2 without strictly limiting them to an upper or lower bound.
Alternatively, the control constraints can be satisfied by minimizing the maximum
constraint violation. This approach is well known in the robotics literature and has
been used in the context of active safety in, e.g., [47], [114], [50]. Observe that the
control constraints of the criticality OCP (see, Equation (4.45)) can be rewritten as

u1 − u1,max

u1,min − u1

u2 − u2,max

u2,min − u2

 ≤ 0⇔


u1

u1,max
u1

u1,min
u2

u2,max
u2

u2,min

 ≤ 1, (4.48)

where we use the fact that u1,min, u2,min < 0 and u1,max, u2,max > 0. To move the
input constraints into the cost function, we rewrite these constraints in scalar form,
i.e., 

u1
u1,max
u1

u1,min
u2

u2,max
u2

u2,min

 ≤ 1⇔ max

{
u2(t)

u2,max
,
u2(t)

u2,min
,
u1(t)

u1,max
,
u1(t)

u1,min

}
≤ 1. (4.49)

We can now define an alternative cost function for the collision avoidance OCP,

c′t(s,u) = max

{
‖a(t)‖2
µg

,
u2(t)

u2,max
,
u2(t)

u2,min
,
u1(t)

u1,max
,
u1(t)

u1,min

}
c′[0,T](s,u) = max

t∈[0,T]
c′t(s(t),u(t)). (4.50)

While the constraint minimization cost function (4.50) is more complex than the max-
norm acceleration cost function (4.3), we can still interpret it can as a criticality. Since
all components of (4.50) are normalized by their upper and lower bounds, we can
think of the optimized value of the cost function as the fraction of the control-capacity
of the vehicle that is needed to drive along a trajectory s,u.

As in the OCP (4.47), we optimize an upper-bound of the squared elements of the
criticality function to obtain smooth gradients. The modified optimal control problem

57

Chapter 4. Optimal Control Formulation of Ground-Truth Criticality

becomes

Constraint Minimization OCP

c(S) =
√
zopt,

zopt = min
z,̃s(t),u(t)
∀t∈[0,T]

z, s.t.

1
µ2g2 ‖a(t)‖2 ≤ z,

u2
1

u2
1,min

≤ z,

u2
2

u2
2,min

≤ z,

ṡ(t)− f(s(t),u(t)) = 0,

rinit(s̃(0)) = 0

rend(s̃(T)) ≤ 0

g′path(s̃(t),u(t)) ≤ 0 ∀t ∈ [0, T]. (4.51)

Compared to the original path constraint function (4.45) of the OCP (4.47), the path
constraint function g′path does not include any control constraints, since the control
constraints are now part of the optimization function. The new path constraint is

g′path(s̃(t),u(t)) =



Fx(l(t))

− Fx(l(t))
Fy(l(t))−Bl +B∆

−Br +B∆ − Fy(l(t))
InT
φ (t) Ich,1 − Ib(t)

...
InT
φ (t) Ich,Nh −

Ib(t)
Ib(t)− InT

φ (t) Icobs,1
...

Ib(t)− InT
φ (t) Icobs,Nobs



≤ 0 ∀t ∈ [0, T]. (4.52)

Since the box-constraints on the steering control u2 are symmetric, i.e., u1,max =

−u1,min (see Table 4.2), the constraint on the squared value of u2 is equivalent to
minimizing the terms u2

u2,min
and u2

u2,max
of the criticality (4.50). The box-constraints

on the force rate control u1 are not symmetric, i.e., u1,min 6= u1,max, see Table 4.2.
However, in practice, collision avoidance doesn’t require intense acceleration, so
the upper bound u1 ≤ u1,max is never tight and can be dropped. It is possible to
optimize unsymmetric box-constraints by optimizing the linear control elements of

58

4.5. Optimal Control Problem Formulations

Table 4.1: Variants of the criticality labeling OCP

Shorthand Optimal Control Problem Tire Model

MINA-NLT MinMax Acceleration (4.47) Magic Formula
maxt∈[0,T]

‖a(t)‖
µg

& Force Coupling (2.52)
MINA-LT MinMax Acceleration (4.47) Linear Side Forces (2.47)

maxt∈[0,T]
‖a(t)‖
µg

MINDYN-LT Constraint Minimization (4.51) Linear Side Forces (2.47)

maxt∈[0,T] max
{
‖a(t)‖2
µg

, u2(t)
u2,max

, u2(t)
u2,min

, · · ·
}

(4.50). However, this would have the drawback of changing the trade-off between
acceleration and control constraints, by only squaring the acceleration norm.

By moving the control constraint of (4.47) into the cost function, the OCP (4.51)
has strictly more feasible trajectories thus increasing the availability of criticality
labels. Furthermore, all solutions of (4.51) with an optimal value smaller than one are
feasible solutions of (4.47).

4.5.2 Considered OCP Variants and Parameters

We consider three variants of the labeling OCP, listed in Table 4.1 which differ in their
formulation and tire model. The first two OCPs minimize the maximal 2-norm of the
acceleration vector as formulated in (4.47). They differ in the modeling detail of the
tire forces. MINA-NLT uses the force-coupled tire model (2.52) which incorporates
the nonlinear saturation of the side force as well as the limitation of the tire force vector
norm. This force saturation puts a limit on the maneuverability of the host vehicle in
addition to the box constraints on the steering and force rate inputs u2, u1. Due to
this model detail, MINA-NLT is the most realistic dynamic model considered here.
However, since it also incorporates the most constraints on the vehicle dynamics, the
set of driving situations S that can be labeled with a criticality value using MINA-NLT
is the smallest among the considered OCP formulations.

MINA-LT differs from MINA-NLT by its use of the linear tire model in (2.47).
Thus MINA-LT is only constrained by the input limits and should lead to increased
feasibility, albeit at the cost of realism of the simulation.

We abbreviate the constraint minimization OCP (4.51) as MINDYN-LT. By using
the least number of constraints, its availability is the largest of the considered OCPs.

Vehicle and OCP parameters In Table 4.2, we list all parameters used for the host
vehicle as well as constraint and margin values used in the OCP formulations. The
vehicle parameters approximately represent an SUV in the category of an Audi Q7. We
have discussed the state and control constraint values in the preceding sections. Their

59

Chapter 4. Optimal Control Formulation of Ground-Truth Criticality

Figure 4.3: The passage scenario. Only a straight trajectory can avoid a collision.

values depend on the performance characteristics of the vehicle. While the chosen
parameters are well suited to illustrate and study the criticality labeling problem, in
practice, all parameters should be carefully adjusted to the considered vehicle.

4.6 A Counterexample and some Extensions

The minimal peak acceleration of an evasion trajectory is an intuitive and physically-
motivated measure of the criticality of a rear-end collision scenario. However, there
are scenarios where the acceleration or other state variables do not accurately reflect
the threat of the driving situation. Consider, e.g., the scenario6 depicted in Figure 4.3.
The EGO vehicle is driving towards a small passage which is as wide as the vehicle
itself. This is a situation, where the peak avoidance acceleration does not reasonably
reflect the threat. The avoidance acceleration is zero while the scenario is highly
threatening due to the tightness of the passage.

In this situation, what is missing to represent the threat is a measure of the
robustness of the avoidance trajectory. The passage is threatening because a slight
steering motion or an imperfect estimate of the initial state lead to a collision. This
observation also holds for situations that require steering maneuvers: if there exists
only a single avoidance trajectory, and any deviation from that trajectory leads to a
collision, the situation is threatening.

A first solution to handle the passage scenario is to fuse obstacles that are close
together into a single, enlarged obstacle during environment perception. However, the
decision on when to fuse obstacles can turn out to be a delicate algorithmic problem in
itself. Another approach to better represent the criticality is to compute the sensitivity
of the criticality measure to perturbations of the initial state of the EGO vehicle. This
sensitivity is studied in [50, Ch. 4] for variable-time avoidance trajectories. Moreover,
the criticality could be derived from reachable sets. A reachable set is the set of states
that can be reached from the initial state in certain time. The larger the reachable
set and the set of feasible trajectories, the more likely a collision can be avoided.
Reachable sets for collision avoidance have been studied, e.g., in [37] and [110].

6This scenario was proposed by Dr.rer.nat. Frank Keck during a status meeting.

60

4.6. A Counterexample and some Extensions

Table 4.2: Parameters of the criticality optimal control problem

parameter symbol value

mass m 2070kg

moment of inertia I 2750kgm2

host vehicle body length L 5.05m

host vehicle body width W 2.2m

COG distance from front wheel lf 1.3m

COG distance from rear wheel lr 1.45m

tire model - stiffness factor B 0.2391/◦

tire model - shape factor C 1.19

tire model - peak factor D 3750N

tire model - curvature factor E −0.678

lane keeping margin B∆ 0.5W

prediction horizon T 2.5s

yaw tolerance at t = T ψend 10◦

min. velocity vmin 1 m/s

max. steer angle δmax ∞

min. steer angle δmin −∞

max. steer rate u2,max
360
15
◦/s

min. steer rate u2,min −360
15
◦/s

friction coefficient µ 1.01

min. tire force Ft,min −µmg

max. tire force Ft,max ∞

min. tire force rate u1,min −µmg
0.2

max. tire force rate u1,max −5u1,min

61

Chapter 5

Numerical Criticality Labeling and
Simulation Results

To solve the criticality OCP, we employ the Direct Multiple Shooting [44] technique
as detailed in Chapter 3. To this end, we need to numerically integrate the ordinary
differential equation of the vehicle model and formulate an initial guess for the
optimization variables.

5.1 Multiple Shooting and Nonlinear Optimization Problem

The prediction horizon [0, T] is divided into N intervals of equal length ∆t, during
which the control inputs u[n] are kept constant. On each interval, we solve the ordinary
differential equation of the host vehicle dynamics (2.39) using numerical integration,
i.e.,

ŝ[n+ 1] = F(∆t; s[n],u[n]), (5.1)

where F(∆t; s[n],u[n]) denotes the numerical integration over the interval ∆t given
the initial value s[n] and control input u[n].

In our implementation, we use M steps of fourth-order Runge-Kutta [115] (RK4)
integration. This means that we partition the interval [tn, tn+1] into M subintervals of

63

Chapter 5. Numerical Criticality Labeling and Simulation Results

equal length h. On each subinterval we perform M = 10 Runge-Kutta steps, i.e.,

FRK4(h; s,u) =
h

6
(k1 + 2k2 + 2k3 + k4),

k1 = f(s,u),

k2 = f(s +
h

2
k1,u),

k3 = f(s +
h

2
k2,u),

k4 = f(s + hk3,u), (5.2)

with the ODE ṡ = f(s,u) given in (2.39). Each successive RK4 step with index m
uses the result of the preceding integration as its initial value, i.e.,

Fm,n(h) =

{
s[n] if m = 0

FRK4(h; Fm−1,n(h),u[n]) if m = 1, . . . ,M
(5.3)

The numerical integrator F in (5.1) thus given by

F(∆t; s[n],u[n]) = FM,n(h), h =
∆t

M
. (5.4)

In order to find a continuous state trajectory, the numerical solutions of the ODE of
one interval must match exactly the initial value of the following interval, i.e.,

s[n+ 1] = ŝ[n+ 1], (5.5)

which leads to so-called multiple-shooting constraints as discussed in Chapter 3,

s[n+ 1]− F(∆t; s[n],u[n]) = 0 ∀n = 0, . . . , N − 1. (5.6)

We can now write the discretized approximation of (4.47) as

c(S) =
√
zopt

zopt = min
z

s̃[0],...,̃s[N]
u[0],...,u[N−1]

z, s.t.

1
µ2g2 ‖a[n]‖2 ≤ z, ∀n = 0, . . . , N,

rinit(s̃[0]) = 0,

rend(s̃[N]) ≤ 0,

s[n+ 1]− F(∆t; s[n],u[n]) = 0,

gpath(s̃[n],u[n]) ≤ 0, ∀n = 0, . . . , N − 1. (5.7)

64

5.2. Initial Guess for the Optimization Variables

arc length

sep. hyperplane

obstacle

l∗[n]

C∆y

Figure 5.1: Initialization of the optimization variables for the numerical solution of
the OCP (5.7)

The discretization of the constraint minimization problem (4.51) reads as

c(S) =
√
zopt

zopt = min
z

s̃[0],...,̃s[N]
u[0],...,u[N−1]

z, s.t.

1
µ2g2 ‖a[n]‖2 ≤ z, ∀n = 0, . . . , N,

u2
1[n]

u2
1,min

≤ z,

u2
2[n]

u2
2,min

≤ z,

rinit(s̃[0]) = 0,

rend(s̃[N]) ≤ 0,

s[n+ 1]− F(∆t; s[n],u[n]) = 0,

g′path(s̃[n],u[n]) ≤ 0, ∀n = 0, . . . , N − 1. (5.8)

These nonlinear optimization problems can be solved using a sparse nonlinear pro-
gramming solver; we use the CasADI [94] library together with the IPOPT [95] solver
for finding locally optimal solutions to the discretized OCPs.

5.2 Initial Guess for the Optimization Variables

An important advantage of the direct multiple shooting method of optimal control is
that it is possible to formulate an initial guess for the optimization problem in terms of
the state variables s[n], n = 0, . . . , N . The goal of the initialization is to find initial
values for the configuration of the host vehicle, i.e., the position Ix[n], Iy[n] and yaw

65

Chapter 5. Numerical Criticality Labeling and Simulation Results

angle Iψ of the host vehicle. The construction of our initial guess is illustrated in
Figure 5.1. As a simplification, we assume that the host vehicle velocity remains
constant throughout the prediction interval,

v∗h [n] = vh,0, n = 0, . . . , N, (5.9)

with the initial velocity v0 given by the scene tuple S.
We specify the initial guess for the position of the vehicle in terms of the curvilinear

coordinates l[n] and Cy[n]. We assume that the vehicle drives parallel to the lane
center given by the path Ir(l). Thus, we can initialize the arc length variable l as

l∗[n] = l0 + n∆tvh,0, n = 0, . . . , N. (5.10)

Equation 5.10 contains a further simplification by setting the arc increment per time
step on the lane center equal to the arc length increment of the host vehicle COG. It
would be possible to do better and adjust the arc increment to the local curvature of the
tube, however, in practice, we did not observe any problems with this simplification.
Next, we initialize the normal coordinate Cy of the host vehicle in curvilinear coordi-
nates. To obtain a trajectory that is collision-free, the host vehicle must be displaced
laterally by a total distance of C∆y as illustrated in Figure 5.1. Increasing this lateral
displacement with every time step, the initialization writes as

C∆y = | Cyobs,0 − Cy0|+ 0.5Wh,
Cy∗[n] = Cy0 + w C∆y, (5.11)

where Cy0 is the initial offset coordinate of the host vehicle in curvilinear coordinates
given by the scene tuple S, ref. (2.12). The weight factor w in (5.11) is given by

w = sign(Cy0)
n

nmax
, (5.12)

which leads to a linear increase of the lateral offset of the host vehicle. In our
simulation we have used nmax = 7 forN = 30 and T = 2.5, which was determined as
a suitable choice by trial and error. Since the viability of this choice for nmax depends
on the driving situation, its value can be adapted based on the initial time-to-collision
tttc of the driving scene, i.e.,

nmax =

⌊
tttc
∆t

⌋
, (5.13)

where the time-to-collision tttc is given in (6.41) and b·c rounds down to integers.
This choice would ensure that the lateral displacement C∆y for collision avoidance is
reached before the host vehicle geometry advances past the obstacle position.

66

5.2. Initial Guess for the Optimization Variables

The position of the host vehicle in road fixed coordinates is obtained by transform-
ing the road aligned coordinates to Cartesian coordinates, i.e.,[

Ix∗

Iy∗

]
[n] = Ir(l∗[n]) + Cy[n] In(l∗[n]), (5.14)

where the position of the curvilinear arc Ir is given in (2.2) and the normal vector
In(l[n]) is defined in (2.10).

Since we assume that the host vehicle drives parallel to the curvilinear lane center,
we initialize the yaw angle using the local tangent angle

Iψ∗[n] = Iτ(l∗[n]), (5.15)

where Iτ is given in (2.3).
At this point, we have formulated initial guesses for the position, yaw angle, and

velocity of the host vehicle for all time steps n = 0, . . . , N as well as the arc length
variable l for lane keeping. We initialize all other state and control variables as zero
giving us the initial guess for the vehicle state vector and controls,

s∗[n] =
[

Ix∗[n] Iy∗[n] v∗h [n] 0 Iψ∗[n] 0 0 0
]T
,

u∗[n] =
[
0 0

]T
∀n,

z∗ = 100. (5.16)

Initialization of the separating hyperplane variables Next, we need to find an ini-
tialization for the auxiliary variables for collision avoidance Ib[n] and Iφ[n] to satisfy
the anti-collision constraints (4.18). In our experiments, we have observed that the
initialization of the separating hyperplane is critical for the ability to converge to a
feasible solution of the OCP. In fact, we have not observed any optimization that
has successfully converged when the initialization did not satisfy the anti-collision
constraints for all time steps.

In the following, we assume that we have chosen an initialization for the position
and yaw angle where the geometries do not intersect. As illustrated in Figure 5.2, we
construct the hyperplane such that it is perpendicular to the shortest line between the
host and obstacle bodies. This amounts to finding points inside the host vehicle and
obstacle polyhedrons Bh[n], Bobs[n] with minimal Euclidean distance. Formally, we
solve the following optimization problem for each time step n:

p∗h[n], p∗obs[n] = arg min
ph∈Bh[n]

pobs∈Bobs[n]

‖ph − pobs‖2 . (5.17)

67

Chapter 5. Numerical Criticality Labeling and Simulation Results

Bh[n]

Bobs[n]

In[n] Iφ[n]

Ib[n]

p∗obsp∗h

Figure 5.2: Separating hyperplane initialization

This is a convex quadratic optimization problem which is easily solved using off-the-
shelve optimization routines. Given the minimum distance points p∗h[n] and p∗obs[n],
a separating hyperplane defined by its offset Ib[n] and the angle of its normal vector
Iφ[n] (ref. (4.17)) is easily computed as perpendicular to the line connecting p∗h and
p∗obs[n]. We can compute the angle of the normal vector as

Iφ[n] = arctan

(
∆py
∆px

)
, ∆p = p∗h − p∗obs[n], (5.18)

where ∆px,∆py are the x and y components, respectively, of the vector ∆p. To
compute the hyperplane offset Ib[n], we need to project the point p = 0.5(p∗h +p∗obs[n])

of the hyperplane onto the normal vector, i.e.,
Ib[n] = InT

φ [n]p, p = 0.5(p∗h + p∗obs[n]). (5.19)

where the normal vector Inφ is defined in (4.17). It is possible to come up with
many alternative construction techniques for the separating hyperplane and we have
experimented with a few other heuristics. The proposed construction technique for the
separating hyperplane has the useful property that it does not introduce any additional
tuning parameters.

In order to further understand the utility of using the multiple-shooting method
over the single shooting method, it is instructive to consider how an initialization
for a single-shooting formulation would have to be derived. In a single-shooting
formulation, the state vectors s[n] are not variables of the nonlinear program. Instead,
they are computed from the initial state s0 and the control variables u[n] by integrating
over the interval [0, tn], i.e.,

ŝ[n] = F(n∆t; s0,u[0], . . . ,u[n− 1]). (5.20)

Therefore, an initial guess for the solution of the single shooting formulation must be
formulated in terms of the control variables u[n], i.e., in terms of the rate of change
of the tangential tire force Ft[n] and the rate of change of the steering angle δ[n].
Evidently, such an initialization would be more cumbersome to formulate than the
initialization derived in this Chapter which relies on intuitive geometry and kinematics.

68

5.3. Regularization, Scaling, and Multi-Start

0 5 10 15 20 25 30 35 40 45 50 55 60 65
−5

0

5

10

15

x[m]

y
[m

]

unregularized
regularized
obstacle

−6−4−2246

−6

−4

−2

alat[m/s2]

alon[m/s2]

unregularized
max. accel.
regularized
max. accel.

Figure 5.3: Effect of regularization of the cost function on an evasion maneuver on a
curved lane. Top: top-down view of the evasion maneuver. Bottom: acceleration over
time. Scene tuple: vh = 27m/s, Cy = −1.66m, ∆x0 = 14.9m/s, vobs = 16.5m/s,
aobs = −0.3m/s2, Bl = Br = 4.9m, 1/c0 = 475m, κ = 2.54 · 10−51/m2.

5.3 Regularization, Scaling, and Multi-Start

The numerical solution of the criticality OCP (4.47) can lead to solutions that are
locally optimal with respect to the cost function but that show unconvincing trajectories
after the initial avoidance maneuver.

To illustrate this phenomenon, Figure 5.3 shows the optimized trajectory for
an example scenario, once with and once without regularization, using the OCP
(5.7). Without regularization, the part of the trajectory that looks suspect are the
states after the initial collision avoidance maneuver (turning left): even though the
collision is already avoided, the host vehicle keeps decelerating as can be seen from
the acceleration plot. This seems unmotivated, since there is nothing in our OCP
formulation that encourages the host vehicle trajectory to try and reach a low-velocity
state.

69

Chapter 5. Numerical Criticality Labeling and Simulation Results

To understand this behavior, note that the vehicle states after the initial collision
avoidance do not influence the optimized cost of the OCP (5.7) since the host vehicle
does not have to avoid another collision. The impending collision is avoided during
the initial time steps n ≤ 15 where the peak of the acceleration norm is attained.
Since the peak of the acceleration norm does not depend on the control inputs for
n > 15, the optimized trajectory can take any shape for n > 15 as long as it satisfies
all constraints.

Regularization To obtain trajectories that tend towards low acceleration norms after
the collision has been avoided, we add a regularization component to the cost function
of the OCPs (4.47) and (4.51), i.e.,

min z ⇒ min

(
z + λ

1
N + 1

N∑
n=0

‖a[n]‖2

µ2g2

)
, (5.21)

where the longitudinal and lateral components of the acceleration vector a[n] are
functions of the state and control vectors s[n], u[n] as defined in (2.25) and (2.26).
The regularization factor λ > 0 is used to trade the trajectory simplicity against the
upper bound z of the acceleration norm. This regularization term penalizes the average
acceleration norm encouraging simple trajectories in the sense that steady-state driving
is penalized less than permanent braking and steering.

The regularization term does not significantly change the optimal value of the OCP.
Since the maximum is greater than the average acceleration, and since we constrain
the acceleration by ‖a[n]‖2

µ2g2 ≤ z ∀n in the criticality OCP (5.7) and (5.8), the relative
error due to the regularization term is bounded by

e2 =
λ 1
N+1

∑N
n=0

‖a[n]‖2

µ2g2

z

maxn
‖a[n]‖2

µ2g2 ≤z

≤ λ
1

N+1
∑N

n=0 ‖a[n]‖2

maxn ‖a[n]‖2︸ ︷︷ ︸
≤1

≤ λ, (5.22)

where we also assume that the friction coefficient µ is smaller or equal to one. In our
simulations we use a regularization factor of λ = 0.001. As the criticality is the square
root of zopt, this choice of λ makes the relative error e of the optimal criticality due to
regularization smaller than 3.2 percent. While the regularization does not significantly
influence the optimal value of the OCP it contributes to finding less complex evasion
trajectories than the unconstrained formulation.

The effect of the regularization is visible in Figure 5.3. Again, after the collision
with the obstacle is avoided, the host vehicle changes its trajectory from a left turn to
a right turn to not veer off the road. Then, the vehicle returns to a steady driving state
by reducing the longitudinal and lateral accelerations.

70

5.4. Simulation Results and Comparison of OCP Formulations

Table 5.1: Solver settings used for IPOPT

Setting Nb. mu_strategy obj_scaling_factor nlp_scaling_max_gradient

1 ’monotone’ 1 100
2 ’monotone’ 1 10
3 ’adaptive’ 1 10
4 ’monotone’ 0.1 100
5 ’adaptive’ 0.1 100

Solver Settings and Multi-Start Optimization The convergence speed and the ability
to find a feasible solution are noticeably influenced by the scaling of the OCP and
by the solution strategy employed in the numerical solver. Therefore, we employ a
multi-start approach which uses multiple solution runs of the same driving scene S
using a set of different settings for the IPOPT solver. For five different optimization
attempts, we varied the following parameters as listed in Table 5.1,

• mu_strategy, which determines the update strategy for the barrier parameter µ
used in the Primal-Dual Interior Point algorithm in IPOPT,

• obj_scaling_factor, which is a scaling factor applied to the cost function, and

• nlp_scaling_max_gradient which is the maximum gradient norm allowed by
gradient-based rescaling of the OCP.

The maximum number of iterations max_iter was fixed to 600 whereas all other
settings were left at their default values. A complete list of the possible solver settings
and their default values is available in the IPOPT documentation [116]. When
multiple solver settings successfully solved the OCP, the solution with the smallest
optimal value was retained. The multi-start procedure is summarized in Algorithm 2.
The solver settings in Table 5.1 were obtained via manual trial and error by the author.
A more exhaustive approach to the problem of finding optimal parameters for the
OCP solver could consist of a systematic parameter search, e.g., using Bayesian
Optimization [117] for the solver parameters that maximize the amount of successful
solutions on a set of driving scenes.

5.4 Simulation Results and Comparison of OCP Formulations

In this section, we evaluate whether the labels obtained by OCP labeling are well-
behaved in the sense that the labels are

• smooth, meaning that the estimated criticality should not fluctuate strongly for
small changes to a driving situation,

71

Chapter 5. Numerical Criticality Labeling and Simulation Results

Algorithm 2 Multiple start criticality labeling with varying solver settings

Require: scene tuple S, host vehicle parameters
initialize set of solutions C ← ∅
compute initial guess using (5.9) – (5.19)
for i ∈ {1, . . . , 5} do

solve (5.7) using IPOPT with Setting Nb. i, see Table 5.1
return feasible, optimized z, s̃[0], . . . , s̃[N],u[0], . . . ,u[0]

if feasible == true then
ci = z

C ← C ∪ ci
end if

end for
if C 6= ∅ then

compute criticality value c = min C
return c

else
return abort: no solution found

end if

• interpretable, i.e., the threat labels should align with intuition,

• available, such that a wide range of driving situations can be labeled.

To compare the different OCP formulations, we consider a set of rear-end collisions
with varying initial conditions of the host vehicle speed, the obstacle speed, and the
lateral position of the host vehicle on the road. All parameters of the OCPs are listed
in Table 4.2. The different formulations are all initialized as described in Section 5.2.
In our experiments we have used N = 30 control intervals for a prediction horizon of
T = 2.5s.

Analysis of an example scenario In Figure 5.4, we illustrate the computed avoidance
trajectories for a host vehicle velocity of vh = 15m/s. The lane width is set to
B = 3.5m and the prediction horizon has a length of T = 2.5. The upper half depicts
a top-down view of the avoidance trajectories while the lower half shows the traces of
the lateral and longitudinal accelerations throughout the prediction horizon. Note that
the acceleration for all OCP variants follows a common pattern: starting from zero
acceleration, the immediate collision with the obstacle is avoided by a joint braking
and steering maneuver. Going from point A to B, the deceleration increases faster
than the lateral acceleration. After the initial deceleration phase, the maximum lateral
acceleration for the collision avoidance is attained at point B which is almost pure

72

5.4. Simulation Results and Comparison of OCP Formulations

lateral acceleration. At this point, the collision avoidance constraints are satisfied for
the entire maneuver and the vehicle dynamics are primarily influenced by the lane
keeping constraint since the host vehicle has a significant yaw angle with respect
to the lane direction. To satisfy the lane keeping constraint, the acceleration vector
approximately traverses a semi-circle to achieve the maximum lateral acceleration
in the opposite direction at point D. Note that the traversal from A to C and from C
to D resemble each other. In both segments, the host vehicle velocity is reduced by
braking before the maximum lateral acceleration is attained, which is reasonable since
the maximum lateral acceleration can be reduced by reducing the host vehicle speed.

In the considered scenario, the use of the nonlinear tire model with force saturation
in MINA-NLT does not lead to a significantly different solution compared to the OCP
MINA-LT which shares the same cost function. This resemblance of the solutions of
MINA-NLT and MINA-LT can be seen even more clearly in Figure 5.5, where the
trajectories of the tangential tire force Ft, the steering angle δ and their respective
control inputs u1 and u2 are depicted. We can see that those states and controls
are strongly correlated. One way to understand this lack of impact due to the tire
limitations is to recall that both formulations, MINA-NLT and MINA-LT, share the
acceleration-norm cost function. This cost function leads to solutions that minimize
the peak acceleration which is tightly correlated with the peak tire force. In effect,
the optimization will always try to find trajectories that don’t bring the tire into force
saturation and instead keep it in the linear domain, see Figure 2.4. In the linear domain
of the tire, MINA-NLT and MINA-LT are equivalent which explains the observation.
Arguably, the biggest difference between the MINA-NLT and MINA-LT is the set of
feasible driving scenarios since the tire force saturation is equivalent to a constraint on
the tire force vector.

The trajectory obtained by solving the constraint minimization problem MINDYN-
LT differs significantly from the trajectories obtained by minimizing the acceleration
norm. Most importantly, in the acceleration trace of Figure 5.4, we can observe that the
constraint minimization approach leads to an avoidance maneuver with a higher peak
acceleration norm. At the same time, the control inputs u1, u2 of the MINDYN-LT
solution have smaller peak values compared to MINA-NLT and MINA-LT as can be
seen in Figure 5.5. This observation is explained by the structure of the cost function
of MINDYN-LT which balances the acceleration norm and the control inputs. Indeed,
we can observe that the peak ratios of the acceleration of the acceleration and control
inputs are approximately equal in this particular solution, i.e.,

max
n=0,...,N

‖a‖[n]

µ2g2 ≈ max
n

|u2[n]|
u2,min

≈ max
n

|u1[n]|
u1,min

= 0.7478, (5.23)

which is the criticality value of the simulated driving situation. The fact that these peak
values are equal is explained by noting that the peak acceleration and the control inputs

73

Chapter 5. Numerical Criticality Labeling and Simulation Results

are inversely coupled. In other words, the lateral or longitudinal acceleration peaks can
be lower if the accelerations are increased faster by using higher absolute steering and
force rates and vice versa. In the solutions of MINA-NLT and MINA-LT depicted in
Figure 5.5, this inverse coupling is manifested by the fact that the control inputs jump
to their maximum values right at the start of the avoidance maneuver. Conversely,
any criticality estimation based on avoidance accelerations that does not take rate
constraints into account, noticeably underestimates the peak avoidance accelerations.
In addition to rate constraints, actor dead times or the reaction times, which are not
considered here, can further increase the peak acceleration values.

Macro behavior of the OCP formulations In order to study the smoothness, inter-
pretability, and feasibility of the OCP formulations, we compute the criticality labels
of lateral avoidance trajectories for varying initial target distances, host vehicle speeds,
and lateral offsets. This allows us to analyze the effects that these parameters have on
the criticality values. Figure 5.6 depicts the criticality values c(S) obtained by solving
MINA-NLT, MINA-LT, and MINDYN-LT on a straight lane with width B = 3.5m.

An important observation is that the obtained criticality values are smooth and
monotonic functions of the initial distance, velocity and offset. The criticality increases
with the relative velocity and a larger overlap between the host vehicle and decreases
with distance which conforms well with intuition. Evidently, the fact that the optimal
control problems are non-convex does not stand in the way of obtaining interpretable
and smooth labels for complex avoidance maneuvers with braking and steering. There
is one simulation where we can observe sub-optimality in the solution for MINDYN-
LT with vh = 30m/s and y = 0m which is depicted in the bottom right subplot of
Figure 5.6. At a distance of approximately 22m the criticality value is noticeably
elevated compared to the neighboring criticality values. Thus, it might be possible
to find a lower criticality value for that particular scenario, e.g., by using multiple
different initialization techniques and choosing the best result.

For the scenarios with low relative velocity vh = 15m/s in the first row of Figure
5.6 we can observe almost no numerical difference between the criticality values
obtained by the different OCP formulations. As discussed above, the MINDYN-LT
OCP has to balance the peak acceleration and controls, which causes slightly higher
criticality labels for the scenarios with vh = 30m/s. Despite these small differences,
all considered solutions yield interpretable criticality labels for the considered scenario.

An important difference between the OCP formulations is the availability of
criticality labels. The control-input-constrained OCP MINA-NLT with tire force
saturation is unable to provide criticality labels for small obstacle distances. The OCP
version with a linear tire model MINA-LT provides the same criticality values for a
larger set of avoidance scenarios and is almost always able to provide criticality values
above one. Therefore, we can conclude that MINA-LT is preferable over MINA-

74

5.4. Simulation Results and Comparison of OCP Formulations

NLT for the criticality labeling task. The MINDYN-LT OCP can be solved even for
scenarios with a criticality larger than one, i.e., we are able to obtain a criticality value
even if the collision is physically unavoidable.

To summarize, all considered OCP variations can provide smooth and monotonous
criticality values. The constraint minimization OCP MINDYN-LT has the highest
availability at the cost of a slightly worse interpretability of the labels due to a more
complex cost function. A good compromise between interpretability and availability
is achieved by the optimization of the maximum acceleration with a linear tire model
as in the OCP MINA-LT.

75

Chapter 5. Numerical Criticality Labeling and Simulation Results

0 5 10 15 20 25 30
−5

0

5

10

x[m]

y
[m

]

MINA-NLT
MINA-LT
MINDYN-LT

−8−6−4−22468

−8

−6

−4

−2

A

B

C

D

alat[m/s2]

alon[m/s2]

MINA-NLT
MINA-LT
MINDYN-LT

Figure 5.4: Evasion trajectories with an initial velocity of vh = 15m/s and static
obstacle (hatched area) [69]. Left: top-down view, right: traces of longitudinal and
lateral acceleration. OCP variants: max-norm of acceleration with nonlinear tire
(green), linear tire (orange), maximum dynamics without input constraints (blue).

76

5.4. Simulation Results and Comparison of OCP Formulations

0 1 2
−1

−0.5

0

0.5

1

t[s]

δ[
ra

d]

MINA-NLT
MINA-LT

MINDYN-LT

0 1 2

−0.4

−0.2

0

0.2

0.4

t[s]

u
2[

ra
d/

s]

0 1 2

−2

−1

0
·104

t[s]

F
t[

N
]

0 1 2

−1

−0.5

0

0.5

·105

t[s]

u
1[

N
/s

]

Figure 5.5: Evasion maneuver with vh = 15m/s and static obstacle: steering angle,
tangential tire force, and control inputs

77

Chapter 5. Numerical Criticality Labeling and Simulation Results

10 20 30 40
0

0.5

1

1.5

2

vh,0 = 15 m
s

target distance

cr
iti

ca
lit

y
c(
S)

MINA-NLT

y=-2
y=-1
y=0

10 20 30 40

vh,0 = 15 m
s

target distance

MINA-LT

y=-2
y=-1
y=0

10 20 30 40

vh,0 = 15 m
s

target distance

MINDYN-LT

y=-2
y=-1
y=0

10 20 30 40
0

0.5

1

1.5

2

vh,0 = 30 m
s

target distance

cr
iti

ca
lit

y
c(
S)

10 20 30 40

vh,0 = 30 m
s

target distance
10 20 30 40

suboptimality

vh,0 = 30 m
s

target distance

Figure 5.6: Criticality values on a straight road segment with a static obstacle and
varying lateral offsets. From top to bottom: initial host vehicle velocities of 15m/s and
30m/s. From left to right: alternative OCP formulations as summarized in Table 4.1.

78

Chapter 6

Criticality Estimation via Supervised
Machine Learning

In this section, we detail how to exploit the ability to generate criticality labels using
optimal control by training a criticality estimator using supervised machine learning.
In the context of active safety and autonomous driving, machine learning has led to
breakthroughs in object detection for vehicles, bicycles, and pedestrians as well as for
lane marking and traffic sign recognition. These applications have in common that
they solve problems that are very hard to formulate using analytical, physics-oriented
models and algorithms. Thus, one motivation for using a machine learning approach
in a safety critical environment is the lack of a simpler analytical approach that offers
competitive performance. In the context of this thesis, the use of statistical models
offers the ability to estimate the criticality of avoidance trajectories with curvilinear
road boundaries without incurring the computational cost of solving a full-blown
optimal control problem in an online algorithm. We can therefore hope to combine the
precision of the OCP approach with the real-time capability of supervised machine
learning.

The statistical learning approach to online criticality estimation is depicted in
Figure 6.1. Typical for supervised learning, we distinguish between the offline or
training phase of the criticality estimator and the online operation. For the offline
training, we generate a dataset Dtr consisting of a feature vector zi for each driving
scene Si and its criticality label ci. We restrict ourselves to the MINA-LT version
of the labeling OCP (see, Table 4.1) as it provides a good compromise between
interpretability and feasibility.

The feature vectors zi are derived from the scene tuples Si using a feature extrac-

79

Chapter 6. Criticality Estimation via Supervised Machine Learning

Offline

Synthetic
Driving Scenes
{Si}i∈I Feature

Generat.
zi = f(Si)

Labeling-
OCP

ci = c(Si)

{ci}i∈I

Random Forest
Regression

{zi}i∈I

ĉ = gRF(z[n])

Criticality Estimate

Real World
Driving Scene

Exteroceptive
Sensors

Object & Lane
Detection

Feature
Generat.

z[n] = f(S[n])

S[n]

z[n]

Figure 6.1: Overview of the statistical learning approach to criticality estimation using
labels from optimal avoidance control

tion function f : X → RS′ , Si 7→ zi. Here, X is the set of driving scenes and S′ is
the number of extracted features. We determine the type and number of features to
extract using supervised feature extraction as detailed in Section 6.3.

After training the criticality estimator during the offline phase, the parameters of
the estimator are kept fixed during the operation of the vehicle. During this online
phase, the host vehicle observes its dynamic state and the state of the environment using
a multitude of sensors, from accelerometers and gyroscopes for the dynamic state to
cameras, radar, and lidar sensors. In currently available sensors and electronic control
units, a highly developed signal process chain extracts interpretable information like
object classes, relative velocities, or lane markings from the raw sensor data. In our
application to criticality estimation, all elements necessary to construct the entries
of the scene tuple S[n] have to be available on the BUS system of the vehicle. We
detail the scene tuple extraction from BUS data in Appendix A. The feature extraction
function f used during the offline training of the criticality estimator is also used
online to compute the feature vector z[n]. Based on this feature vector, the criticality
is estimated by the criticality estimator.

A prerequisite for training the criticality estimators is a set of driving scenes
{Si} which we can label and exploit for feature extraction and learning. To this end,
we define a probability density function which we use to generate synthetic driving
scenes. This scene sampling method is described in Section 6.2. For the criticality
estimator, we employ Random Forest Regression [56] which we motivate and detail in
Section 6.1. In Section 7, the supervised criticality estimation approach is evaluated on
synthetic data and on a resimulation real-world testing of dynamic collision avoidance
on a test track.

80

6.1. Random Forest Regression

6.1 Random Forest Regression

The Random Forest (RF) is a flexible and well-established machine learning technique
that is equally appealing for classification, regression, and feature selection [56].
Random Forests are a so-called ensemble method, which derives its predictive accuracy
from aggregating the predictions of large set Classification and Regression Trees
(CART) [118], which are a form of decision tree (DT). Decision trees are invariant to
strictly monotone scaling of the input features, resist the addition of uninformative
features, are fast to construct and easily inspectable and interpretable [119, Ch. 10.7].
While losing the interpretability of DTs, Random Forests maintain all other favorable
properties of DTs while offering significantly improved predictive accuracy compared
to DTs. Another important consideration in favor of RF is the low number of tunable
parameters that must be set for the training of the RF. Furthermore, an RF classification
or regression model can be easily extended to include categorical features as inputs,
e.g., such as traffic signs or the state of a traffic light for application in active safety.
These properties make Random Forests an attractive choice for nonparametric (i.e.,
model-free) regression and classification tasks where meaningful features are available.

The Random Forest algorithm presented in the following was originally described
in [56]. A derivation of the mathematical basis for RFs from first principles can be
found in [67, Ch. 2.2]. We largely follow the derivation in that source.

6.1.1 Classification and Regression Trees

Classification and Regression Trees [118] divides the feature space Z , which can be
assumed to be RN for simplicity, into a set of disjoint partitions Pn, Pn ∩ Pm 6=n = ∅
given by the partition index n ∈ N . Thus, a CART assigns every element of the feature
space to a unique partition n [67], which is expressed by the partition assignment
function τ ,

τ : Z → N , z 7→ n. (6.1)

To each element in the partition Pn, a common output value ν(n) is assigned. The
CART estimate for the label of a feature vector is therefore given by

gDT(z) = ν(τ(z)). (6.2)

The partitioning of the feature space of a CART is represented by a binary tree as
illustrated in Figure 6.2. To predict the label of a feature vector z, we start at the root
of the tree and, at each decision node, compare one dimension of the feature vector to
the threshold value at that node. Depending on whether the entry of the feature vector
is larger or smaller than the threshold, the corresponding branch is followed. This
procedure is repeated until a leaf of the tree is reached which represents the partition

81

Chapter 6. Criticality Estimation via Supervised Machine Learning

feature vector z

z1 > 0.3

P1

false

z2 > 0.7

z1 > 0.5

P2

true

P3

true

false

P4

true

true

0.3 0.5

0.7

P1

P2

P4

P3

z, τ(z) = 3

z1

z2

Figure 6.2: Left: binary tree representation of a CART example. Right: resulting
partitioning of R2 and the assignment of a query feature vector z to partition P3.

n with the leaf value ν(n) which is the predicted label of the query vector z. The
learning task of a CART consists of inferring all aspects of the binary tree, namely,

• the feature used for each split,

• the threshold value of each split,

• whether to refine a partition by splitting it into smaller partitions,

• and the label estimate ν for each partition.

We denote by Ln the set of all labels (either discrete class labels or real-valued) of
the training data that are assigned to a partition n by the CART, i.e.,

Ln = {yi : τ(zi) = n, (zi, yi) ∈ Dtr}, (6.3)

where Dtr is the training data set. For regression with a mean squared error loss, the
label estimate of a partition n is the mean value of Ln, i.e.,

ν(n) =
1
|Ln|

∑
ci∈Ln

ci. (6.4)

For classification, the estimate ν(n) is given by the majority class label in the
partition, which writes as,

ν(n) = arg max
j

|{i : c̃i = j, c̃i ∈ Ln}| . (6.5)

The joint optimization of the feature space partitioning and partition estimates ν
is computationally intractable [119]. Instead of performing such a joint optimization,

82

6.1. Random Forest Regression

the CART algorithm employs a greedy splitting strategy. This means that the decision
how to refine a partition into smaller partitions is only based on the training data inside
the partition and that each splitting decision maximizes the immediate improvement
in the prediction performance without considering splitting decisions further down the
tree.

To refine a partition Pn into two sub partitions Pa and Pb, the scalar element zd
of the feature vector that is used for the binary split, as well as the splitting threshold
s has to be determined. The optimal splitting dimension d∗ and threshold s∗ minimize
the splitting criterion [119],

d∗, s∗ = arg min
d,s

min
νa

∑
ci∈La(d,s)

(ci − νa)
2 + min

νb

∑
ci∈Lb(d,s)

(ci − νb)2

 , (6.6)

where the sub partitions Lb and La depend on the splitting dimension and threshold
and the inner mean squared error optimizations are solved by (6.4). Applied to
classification problems, the splits have to minimize a so-called node impurity measure
Q(P) of the sub partitions Pa and Pa,

d∗, s∗ = arg min
d,s

(
min
νa

Q(La(d, s) + min
νb

Q(Lb(d, s)

)
. (6.7)

The impurity measure quantifies the diversity of the class labels within the partition.
Well known choices are the misclassification error, the Gini index and cross-entropy
[119, Ch. 9.3].

The recursive splitting of the feature space partitions is stopped once each parti-
tion contains only a certain number nsplit,min of training samples, which is a tuning
parameter. It is typical to choose a small number for nsplit,min and then apply pruning
strategies (with their own set of parameters) to the grown CART to avoid overfitting.
The reader is referred to [119, Ch. 9.2.2] for an overview of these pruning strategies.

6.1.2 The Bias-Variance Trade-off for Random Forest Regression

To estimate the generalization of an estimator, we consider the mean squared prediction
error at query point z. The query point z and its label c are not part of the training set
Dtr. The estimate at z is given by g(z,Dtr), where g(·,Dtr) is a regression estimator
fitted to the training data set Dtr. The random variables must be considered when
estimating the generalization error are the random data set Dtr and the random label c.
It is further assumed that the label depends on a deterministic but unknown function
f and a white Gaussian noise term ε with variance σ2

ε and zero mean such that
c = f(z) + ε. For convenience, we abbreviate the estimate at z as g(z,Dtr) = ĉ.

83

Chapter 6. Criticality Estimation via Supervised Machine Learning

The generalization is measured by the expected value of the squared prediction
error with respect to the random variables c,Dtr, i.e.,

Ec,Dtr|z

[
(c− ĉ)2

]
= E

[
c2]+ E

[
ĉ2]− 2 E [cĉ] ,

= Var [c] + E [c]2 + Var [ĉ] + E [ĉ]2 − 2 E [cĉ] ,

= σ2
ε + Var [ĉ] + E [c]2 + E [ĉ]2 − 2 E [(f(z) + ε)ĉ] ,

where we have used that fact that for any random variable X we have E
[
X2
]

=

Var [X]+E [X]2. By noting that E [c] = f(z) and that the label noise ε is uncorrelated
to the estimate ĉ, we can further rewrite this expression to

Ec,Dtr|z

[
(c− ĉ)2

]
= σ2

ε + Var [ĉ] + f(z)2 + E [ĉ]2 − 2f(z) E [ĉ] ,

= σ2
ε + Var [ĉ] + (f(z)− E [ĉ])2,

= σ2
ε + Var [ĉ] + (E [f(z)− ĉ])2,

= σ2
ε + Var [ĉ] + Bias[ĉ]2. (6.8)

This is the famous bias-variance decomposition of the generalization error [119]. It
consists of the variance of the estimator, its squared bias, and the label noise variance
σ2
ε , which poses a lower bound on the achievable generalization error.

An estimator with a low model complexity tends to have a large bias term as it
is not able to adequately approximate the available data. Consider, for example, the
constant estimator, ĉ = const, which has the lowest possible complexity. It will have
a high bias term since it does not fit to the data and it has a variance term of zero. On
the other hand, if an estimator has a high complexity, it can fit to the data to a high
degree, reducing the bias term. It will also be more susceptible to the random sample
realization of the training data Dtr and can fit to the label noise ε, which increases the
variance term [119].

Analyzing the bias-variance tradeoff for an ensemble of CART learners gives an
intuition about the appeal of ensemble methods in general and the Random Forest in
particular. The regression function for an ensemble of NL CARTs learners gDT,l is
given by the mean of the ensemble predictions, i.e., ĉ = 1

NL

∑
l gDT,l(z). Inserting

into the bias-variance expression (6.8) yields

Ec,Dtr|z

[
(c− ĉ)2

]
= σ2

ε + Var

[
1
NL

∑
l

gDT,l(z)

]
+ Bias

[
1
NL

∑
l

gDT,l(z)

]2

.

(6.9)

The bias term of the generalization error is reduced by leaving the CART base-learners
unpruned, allowing them to tightly fit to the data which reduces their bias term.
Compared to the variance of a single CART learner, the variance of the Random Forest

84

6.1. Random Forest Regression

is reduced by averaging over the predictions of the ensemble. A prerequisite for the
successful reduction of the variance term is that the base-learners in the ensemble
are uncorrelated [56]. The Random Forest algorithm achieves a decorrelation of
its base-learners by the combination of bootstrap aggregation and random feature
selection, which are explained in the following.

6.1.3 Bootstrap Aggregation and Random Feature Selection

Random Forests [56] combine the concepts of bootstrap aggregation or bagging and
random feature selection to improve upon the prediction performance and robustness
of a single CART. To predict the label of a feature vector, it aggregates the predictions
of the individual base learners using either the mean prediction of the base learners
for regression or a majority vote for classification.

Each individual CART gDT,l is trained on a so-called bootstrap sample. A bootstrap
sample Dl is obtained from the training data set Dtr by resampling M = |Dtr| times
with replacement. Training each CART on individual bootstrap samples improves the
generalization of the random forest ensemble and allows to estimate the correlation of
the base learners as well as the generalization performance of the RF ensemble [56,
Ch. 3.1].

In addition to the random bootstrap sampling, random feature selection is used
during the training of each CART. This means, that each splitting decision can only
use a random subset of size nfeatures < S′all of all S′all elements of the feature vector
z. Using a random subset of features makes the Random Forest robust to noise
and uninformative features. Furthermore, it decorrelates - in tandem with bootstrap
sampling - the individual CART learners. This decorrelation of the base learners
reduces the variance of the prediction error as discussed above.

The random subset of features Id that is considered for a splitting decision depends
on the random variable θsplit which is represented by the urn model of drawing S′

times without replacement from an urn that contains the feature indices. For a single
split of a single CART in the RF ensemble, the randomized splitting criterion can now
be written as

Id = {d1, . . . , dS′} ∝ θsplit

d∗, s∗ = arg min
d∈Id,s

min
νa

∑
ci∈La(d,s)

(ci − νa)
2 + min

νb

∑
ci∈Lb(d,s)

(ci − νb)2

 , (6.10)

where, as with the default CART, Lb and La denote the sub partitions that depend on
the splitting dimension and threshold and the inner mean squared error optimizations
are solved by (6.4).

This splitting criterion is applied recursively for each CART in the ensemble until
each tree is fully grown, i.e., until all partitions contain only a single training sample.

85

Chapter 6. Criticality Estimation via Supervised Machine Learning

Furthermore, the decision trees not pruned after training. Each single CART in the
ensemble is therefore susceptible to overfitting the data. However, the Random Forest
still achieves a low prediction bias by aggregating the predictions of all base learners.
In [56], this observation is confirmed by theoretical and empirical study.

Formally, the prediction of a random forest with ensemble size NL writes as

R 3 gRF(z) =
1
L

NL∑
l=1

gDT,l(z,Dl, θsplit,l), (6.11)

where gDT,l(z,Dl, θsplit,l) denotes the prediction of the l-th CART, Dl is the random
bootstrap sample given to each CART for training and θsplit,l is the random variable
for input selection at each split.

In order to obtain a class prediction, the majority class among all NL predictions
is chosen. With N possible output classes c̃1, ..., c̃N , the RF prediction is

{c̃1, ..., c̃N} 3 gRF(z) = arg max
n∈1,...,N

{V1, . . . , VN}, (6.12)

where Vn indicates the number of learners gDT,l(z,Dl, θsplit,l) of the ensemble that
predicted the n-th class.

Uncertainty measures and percentiles Ensemble predictions can also be used to
obtain a measure of uncertainty of a prediction in terms of the prediction variance, i.e.,

Var ĉi =
1

L− 1

NL∑
l=1

(gDT,l(zi,Dl, θsplit,l)− ĉi))2. (6.13)

The uncertainty of a class prediction can be quantified by the relative frequency of the
majority vote,

P =
Vn
NL

, (6.14)

which gets closer to one with a higher prediction certainty of the RF. These measures
can be used to reject the activation of an active safety system if the variance of the
estimate is below a certain threshold leading to increased robustness of the system.
We can also use the ensemble to estimate percentiles of the criticality, that is,

ĉp = arg min
ĉ

ĉ, s.t. |{ĉl : ĉl ≤ ĉj}| ≥ pNL, (6.15)

where NL is the ensemble size and ĉl, l = 1, ..., NL are the predictions of the
individual learners gDT,l. The ensemble predictions of an RF can also be used to
approximate the full conditional distribution of the predicted variable as proposed in
[120] as the Quantile Regression Forest.

86

6.2. Stochastic Scene Sampling

6.1.4 Out-of-bag error estimates

Each bootstrap sample Dl contains about two thirds of the unique feature-label pairs
of the original training data set Dtr, since the bootstrap data is drawn from the training
data with replacement. Therefore, it is possible to estimate the generalization error
of the Random Forest by measuring the so-called out-of-bag prediction error of each
individual learner. An OOB estimate for the label of a training sample that is part
of the training set is obtained from the prediction of all CARTs of the RF ensemble
whose bootstrap sample did not contain the training sample, i.e.,

goob(zi;Dtr) =
1

Noob(zi)

∑
l:zi /∈Dl

gDT,l(zi;Dl, θsplit,l), (6.16)

Noob(zi) = |{Dl : zi /∈ Dl}|

where Noob(zi) is the number of trees that did not have (zi, ci) as an element of
their bootstrap training sample Dl. The authors of [121] have shown empirically that
the out-of-bag estimate of the generalization is as accurate as the error estimate of
predicting the labels of a test set the same size as the training set [56].

6.2 Stochastic Scene Sampling

For any form of machine learning, a set of training and test samples of feature vectors
zi is required for the training and evaluation of the statistical learner. In our case,
the feature vectors are extracted from scene tuples Si which contain a high-level
description of the host vehicle state and the state of the environment, see Section 2.2
for details.

A typical assumption in statistical learning is that the training samples of feature
vectors and labels {zi, ci}i=1,...,M are independent and identically distributed samples
of random variables with a joint probability density function (PDF) p(z, c), where
the PDF is typically unknown. Applied to criticality estimation in active safety, an
ideal training set would consist of detailed recordings of real-world driving scenes
with a mix of uncritical, stable driving, near-crash and crash events. The closest to
this ideal are naturalistic driving studies where the cars of test subjects are equipped
with data recording equipment for a prolonged period of time - up to more than two
years in the case of the SHRP2 study [122]. Fortunately, near-crashes and crashes
are rare events compared to most of the safe and crash-free everyday driving. This
lack of detailed recordings of near-crash and crash events motivates the following
derivation of a synthetic probability distribution for the scene tuples Si from a-priori
assumptions.

The goal of the stochastic scene model is to generate rear-end collision scenes
with intuitively reasonable lane geometries and dynamic states that lead to criticality

87

Chapter 6. Criticality Estimation via Supervised Machine Learning

vlane

c

B

Lane geometry

vh,0

Cy

ω

Host vehicle

vobs,0 ∆x0

aobs,0

tttc

Cyobs

Obstacle

Figure 6.3: Stochastic variables and conditional dependence structure for the stochastic
sampling of longitudinal collision scenes. Thick nodes: independent variables.

values ranging from uncritical to highly critical and unavoidable. We model the
road geometry, the host vehicle state, the time-to-collision, and the obstacle state
as stochastic variables. In order to generate a rear-end collision scene, we draw
realizations or samples from these stochastic variables.

The conditional dependence structure of the stochastic scene sampling is illustrated
by the graphical model in Figure 6.3. Here, an arrow going from a variable A to
B indicates that the distribution of B depends on the realization of A. To generate
random samples, we first sample from the independent variables (marked thick in
Figure 6.3) vh,0, tttc, and aobs,0. Then, incrementally, we draw samples from those
stochastic variables that depend on the sample realizations that have already been
drawn. For example, we can only draw a sample of the curvature ci ∼ pc|vlane

(c) if a
speed limit has already been drawn.

For simplicity, we use only uniform probability distributions in the following.
More elaborate distribution types like the truncated Gaussian distribution could be
used, but they would require parameter fitting, e.g., by analyzing naturalistic driving
data of driving simulator studies.

The independent variable time-to-collision is chosen as uniformly distributed, i.e.,

tttc,i ∼ ptttc(tttc) = U(0.5s, 2s) (6.17)

where U(a, b) is the uniform distribution on the interval [a, b]. Since the time-to-
collision is a common and simple surrogate value for the criticality of a driving scene
(see, e.g., [123]), the upper and lower bounds are chosen to lead to a large number of
critical scenarios without resulting in a majority of unavoidable collisions.

The criticality estimation should work equally well for a range of host vehicle
velocities. Therefore, vh,0 is also modeled as an independent, uniformly distributed
variable, i.e.,

vh,0,i ∼ pvh,0
= U(5, 35)m/s. (6.18)

88

6.2. Stochastic Scene Sampling

Table 6.1: Conditional probability of the design speed vlane of a lane segment

vh,0[km/h] 0 < vh,0 ≤ 60 60 < vh,0 ≤ 100 100 < vh,0

P (vlane = 50|vh,0)
1
3 0 0

P (vlane = 80|vh,0)
1
3

1
2 0

P (vlane = 120|vh,0)
1
3

1
2 1

For the design of the probability distribution of the road geometry, we take
inspiration from road construction laws in the German road construction regulation
[76]. There, the Entwurfsgeschwindigkeit or designated speed vlane of the road segment
determines the allowable curvatures, and rate of change of the curvatures of the
segment.

Note that for a given host vehicle velocity vh,0, only certain ranges of design
speeds are likely, assuming that the host vehicle does not grossly exceed the design
speed of the road segment. We distinguish between slow, medium, and high design
speeds and host vehicle speeds. Given a slow vehicle speed, the design speed may
vary from slow to high, since it is plausible to drive slowly on a segment with a high
design speed, e.g., due to congestion. Similarly, for a moderate vehicle speed, the
design speed may be moderate or high and for a high host vehicle speed, the design
speed may only be high. This reasoning motivates the conditional probabilities of the
design speed listed in Table 6.1.

For road segments with higher design speeds, the maximum curvature decreases
in order to limit the lateral acceleration during lane keeping. Thus, given a design
speed, we define the maximum curvature of the lane segment as

cmax =
1
rmin

, rmin =


80m if vlane = 50km/h

250m if vlane = 80km/h

720m if vlane = 120km/h

. (6.19)

These values are taken from German regulation for road construction [76]1. The
curvature is modeled as uniformly distributed between zero and its upper bound,

ci ∼ pc|vlane
(c) = U(0, cmax). (6.20)

Likewise, the lane widths Bl = Br = B are uniformly distributed, i.e.,

Bi ∼ pB|vlane
(B) = U (Bmin, Bmax) , (6.21)

1Only the numerical values are taken from [76]; the proposed sampling scheme is independent of the
regulation.

89

Chapter 6. Criticality Estimation via Supervised Machine Learning

where the upper and lower bounds again depend on the design speed of the lane
segment, i.e.,

(Bmin, Bmax) =

{
(2.75m, 3.25m) if vlane = 50km/h

(3.5m, 4.0m) if vlane ∈ {80km/h, 120km/h}
. (6.22)

In [76, Table 7], bounds on the clothoid rate of change of the curvature of the segment
are given by

κ ∈
[

1
A2

max
,

1
A2

min

]
, Amin =

1
3c
, Amax =

1
c
. (6.23)

In our simulations, we set the rate of change of the curvature to the center of the
allowed interval, i.e.,

κ = 0.5
1

A2
max

+ 0.5
1

A2
min
. (6.24)

Since the host vehicle has a width W , we limit the lateral position in the uniform
distribution

Cyi ∼ py
(Cy
)

= U(ymin, ymax). (6.25)

Here, the upper and lower bounds of the lateral offset ymin, ymax are Bi − 0.5W and
−Bi + 0.5W , respectively. Assuming that the host vehicle follows the lane curvature,
the initial yaw rate of the host vehicle is a function of the initial curvature ci, lateral
offset Cyi, and velocity vh,0,i,

ωi =
vh,0,i

ρ
, ρ =

1
ci
− Cyi, (6.26)

where ρ is the initial turn radius of the host vehicle.
It remains to determine the position, velocity, and acceleration of the obstacle.

Since we want to generate driving scenes that lead to a collision, it is reasonable
to upper-bound the obstacle velocity by the host vehicle velocity. The conditional
distribution of the obstacle speed is therefore chosen as

vobs,i ∼ pvobs,0|vh,0
(vobs,0) = U(0, vh,0,i). (6.27)

The obstacle is placed in the same lane as the host vehicle and blocks the whole lane,
see the restricted area in Figure 2.2. Finally, the obstacle acceleration is chosen as an
independent variable with the distribution

aobs,i ∼ paobs
(aobs) = U(−6ms−2, 0), (6.28)

where the deceleration limit of −6ms−2 represents are hard braking maneuver.

90

6.2. Stochastic Scene Sampling

Given realizations of the time-to-collision as well as the obstacle velocity and
acceleration, we compute the initial distance of the obstacle as the distance that leads
to the sampled time-to-collision value, i.e.,

tttc,i = tttc(∆xi, vh,0,i, vobs,i, aobs,i) (6.29)

The time-to-collision function tttc(·) for the solution of this implicit equations is given
in (6.41).

6.2.1 Training and Validation Datasets

We use the stochastic model of the scene probabilities to draw random driving scenes
which we can use for feature selection, training, and validation of the Random Forest
criticality estimator. First, we draw M scene tuples Si, i = 1, . . . ,M by sampling
the probability distribution functions of the scene geometry and kinematics given in
(6.17) to (6.29). Then, the criticality of each scene is added as a label by solving the
Optimal Control Problem (OCP) (4.47) as described in Section 4. The labeled dataset
is denoted as

D = {(Si, c(Si)}i=1,...,M , , (6.30)

where c(Si) is the optimal value of the MINA-LT version of the OCP (4.47).
For training and feature selection described in Section 6.4, we generated 7000

driving scenes. The labeling OCP converged to an optimal value for Mtr = 6681 of
those scenes. Similarly, in order to measure the performance of the trained estimators,
a validation dataset Dval of size Mval = 1906 (from 2000 scene tuples) is used that is
excluded from feature selection and training, i.e.,

Dval ∩ Dtr = ∅. (6.31)

In Figure 6.4, we plot empirical cumulative density functions (ECDF) of the lane
geometry and kinematics of the of the training and validation samples. Given a set of
N samples ai of a random Variable A, the ECDF is given by,

F(a) =
1
N
|{ai : ai ≤ a}|. (6.32)

The ECDFs confirm that the geometric and kinematic properties of the driving scenes
are evenly distribution on the whole domain of considered driving states without a
concentration of samples on any particular area of state space. The only variable that
shows a significant concentration is the distance ∆x between host and obstacle. This
is because the ∆x is chosen as a function of the relative velocity and acceleration in
order to achieve a desired time-to-collision tttc.

91

Chapter 6. Criticality Estimation via Supervised Machine Learning

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.25
0.5

0.75
1

tttc[s]

F
(t

ttc
)

−3 −2 −1 0 1 2 3
0

0.25
0.5

0.75
1

Cy[m]

F
(C
y
)

2.8 3 3.2 3.4 3.6 3.8 4
0

0.25
0.5

0.75
1

B[m]

F
(B

) training set Dtr

validation set Dtest

−6 −5 −4 −3 −2 −1 0
0

0.25
0.5

0.75
1

aobs,0[m/s2]F
(a

ob
s,

0)

10 15 20 25 30 35 40
0

0.25
0.5

0.75
1

vh,0[m/s]F
(v

h,
0)

−2,000 −1,500 −1,000 −500 0 500 1,000 1,500 2,000
0

0.25
0.5

0.75
1

1
c0

[m]

F
(

1 c 0
)

0 10 20 30 40 50 60 70 80
0

0.25
0.5

0.75
1

∆x0[m]F
(∆
x

0)

Figure 6.4: Empirical cumulative distribution functions of the training and validation
data generated by sampling from the a-priori distribution for collision scenes, ref.
Chapter 6.2

92

6.3. Feature Extraction

Table 6.2: Features for criticality prediction

Feature Type Meaning Variable, Formula

Scene data Lateral Offset z0 = ∆y

EGO velocity z1 = vh,0

Lane Curvature z2 = c

Lane Width, left z3 = Bl

Lane Width, right z4 = Br

Distance to OBS z5 = ∆x0

OBS velocity z6 = vobs,0

OBS acceleration z7 = aobs,0

Threat surrogates time-to-collision z8 = tttc, ref. (6.41)
Lon. avoidance acceleration z9 = ax, ref. (6.54)
Lat. avoidance acceleration z10 = ay, ref. (6.57)

Timings Distance over speed difference z11 = ∆x0
∆v0

Ratios Lateral and longitudinal distance z12 = ∆y
∆x

Offset over host velocity z13 = ∆y
vh,0

Acceleration initial radial acceleration z14 =
v2

h,0
c0

6.3 Feature Extraction

The performance of regression estimation is known to be highly dependent on the
availability of informative features. For criticality prediction, any quantity that contains
information about the traffic scene can be a feature, e.g., all elements of the scene tuple
S and any (non-) linear transformation of those quantities. We generate three types
of features. First are entries of the scene tuple S, ref (2.12). Second, we compute
so-called threat surrogates, i.e., simple predictors for the threat of a traffic scene.
These are the time-to-collision (TTC) tttc, as well as the longitudinal and lateral
avoidance accelerations ax and ay. Additionally, we compute the lateral acceleration
necessary for lane keeping. The third type of features are simple combinations of
entries of the scene tuples, e.g., distance ratios and timings. The generated features are
summarized in Table 6.2. While most of the features in Table 6.2 are very simple, the
threat surrogates time-to-collision and longitudinal and lateral avoidance acceleration
warrant a derivation. Let the distance, speed-difference, and acceleration difference of

93

Chapter 6. Criticality Estimation via Supervised Machine Learning

the obstacle and host vehicle at t = 0 be denoted as

∆x0 = Cxobs,0 − Cx0 − 0.5L, (6.33)

∆v0 = vobs,0 − vh,0, (6.34)

∆a0 = aobs,0 − alon,0, (6.35)

where L is the host vehicle length.

Time-to-collision

We compute the time-to-collision in one-dimension for constant accelerations. For
the obstacle, we assume that it accelerates with a constant acceleration but only until
it comes to a standstill. Thus, we distinguish between two cases. First, the collision
may occur before the obstacle comes to a halt. The distance over time is given by the
kinematic equation

∆x1(t) = ∆x0 + ∆v0t+ 0.5∆a0t
2. (6.36)

The collision occurs when the distance between the host and obstacle is zero. The
TTC is the smallest positive root of the quadratic equation (6.36), i.e.,

t1 = min{τ1, τ2 : τi ≥ 0}, τ1,2 =
−∆v0 ±

√
∆v2

0 − 2∆a0∆x0

∆a0
. (6.37)

In the second case, the collision occurs after the obstacle has come to a halt. Here, we
need to compute the time-to-standstill, i.e.,

t̄ = −vobs,0

aobs,0
. (6.38)

If t̄ < t1, the time-to-collision is given by the time it takes the EGO vehicle to reach
the position of the obstacle at the time-of-standstill with a constant EGO acceleration
and a standing obstacle. The kinematic equation for t ≥ t̄ becomes

∆x2(t) = ∆x(t̄) + ∆v(t̄)(t− t̄)− 0.5alon,0(t− t̄)2, . (6.39)

As for the first case (6.37), the time-to-collision is obtained from the distance over
time, i.e.,

t2 = min{τ1, τ2 : τi ≥ t̄,∆x2(τi) = 0}, (6.40)

The time-to-collision is therefore given as,

tttc =

{
t1, if t1 < t̄,

t2, otherwise.
(6.41)

Note that the time-to-collision is only well-defined if the kinematics actually lead to
a collision in finite time. This is ensured during the generation of driving scenes for
simulation and training as described in Chapter 6.2. During online operation, a finite,
positive TTC has to be used as a precondition for criticality estimation.

94

6.3. Feature Extraction

Longitudinal Avoidance Acceleration

The longitudinal avoidance acceleration is defined as the acceleration ax with minimal
absolute value that leads to a vanishing velocity difference between the obstacle
and host vehicle at the time of contact. In other words, it is the acceleration of
the host vehicle with least magnitude that avoids damage to the traffic participants.
The computation of the avoidance acceleration is more involved than the that of the
time-to-collision since the time of contact τ depends on the longitudinal acceleration.
We assume that the host vehicle acceleration immediately jumps to the avoidance
acceleration at the start of the prediction horizon. The acceleration difference between
the host vehicle and the obstacle becomes,

∆a0 = aobs,0 − ax, (6.42)

the following conditions hold at the time of contact τ :

∆x(t = τ) = 0, (6.43)

∆v(t = τ) = 0. (6.44)

As for the computation of the time-to-collision, we enumerate the cases τ ≤ t̄ and
τ > t̄, with t̄ defined in (6.38). Beginning with τ ≤ t̄, we have two equations for the
two unknowns τ1 and ax,1,

0 = ∆x0 + τ1∆v0 + 0.5τ 2
1 (aobs,0 − ax,1) (6.45)

0 = ∆v0 + τ1(aobs,0 − ax,1). (6.46)

Solving (6.46) for (aobs,0 − ax,1), we obtain the expression

(aobs,0 − ax,1) = −∆v0

τ1
, (6.47)

and inserting into (6.45) yields the time of contact as

0 = ∆x0 + 0.5τ1∆v0, (6.48)

⇒ τ1 = −2∆x0

∆v0
. (6.49)

The corresponding avoidance acceleration is obtained by inserting τ1 into (6.47):

ax,1 = aobs,0 +
∆v0

τ1
= aobs,0 − 0.5

∆v2
0

∆x0
,

In the case τ > t̄, we assume that the contact only occurs after the obstacle has come
to a halt. The obstacle position is therefore fixed, and the host vehicle velocity also
must become zero, i.e.,

xobs(τ2) = xobs(t̄), vobs(τ2) = vh,0 + ax,2τ2 = 0. (6.50)

95

Chapter 6. Criticality Estimation via Supervised Machine Learning

The avoidance acceleration therefore computes as

ax,2 = −vh,0

τ2
, (6.51)

where vh,0 is the initial host vehicle velocity. The position of the host vehicle at the
time of contact τ2 is given by

Cxh(τ2) = Cx0 + 0.5L+ τ2vh,0 + 0.5τ 2
2 ax,2 = Cx0 + 0.5L+ 0.5τ2vh,0. (6.52)

Since the position of the host vehicle front and the obstacle are equal at τ2, we obtain
the equation

xobs(t̄) = Cxh(τ2) = Cx0 + 0.5L+ 0.5τ2vh,0,

so the solution for the contact time and avoidance acceleration is

τ2 =
xobs(t̄)− Cx0 − 0.5L

0.5vh,0
, ax,2 =

0.5v2
h,0

Cx0 + 0.5L− xobs(t̄)
. (6.53)

The longitudinal avoidance acceleration can now be expressed as

ax =

aobs,0 − 0.5 ∆v2
0

∆x0
if τ1 ≤ t̄,

0.5v2
h,0

Cx0+0.5L−xobs(t̄)
otherwise.

(6.54)

Lateral Avoidance Acceleration

The lateral avoidance acceleration ay is computed under the assumption of constant
longitudinal acceleration and no coupling between longitudinal and lateral dynamics.
The avoidance problem is only treated in one dimension, which neglects the lateral
acceleration due to the lane curvature. It is the lateral acceleration with minimal
magnitude that shifts EGO sideways such that it can pass the obstacle. The assumption
of constant acceleration and decoupled dynamics yield

Cy(t) = Cy0 + 0.5t2ay. (6.55)

The time-to-collision tttc is the time when the distance between the front of the
host vehicle and the rear end of the obstacle is zero, assuming constant longitudinal
accelerations, ref (6.41). At that time, the lateral EGO coordinate Cy has to be equal
to the coordinate of the obstacles left rear corner plus half of the EGO width Wh to
avoid a collision, i.e.,

Cy(tttc) = yobs,0 + 0.5Wh = Cy0 + 0.5t2ttcay. (6.56)

This also assumes that the obstacle keeps its lane with a constant lateral offset yobs,0

as described in Section 2.2. We can now solve (6.56) for the lateral avoidance
acceleration, i.e.,

ay =
yobs,0 − Cy0 + 0.5Wh

0.5t2ttc
. (6.57)

96

6.4. Feature and Model Selection

6.4 Feature and Model Selection

In the following, we detail the feature selection and parameter search procedures used
for training the Random Forest criticality estimator. The goal of feature selection is
to determine the subset of all available features that maximizes the generalization of
the trained model, i.e., how many features are necessary and which features should
be used. This can also be necessary due to the curse of dimensionality [124] which,
for an increasing number of features, leads to a degradation of the approximation
performance of an estimator on theoretical grounds, as well as an intractable size of
the optimization problems that must be solved to parameterize an estimator. Apart
from improving generalization, using as few features as possible can significantly
improve the training and prediction times of the trained estimators.

Model selection is the process of determining the parameters of the ML algorithm
which are kept fixed during the training phase. These parameters are often referred to
as hyper parameters. They determine the complexity or flexibility of the functions
that can be represented using the machine learning model. As a rule of thumb, if the
approximating function is more complex than necessary for the dataset, the model
tends to overfit to the training data and perform worse on unseen data, a phenomenon
commonly referred to as overfitting. It is therefore the role of model selection, to
determine the set of hyper parameters that balances the flexibility of the learner
with the ability to generalize to data that is not part of the training set. A thorough
statistical treatment of overfitting and generalization in the context of machine learning
is provided, e.g., by statistical learning theory [125].

Feature selection and parameter search both require a score function that predicts
the generalization error of the model for the given features and parameters. We use
the so-called coefficient of determination (COD) [126]

r2 = 1−
∑M

i=1(ci − g(zi;Dtr))
2

σ2
c

, (zi, ci) ∈ Dtest,

σ2
c =

M∑
i=1

(ci − c̄)2, c̄ =
1
M

M∑
i=1

ci, (6.58)

where g is the regression function fitted to the training data Dtr. The COD relates the
amount of label variance that can be explained by the predictor variables of the feature
vector to the variance of all labels. It is a popular goodness-of-fit measure that get
closer towards the value one the better the regression function g(z) fits the data. As
discussed in [126], there are multiple definitions of the COD in the literature, of which
the above definition is recommended by the author of [126].

In order to estimate the generalization error of the Random Forest instead of the
training error, the COD is evaluated for the out-of-bag (OOB) samples of each tree of

97

Chapter 6. Criticality Estimation via Supervised Machine Learning

Table 6.3: Random Forest hyper parameters

(a) Hyperparameters used for greedy feature selection

Hyper parameter Variable Value

Ensemble size ntrees 1000
Features per split nfeatures nsqrt, see (6.64)
Min. nb. of samples per split nsplit,min 2
Max. tree depth dmax ∞
Split criterion MSE

(b) Hyperparameters used for grid search

Hyper parameter Variable Grid Values

Ensemble size ntrees {500, 1000, 1500}
Features per split nfeatures {nsqrt − 1, nsqrt, nsqrt + 1}
Min. nb. of samples per split nsplit,min 2
Max. tree depth dmax ∞
Split criterion MSE

the RF ensemble, see (6.16). The out-of-bag estimate of the COD is given by

r2,RF = 1−
∑M

i=1(ci − goob(zi;Dtr))
2

σ2
c

, (6.59)

where the Random Forest out-of-bag estimate goob(zi;Dtr) is defined in (6.16) and the
label variance σ2

c is given in (6.58).
Evaluating the score of every possible combination of feature set and hyper

parameters is prohibitive due to the exponential number of possible combinations
and the associated computational effort. Therefore, it is necessary to use suboptimal
heuristics for the parameter and feature selection. We proceed in two steps. First, we
perform a greedy search for the optimal number and type of features extracted from
the scene tuple. In the second step, we perform grid search of the hyper parameters for
each of the unique feature sets determined with greedy forward selection. The hyper
parameters for feature selection and grid search are listed in Tables 6.3a and 6.3b.

6.4.1 Greedy Forward Feature Selection

Feature selection determines a matrix S that selects a feature vector z(S) ∈ RS′ which
contains a subset of the feature vector of all available features zall(S) (given in Table

98

6.4. Feature and Model Selection

6.2), i.e.,

z(S) = Szall(S). (6.60)

A selection matrix S is a wide matrix where each row is a unit vector and all rows are
orthogonal. The set of selection matrices is given by

S =
{
S′ ≤ S′all, S ∈ {0, 1}S′×S′all : 1T

S′S = 1T
S′all

}
, (6.61)

where 1n is the all-ones vector of size n. The selection matrix is chosen such that
it optimizes the generalization performance of the machine learning algorithm on a
training dataset Dtr [57], i.e.,

S = arg max
S∈S

r2,RF(Dtr), s.t. Dtr = {Szall(Si), ci} (6.62)

where r2,RF is the score function given in (6.59) that measures the generalization of
the regression function and Si and ci are the scene tuples and criticality labels, see
(6.30). Greedy forward feature selection [127] is a feature selection heuristic that
iteratively adds a feature to the feature vector of the last iteration such that the new
feature vector maximizes the score function. This can be written as the iteration rule

e(m) = arg max
e∈{0,1}S

′
all

r2,RF(Dtr), s.t.,

Dtr = {S(m)zall(Si), ci}

S(1) = e(1),T, S(m) =

[
S(m−1)

eT

]
∈ S,∀m ∈ 2, . . . , S′ < S′all. (6.63)

This procedure yields a sequence of selection matrices S(m), m = 1, . . . , S′ that
contains the indices of the most informative features.

Since Random Forests are noisy by design, the results of the greedy forward
feature selection might vary from run to run. This element of noisiness is an inherent
property of statistical learning and therefore not unique to Random Forests. It is also
well known for cross-validation, see, e.g., [119], and should be taken into account
during model search.

During greedy selection, we use a fixed set of RF hyper parameters as detailed in
Table 6.3a. For the number of features per split nfeatures, we apply the formula

nsqrt =
⌈√

dim(z)
⌉
, (6.64)

where dim(z) is the dimensionality of the feature vector and d·e is the rounding-up
operation. Different versions of the square-root or the logarithm of the number of
features are commonly recommended as a starting point for the number of features per

99

Chapter 6. Criticality Estimation via Supervised Machine Learning

1 2 3 4 5 6 7 8 9

0.4

0.5

0.6

0.7

0.8

0.9

1

r2,baseline

nfeatures = 1 nfeatures = 2 nfeatures = 3

Number of features

G
oo

dn
es

s-
of

-fi
tr

2,
R

F

0.95

1

Figure 6.5: Goodness of fit in terms of the r2,RF score (ref. (6.59)) of greedy feature
selection using Random Forest Regression with hyper parameters given in Table
6.3b. The parameter nfeatures denotes the number of features considered for each split.
Dashed orange line: baseline performance, see (6.65).

100

6.4. Feature and Model Selection

split as it offers a compromise between decorrelating the trees of the RF and exploiting
the available features. The original paper [56] used nsqrt = b1 + log2 dim(z)c, where
b•c rounds to the next smaller integer.

In Figure 6.5 we depict the r2,RF score over the number of selected features for
ten runs of forward selection. As a baseline, we indicate the RF performance that
is achieved by using the same hyper parameters without any feature extraction and
selection, i.e., with the scene tuple as the feature vector, i.e.,

r2,baseline = r2,RF(Dtr), Dtr = {Si, ci}. (6.65)

Clearly, the performance of the RF criticality estimator exceeds the baseline with only
three of the hand-crafted features. We can also see from Figure 6.5 that the r2,RF score
for all feature selection runs is better than 0.95 and that the scores show a low variance
between runs.

Selected features and parameters In order to arrive at a single best feature set, we
chose the highest scoring feature set for each run of feature selection. These highest
scoring feature sets are candidates for the best feature set. For each candidate, we
perform a grid search (ref. Table (6.3b)) to individually determine the best set of hyper
parameters. The final combination of features and hyper parameters is the one that
yields the best generalization score.

In Tables 6.4a and 6.4b, we list the most informative set of features in the or-
der they were selected by greedy feature selection as well as the hyper parameters
found by grid search. The generalization score obtained using this feature-parameter
combination is r2,RF = 0.976. The first two selected features are the initial radial
acceleration for lane keeping and the lateral avoidance acceleration. Since we use the
MINA-LT OCP formulation for labeling, the criticality labels are proportional to the
maximum acceleration norm. The radial acceleration is a reasonable first selection as
it provides the minimum criticality for critical and uncritical driving scenarios. The
lateral avoidance acceleration as the second feature is also well interpretable since
we simulate avoidance maneuvers with significant lateral acceleration components.
A simple, hand-crafted feature that was selected is the geometric ratio between the
distance to the obstacle and the distance for lateral avoidance. The features relative dis-
tance, velocity, and acceleration features are highly indicative for the time-to-collision
and the necessary avoidance accelerations. While this motivates their selection, it
appears unintuitive that the time-to-collision itself was not chosen as a feature instead.
A possible explanation is that the TTC and avoidance acceleration are already repre-
sented by the lateral avoidance acceleration feature. Thus, adding the TTC as a feature
might only add redundancy and correlation among the features. Overall, the selected
features appear to be reasonable choices and lead to a generalization performance that
significantly exceeds the baseline performance of directly using the scene tuple as the

101

Chapter 6. Criticality Estimation via Supervised Machine Learning

Table 6.4: Best features and hyper parameters for criticality regression with a general-
ization score of r2,RF = 0.976

(a) Best feature set in the order of forward selection

Selected feature Variable, Formula

Radial acceleration z1 =
v2

h,0
c0

Lateral avoidance acceleration z2 = ay, see (6.57)
Distance z3 = ∆x, see 2.2

Geom. ratio: offset over distance z4 =
Cy
∆x

Object deceleration z5 = aobs,0, see 2.2
Relative velocity z6 = ∆v, see 2.2

(b) Best hyper parameters found with grid search

Hyper parameter Variable Value

Ensemble size ntrees 1500
Features per split nfeatures 4
Min. nb. of samples per split nsplit,min 2
Max. tree depth dmax None
Split criterion MSE

feature vector.

The greedy forward search described here is only one suboptimal way of feature
selection, see, e.g., [127] for an overview. A popular alternative to greedy forward
search is recursive feature elimination using Random Forests. There, starting from
a large set of features, the RF is used to compute feature importance scores, i.e., the
contribution of each feature to the generalization performance of the RF. The feature
importance is used to prune features from the feature set that do not contribute to
the RF performance. One caveat of such a recursive elimination approach is that it
requires the RF to attain a rather good fit to the data in order for the feature importance
to be meaningful and reliable. Indeed, the recursive elimination approach was not
successful for this application since the RF does not fit well do the data if given all
candidate features at once. An advanced combination of forward selection with feature
elimination is described in [57].

102

Chapter 7

Validation of Criticality Labeling and
Regression

In this section, we evaluate the performance of the criticality estimation based on
Random Forest regression described in the previous Chapter. First, we quantify the
generalization error of the estimator on a validation dataset, which is the standard
procedure of evaluating a regression model in machine learning. Second, we eval-
uate the prediction performance in hand-crafted scenarios, looking at the criticality
estimate compared to the label as the scenario evolves over time. Finally, we provide
resimulation results for driving scene recorded on a test track with a moving obstacle
vehicle on a bent road.

The criticality labels used throughout this chapter are based on the solutions
of the min-max acceleration OCP MINA-LT, as defined in 4.47. The training data
is generated using the stochastic scene sampling scheme described in Chapter 6.2,
while feature vector z and the RF hyper parameters are given in Tables 6.4a and 6.4b,
respectively. For the training and predictions of the statistical criticality estimator, we
use the Random Forest implementation of the Python library scikit-learn [128].

7.1 Generalization Error

Prediction residuals on the validation data Figure 7.1a depicts the criticality labels
ci and the prediction error or residuals ei = gRF(zi) − ci for a random subset of
five hundred predictions of the validation dataset, see Chapter 6.2.1. A goal of the
stochastic model for scene sampling described in Chapter 6.2 is the even coverage of
the entire criticality range. This goal is partially achieved. While the labels cover the
entire relevant range of criticalities from zero to one, the label density decreases with

103

Chapter 7. Validation of Criticality Labeling and Regression

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0.3

0

−0.3

−0.6

Criticality label c

R
es

id
ua

le
=
ĉ
−
c

RFbaseline ĉ = gRF(S)

RFopt ĉ = gRF(z)

(a) Overview of the label distribution and residuals

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.1

0

−0.1

−0.2

Criticality label c

R
es

id
ua

le
=
ĉ
−
c

0 0.5 1

CDF(ei)

(b) Samples ci ≤ 1, right: cumulative distribution of residuals CDF(ei)

Figure 7.1: Residual plots of a random subset of five hundred criticality labels from
the validation dataset

104

7.1. Generalization Error

increasing criticality. This can be caused by the structure of the stochastic scene model
itself, since it is not possible to directly sample the criticality value itself. Instead,
uniform distributions on surrogate values like the time-to-collision were used. More
importantly, scenarios with a high criticality might not be solvable by the OCP which
can contribute to the lower density of labels in high criticality areas.

We can also recognize the increasing absolute values of the residuals with in-
creasing criticality, particularly for the baseline RF. In Figure 7.1b, we focus on the
most relevant range of criticalities from zero to one. The marginal distribution of
the criticality labels ci is given by the gray histogram and confirms the diminishing
label density for high-criticality scenarios. For the baseline RF, a clear positive bias
can be seen for low criticality scenarios, meaning that it tends to overestimate the
threat. In contrast, the RF with feature selection shows no visible bias and retains a
low prediction variance over the whole range of criticalities.

Generalization score The generalization score of the Random Forest criticality esti-
mator with feature selection is r2 = 0.986 (see (6.58)). This score is slightly higher
than the score of r2,RF = 0.976 predicted by out-of-bag estimation is Chapter 6.4 (see
Table 6.4a and Figure 6.5). On one hand, this observation can have a random compo-
nent, since such summary statistics are random variables themselves. On the other
hand, out-of-bag estimates are known [56, Ch. 3] to underestimate the generalization
score since they only measure the performance of an ensemble of base learners that is
trained on two-thirds of the training data. Therefore, it is intuitive that the Random
Forest achieves a better generalization if it is trained on the entire training set.

The overall impression from the residual plots and generalization score is that the
Random Forest with feature extraction and selection achieves a significant increase in
the quality of criticality prediction compared to directly using scene tuples. With a
score of r2 = 0.986, the resulting criticality estimator generalizes reliably to unseen
data if that data is drawn from the same distribution.

One Random Forest prediction of a label in the validation dataset takes an average
of 300µs on an Intel core i7-3740QM processor. Thus, the RF criticality estimator
is clearly fast enough for use in real time situation interpretation algorithms. An
important drawback of the RF is its large model size since the decision trees of the RF
ensemble are unpruned [67]. If necessary for hard real-time application, the number
of comparisons needed for the RF prediction as well as the model size can be upper
bounded by limiting the number of trees and tree depth during the hyper parameter
optimization.

105

Chapter 7. Validation of Criticality Labeling and Regression

7.2 Evaluation on Synthetic Collision Scenes

In addition to the generalization score reported in the previous section, we can gain
insights into the criticality labeling and prediction technique by inspecting a range
of driving scenarios on a case-by-case basis. To this end, we simulate the criticality
of collision scenes on a grid of host vehicle velocities and obstacle velocities on a
straight road segment.

In each simulation, the host vehicle front and the rear end of the obstacle are placed
at an initial distance that corresponds to a time-to-collision of 2.4s. The velocities
of the host vehicle and of the obstacle are constant throughout the simulations. The
lateral position of the host vehicle with respect to the lane marking is Cy0 = −2m
and it is assumed that the obstacle blocks the entire lane it occupies, see Figure 2.2.
Both lanes have a width of Br = Bl = 4m. The simulation ends at the time t = 0, the
moment the host vehicle front intersects with the rear end of the obstacle.

For each point in time tn, we generate the corresponding scene tuple S[n]. Given
the scene tuple, we compute the reference label c[n] = c(S[n]) by solving the
criticality labeling OCP MINA-LT, see Table 4.1. We then compare the reference
labels to the criticality predictions ĉ[n] = gRF(z[n]) using feature vectors z[n] as
defined in Table 6.4a. As before, a Random Forest trained on the scene tuples is used
as a baseline.

Figure 7.2 depicts the labels and predictions over time for combinations of initial
host vehicle velocities vh,0 ∈ {10ms−1, 20ms−1, 30ms−1} and obstacle velocities
vobs,0 ∈ {0, 1

3vh,0,
2
3vh,0}.

Over almost the entire grid of velocities, the Random Forest estimator with feature
extraction gRF(z) achieves a very close fit to the criticality labels determined by
optimal control. One exception is shown in the top-right plot (vh,0 = 10ms−1, vobs,0 =

6.66ms−1), where the estimator shows a positive bias. The performance of the
baseline estimator without feature extraction reaffirms the necessity of judicious
feature engineering.

For all considered scenarios, the true criticality c lies within the ensemble per-
centiles ĉ5, ĉ95. Furthermore, it is evident that the difference ĉ95− ĉ5 correctly predicts
the adequacy of the criticality estimation of the Random Forest, which can be used for
a kind of self-diagnosis of a situation interpretation module. In the top-right scenario,
the percentile difference correctly indicates a low prediction accuracy.

The center right plot illustrates a drawback of the optimal control labeling tech-
nique. Although the scenario changes smoothly with time, the criticality label has
noticeable local jump as highlighted in the plot. One possible explanation is the
fact that the optimal control problem (5.7) is non-convex such that the numerical
optimization can only find local optima of the cost function. The outlier is likely to be
caused by the numerical solver converging to a local minimum or saddle point of the

106

7.3. Resimulation of a Dynamic Avoidance Maneuver

criticality cost function. Also note that the size of the interval ĉ95 − ĉ5 is increased
right where the label exhibits this instability. Since the Random Forest approximates
the behavior of the labeling OCP, the instability of the label at that point of the feature
space is reflected in the large spread of the ensemble predictions of the RF. Conversely,
it might be possible to detect non-optimal labels from the training dataset with the
goal of improving the label quality. The labeling procedure could be made more
robust against local optima, e.g., by employing global optimization techniques like
multi-start optimization with a diverse or even randomized set of initial guesses for
the initialization of the numerical optimization solver1.

7.3 Resimulation of a Dynamic Avoidance Maneuver

During the development and testing of active safety for series production cars, an
enormous amount of sensor data is recorded and archived, stemming from proving
grounds and public roads. An important reason for archiving this data is to comply
with laws and regulations, which require thorough testing and documentation of
safety critical systems. We can also use these recordings as test data to evaluate the
performance of new systems and safety functions in a cost and time effective way
without having to prepare a test vehicle. We refer to this approach to performance
testing as resimulation. Note that resimulation is necessarily open-loop, which means
that we cannot influence the state of the host vehicle, e.g., through braking or steering.
Nevertheless, we can evaluate the activation times of the criticality interventions. At
the same time, we can analyze - albeit only subjectively - the recorded video of the
driving scene to judge the adequacy of our algorithms. Applied to criticality estimation,
resimulation allows us to show that the proposed functionality is applicable to current
and future series production cars and sensor system or - in the negative outcome - to
find properties of current sensor systems or of the proposed functions that would make
the real-world implementation challenging or impossible.

7.3.1 Experimental Setup and Data Processing

Our test drives were recorded on a prototype of the 2016 AUDI Q7 Sports Utility
Vehicle equipped with a mono video camera for lane marking estimation and obstacle
detection. We obtain the host vehicle state, lane markings, and information about the
state of obstacles through the FlexRay protocol of the vehicle communication bus,
using series production sensors. During the test drives, the test vehicle is equipped
with a differential GPS system and high-precision gyroscopes, which send their state
estimates over the CAN bus. These are used to determine the position of the host

1Refer to Section 5.2 for the initialization technique.

107

Chapter 7. Validation of Criticality Labeling and Regression

−2 −1 0

0
0.

5
1

1.
5

time [s]

cr
iti

ca
lit

y
vh,0 = 10m/s, vobs,0 = 0.0m/s

OCP label c

−2 −1 0

0
0.

5
1

1.
5

time [s]

vh,0 = 10m/s, vobs,0 = 3.33m/s

RFopt ĉ = gRF(z)

Percentiles ĉ5, ĉ95

−2 −1 0

0
0.

5
1

1.
5

time [s]

vh,0 = 10m/s, vobs,0 = 6.66m/s

RFbaseline ĉ = gRF(S)

Percentiles ĉ5, ĉ95

−2 −1 0

0
0.

5
1

1.
5

time [s]

cr
iti

ca
lit

y

vh,0 = 20m/s, vobs,0 = 0.0m/s

−2 −1 0

0
0.

5
1

1.
5

time [s]

vh,0 = 20m/s, vobs,0 = 6.66m/s

−2 −1 0
0

0.
5

1
1.

5

local optimum
or saddle point

time [s]

vh,0 = 20m/s, vobs,0 = 13.33m/s

−2 −1 0

0
0.

5
1

1.
5

time [s]

cr
iti

ca
lit

y

vh,0 = 30m/s, vobs,0 = 0.0m/s

−2 −1 0

0
0.

5
1

1.
5

time [s]

vh,0 = 30m/s, vobs,0 = 10.0m/s

−2 −1 0

0
0.

5
1

1.
5

time [s]

vh,0 = 30m/s, vobs,0 = 20.0m/s

Figure 7.2: Criticality labels, predictions, and ensemble percentiles for collision scenes
with varying EGO and obstacle velocities on a straight road with widthBr = Bl = 4m
and initial lateral offset Cy0 = −2m

108

7.3. Resimulation of a Dynamic Avoidance Maneuver

vehicle and obstacle in an inertial coordinate system, which allows us to visualize the
movement over time.

During resimulation, the time series data available as CAN and FlexRay recordings
is replayed and serves as the input for scene interpretation. In order to use this real-
world sensor data for the evaluation of our criticality labeling and prediction approach,
we must map the data to our scene representation, which involves multiple steps, i.e.,
data quality assurance, time-series resampling, coordinate-transformation, and scene
extraction.

Data quality The first step that is necessary before we can label or estimate the
criticality of a scene is to make sure that all relevant signals for scene interpretation
are available with sufficient certainty. Lane markings, for example, cannot always
be detected by a video camera since they might not be present on the road or they
could be occluded by other vehicles or obstacles. To this end, quality indicators like
the likelihood of existence of a lane marking or standard deviations are available. We
remove time stamps from the resimulation where the likelihood of existence is below
0.8, which was determined to be an acceptable level of certainty by trial and error.
Those time stamps are then replaced by interpolation between adjacent time stamps.
In practice, it would be necessary to gracefully reduce the level of detail considered
for criticality labeling by removing constraints that depend on signals that are not
available in sufficient quality.

Time-series resampling Data sources like video, radar, and inertial sensors are
physically distributed throughout the vehicle and are integrated on different electronic
control units. Thus, they generally operate asynchronously, i.e., their signals are not
updated at same time or at the same rate. By resampling, we extract a time-series
vector of the necessary measurements with a common cycle time of T = 100ms.

In the following, we neglect the effects of jitter, i.e., fluctuations of the arrival
time of a signal, and signals that are not updated periodically. We use the index
j ∈ 1, . . . , Nv to distinguish between Nv signal sources, each with their own cycle
time and offset. The j-th signal available on the bus system is updated at the time
stamps

sj [m] = sj(tm), tm = τj +mTj , m ∈ 0, . . . , Ns − 1, (7.1)

where τj is the offset and Tj is the cycle time of the j-th signal.
The goal of the time series resampling step is to extract a signal vector,

v[n] =
[
v1(nT) . . . vNv(nT)

]T
∈ RNv , tn = nT, n ∈ N (7.2)

109

Chapter 7. Validation of Criticality Labeling and Regression

that contains all Nv signal sources and uses a common cycle time T . To obtain the
entries vj [n], we have to interpolate the values of the signals sj [m] at the time stamps
tn. A simple and very common way of interpolation is known as sample-and-hold,
where vj [n] is equal to the last value of the signal sj before the time nT . During
the runtime of the vehicle, we only have access to past samples of the signals, so
sample-and-hold can be a fine choice. Formally, the index of the last update sj [mj,n]

is given by

mj,n =

⌊
tn − τj
Tj

⌋
, (7.3)

where bxc maps a real number x to the largest integer smaller than x. The resampled
signal is given by

vj [n] = vj(nT) = sj [mj,n], (7.4)

In resimulation, we have access to the complete time series sj [m],m ∈ 0, . . . , Nj−
1 sampled at times tj,m. Therefore, we can use linear interpolation between sj [mj,n]

and sj [mj,n + 1] to derive v[n], i.e.,

vj [n] = sj [mj,n] + (nT − tj,mj,n)
sj [mj,n + 1]− sj [mj,n]

Tj
, (7.5)

with mj,n given in (7.4). In our experiment, we used linear interpolation to replace a
signal sj [m] if its variance was too high, see above.

Extraction of the scene model from BUS data The environment perception as well as
the positioning data of the host vehicle is available on its BUS system. This information
is provided in different coordinate systems, e.g., in ellipsoidal GPS coordinates and in
the host vehicle coordinate system. Before the environment perception can be labeled
by optimal control, the scene tuple representation S has to be extracted. Details on the
required data processing steps are provided in Appendix A.

Labeling and prediction After extracting the scene tuples S[n] from the resampled
signals v[n], we label the criticality values c[n] by solving the collision avoidance OCP
(5.7). The criticality estimates are computed by extracting the feature vectors z[n]

from the scene tuples and using them as inputs for the regression and classification
estimators.

7.3.2 Results of Resimulation

We consider a dynamic overtaking maneuver where the host vehicle keeps a velocity
of around 70kmh−1 while closing in on a vehicle with a speed of 40kmh−1 on a

110

7.3. Resimulation of a Dynamic Avoidance Maneuver

curved road. Shortly before a collision could occur, the host vehicle rapidly swerves
to the left to avoid a collision. The first row in Figure 7.3 contains snapshots of the
mono camera image at t1 = 8s, t2 = 9s, t3 = 9.7s. In all four snapshots, we fix
the origin of the Cartesian coordinate system to the position of the host vehicle in
the first snapshot and keep a trace of past lane markings for orientation. The second
row shows the scene representation according to the environment model defined in
Chapter 2, reconstructed from the sensor measurements. The criticality plot in the
third row shows the criticality as labeled by solving the numerical OCP (5.7), as
well as the real-valued criticality estimation obtained from Random Forest regression.
The reliability of the predictions is indicated by the 5 and 95 percentiles of the tree
predictions.

From the criticality plots it is evident that in the considered test case, the regression
estimate is a very close approximation to the reference label c. This confirms the
performance of the Random Forest criticality estimator observed in the residual plot
of Figure 7.1b and case-by-case evaluation in Figure 7.2.

Note that the label c itself is not available past t = 9.5, i.e., the numerical
optimization did not find a feasible avoidance trajectory. This observation is at
odds with the fact that we know from the recording that the collision is avoidable
- although only by an intense swerving maneuver. It is caused by the fact that our
OCP formulations assume that the host vehicle follows the lane parallel to the center
marking. This is appropriate for an assistance system that protects inattentive drivers.
After about t = 9.3s, this assumption no longer matches the dynamics of the real-
world vehicle. Specifically, the real vehicle continuously increases the yaw angle, yaw
rate, and steering angle during the start of the avoidance maneuver which builds up
the model mismatch. In consequence, the avoidance trajectory in the OCP simulation
would have to use a significantly higher lateral acceleration to avoid the collision.
Since the OCP takes into account upper and lower bound constraints on the steering
rate and braking force, the numerical solver is unable to find a feasible solution. Future
work should therefore expand the optimal control formulation for criticality labeling
to incorporate more dynamic initial state constraints.

111

Chapter 7. Validation of Criticality Labeling and Regression

t1
=

8.0s
t2

=
9.0s

t3
=

9.7s

8
8.1

8.2
8.3

8.4
8.5

8.6
8.7

8.8
8.9

9
9.1

9.2
9.3

9.4
9.5

9.6
9
.7

9
.8

0 0.5 1 1.5 2

Tim
e

[s]

Criticality

O
C

P
label

c
R

Fbaseline
ĉ

=
g

R
F (S

)
R

Fopt
ĉ

=
g

R
F (z)

Percentiles
ĉ

5 ,ĉ
95

Percentiles
ĉ

5 ,ĉ
95

Figure
7.3:C

riticality
labels

and
estim

ates
on

a
testtrack

w
ith

a
m

oving
obstacle

vehicle

112

Chapter 8

Conclusion and Outlook

Situation interpretation algorithms for active safety and automatic driving systems
require a measure of the criticality or threat of the current driving situation to plan and
trigger collision avoidance maneuvers. In this work, we have focused on the ground-
truth labeling and the prediction of the criticality of automatic collision avoidance
maneuvers with combined braking and steering in rear-end collision scenarios.

In the first part of this work, we have posed the criticality labeling problem in terms
of a trajectory optimization using nonlinear optimal control. As the cost function, we
have proposed to use the minimal maximum-norm of the acceleration vector during
a prediction horizon of a few seconds. This value measures the peak intensity of
the least intense avoidance trajectory [46]. Directly optimizing the criticality mea-
sure allows us to interpret the optimal values found by numerical optimization as a
lower bound of the threat of the driving scenario. We have improved upon previous
work by [46, 48] by formulating lane keeping constraints for general curvilinear lane
boundaries and anti-collision constraints for polyhedral obstacles based on separat-
ing hyperplanes. Furthermore, we have identified alternative combinations of cost
functions and constraint formulations and characterized the tradeoff between the feasi-
bility of the optimal control problem, its interpretability as a criticality value and the
necessary level of model detail.

In the second part of this work, we have exploited the ability to generate ground-
truth labels by developing a reliable criticality estimator based on Random Forest (RF)
regression to predict the criticality label in a computationally efficient way. For the
generation of training data for subsequent machine learning steps, we have introduced
an a priori probability distribution for the stochastic generation of critical longitudinal
collision scenarios on curved lane segments. We have generated and selected a set
of features using greedy forward feature selection that improves the generalization

113

Chapter 8. Conclusion and Outlook

score r2 of the Random Forest to over 98%. The quality of the feature vectors used
for the training of the Random Forest has a significant role in the accuracy of the
estimator which as shown by comparison to a baseline Random Forest that naively
uses the scene tuples for training. Using a combination of statistical performance
evaluation, simulations of collision scenarios, and the resimulation of a lateral collision
avoidance maneuver on a test track, we have validated the combination of optimal
control labeling and Random Forest regression for criticality estimation.

The high fidelity and execution speed of the RF criticality estimator makes it
suitable for real-time operation on an electronic control unit. It could also be paired
with model-based algorithms in safety-critical systems that require a diversity and
redundancy of algorithms and methodology [67]. Another application is the use of the
RF estimator for data mining of critical — and therefore informative and challenging
— driving scenes from large corpora of recorded driving data, e.g., from naturalistic
driving studies or large-scale vehicle validation campaigns.

Since machine learning approaches to situation interpretation can only ever be as
good or bad as the labeling process, they also inherit its inadequacies which points to
opportunities for future work. First, the current formulation of the OCP is restricted to
stationary lane following as an initial condition for trajectory optimization. It should
be extended to additional initial state constraints. An important drawback of labeling
with numerical optimal control is the fact that the numerical solver can get stuck in
local optima, thus failing to converge to the global optimum of the optimal control
problem. This leads to a kind of label fluctuation or label noise which increases
the variance of the regression estimator as illustrated in Chapter 7.2. While, in our
experience, these local optima are rare and only add a small perturbation to the label,
future work on criticality labeling should try to control and reduce local optima,
e.g., using multi-start optimization. The gold standard for the labeling of the desired
behavior of active safety systems lies in globally optimal or epsilon-optimal control
(see, e.g., [129]), which would avoid the issue of label noise altogether or provide a
known upper bound on the sub-optimality.

Next, the criticality estimator could be trained to predict multiple aspects of
criticality to provide a more nuanced situation interpretation, e.g., a combination of
last-time-to-act, avoidance acceleration, and collision probability. Learning algorithms
based on decision trees are trivially extensible to the multi-output case by just adding
the additional information to the leaf nodes of each decision tree. More advanced
techniques try and exploit correlations between these outputs to improve predictions,
see, e.g., [130] for an overview of multiple-output regression.

Another line of inquiry would try to take into account sensor noise and the
uncertainty of the behavior of other traffic participants. If a model of the sensor noise
and obstacle behavior is available, it can be exploited during the training of a quantile
regression forest [120]. The quantile regression forest could incorporate the sensor

114

noise and behavior uncertainty in the distribution of the ensemble predictions.
A vital direction for research on criticality regression is the exploitation of domain

knowledge in the regression problem, to improve the prediction performance and to
constrain the flexibility of the regression function. A step in this direction is made in
[70] by imposing monotonicity constraints on the regression function, e.g., to enforce
a monotone increase of the criticality value with increasing relative speed. During
feature engineering, the practitioner is often looking for features that have a monotone
relationship with the dependent variable, as seen in Chapter 6.3. Therefore, it appears
that many such monotone relationships could be exploited.

The use of machine learning for safety-critical systems like active safety systems or
autonomous driving is profoundly challenging from the perspective of functional safety
and validation due to the black-box nature of many machine learning paradigms. A
research direction that tries to pry open these black-boxes is referred to as explainable
machine learning [131] which seeks to augment machine learning models with the
capability to provide human-understandable explanations about how a prediction
was reached. Efforts at the intersection of functional safety, validation, and machine
learning combine exciting and challenging theory with an enormous potential impact
on safety-critical industrial applications.

115

Appendix A

Extraction of Scene Data

During real-world testing of Active Safety Systems, it is often necessary to record the
position and yaw angle of the host vehicle - and of any other vehicles or obstacles
participating in experiments - in a common inertial coordinate system. This facilitates
the resimulation and analysis of test drives by establishing a ground-truth, i.e., the best
possible measurement and recording, that can be used to evaluate the performance of
sensors and algorithms. In Table A.1, we list the BUS signals used for the resimulation
of an avoidance maneuver. These signals are given in a variety of coordinate systems
(CS), i.e., the EGO CS with its origin in the center of the rear axle, the camera CS,
the road-fixed Cartesian coordinates of the so-called Local Tangent Plane (LTP), and
the ellipsoidal coordinates of the WGS84 reference ellipsoid used in GPS navigation
[132]. In the following, we extract the scene representation in terms of a scene tuple
S , ref. (2.12) from the signals in Table A.1.

Table A.1: BUS Signals used for resimulation and their coordinate systems

Signal Symbol Coord. System

Absolute Velocity v LTP
Yaw angle, rate LTPψh, ω LTP
Curvature and rate of change of the curvature c0, κ EGO
Origin of a lane marking Vo EGO
Tangent angle at start of lane marking Vψ EGO
Relative velocity components V∆vx, V∆vy EGO
Radial distance, polar angle r, φ Camera
Latitude, longitude, and height φ, λ, h WGS84

117

Appendix A. Extraction of Scene Data

Table A.2: Parameters of the WGS84 ellipsoid [132]

Parameter Symbol Value

Semi major axis a 6378137m
Semi minor axis b 6356752.3142m

A.1 (d)GPS and the Local Tangent Plane

Here, we briefly define the coordinate systems and transformations necessary for
resimulating driving experiments that were recorded with a Differential Global Posi-
tioning System (dGPS). An in-depth exposition of (d)GPS can be found in [133] and
[134]. dGPS improves the precision of GPS by using a local, stationary GPS receiver,
that transmits correction signals to the receivers of all tracked objects. The correction
signals contain information about the errors due to propagation delay, satellite clock
error, and errors in the estimation of satellite positions (ephemeris) [133, Ch. 1],
which is assumed to correlate for the reference station and the tracked objects. A
dGPS system can achieve a precision of a few centimeters [134, Ch. 13]. The WGS84
ellipsoidal coordinates are supplied by a differential GPS. Furthermore, the yaw angle
and yaw rates are measured using an inertial navigation system attached to the host
vehicle. The yaw angle, which is measured by a gyroscope, is given in the so-called
Local Tangent Plane (LTP), which is an inertial coordinate system (CS) which has its
origin in the general area of the test site.

Ellipsoidal Coordinates of the World Geodetic System In GPS systems, the mean
sea level of the earth is approximated by the WGS84 reference ellipsoid of revolution
as defined by the international standard World Geodetic System [132]. This ellipsoid
is centered at the earths center of mass and its rotational axis aligns with the rotational
axis of the earth. The semi-axes of the ellipsoid are given in Table A.2.

The position of a terrestrial point of interest p(X,Y, Z) in this ellipsoidal reference
system is given by the geodetic latitude φ, longitude λ, and height h, from which we
can obtain the Cartesian coordinates X,Y, Z as [134]

X = (RN (φ) + h) cos(φ) cos(λ)

Y = (RN (φ) + h) cos(φ) sin(λ)

Z =

(
b2

a2RN (φ) + h

)
sin(φ). (A.1)

Here, RN (φ) is the radius of curvature of the prime vertical, see Figure A.1), which is

118

A.1. (d)GPS and the Local Tangent Plane

a

b

X

Y

Z
o0

h0

RN

φ0
λ0

u0
e0

n0

Figure A.1: WGS84 ellipsoidal reference system for terrestrial positioning and unit
basis of a local tangent plane at o0

given by [134]

RN =
a2(

a2 cos2(φ0) + b2 sin2(φ0)
) 1

2

. (A.2)

Local Tangent Plane Since we use a Cartesian coordinate system (CS) attached to
the road surface, the vehicle and object positions recorded with dGPS in terms of
geodetic latitude, longitude and height, must be transformed to a local, road-fixed
Cartesian coordinate system. This coordinate system is referred to as the local tangent
plane (LTP).

A suitable choice for the origin of this local CS is the position of the reference
dGPS receiver at the test site. We denote this origin as o0. The LTP is given by
the basis vector pointing north, n0 = n(φ0, λ0), and the basis vector pointing east,
e0 = e(φ0, λ0). These are often complemented with the normal vector u0 = u(φ0, λ0)

to form a north-east-up basis which is given by

[
n0 e0 u0

]
=

− sin(φ0) cos(λ0) − sin(λ0) cos(φ0) cos(λ0)

− sin(φ0) sin(λ0) cos(λ0) cos(φ0) sin(λ0)

cos(φ0) 0 sin(φ0)

 . (A.3)

We can now assign local Cartesian coordinates to all tracked objects pi with respect to
o0 by computing the projections

LTPpi =
[
n0 e0

]T
(pi − o0) . (A.4)

119

Appendix A. Extraction of Scene Data

In our experiments, we use a linear approximation to compute the coordinates
of a point on the LTP by considering the radii of curvature at the point of reference
o0. Movement along a line of constant latitude, i.e., movement in east-west direction,
corresponds to rotation around the axis of revolution of the ellipse with a radius of
RN (φ) cos(λ) [133]. The radius of curvature of a line of constant longitude (north-
south), the meridional radius RM , is given by [135, Ch.3.6]

RM (φ0) =
a(1− e2)(

1− e2 sin2(φ0)
) 3

2

, (A.5)

where e2 is called the squared eccentricity of the ellipse,

e2 =
a2 − b2

a2 . (A.6)

With these radii of curvature, we can give the differentials in northern and eastern
direction in the tangent plane, dN and dE, around the point of reference at (φ0, λ0, h0)

as

dE = (RN (φ0) + h0) cos(φ0)dλ, dN = (RM (φ0) + h0)dφ. (A.7)

Thus, we obtain a linear approximation for the two-dimensional LTP coordinates,
which are increasing north and east, as[

N

E

]
=

[
(RN (φ0) + h0) cos(φ0)(φ− φ0)

(RM (φ0) + h0)(λ− λ0)

]
. (A.8)

We use the coordinates (N, E) for positioning the EGO vehicle as well as the obstacle
in the LTP around the dGSP base station.

From EGO coordinates to the LTP The positions of points Vp detected by sensors
like radar and video camera are given in the EGO coordinate system V as defined
in Section 2.31. In order to compare these measurements to ground-truth positions,
they must be expressed in the local tangent plane. Using the LTP coordinates of
the host vehicle LTPph obtained by dGPS, together with a yaw angle LTPψh derived
from gyroscope measurements, the transformation of a point p from EGO to LTP
coordinates writes as

LTPp = R
(LTPψh

) Vp + LTPph, (A.9)

where R
(LTPψh

)
is a rotation matrix.

1On the vehicle BUS, the coordinates of objects in the environment is typically given with respect to
an origin above the front or rear axle of the EGO vehicle. For simplicity, we assume that all data has
already been transformed to the EGO CS V.

120

A.2. Obstacles and Lane Markings

ey,V

ex,V

r1

φ1

r2

Voleft

Vψleftcleft, κleft

Figure A.2: EGO and camera coordinate systems, lane marking description and
obstacle bounding box. Green: line between lower left and lower right corners of the
obstacle bounding box.

A.2 Obstacles and Lane Markings

When an obstacle is detected in front of the host vehicle, it is assigned a bounding
box that circumscribes the body of the obstacle as it appears in the camera plane.
To construct the scene representation, we consider the positions of the bottom left
and right corners of the bounding box to measure the width of the obstacle. These
points are given in polar coordinates, where the radial distance r is measured from
the position of the video camera to the point of the bounding box and the angular
coordinate φ is given counter-clockwise starting from the longitudinal vehicle axis,
see Figure A.2. Since we use a flat world scene interpretation, we do not make use of
information relating to the height of the bounding box. The speed and acceleration of
the obstacle are also given in camera coordinates.

With the video camera mounted at the position VrCam, the transformation from
camera coordinates to EGO coordinates is given by

Vr = VrCam +

[
r cos(φ)

r sin(φ)

]
. (A.10)

The representation of segments of lane markings that are detected by the camera
is depicted in Figure A.2. A lane marking is parameterized by its origin in EGO
coordinates Vom, the segment length ∆l, as well as the yaw angle Vψ of the segments
tangent vector at the origin, the curvature c at the origin, and the rate of change of the
curvature κ, ref. Section 2.1.

Computing lane widths As in the scene model, we make the simplifying assumption
of parallel lane markings. We only consider the case where we estimate the width Bl

of the lane to the left of the EGO vehicle. Since the exact width of the lane occupied

121

Appendix A. Extraction of Scene Data

by the obstacle does not influence the evasion maneuver, we assume equal lane widths,
i.e., Br = Bl. In general, we should always estimate the width of the lane in the
direction of the considered evasion maneuver. For short distances, the clothoid path
Vrleft(λleft) of the left lane marking can be approximated by a straight line defined by
its origin and tangent vectors, i.e.,

Vr||(λleft) = Voleft + Vtleftλleft, λleft ∈ R. (A.11)

Similarly, we have an orthogonal line in the direction of the normal vector of the
center lane marking,

Vr⊥(λnormal) = Vocenter + Vncenterλnormal, λnormal ∈ R. (A.12)

In order to compute the lane width, we find the intersection of these lines:

Voleft + Vtleftλleft = Vocenter + Vncenterλnormal,

⇔ Voleft − Vocenter =
[

V−tleft
Vncenter

] [λleft

λnormal

]
, (A.13)

⇔

[
λleft

λnormal

]
=
[
− Vtleft

Vncenter

]−1 (Voleft − Vocenter
)
, (A.14)

which, under the realistic assumption that the normal and tangent vectors of the lane
segments form an orthonormal basis, simplifies to[

λleft

λnormal

]
=
[
− Vtleft

Vncenter

]T (Voleft − Vocenter
)
. (A.15)

Since the lane width is equal to the distance of the origin Vocenter to the intersection
point, it is obtained by the absolute value

Bl = |λnormal|. (A.16)

Having estimated the line width, the lane parameters for the scene model are given by
the curvature and rate of change of the curvature of the center lane marking, as well as
the width of the left lane Bl.

Transformation to clothoid coordinates Recall that the trajectory optimization prob-
lem is most conveniently expressed in the inertial coordinate system of a clothoid I,
see Section 4.1 on lane keeping constraints. Therefore, the state information about the
lane markings and obstacles, given in the EGO CS V, have to be transformed to the
inertial CS I as detailed in Chapter 2.1.

Let us now express the initial position of the EGO vehicle as well as its yaw angle
in the inertial coordinate system I. Since we are given estimates of the curvature and

122

A.2. Obstacles and Lane Markings

rate of change of the curvature of the line segment, we can compute the arc length
coordinate of the origin of the segment using (2.1) as

Cxcenter =
ccenter

κcenter
. (A.17)

The yaw angle of the center marking observed by the host vehicle is

Vψcenter = Iτ center − Iψh, (A.18)

which gives us the yaw angle of the host vehicle in the inertial coordinate system, i.e.,

Iψh = 0.5c2
centerκcenter − Vψcenter, (A.19)

where we have inserted Equation (2.3) for the clothoid tangent angle Iτ center.
The arc length along the clothoid between the EGO vehicle position and the origin

of the center marking segment is approximately given by the tangential component of
the position of the origin, i.e.,

C∆x = Cxcenter − Cxh ≈ VtT
center

Vocenter, (A.20)

which yields the arc length coordinate of the EGO in curvilinear coordinate system of
the clothoid, i.e.,

Cxh = Cxcenter − VtT
center

Vocenter. (A.21)

Similarly, the offset coordinate of the host vehicle Cy is approximated by the normal
component of the origin of the lane segment, i.e.,

Cyh ≈ Vncenter
Vocenter. (A.22)

To summarize, the video camera estimates the point of origin and tangent angle in
the EGO CS V, the curvature, and rate of change of the curvature of the lane markings.
From these, we extract the parameters (ref., Section 2.2) of the scene model, i.e., the
lane widths Bl, Br, the reference clothoid, and the aligned coordinates Cxh,

Cyh of
the host vehicle.

123

A.2. Obstacles and Lane Markings

List of Symbols

e Unit Vector
0 Zero vector
I Identity matrix
R Set of real numbers
N Set of natural numbers
I Superscript: road-fixed Cartesian coordinate system
C Superscript: road-aligned coordinate system
V Superscript: vehicle coordinate system
F Superscript: Frenet coordinate system
LTP Superscript: road-fixed Cartesian coordinate system in the local

tangent plane
obs Subscript: obstacle
h Subscript: host/EGO vehicle
lon Subscript: longitudinal direction
lat Subscript: lateral direction
f Subscript: front
r Subscript: rear
µ Friction coefficient
g Gravitational acceleration on earth
m Mass
β Body slip angle
α Tire slip angle
δ Steering angle
ψ Yaw angle
ω Yaw rate
θ Heading angle
v Tangential velocity
a Acceleration norm
k Cornering stiffness
lf Distance of center of gravity from front axle
lr Distance of center of gravity from rear axle
I Mass moment of inertia
L Angular momentum
q Torque vector
W Vehicle width
L Vehicle length
s State vector
u Scalar control input

125

Appendix A. Extraction of Scene Data

u Vector of control inputs
F Tire force
kb Proportional braking factor
s Subscript: sideways
t Subscript: tangential
r Polar radius, angular distance in camera coordinates
φ Polar angle
S Scene tuple
B Lane width
c Curvature
κ Curvature change rate
r Point on clothoid curve
n Normal vector of a line or curve
t Tangent vector of a line or curve
τ Clothoid angle
l Arclength along clothoid curve
T Prediction horizon
∆t Step size
n Time index
b Hyper plane offset
φ Hyper plane angle
c Real-valued criticality label
D Data set
M Number of simulated scenes
z Feature vector
S′ Number of high-level features
NL Ensemble size
φ Geodetic Latitude
λ Geodetic Longitude
AEB Automatic Emergency Braking
AIS Abbreviated Injury Scale
ASS Active Safety System
CART Classification And Regression Tree
COD Coefficient Of Determination
COG Center Of Gravity
CS Coordinate System
DMS Direct Multiple Shooting
DT Decision Tree
EA Evolutionary Algorithm
ECDF Empirical Cumulative Distribution Function

126

A.2. Obstacles and Lane Markings

ECU Electronic Control Unit
IVP Initial Value Problem
KKT Karush-Kuhn-Tucker
LTP Local Tangent Plane
OCP Optimal Control Problem
ODE Ordinary Differential Equation
OOB Out-of-Bag
PDF Probability Density Function
PDIP Primal-Dual Interior-Point
PMP Pontryagin’s Maximum Principle
RF Random Forest
RK4 Runge-Kutta fourth-order
RRT Rapidly-exploring Random Tree
SAE Society of Automotive Engineers
SHT Supporting Hyperplane Theorem
SI Situation Interpretation
TTC Time-To-Collision

127

List of Figures

1.1 Overview of supervised learning and prediction of criticality 8

2.1 Coordinate systems associated with clothoids 14
2.2 Geometry and states of the scenario model 16
2.3 Nonlinear single-track vehicle model 19
2.4 Illustration of the linear and nonlinear tire models 25

3.1 Illustration of an optimal control problem 29
3.2 Illustration of direct single shooting 31
3.3 Illustration of direct multiple shooting 32

4.1 Lane keeping constraint with curvilinear path 44
4.2 Separating hyperplane and auxiliary variables for collision avoidance 46
4.3 The passage scenario. Only a straight trajectory can avoid a collision. 60

5.1 Initialization of the optimization variables for the numerical
solution of the OCP . 65

5.2 Separating hyperplane initialization 68
5.3 Effect of regularization of the cost function on an evasion maneuver 69
5.4 Comparison of different OCP formulations: top-down view and

accelerations . 76
5.5 Comparison of different OCP formulations: steering angle,

tangential tire force, and control inputs 77
5.6 Criticality values on a straight road segment with a static obstacle

and varying lateral offsets . 78

6.1 Overview of the statistical learning approach to criticality
estimation using labels from optimal avoidance control 80

6.2 Visualization of a Classification and Regression Tree 82
6.3 Stochastic variables and conditional dependence structure for the

stochastic sampling of longitudinal collision scenes 88

129

LIST OF FIGURES

6.4 Empirical cumulative distribution functions of the training and
validation data . 92

6.5 Goodness of fit of greedy feature selection using Random Forest
Regression . 100

7.1 Residual plots of a random subset of five hundred criticality labels
from the validation dataset . 104

7.2 Criticality labels, predictions, and ensemble percentiles for
collision scenes with varying EGO and obstacle velocities 108

7.3 Criticality labels and estimates on a test track with a moving
obstacle vehicle . 112

A.1 WGS84 ellipsoidal reference system for terrestrial positioning and
unit basis of a local tangent plane 119

A.2 EGO and camera coordinate systems, lane marking description and
obstacle bounding box . 121

130

List of Tables

2.1 Parameters used for the magic tire formula 26

4.1 Variants of the criticality labeling OCP 59
4.2 Parameters of the criticality optimal control problem 61

5.1 Solver settings used for IPOPT . 71

6.1 Conditional probability of the design speed of a lane segment 89
6.2 Features for criticality prediction 93
6.3 Random Forest hyper parameters 98
6.4 Best features and hyper parameters for criticality regression 102

A.1 BUS Signals used for resimulation and their coordinate systems . . 117
A.2 Parameters of the WGS84 ellipsoid 118

131

Bibliography

[1] J. B. Cicchino, “Effectiveness of forward collision warning and autonomous
emergency braking systems in reducing front-to-rear crash rates,” Accident
Analysis & Prevention, vol. 99, no. Part A, pp. 142 – 152, 2017. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/pii/S0001457516304006

[2] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), vol. 1, June 2005, pp. 886–893 vol. 1.

[3] D. G. Lowe, “Object recognition from local scale-invariant features,” in Com-
puter Vision, 1999. Proceedings of the seventh IEEE International Conference
on, vol. 2, 1999, pp. 1150–1157.

[4] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
no. 3, pp. 273–297, 1995.

[5] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of Computer and
System Sciences, vol. 55, no. 1, pp. 119 – 139, 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S002200009791504X

[6] M. Enzweiler and D. M. Gavrila, “Monocular pedestrian detection: Survey and
experiments,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 12, pp. 2179–2195, Dec 2009.

[7] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An
evaluation of the state of the art,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 34, no. 4, pp. 743–761, April 2012.

[8] R. Benenson, M. Omran, J. Hosang, and B. Schiele, Computer Vision - ECCV
2014 Workshops: Zurich, Switzerland, September 6-7 and 12, 2014, Proceed-
ings, Part II. Springer International Publishing, 2015, vol. 8926, ch. Ten Years
of Pedestrian Detection, What Have We Learned?, pp. 613–627.

133

http://www.sciencedirect.com/science/article/pii/S0001457516304006
http://www.sciencedirect.com/science/article/pii/S002200009791504X

Bibliography

[9] S. Sivaraman and M. M. Trivedi, “Looking at vehicles on the road: A survey of
vision-based vehicle detection, tracking, and behavior analysis,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 14, no. 4, pp. 1773–1795, Dec
2013.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp.
435–444, 2015.

[11] J. Freyer, L. Winkler, M. Warnecke, and G.-P. Duba, “A little bit more attentive:
Audi active lane assist,” ATZ Worldwide, vol. 10, pp. 40–44, 2010.

[12] R. Behringer, “Road recognition from multifocal vision,” in Intelligent Vehicles
’94 Symposium, Proceedings of the, Oct 1994, pp. 302–307.

[13] E. D. Dickmanns, R. Behringer, D. Dickmanns, T. Hildebrandt, M. Maurer,
F. Thomanek, and J. Schiehlen, “The seeing passenger car ’VaMoRs-P’,” in
Intelligent Vehicles ’94 Symposium, Proceedings of the, Oct 1994, pp. 68–73.

[14] Y. Zhou, R. Xu, X. Hu, and Q. Ye, “A robust lane detection and tracking
method based on computer vision,” Measurement Science and Technology,
vol. 17, no. 4, p. 736, 2006.

[15] Z. Kim, “Robust lane detection and tracking in challenging scenarios,” IEEE
Transactions on Intelligent Transportation Systems, vol. 9, no. 1, pp. 16–26,
March 2008.

[16] H. Loose, “Dreidimensionale Straßenmodelle für Fahrerassistenzsysteme auf
Landstraßen,” Ph.D. dissertation, Karlsruhe Institut für Technologie, 2012.

[17] S. Tokoro, K. Kuroda, A. Kawakubo, K. Fujita, and H. Fujinami, “Electronically
scanned millimeter-wave radar for pre-crash safety and adaptive cruise control
system,” in Intelligent Vehicles Symposium, 2003. Proceedings. IEEE, June
2003, pp. 304–309.

[18] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt,
“Millimeter-wave technology for automotive radar sensors in the 77 ghz fre-
quency band,” IEEE Transactions on Microwave Theory and Techniques,
vol. 60, no. 3, pp. 845–860, March 2012.

[19] J. Effertz, “Autonome Fahrzeugführung in urbaner Umgebung durch Kombina-
tion objekt- und kartenbasierter Umfeldmodelle,” Ph.D. dissertation, Technis-
chen Universität Carolo-Wilhelmina zu Braunschweig, 2009.

134

Bibliography

[20] M. E. Bouzouraa, “Belegungskartenbasierte umfeldwahrnehmung in kombi-
nation mit objektbasierten ansätzen für fahrerassistenzsysteme,” Dissertation,
Technische Universität München, München, 2012.

[21] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf, “Survey of pedestrian
detection for advanced driver assistance systems,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 7, pp. 1239–1258, July 2010.

[22] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter,
D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman,
M. Werling, and S. Thrun, “Towards fully autonomous driving: Systems and
algorithms,” in Intelligent Vehicles Symposium (IV), 2011 IEEE, June 2011, pp.
163–168.

[23] S. A. R. F., V. Fremont, P. Bonnifait, and V. Cherfaoui, “An embedded multi-
modal system for object localization and tracking,” IEEE Intelligent Trans-
portation Systems Magazine, vol. 4, no. 4, pp. 42–53, Winter 2012.

[24] M. M. Trivedi, T. Gandhi, and J. McCall, “Looking-in and looking-out of a
vehicle: Computer-vision-based enhanced vehicle safety,” IEEE Transactions
on Intelligent Transportation Systems, vol. 8, no. 1, pp. 108–120, March 2007.

[25] S. Kaplan, M. A. Guvensan, A. G. Yavuz, and Y. Karalurt, “Driver behavior
analysis for safe driving: A survey,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 16, no. 6, pp. 3017–3032, Dec 2015.

[26] J. Jansson, “Collision avoidance theory: With application to automotive colli-
sion mitigation,” Ph.D. dissertation, Linköping University, 2005.

[27] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion prediction and
risk assessment for intelligent vehicles,” ROBOMECH Journal, vol. 1, no. 1, pp.
1–14, 2014. [Online]. Available: http://dx.doi.org/10.1186/s40648-014-0001-z

[28] A. Vahidi and A. Eskandarian, “Research advances in intelligent collision
avoidance and adaptive cruise control,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 4, no. 3, pp. 143–153, Sept 2003.

[29] K. Vogel, “A comparison of headway and time to collision as safety
indicators,” Accident Analysis & Prevention, vol. 35, no. 3, pp. 427 – 433,
2003. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0001457502000222

[30] J. Hillenbrand, A. Spieker, and K. Kroschel, “A multilevel collision mitiga-
tion approach – its situation assessment, decision making, and performance

135

http://dx.doi.org/10.1186/s40648-014-0001-z
http://www.sciencedirect.com/science/article/pii/S0001457502000222
http://www.sciencedirect.com/science/article/pii/S0001457502000222

Bibliography

tradeoffs,” IEEE Trans. Intell. Transp. Syst., vol. 7, no. 4, pp. 528–540, Dec
2006.

[31] A. Tamke, T. Dang, and G. Breuel, “A flexible method for criticality assessment
in driver assistance systems,” in Intelligent Vehicles Symposium (IV), 2011
IEEE, June 2011, pp. 697–702.

[32] J. Jansson, J. Johansson, and F. Gustafsson, “Decision making for collision
avoidance systems,” SAE Technical Paper, Tech. Rep., 2002.

[33] A. Eidehall and L. Petersson, “Statistical threat assessment for general road
scenes using monte carlo sampling,” IEEE Transactions on intelligent trans-
portation systems, vol. 9, no. 1, pp. 137–147, 2008.

[34] J. Jansson and F. Gustafsson, “A framework and automotive application of
collision avoidance decision making,” Automatica, vol. 44, no. 9, pp. 2347 –
2351, 2008. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0005109808000617

[35] A. Berthelot, A. Tamke, T. Dang, and G. Breuel, “Stochastic situation assess-
ment in advanced driver assistance system for complex multi-objects traffic
situations,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Interna-
tional Conference on, Oct 2012, pp. 1180–1185.

[36] M. Althoff, O. Stursberg, and M. Buss, “Model-based probabilistic collision
detection in autonomous driving,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 10, no. 2, pp. 299–310, June 2009.

[37] M. Althoff, “Reachability Analysis and its Application to the Safety Assessment
of Autonomous Cars,” Ph.D. dissertation, Technische Universität München,
February 2010.

[38] E. Coeling, L. Jakobsson, H. Lind, and M. Lindman, “Collision warning with
auto brake Ű a real-life safety perspective,” in Proc. 20st International Technical
Conference on the Enhanced Safety of Vehicles, no. 07-0450, 2007.

[39] M. Distner, M. Bengtsson, T. Broberg, and L. Jakobsson, “City safety – a
system addressing rear-end collisions at low speeds,” in Proc. Int. Tech. Conf.
Enhanced Safety Veh., ESV, no. 09-0371, 2009.

[40] A. Eidehall, “Multi-target threat assessment for automotive applications,” in
Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Con-
ference on, Oct 2011, pp. 433–438.

136

http://www.sciencedirect.com/science/article/pii/S0005109808000617
http://www.sciencedirect.com/science/article/pii/S0005109808000617

Bibliography

[41] M. Brannstrom, E. Coelingh, and J. Sjoberg, “Model-based threat assessment
for avoiding arbitrary vehicle collisions,” IEEE Trans. Intell. Transp. Syst.,
vol. 11, no. 3, pp. 658–669, Sept 2010.

[42] A. Eidehall and D. Madas, “Real time path planning for threat assessment and
collision avoidance by steering,” in Intelligent Transportation Systems - (ITSC),
2013 16th International IEEE Conference on, Oct 2013, pp. 916–921.

[43] Taxonomy and Definitions for Terms Related to Driving Automation Systems
for On-Road Motor Vehicles, On-Road Automated Driving (Orad) Committee
Std.

[44] H. G. Bock and K.-J. Plitt, “A multiple shooting algorithm for direct solution of
optimal control problems,” in Proc. IFAC World Congr. Budapest, Proceedings
9th IFAC World Congress Budapest. Pergamon Press, 1984, pp. 242–247.
[Online]. Available: http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/
Bock1984.pdf

[45] P. Tournassoud, “A strategy for obstacle avoidance and its application to mullti-
robot systems,” in Robotics and Automation. Proceedings. 1986 IEEE Interna-
tional Conference on, vol. 3, Apr 1986, pp. 1224–1229.

[46] S. Karrenberg, “Zur Erkennung unvermeidbarer Kollisionen von Kraftfahrzeu-
gen mit Hilfe von Stellvertretertrajektorien,” Ph.D. dissertation, Technische
Universität Braunschweig, 2008.

[47] S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma, “An optimal-
control-based framework for trajectory planning, threat assessment, and semi-
autonomous control of passenger vehicles in hazard avoidance scenarios,” Int.
J. Veh. Autonomous Syst., vol. 8, no. 2, pp. 190–216, Jan. 2010.

[48] S. C. Peters, “Optimal planning and control for hazard avoidance of front-
wheel steered ground vehicles,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2012.

[49] I. Xausa, R. Baier, M. Gerdts, M. Gonter, and C. Wegwerth, “Avoidance trajec-
tories for driver assistance systems via solvers for optimal control problems,”
in Int. Symp. Math. Theory Networks Syst., 2012.

[50] I. Xausa, “Verification of collision avoidance systems using optimal control
and sensitivity analysis,” Ph.D. dissertation, Fakultät für Luft- und Raumfahrt-
technik der Universität der Bundeswehr München, 2015.

137

http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1984.pdf
http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1984.pdf

Bibliography

[51] K. Lee and H. Peng, “Evaluation of automotive forward collision warning and
collision avoidance algorithms,” Vehicle System Dynamics, vol. 43, no. 10, pp.
735–751, 2005.

[52] M. Althoff, M. Koschi, and S. Manzinger, “Commonroad: Composable bench-
marks for motion planning on roads,” in 2017 IEEE Intelligent Vehicles Sympo-
sium (IV), June 2017, pp. 719–726.

[53] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, Nov 1998.

[54] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-
scale hierarchical image database,” in 2009 IEEE Conference on Computer
Vision and Pattern Recognition, June 2009, pp. 248–255.

[55] L. Yang, J. H. Yang, E. Feron, and V. Kulkarni, “Development of a performance-
based approach for a rear-end collision warning and avoidance system for
automobiles,” in IEEE IV2003 Intelligent Vehicles Symposium. Proceedings,
June 2003, pp. 316–321.

[56] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,
2001.

[57] M. Botsch and J. A. Nossek, “Feature selection for change detection in multi-
variate time-series,” in IEEE Symp. Computational Intell. Data Mining, CIDM,
March 2007, pp. 590–597.

[58] M. Katagiri, J. Pramudita, Y. Miyazaki, and S. Ujihashi, “Development of
occupant injury prediction algorithms for advanced automatic collision notifica-
tion by numerical crash reconstructions,” in 23rd Enhanced Safety of Vehicles
Conference (ESV), 2013.

[59] A. Meier, M. Gonter, and R. Kruse, “Precrash classification of car accidents
for improved occupant safety systems,” Procedia Technology, vol. 15, no.
Supplement C, pp. 198 – 207, 2014, 2nd International Conference on
System-Integrated Intelligence: Challenges for Product and Production
Engineering. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S221201731400187X

[60] M. Müller, P. Nadarajan, M. Botsch, W. Utschick, D. Böhmländer, and
S. Katzenbogen, “A statistical learning approach for estimating the reliability
of crash severity predictions,” in 2016 IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC), Nov 2016, pp. 2199–2206.

138

http://www.sciencedirect.com/science/article/pii/S221201731400187X
http://www.sciencedirect.com/science/article/pii/S221201731400187X

Bibliography

[61] S. M. Lavalle and J. J. Kuffner, Jr., “Rapidly-exploring random trees: Progress
and prospects,” in Algorithmic and Computational Robotics: New Directions,
2000, pp. 293–308.

[62] R. Lachner, M. H. Breitner, and H. J. Pesch, “Real-time computation of strate-
gies of differential games with applications to collision avoidance,” in Varia-
tional Calculus, Optimal Control and Applications, ser. International Series of
Numerical Mathematics, W. H. Schmidt, K. Heier, L. Bittner, and R. Bulirsch,
Eds. Birkhäuser Basel, 1998, vol. 124, pp. 281–290.

[63] P. Nadarajan, M. Botsch, and S. Sardina, “Predicted-occupancy grids for vehicle
safety applications based on autoencoders and the random forest algorithm,” in
2017 International Joint Conference on Neural Networks (IJCNN), May 2017,
pp. 1244–1251.

[64] A. Chaulwar, M. Botsch, and W. Utschick, “A machine learning based biased-
sampling approach for planning safe trajectories in complex, dynamic traffic-
scenarios,” in 2017 IEEE Intelligent Vehicles Symposium (IV), June 2017, pp.
297–303.

[65] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba,
“End to end learning for self-driving cars,” CoRR, vol. abs/1604.07316, 2016.
[Online]. Available: http://arxiv.org/abs/1604.07316

[66] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing and
validation,” SAE International Journal of Transportation Safety, vol. 4, no. 1,
pp. 15–24, April 2016.

[67] M. Botsch, “Machine Learning Techniques for Time Series Classification,”
Ph.D. dissertation, Technische Universität München, 2009.

[68] S. Herrmann, W. Utschick, M. Botsch, and F. Keck, “Supervised learning via
optimal control labeling for criticality classification in vehicle active safety,”
in Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International
Conference on, Sept 2015, pp. 2024–2031.

[69] S. Herrmann and W. Utschick, “Availability and interpretability of optimal
control for criticality estimation in vehicle active safety,” in 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), March 2016, pp.
415–420.

[70] M. Knödlseder, “Regression with monotonicity constraints,” Bachelor’s thesis,
Technische Universität München, 2016.

139

http://arxiv.org/abs/1604.07316

Bibliography

[71] A. Richards and J. How, “Model predictive control of vehicle maneuvers
with guaranteed completion time and robust feasibility,” in American Control
Conference. Proceedings of the 2003, vol. 5, June 2003, pp. 4034–4040 vol.5.

[72] G. Wolf and W. Pietzsch, Straßenplanung, 7th ed., ser. Werner-Ingenieur-Texte.
Werner Verlag, 2005.

[73] A. Eidehall and F. Gustafsson, “Combined road prediction and target tracking
in collision avoidance,” in IEEE Intelligent Vehicles Symposium, 2004, June
2004, pp. 619–624.

[74] S. Nedevschi, R. Schmidt, T. Graf, R. Danescu, D. Frentiu, T. Marita, F. Oniga,
and C. Pocol, “3D lane detection system based on stereovision,” in Proceedings.
The 7th International IEEE Conference on Intelligent Transportation Systems,
Oct 2004, pp. 161–166.

[75] A. Scheuer and T. Fraichard, “Continuous-curvature path planning for car-like
vehicles,” in Intelligent Robots and Systems, 1997. IROS ’97., Proceedings of
the 1997 IEEE/RSJ International Conference on, vol. 2, Sep 1997, pp. 997–
1003 vol.2.

[76] Richtlinien für die Anlage von Straßen - Teil Linienführung (RAS-L),
Forschungsgesellschaft für Straßen- und Verkehrswesen Std.

[77] W. Kühnel, Differential Geometry: Curves - Surfaces - Manifolds, 3rd ed., ser.
Student mathematical library, B. Hunt, Ed. American Mathematical Society,
2015, vol. 77.

[78] A. Eidehall, J. Pohl, F. Gustafsson, and J. Ekmark, “Toward autonomous colli-
sion avoidance by steering,” IEEE Transactions on Intelligent Transportation
Systems, vol. 8, no. 1, pp. 84–94, March 2007.

[79] R. N. Jazar, Vehicle Dynamics: Theory and Application, 2nd ed. Springer-
Verlag New York, 2014.

[80] D. Schramm, M. Hiller, and R. Bardini, Modellbildung und Simulation der
Dynamik von Kraftfahrzeugen. Springer, 2013.

[81] L. Rade, B. Westergren, and P. Vachenauer, Springers mathematische Formeln:
Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswis-
senschaftler. Springer-Verlag Berlin Heidelberg, 2000.

[82] E. Bakker, L. Nyborg, and H. B. Pacejka, “Tyre modelling for use in vehicle
dynamics studies,” SAE Technical Paper, Tech. Rep., 1987.

140

Bibliography

[83] B. Johansson and M. Gafvert, “Untripped suv rollover detection and prevention,”
in Decision and Control, 2004. CDC. 43rd IEEE Conference on, vol. 5, Dec
2004, pp. 5461–5466 Vol.5.

[84] K. Yi, K. Hedrick, and S.-C. Lee, “Estimation of tire-road friction using ob-
server based identifiers,” Vehicle System Dynamics, vol. 31, no. 4, pp. 233–261,
1999.

[85] F. Gustafsson, “Slip-based tire-road friction estimation,” Automatica,
vol. 33, no. 6, pp. 1087 – 1099, 1997. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0005109897000034

[86] L. R. Ray, “Nonlinear tire force estimation and road friction identification:
Simulation and experiments,” Automatica, vol. 33, no. 10, pp. 1819 – 1833,
1997. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0005109897000939

[87] P. Jonsson, J. Casselgren, and B. Thörnberg, “Road surface status classification
using spectral analysis of NIR camera images,” IEEE Sensors Journal, vol. 15,
no. 3, pp. 1641–1656, March 2015.

[88] A. Pohl, R. Steindl, and L. Reindl, “The ’intelligent tire’ utilizing passive saw
sensors measurement of tire friction,” IEEE Transactions on Instrumentation
and Measurement, vol. 48, no. 6, pp. 1041–1046, Dec 1999.

[89] F. Holzmann, M. Bellino, R. Siegwart, and H. Bubb, “Predictive estimation
of the road-tire friction coefficient,” in 2006 IEEE Conference on Computer
Aided Control System Design, 2006 IEEE International Conference on Control
Applications, 2006 IEEE International Symposium on Intelligent Control, Oct
2006, pp. 885–890.

[90] H. Pacejka and I. Besselink, Tire and Vehicle Dynamics, 3rd ed. Butterworth-
Heinemann, 2012.

[91] J. Svendenius, “Tire modeling and friction estimation,” Ph.D. dissertation, Lund
University, 2007.

[92] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast Direct Multiple
Shooting Algorithms for Optimal Robot Control,” in Fast Motions in
Biomechanics and Robotics, Heidelberg, Germany, 2005. [Online]. Available:
https://hal.inria.fr/inria-00390435

[93] M. Bollhöfer and V. Mehrmann, Numerische Mathematik: Eine projektori-
entierte Einführung für Ingenieure, Mathematiker und Naturwissenschaftler.
Vieweg+Teubner Verlag, 2004.

141

http://www.sciencedirect.com/science/article/pii/S0005109897000034
http://www.sciencedirect.com/science/article/pii/S0005109897000034
http://www.sciencedirect.com/science/article/pii/S0005109897000939
http://www.sciencedirect.com/science/article/pii/S0005109897000939
https://hal.inria.fr/inria-00390435

Bibliography

[94] J. Andersson, J. Akesson, and M. Diehl, “CasADi: A symbolic package for au-
tomatic differentiation and optimal control,” in Recent Advances in Algorithmic
Differentiation, ser. Lecture Notes in Computational Science and Engineering,
S. Forth, P. Hovland, E. Phipps, J. Utke, and A. Walther, Eds. Springer, 2012,
vol. 87, pp. 297–307.

[95] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming,” Math. Program-
ming, vol. 106, no. 1, pp. 25–57, 2006.

[96] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for
large-scale constrained optimization,” SIAM Journal on Optimization, vol. 12,
no. 4, pp. 979–1006, 2002.

[97] M. Diehl, D. B. Leineweber, and A. A. Schäfer, MUSCOD-II users’ man-
ual. Universität Heidelberg. Interdisziplinäres Zentrum für Wissenschaftliches
Rechnen (IWR), 2001.

[98] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, Mar. 2004.

[99] A. Wächter and L. T. Biegler, “Line search filter methods for nonlinear program-
ming: Motivation and global convergence,” SIAM Journal on Optimization,
vol. 16, no. 1, pp. 1–31, 2005.

[100] A. V. Rao, “A survey of numerical methods for optimal control,” in AAS/AIAA
Astrodynamics Specialist Conference, ser. Advances in the astronautical sci-
ences, vol. 135. Univelt, Inc., 2009, pp. 497–528.

[101] B. A. Conway, “A survey of methods available for the numerical optimiza-
tion of continuous dynamic systems,” Journal of Optimization Theory and
Applications, vol. 152, no. 2, pp. 271–306, Feb 2012.

[102] I. M. Ross and M. Karpenko, “A review of pseudospectral optimal control:
From theory to flight,” Annual Reviews in Control, vol. 36, no. 2, pp. 182 –
197, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1367578812000375

[103] E. Trélat, “Optimal control and applications to aerospace: Some results and
challenges,” Journal of Optimization Theory and Applications, vol. 154, no. 3,
pp. 713–758, Sep 2012.

[104] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari, “Learning with
noisy labels,” in Advances in neural information processing systems (NIPS),
2013, pp. 1196–1204.

142

http://www.sciencedirect.com/science/article/pii/S1367578812000375
http://www.sciencedirect.com/science/article/pii/S1367578812000375

Bibliography

[105] S. M. Studios, Project CARS. Bandai Namco Entertainment, 2015.

[106] J. Davis, R. Johnson, and J. Stepanek, Fundamentals of Aerospace Medicine.
Lippincott Williams & Wilkins, 2008.

[107] J. Frasch, A. Gray, M. Zanon, H. Ferreau, S. Sager, F. Borrelli, and M. Diehl,
“An auto-generated nonlinear MPC algorithm for real-time obstacle avoidance
of ground vehicles,” in Control Conference (ECC), 2013 European, July 2013,
pp. 4136–4141.

[108] R. Verschueren, M. Zanon, R. Quirynen, and M. Diehl, “Time-optimal race
car driving using an online exact Hessian based nonlinear MPC algorithm,” in
Proceedings of the European Control Conference (ECC), 2016.

[109] M. Gerdts, R. Henrion, D. Hömberg, and C. Landry, “Path planning and
collision avoidance for robots,” Numerical Algebra, Control and Optimization,
vol. 2, pp. 437–463, 2012.

[110] M. Gerdts and I. Xausa, Avoidance Trajectories Using Reachable Sets and Para-
metric Sensitivity Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 491–500.

[111] K. Bollino, L. R. Lewis, P. Sekhavat, and I. M. Ross, “Pseudospectral optimal
control: A clear road for autonomous intelligent path planning,” in AIAA
Infotech@Aerospace 2007 Conference and Exhibit, 2007.

[112] M. Hurni, P. Sekhavat, M. Karpenko, and I. Ross, “A pseudospectral optimal
motion planner for autonomous unmanned vehicles,” in American Control
Conference (ACC), 2010, June 2010, pp. 1591–1598.

[113] O. Khatib, Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.
New York, NY: Springer New York, 1990, pp. 396–404.

[114] M. Brännström, E. Coelingh, and J. Sjöberg, “Decision-making on when to
brake and when to steer to avoid a collision,” International Journal of Vehicle
Safety, vol. 7, no. 1, pp. 87–106, Jan. 2014.

[115] J. Butcher, “A history of Runge-Kutta methods,” Applied Numerical
Mathematics, vol. 20, no. 3, pp. 247 – 260, 1996. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0168927495001085

[116] A. Wächter, L. T. Biegler et al. Introduction to IPOPT: A tutorial for
downloading, installing, and using IPOPT. Online. [Online]. Available:
https://www.coin-or.org/Ipopt/documentation/node40.html

143

http://www.sciencedirect.com/science/article/pii/0168927495001085
https://www.coin-or.org/Ipopt/documentation/node40.html

Bibliography

[117] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking the
human out of the loop: A review of Bayesian optimization,” Proceedings of the
IEEE, vol. 104, no. 1, pp. 148–175, Jan 2016.

[118] L. Breiman, J. H. Friedmann, R. A. Olshen, and C. J. Stone, Classification and
Regression Trees. Chapman and Hall/CRC, 1984.

[119] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction, 2nd ed., ser. Springer Series in
Statistics. Springer, 2009.

[120] N. Meinshausen, “Quantile regression forests,” Journal of Machine Learning
Research, vol. 7, pp. 983–999, Dec. 2006.

[121] L. Breiman, “Out-of-bag estimation,” Statistics Department, University
of California Berkeley, Tech. Rep., 1996. [Online]. Available: https:
//www.stat.berkeley.edu/~breiman/OOBestimation.pdf

[122] K. L. Campbell, “The SHRP 2 naturalistic driving study: Addressing driver
performance and behavior in traffic safety,” TR News, no. 282, pp. 30–35, 2012.

[123] A. Berthelot, A. Tamke, T. Dang, and G. Breuel, “Handling uncertainties in
criticality assessment,” in Intelligent Vehicles Symposium (IV), 2011 IEEE, June
2011, pp. 571–576.

[124] W. B. Powell, Approximate Dynamic Programming: Solving the Curses of
Dimensionality. John Wiley & Sons, Inc., 2011.

[125] V. Vapnik, “An overview of statistical learning theory,” IEEE Transactions on
Neural Networks, vol. 10, no. 5, pp. 988–999, Sep 1999.

[126] T. O. Kvalseth, “Cautionary note about r2,” The American Statistician, vol. 39,
no. 4, pp. 279–285, 1985.

[127] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”
Journal of Machine Learning Research, vol. 3, pp. 1157–1182, 2003.

[128] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Research, vol. 12, pp.
2825–2830, 2011.

[129] B. Houska and B. Chachuat, “Branch-and-lift algorithm for deterministic global
optimization in nonlinear optimal control,” Journal of Optimization Theory and
Applications, pp. 1–41, 2013.

144

https://www.stat.berkeley.edu/~breiman/OOBestimation.pdf
https://www.stat.berkeley.edu/~breiman/OOBestimation.pdf

Bibliography

[130] H. Borchani, G. Varando, C. Bielza, and P. Larrañaga, “A survey on multi-output
regression,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 5, no. 5, pp. 216–233, 2015.

[131] Broad Agency Announcement - Explainable artificial intelligence (XAI),
Defense Advanced Research Projects Agency (DARPA), Information
Innovation Office, August 2016, accessed: July 29, 2017. [Online]. Available:
https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf

[132] N.N., “Department of Defense World Geodetic System 1984: Its Definition
and Relationships with Local Geodetic Systems,” National Imagery
and Mapping Agency, Tech. Rep. TR8350.2, 2000. [Online]. Available:
http://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350_2.html

[133] M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems,
Inertial Navigation, and Integration. John Wiley & Sons, Inc., 2007.

[134] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS — Global
Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer
Vienna, 2008.

[135] R. H. Rapp, Geometric Geodesy Part I. Ohio State University Department
of Geodetic Science and Surveying, April 1991. [Online]. Available:
https://kb.osu.edu/dspace/handle/1811/24333

145

https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf
http://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350_2.html
https://kb.osu.edu/dspace/handle/1811/24333

	Introduction
	Automotive Active Safety Systems
	Ground-Truth Criticality Labeling using Optimal Control
	Machine Learning for Real-Time Criticality Estimation
	Publications and Supervised Theses
	Notation

	Modeling of Collision Scenarios and Vehicle Dynamics
	Coordinate Systems
	Collision Scene Model
	Nonlinear Single-Track Vehicle Model
	Tire Models

	Numerical Optimal Control using Direct Shooting Methods
	Direct Single Shooting
	Direct Multiple Shooting
	Primal-Dual Interior-Point Optimization
	Alternative Numerical Methods for OCPs

	Optimal Control Formulation of Ground-Truth Criticality
	Lane Keeping Constraints
	Anti-Collision Constraints
	Input and State Constraints
	Initial and Final State Constraints
	Optimal Control Problem Formulations
	Infeasibility and Interpretability
	Considered OCP Variants and Parameters

	A Counterexample and some Extensions

	Numerical Criticality Labeling and Simulation Results
	Multiple Shooting and Nonlinear Optimization Problem
	Initial Guess for the Optimization Variables
	Regularization, Scaling, and Multi-Start
	Simulation Results and Comparison of OCP Formulations

	Criticality Estimation via Supervised Machine Learning
	Random Forest Regression
	Classification and Regression Trees
	The Bias-Variance Trade-off for Random Forest Regression
	Bootstrap Aggregation and Random Feature Selection
	Out-of-bag error estimates

	Stochastic Scene Sampling
	Training and Validation Datasets

	Feature Extraction
	Feature and Model Selection
	Greedy Forward Feature Selection

	Validation of Criticality Labeling and Regression
	Generalization Error
	Evaluation on Synthetic Collision Scenes
	Resimulation of a Dynamic Avoidance Maneuver
	Experimental Setup and Data Processing
	Results of Resimulation

	Conclusion and Outlook
	Extraction of Scene Data
	(d)GPS and the Local Tangent Plane
	Obstacles and Lane Markings

	List of Symbols
	List of Figures
	List of Tables
	Bibliography

