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Abstract: Oncolytic viruses have gained much attention in recent years, due, not only to their ability
to selectively replicate in and lyse tumor cells, but to their potential to stimulate antitumor immune
responses directed against the tumor. Vesicular stomatitis virus (VSV), a negative-strand RNA
virus, is under intense development as an oncolytic virus due to a variety of favorable properties,
including its rapid replication kinetics, inherent tumor specificity, and its potential to elicit a broad
range of immunomodulatory responses to break immune tolerance in the tumor microenvironment.
Based on this powerful platform, a multitude of strategies have been applied to further improve
the immune-stimulating potential of VSV and synergize these responses with the direct oncolytic
effect. These strategies include: 1. modification of endogenous virus genes to stimulate interferon
induction; 2. virus-mediated expression of cytokines or immune-stimulatory molecules to enhance
anti-tumor immune responses; 3. vaccination approaches to stimulate adaptive immune responses
against a tumor antigen; 4. combination with adoptive immune cell therapy for potentially synergistic
therapeutic responses. A summary of these approaches will be presented in this review.

Keywords: oncolytic virus; vesicular stomatitis virus; immune-suppression; immunotherapy;
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1. Introduction

In recent years, great progress has been made in the development of immune-based cancer
therapies in which the body’s own immune system is harnessed to fight against the invading
cancer. Although immunotherapies have the potential to offer safe, systemic, and long-lasting tumor
responses, the tolerogenic microenvironment of most tumors is a challenge that must be addressed
in order to fully exploit the therapeutic potential of this approach. Oncolytic viruses offer a novel
treatment option, due to their eloquent multimodal mechanism of action. They are probably best
known for their inherent ability to cause tumor debulking via direct tumor cell lysis; however, they
additionally offer the potential to break immune tolerance and stimulate potent immune responses
directed against uninfected tumor cells and distant metastases. They therefore have been exploited
in rationally designed combination therapies involving oncolytic viruses as immunotherapeutics.
Vesicular stomatitis virus (VSV) represents a particularly attractive vector platform for viral-based
immunotherapies due to its inherent tumor specificity, its rapid replication and cell-killing kinetics, its
natural ability to stimulate immune responses, and the fact that there is an established genetic system
available for generating recombinant vectors.
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VSV is a negative-strand RNA virus from the Rhabdoviridae family with a relatively compact
genome comprised of approximately 11,000 nucleotides encoding for five viral proteins. The VSV
glycoprotein (G protein) mediates viral attachment and fusion to host cells via the ubiquitously
expressed low density lipoprotein (LDL) receptor, followed by receptor-mediated endocytosis and
internalization into endosomes. The low endosomal pH then triggers a conformational change in the
G protein, activating fusion to the endosomal membrane and causing the release of the viral genome
into the cytosol and the initiation of the replication process. The entire VSV lifecycle occurs in the
cytoplasm. Despite the ability of VSV to infect a wide range of host cells, replication is limited to cells
that are defective in their antiviral interferon signaling pathways, allowing for an inherent mechanism
for tumor specificity. Elevated doses have been shown to result in off-target toxicities, however, and
to date, only a pseudotyped VSV vaccine vector [1] and an attenuated oncolytic VSV expressing
human interferon β [2] have succeeded in clinical translation, due to safety concerns of administering
wild-type virus.

The hammer and anvil tactic is a military strategy that has been used since the beginning of
organized warfare. This tactic involves two enemy infantry units fighting in a frontal assault, while a
cavalry unit maneuvers around the enemy and attacks from behind, hammering it against the infantry
line, which functions as the anvil. Generally, in order for this strategy to be successful, the force
attempting the maneuver must outnumber its opponent. The concept of using a powerful oncolytic
virus, such as VSV, in combination with an immunotherapeutic strategy elicits an attack against cancer
in much the same way as the hammer and anvil military tactic. Although the tumor exploits various
evasion and survival mechanisms, it is ultimately powerless when it is attacked from two angles,
namely the direct blow from the oncolytic effect and the subsequent immune attack from behind. In this
review, we will highlight the basic challenge of an immune-suppressive tumor microenvironment
and then discuss a variety of strategies that have been employed using oncolytic VSV as a basis for
viro-immunotherapeutics for cancer, a two-pronged approach to destroy cancer.

2. The Immune-Suppressive Tumor Microenvironment

Tumor development and progression is dictated by a complex interplay between tumor cells and
the many components of the tumor microenvironment, including fibroblasts, extracellular matrix,
blood vessels, inflammatory cells, and stimulatory molecules, such as chemokines and cytokines [3].
In order to promote their own survival, tumor cells employ a variety of mechanisms to evade the
immune system and modulate the microenvironment in favor of cancer progression [4]. An important
component of this process is termed “immunoediting”. This concept describes the dual role of the
immune system to protect the host, as well promote tumor growth and metastases by selecting for
tumor variants with reduced immunogenicity, which can thereby escape immune surveillance [5].

The development of an immunosuppressive microenvironment in tumor settings involves a
multitude of players and interactions. Tumors promote immune tolerance through down-regulation
of major histocompatibility complex (MHC) class I molecules and tumor-associated antigens (TAAs),
thereby preventing recognition by T cells [6]. In addition, preclinical studies have indicated that
tumoricidal NK cells require additional stimulatory signals, such as type I interferon (IFN) and
interleukin (IL)-15, in order to exert their functions in the context of tumor-bearing hosts [7]. Tumor
immune evasion is mediated, at least in part, by a network of soluble immunomodulatory factors,
such as IL-6 and IL-10, as well as transforming growth factor β (TGF-β), which are secreted by tumor,
stroma, and inflammatory cells [8]. These factors most likely act together to inhibit dendritic cell (DC)
function and stimulate the proliferation of immune-suppressive regulatory T cells (Tregs) [9].

2.1. Immune Suppressor Cells

Recruitment of immune suppressor cells, such as immature DCs, Tregs, myeloid-derived
suppressor cells (MDSCs), and M2-polarized macrophages function to protect the tumor from immune
recognition. This is achieved through the inhibition of effector T cell proliferation, secretion of
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soluble immunosuppressive molecules, and obstruction of antigen presentation [10–13]. In patients
suffering from melanoma, hepatocellular carcinoma, lung cancer, breast cancer and prostate cancer, the
accumulation, and even the induction, of Tregs, MDSCs, and immunosuppressive tumor-associated
macrophages (TAM) have been extensively characterized [14]. It was further shown in squamous
cell carcinoma and basal cell carcinoma that myeloid DCs (mDCs) have diminished functions to
stimulate a productive antitumor T cell response [15]. Recent evidence indicates that the degree of
immune-suppressor cell infiltration in tumors correlates with overall survival or disease free survival
in patients suffering from diverse cancer entities. Chevolet and colleagues have shown that there
is a correlation between the numbers of monocytic and polymorphonuclear MDSCs (mMDSC and
pmnMDSC), not only with reduced numbers of cytotoxic T cells, but also suppressed function [16].
Similarly, for patients with prostate cancer, higher levels of mMDSCs in the blood have been found
than in healthy controls; the number of circulating DCs was reduced in these patients [17].

The immunosuppressive mechanisms of the tumor microenvironment have similarly been well
characterized in a variety of mouse models. For example, mouse B16 melanoma cells have been shown
to actively secrete the immunosuppressive cytokine TGF-β [18]. Raji B cell leukemias support the
accumulation of antigen-specific suppressive Tregs [19]. Eisenstein et al. have shown in a metastatic
Lewis lung carcinoma model in mice that MDSCs have higher tumor tropism than other immune
cells including T cells, DC, cytokine-induced killer (CIK) cells, macrophages, and monocytes [20].
This was demonstrated by labeling various immune cell types with superparamagnetic iron oxide
(SPIO) particles, followed by systemic injection and tracking of the labeled cells by magnetic resonance
imaging (MRI) [20]. Additional lung cancer models in mice further show that there are high levels of
MDSCs and M2 phenotype immune-suppressive, tumor-supporting macrophages [21]. The potential
of oncolytic VSV therapy to change the phenotype of MDSCs is discussed later in this review.

2.2. Immune Checkpoints

Tumors can also evade immune detection by hijacking immune checkpoints, co-stimulatory
or inhibitory molecules that are crucial for maintaining tolerance and modulating the duration
and amplitude of immune responses in order to minimize tissue damage. Cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) are
two inhibitory receptors expressed by T cells that have become therapeutic targets to mitigate
the immunosuppressive tumor environment and promote antitumor immunity. Ligation of these
inhibitory molecules with their corresponding ligands on tumor cells leads to T cell dysfunction and
exhaustion [22]. For example, PD-1 ligation on T cells leads to tolerance against antigens, inhibited
activation, and susceptibility to apoptosis [23]. A variety of tumor entities, such as melanoma, ovarian,
and lung cancer have been shown to express high levels of the PD ligand 1 (PD-L1) [24–26], and it
is also expressed on myeloid cells of the tumor microenvironment [27]. Although it is predicted
and demonstrated in several tumor models, that high levels of PD-L1 expression in the tumor
correlate with poor survival in patients [28–30], other studies indicate that PD-L1 expression does
not correlate with prognosis [31]. The contradictory data can be attributed to a variety of other
factors that are associated with survival, such as cancer type, stage, and treatment history, as well
as the immunohistochemistry methods employed in each study [31]. Furthermore, the outcome of
immune checkpoint blockade therapy is variable amongst different tumor entities. While the most
impressive responses to PD-1/PD-L1 blockade have been observed in metastatic melanoma, lung
cancer, renal cell carcinoma, and hematologic malignancies [22], it has also recently been shown that
triple-negative breast cancer and bladder cancer are responsive to immune checkpoint blockade [32].
On the other hand, characteristically non-immunogenic tumor entities, such as pancreatic and prostate
cancers, tend to be relatively resistant to therapies with immune checkpoint inhibitors [33]. It has
been speculated that co-treatment with oncolytic viral therapies could overcome tumor resistance
to therapeutic immune checkpoint blockade and that these combinations could work synergistically
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to induce a broadened immune response compared to monotherapies [34,35]. This strategy will be
discussed further in the Outlook section.

2.3. Dendritic Cell (DC) Maturation and Function

Thorough characterization of the tumor microenvironment has highlighted the importance of
DCs as determinants of immune suppression and patient survival. Both the degree of DC infiltration,
as well as the phenotype and maturation state of the cells can play a major role in modulating the
local environment. There is striking evidence that plasmacytoid DCs (pDCs) are reduced in their
numbers or are functionally impaired with a diminished capacity to produce type I IFNs and an
enhanced ability to induce Treg expansion and induction in tumor settings [36–39]. It has been
shown that the immature phenotype of DCs is mediated by tumor-induced expression of IL-10
and TGF-β. Immature myeloid DCs (mDCs) induce Treg differentiation and unresponsiveness of
T cells. Furthermore, pDCs induce IL-10 production in T cells, leading to a crosstalk with mDCs and
suppression of their function to prime a tumor antigen T cell response [8]. A multitude of studies
have shown that both solid tumors, as well as lymphomas, have significantly decreased numbers of
functionally competent, mature pDCs and an accumulation of immature and functionally impaired
DCs, resulting in a reduced capacity to stimulate T cells [40,41]. In breast cancer tissue samples, it was
shown that there are mostly immature DCs within the tumors, whereas mature DCs are located in
the area surrounding the tumor [42]. This is in line with a similar distribution pattern observed in
patients with papillary carcinoma of the thyroid, in which immature pDCs were located in the center
of tumors [43]. Furthermore, in head and neck cancer patients, there is evidence that these tumors can
inhibit the production of IFNα by pDCs [44]. Interestingly, the degree of pDC maturation and function
has been correlated with patient survival in several cancers. A high frequency of pDCs in patients
with melanoma was associated with superior survival compared to patients with low frequencies,
while systemic disease was associated with significantly lower counts of pDC than in patients with
non-systemic disease [28]. The overall survival of breast cancer patients was inversely correlated with
accumulation of tumor-associated pDCs, while there was a positive correlation between survival and
pDC concentration in blood [39]. Therefore, DCs could represent an interesting therapeutic target or
predictive biomarker for immunotherapeutic approaches.

A variety of mouse models have tested the hypothesis of pDC maturation being important for
antitumor immune responses. Brawand and colleagues showed that immature pDCs fail to induce
antigen-specific CD4+ and CD8+ T cell responses in mice [45]. Colon carcinoma, mastocytoma, Lewis
lung carcinoma and B16 melanoma models have additionally demonstrated increased percentages of
immature mDCs [46]. Similarly, in mouse mammary carcinoma, there are high counts of immature
pDCs, which likely support tumor growth [47]. Reduced IFNα secretion after TLR9 stimulation was
shown to be a feature of pDC in a mouse model of chronic lymphocytic leukemia (CLL), as well
as in human CLL patients [38]. Immature pDCs independent of tumor show impaired function to
stimulate sufficient CD4+ T cell responses in vitro and in vivo [48]. Also in a non-tumor environment,
immature pDCs were shown to correlate with a tolerogenic immune-suppression phenotype in a
model of experimental glomerulonephritis in mice [49].

In summary, there are a multitude of mechanisms leading to immunosuppression in the tumor
setting; not all of them can be reviewed here, as this review will concentrate on addressing VSV as
an oncolytic virus, as well as a vehicle for overcoming the tolerogenic tumor microenvironment and
stimulating a productive immune response directed against the tumor.

3. Vesicular Stomatitis Virus (VSV) as an Oncolytic Virus

Vesicular stomatitis virus (VSV) is a negative-sense single-stranded RNA Rhabdovirus, which
has inherent tumor specificity and can rapidly infect and replicate efficiently in a wide range of host
cells [50–52]. VSV replicates in the cytoplasm of susceptible cells, causing cell death as a result of the
general shutdown of host RNA and protein synthesis. It was first observed that treatment of human
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melanoma xenografts with wild-type VSV in nude mice resulted in regression or growth inhibition of
the established tumors, while sparing the surrounding normal cells [52]. We and others have since
demonstrated that VSV possesses potent oncolytic properties in a variety of tumor models [53–58].
Because VSV is known to be extremely sensitive to the anti-viral actions of type I interferons (IFN),
it has been postulated that its tumor specificity is the result of defects in interferon signaling in
cancer cells [59]. Normal cells, which are competent in launching an efficient antiviral response
quickly after infection, are able to inhibit viral replication before cell damage can be initiated. Due to
compelling preclinical data demonstrating efficient tumor-specific cell lysis, two phase I clinical trials
using recombinant VSV [2], have recently been initiated (ClinicalTrials.gov Identifier: NCT01628640
and NCT02923466).

4. Vesicular Stomatitis Virus as an Immune-Stimulating Agent

Many oncolytic viral platforms have been observed to induce antitumor immune responses as
an important mechanism of action [60–62]. This is mediated primarily through local inflammation
induced by virus infection, which stimulates the maturation of DCs and causes them to migrate to the
draining lymph nodes, where they can cross-present tumor antigens to naïve T cells [63]. OV-mediated
cell killing results in the release of tumor-associated antigens (TAAs), pathogen-associated molecular
patterns (PAMPs) and danger-associated molecular patterns (DAMPs) from the lysed tumor cells,
inducing markers of immunogenic cell death, such as membrane-associated calreticulin (ecto-CRT)
and the release of high mobility group box 1 (HMGB1), ATP, and heat shock protein 70 and 90 (Hsp70
and Hsp90) [63]. Therapies utilizing VSV as an oncolytic agent have been shown to demonstrate a
variety of immune responses, including the induction of tumor-specific CD8+ T cells that are induced
following the release of tumor-associated antigens [64]. We have observed a rapid and substantial
infiltration of inflammatory cells, in particular, neutrophils and natural killer (NK) cells [65,66] that are
crucial for the induction of an antitumor immune response [64,67]. It has been shown in a melanoma
model that oncolytic VSV induces the secretion of type III IFN IL-28 into the tumor microenvironment,
causing tumor cells to display NK cell ligands and resulting in NK cell recognition, activation and
cytotoxicity [67]. Important to note, however, is that this inflammatory response also represents the
innate defense against the virus, and these cells are largely responsible for the rapid clearance of VSV
within 72 h after treatment, having a counterproductive effect on the direct oncolytic effect [65,66,68].

An abundance of literature indicates that VSV can activate and mature pDCs, which play an
important role in the detection of viral infection and in antiviral immune responses. Infection of pDC
with VSV is sensed via the toll-like receptor 7 (TLR7), which mediates a maturation and activation
of pDCs and can further lead to priming of CD8+ T cells. This maturation is characterized by the
upregulation of the MHC class II molecules and CD80, CD86, CD40, which all lead to improved
antigen presentation, as well as induction of high levels of type I IFNs [69–71]. Barchet et al. describe
in detail that there is a strong induction of IFNα in pDCs after VSV infection [72]. Kawai et al. could
further conclude from published data that pDCs are specialists in recognizing VSV, as opposed to
their conventional counterparts, the mDCs [73]. Consistent with this, Frenz et al. showed that mDCs
are more permissive than pDCs to VSV infection, and that VSV-infected mDCs were sufficient to
stimulate an IFN response in pDCs without direct infection of the pDCs themselves [74]. Swiecki and
his colleagues showed that pDCs are a critical component in the efficacy of VSV therapy in combination
with adoptive cell therapy [75].

Oncolytic viruses are potent immunogens that activate innate antiviral immune responses that act
to limit virus replication and clear the infection [65,76,77]. Despite this seemingly counterproductive
effect, the innate antiviral response has the potential to mediate antitumor bystander effects through
cytokine induction [67], activation of immune effector cells, such as NK cells [64,78], and through the
priming of subsequent adaptive immune responses against viral and tumor-associated antigens [61,79].
It was recently shown in the B16ova model that the immune responses derived from VSV therapy are
predominantly the effect of immune bystander functions resulting from the innate response to viral
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antigens expressed at the tumor site, even in the absence of ongoing virus replication [80,81]. This
process is mediated through MyD88 signaling and innate cytokines and effector functions [64,67,77].
The role of the immune system, either as a potential inhibitor to oncolytic virus therapy or as an essential
component mediating antitumor effector functions, has been intensely discussed and debated [82,83].

5. Strategies to Boost the Immune-Stimulating Potential of VSV

Although VSV has the inherent potential to mediate antitumor immune responses as an important
aspect of oncolytic virus therapy, the prime immune effect is directed against the virus, and VSV in
its wild-type form produces relatively weak immunotherapeutic responses; however, it serves as an
ideal platform for the application of a variety of immune-stimulating strategies, both through viral
engineering and combination approaches. These strategies will be outlined in the following sections.

5.1. Modification of Endogenous VSV Genes

The matrix (M) protein of VSV is responsible for many of the cytopathic effects associated with
VSV infection, including the characteristic rounding of infected cells and the shutdown of host gene
expression [84]. This shutdown occurs at the level of host transcription, as well nucleocytoplasmic
transport of host RNA and proteins [85,86] and is responsible for the ability of VSV to inhibit activation
of host IFN responses [87]. Studies have identified various mutants of VSV that possess strong
IFN-inducing phenotypes, and many of these mutants harbor point mutations in their M proteins [88].
In particular, the M51R mutant was found to be defective in its ability to block host gene expression
and was, therefore, able to efficiently induce IFN signaling in responsive cells [87]. Since this important
finding, numerous studies have been performed using VSV-M51R or VSV-M∆51 variants, not only
in an attempt to improve safety, but also as a strategy to induce stronger virus-mediated antitumor
immune responses [89–91].

VSV-M51R infection of CD11c+ mDCs in mice leads to upregulation of activation markers like
CD80, CD86 and MHC class II [92]. M-mutant VSV can induce maturation of myeloid DCs (mDCs),
resulting in type I IFN expression and secretion of IL-6 and IL-12 [92]. In addition, mDCs infected with
rVSV-M51R effectively activate naïve T cells and show a higher capacity to induce proliferation of
antigen-specific T cells and stimulate effector functions as compared to controls and lipopolysaccharide
(LPS)-treated mDCs [93]. It was additionally demonstrated that VSV-M∆51-GFP can break immune
tolerance and induce long-term immune responses mediated by T cells. Lemay and his colleagues
have shown that, in cells that are normally not permissive to rVSV-M∆51 infection in vivo, a partially
protective antitumor immune response, marked by maturation of DCs, can be achieved using a cell
vaccine approach employing rVSV-M∆51-GFP-infected irradiated tumor cells (B16F10 and CT26) [94].

The glycoprotein (G) of VSV is responsible for cellular attachment of the virus and subsequent
entry via clathrin-mediated endocytosis [95]. Analysis of various VSV mutants harboring mutations in
the G protein revealed the G6R mutant that was able to efficiently induce type I IFN responses to a
greater extent than rVSV-M51R, in the absence of viral attenuation observed with the M mutant [96].
Furthermore, Janelle et al. could show that rVSV-G6R induces strong antiviral immune responses,
as evidenced by production of high neutralizing antibody titers, albeit to a lesser extent than the M
mutant [89]. However, the antitumor immune response induced by rVSV-M51R was more diverse
and more protective than that observed for wild-type or the G6R mutant, and was mediated by a
cellular immune response and characterized by a strong T cell response directed against the tumor [89].
Furthermore, it is important to consider that, in mice treated with the G6R mutant, the majority of
activated T cells expressed PD-1 [89], a marker of T cell exhaustion, which could potentially play a
counterproductive role in immunotherapy via PD-1/PD-L1 immune checkpoint signaling.

5.2. VSV-Mediated Cytokine or Immune-Stimulatory Molecule Expression

A common strategy of boosting the immune-stimulating potential of an oncolytic virus involves
the incorporation of a cytokine into the viral genome. In the case of VSV, the most common engineering
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approach is to insert the foreign gene as an additional transcription unit, usually between the
endogenous glycoprotein (G) and large polymerase (L) gene. A summary of the recombinant VSV
vectors expressing immune-stimulatory cytokines/molecules that have been reported to date is
provided in Table 1.

Table 1. Preclinical and clinical recombinant vesicular stomatitis virus (VSV) vectors.

Virus Modification Action Murine Tumor Model Reference

VSV IL-4 Expression of IL-4
Expression of TK

Oncolytic
Immunogenic

Melanoma
Mammary

Adenocarcinoma
[50]

VSV mIFNβ

VSV hIFNβ

VSV rIFNβ

Expression of IFNβ gene
murine (m), human (h), rat (r)

Oncolytic
Immunogenic

Mammary
Adenocarcinoma [97]

VSV IL-12 Expression of IL-12 Oncolytic
Immunogenic

Squamous Cell
Carcinoma [98]

VSV ova VSV expression of chicken
ovalbumin

Oncolytic
Immunogenic Melanoma [64]

VSV hDCT VSVm∆51 expression of
human DCT

Oncolytic
Immunogenic Melanoma [99]

VSV IL-23 Expression of IL-23
Oncolytic

Immunogenic
Attenuation in the CNS

Mammary
Adenocarcinoma [100]

VSV IL-28 Expression of IL-28 Oncolytic
Immunogenic Melanoma [67]

VSV Flt3L
VSVm∆51 expression of

human Fl3L (growth factor
DC’s activator)

Oncolytic
Immunogenic

Lymphoma
Melanoma [101]

VSV hgp 100 VSV expression of hgp100 a
tumor-associated antigen

Oncolytic
Immunogenic Melanoma [102]

VSV IL-15 VSVm∆51 expression of IL-15
Oncolytic

Immunogenic
Safer

Colon
Adenocarcinoma [103]

VSV H/F,
VSV aEGFR

VSV aFR
VSV aPSMA

VSV Pseudotyped lacking
G gene

Displaying single chain
antibodies (ScFy)

Oncolytic
Immunogenic Myeloma [104]

VSV HIV-1 gp 160
VSV expression of human
immunodeficiency virus 1

Hybrid fusion protein 160 G

Oncolytic
Immunogenic Leukemia [105]

Virus Modification Action Clinical Trial Reference

VSV rIFNβ Expression of IFNβ gene Oncolytic
Immunogenic

Phase I
Hepatocellular

carcinoma
NCT01628640

VSV IFNβ-NIS
Expression of the sodium

iodine symporter (NIS) and
human interferon β (IFNβ)

Oncolytic
Immunogenic

Phase I
Refractory solid

tumors
NCT02923466

IFN-β is a member of the type I IFN family, and has both antiviral immune functions, as well as
general immune-stimulatory properties. It has been hypothesized that the VSV-mediated expression of
IFN-β would, therefore, not only improve the safety of VSV by restricting its replication to IFN-resistant
tumor cells, but it could potentially enhance the efficacy of oncolytic VSV therapy through the induction
of antitumor immune responses. In fact, mice bearing mesothelioma tumors enjoyed longer survival
after local or locoregional treatment with recombinant VSV expressing mouse IFN-β than those treated
with VSV expressing the human version of IFN-β, which has little cross-reactivity with mice [106].
It was shown that the improved therapeutic outcome was dependent, at least in part, on CD8+

T cell responses, although further studies indicated that these represented mainly a generalized
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T cell activation rather than tumor antigen-specific T cell effector functions [106]. Improved safety of
rVSV-mIFN-β was also confirmed in this study [106]. Along similar lines, rVSV-IFN-β was shown
to induce a systemic antitumor immune response, marked by increased CD8+ tumor-infiltrating
lymphocytes (TILs) and decreased Tregs and mMDSCs, in both injected and non-injected tumors,
in a model of non-small cell lung cancer [107]. Furthermore, there was evidence of the onset of a
memory immune response shown via rechallenge experiments in the same study [107]. Interestingly,
rVSV-IFN-β therapy was also associated with an increased expression of PD-L1 on tumor cells, both
in injected and non-injected tumors, which could pose a potential limitation to the immunotherapy;
however, this also indicates that combination therapies with PD-1 or PDL-1 inhibitors have the potential
to result in synergistic responses. This represents an attractive strategy, since PD-1/PDL-1 inhibitors
have recently entered the clinic. Based on compelling preclinical studies, a recombinant VSV vector
expressing human IFN-β recently became the first VSV vector to be tested in a phase I clinical trial
as an oncolytic agent, and it is being applied intratumorally to patients with sorafenib-refractory
hepatocellular carcinoma (ClinicalTrials.gov Identifier: NCT01628640). A second phase I clinical
trial has just recently been initiated, in which rVSV-IFNβ-NIS, additionally expressing the sodium
iodide symporter (NIS), will be injected intratumorally to patients with refractory solid tumors
(ClinicalTrials.gov Identifier: NCT02923466).

In a similar strategy, investigators have engineered an rVSV-M∆51 vector encoding IFNγ [108],
an important immunostimulatory and immunomodulatory cytokine that is expressed by activated
NK and T cells. Mouse 4T1 mammary carcinoma and CT26 colon carcinoma tumors treated with
rVSV-M∆51-IFNγ revealed greater T cell infiltration than those receiving rVSV-M∆51, as well
as prolonged survival, which was shown to be dependent on the activation of the T cell
compartment [108].

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine with strong
immunostimulatory functions that induces differentiation, proliferation, and activation of macrophages
and DCs, leading to cytotoxic T lymphocyte (CTL) activation [109]. In the VSV-infected cell vaccine
study mentioned earlier, it was shown that vaccines consisting of rVSV-M∆51-GM-CSF-infected cells
resulted in enhanced antitumor immune responses, marked by increased numbers of activated DCs,
IFN-γ-expressing NK cells, and T cells, compared to the control vector not expressing GM-CSF, even in
the absence of high intratumoral replication [94]. Another group demonstrated the induction of a broad
antitumor immune response by a recombinant replicating VSV (rrVSV) pseudotyped with the Sindbis
virus glycoprotein and encoding mouse GM-CSF, which selectively replicates in Her2/neu-positive
cells [110]. Here, Bergman and colleagues showed that the immunity is mediated by T cells, and a
broad memory response was demonstrated in tumor rechallenge experiments, in which protective
immune responses were also generated against tumor cells not expressing the artificially expressed
human Her2/neu antigen [110].

Several interleukins have also been expressed by VSV vectors in attempts to improve immune
responses. VSV recombinants expressing the suicide gene, thymidine kinase (TK), or IL-4 were shown
to provide enhanced oncolytic activities compared to wild-type controls in syngeneic breast and
melanoma tumors in mice, as well as increased granulocyte-infiltration and concomitant induction of
antitumor cytotoxic T cell responses [50]. VSV-mediated expression of IL-12 in a murine squamous cell
carcinoma model resulted in a striking reduction of tumor volume and significant survival prolongation
compared to a control vector [98]. Similarly, a recombinant VSV expressing a highly secreted version
of human IL-15 led to a significant enhancement of antitumoral T cell responses and prolonged
survival [103]. In addition to the ability of interleukins to enhance immune responses, it was shown
that VSV modified with a single chain IL-23 could provide neurologic protection, attenuating VSV
replication in the central nervous system and improving the safety over wild-type VSV [100].
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5.3. VSV as a Vaccination Platform

The concept of vaccination involves the administration of antigenic material for the purpose of
stimulating the host’s immune system to develop adaptive immunity against a pathogen or disease.
Therapeutic cancer vaccines aim to stimulate durable antitumor immunity, providing long-term
systemic protection against relapse or metastatic disease. Effective vaccines against cancer include
RNA and DNA virus platforms that deliver high concentrations of antigen to HLA class I and II
molecules on DCs, activating CD4+ and CD8+ T cell responses [111]. VSV represents a particularly
attractive vaccination platform due to its potent immunogenicity, leading to strong humoral and
cellular immune responses [112]. Indeed, VSV-based vaccines have been shown to induce protective
immunity against a variety of pathogens, including Ebola, HIV, influenza, and Marburg virus [113–115].
Similarly, it was hypothesized that it would be possible to enhance the therapeutic potential of oncolytic
VSV therapy by incorporating a tumor-associated antigen into the vector, to generate adaptive T cell
responses for protective immunity and systemic therapy against metastatic tumors [116,117].

Chicken ovalbumin (OVA) is commonly used as a model tumor antigen for cancer vaccine studies
and for evaluating antitumor immune responses in preclinical studies. Recombinant VSV engineered
to express the OVA antigen, injected into established B16ova tumors, was shown to efficiently prime
ova-specific T cell responses compared to a VSV-GFP control vector, due to migration of VSV-OVA to
the tumor-draining lymph nodes, where both viral and ova antigens could be presented, resulting in
enhanced therapeutic effects [64]. However, it was subsequently demonstrated that the therapeutic
effect of VSV-OVA therapy was the function of expression of a foreign, highly immunogenic antigen,
whereas VSV-mediated vaccination against the self-antigen, gp100, was insufficient to improve the
therapeutic outcome compared to rVSV-GFP therapy [102]. This limitation could be overcome by
combination therapy with adoptive transfer of Pmel T cells specific for mouse gp100 [102], which will
be discussed in greater detail in the next section. In a novel combinatorial approach, Blanchard et al.
reported that stereotactic ablative radiation therapy (SABR) could control tumor growth in local,
accessible oligometastatic melanoma, but produced weak T cell responses, which could be boosted by
treatment with VSV expressing a tumor antigen [18], providing a potentially synergistic therapy for
both local and systemic disease. In this study, it was also observed that an immune response against
the self-antigen gp100 could be generated as a result of VSV-ova and SABR combination therapy,
indicating a broad release of tumor antigens and subsequent antitumor immune response elicited by
this therapy [18]. As an alternative to wild-type VSV as a vaccine vector, Tober and colleagues describe
a novel VSV vaccine vector (VSV-GP-OVA), pseudotyped with the glycoprotein of the lymphocytic
choriomeningitis virus (LCMV) [118]. This vector was just as efficient in generating OVA-specific
humoral and cellular immune responses as VSV-OVA, and has the additional benefit of being the
only replication-competent vaccine vector described to date that does not lose efficacy upon repeated
application [118].

In contrast to the weak immune response induced by VSV-gp100, intranasal injection of a
recombinant VSV expressing the human dopachrome tautomerase (hDCT) activated both CD4+ and
CD8+ DCT-specific T cell responses in a murine melanoma model [117]. Bridle and colleagues then
speculated that they could improve this vaccination effect by applying a prime-boost approach, which
involves the expression of the same antigen by two sequentially applied heterologous viruses, in
order to augment antigen-specific T cell responses. Following T cell priming with the rVSV-hDCT
vector, mice bearing B16-F10 melanoma tumors were treated with recombinant adenovirus (Ad)-hDCT,
which led to enhanced antitumor efficacy, and prophylactic effects were also demonstrated for this
treatment regimen [117]. The same group then went on to show that VSV substantially potentiates
CD8+ T cell responses, accelerating their progression to a central memory phenotype, when applied as
a boosting vector following adenoviral vaccination [119]. They demonstrate that the application of
VSV as a priming vector leads primarily to enhanced antiviral immune responses, whereas boosting
with VSV elicits a stronger antitumor immune response [116]. The potency of this approach was even
further enhanced by combination with a histone deacetylase (HDAC) inhibitor during the boosting
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phase of therapy, which functioned to inhibit the innate antiviral immune response, while enhancing
the expansion of tumor-specific T cells and simultaneously depleting conventional lymphocytes and
Tregs [120].

As an alternative vaccination approach, Kottke and colleagues have demonstrated that the
expression of a cDNA library from a VSV vector could allow presentation of a broad repertoire of
tumor-associated antigens, which reduced the emergence of treatment-resistant tumor variants [121].
Furthermore, any tumor cells that did escape the immune pressure could be treated by second-line
therapy with virus-based immunotherapy [121].

5.4. VSV in Combination with Adoptive Cell Therapy

Adoptive cell therapy (ACT) is a highly personalized cancer therapy, in which ex vivo-expanded
immune effector cells are autologously administered to the cancer-bearing host. Of the ACT approaches
under investigation, adoptive transfer of T cells is perhaps the best characterized to date, with
an abundance of convincing preclinical [122,123], as well as clinical [124–126], successes reported.
Strategies to generate tumor-specific T cells for adoptive transfer include the expression of chimeric
antigen receptors (CARs), which are able to recognize antigen epitopes independently of MHC
presentation, or the transduction with T cell receptors (TCRs) that target a specific tumor antigen.
The clinical success of CD19-CAR-engineered T cells directed against CD19+ B cell malignant cells
has been well documented [124,125] and will likely lead to clinical approval next year by the Food
and Drug Administration in the U.S. Similarly, for other tumor entities, such as melanoma, breast,
colorectal, and esophageal cancers, the first evidence of positive clinical outcomes following adoptive
TCR transgenic T cell therapy has been reported [126]. Despite the encouraging clinical success of
these ACT approaches, toxicities in the form of cytokine release syndrome, neurotoxicity, and off-target
effects have also been observed and should be carefully considered in the future clinical development
of these therapies [124–126].

Although the ability of adoptively transferred antigen-specific T cells to recognize their target
antigen, expand, and traffic to the tumor site has been characterized using various noninvasive imaging
modalities in preclinical tumor models [127–129], these processes can be relatively inefficient in a
more complex, immune-competent system. The immune-suppressive tumor microenvironment,
reviewed extensively in the first section, also plays an important role in the fate of adoptively
transferred immune cells. De Aquino et al. further characterize this immunosuppressive network,
comprised of tumor-associated macrophages (TAMs), DCs, MDSCs, Tregs, inhibitory molecules (such
as TGF-β, FasL, and IL-10), and immune checkpoint signals, such as CTLA4 and the PD-1/PD-1L
interaction [130]. Together with the ability of tumor cells to down-regulate their MHC molecule
expression to evade recognition by reactive T cells, these features all contribute to the challenges of
adoptive cell therapy [130]. An interesting study by Spranger and colleagues demonstrated that, in
T cell-inflamed tumors, infiltrating CD8+ T cells themselves can lead to Treg accumulation in the
same region as the CD8+ T cells at the tumor site, thereby causing a suppression of the immune
response [131]. Additional limitations currently faced by ACT approaches include the challenge of
selecting target antigens that are truly tumor-specific and highly expressed, as well as the relative
inefficiency of transferred cells to access many solid tumors [132]. Furthermore, targeting a single
antigen can lead to selective pressure within the tumor and the potential for escape mechanisms
leading to outgrowth of resistant tumor cells [133]. Antigenic drift has also been shown to cause
alterations in epitope presentation, leading to failure of ACT, both in preclinical models [134,135] and
in patients [136,137]. An overview of the major challenges to effective ACT is presented in Figure 1.
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Figure 1. Challenges to adoptive cell therapy (ACT). The fate of adoptively transferred genetically
engineered T cells (CAR/TCR) faces several hurdles. The size of the tumor can inversely correlate
with the efficacy of ACT. Immature plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs), Tregs
and myeloid-derived suppressor cells (MDSCs), resulting in a general immunosuppressive tumor
micromilieu, are also counterproductive to ACT responses.

The combination of ACT with oncolytic virus therapy cannot counteract all of the limitations
associated with ACT monotherapies; however, there are a multitude of potential mechanisms for
synergy implied by this therapeutic design. First, treatment with a potent oncolytic virus causes tumor
debulking, which has the potential to enhance the efficacy of ACT. Villadangos et al. have demonstrated
in an ova-expressing lymphoma model in mice, that large tumors suppress ACT function, whereas
pretreatment with cyclophosphamide to shrink the tumors resulted in an enhanced therapeutic effect
of the transferred OT-1 T cells [138]. We speculate that oncolytic virus therapy could mediate a
similar effect. Secondly, while ACT is dependent on the adequate expression of the targeted tumor
epitope, oncolytic virus therapy has the potential to infect and kill all tumor cells, indicating that
this combination could compensate for the challenge of antigen loss, drift, and shift associated with
ACT targeting a single antigen. Finally, we hypothesize that oncolytic virus therapy can mitigate the
suppressive activities of MDSCs and Tregs, which have been shown to inhibit ACT [19,139,140], via
their known capacity to modulate the MDSC phenotype to a more proinflammatory and cytotoxic
one [20] and to activate T cells through DC maturation and IFN-α secretion [69,72]. These interactions
between oncolytic virus therapy and ACT are mainly speculative based on the currently available
literature, however, and additional studies aimed at investigating the interplay between virus-infected
cells and DC maturation and T cell activation and recruitment are needed in order to fully elucidate
the potential synergism of the combination therapy. Because this review focuses specifically on VSV,
we will now summarize the most relevant literature describing the combination of VSV with ACT.
A summary of the interplay between oncolytic VSV immunotherapy and ACT is depicted in Figure 2.
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Figure 2. Identification of potential synergistic mechanisms mediated by ACT and VSV. Tumor
debulking mediated by VSV potentially synergizes with better response in ACT. Those effects could be
mediated by the following mechanisms: (1). VSV causes potent direct oncolysis to debulk large tumors;
(2). Induction of necrosis by shutdown of tumor vasculature is mediated by attracted neutrophils
to site of VSV inflammation; (3). Monocytic MDSCs (mMDSCs) are matured to a proinflammatory,
tumor killing phenotype; (4). VSV infection causes strong induction of interferon (IFN) type I response
by pDC maturation; (5). This IFN type I response may lead to recruitment of adoptively transferred
T cells by chemokine signaling and type II IFN response of natural killer (NK) cells [141–144]; (6). The
type I IFN response to VSV infection may lead to potentially reduced Treg attraction mediated by
mDCs [145]; (7). TLR signaling-matured pDC can activate mDC, which is enhanced by IFNα [146,147];
(8,9). pDC prime a T cell response against viral antigens, as well against tumor antigens introduced to
the viral genome [148]; (10). Matured mDC can take up released tumor antigens from dying tumor
cells and prime a T cell response which is enhanced if there is a crosstalk between the dendritic cell
subsets [148–150]. Black arrows within the inset boxes indicate differentiation; the green arrow indicates
attraction; the T arrow represents inhibition.
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Although combination therapies employing oncolytic VSV and adoptive cell therapies are still in
their preliminary stages, with not much literature yet available, the majority of these reports involve
the adoptive transfer of T cells, as opposed to other immune cell types. Wongthida et al. have reported
that intratumoral application of rVSV-ova in a subcutaneous B16ova melanoma model significantly
enhances the activation level of adoptively transferred naïve OT-I T cells against the ova peptide, an
effect that was mediated by CD11c+ DC [102]. These findings corroborated previous reports from
Diaz and colleagues, in which it was shown that even rVSV-GFP, which does not express the ova
antigen, could cause enhanced activation of naïve OT-I T cells in comparison to monotherapy with
either VSV or the T cells alone, although to a lesser extent than that observed when rVSV-ova and
OT-I T cells were applied [64]. As a follow-up to these studies, the authors investigated vaccination
with rVSV expressing the self-antigen gp100, which provided no additional therapeutic effects over
rVSV-GFP, but could mediate an enrichment of antigen-specific T cells and impressive cure rates when
B16ova-bearing mice were pre-treated with naïve Pmel T cell transfer [102]. In contrast, the transfer
of naïve Pmel T cells alone was not sufficient to eradicate tumors, highlighting the potential benefit
of combining adoptive T cell therapy with oncolytic VSV [102]. To further improve the combination
therapy, Rommelfanger et al. used a combination of systemic rVSV-ova, rVSV-hgp100, and the transfer
of naïve OT-I T cells and Pmel T cells in this B16ova melanoma model [151]. They demonstrated that
by simultaneously targeting two distinct tumor antigens, they could achieve regression of all treated
tumors, and long-term, tumor-free survival [151]. In this study, the authors also noted that the major
therapeutic mechanism appeared to be the priming of an antitumor immune response, rather than
the adoptive cell therapy. This was evidenced by the combination of rVSV-hgp100 with Pmel T cells
increasing the prevalence of pDCs in the tumor-draining lymph nodes and spleens of those treated
mice, which could then present antigen to the increased pool of naïve T cells provided by the adoptive
transfer [151]. This combination leads to the more rapid onset of an immune response against the
tumor antigen than that which can be achieved without increasing the number of antigen-specific
naïve T cells before priming [151]. In subsequent work with the B16ova melanoma model, this
group could observe efficient priming of OT-I T cells against the ova-bearing tumors if combined
with rVSV-ova [18]. In another model, Gao and colleagues have demonstrated that viral infection of
meningeal tumors with rrVSV could break the blood-meningeal barrier and allow efficient infiltration
and proliferation of adoptively transferred memory T cells [152]. In this study, it was shown that
viral infection shifted the tumor and meningeal infiltration of leukocytes from consisting mainly of
macrophages to predominantly T cells [152]. They further went on to show that therapy of peritoneal
breast tumor metastases generates memory T cells that prevent the establishment of meningeal tumors
in the same animals [152].

Another benefit of combining oncolytic virus therapy with ACT is the potential to exploit the
adoptively transferred cells as carriers to shield the virus from inactivation and nonspecific uptake and
delivering it to the tumor target via the intrinsic homing mechanism of the cells. Qiao et al. showed
that rVSV-M∆51 replicated poorly in OT-I T cells, but enhanced their effector functions in vitro and
resulted in higher rates of tumor homing in vivo, compared to uninfected OT-I cells [153]. Furthermore,
induction of endogenous antitumor T cell responses were observed, and this combination resulted in
superior therapeutic effects in vivo compared to virus or T cells alone in the B16ova tumor model [153].
Loading with rVSV-GFP was also sufficient to improve the therapeutic effects of OT-I T cells in
the same tumor model, and this therapy could be even further enhanced through Treg depletion
and administration of IL-2, which provided multiple therapeutic mechanisms, including improved
OT-I T cell persistence in vivo, enhanced VSV delivery to tumors, and activation of NK cells [154].
An additional benefit of this therapy was the protection of VSV from neutralizing antibodies when
low multiplicities of infection (MOI) of VSV were loaded onto OT-I T cells [154]. In an alternate study
using rVSV-GFP, it was shown that loading VSV onto antigen nonspecific T cells was sufficient to
clear metastases in immune-competent mice bearing metastatic B16ova tumors [155]. While naked
VSV failed to elicit a sufficient antitumor immune response in this model, when it was loaded onto



Biomedicines 2017, 5, 8 14 of 24

T cells, induction of tumor-reactive lymphocytes against the self-antigen Trp-2 was observed [155].
Partial remissions in mice could also be achieved in LLC-ova (Lewis lung carcinoma) and CMT93tk
(colorectal carcinoma) tumor models using lymphocytes loaded with VSV, while the response was
considerably weaker in mice treated with either VSV or T cells alone [155]. Similar to OT-I T cells,
CAR T cells directed against the Her2 antigen did not lose their function or viability upon infection
with rVSV-M∆51-GFP, and they were shown to maintain their antitumor effector functions and
efficiently deliver virus to the tumor [156]. The synergistic effect of the combination therapy was
further highlighted in vitro, where it was shown that the D2F2/E2 cell line, which is rather resistant to
VSV or CAR T therapy alone, could be efficiently killed by the combination [156].

Although the majority of reported VSV and ACT combination therapies involve the use of
T cells, dendritic cells also represent good candidates for adoptive cell transfer. DC-based vaccines
represent a promising immunotherapeutic strategy due to their ability to activate both innate immune
effectors, including NK cells, as well as antigen-specific T cell immunity. A study by Boudreau et
al. demonstrated that infection of CD11c+ DCs with an rVSV-M∆51 vector caused DC activation,
marked by production of proinflammatory cytokines (IL-12, TNF-α, IFN-α/β) [99]. Adoptive transfer
of DCs infected with rVSV-M∆51 expressing the ova-derived SIINFEKL epitope to mice bearing lung
metastases of melanoma mediated substantial tumor control via engagement of NK and CD8+ T cells,
an effect that was completely abrogated by depletion of NK cells [99].

6. Summary and Outlook

In this review, we have provided a broad overview of the use of vesicular stomatitis virus (VSV)
as a potent oncolytic agent and a mediator of immunotherapeutic antitumor effects. We have described
in detail the immunosuppressive microenvironment characteristic of tumors, which presents a major
challenge to immune-based approaches for treating cancer and poses numerous arguments for the
application of VSV as an ideal platform for overcoming this hurdle. We further summarize a variety
of strategies that have been applied to increase the inherent immune-stimulating potential of VSV,
including virus engineering, vaccination approaches, and combination with adoptive cell transfer.

Despite the compelling evidence presented here for the use of VSV as a viro-immunotherapeutic,
acting both as a hammer and anvil to destroy tumors from multiple angles, the unfortunate truth
is that VSV in its wild-type form is neurotropic and can cause dose-limiting encephalitis, severely
restricting the clinical translation of this vector platform. Although an oncolytic VSV has made its way
to phase I clinical trial, it is attenuated via viral-mediated interferon (IFN)β expression, which has been
shown to improve the safety of the virus. Additional strategies to improve the safety of VSV include
pseudotyping with the glycoprotein of a heterologous virus to alter the tropism. To this end, rVSV-GP,
which is pseudotyped with the glycoprotein of lymphocytic choriomeningitis virus, has been shown
to be not only safe, but an efficient vaccination vector [118]. We speculate that safer engineered VSV
vectors such as these will be instrumental in moving VSV forward in clinical application.

Furthermore, it is important to note that many of the studies presented here were conducted
in overly simplified preclinical models which often poorly reflect the clinical scenario. In order to
better predict the efficacy of these therapies upon clinical translation, the application of new treatment
strategies to genetic models of cancer are warranted. Furthermore, many of the investigations presented
here utilize model tumor antigen systems (such as the B16ova/OT-I model) as the platform for testing
immune-based therapies. Although these are important models for proof-of-principle studies, it will
be of utmost importance to carry out follow-up studies targeting real tumor antigens expressed at
physiological levels to recapitulate the scenario that would be encountered in a clinical tumor setting.

Finally, in an era where immune checkpoint inhibitors are taking center stage as the next
generation of cancer therapeutics, it is only logical that their combination with oncolytic virus therapy
would be investigated. Blockade of immune checkpoints to release the immune-suppressive tumor
microenvironment, in combination with the immune-stimulating effect of an oncolytic virus has the
potential to provide an extremely effective therapeutic approach. In fact, the first reports of such
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combinations have already been published, and it is expected that such investigations will become
more prominent in the coming years. Preliminary findings indicate that the interactions between the
immune checkpoint inhibitors and the oncolytic virus are quite complex, and the optimal selection
of viral vector and immune checkpoint to be inhibited, as well as the timing of administration of the
two therapeutic agents, are all crucial to the ultimate success of the therapy [157]. Combination
of recombinant replicating VSV (rrVSV) expressing granulocyte-macrophage colony-stimulating
factor (GM-CSF) with an anti-CTLA4 (cytotoxic T-lymphocyte-associated protein 4) monoclonal
antibody was successful in eliminating implanted tumors, as a function of CD4+ and CD8+ T cell
responses [158]. In a similar study, a VSV vector encoding for mouse IFNβ and the sodium-iodide
symporter (rVSV-mIFNβ-NIS) was applied in combination with anti-PD-L1, which resulted in the
enhanced therapeutic outcome of the oncolytic virus therapy by application of immune checkpoint
blockade in mice bearing acute myeloid leukemia (AML) [159]. As the potential interactions between
the different modalities of immunotherapeutics become better elucidated, it is expected that new,
rationally designed combination therapies with oncolytic virus vaccines, adoptive cell transfer, and
immune checkpoint inhibition will change the face of cancer therapeutics and provide urgently needed
alternatives for aggressive metastatic disease.
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