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Abstract
We report on strategies forcharacterizing hexagonal coincidence phases by analyzing the involved
spatialmoiré beating frequencies of the pattern.We derive general properties of themoiré regarding

its symmetry and construct the spatial beating frequency éKmoir


as the difference between two

reciprocal lattice vectors ki


of the two coinciding lattices. Considering reciprocal lattice vectors ki


,

with lengths of up to ntimes the respective (1, 0) beams of the two lattices, readily increases the
numberof beating frequencies of the nth-ordermoiré pattern.We predict howmany beating
frequencies occur in nth-ordermoirés and show that for one hexagonal lattice rotating above another
the involved beating frequencies follow circular trajectories in reciprocal-space. The radius and lateral
displacement of such circles are defined by the order n and the ratio x of the two lattice constants. The
question ofwhether themoiré pattern is commensurate or not is addressed by using our derived
concept of commensurability plots.When searching potential commensurate phases we introduce a
method, whichwe call cell augmentation, andwhich avoids the need toconsider high-order beating
frequencies as discussed using the reported ´ ( )R6 3 6 3 30 moiré of graphene on SiC(0001).We
also showhow to apply ourmodel for the characterization of hexagonalmoiré phases, found for
transitionmetal-supported graphene and related systems.We explicitly treat surface x-ray diffraction-
, scanning tunnelingmicroscopy- and low-energy electron diffraction data to extract the unit cell of
commensurate phases or tofind evidence for incommensurability. For each data type, analysis
strategies are outlined and avoidable pitfalls are discussed.We also point out the close relation of
spatial beating frequencies in amoiré andmultiple scattering in electron diffraction data and show
how this fact can be explicitly used to extract high-precision data.

1. Introduction

Moiré patterns are generally observedif two lattices are stacked on top of each other, while having either a
different lattice constant or a different rotational orientation or both at the same time. The problemhas been
known in epitaxy and surface science for a long time [1–4], but the topic regained interest after transitionmetal
(TM) catalyzed chemical vapor depositionwas identified as a promising growth protocol for graphene (g) [5–8].
The interplay of the real-space geometry ofmoirés, the corresponding geometry in reciprocal-space and the
result on the electronic structure of the corresponding phases led to thorough studies focusing on the
description ofmoirés [9–18]. Due to the hexagonal symmetry of the g-lattice, in particulargraphene growth on
hexagonally packed TMsurfaces and the resultingmoiré formation, are of interest [5, 7, 8, 19]. Thus,
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throughout this study, we abbreviate the support lattice as TMand the top lattice as g. For the description of
similar systems, such ashexagonally packed adsorbates [3, 4, 14] or other hexagonally arranged two-
dimensionalmaterials on hexagonally packed support surfaces [20, 21], the nomenclature has been changed
accordingly.

Moiré formationmay be analyzed by describing the lattices inreal-space notation. The question ofwhether
themoiré pattern is commensuratecan then be discussed along the following lines. The hexagonal symmetry of
the TM- andg-lattices induces amoiré patternwith hexagonal symmetry. If the pattern is commensurate, a
hexagonalmoiré unit cell exists andis sufficient to characterize the pattern by providing the coordinates of one
moiré unit cell vector év .moir


Because in thecase of commensurabilitythe unit cell vector évmoir


must be a vector

of both lattices (the TM- and the g-lattices), we can define évmoir


as = ´ + ´év m a n amoir 1 2
  

and at the same
time as = ´ + ´év r g s g ,moir 1 2

  
with ai


and gi


beingunit cell vectors of each hexagonal lattice. This leads to

the coordinates (m, n)TM and (r, s)g, respectively. Choosing a unit cell with 120° angle between the unit cell
vectors a1


and a2


(g1


and )g ,2


we can calculate the length of themoiré unit cell vector as follows:

= + - = + - ( )éL a m n mn a r s rs . 1gmoir TM
2 2 2 2

Here, aTM and ag represent the length of the respective unit cell vectors (i.e. the lattice constant). The orientation
of the unit cell vector with respect to the TM-lattice is given by the angleΦmoiré,TM as:

F =
-

+ -
( ) ( )é

m
n

m n mn
cos 2 . 2moir ,TM

2 2

Theorientation of the unit cellwith respect to the g-lattice is characterized by the angleΦmoiré,g accordingly. It is
readily obtainedwhen exchanging (m,n)with (r, s) in equation (2).While it is easy to calculate equations (1) and
(2)once the coordinates (m,n)TMwith (r, s)g are given, it is not a trivial task tofind integer numbers (m,n) and (r, s)
that fulfill the diophantine equation (1), i.e. there is no easyway ofpredictingwhich commensuratemoiré cells
ofcoinciding hexagonal lattices are possible.

In a recent publication, we analyzed themoiré formation of two coinciding hexagonal lattices in amore
general way,whichallowed us to geometrically derive thewanted integer tuples (m, n)TM and (r, s)g [11]. For this
purpose, we considered lattice functions fTM(x, y) and fg(x, y) that consisted of a superposition of sine-wave
functionswith a defined spatial frequency spectrum. By relatingmoirés to a stroboscopic experiment, it was
shown that the product of the two lattice functions fTM(x, y)×fg(x, y) leads to a patternwith the properties of a
moiré. Considering the arbitrary alignment of the two lattices by introducing the rotationRj of the fg-lattice by
an anglejwith respect to the fTM-lattice, weanalyzed the properties ofmoiré patterns by discussing the
function fTM×Rjfg.Making use of the so-called convolution theorem in Fourier analysis, wepredictedall
spatial beating frequencies ki


in reciprocal-space, which account for the appearance of themoiré pattern. If the

two lattice functions contain reciprocal frequencies ki


, with a vector length of up to ntimes the respective (1, 0)

beams, a so-called nth-ordermoiré pattern appears. Spatial beating frequencies in an nth-ordermoiré pattern
appear as the difference vector = -éK k k ,moir g TM

  
where kg


and kTM


are the corresponding spatial frequencies

of the g- and the TM-lattices. An orientation of the two latticesmay be foundwhere two of the spatial
frequencies kg


and kTM


of a given order n (i.e. of a given length) come closest in reciprocal-space leading to the

shortest vector éK .moir


This shortest beating frequency is called the nth-ordermoiré beating frequency

throughout this paper.We should note that for the specific case offirst-order lattice frequencies, the spatial
beating frequency relating to the longest wavelengthwas called amoiron byHermann [9]. Following our general
description [11],Hermann also generalized themoiron concept towards higher-order frequencies [22].
Recently, Artaud et al extended the description ofmoiré patterns formed by coinciding hexagonal lattices when
allowing for uniaxial strain [12]. The authors used our nomenclature but also introduced a generalizedWoods
notation of commensurate phases.

In the casewhere the two lattices develop a commensurate pattern, themoiré has translational symmetry.
The smallest possible unit cell of the real-space pattern is then called themoiré unit cell. Knowing all spatial
frequencies of an nth-ordermoiré, we can predict when commensurability sets in and visualize these cases in so-
called commensurability plots [11].We also distinguish the case when spatial beating frequencies approach,but
do not exactly reach, the k-space position of a commensurate cell. In such a case a so-calledmotif of themoiré
evolves [23], whichmay strongly influence the pattern appearancewithout having the translational symmetry of
a lattice.

In thefirst part of this paper, we discuss the general properties of hexagonal nth-ordermoiré patterns. Rather
than formally solving equation (1), which has to be done by numericalmethods, we discussmoiré patterns, their
symmetry and potential commensurability in amore general way by addressing their beating frequencies in
reciprocal-space.We introduce a so-called cell augmentation technique, which asks for commensurability with
respect to an enlarged unit cell in real-space. This techniques is strongly related to the findings of Artaud et al
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who treated the case ofmultiple beatings in unit cells [12]. Using the example of the so-called ´ ( )R6 3 6 3 30

moiré found for graphene on SiC(0001) [24], weshowhow cell augmentation avoids the use of high-order
beating frequencies when searching for commensuratemoiré phases.

In the second part of this paperwe apply ourmethod to themoiré analysis of experimental data. For
measurements performed by uswe provide experimental details inappendix A. In caseswherewe relate to the
interpretation of data acquired by other groups, we direct the readerto the original literature.Within this
section, we showhow to correctly analyze and indexmoiré patterns avoiding pitfalls when dealingwith real-
space-,or reciprocal-space data.We explicitly discuss supported graphene phases, whichwere characterized by
surface x-ray diffraction (SXRD), scanning tunnelingmicroscopy (STM)and low-energy electron diffraction
(LEED)and low-energy electronmicroscopy (LEEM).For the electron diffraction studies,in particular,we
point out the intimate relationship betweenmultiple scattering and our generalizedmethodof constructing
moiré beating frequencies. The derived results canalso be used to identify incommensurate phases and can be
easily applied for other related 2-dim systems that evolvemoiré patterns.

2.General properties ofnth-ordermoirépatterns

Within this sectionwe outline several general properties of hexagonal coincidence phases that determine the
appearance of hexagonalmoirés. The indexing of commensuratemoiré phases is alsoaddressed.

2.1. Simplified notation of commensurate hexagonalmoirépatterns
The description of two coinciding hexagonal lattices uses the 120° notation usually chosen in crystallography.
Following this notation, the real-space unit cell vectors ai


are rotated by 120°with respect to each other and the

reciprocal-space vectors~ai are rotated by 60°, accordingly. Lattice vectors and vectors belonging to the
superstructure of a commensuratemoiré pattern are defined in realand reciprocal-space as displayed in
figure 1.

The real-space vector = ( )év m n,moir


describes one of the unit cell vectors of themoiré supercell (green cell).

Following the 120° notation, the supercell in real-space is characterized by thematrix = - -( )M m n
n m n and

in reciprocal-space by the correspondingmatrix =
- +

-
-( )M̃

m mn n
m n n

n m
1

2 2
, which defines the

corresponding reciprocal-spacemoiré vector éKmoir


and its 60° rotated counterpart of the unit cell. Due to the

hexagonal symmetry of the system, unit cells rotated bymultiples of 60°may also be chosen and it is sufficient to
provide the coordinates of only one unit cell vector. Using this simplified notation, the indexing of a
commensuratemoiré pattern is given by the coordinate tuple(m, n)TM/(r, s)g of this vector relating to the TM-
and to the g-lattice, respectively.

2.2.Hexagonal symmetry and indexing of symmetrically equivalentmoiréunit cells
Due to the hexagonal symmetry of a commensuratemoiré each 60° rotated unit cell vector is also suitable for
indexing the unit cell with the simplified notation (m,n)TM/(r,s)g. Therefore, wefind it useful to provide the
coordinates of these six vectors:

Figure 1.Definition of the coordinate systemof the hexagonal lattices and the unit cell of a commensurate superstructure. The lattice
unit cell vectors are indicated as ˜ ˜a a a a, and ,1 2 1 2

 
, respectively. The positive rotational direction (+j) is defined as a counterclockwise

rotation.
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=> - => - - => - - => - - => -
    

( ) ( ) ( ) ( ) ( ) ( ) ( )
R R R R R

m n m n m n m n m n n m m n n m, , , , , , . 3
60 60 60 60 60

Equation (3) relates to unit cell vectors following the 120° notation in real-space. Since in the literature an
alternative lattice description is found, which uses a unit cell with lattice vectors ai


that are rotated by 60°with

respect to each other, we provide formula to convert one indexing type into another inappendix B.

2.3. Clockwise and anticlockwise rotation and the inducedmirror symmetry of themoirépattern
Wedefined a positive rotation by+j as a counterclockwise rotation (see section2.1) and the commensurability
plots introduced in [11], and the ones shown in this paperrelate to this sense of rotation.Onreversing the
rotational direction towards a clockwise rotation,moirés appear thathavemirror symmetrywith respect to the
ones of anticlockwise rotation. This holds whether or not themoirés are commensurate or incommensurate. In
thecase of commensuratemoirés that are indexed following the simplified unit cell notation,mirror symmetry
is obtainedwhen reversing the coordinates of the indexed unit cell vector. As a result, we derive equation (4),
which provides the correct indices of the twomirroredmoiré cells:

j j+ -
́

‐ ‐
́

‐ ‐
( ) ( ) ( ) ( ) ( )m n r s n m s r

Moire unit cell upon rotation

by of g over TM lattices:

Moire unit cell upon rotation

by of g over TM lattices:

, , , , . 4TM g TM g

The proof of these two properties is given inappendix C.

2.4. Reciprocal-space positions of the beating frequencies in an nth-ordermoirépattern
As already outlined in the section 1,the reciprocal-space position of each spatial beating frequency in an nth-
ordermoiré pattern is determined by the difference vector = -éK k kmoir g TM

  
where kg


and kTM


are the

corresponding spatial frequencies of the adsorbate(g) and support lattices (TM). This situation is sketched in
figure 2(a)with = ( )k 1, 0TM TM


and = ( )k 0, 1g g


for afirst-ordermoiré pattern. Instead of formally solving

these type of equations,whichlead to éKmoir


andfinally to analytic expressions of the nth-ordermoiré beating

frequencies, we can also consider their geometricalmeaning in reciprocal-space (which is also named k-space in
the following). Themoiré results from the coincidence of the g- andTM-latticeswith the g-lattice
counterclockwise rotated by an anglejwith respect to the TM-lattice.When continuously rotating the g-lattice,
the corresponding first-order g-lattice frequencies perform a revolvingmotion in k-space. As a result of the
difference construction of éK ,moir


also all spatial frequencies of themoiré pattern except the (0, 0)-spot follow

circular trajectories in k-space.While the radius of each circle is determined by the g-lattice constant only, the
lateral offset of each circle depends on the involved frequency spots of the TM-lattice. Thus, as also sketched in
figure 2(b), all spatial beating frequencies of anyfirst-ordermoiré follow similar circular trajectories, while the
size and position of such circles in k-space varies with the relative lattice constants of the two coinciding lattices.
The spatial frequencies that follow the trajectories, and come closest to the (0, 0) spot, lead to thefirst-order
moiré beating frequencies of the pattern.

In the general case of nth-ordermoiré patterns, the number of spatial frequencies in k-space rapidly
increases asmore andmore difference vectors between the spatial frequencies of both lattices occur. The total
number of spotsN in an nth-ordermoiré pattern is given by

= + ´ + ( ) ( )N s s1 2 6 6 52

where s is the sumof the orders n in the pattern, i.e. å= =s i.
i

n

1
Thefirst term in equation (3) relates to the (0,

0)-spot, the second term results from the difference vector between the (0, 0)-spot with the remaining 6s spots of
each lattice (the g- and the TM-lattices) and the last term represents the possible combinations of the 6s spots of
each lattice. As a result, afirst-ordermoiré pattern contains 1+12+(6)2=49 spatial frequencies,as explicitly
calculated in[11], while already a second-ordermoiré pattern contains 1+36+(18)2=361 spots in k-space.
Although the pattern of higher-ordermoirés containsmany spots and the trajectories are seeminglymuchmore
complex (see alsomovie SD 1 of the supplementary data), the building principle is the same as for the one of
lowestorder, except that nth-ordermoiré patterns contain circular trajectories of larger radii. This is sketched in
figure 2(c), where the beating frequencies of a second-ordermoiré pattern follow circular trajectories with radii
˜ ˜a a, 3g g and ã2 g arising from the revolvingmotion of the ( )1, 0 g-type, ( )1, 1 g-type and ( )2, 0 g-type spots in
reciprocal-space.

During the revolvingmotion of the g-lattice, several of the k-space spots of a given order nmay temporarily
approach the (0, 0) beam,generating the nth-ordermoiré beating frequencies, which appear as alarge
wavelength in themoiré pattern andwhich have been analytically calculated up to third-order in[11]. If spots
approach each other at high symmetry positions in k-space, but do not exactly hit this point, themoiré pattern
develops amotif, whichmay determine the appearance of themoiré pattern, although it does not have
translational symmetry with respect to these frequencies.Wewill discuss such cases in section3.2. In thecase of

4

New J. Phys. 19 (2017) 013015 PZeller et al



commensurability, themoiré pattern relates to a unit cell, which arises if the spatial difference frequencies
belong to boththe g- and the TM-lattices. In order to sort out such cases, we introduced so-called
commensurability plots, which visualize the caseswhere the conditions required for commensurability are
fulfilled (see[11]). In the following section, we discuss amethod that simplifies this task.

2.5. Commensurability and themoiré cell augmentationmethod
Instead of trying to identify commensuratemoiré phases that host one beat per unit cell, onemay also
askwhether commensuratemultiples of this unit cell exist. The augmentationmust be compatible with the
hexagonal symmetry of the problem. Possible augmentation factors are 3, 4, 7, 9, 12, 13, 16,Kwhich can be
derived from the so-called hexagonal sequence number introduced byTkachenko [14].What seems to lead only
to redundant cells, provides in fact new solutions of potential commensuratemoiré phases. This is best
explained for the caseof doublingLmoiré (equation (1)) and addressing a quadrupledmoiré cell size.

Let usfirst use the already introduced simplifiedmoiré cell indexing introduced in section2.1 and apply the
results tofirst-ordermoirés in order to illustrate the technique of cell augmentation. Referringto a non-
augmented unit cell, a commensuratemoiré is characterized by the indexing, which is called non-augmented
cell indexing in the following:

( ) ( ) ( )m n r s, , . 6TM g

For example, when addressing aligned g- andTM-lattices, the (11, 0)TM/(12, 0)g and the (12, 0)TM/(13, 0)g
moiré phases are two possible first-ordermoirés, which subsequently increase in size while keeping the
commensurability with respect to the two lattices. Note thatfirst-ordermoirés are of the type

= + =( ) ( )m n r m s n, 1,TM g as shown in [11].When instead searching for commensurate quadrupled cells,
each unit cell vector ismultiplied by a factor of two and themoiré indexing relates to:

=( ˜ ˜) (˜ ˜) ( ) ( ) ( )m n r s m n r s, , 2 , 2 2 , 2 . 7TM g TM g

Using this notation for the above example of afirst-ordermoiré and inserting = + =( ) ( )m n r m s n, 1,TM g

into equation (7), we end upwith the quadrupled cell notation as = +( ˜ ˜) (˜ ˜) ( ˜ ˜) ( ˜ ˜)m n r s m n m n, , , 2, .TM g TM g

Thus, the aligned g- andTM-lattices would result in subsequently increasingmoiré cells with the notation:

Figure 2.Construction of a spatial beating frequency éKmoir


in a first-ordermoiré pattern (a). The resulting trajectories of the beating

frequencies in k-space are displayed for a first-ordermoiré pattern (b) and for a second-ordermoiré (c). The seeminglymore
complicated trajectories are formed by the same building principles as the ones of thefirstmoiré, but due to the presence of ( )˜1, 0 ,g

( )˜1, 1 g and ( )˜2, 0 g spots in the rotating reciprocal lattice of graphene, circular trajectories with radii ãg(red), ã3 g(blue)and
ã2 g(green)appear in the k-space graph. All images were calculated for the parameter x=aTM/ag=1.104, which applies for g/Ir
(111). The small black spots indicate the beating frequency position at a rotation angle ofj=0°. An animated version of figure 2(c) is
availableinsupplementary data SD 1.
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(22, 0)TM/(24, 0)g, (23, 0)TM/(25, 0)g and (24, 0)TM/(26, 0)g. Thefirst and the last cell of this sequence are
redundant with respect to the alreadymentioned non-augmented cells of our example. Instead, the
(23, 0)TM/(25, 0)gmoiré indicates a new commensurate phase, which is not identified during the searchwhen
using non-augmented cells, since dividing each vector by the augmentation factor two leads to a
(11.5, 0)TM/(12.5, 0)g cell, which obviously does not consist of integer numbers. Although it is obvious that cell
augmentation readily leads to large cells,moiré patterns have been identified for supported graphene such as the
(23, 0)TM/(25, 0)g cell reported for graphene onRu(0001) [25, 26] and the (19, 1)TM/(21, 1)gmoiré found for
graphene on Ir(111) [27, 28]. The cell augmentationmethod is the real-space approach to the description of
Artaud et al, who discussed the k-space conditions of so-calledmultiple beatings within amoiré cell [12].
Figures 3(a) and (b) display first-order commensurability plots in non-augmented and quadrupled cell notation
for possiblemoirés of the system g/Ru(0001) at small rotation anglesj of the two lattices.

The vertical axis displays the lattice ratio x=aTM/ag of the two coinciding lattices while the horizontal axis
is the rotation anglej. As outlined in[11], an nth-order commensurability plot displays the gray scale of a
function that indicates howmuch the nth-ordermoiré beating frequency deviates from the closest nearby unit
cell vector of a commensurate cell within the parameter-space (x,j) of themoiré. At the localminima the
displayed deviation function turns zero, which indicates points in the (x,j)parameter-space, where
commensurability between the graphene and the TM-substrate lattice ismet. The points, where suchminima
appear, aremarked by yellow patches in the graph. They occurwhere the additionally plotted (m, n)TM contour
traces (red and blue curves) cross each other. As has been shown in [11], in a first-order commensurability plot
the (r, s)g contour traces that relate to the g-lattice coincide with the (m, n)TMones.When referring to a non-
augmented cell notation, as infigure 3(a), these (r, s)g indices are calculated as (r=m+1, s=n)g. According to
the indexing introduced in equation (7) for a quadrupled cell, the indices that relate to the graphene lattice are
derived from figure 3(b) as = + =(˜ ˜ ˜ ˜)r m s n2, .g Comparison offigures 3(a) and (b) shows that the quadrupled
cell identifies four times asmany commensurate phases of the system, while every fourth phase is redundant
with the corresponding one foundwhen referring to the non-augmented cell notation. The light blue circle in
both plots indicates the parameter-space,which applies for the so-called (23, 0)TM/(25, 0)gmoiré phase of g/Ru
(0001) [25, 26]. It is clearly seen that this phase is correctly identified infigure 3(b), which refers to a quadrupled
unit cell. Please alsonotethat the identified (23, 0)Ru/(25, 0)gmoiré hosts four beats per unit cell as
experimentally observed [25] and also noted byArtaud et al [12].

Following the outlined strategy, we can also relate our search to tripledmoiré cells, which asks for
commensurability with respect to a cell length of éL3 moir and an orientation of the unit cell, which is turned by
30°with respect to the non-augmented cell (i.e. a tripled unit cell thatis aligned to the so-called 3 direction of
the hexagonal lattice). In this case, we can use equation (3) to show that simplemoiré cells (m, n)TM/(r, s)g relate
to tripled cells with the notation:

= + = + - = - +( ˜ ˜) ( ) ( ) ( ) ( ) ( )m n m n R m n m n m n m m n m n, , , , , 2 ,TM TM 60 TM TM TM TM and

Figure 3. First-order commensurability plots spanning the (x,j) parameter-space of potentialmoirés phases of graphene on
Ru(0001). (a)Commensurability plot relating to the non-augmented cell notation and (b) relatingto a quadrupledmoiré cell. It is
easily seen that in the augmented cell notation, four times asmany commensurate phases appear while every fourth phase is redundant
with the ones indicated infigure 3(a). The light blue circlesmarks the parameter-space where the so-called (23, 0)TM/(25, 0)g phase is
found for the alignedmoiré of g/Ru(0001) [25, 26].
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= - +(˜ ˜) ( )r s r s r s, 2 , ,g g accordingly. Thus, themoiré indexing is given by

= - + - +( ˜ ˜) (˜ ˜) ( ) ( ) ( )m n r s m n m n r s r s, , 2 , 2 , . 8TM g TM g

Please note that the indexing ( ˜ ˜) (˜ ˜)m n r s, ,TM g relates to the tripled cell notation. Introducing the conditions of a
first ordermoire (r=m+1, s=n) into equation (8) leads tofirst ordermoirés in tripled cell notation as

+ +( ˜ ˜) ( ˜ ˜ )m n m n, 2, 1TM g. The indexed cells can be easily converted into indexingwith respect to the non-
augmented cell (m, n)TM/(r, s)g according to:

= + = - = + = -( ˜ ˜) ( ˜ ˜ ) (˜ ˜) ( ˜ ˜) ( )m m n n n m r r s s s r3, 2 3 and 3, 2 3. 9

Now, each third cell is redundant with respect to the identifiedmoiré cell when using the non-augmented cell
notation and equation (9) leads to integer numbers (m, n) accordingly. On the other hand, each of the following
two cells represents a new solutionof potential commensurate phases that are not identifiedwhen relating to a
non-augmented cell.

2.6. Predicting the commensurability of the ´ ( )R6 3 6 3 30 moiré of g/SiC(0001) by applying themoiré
cell augmentationmethod
Calculating commensurability plots forfirst- and second-ordermoirés using augmented cells is a very
convenient way to derive unit cells without having to include higher-order lattice frequencies. This is discussed
for the case of the ´ ( )R6 3 6 3 30 moiré with the unit cell notation (12, 6)TM/(13, 0)g, which is reported for
graphene on SiC(0001) [24]. Thismoiré occurs for a graphene lattice that is turned by 30°with respect to the
SiC-lattice and a g-lattice constant so that 13 g-lattice spacingsmatch6 3 SiC-lattice units.We can compute
thefirst-and second-order commensurability plot for the parameter-space of thismoiré pattern, as shown in
figures 4(a) and (b). The left vertical axis of each plot indicates the relative lattice constant x=aSiC/ag, while the
right one displays the absolute graphene lattice constant ag when considering the lattice constant of SiC(0001)
aSiC=3.07 Å. The horizontal axis represents the lattice rotation anglej and the plots span the region
thatincludes the parameters (ag=2.454 Å, x=aSiC/ag=1.251,j=30°) for which the commensurate
moiréwith the indexing (12, 6)SiC/(13, 0)g is reported [24]. Figures 4(a) and (b) show that in the displayed
parameter range no intersection of all four isolines (m, n)TM and (r, s)g is found that would indicate the presence
of a commensurate phase. In particular,the (12, 6)SiC/(13, 0)g phase does not appear. Instead, infigure 4(c) the
unit cell is correctly identified at the expected parameter-space. Here, the second-order commensurability plot is
computed for a tripledmoiré cell, where integer numbers~ ˜m n, are searched so that = ( ˜ ˜)év m n,moir SiC


leads to

an augmented cell of èL3 moir cell length, which is 30° rotatedwith respect to the non-augmented cell.We
should point out that commensurability plots directly lead to the graphene lattice strain ε required for
commensurability of the identifiedmoiré phases. This is achieved by referencing the predicted graphene lattice
constant to the calculated one of free-standing graphene of 2.456 Å at 300 K [29], which is also displayed in
figure 4(c). Please note that infigure 4(c)a (9, 9)SiC/(13, 7)g commensurate unit cell is alsoidentified, which
requires almost the same g-lattice constant as the one inthe (12, 6)SiC/(13, 0)gmoiré phase, but appears at a
slightly smaller rotation angle. In contrast to the (12, 6)SiC/(13, 0)gmoiré, this phase has not been reported so far.

Figures 4(a)–(c) show that we easilyfind the correct unit cell of the (12, 6)SiC/(13, 0)gmoiréwhen using the
tripled cell notation, whereas this fails when referring to the non-augmented cell.Why this is the casecan be
understoodwhen carefully analyzing the spatial beating frequencies that account for themoiré pattern. By
constructing the beating frequencies of a second-ordermoiré as outlined in section2.4, we can calculate their
positions in reciprocal-space for the parameters of themoiré. Figure 4(d) displays the relevant k-space sector of
the second-ordermoiré beating frequencies.

The graph shows the (0, 0) beam, the ( )1,0 ,SiC ( )0,1 SiC and the ( )1,1 SiC spots (black) aswell as the ( )1,0 g spot
(blue). In addition, tenmore spatialmoiré frequencies k1,K, k10 (red spots) appear according to the
construction = -éK k k .moir g SiC

  
It is clearly visible that k1 and k2 are the shortest k-vectors and account for the

longest wavelength beat of the second-ordermoiré. The linear combinations of these two frequencies fill the
displayed k-space entirely (the corresponding grid is sketched by black solid lines) and k1 and k2 span a ´( )6 6
superstructure with respect to the SiC-lattice. Due to the fact that the (1, 0)g spot and the remaining spatial
frequencies k3,Kk10 do not belong to this grid, k1 and k2 do not relate to a commensurate cell.

When instead relating to a real-space unit cell of tripled size, spatial beating frequencies at the reciprocal 3
positions of the black grid in k-space are addressed (green crosses). The ones closest to the (0, 0) beam relate to a
moiré cell of tripled size in real-space. One of the symmetrically equivalentmoiré vectors is indicated asKmoiré in
figure 4(d). Since two linear independentKmoiré vectors span a reciprocal lattice (green crosses) that hosts all
spatial beating frequencies of the second-ordermoiré, a commensurate phase results and comparisonwith
figure 4(c) shows thatKmoiré relates to the identified =( ˜ ˜) (˜ ˜) ( ) ( )m n r s, , 12, 6 13, 0SiC g SiC g real-space cell.We
can now easily calculate the corresponding non-augmented cell with the help of equation (9) and identify it
as = -( )( ) ( ) ( )m n r s, , 6, 0 , .SiC g SiC

13

3

13

3 g
Since non-integer numbers appear, this cell is not identified in
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the corresponding commensurability plot offigure 4(b), while the tripled cell leads to integer numbers and to the
identified commensurate cell of themoiré infigure 4(c).

Finally, we can ask, howmany orders n have to be consideredwhenwanting to identify themoiré cell in an
nth-order commensurability plot while relating to a non-augmented cell. For this purpose, we draw our
attention to the other spatial beating frequencies of the second-ordermoiré pattern infigure 4(d). As has been
already noted, k1 and k2 and the other beating frequencies k3Kk10 reside on different types of k-space position.
Thefirst two reside at intersections of the black grid, all others on positionsmarked by green crosses, which
relate to the 3 k-space positions.We can now construct linear combinations of the two types of beating
frequency so that they equalKmoiré or symmetrically equivalent vectors. In appendixDwe list such linear
combinations. In addition, we can determine the coordinates of all beating frequencies k1Kk10 according to the
building principle of the second-ordermoiré pattern, which are also listed inappendixD. As a result, we derive
the coordinates of the listed linear combinations of the spatial beating frequencies that lead to a symmetrically
equivalent vector ofKmoiré. One of the linear combinations isKmoiré=2(k1+k2)-k4, which is sketched in

Figure 4. (a) and (b)First-orderand second-order commensurability plots relating to a non-augmentedmoiré cell. (c) Second-order
commensurability plot relating to a tripledmoiré cell. Two potential commensurate phases are identified.One appears at a rotation
angle of 30° (see text). (d) Spatial frequencies of asecond-ordermoiré (aSiC=3.07 Å, ag=2.454 Å,j=30°) showhow relating to
the tripledmoiré cell refers to spots in k-space (green crosses) at the reciprocal 3 positions of the grid, which is spanned by the
vectors k1 and k2. The vectors closest to the (0, 0) beam refer to the commensurate (12, 6)SiC/(13, 0)g cell, which is identified in (c). One
of the symmetrically equivalentmoiré vectors is indicated asKmoiré.
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figure 4(d). As also shown inappendixD, this linear combination consists of the difference of a reciprocal sixth-
order g-lattice and an eighth-order SiC-lattice vector. Since all other linear combinations require equal or
higher-order lattice frequencies,Kmoiré appears as spatial frequency in an nth-ordermoiré pattern only for n�8
(see appendixD). Correspondingly, themoiré unit cell cannot be identified in a commensurability plot lower
than the eighth-order when relating to a non-augmentedmoiré cell. The discussed example shows the great
simplification of the search for commensurate cells using augmentedmoiré cells: the ´ ( )R6 3 6 3 30 moiré
reported for g/SiC(0001) is alreadycorrectly identifiedin a second-order commensurability plot when relating
to a tripledmoiré cell, while it requires nth-order spatial lattice frequencies with n�8 in order tofind the
commensurate cell when referring to a non-augmentedmoiré cell.

3. Extractingmoiréparameters from experimental data

In the following chapter, strategies are outlined how to extractmoiré parameters from experimental data. For
this purpose, the application of ourmodel is of great use, because it helps to identify the possible commensurate
phases of themoiré. Aswill be shown, a careful frequency analysis also enables the identification of
incommensurate phases.We separately discuss themoiré pattern analysis for data sets acquired by different
experimental techniques, because each technique has its advantages and short comings which have to be taken
into account during themoiré analysis.

3.1. Indexingmoiré cells using surface SXRDdata
SXRDprovidesdata on surfacemoiré structures with highest precision in k-space. From the acquired
reciprocal-space data the lattice constants and the rotation angle between the two latticesmay be extracted. If
lateral or vertical atomdisplacementwithin the two coinciding lattices occurs, satellite spots appear in the
diffraction data, which can be attributed tomoiré beating frequencies [25, 26, 30, 31]. On the other hand,when
the lattice constants and the orientation of the two lattices are already known precisely, we can use our geometric
construction to identify possible commensurate unit cells of the generatedmoiré that lead to the correct
indexing of themoiré.

We show an example of a rotational graphene phase found recently on Ir(111) by Jean et al [27]. The authors
reported grazing incidence XRDdataat 200 K that revealed a g-lattice constant of (2.4521±0.0008)Å and a
rotational angle of (2.37±0.06)°with respect to the Ir-lattice (aIr=2.7129 Å at 200 K [32]). The reported
moiré surface phase can be indexedwith the help of the first-order commensurability plot shown infigure 5.

Themoiré indexing can be directly seen in the plot when indicating the ratio of themeasured lattice
constants x and themeasured rotation anglej together with the corresponding experimental error (green). The
intersection of themeasured values identifies thismoiré phase clearly as a (10, 4)Ir/(11, 4)g unit cell. Originally,
themoiré phase cell was erroneously described by the authors as a (7, 2)Ir/(8, 2)g unit cell [27], but it was
corrected at a later stage by applying our analysis [33]. Table 1 lists the extracted values for the two assignments
aand band the experimental data.While the incorrect assignment of a (7, 2)Ir/(8, 2)gmoiré requires amuch
toosmall lattice constant for graphene of ag=2.3494 Å at 200 K (strain=−4.4%), themeasured experimental
value of 2.4521 Åmatches almost perfectly withthe required lattice constant of 2.4524 Å for a (10, 4)Ir/(11, 4)g
commensurate cell (strain=−0.2%). Since the samemoiré unit cell was alsoobservedat 300 K, the numbers
referring to the corresponding Ir-lattice constant of aIr=2.7147 Å [32] at room temperature are alsogiven in
table 1. The calculated graphene lattice constant of the (10, 4)Ir/(11, 4)g commensurate cellmatches the
calculated lattice constant of 2.456 Å of free-standing graphene at 300 K [29] (and 2.457 Å at 200 K, respectively)
or the reported room temperature value of 2.454 Å of graphene in the g-Ir(111)R0°-moiré phase [34].

3.2. Indexingmoiré cells using STMdata
STMdata provide images of the surface in real-space fromwhich the unit cell can be directly derived.
Alternatively, one can extract the existing spatial frequencies by a Fourier transformof the image. The advantage
of STMdata is that local variations inthe pattern due to defects ormonoatomic steps can be identified, as they
induce local rotation, translation or shearing of the graphene lattice above the substrate [35, 36]. The
disadvantage is the limited scanning areawhere high quality images with sufficient lateral resolutionmay be
acquired. Thus, if very large unit cells occur, one cannot easily distinguish between commensurateand
incommensurate phases. Onemore drawback of such data is the fact that STM images usually suffer from
thermal drift and piezo creep.While the drift can be accounted for, as long as it leads to a linear expansion or
contraction of the acquired image, piezo creep leads to a nonlinear distortion of the image. Thus, extracting
lattice constants with a precision better than 10% error is a difficult task. Similar difficulties are facedwhen
determining absolute angles in an STM image.Oneway around this difficulty is that onemay count lattice sites
once atomic resolution is obtained and thus avoidmeasuring absolute numbers.When doing so, one has to take
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into account that the outermost lattice affects the STM imagemore than the supporting lattice below.
Nevertheless, one can derive themoiré parameters by considering that the corrugation in the STM image reflects
the convolution of both two lattices aswill be shown in the following examples.

Infigure 6we show an STM image of a graphene film on Ir(111) at 300 K after it was grown by catalytic
ethylene decomposition (forexperimental details see appendix A). Having achieved atomic resolution of the
graphene layer, the unit cell of the surface phase can be easily identified as a (3, 11)gmoiré cell by counting lattice
sites. The right sideoffigure 6 displays a similar first-order commensurability plot as the one already shown in
figure 5.

Knowing that the indexed (3, 11)gmoiré cell is themirror of the (11, 3)g cell according to equation (4), this
structure can be identified in the displayed commensurabilty plot. Note that at each intersection of a red (m) and
blue contour line (n), a commensurate phasewith a (m, n)Ir unit cell ismet.While the indexed cell (m, n)Ir relates
to the Ir-lattice, the cell referring to the graphene lattice amounts to (r=m+1, s=n)g forfirst-ordermoirés
and, thus, the (10, 3)Ir/(11, 3)gmoiré is easily identified in the right graph offigure 6, as indicated by the green
circle. The identifiedmoiré occurs for a graphene layer that is rotated counterclockwise by 1.7°with respect to
the underlying Ir-lattice at a lattice constant ratio x=aIr/ag=1.108.We should note that there exists another
moiré candidate for a commensurate phasewith a (11, 3)g unit cell vector. In the supplementary data, section
SD2, we show that this further candidate appears as a second-order commensuratemoiréwith a (10, 7)Ir/(11, 3)g

Figure 5. First-order commensurability plot leading to the correct assignment of the (2.37+/−0.06)° rotatedmoiré phase observed
by Jean et al for g/Ir(111) [27]. The localminima (marked by yellow patches) occurwhere the additionally plotted (m, n)Ir contour
traces (red and blue curves) cross each other and commensurability of themoiré ismet. The indices that relate to the g-lattice are
(r=m+1, s=n)g (see[11] for details). a:Position of the erroneously assigned (7, 2)Ir/(8, 2)g cell in themoiré parameter-space.
b:Correctly assigned (10, 4)Ir/(11, 4)gmoiré cell (see text). The right axis of the graph displays the required graphene lattice constant
at 200 K. The additional axis indicates the graphene lattice strain εwith respect to the calculated one of free-standing graphene of
2.457 Å at 200 K.

Table 1.The numbers according to the listed indexing of themoiré cells using; a: incorrect indexing by the authors
and b: correct indexing. The Ir-lattice constants are aIr=2.7147 Å (300 K) and aIr=2.7129 Å (200 K) [27, 32].
The listed values are:T (temperature), ag (graphene lattice constant), Lmoiré (length of themoiré unit cell),Φmoiré,Ir

(rotation of themoiré unit cell with respect to the Ir-lattice),Φmoiré,g (rotation of themoiré unit cell with respect to
the graphene lattice) andj (rotation of the graphene lattice with respect to the Ir-lattice).

Structure T ag(Å) Lmoiré(Å) Φmoiré,Ir(°) Φmoiré,g(°) j(°)

a (7, 2)Ir/(8, 2)g 300 K 2.3510 17.0 16.10 13.90 2.20

200 K 2.3494 16.9

b (10, 4)Ir/(11, 4)g 300 K 2.4541 23.7 23.41 21.05 2.36

200 K 2.4524 23.7

Experimental data 200 K 2.4521 — — — 2.37
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unit cell at a rotation angle of 27.7° and x=1.108.Nevertheless, we can exclude this commensurate phase. Since
for g/Ir(111) second-ordermoirés at rotation angles close to 30° are known to contain a strong ´ ( )R3 3 30

motif [11, 23], and since thismotif is not visible in the STM image offigure 6, the imaged phasemust be afirst-
ordermoiré with a (3, 10)Ir/(3, 11)g unit cell vector as themirror of the identified (10, 3)Ir/(11, 3)gmoiré in the
displayed commensurability plot offigure 6. As a result, the identifiedmoiré appears for a graphene layer with
the same lattice constant ratio x=1.108, but a clockwise rotation of−1.7°with respect to the Ir-lattice. Using
the known Ir-lattice constant of 2.715 Å at the acquisition temperature of the STMdata (300 K), the identified
moiré cell indicates a graphene lattice constant of 2.450 Å in the imaged area, i.e. a slightly contracted graphene
lattice (by−0.2%)when relating to free-standing graphene at 300 K. This number ismuchmore precise than the
one that can be derived frommeasuring absolute distances in STM images. For example, themoiré unit cell
length can be determined from the STM image offigure 6 as (23.6±1.2)Å. Solving equation (1) for the indexed
unit cell or simply counting the imaged lattice sites leads to amuch less precisely determined graphene lattice
constant of (2.4±0.1)Å for the imagedmoiré phase. This results in x=1.13±0.05, which corresponds to a
larger vertical axis range than the one of thewhole commensurability plot shown infigure 6. The above example
shows thatmoiré patterns enable high-precisionmeasurementswhenever distances or angles can be referenced
to a lattice with a known structure. Here, themagnifying effect of the length and orientation ofmoiré frequencies
upon slight changes of the parameters of only one of the lattices is of great help. This well-known effect could be
used to extract the registry of the lattice along defects such as steps [35, 36] and has evenbeen recently used
toaddress uniaxial stress [12].When pushing to such limits, care has to be taken, since imaging
artifactsproduced by the tunneling tipmay induce asymmetries thatmay bemisinterpreted. Please also note
that the observed (3, 10)Ir/(3, 11)gmoiré pattern is only a slightmodification of the (10, 4)Ir/(11, 4)g pattern
observed by Jean et alwhichwas discussed in the previous section.

As alreadymentioned above and outlined in our recent publication [11], graphenefilmsmay lead to so-
called higher-ordermoiré patterns.We also showed thatmoiré patternsmay be commensurate with respect to
different orders at the same time. This is the case for the so-calledR14°moiré observed for g/Ir(111) [23], which
is the next example (forexperimental details see appendix A). Figure 7 displays an STM image of this phase, its
Fourier transform and the corresponding commensurability plots at the lattice rotation angle of interest.

As shown in the commensurability plots, themoiré has a commensurate first- and third-order spatial
beating frequency at the same time. Thus, a very robust pattern is expected. The indices given in the
commensurability plots indicate that a (3, 4)Ir/(4, 4)gmoiré should occur and indeed the STM image shows a
clear (4×4) unit cell (see zoomed image), which also appears clearly in the Fourier transformof the image. The
unit cell is not affected by the defect visible within the imaged area (white dots in the upper part of the large STM
image). The indexing of a (3, 4)Ir/(4, 4)gmoiré unit cell is in agreementwith data in the literature [23]. Again, the
commensurability plots provide the parameters x andj, indicating a slightly compressed graphene lattice
(−0.4%)with a lattice constant of 2.447 Å and a graphene layer rotated byj=13.89°with respect to the Ir(111)
lattice. The extracted rotation angle with respect to theIr-lattice also agrees well with the orientation of themain
substrate axis, which is known fromoriented step edges of the clean Ir(111) surface (see also [37]). This latter
measurement determines the graphene lattice rotation of (15±2)°with respect to the substrate lattice. It
represents an absolute number and thus suffers from large errors such as agraphene lattice constant of

Figure 6. Indexing of themoiré unit cell from an atomically resolved STM image of graphene on Ir(111) at 300 K. Left: the unit cell (3,
11)g is identified by counting atoms in the atomically resolved graphene layer. Right: thefirst-order commensurability plot verifies
that the identified cell is themirror of a (10, 3)Ir/(11, 3)g unit cell relating to a graphene lattice rotated by−1.7° and a graphene lattice
constant ag=2.450 Å. In addition, the lattice strain is indicated (relative to ag=2.456 Å at 300 K).
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(2.3±0.2)Ådirectlymeasured by applying the conversion of the piezo scanners. Using these absolute
numbers, a definite indexing of themoiré structure would be not possible.

As a last example, we show STMdata of a certainmoiré phase thatmay lead tomisinterpretation, since the
pattern contains strong, but incommensurate, spatialmotif frequencies. Figure 8 displays STMdata of g/Ir
(111), where the graphene lattice is rotated by about 19°with respect to the substrate lattice (forexperimental
details see appendix A). From the known lattice orientation of the underlying Ir(111) surface a graphene lattice
rotation of (20±2)° and a lattice constant of (2.30±0.15)Åcan be deduced.While Loginova et al reported a
similar pattern on g/Ir(111)with a large commensurate (13, 5)Ir/(13, 1)g unit cell at a graphene rotation angle of
18.5° [23], close inspection of the STM image infigure 8 reveals a pattern thathas no translational symmetry at
all within the imaged area.

At afirst glance the image shows a pronounced frequency, which relates to a (3×3) graphene cell andwhich
is also seen as a pronounced frequency in the Fourier transformof the STM image.On the other hand, close
inspection of the zoomed STM image in the right inset offigure 8 shows that true translational symmetry is not
given;the dark spots gradually change intensity whenmoving along the direction of the (3×3) cell. Also the
moiré pattern reported by Loginova et al contained such spatial frequencies, whichwere called amotif [23]. In
our recent publication [11]we explicitly discussed the (√3×√3)R30°motif of the so-calledR30°moiré found
for g/Ir(111) and showed that such a strongmotif occursif several types of beating frequencies approach each
other in reciprocal-space at a high symmetry position during the rotation of the g-lattice above the substrate
lattice.However, while approaching the high symmetry position, themoiré beating frequencies do not exactly
meet. In the displayedmoiré offigure 8 the high symmetry points are the (√7×√7)R19° reciprocal-space
position of the substrate, which almost coincide with the (3×3) position of the graphene layer. True
coincidence of these spots in k-space occurs onlyif the graphene lattice is highly contracted or if the substrate
lattice is equivalently expanded. Indeed, amoiré patternwith a commensurate (2, 3)Pt/(3, 3)g cell is observed for
g/Pt(111) [10, 38, 39], because the Pt substrate lattice constant is about 2% larger than the one of Ir [40]. This
situation is shown in the upper rowpanels offigure 9, where all spatial frequencies up to the second-order and
their trajectories in k-space are displayedwhen rotating the graphene lattice from0° to 19°with respect to the
TM-substrate lattice. Theupper leftchart shows the case for x=1.108which applies for g/Ir(111), while the
upperright chart shows the reciprocal-space frequencies for themoiré at x=1.1339which applies for g/Pt

Figure 7. STM image of theR14°moiré pattern of graphene on Ir(111). The commensurability plots identify simultaneous
commensurability with respect tofirst- and third-order spatial beating frequencies when rotating the graphene lattice by 13.89°with
respect to the Ir-lattice and a graphene lattice constant of 2.447 Å. The commensurate surface phase has a (3, 4)Ir/(4, 4)gmoiré unit
cell.
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(111). In addition to the (1×1)TM unit cell the reciprocal√7 spots are indicated,making itclearwhy theR19°

moiré of g/Pt(111) is commensurate with a (√7×√7)R19°-unit cell, while the correspondingmoiré of g/Ir
(111) only shows a strongmotif being incommensurate with respect to this frequency. (Insupplementary
dataSD3, we provide amovie of the spatial beating frequencymotion in k-space, which also shows that this
situation is reversed for the so-calledR14°moiré of the two systemswith respect to the (√13×√13)R14°-unit
cell.)In addition, in the lower row offigure 9,first- and second-order commensurability plots are displayed,
proving that, exclusively for g/Pt(111), commensurability exists at a graphene lattice rotation angle of about 19°
with respect tofirst- and second-order at the same time. Commensurability does not exist for any other xwithin
1.09<x<1.15, although allmoirés have a pronounced (√7×√7)R19°motif.

As a result, themoiré pattern imaged infigure 8 does not reflect translational symmetry along the
(√7×√7)R19°-unit cell direction. On the other hand, the patternmight havetranslational symmetrywith a
larger unit cell, where commensurability sets in formoiré frequencies of higherorder. In fact, infigure 8we can
identify longer vectors that translate one particular area to another which are almost identically imaged, as
shown in the three upper insets A, B andC.Wehave indicated twosuch vectors infigure 8, alongwith the their
coordinates (−4, 14)g and (−7, 11)g. Applying equation (3) shows that these vectorsmight lead to a (18, 4)g or a
(18, 7)gmoiré unit cell. On the other hand, close inspection offigure 8 verifies that none of the two vectors, or
their 60° rotated ones, are repeated twice within the imaged area, so that no commensurate cell can be found.
Figure 10 showswhy this is the case. Here, we display athird-order commensurability plot of the parameter-
space, which applies for g/Ir(111) in the region of interest (1.101<x<1.115, and 17.5°<j<19.5°). Yellow
patches indicatewhere commensurability is possible within the parameter-space. Indeed the patch belonging to
the commensurate phase reported by Loginova et alwith a (13, 5)Ir /(13, 1)g unit cell is correctly identified [23].
On the other hand, we also indicate the coordinates of the found vectors infigure 8, whichwould apply to a
(18, 4)g or a (18, 7)g cell.While we can see that in the imaged area offigure 8 the graphene lattice is substantially
more compressed than in themoiré phase reported by Loginova et al, we can clearly see that the condition for

Figure 8. STM image of amoiré pattern found for g/Ir(111) at a graphene rotation anglej of about 19°. Themoiré contains with a
strong (√7×√7)R19°Ir/(3×3)gmotif (i.e. almost a (2, 3)Ir/(3, 3)gmoiré unit cell) [37], which appears as a strong frequency in the
Fourier transformof the STM image. Nevertheless, zooming in the indicated area reveals that the pattern does not have the
translational symmetry of a (3×3) cell. The green vectors in the upper part of the STM image indicate longer translations fromone
area to another, which are imaged almost identically by STM, as shown in the zoomed areas A, B andC.Close inspection of the STM
image also proves that none of these translations strictly repeat within the imaged area (also see figures 9 and 10).
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commensurability, i.e. the crossing of all four curves belonging to the indices (m, n)Ir and (r, s)g, is not
fulfilledbecause one intersection point is alwaysmissing. As a result,this approximate translational symmetry is
alsonot given and the imaged pattern is incommensurate.

Figure 9.Upper row: trajectories ofmoiré frequencies in k-space up to second-order for rotation angles close to 19° and x=1.1094
(applying to g/Ir(111)—left chart) and x=1.1339 (g/Pt(111)—right chart).While for g/Pt(111) a commensurate phase is found, g/
Ir(111) remains an incommensuratemoiréwith a strong (√7×√7)R19°motif (the symmetry positions are indicated by dashed lines
in light gray). Lower row:first- and second-order commensurability plots prove that only g/Pt(111) leads to a commensuratemoiré
phase, which is commensurate with respect to first- and second-order frequencies at the same time. An animated version of thisfigure
is provided as supplementary data SD3.

Figure 10.Third-order commensurability plot in the parameter range applying for theR19°moiré of g/Ir(111).While the (13, 5)Ir/
(13, 1)g commensurate phase reported by Loginova et al is correctly identified [23], the translation vectors indicated in figure 8 belong
to cells that do not lead to commensurate phases.
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According to the commensurability plot offigure 10, there are commensurate phases possible in the close
vicinity of the (18, 4)g and (18, 7)g cells, being (19, 4)g or (19, 7)g cells. On the other hand, such cells would lead to
the translation vectors (−4, 15)g and (−7, 12)g, which are not suitable translations when inspecting the STMdata
offigure 8. Thus, this example shows how sensitive amoiré frequency analysismay be performed. Finally, we
should note that STM, being a local probingmethod,may have difficulties in identifying large unit cells, since
one cannot rule out the role of defects, which locallymay affect their vicinity such as the two defects visible as
dark spots infigure 8.

3.3. Indexingmoiré cells using LEEDdata
LEEDmay alsobe used to identifymoiré surface phases, although the resolution in k-space is typically inferior
with respect to SXRDdata. This particularlyholdsfor electron diffraction data thatare acquired using
LEEMapparatus, since images of the reciprocal plane are readily distortedif the electron beam in the
microscope is slightlymisalignedwith respect to the electron optical axis of the instrument. Another difference
of LEEDversus XRD is that due to the strong interaction of electrons in solidmatter,multiple scattering has to
be consideredwhen interpreting LEEDdata, whereas for (S)XRD single scattering theory applies. X-ray
diffraction from two coinciding lattices leads tomoiré spots in k-space onlyif the atoms are vertically and/or
laterally displaced from their ideal lattice positions [25, 30]. However, in this case, latticemodulations result in
diffraction spots that correspond to the spatialmoiré beating frequencies thatwere discussed in section2.4.
This is not the case for LEEDsince, due tomultiple scattering, a LEEDpattern acquired from two coinciding
unperturbed lattices already contains diffractions spots that correspond tomoiré beating frequencies [30].
Whilemultiple scattering complicates the structure analysis of amoiré by analyzing a so-called LEED I/V
experiment [30], one can take advantage of itwhen extracting themoiré parameters (x,j) of the surface phase.
Knowing thatmultiple scattering events lead to additional diffraction spots in a LEEDpattern that correspond to
difference vectors of reciprocal g- andTM-lattice vectors, we note that there is a 1:1 relation of such spots with

the predictedmoiré beating frequencies, which are calculated as = -éK k kmoir g TM

  
(see section2.4). The latter

equationmay be regarded as double scattering relating to the difference of two reciprocal lattice vectors of a
given length. According to our nomenclature, we use the term nth-order spatial frequency to express the length
of the involved k-vectors in units of the Brillouin zone.Wenote thattriple or othermultiple scatteringmay
alsoalways be formally reduced to the difference of two k-space vectors, because one can always calculate one
difference vector for each scattering event at a time and subtract the result from the k-space vector that
corresponds to the subsequent scattering event. The only difference with respect to double scattering is that the
involved k-space vectorsmay subsequently increase in length, which requiresincludinghigher-order beating
frequencies of the nth-ordermoiré pattern according to our nomenclature.We should point out that this
resemblance addresses the k-space position but not the intensity of the spots.Man andAltman used the
described 1:1 relation forfirst-ordermoiré diffraction spots in order to analyzeminor variations of the lattice
alignment of chemical vapor deposited (CVD)graphenewith respect to theRu(0001) substrate in a LEEM
experiment, achieving a spatial resolutionwithin the several nm range [41]. In this analysis, the
approximatelyten-fold augmented rotation offirst-ordermoiré spatial frequencies with respect to the rotation
of the graphene lattice versus the Ru(0001) substrate allowed to precisely determine the orientation of the
supported graphene layer.

A similar case is given formonolayer graphene onCu(111). Figures 11(a) and (b) display the LEEDdata
thatwerewere recorded from aCu(111) facet of a polycrystalline Cu foil onwhichmonolayer graphenewas
grownbyCVD(see appendix A for experimental details). The data were acquired using the SPELEEM
instrument of the nanospectroscopy beamline at the ELETTRA synchrotron facility [42, 43]. Polycrystalline Cu
foils generally undergo faceting uponCVDgrowth of graphene [44–46]. As a result, LEEDpatterns recorded
from such surfaces showdiffraction spots of two ormore inclined surfaces at the same time.When investigating
such a systemwith a LEEMapparatus, one usually aligns the optical axis of the instrument parallel to the surface
normal of one of these surfaces. Due to the properties of a LEEMmicroscope, the diffraction spots emerging
from the aligned surface do notmove in the reciprocal-space planewhen changing the electron kinetic energy, in
contrast to diffracted electron beams that are reflected from inclined surface planes. Thus, when recording a set
of LEED images as a function of the electron kinetic energy (a so-called LEED I/V data set) and summing all
images, LEED spots originating from the aligned surface facet become intense, while the ones belonging to the
inclined facets are distributed alongmuch less intensive stripes [45, 47]. Applying this trick, one can extract the
LEEDpattern corresponding to one single facet plane of the faceted polycrystalline Cu foil, which is the Cu(111)
plane in our case. Each of the LEED images shown in this sectionare generated by the described summation
procedure. Similar to the study of g/Ru(0001) byMan andAltman [41], we can analyze the LEEDpattern of
monolayer graphene phases on theCu(111) facet and precisely determine the rotational alignment of the
graphene layer. This can be achieved bymeasuring the rotational orientation of the first-ordermoiré beating
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spots and the fact that first-ordermoiré spots perform an augmented rotationΦmoiré,Cu=A×j in k-spaceif
the graphene lattice is rotated by an anglejwith respect to the underlying Cu(111) lattice. Figure 11(c) displays
the predictedmoiré length Lmoiré and rotation angleΦmoiré,Cu for unstrained and slightly strained (±0.5%)
graphene onCu(111). The highly amplified rotationΦmoiré,Cu of themoiré pattern is reflected in the very steep
Φmoiré,Cu(j) curve for small lattice rotation anglesj. Here, amplification factorsA up to 25 are reached, as
indicated by the derivative of theΦmoiré,Cu(j) curve, which is displayed in the inset offigure 11(c). Aswewill
show in the following, due to this large amplification factor the rotational alignment of the graphene layer on the
Cu(111) substrate can be determinedwith high precision.On the other hand, the high amplificationA also leads
to possiblemisinterpretation ofmoiré data, as will alsobediscussed further below.

By extracting the k-space position of the first-ordermoiré spots and converting them into real-space vectors,
we can calculate thewavelength Lmoiré and the orientationΦmoiré,Cu of thefirst-ordermoiré beating frequency.
Additionally, we derive themoiré parameters x=aCu/ag andj by locating the (1, 0)g and (1, 0)Cu spots in
theLEEDpatterns offigures 11(a) and (b). The extracted data suffer from errors due to distortions of the
acquired LEEDpatterns. Such distortions could not be avoided during acquisition of the diffraction datawith
the LEEM instrument, because the usedCu foils were non-planar on the 100 μmlength scale. As a result, the
electrical field inhomogeneity in front of the sample surface induced distortions in the reciprocal image plane,
which could not be completely removedwhen aligning themicroscope. Taking into account such errors by
analyzing the displayed LEEDdatawhile averaging over the symmetrically equivalent diffractions spots, we
extract themoiré parameters of the twomoiré phases offigure 11 and list them in table 2. For comparison, we
also list assignedmoiré phases of the g/Cu(111) system reported by Lim et al [48], which have to be reinterpreted
according to our analysis, as will be discussed further below.

The determined (x,j)moiré parameters corresponding to the LEEDdata offigures 11(a) and (b) lead to
LmoiréandΦmoiré,Cu values, which are listed in table 2, and are also added to the LmoiréandΦmoiré,Cu plots of
figure 11(c) as light blue crosses. The extracted parameters fit well to the predicted curves for supported

Figure 11. (a) and (b)LEEDpatterns acquired from two slightly rotatedCVDgrown graphene phases on aCu(111) surface of a faceted
polycrystalline Cu foil. The patternswere generated by summing LEEDpatterns of a LEED I/V data set between 50 and 80 eV (see
text). (c)Predictedmoiré length Lmoiré(j) and rotation angleΦmoiré,Cu(j) for graphene onCu(111). The displayed curves relate to a
±0.5% strained graphene layer. The derivative of theΦmoiré,Cu(j) curve shown in the inset indicates themoiré rotation enhancement
of up to a factorA=25. Light blue crossesmark themoiré length and orientation of the twomoiré phases belonging to the LEED
patterns shown in (a) and (b). The black data points resemble the corrected assignment ofmoirés reported in a STM study of g/Cu
(111) [48] (see text).
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graphene, which is strained by less than 0.5%. Indeed, as isalso listed in table 2, the twomoirés require a slight
compression of the graphene lattice by about−0.1% and−0.4%, respectively.We can nowdiscuss these data
using the correspondingfirst-ordercommensurability plots that characterize the system g/Cu(111). These
plots are shown infigure 12.

Figure 12(a) displays thefirst-order commensurability plot that covers the parameter range of themoiré
shown infigure 11(a)with a 0.8° rotated graphene layer on top of Cu(111). Figure 12(b) shows the
corresponding charts relating to themoiré offigure 11(b), which results from a 4.2° rotated graphene layer on
top of theCu(111) support. The light blue boxes indicate the (x,j) parameter range as it has been determined by
using the (1, 0)g and (1, 0)Cu spots of the two diffraction patterns. In both cases the knowledge on themoiré
pattern rotation angleΦmoiré,Cu allows us to restrict the possible parameter range of the identifiedmoiré phase.
This is shown in themagnified plots in the right part offigure 12where the lines of constantΦmoiré,Cu are
indicated in green for the listed values of table 2. The fact that the rotational alignment of the graphene layer can
bemeasuredwith high-precision stems from the fact that themoiré performs a highly augmented revolution if
the graphene lattice is slightly rotated. This is caused by the almost equal lattice constants of the graphene and the
Cu(111) lattice. On the other hand, due to the same reason, a large variety of commensurate first-ordermoiré
phases are possible for slightly rotated graphene on top of Cu(111). As a result, we cannot decidewhether the
identifiedmoiré phases infigures 11(a) and (b) are commensurate or notwithin the uncertainty of the
experimental data. Evenwithin the restricted parameter-space, the 0.8° rotated graphenemay generate a
commensuratemoiré with a (26, 8)Cu, a (26, 9)Cuor a (26, 10)Cu cell. In the case of the 4.2° rotated graphene
layer, no commensurate cell ismet within the possiblemoiré parameter range. Therefore, thismoiré has to be
assigned to an incommensurate phasewhen relating to a non-augmentedmoiré cell.When instead
referencinga four-fold augmented cell, themagnified commensurability plot indicates that four commensurate
phases are possible (see also section2.5). For example, the intersection of the green dashed line with the red
m=11 isoline in themagnified graph relates to a nominal cell size of (11, 11.5)Cu. Thus, this potential
incommensurate phase would then lead to a commensurate (22, 23)Cu/(24, 23)gmoiréwith four beats within
the augmented cell.

Another property of the 4.2° rotated graphenemoiré phase should be pointed out. As indicated in table 2,
this phase leads to afirst-ordermoiré cell withΦmoiré,Cu=62.2°±0.8° andwithΦmoiré,g=58.2°±1.1°,
respectively. Due to the highly amplified revolution of themoiré cell, a slight further rotation of the graphene
layer causes amoiré pattern that is alignedwith respect to the graphene lattice. Thus, amoiré cell alignedwith
respect to the graphene lattice does not necessarily indicate that the graphene layer is alignedwith respect to the
substrate lattice. In thecase of g/Cu(111) this situation is alreadyreachedat very small rotation anglesj, a fact
thatwas overlooked by Lim et alwho imaged several alignedmoiré phases on g/Cu(111) by STM [48]. From
atomically resolved STM images the authors deduced twomoirés withwavelengths of 25.8 Å and 70.2 Å,
respectively. Assuming that the imaged phases originated from a graphene lattice aligned to theCu(111)
support, the authors extracted the graphene lattice constant from the detectedmoiré wavelength Lmoiré and
assigned themoirés to a (10, 0)Cu/(11, 0)g and a (27, 0)Cu/(29, 0)g cell, as listed in table 2. This assignment
requires unreasonably highly contracted graphene lattices with ε=−5.5% and ε=−3.1% and the data have
to be reinterpreted. The abovementioned possibility of two graphene lattice orientations (aligned and slightly
rotated) that result in the appearance of an alignedmoiré cell resolves the incorrect assignment of the
(10, 0)Cu/(11, 0)gmoiré cell. Atj=4.7° a (10, 11)Cu/(11, 11)gmoiré cell appears in the commensurability plot
offigure 12(b) requiring an almost unstrained graphene lattice with ε=−0.4%. The correspondingmoiré cell

Table 2.Extractedmoiré parameters offirst-ordermoirés found for small rotation anglesj of CVDgrown graphene onCu(111), together
with the required lattice strain εwith respect to the lattice constant of 2.456 Å at 300 K of free-standing graphene [29]. The upper two rows
list the extracted LEEDdata of figure 11. The data are comparedwith the incorrect and corrected assignment of atomically resolved STM
data fromLim et al on g/Cu(111) [48] (see text).

Moiré x=aCu/ag (
*) j ε(%) Φmoiré,Cu Φmoiré,g Lmoiré(Å)

Figure 11(a) 1.041±0.001 0.8°±0.2° −0.07±0.15 20.0°±3.0° 19.2°±3.2° 61±4 (*)
Figure 11(b) 1.044±0.004 4.2°±0.3° −0.35±0.40 62.2°±0.8° 58.2°±1.1° 31±3 (*)
Incompatiblemoiré cell assignment by Lim et al [48]
(10, 0)Cu/(11, 0)g 1.100 0.0° −5.4 0.0° 0.0° 25.8 (**)
(27, 0)Cu/(29, 0)g 1.074 0.0° −3.1 0.0° 0.0° 70.2 (**)
Corrected assignment of themoiré cells

(10, 11)Cu/(11, 11)g (see text) 1.045 4.7° −0.4 64.7° 60.0° 25.8 (**)
(28, 0)Cu/(29, 0)g (see text) 1.036 (*)(**) 0.0° +0.4 0.0° 0.0° 70.2 (**)

* The data relate to a lattice constant of Cu(111) of 2.555 Å [49].
** Experimental datawere extracted directly fromSTM images [48].
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of this phase is turned by 60° (see table 2) and is thus alignedwith respect to graphene lattice in accordancewith
the atomically resolved data of Lim et al [48]. The slightmisalignment of themoiréwith respect to theCu lattice
by 4.7° cannot be detected by STMif the graphene and theCu(111) lattice are not imagedwithin the same
image. Since this was not the case in the STM study of Lim et al (see also discussion in section3.2), we conclude
that the imagedmoiré phasemust have a cell size close to thementioned (10, 11)Cu/(11, 11)g cell. Our
assignment also agrees with themeasured value for Lmoiré=25.8 Å, as can be directly seen by the black crosses
in the corresponding graph offigure 11(c).

We should note that Lim et al also reported on further phaseswhichwere not atomically resolved. Since in
such cases all extracted data from the STM images suffer from large errors and one cannot easily derive themoiré
parameters x andj and only speculate on potential commensuratemoiré cells. On the other hand, the authors
of [48] deduced a commensurate (27, 0)Cu/(29, 0)gmoiré cell for the surface phasewhere the 70.2 Å beating
frequencywas resolved together with atomic resolution of the graphene lattice. In section2.5we showed that
such amoiré with the cell type (m, n)Cu/(r=m+2, s=n,)g exists only forfirst-ordermoirés when referring to
a quadrupled cell, i.e. the unit cell should host four beats. Since the recorded STM image shows a cell with a
simple beat only, the proposed unit cell violates the properties offirst-ordermoirés and cannot be correct.
Instead, the reportedmoirémay ormay not be commensurate resulting from an aligned graphene lattice with
j=0° and amoiré beat close to a (28, 0)Cu/(29, 0)g cell. In this case the assignmentwould require again an
almost unstrained graphene latticewith ε=+0.4%. Again, figure 11(c) also indicates the consistency of our
assignment. All in all, we can summarize that care has to be takenwhen analyzingmoiré phases, where a highly
amplified rotation of themoiré cell appears. Also, the assignment of potential commensurate cells has to be done
in agreementwith the general properties ofmoiré patterns. The presented example of the LEEDdata analysis on
moiré patterns at small rotation angles between the g-andCu(111)-lattice shows how the relevantmoiré
parameters can be consistently extracted.

Figure 12. First-order commensurability plots indicating possiblemoirés of the g/Cu(111) system for graphene lattice rotation angles
of (a) 0°�j�1.1° and(b) 3.7°�j�5.0°. The light blue squares in the left charts indicate the determinedmoiré parameter-
space from the analysis of the (1, 0)g and the (1, 0)Cu spots of the LEEDpattern shown infigures 11(a) and (b). The analysis of thefirst-
order satellite diffraction spots allows usto determine the quantityΦmoiré,Cu. Adding the isolines for constantΦmoiré,Cu in the
magnified commensurability plots (green lines displayed in the right charts) allows usto narrow the parameter-space of possible
moirés (see text).
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The concept of LEEDdata analysis has to be changedwhenwanting to precisely identifymoiré phases caused
by highly rotated graphene onCu(111). As seen infigure 11(c), at a graphene lattice rotationj between 5° and
10°, themoiré cell revolution of the first-ordermoiré starts to level off and finally reaches an angleΦmoiré,Cu of
about 100°. Also themoiré length does not change dramatically, when exceeding rotation angles of the graphene
lattice of about 10°. Thuswhen dealingwith highly rotated graphene layers, we cannot exclusively address first-
ordermoiré spots in k-space for the extraction of high-precision datasince no amplification effects can be used
to restrict the parameter-space of the g/Cu(111)moiré. As already pointed out, the close relation of a LEED
pattern and the construction of spatially beating frequencies of amoiré pattern enables us to use higher-order
spots for this purpose. Figure 13(a) shows the LEEDpattern ofmonolayer graphene rotated by about 23°with
respect to theCu(111) surface of the facetedCu foil onwhich the graphene layer was grown byCVD (see
appendix A for experimental details). Similar to the LEEDdata shown infigures 11(a) and (b), the displayed
LEEDpatternwas generated by summing the LEED images of an I/V data set between 70 eV and 170 eV so that
diffraction spots belonging to the alignedCu(111) surface are intense, while all other ones belonging to inclined
Cu facets are distributed into faint lines in k-space, which accounts for the streaky appearance of parts of the
displayed LEEDpattern.

The left part offigure 13(a) displays the LEEDpattern and the position of the (0, 0) spot, the (1, 0)Cu spots of
the Cu(111)-latticeand the corresponding (1, 0)g spots of the g-lattice. The right part offigure 13(a) repeats the
LEEDpattern together with all the spatial beating frequencies of a second-ordermoiré that corresponds to a
22.8° rotated graphene layer onCu(111). Figure 13(b) displays these beating frequencies for rotation angles of
j=20.2° and 22.8° togetherwith their calculated trajectories in k-space (see section2.4). Two orange circles

Figure 13. (a) LEEDpattern of an approximately20° rotated graphene layer onCu(111). In addition to the LEEDpattern, the right
chart displays the predicted k-space positions of diffraction spots resulting from electron double scattering, which coincidewith the
calculated second-ordermoiré beating frequencies of 22.8° rotated graphene onCu(111). (b)Upper row: calculated spatial second-
order frequencies for x=1.038 andj=20.2° and 22.8°with their trajectories in k-space. Orange circlesmark positions close to the
ones of the (√7×√7)R19°cell (see dashed lines in light gray), where triple and double spotsmeet in k-space during the graphene
lattice rotation. The augmented rotation of such spots with respect to their center ofmass shown in the lower panel can be used to
precisely determine the lattice orientation of the graphene lattice on theCu(111) support (see text). An animated version of thisfigure
is provided as supplementary data SD4.
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indicate k-space positions close to the ones of the (√7×√7)R19°unit cell (see dashed lines in light gray). Here
two and, respectively, three beating frequenciesmeet when approaching a graphene lattice rotation angle of
j=21.8° followed by a separation of the respective spots at largerj. These triple and double spots perform a
quasi-rotation around their center ofmass, if the graphene layer is rotatedwith respect to theCu(111) lattice (see
also the animatedmovie SD4 in the supplementary data). In the lowest row offigure 13 the orientation of the
triple and double spots is indicated for rotation anglesj=20.2°, 21.6° and 22.8°.While the graphene lattice
rotates only by 2.6°, the triple and double spots rotate by about 60°. This highlymagnified revolution can be used
to precisely determine the orientation of the graphene layer. This is indicated by the red circles infigure 13(a),
whichmark the coincidence of the experimentally observed diffraction spots with the predicted second-order
moiré frequencies of the 22.8° rotated graphene layer sketched infigure 13(b).

In order to precisely determine the orientation of the graphene layer, we have to consider the effect of the
secondmoiré parameter x,which also affects the diffraction spot position andwhich has to be extracted at
highest possible precision. The corresponding analysis is shown infigure 14. For practical reasonswe did not
calculate the rotation angle of the triple and double spots around their center ofmass, because some of the LEED
spots are veryweak. Instead, we determined the parameters A, B, andα of the indicated spots in the left graph of
figure 14. Extracting these numbers from three symmetrically equivalent positions of the experimental LEED
pattern and comparisonwith the predicted ones within the parameter-space (x,j) of themoiré leads to the right
chart offigure 14.

Although the data extracted from the three symmetrically equivalent positions should lead to the same spot
in themoiré parameter-space shown in the right chart offigure 14, distortions of the imaged diffraction plane
lead to small variations, which are themain source of errorwhen performing diffractionmeasurements with a
LEEM instrument and using non-planar foil samples, as has been done in our case. As indicated in the right chart
offigure 14, our analysis still allows usto identify themoiré parameters of the analyzed graphene layer on
Cu(111) asj=22.8°±0.2° and x=1.038±0.002, which ismuchmore precise than simply determining the
k-space spot positions of the reciprocal (1, 0)Cu and (1, 0)g beams. Comparisonwithfirst- and second-order
commensurability plots for this parameter range verifies that themoiré ismost likely incommensurate (see
figure SD5 of the supplementary data). Finally, wewant to point out that thefirst-order spots of the identified
moiré phase atj=22.8°±0.2° are not the diffraction spots closest to the (0, 0) beam.As a result, an
assignment of the satellite spots of the LEEDpattern closest to the (0, 0) beam asfirst-ordermoiré beating
frequencywill lead to amisinterpretation of the data. This fact showswhy the outlined analysis addressing all
spatial beating frequencies of themoiré phase ismandatory in this case.

4. Conclusions

In thefirst part of this studywe examined the general properties of hexagonalmoirés by addressing their
symmetry and by analyzing the amount and the k-space position of all spatial beating frequencies present in an
nth-ordermoiré pattern. In particular,by addressing the latter casewe could show that any hexagonalmoiré
can be traced back to spatial beating frequencies that follow circular trajectories in k-spaceif the two coinciding
lattices are rotated one on another. The size and the lateral displacement of the circles have been shown to be
affected by the lattice constants of the two coinciding lattices only. Finally, the so-calledmoiré cell augmentation

Figure 14.Extraction of the (x,j) parameters of themoiré shown infigure 13. For practical reasons, the parameters A, B andαwere
extracted from the LEED image and comparedwith the predicted values from the second-ordermoiré frequencies. Three
symmetrically equivalent positions were analyzed and resulted in three different positions of themoiré parameter-space, as shown in
the right chart. The data scattering is caused by a slight distortion of the LEED image and define the error of the extractedmoiré
parameters:j=22.8°±0.2° and x=1.038±0.002.
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methodwas introduced, which greatly simplifies the search of commensuratemoiré phases, as could be
explicitly shownby discussing the ´ ( )R6 3 6 3 30 moiré of g/SiC(0001). In the second part of this paper, we
outlined strategies on how to apply ourmoiré frequency analysis to experimental SXRD-, STM- and LEEDdata.
Here, weshowed that we can extractmoiré parameters with high-precision, identifying potential
commensuratemoiré phases and even treat incommensuratemoirés.We also identified certain pitfalls that can
be avoidedwhen relating experimental data to nth-order commensurability plots. Finally, we pointed out the
close relation ofmultiple scattering during electron diffraction in a LEED experiment and the high-order spatial
moiré beating frequencies that can be predicted by our geometrical construction. In this sense,multiple
scatteringmay be regarded as an advantage of the LEED technique, since the knowledge of higher-order spatial
moiré frequencies enabledus to determine the graphene lattice strain and alignment with a precision that
significantly exceeds the one of an experimentwhere first-order LEEDdiffraction spots were analyzed only.
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AppendixA. Experimental details

g/Ir(111)
The graphene growthwas performed on thin single crystalline Ir(111)films. The 150 nm thickfilmswere
supported by a Si(111)wafer with a buffer layer of yttria stabilized zirconia. A detailed description of thefilms is
given in [50]. TheUHVpreparation of the Ir filmswas performed according to [37]. The graphene layer shown
infigure 6was grown by the adsorption of 50 Langmuir ethylene at 2.0×10−8 mbar at 300 K followed by
annealing to 1073 K. The carbon filmwas grown and analyzed in aUHVchamber (base pressure in the low
10−10 mbar range), whichwas equippedwith amodified SPECS STM150AarhusHT STM.The graphene film
shown infigures 7 and 8were grown bymeans of CVDat 973 K in an ethylene atmosphere of 2.0×10−8mbar
as described in [37]. Growth and analysis was performed in a secondUHV chamberwith a similar base pressure
that hosted a home-built STM.

g/Cu
The graphene growth on copperwas carried out on aCu foil inside a quartz tube reactor. The appliedCVD
process followed the synthesis strategy described in [51]. The detailed process parameters were: temperature
ramping up to 1223 K in p(H2)=1mbarwithin 40 min, followed by an oxygen dosing treatment of
p(O2)=7.5×10−6 mbar in 1mbar Ar for 60 min. The subsequent graphene growthwas performed at 1348 K
at p=50mbar in aH2/CH4gasmixture of p(H2)/p(CH4)=750 for 2 h (figure 11(a)) and at p=15 mbar in a
H2/CH4gasmixture of p(H2)/p(CH4)=1000 for 0.5 h (figures 11(b) and 13). The displayed LEED/LEEMdata
were acquired using the SPELEEM instrument at the nanospectroscopy beamline of the ELETTRAsynchrotron
facility [42, 43].

Appendix B

As outlined in section2.1, we used a coordinate system for the real-space lattice with unit cell definition
following the 120° notation. An alternative coordinate systemmay be chosen, where the real-space is described
by unit cell vectors that are rotated by 60°withrespect to each other. Since this latter definition is also found in
the literature [18], we list in table B1the conversion ofthe indexed commensuratemoiré unit cells fromone
notation into the other.

AppendixC. Clockwise and anticlockwise rotation—mirror symmetry

In the following, we prove that amoiré that evolves from a counterclockwise rotationj of the g-lattice over the
TM-lattice hasmirror symmetry with respect to themoiré pattern that is generatedwhen performing the same
rotation clockwise, i.e. when rotating the g-lattice by−j. Themirror symmetry applies with respect to one of the
main axes of the non-rotated TM-lattice and occurs for bothcommensurate and incommensuratemoiré
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patterns. In the second part or our proof, we show that themirror symmetry operation on a commensurate (m,
n)TM/(r, s)gmoiré leads to a (n,m)TM/(s, r)gmoiré, when using the simplified notation ofmoiré patterns.

Let usfirst show that themoiré pattern developsmirror symmetry upon a clockwise rotation. For this proof,
wemimic themoiré pattern as the product of a lattice function fTM(x, y) and the rotated lattice function fg(x, y),
i.e. we discuss the function fTM(x, y)×Rj fg(x, y), whichwas introduced in section1.Using this notation, we
will show that:

s´ = ´j j-( ) ( ) ˆ { ( ) ( )}f x y R f x y f x y R f x y, , , ,TM g TM g

with ŝ representing amirror operation.We choose the real-space lattice functions fTM(x, y) and fg(x, y)with the
definition of the TM-lattice and its unit vectors a1


and a2


as already introduced infigure 1. The a2


vector of the

TM-lattice is aligned along the vertical y-axis andwe define ŝ without loss of generality as themirror operation
with respect to this axis, i.e. s = -ˆ { ( )} ( )f x y f x y, , .Atfirst we note that:

s s s s s´ = ´ = ´ˆ { } ˆ { } ˆ { } ˆ ˆf f f f f f .TM g TM g TM g

This is obvious, since
s s s´ = ´ = - ´ -ˆ { ( ) ( )} ˆ { ( )} ˆ { ( )} ( ) ( )f x y f x y f x y f x y f x y f x y, , , , , , .TM g TM g TM g Wealso have the
following identity:

s s=j j- ˆ ˆR R

as can be readily verified: s s
j j
j j

j j
j j

= - - - =
-

=j j-( ) ( )ˆ ˆ
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟R R1 0

0 1
cos sin

sin cos
1 0

0 1
cos sin

sin cos
.

Using these two identities, we can now evaluate:

s s s s s s´ = ´ = ´ = ´j j j j-ˆ { } ˆ ˆ ˆ ˆ ˆf R f f R f f R f f R fTM g TM g TM g TM g

wherewe have used the fact thatthe non-rotated lattices fTM and fg havemirror symmetry with respect to ŝ (i.e.
s =ˆ f fTM TM and s =ˆ )f f .g g The above equation shows that themoiré pattern caused by the clockwise rotation
of the g-lattice hasmirror symmetry with respect to themoiré caused by a counterclockwise rotation. In thecase
of commensurability, themirror of themoiré unit cell (m, n)TM/(r, s)g is correctly indexedwhen reversing the
orderwithin each tuple, i.e. (n,m)TM/(s, r)g. This is shown atfirst for the TM-lattice with the help offigure C1(a).
Using the already introduced definition of the TM-lattice with the vectors a1


and a2


and the chosenmirror

operation ŝ we can state that:

Table B1.Conversion of real-space indexing of commensuratemoirés
with amoiré unit cell definition following the 120°notation into the one
corresponding to the 60°notation and vice versa.

Moiré cell according to the

120° real-space notation
Moiré cell according to the

60° real-space notation

(m, n)TM/(r, s)g => (m−n, n)TM/(r−s, s)g
(m+n, n)TM/(r+s, s)g <= (m, n)TM/(r, s)g

FigureC1.The effect of themirror operation on a (m, n)TM/(r, s)gmoiré leading to amoiré pattern that is correctly indexed as (n,
m)TM/(s, r)g. (a) Indexing of the unit cell when relating to the TM-lattice. (b)Applied coordinate transformationwhen performing the
mirror operation on the rotated g-lattice. Please note that themirror symmetry of themoiré shown in (a) is also reached for the
g-lattice after having performed the coordinate transformation into the ḡ lattice.
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s s= = - +ˆ ˆ ( )a a a a aand .2 2 1 1 2
    

The unit cell of the (m, n)TM/(r, s)gmoiré is defined by the vector tuple [(m, n);R120°(m, n)]=[(m, n); (−n,
m−n)]when choosing a right-handed coordinate system and relating to the TM-lattice. This unit cell together
with the one after themirror operation is also indicated infigure C1(a).

Using the above definitions, we can calculate themirror operation on themoiré unit cell as:

s s
s s s s

= - -
= + - + -
= - + + + + -
= - - =





ˆ [( ) ( )] ˆ [( ) ( )]
[( ˆ ˆ ) ( ˆ ( ) ˆ )]
[( ( ) ) ( ( ) ( ) )]
[( ) ( )] [ ( ) ( )]

m n R m n m n n m n

m a n a n a m n a

m a a na n a a m n a
m n m n m R n m n m

, ; , , ; ,

;

;
, ; , , ; , .

120

1 2 1 2

1 2 2 1 2 2

120

   
     

Themirror operation transforms the right-handedmoiré unit cell into a left-handed one, as can be seen infigure
C1(a). If we choose a right-handed notationthe sequence of the unit cell vectors has to be reversed, which proves
thatwhen relating to the TM-lattice themirror of a (m, n)TMmoiré is correctly indexed as (n,m)TM.

The same alsoholds truefor the indexing (r, s)g when relating to the rotated graphene lattice. This is shown
in the followingwith the help offigure C1(b), which displays the orientation of the unit vectors g1


and g2


of the

g-lattice. Since the g-lattice is rotated byjwith respect to the TM-lattice, it has to be turned backward by -j so
that it reaches the same symmetry properties as the TM-lattice. Therefore, we derive atfirst a useful expression
from the already derived identity: s s=j j- ˆ ˆR R .Multiplying from the right side the operator identity s j-ˆ R
leads to:

s s ss s s= = =j j j j j j- - - -ˆ ˆ ˆ ˆ ˆ ˆR R R R R R .

As is shown in figureC1(b), wewill relate to three differently rotated coordinate systems: the original coordinate
systemof themoiré ( )r s, g with the g-lattice rotated byjwith respect to the TM-lattice, the one after a
subsequent rotation of−j,which results in the g-lattice with the ḡ2


lattice vector aligned vertically and the

coordinates ( ) ¯r s, g and the coordinate system ( )r s, ,g which is rotated twice by−j.With these abbreviations,
we can now calculate themirror operation to themoiré unit cell vectors when relating to the g-lattice:

s s
s

= - -
= - -
=
=

j j

j

j

 - -

-

- 



ˆ [( ) ( ) ] ˆ [( ) ( ) ]
ˆ [( ) ( ) ]
[ ( ) ( ) ]

[ ( ) ( ) ]

¯ ¯

¯ ¯

r s R r s R R r s s r s

R r s s r s

R R s r s r

R s r s r

, ; , , ; ,

, ; ,

, ; ,

, ; , .

g g g g

g g

g g

g g

120

120

120

Here, we could use the fact that after the first rotationR−j themirror symmetry equivalent to the TM-lattice
exists, which leads to the expression in the second row. Again, using the notation of a right-handed system
proves thatwhen relating to the g-lattice themirror of a (r, s)gmoiré is alsocorrectly indexed as (s, r)g. The only
difference is that this cell is situated in the g-lattice coordinate system,which is rotated by−jwith respect to the
TM-lattice.

AppendixD. Analysis of spatial beating frequencies in the second-ordermoiré g/
SiC(0001)

In section2.6the usefulness of the cell augmentation concept was discussed using the so-called
´ ( )R6 3 6 3 30 moiré found for graphene on SiC(0001) [24]. Apart from the (0, 0) beamand thefirst-order

spots of the SiC-lattice and the g-lattice, ten spatial beating frequencies are identified for the second-ordermoiré
patternwithin the sector spanned by the (1, 0)SiC and the (0, 1)SiC reciprocal-space vectors, as displayed in
figure 4(d). Following the building principle of second-ordermoiré beating frequencies, we can list their vector
coordinates, which is done in table D1.

As has been shown, the vectors k1 and k2 reside on k-space positions that span an incommensurate non-
augmented cell, while all other vectors k3Kk10 reside on positions that aremembers of lattice positions
belonging to the commensurate tripled cell of the second-ordermoiré pattern. One of the six k-space vectors of
this commensurate cell is indicated asKmoiré infigure 4(d). TableD2 lists possible linear combinations of the
identified spatial beating frequencies that equal symmetrically equivalent vectors ofKmoiré.

The respective coordinates relating to the reciprocal-space g-lattice and SiC-lattice can be computed by
using tableD1. In additionthe order of each spatial frequency ng and nSiC is listed in table D2. The larger of both
numbers within each line of the table equals themoiré order n,whichwould hostKmoiré. Comparing the listed
combinations shows that onewould identifyKmoiré in an eighth or higher-ordermoiré pattern. As a result, the
unit cell of the ´ ( )R6 3 6 3 30 moiré of g/SiC(0001) can be identified only starting from aneighth-order
commensurability plot when relating to a non-augmentedmoiré cell. This is confirmed by a direct calculation of

all spatial beatings frequencies using -k k ,g SiC

 
whereKmoiré also appears in the eighth-order (not shown). That
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the same cell can be identifiedin a second-order commensurability plot when relating to a tripled cell greatly
simplifies the search.
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