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Abstract

We report on strategies for characterizing hexagonal coincidence phases by analyzing the involved
spatial moiré beating frequencies of the pattern. We derive general properties of the moiré regarding
its symmetry and construct the spatial beating frequency Kpnoirs as the difference between two

reciprocal lattice vectors k; of the two coinciding lattices. Considering reciprocal lattice vectors kis
with lengths of up to n times the respective (1, 0) beams of the two lattices, readily increases the
number of beating frequencies of the nth-order moiré pattern. We predict how many beating
frequencies occur in nth-order moirés and show that for one hexagonal lattice rotating above another
the involved beating frequencies follow circular trajectories in reciprocal-space. The radius and lateral
displacement of such circles are defined by the order n and the ratio x of the two lattice constants. The
question of whether the moiré pattern is commensurate or not is addressed by using our derived
concept of commensurability plots. When searching potential commensurate phases we introduce a
method, which we call cell augmentation, and which avoids the need to consider high-order beating
frequencies as discussed using the reported (6+/3 X 6+/3 ) R3p° moiré of graphene on SiC(0001). We
also show how to apply our model for the characterization of hexagonal moiré phases, found for
transition metal-supported graphene and related systems. We explicitly treat surface x-ray diffraction-
, scanning tunneling microscopy- and low-energy electron diffraction data to extract the unit cell of
commensurate phases or to find evidence for incommensurability. For each data type, analysis
strategies are outlined and avoidable pitfalls are discussed. We also point out the close relation of
spatial beating frequencies in a moiré and multiple scattering in electron diffraction data and show
how this fact can be explicitly used to extract high-precision data.

1. Introduction

Moiré patterns are generally observed if two lattices are stacked on top of each other, while having either a
different lattice constant or a different rotational orientation or both at the same time. The problem has been
known in epitaxy and surface science for along time [1-4], but the topic regained interest after transition metal
(TM) catalyzed chemical vapor deposition was identified as a promising growth protocol for graphene (g) [5-8].
The interplay of the real-space geometry of moirés, the corresponding geometry in reciprocal-space and the
result on the electronic structure of the corresponding phases led to thorough studies focusing on the
description of moirés [9—18]. Due to the hexagonal symmetry of the g-lattice, in particular graphene growth on
hexagonally packed TM surfaces and the resulting moiré formation, are of interest [5, 7, 8, 19]. Thus,
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throughout this study, we abbreviate the support lattice as TM and the top lattice as g. For the description of
similar systems, such as hexagonally packed adsorbates [3, 4, 14] or other hexagonally arranged two-
dimensional materials on hexagonally packed support surfaces [20, 21], the nomenclature has been changed
accordingly.

Moiré formation may be analyzed by describing the lattices in real-space notation. The question of whether
the moiré pattern is commensurate can then be discussed along the followinglines. The hexagonal symmetry of
the TM- and g-lattices induces a moiré pattern with hexagonal symmetry. If the pattern is commensurate, a
hexagonal moiré unit cell exists and is sufficient to characterize the pattern by providing the coordinates of one
moiré unit cell vector ¥,0;6. Because in the case of commensurability the unit cell vector ¥4, must be a vector
of both lattices (the TM- and the g-lattices), we can define ¥pirs @S Vinoire = M X dj + n X d, and at the same
time as Vyoirs = r X g + s X g, with djand g being unit cell vectors of each hexagonal lattice. This leads to
the coordinates (11, 1)1\ and (1, 5),, respectively. Choosing a unit cell with 120° angle between the unit cell
vectors dy and @, (g and g, ), we can calculate the length of the moiré unit cell vector as follows:

Linoirs = armym? + n2 — mn zag\/r2+52—r5. (1)

Here, ary and ag represent the length of the respective unit cell vectors (i.e. the lattice constant). The orientation
of the unit cell vector with respect to the TM-lattice is given by the angle ® ;¢ T as:

n
m — —

c0s(Proirs, M) = — 2 (2)
m? + n? — mn

The orientation of the unit cell with respect to the g-lattice is characterized by the angle @, ;s s accordingly. Itis
readily obtained when exchanging (1, n) with (r, s) in equation (2). While it is easy to calculate equations (1) and
(2) once the coordinates (11, 1)y With (7, 5)g are given, it is not a trivial task to find integer numbers (11, n) and (r, 5)
that fulfill the diophantine equation (1), i.e. there is no easy way of predicting which commensurate moiré cells

of coinciding hexagonal lattices are possible.

In arecent publication, we analyzed the moiré formation of two coinciding hexagonal lattices in a more
general way, which allowed us to geometrically derive the wanted integer tuples (11, 1)y and (r, 5)g [11]. For this
purpose, we considered lattice functions fra(x, y) and f4(x, y) that consisted of a superposition of sine-wave
functions with a defined spatial frequency spectrum. By relating moirés to a stroboscopic experiment, it was
shown that the product of the two lattice functions fry(x, y) X fg(x, ) leads to a pattern with the properties of a
moiré. Considering the arbitrary alignment of the two lattices by introducing the rotation R, of the f,-lattice by
an angle  with respect to the fy-lattice, we analyzed the properties of moiré patterns by discussing the
function fry; X R,f,. Making use of the so-called convolution theorem in Fourier analysis, we predicted all
spatial beating frequencies k;in reciprocal-space, which account for the appearance of the moiré pattern. If the
two lattice functions contain reciprocal frequencies Ei, with a vector length of up to n times the respective (1, 0)
beams, a so-called nth-order moiré pattern appears. Spatlal beatmg frequencies in an nth-order moiré pattern
appear as the difference vector Kinoire = k - kTM, where k and kTM are the corresponding spatial frequencies
of the g- and the TM-lattices. An or1entat10n of the two lattlces may be found where two of the spatial
frequencies Eg and kry; ofa given order n (i.e. of a given length) come closest in reciprocal-space leading to the

shortest vector I%moiré. This shortest beating frequency is called the nth-order moiré beating frequency
throughout this paper. We should note that for the specific case of first-order lattice frequencies, the spatial
beating frequency relating to the longest wavelength was called a moiron by Hermann [9]. Following our general
description [11], Hermann also generalized the moiron concept towards higher-order frequencies [22].
Recently, Artaud et al extended the description of moiré patterns formed by coinciding hexagonal lattices when
allowing for uniaxial strain [12]. The authors used our nomenclature but also introduced a generalized Woods
notation of commensurate phases.

In the case where the two lattices develop a commensurate pattern, the moiré has translational symmetry.
The smallest possible unit cell of the real-space pattern is then called the moiré unit cell. Knowing all spatial
frequencies of an nth-order moiré, we can predict when commensurability sets in and visualize these cases in so-
called commensurability plots [11]. We also distinguish the case when spatial beating frequencies approach, but
do not exactly reach, the k-space position of a commensurate cell. In such a case a so-called motif of the moiré
evolves [23], which may strongly influence the pattern appearance without having the translational symmetry of
alattice.

In the first part of this paper, we discuss the general properties of hexagonal nth-order moiré patterns. Rather
than formally solving equation (1), which has to be done by numerical methods, we discuss moiré patterns, their
symmetry and potential commensurability in a more general way by addressing their beating frequencies in
reciprocal-space. We introduce a so-called cell augmentation technique, which asks for commensurability with
respect to an enlarged unit cell in real-space. This techniques is strongly related to the findings of Artaud et al
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Figure 1. Definition of the coordinate system of the hexagonal lattices and the unit cell of a commensurate superstructure. The lattice
unit cell vectors are indicated as 4, @, and dy, d, respectively. The positive rotational direction (+¢) is defined as a counterclockwise
rotation.

who treated the case of multiple beatings in unit cells [12]. Using the example of the so-called (6+/3 x 6+/3) R
moiré found for graphene on SiC(0001) [24], we show how cell augmentation avoids the use of high-order
beating frequencies when searching for commensurate moiré phases.

In the second part of this paper we apply our method to the moiré analysis of experimental data. For
measurements performed by us we provide experimental details in appendix A. In cases where we relate to the
interpretation of data acquired by other groups, we direct the reader to the original literature. Within this
section, we show how to correctly analyze and index moiré patterns avoiding pitfalls when dealing with real-
space-, or reciprocal-space data. We explicitly discuss supported graphene phases, which were characterized by
surface x-ray diffraction (SXRD), scanning tunneling microscopy (STM) and low-energy electron diffraction
(LEED) and low-energy electron microscopy (LEEM). For the electron diffraction studies, in particular, we
point out the intimate relationship between multiple scattering and our generalized method of constructing
moiré beating frequencies. The derived results can also be used to identify incommensurate phases and can be
easily applied for other related 2-dim systems that evolve moiré patterns.

2. General properties of nth-order moiré patterns

Within this section we outline several general properties of hexagonal coincidence phases that determine the
appearance of hexagonal moirés. The indexing of commensurate moiré phases is also addressed.

2.1. Simplified notation of commensurate hexagonal moiré patterns
The description of two coinciding hexagonal lattices uses the 120° notation usually chosen in crystallography.
Following this notation, the real-space unit cell vectors d; are rotated by 120° with respect to each other and the
reciprocal-space vectors d; are rotated by 60°, accordingly. Lattice vectors and vectors belonging to the
superstructure of a commensurate moiré pattern are defined in real and reciprocal-space as displayed in
figure 1.

The real-space vector ¥yoie = (1, 1) describes one of the unit cell vectors of the moiré supercell (green cell).

Following the 120° notation, the supercell in real-space is characterized by the matrix M = (21 m " n) and
o . - 1 _ ,
in reciprocal-space by the corresponding matrix M = ——— (m_ non ), which defines the

m? — mn + n? nom

corresponding reciprocal-space moiré vector I%moiré and its 60° rotated counterpart of the unit cell. Due to the
hexagonal symmetry of the system, unit cells rotated by multiples of 60° may also be chosen and it is sufficient to
provide the coordinates of only one unit cell vector. Using this simplified notation, the indexing of a
commensurate moiré pattern is given by the coordinate tuple (11, )11/ (1, 5)g of this vector relating to the TM-
and to the g-lattice, respectively.

2.2. Hexagonal symmetry and indexing of symmetrically equivalent moiré unit cells

Due to the hexagonal symmetry of a commensurate moiré each 60° rotated unit cell vector is also suitable for
indexing the unit cell with the simplified notation (1, 7)1/ (1, 5)g. Therefore, we find it useful to provide the
coordinates of these six vectors:
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Reoe Repe Rgo Reoe Repe
(myn)y=>m-—n,m=>((—n,m-—ny=>(—m, —n)=>mn—m, —m)=> (n, n — m). 3)

Equation (3) relates to unit cell vectors following the 120° notation in real-space. Since in the literature an
alternative lattice description is found, which uses a unit cell with lattice vectors 4; that are rotated by 60° with
respect to each other, we provide formula to convert one indexing type into another in appendix B.

2.3. Clockwise and anticlockwise rotation and the induced mirror symmetry of the moiré pattern

We defined a positive rotation by +¢ as a counterclockwise rotation (see section 2.1) and the commensurability
plotsintroduced in [11], and the ones shown in this paper relate to this sense of rotation. On reversing the
rotational direction towards a clockwise rotation, moirés appear that have mirror symmetry with respect to the
ones of anticlockwise rotation. This holds whether or not the moirés are commensurate or incommensurate. In
the case of commensurate moirés that are indexed following the simplified unit cell notation, mirror symmetry
is obtained when reversing the coordinates of the indexed unit cell vector. As a result, we derive equation (4),
which provides the correct indices of the two mirrored moiré cells:

Moiré unit cell upon rotation Moiré unit cell upon rotation
by + ¢ of g- over TM-lattices: | by — ¢ of g- over TM-lattices:

(m) n)TM/(r) S)g (71, m)TM/(S: r)g- (4)

The proof of these two properties is given in appendix C.

2.4. Reciprocal-space positions of the beating frequencies in an nth-order moiré pattern

As already outlined in the section 1, the reciprocal-space position of each spatial beating frequency in an nth-
order moiré pattern is determined by the difference vector Koo = Eg - ETM where l:g and ETM are the
corresponding spatial frequencies of the adsorbate (g) and support lattices (TM). This situation is sketched in
figure 2(a) with l;TM = (1, 0)pm and lzg = (0, 1), for afirst-order moiré pattern. Instead of formally solving

these type of equations, which lead to I?moiré and finally to analytic expressions of the nth-order moiré beating
frequencies, we can also consider their geometrical meaning in reciprocal-space (which is also named k-space in
the following). The moiré results from the coincidence of the g- and TM-lattices with the g-lattice
counterclockwise rotated by an angle (¢ with respect to the TM-lattice. When continuously rotating the g-lattice,
the corresponding first-order g-lattice frequencies perform a revolving motion in k-space. As aresult of the
difference construction of Kpeir¢, also all spatial frequencies of the moiré pattern except the (0, 0)-spot follow
circular trajectories in k-space. While the radius of each circle is determined by the g-lattice constant only, the
lateral offset of each circle depends on the involved frequency spots of the TM-lattice. Thus, as also sketched in
figure 2(b), all spatial beating frequencies of any first-order moiré follow similar circular trajectories, while the
size and position of such circles in k-space varies with the relative lattice constants of the two coinciding lattices.
The spatial frequencies that follow the trajectories, and come closest to the (0, 0) spot, lead to the first-order
moiré beating frequencies of the pattern.

In the general case of nth-order moiré patterns, the number of spatial frequencies in k-space rapidly
increases as more and more difference vectors between the spatial frequencies of both lattices occur. The total
number of spots N'in an nth-order moiré pattern is given by

N=1+2 x 65 + (65)* (5)

where sis the sum of the orders n in the pattern, i.e. s = ZLI i. The first term in equation (3) relates to the (0,
0)-spot, the second term results from the difference vector between the (0, 0)-spot with the remaining 6s spots of
each lattice (the g- and the TM-lattices) and the last term represents the possible combinations of the 6s spots of
each lattice. As a result, a first-order moiré pattern contains 1 + 12 + (6)> = 49 spatial frequencies, as explicitly
calculated in [11], while already a second-order moiré pattern contains 1 4 36 + (18)> = 361 spots in k-space.
Although the pattern of higher-order moirés contains many spots and the trajectories are seemingly much more
complex (see also movie SD 1 of the supplementary data), the building principle is the same as for the one of
lowest order, except that nth-order moiré patterns contain circular trajectories of larger radii. This is sketched in
figure 2(c), where the beating frequencies of a second-order moiré pattern follow circular trajectories with radii
g, J3 dg and 24, arising from the revolving motion of the (1, 0)g-type, (1, 1)g-type and (2, 0)¢-type spots in
reciprocal-space.

During the revolving motion of the g-lattice, several of the k-space spots of a given order n may temporarily
approach the (0,0) beam, generating the nth-order moiré beating frequencies, which appear asa large
wavelength in the moiré pattern and which have been analytically calculated up to third-order in [11]. If spots
approach each other at high symmetry positions in k-space, but do not exactly hit this point, the moiré pattern
develops a motif, which may determine the appearance of the moiré pattern, although it does not have
translational symmetry with respect to these frequencies. We will discuss such cases in section 3.2. In the case of
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Figure 2. Construction of a spatial beating frequency Kinoire in a first-order moiré pattern (a). The resulting trajectories of the beating
frequencies in k-space are displayed for a first-order moiré pattern (b) and for a second-order moiré (c). The seemingly more
complicated trajectories are formed by the same building principles as the ones of the first moiré, but due to the presence of (1, 0); ,
(1, 1) and (2, 0)g spots in the rotating reciprocal lattice of graphene, circular trajectories with radii 4, (red), J3 dg (blue) and
24, (green) appear in the k-space graph. Allimages were calculated for the parameter x = ary/ag = 1.104, which applies for g/Ir
(111). The small black spots indicate the beating frequency position at a rotation angle of ¢ = 0°. An animated version of figure 2(c) is
available in supplementary data SD 1.

commensurability, the moiré pattern relates to a unit cell, which arises if the spatial difference frequencies
belong to both the g- and the TM-lattices. In order to sort out such cases, we introduced so-called
commensurability plots, which visualize the cases where the conditions required for commensurability are
fulfilled (see [11]). In the following section, we discuss a method that simplifies this task.

2.5. Commensurability and the moiré cell augmentation method

Instead of trying to identify commensurate moiré phases that host one beat per unit cell, one may also

ask whether commensurate multiples of this unit cell exist. The augmentation must be compatible with the
hexagonal symmetry of the problem. Possible augmentation factors are 3,4, 7,9, 12, 13, 16, ... which can be
derived from the so-called hexagonal sequence number introduced by Tkachenko [14]. What seems to lead only
to redundant cells, provides in fact new solutions of potential commensurate moiré phases. This is best
explained for the case of doubling L,.;.¢ (equation (1)) and addressing a quadrupled moiré cell size.

Let us first use the already introduced simplified moiré cell indexing introduced in section 2.1 and apply the
results to first-order moirés in order to illustrate the technique of cell augmentation. Referring to a non-
augmented unit cell, a commensurate moiré is characterized by the indexing, which is called non-augmented
cell indexing in the following:

(m, MM/ (1, $)g- (6)

For example, when addressing aligned g- and TM-lattices, the (11, 0)1pn/(12, 0)g and the (12, 0)1pn/(13, 0)g
moiré phases are two possible first-order moirés, which subsequently increase in size while keeping the
commensurability with respect to the two lattices. Note that first-order moirés are of the type

(m, n)pm/(r = m + 1, s = n)gasshown in [11]. When instead searching for commensurate quadrupled cells,
each unit cell vector is multiplied by a factor of two and the moiré indexing relates to:

(ffl, ﬁ)TM/(f, §)g = (2m, 2H)TM/(ZT, 25)g. (7)

Using this notation for the above example of a first-order moiré and inserting (1, n)p\/(r = m + 1, s = n),
into equation (7), we end up with the quadrupled cell notation as (+11, )\ / (7, §)g = (71, )/ (11 + 2, 7).
Thus, the aligned g- and TM-lattices would result in subsequently increasing moiré cells with the notation:




10P Publishing

NewJ. Phys. 19 (2017) 013015 P Zeller et al

1.085

1.090 1.090

@

.

@

U

3
1.095 1.095
1.100 1.100

Figure 3. First-order commensurability plots spanning the (x, ¢) parameter-space of potential moirés phases of graphene on
Ru(0001). (a) Commensurability plot relating to the non-augmented cell notation and (b) relating to a quadrupled moiré cell. Itis
easily seen that in the augmented cell notation, four times as many commensurate phases appear while every fourth phase is redundant
with the ones indicated in figure 3(a). The light blue circles marks the parameter-space where the so-called (23, 0)1m/(25, 0)g phase is
found for the aligned moiré of g/Ru(0001) [25, 26].

(22,0)1m/(24, 0)g, (23, 0)1p/ (25, 0)g and (24, 0) a1/ (26, 0),. The first and the last cell of this sequence are
redundant with respect to the already mentioned non-augmented cells of our example. Instead, the

(23, 0)1m/(25, 0); moiré indicates a new commensurate phase, which is not identified during the search when
using non-augmented cells, since dividing each vector by the augmentation factor two leads to a

(11.5, 0)1p/(12.5, 0), cell, which obviously does not consist of integer numbers. Although it is obvious that cell
augmentation readily leads to large cells, moiré patterns have been identified for supported graphene such as the
(23,0)1m/(25, 0)g cell reported for graphene on Ru(0001) [25, 26] and the (19, 1)1p/(21, 1)g moiré found for
graphene on Ir(111) [27, 28]. The cell augmentation method is the real-space approach to the description of
Artaud et al, who discussed the k-space conditions of so-called multiple beatings within a moiré cell [12].
Figures 3(a) and (b) display first-order commensurability plots in non-augmented and quadrupled cell notation
for possible moirés of the system g/Ru(0001) at small rotation angles ¢ of the two lattices.

The vertical axis displays the lattice ratio x = ary;/ag of the two coinciding lattices while the horizontal axis
is the rotation angle . As outlined in [11], an nth-order commensurability plot displays the gray scale of a
function that indicates how much the nth-order moiré beating frequency deviates from the closest nearby unit
cell vector of a commensurate cell within the parameter-space (x, ) of the moiré. At the local minima the
displayed deviation function turns zero, which indicates points in the (x, ) parameter-space, where
commensurability between the graphene and the TM-substrate lattice is met. The points, where such minima
appear, are marked by yellow patches in the graph. They occur where the additionally plotted (1, 1)1 contour
traces (red and blue curves) cross each other. As has been shown in [11], in a first-order commensurability plot
the (, s)g contour traces that relate to the g-lattice coincide with the (112, )y ones. When referring to a non-
augmented cell notation, as in figure 3(a), these (r, s), indices are calculated as (r = m + 1,5 = n),. According to
the indexing introduced in equation (7) for a quadrupled cell, the indices that relate to the graphene lattice are
derived from figure 3(b) as (7 = 7t + 2, § = fi),. Comparison of figures 3(a) and (b) shows that the quadrupled
cell identifies four times as many commensurate phases of the system, while every fourth phase is redundant
with the corresponding one found when referring to the non-augmented cell notation. The light blue circle in
both plots indicates the parameter-space, which applies for the so-called (23, 0)rn/(25, 0); moiré phase of g/Ru
(0001) [25, 26]. It is clearly seen that this phase is correctly identified in figure 3(b), which refers to a quadrupled
unit cell. Please also note that the identified (23, 0)g,/(25, 0); moiré hosts four beats per unit cell as
experimentally observed [25] and also noted by Artaud et al [12].

Following the outlined strategy, we can also relate our search to tripled moiré cells, which asks for
commensurability with respect to a cell length of 3 Linoire and an orientation of the unit cell, which is turned by
30° with respect to the non-augmented cell (i.e. a tripled unit cell that is aligned to the so-called /3 direction of
the hexagonal lattice). In this case, we can use equation (3) to show that simple moiré cells (1, n)r\/ (, s)g relate
to tripled cells with the notation:

(i, fi)pm = (m, n)tm + Reee (M, m)pm = (m, n)py + (m — n, m)py = 2m — n, m + n)ry and
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(7, §)g = (2r — s,  + 5),, accordingly. Thus, the moiré indexing is given by
(m, )yrm/ (7, $)g = 2m — n, m + n)rm/Q2r — s, 1 + 5)g. (8)

Please note that the indexing (71, )1m/(F, 3), relates to the tripled cell notation. Introducing the conditions of a
first order moire (r = m + 1,s = n)into equation (8) leads to first order moirés in tripled cell notation as

(1, )ym/ (1 + 2, 7 + 1)g. The indexed cells can be easily converted into indexing with respect to the non-
augmented cell (111, n)rp/(r, 5)gaccording to:

m=m+)/3, n=Qi—m)/3andr=(F +3)/3, s= (25 —7)/3. ©)

Now, each third cell is redundant with respect to the identified moiré cell when using the non-augmented cell
notation and equation (9) leads to integer numbers (m, 1) accordingly. On the other hand, each of the following
two cells represents a new solution of potential commensurate phases that are not identified when relating to a
non-augmented cell.

2.6. Predicting the commensurability of the (6+/3 x 6+/3 ) R3¢ moiré of g/SiC(0001) by applying the moiré
cell augmentation method

Calculating commensurability plots for first- and second-order moirés using augmented cells is a very
convenient way to derive unit cells without having to include higher-order lattice frequencies. This is discussed
for the case of the (6+/3 X 6+/3 ) R3¢ moiré with the unit cell notation (12, 6)tn/(13, 0),, which is reported for
graphene on SiC(0001) [24]. This moiré occurs for a graphene lattice that is turned by 30° with respect to the
SiC-lattice and a g-lattice constant so that 13 g-lattice spacings match 6+/3 SiC-lattice units. We can compute
the first- and second-order commensurability plot for the parameter-space of this moiré pattern, as shown in
figures 4(a) and (b). The left vertical axis of each plot indicates the relative lattice constant x = as;c/ag, while the
right one displays the absolute graphene lattice constant a; when considering the lattice constant of SiC(0001)
asic = 3.07 A. The horizontal axis represents the lattice rotation angle ¢ and the plots span the region

that includes the parameters (a, = 2.454 A x = agc/ ag = 1.251, ¢ = 30°) for which the commensurate
moiré with the indexing (12, 6)sic/(13, 0)4 is reported [24]. Figures 4(a) and (b) show that in the displayed
parameter range no intersection of all four isolines (11, 7)1\ and (7, 5), is found that would indicate the presence
of a commensurate phase. In particular, the (12, 6)sic/(13, 0), phase does not appear. Instead, in figure 4(c) the
unit cell is correctly identified at the expected parameter-space. Here, the second-order commensurability plot is
computed for a tripled moiré cell, where integer numbers 77, 7i are searched so that ¥,,¢ = (171, 7)sic leads to
an augmented cell of V3 Lioire cell length, which is 30° rotated with respect to the non-augmented cell. We
should point out that commensurability plots directly lead to the graphene lattice strain ¢ required for
commensurability of the identified moiré phases. This is achieved by referencing the predicted graphene lattice
constant to the calculated one of free-standing graphene of 2.456 A at 300 K [29], which is also displayed in
figure 4(c). Please note that in figure 4(c) a (9, 9)sic/(13, 7); commensurate unit cell is also identified, which
requires almost the same g-lattice constant as the one in the (12, 6)si/(13, 0); moiré phase, but appears ata
slightly smaller rotation angle. In contrast to the (12, 6)s;c/(13, 0); moiré, this phase has not been reported so far.

Figures 4(a)—(c) show that we easily find the correct unit cell of the (12, 6)s;c/(13, 0), moiré when using the
tripled cell notation, whereas this fails when referring to the non-augmented cell. Why this is the case canbe
understood when carefully analyzing the spatial beating frequencies that account for the moiré pattern. By
constructing the beating frequencies of a second-order moiré as outlined in section 2.4, we can calculate their
positions in reciprocal-space for the parameters of the moiré. Figure 4(d) displays the relevant k-space sector of
the second-order moiré beating frequencies.

The graph shows the (0, 0) beam, the (1,0)sc, (0, 1)sic and the (1,1)sic spots (black) as well as the (1,0), spot
(blue). In addition, ten more spatial moiré frequencies k;, ..., k1 (red spots) appear according to the
construction Kpois = Eg — ESiC- Itis clearly visible that k; and k; are the shortest k-vectors and account for the
longest wavelength beat of the second-order moiré. The linear combinations of these two frequencies fill the
displayed k-space entirely (the corresponding grid is sketched by black solid lines) and k; and k, spana (6 x 6)
superstructure with respect to the SiC-lattice. Due to the fact that the (1, 0), spot and the remaining spatial
frequencies ks, ...k;o do not belong to this grid, k; and k, do not relate to a commensurate cell.

When instead relating to a real-space unit cell of tripled size, spatial beating frequencies at the reciprocal /3
positions of the black grid in k-space are addressed (green crosses). The ones closest to the (0, 0) beam relate to a
moiré cell of tripled size in real-space. One of the symmetrically equivalent moiré vectors is indicated as Kip,pir6 in
figure 4(d). Since two linear independent K¢ vectors span a reciprocal lattice (green crosses) that hosts all
spatial beating frequencies of the second-order moiré, a commensurate phase results and comparison with
figure 4(c) shows that Kyy,irs relates to the identified (171, fi)sic / (7, §)g = (12, 6)sic/(13, 0)g real-space cell. We

can now easily calculate the corresponding non-augmented cell with the help of equation (9) and identify it

as (m, n)sic/(r, s)g = (6, O)sic / (g, fg)g. Since non-integer numbers appear, this cell is not identified in
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Figure 4. (a) and (b) First-order and second-order commensurability plots relating to a non-augmented moiré cell. (c) Second-order
commensurability plot relating to a tripled moiré cell. Two potential commensurate phases are identified. One appears at a rotation
angle of 30° (see text). (d) Spatial frequencies of a second-order moiré (ag;c = 3.07 A, ag = 2.454 A, ¢ = 30°) show how relating to
the tripled moiré cell refers to spots in k-space (green crosses) at the reciprocal /3 positions of the grid, which is spanned by the
vectors k; and k. The vectors closest to the (0, 0) beam refer to the commensurate (12, 6)sic/(13, 0)g cell, which is identified in (c). One
of the symmetrically equivalent moiré vectors is indicated as Ky oire-

the corresponding commensurability plot of figure 4(b), while the tripled cell leads to integer numbers and to the
identified commensurate cell of the moiré in figure 4(c).

Finally, we can ask, how many orders n have to be considered when wanting to identify the moiré cell in an
nth-order commensurability plot while relating to a non-augmented cell. For this purpose, we draw our
attention to the other spatial beating frequencies of the second-order moiré pattern in figure 4(d). As has been
already noted, k; and k, and the other beating frequencies k3. .. k1o reside on different types of k-space position.
The first two reside at intersections of the black grid, all others on positions marked by green crosses, which
relate to the v/3 k-space positions. We can now construct linear combinations of the two types of beating
frequency so that they equal Ky,;.¢ or symmetrically equivalent vectors. In appendix D we list such linear
combinations. In addition, we can determine the coordinates of all beating frequencies k; .. .k;o according to the
building principle of the second-order moiré pattern, which are also listed in appendix D. As a result, we derive
the coordinates of the listed linear combinations of the spatial beating frequencies that lead to a symmetrically
equivalent vector of K, 4ir¢. One of the linear combinations is K,oir¢ = 2(k; + k3)-ky, which is sketched in
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figure 4(d). As also shown in appendix D, this linear combination consists of the difference of a reciprocal sixth-
order g-lattice and an eighth-order SiC-lattice vector. Since all other linear combinations require equal or
higher-order lattice frequencies, K,,,,;;¢ appears as spatial frequency in an nth-order moiré pattern only forn > 8
(see appendix D). Correspondingly, the moiré unit cell cannot be identified in a commensurability plot lower
than the eighth-order when relating to a non-augmented moiré cell. The discussed example shows the great
simplification of the search for commensurate cells using augmented moiré cells: the (6+/3 X 6+/3)Rsp> moiré
reported for g/SiC(0001) is already correctly identified in a second-order commensurability plot when relating
to a tripled moiré cell, while it requires nth-order spatial lattice frequencies with n > 8 in order to find the
commensurate cell when referring to a non-augmented moiré cell.

3. Extracting moiré parameters from experimental data

In the following chapter, strategies are outlined how to extract moiré parameters from experimental data. For
this purpose, the application of our model is of great use, because it helps to identify the possible commensurate
phases of the moiré. As will be shown, a careful frequency analysis also enables the identification of
incommensurate phases. We separately discuss the moiré pattern analysis for data sets acquired by different
experimental techniques, because each technique has its advantages and short comings which have to be taken
into account during the moiré analysis.

3.1. Indexing moiré cells using surface SXRD data

SXRD provides data on surface moiré structures with highest precision in k-space. From the acquired
reciprocal-space data the lattice constants and the rotation angle between the two lattices may be extracted. If
lateral or vertical atom displacement within the two coinciding lattices occurs, satellite spots appear in the
diffraction data, which can be attributed to moiré beating frequencies [25, 26, 30, 31]. On the other hand, when
the lattice constants and the orientation of the two lattices are already known precisely, we can use our geometric
construction to identify possible commensurate unit cells of the generated moiré that lead to the correct
indexing of the moiré.

We show an example of a rotational graphene phase found recently on Ir(111) by Jean et al [27]. The authors
reported grazing incidence XRD data at 200 K that revealed a g-lattice constant of (2.4521 4= 0.0008) A and a
rotational angle of (2.37 % 0.06)° with respect to the Ir-lattice (ar, = 2.7129 A at 200 K [32]). The reported
moiré surface phase can be indexed with the help of the first-order commensurability plot shown in figure 5.

The moiré indexing can be directly seen in the plot when indicating the ratio of the measured lattice
constants x and the measured rotation angle ( together with the corresponding experimental error (green). The
intersection of the measured values identifies this moiré phase clearly as a (10, 4)1,/(11, 4), unit cell. Originally,
the moiré phase cell was erroneously described by the authors asa (7, 2),,/(8, 2)y unit cell [27], but it was
corrected at a later stage by applying our analysis [33]. Table 1 lists the extracted values for the two assignments
a andb and the experimental data. While the incorrect assignment of a (7, 2)1,/(8, 2), moiré requires a much
too small lattice constant for graphene of a, = 2.3494 A at200 K (strain = —4.4%), the measured experimental
value 0f 2.4521 A matches almost perfectly with the required lattice constant of 2.4524 A for a (10, 4),/(11, 4),
commensurate cell (strain = —0.2%). Since the same moiré unit cell was also observed at 300 K, the numbers
referring to the corresponding Ir-lattice constant of a;, = 2.7147 A [32] at room temperature are also given in
table 1. The calculated graphene lattice constant of the (10, 4);,/(11, 4), commensurate cell matches the
calculated lattice constant of 2.456 A of free-standing graphene at 300 K [29] (and 2.457 A at 200 K, respectively)
or the reported room temperature value of 2.454 A of graphene in the g-Ir(111) Rye-moiré phase [34].

3.2. Indexing moiré cells using STM data

STM data provide images of the surface in real-space from which the unit cell can be directly derived.
Alternatively, one can extract the existing spatial frequencies by a Fourier transform of the image. The advantage
of STM data s that local variations in the pattern due to defects or monoatomic steps can be identified, as they
induce local rotation, translation or shearing of the graphene lattice above the substrate [35, 36]. The
disadvantage is the limited scanning area where high quality images with sufficient lateral resolution may be
acquired. Thus, if very large unit cells occur, one cannot easily distinguish between commensurate and
incommensurate phases. One more drawback of such data is the fact that STM images usually suffer from
thermal drift and piezo creep. While the drift can be accounted for, as long as it leads to a linear expansion or
contraction of the acquired image, piezo creep leads to a nonlinear distortion of the image. Thus, extracting
lattice constants with a precision better than 10% error is a difficult task. Similar difficulties are faced when
determining absolute angles in an STM image. One way around this difficulty is that one may count lattice sites
once atomic resolution is obtained and thus avoid measuring absolute numbers. When doing so, one has to take
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Figure 5. First-order commensurability plotleading to the correct assignment of the (2.37 4+/— 0.06)° rotated moiré phase observed
by Jean et al for g/Ir(111) [27]. The local minima (marked by yellow patches) occur where the additionally plotted (1, n);, contour
traces (red and blue curves) cross each other and commensurability of the moiré is met. The indices that relate to the g-lattice are

(r =m + 1,5 = n)y(see [11] for details). a: Position of the erroneously assigned (7, 2)1,/(8, 2) cell in the moiré parameter-space.

b: Correctly assigned (10, 4)1,/(11, 4); moiré cell (see text). The right axis of the graph displays the required graphene lattice constant
at 200 K. The additional axis indicates the graphene lattice strain € with respect to the calculated one of free-standing graphene of
2.457 Aat200 K.

Table 1. The numbers according to the listed indexing of the moiré cells using; a: incorrect indexing by the authors
and b: correct indexing. The Ir-lattice constants are ay, = 2.7147 A (300 K)and a;, = 2.7129 A (200 K) [27, 32].
The listed values are: T (temperature), a, (graphene lattice constant), Lmoirs (length of the moiré unit cell), @ moire,1r
(rotation of the moiré unit cell with respect to the Ir-lattice), ®oire,g (rotation of the moiré unit cell with respect to
the graphene lattice) and ¢ (rotation of the graphene lattice with respect to the Ir-lattice).

Structure T ag (A) Lmoiré (A) (I)moiré,lr (o) (Dmoiré,g (0) ¥ (0)

a (7, 2)1/(8,2)q 300 K 2.3510 17.0 16.10 13.90 2.20
200 K 2.3494 16.9

b (10, 4)/(11, 4)g 300 K 2.4541 23.7 23.41 21.05 2.36
200 K 2.4524 23.7

Experimental data 200 K 2.4521 — — — 2.37

into account that the outermost lattice affects the STM image more than the supporting lattice below.
Nevertheless, one can derive the moiré parameters by considering that the corrugation in the STM image reflects
the convolution of both two lattices as will be shown in the following examples.

In figure 6 we show an STM image of a graphene film on Ir(111) at 300 K after it was grown by catalytic
ethylene decomposition (for experimental details see appendix A). Having achieved atomic resolution of the
graphene layer, the unit cell of the surface phase can be easily identified as a (3, 11); moiré cell by counting lattice
sites. The right side of figure 6 displays a similar first-order commensurability plot as the one already shown in
figure 5.

Knowing that the indexed (3, 11), moiré cell is the mirror of the (11, 3), cell according to equation (4), this
structure can be identified in the displayed commensurabilty plot. Note that at each intersection of a red (1) and
blue contour line (1), a commensurate phase with a (1, n)y, unit cell is met. While the indexed cell (11, n)y, relates
to the Ir-lattice, the cell referring to the graphene lattice amounts to (r = m + 1,5 = n), for first-order moirés
and, thus, the (10, 3);,/(11, 3); moiré is easily identified in the right graph of figure 6, as indicated by the green
circle. The identified moiré occurs for a graphene layer that is rotated counterclockwise by 1.7° with respect to
the underlying Ir-lattice at alattice constant ratio x = ay,/ag = 1.108. We should note that there exists another
moiré candidate for acommensurate phase with a (11, 3), unit cell vector. In the supplementary data, section
SD2, we show that this further candidate appears as a second-order commensurate moiré with a (10, 7)y,/(11, 3),
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Figure 6. Indexing of the moiré unit cell from an atomically resolved STM image of graphene on Ir(111) at 300 K. Left: the unit cell (3,
11)4is identified by counting atoms in the atomically resolved graphene layer. Right: the first-order commensurability plot verifies
that the identified cell is the mirror ofa (10, 3);,/(11, 3), unit cell relating to a graphene lattice rotated by —1.7° and a graphene lattice
constant a; = 2.450 A.In addition, the lattice strain is indicated (relative to ag = 2.456 A at300 K).

unit cell at a rotation angle of 27.7° and x = 1.108. Nevertheless, we can exclude this commensurate phase. Since
for g/Ir(111) second-order moirés at rotation angles close to 30° are known to contain astrong (+/3 x +/3 )R
motif[11, 23], and since this motif is not visible in the STM image of figure 6, the imaged phase must be a first-
order moiré with a (3, 10);,/(3, 11)4 unit cell vector as the mirror of the identified (10, 3);,/(11, 3); moiré in the
displayed commensurability plot of figure 6. As a result, the identified moiré appears for a graphene layer with
the same lattice constant ratiox = 1.108, but a clockwise rotation of —1.7° with respect to the Ir-lattice. Using
the known Ir-lattice constant of 2.715 A at the acquisition temperature of the STM data (300 K), the identified
moiré cell indicates a graphene lattice constant of 2.450 A in the imaged area, i.e. a slightly contracted graphene
lattice (by —0.2%) when relating to free-standing graphene at 300 K. This number is much more precise than the
one that can be derived from measuring absolute distances in STM images. For example, the moiré unit cell
length can be determined from the STM image of figure 6 as (23.6 & 1.2) A. Solving equation (1) for the indexed
unit cell or simply counting the imaged lattice sites leads to a much less precisely determined graphene lattice
constant of (2.4 + 0.1) A for the imaged moiré phase. This resultsin x = 1.13 + 0.05, which corresponds toa
larger vertical axis range than the one of the whole commensurability plot shown in figure 6. The above example
shows that moiré patterns enable high-precision measurements whenever distances or angles can be referenced
to alattice with a known structure. Here, the magnifying effect of the length and orientation of moiré frequencies
upon slight changes of the parameters of only one of the lattices is of great help. This well-known effect could be
used to extract the registry of the lattice along defects such as steps [35, 36] and has even been recently used

to address uniaxial stress [12]. When pushing to such limits, care has to be taken, since imaging

artifacts produced by the tunneling tip may induce asymmetries that may be misinterpreted. Please also note
that the observed (3, 10);,/(3, 11), moiré pattern is only a slight modification of the (10, 4);,/(11, 4), pattern
observed by Jean et al which was discussed in the previous section.

As already mentioned above and outlined in our recent publication [11], graphene films may lead to so-
called higher-order moiré patterns. We also showed that moiré patterns may be commensurate with respect to
different orders at the same time. This is the case for the so-called R, 4o moiré observed for g/Ir(111) [23], which
is the next example (for experimental details see appendix A). Figure 7 displays an STM image of this phase, its
Fourier transform and the corresponding commensurability plots at the lattice rotation angle of interest.

As shown in the commensurability plots, the moiré has a commensurate first- and third-order spatial
beating frequency at the same time. Thus, a very robust pattern is expected. The indices given in the
commensurability plots indicate thata (3, 4);,/(4, 4); moiré should occur and indeed the STM image shows a
clear (4 x 4)unit cell (see zoomed image), which also appears clearly in the Fourier transform of the image. The
unit cell is not affected by the defect visible within the imaged area (white dots in the upper part of the large STM
image). The indexing of a (3, 4)1,/(4, 4); moiré unit cell is in agreement with data in the literature [23]. Again, the
commensurability plots provide the parameters x and ¢, indicating a slightly compressed graphene lattice
(—0.4%) with a lattice constant of 2.447 A and a graphene layer rotated by ¢ = 13.89° with respect to the Ir(111)
lattice. The extracted rotation angle with respect to the Ir-lattice also agrees well with the orientation of the main
substrate axis, which is known from oriented step edges of the clean Ir(111) surface (see also [37]). This latter
measurement determines the graphene lattice rotation of (15 + 2)° with respect to the substrate lattice. It
represents an absolute number and thus suffers from large errors such asa graphene lattice constant of
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Figure 7. STM image of the R4 moiré pattern of graphene on Ir(111). The commensurability plots identify simultaneous
commensurability with respect to first- and third-order spatial beating frequencies when rotating the graphene lattice by 13.89° with
respect to the Ir-lattice and a graphene lattice constant of 2.447 A. The commensurate surface phase hasa (3, 4)1,/(4, 4), moiré unit
cell.

(2.3 + 0.2) A directly measured by applying the conversion of the piezo scanners. Using these absolute
numbers, a definite indexing of the moiré structure would be not possible.

As alast example, we show STM data of a certain moiré phase that maylead to misinterpretation, since the
pattern contains strong, but incommensurate, spatial motif frequencies. Figure 8 displays STM data of g/Ir
(111), where the graphene lattice is rotated by about 19° with respect to the substrate lattice (for experimental
details see appendix A). From the known lattice orientation of the underlying Ir(111) surface a graphene lattice
rotation of (20 + 2)° and a lattice constant of (2.30 4= 0.15) A can be deduced. While Loginova et al reported a
similar pattern on g/Ir(111) with a large commensurate (13, 5);,/(13, 1) unit cell at a graphene rotation angle of
18.5° [23], close inspection of the STM image in figure 8 reveals a pattern that has no translational symmetry at
all within the imaged area.

Atafirst glance the image shows a pronounced frequency, which relatestoa (3 x 3) graphene cell and which
is also seen as a pronounced frequency in the Fourier transform of the STM image. On the other hand, close
inspection of the zoomed STM image in the right inset of figure 8 shows that true translational symmetry is not
given; the dark spots gradually change intensity when moving along the direction of the (3 x 3) cell. Also the
moiré pattern reported by Loginova et al contained such spatial frequencies, which were called a motif [23]. In
our recent publication [11] we explicitly discussed the (/3 X V/3)R50- motif of the so-called R3> moiré found
for g/Ir(111) and showed that such a strong motif occurs if several types of beating frequencies approach each
other in reciprocal-space at a high symmetry position during the rotation of the g-lattice above the substrate
lattice. However, while approaching the high symmetry position, the moiré beating frequencies do not exactly
meet. In the displayed moiré of figure 8 the high symmetry points are the (v/7 x /7)R,o° reciprocal-space
position of the substrate, which almost coincide with the (3 x 3) position of the graphene layer. True
coincidence of these spots in k-space occurs only if the graphene lattice is highly contracted or if the substrate
lattice is equivalently expanded. Indeed, a moiré pattern with a commensurate (2, 3)p;/(3, 3), cell is observed for
g/Pt(111)[10, 38, 39], because the Pt substrate lattice constant is about 2% larger than the one of Ir [40]. This
situation is shown in the upper row panels of figure 9, where all spatial frequencies up to the second-order and
their trajectories in k-space are displayed when rotating the graphene lattice from 0° to 19° with respect to the
TM-substrate lattice. The upper left chart shows the case for x = 1.108 which applies for g/Ir(111), while the
upper right chart shows the reciprocal-space frequencies for the moiré at x = 1.1339 which applies for g/Pt
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Figure 8. STM image of a moiré pattern found for g/Ir(111) at a graphene rotation angle ¢ of about 19°. The moiré contains with a
strong V7 X V7T)Rioor/(3 X 3)g motif (i.e. almosta (2, 3)1,/(3, 3); moiré unit cell) [37], which appears as a strong frequency in the
Fourier transform of the STM image. Nevertheless, zooming in the indicated area reveals that the pattern does not have the
translational symmetry ofa (3 x 3) cell. The green vectors in the upper part of the STM image indicate longer translations from one
area to another, which are imaged almost identically by STM, as shown in the zoomed areas A, B and C. Close inspection of the STM
image also proves that none of these translations strictly repeat within the imaged area (also see figures 9 and 10).

(111). In addition to the (1 x 1)1y unit cell the reciprocal V7 spots are indicated, makingit clear why the Ryge
moiré of g/Pt(111) is commensurate with a (V7 % V/7)R,ge-unit cell, while the corresponding moiré of g/Ir
(111) only shows a strong motif being incommensurate with respect to this frequency. (In supplementary
data SD3, we provide a movie of the spatial beating frequency motion in k-space, which also shows that this
situation is reversed for the so-called R, 4» moiré of the two systems with respect to the (V13 x V13)R,4e-unit
cell.) In addition, in the lower row of figure 9, first- and second-order commensurability plots are displayed,
proving that, exclusively for g/Pt(111), commensurability exists at a graphene lattice rotation angle of about 19°
with respect to first- and second-order at the same time. Commensurability does not exist for any other x within
1.09 < x < 1.15, although all moirés have a pronounced (V7 x V7)R 9 motif.

As aresult, the moiré pattern imaged in figure 8 does not reflect translational symmetry along the
(V7 X V/7)R,9e-unit cell direction. On the other hand, the pattern might have translational symmetry with a
larger unit cell, where commensurability sets in for moiré frequencies of higher order. In fact, in figure 8 we can
identify longer vectors that translate one particular area to another which are almost identically imaged, as
shown in the three upper insets A, B and C. We have indicated two such vectors in figure 8, along with the their
coordinates (—4, 14)gand (—7, 11),. Applying equation (3) shows that these vectors mightlead to a (18, 4); ora
(18, 7); moiré unit cell. On the other hand, close inspection of figure 8 verifies that none of the two vectors, or
their 60° rotated ones, are repeated twice within the imaged area, so that no commensurate cell can be found.
Figure 10 shows why this is the case. Here, we display a third-order commensurability plot of the parameter-
space, which applies for g/Ir(111) in the region of interest (1.101 < x < 1.115,and 17.5° < ¢ < 19.5°). Yellow
patches indicate where commensurability is possible within the parameter-space. Indeed the patch belonging to
the commensurate phase reported by Loginova et alwith a (13, 5);, /(13, 1)g unit cell is correctly identified [23].
On the other hand, we also indicate the coordinates of the found vectors in figure 8, which would apply to a
(18,4) 0ra (18, 7), cell. While we can see that in the imaged area of figure 8 the graphene lattice is substantially
more compressed than in the moiré phase reported by Loginova et al, we can clearly see that the condition for
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Figure 9. Upper row: trajectories of moiré frequencies in k-space up to second-order for rotation angles close to 19°and x = 1.1094
(applying to g/Ir(111)—left chart) and x = 1.1339 (g/Pt(111)—right chart). While for g/Pt(111) a commensurate phase is found, g/
Ir(111) remains an incommensurate moiré with a strong (v/'7 x v/7)R,¢> motif (the symmetry positions are indicated by dashed lines
inlight gray). Lower row: first- and second-order commensurability plots prove that only g/Pt(111) leads to a commensurate moiré
phase, which is commensurate with respect to first- and second-order frequencies at the same time. An animated version of this figure
is provided as supplementary data SD3.
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Figure 10. Third-order commensurability plot in the parameter range applying for the R,g- moiré of g/Ir(111). While the (13, 5);,/
(13, 1)g commensurate phase reported by Loginova et al is correctly identified [23], the translation vectors indicated in figure 8 belong
to cells that do not lead to commensurate phases.

commensurability, i.e. the crossing of all four curves belonging to the indices (11, )1, and (r, 5)g, is not
tulfilled because one intersection point is always missing. As a result, this approximate translational symmetry is
also not given and the imaged pattern is incommensurate.
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According to the commensurability plot of figure 10, there are commensurate phases possible in the close
vicinity of the (18, 4),and (18, 7), cells, being (19, 4), or (19, 7), cells. On the other hand, such cells would lead to
the translation vectors (—4, 15)gand (-7, 12),, which are not suitable translations when inspecting the STM data
of figure 8. Thus, this example shows how sensitive a moiré frequency analysis may be performed. Finally, we
should note that STM, being a local probing method, may have difficulties in identifying large unit cells, since
one cannot rule out the role of defects, which locally may affect their vicinity such as the two defects visible as
dark spots in figure 8.

3.3.Indexing moiré cells using LEED data
LEED mayalso be used to identify moiré surface phases, although the resolution in k-space is typically inferior
with respect to SXRD data. This particularly holds for electron diffraction data that are acquired using
LEEM apparatus, since images of the reciprocal plane are readily distorted if the electron beam in the
microscope is slightly misaligned with respect to the electron optical axis of the instrument. Another difference
of LEED versus XRD is that due to the strong interaction of electrons in solid matter, multiple scattering has to
be considered when interpreting LEED data, whereas for (S)XRD single scattering theory applies. X-ray
diffraction from two coinciding lattices leads to moiré spots in k-space only if the atoms are vertically and/or
laterally displaced from their ideal lattice positions [25, 30]. However, in this case, lattice modulations result in
diffraction spots that correspond to the spatial moiré beating frequencies that were discussed in section 2.4.
This is not the case for LEED since, due to multiple scattering, a LEED pattern acquired from two coinciding
unperturbed lattices already contains diffractions spots that correspond to moiré beating frequencies [30].
While multiple scattering complicates the structure analysis of a moiré by analyzing a so-called LEED I/V
experiment [30], one can take advantage of it when extracting the moiré parameters (x, ) of the surface phase.
Knowing that multiple scattering events lead to additional diffraction spots in a LEED pattern that correspond to
difference vectors of reciprocal g- and TM-lattice vectors, we note that there is a 1:1 relation of such spots with
the predicted moiré beating frequencies, which are calculated as Konoire = Eg - ETM (see section 2.4). The latter
equation may be regarded as double scattering relating to the difference of two reciprocal lattice vectors of a
given length. According to our nomenclature, we use the term nth-order spatial frequency to express the length
of the involved k-vectors in units of the Brillouin zone. We note that triple or other multiple scattering may
also always be formally reduced to the difference of two k-space vectors, because one can always calculate one
difference vector for each scattering event at a time and subtract the result from the k-space vector that
corresponds to the subsequent scattering event. The only difference with respect to double scattering is that the
involved k-space vectors may subsequently increase in length, which requires including higher-order beating
frequencies of the nth-order moiré pattern according to our nomenclature. We should point out that this
resemblance addresses the k-space position but not the intensity of the spots. Man and Altman used the
described 1:1 relation for first-order moiré diffraction spots in order to analyze minor variations of the lattice
alignment of chemical vapor deposited (CVD) graphene with respect to the Ru(0001) substrate ina LEEM
experiment, achieving a spatial resolution within the several nm range [41]. In this analysis, the
approximately ten-fold augmented rotation of first-order moiré spatial frequencies with respect to the rotation
of the graphene lattice versus the Ru(0001) substrate allowed to precisely determine the orientation of the
supported graphene layer.

A similar case is given for monolayer graphene on Cu(111). Figures 11(a) and (b) display the LEED data
that were were recorded from a Cu(111) facet of a polycrystalline Cu foil on which monolayer graphene was
grown by CVD (see appendix A for experimental details). The data were acquired using the SPELEEM
instrument of the nanospectroscopy beamline at the ELETTRA synchrotron facility [42, 43]. Polycrystalline Cu
foils generally undergo faceting upon CVD growth of graphene [44—46]. As aresult, LEED patterns recorded
from such surfaces show diffraction spots of two or more inclined surfaces at the same time. When investigating
such a system with a LEEM apparatus, one usually aligns the optical axis of the instrument parallel to the surface
normal of one of these surfaces. Due to the properties of a LEEM microscope, the diffraction spots emerging
from the aligned surface do not move in the reciprocal-space plane when changing the electron kinetic energy, in
contrast to diffracted electron beams that are reflected from inclined surface planes. Thus, when recording a set
of LEED images as a function of the electron kinetic energy (a so-called LEED I/V data set) and summing all
images, LEED spots originating from the aligned surface facet become intense, while the ones belonging to the
inclined facets are distributed along much less intensive stripes [45, 47]. Applying this trick, one can extract the
LEED pattern corresponding to one single facet plane of the faceted polycrystalline Cu foil, which is the Cu(111)
plane in our case. Each of the LEED images shown in this section are generated by the described summation
procedure. Similar to the study of g/Ru(0001) by Man and Altman [41], we can analyze the LEED pattern of
monolayer graphene phases on the Cu(111) facet and precisely determine the rotational alignment of the
graphene layer. This can be achieved by measuring the rotational orientation of the first-order moiré beating
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Figure 11. (a) and (b) LEED patterns acquired from two slightly rotated CVD grown graphene phases on a Cu(111) surface of a faceted
polycrystalline Cu foil. The patterns were generated by summing LEED patterns of a LEED I/V data set between 50 and 80 eV (see
text). (c) Predicted moiré length L,,,.;¢(¢) and rotation angle @ ,,4ir6 cu(¢) for graphene on Cu(111). The displayed curves relate to a
+0.5% strained graphene layer. The derivative of the ®,,4ir¢ cu(¢) curve shown in the inset indicates the moiré rotation enhancement
of up toafactor A = 25. Light blue crosses mark the moiré length and orientation of the two moiré phases belonging to the LEED
patterns shown in (a) and (b). The black data points resemble the corrected assignment of moirés reported in a STM study of g/Cu
(111) [48] (see text).

spots and the fact that first-order moiré spots perform an augmented rotation @ ;6. cu = A X @ink-space if
the graphene lattice is rotated by an angle ¢ with respect to the underlying Cu(111) lattice. Figure 11(c) displays
the predicted moiré length L, ;¢ and rotation angle ® ;.6 c,, for unstrained and slightly strained (£0.5%)
graphene on Cu(111). The highly amplified rotation ® ;¢ cu Of the moiré pattern is reflected in the very steep
D oire.cul¢p) curve for small lattice rotation angles . Here, amplification factors A up to 25 are reached, as
indicated by the derivative of the @ ,0;r¢ cu(¢) curve, which is displayed in the inset of figure 11(c). As we will
show in the following, due to this large amplification factor the rotational alignment of the graphene layer on the
Cu(111) substrate can be determined with high precision. On the other hand, the high amplification A also leads
to possible misinterpretation of moiré data, as will also be discussed further below.

By extracting the k-space position of the first-order moiré spots and converting them into real-space vectors,
we can calculate the wavelength L ;¢ and the orientation ® ;¢ c, Of the first-order moiré beating frequency.
Additionally, we derive the moiré parameters x = ac,/a,and o bylocating the (1, 0),and (1, 0)¢,, spots in
the LEED patterns of figures 11(a) and (b). The extracted data suffer from errors due to distortions of the
acquired LEED patterns. Such distortions could not be avoided during acquisition of the diffraction data with
the LEEM instrument, because the used Cu foils were non-planar on the 100 xm length scale. As a result, the
electrical field inhomogeneity in front of the sample surface induced distortions in the reciprocal image plane,
which could not be completely removed when aligning the microscope. Taking into account such errors by
analyzing the displayed LEED data while averaging over the symmetrically equivalent diffractions spots, we
extract the moiré parameters of the two moiré phases of figure 11 and list them in table 2. For comparison, we
also list assigned moiré phases of the g/Cu(111) system reported by Lim et al [48], which have to be reinterpreted
according to our analysis, as will be discussed further below.

The determined (x, ) moiré parameters corresponding to the LEED data of figures 11(a) and (b) lead to
Linoire and @ 0516 cu Values, which are listed in table 2, and are also added to the L,,016 and @ 0506 cu plots of
figure 11(c) as light blue crosses. The extracted parameters fit well to the predicted curves for supported
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Table 2. Extracted moiré parameters of first-order moirés found for small rotation angles ¢ of CVD grown graphene on Cu(111), together
with the required lattice strain e with respect to the lattice constant of 2.456 A at 300 K of free-standing graphene [29]. The upper two rows
list the extracted LEED data of figure 11. The data are compared with the incorrect and corrected assignment of atomically resolved STM
data from Lim et al on g/Cu(111) [48] (see text).

Moiré x = ace/ag(") ® € (%) P noire.cu Prnoireg Linoire &)
Figure 11(a) 1.041 £ 0.001 0.8° £ 0.2° —0.07 £ 0.15 20.0° + 3.0° 19.2° £ 3.2° 61 £4()
Figure 11(b) 1.044 £+ 0.004 4.2° £ 0.3° —0.35 £ 0.40 62.2° + 0.8° 58.2° + 1.1° 31+3()
Incompatible moiré cell assignment by Lim et al [48]

(10,0)cu/(11,0)g 1.100 0.0° —5.4 0.0° 0.0° 25.8(7)

(27,0)c/(29, 0, 1.074 0.0° 3.1 0.0° 0.0° 70.2 (%)

Corrected assignment of the moiré cells

(10, 11)cu/(11, 1) (see text) 1.045 4.7° —0.4 64.7° 60.0° 25.8(7)

(28,0)c/(29, 0), (see text) 1.036 (%) (*) 0.0° +0.4 0.0° 0.0° 70.2 ()

* The data relate to a lattice constant of Cu(111) of 2.555 A [49].
“* Experimental data were extracted directly from STM images [48].

graphene, which is strained by less than 0.5%. Indeed, as is also listed in table 2, the two moirés require a slight
compression of the graphene lattice by about —0.1% and —0.4%, respectively. We can now discuss these data
using the corresponding first-order commensurability plots that characterize the system g/Cu(111). These
plots are shown in figure 12.

Figure 12(a) displays the first-order commensurability plot that covers the parameter range of the moiré
shown in figure 11(a) with a 0.8° rotated graphene layer on top of Cu(111). Figure 12(b) shows the
corresponding charts relating to the moiré of figure 11(b), which results from a 4.2° rotated graphene layer on
top of the Cu(111) support. The light blue boxes indicate the (x, ) parameter range as it has been determined by
using the (1, 0)gand (1, 0), spots of the two diffraction patterns. In both cases the knowledge on the moiré
pattern rotation angle ®,,,4ir¢ cu @llows us to restrict the possible parameter range of the identified moiré phase.
This is shown in the magnified plots in the right part of figure 12 where the lines of constant ® ;¢ c, are
indicated in green for the listed values of table 2. The fact that the rotational alignment of the graphene layer can
be measured with high-precision stems from the fact that the moiré performs a highly augmented revolution if
the graphene lattice is slightly rotated. This is caused by the almost equal lattice constants of the graphene and the
Cu(111) lattice. On the other hand, due to the same reason, a large variety of commensurate first-order moiré
phases are possible for slightly rotated graphene on top of Cu(111). As a result, we cannot decide whether the
identified moiré phases in figures 11(a) and (b) are commensurate or not within the uncertainty of the
experimental data. Even within the restricted parameter-space, the 0.8° rotated graphene may generate a
commensurate moiré with a (26, 8)cy, a (26, 9)¢c, or a (26, 10)¢c, cell. In the case of the 4.2° rotated graphene
layer, no commensurate cell is met within the possible moiré parameter range. Therefore, this moiré has to be
assigned to an incommensurate phase when relating to a non-augmented moiré cell. When instead
referencing a four-fold augmented cell, the magnified commensurability plot indicates that four commensurate
phases are possible (see also section 2.5). For example, the intersection of the green dashed line with the red
m = 11isoline in the magnified graph relates to a nominal cell size of (11, 11.5),,. Thus, this potential
incommensurate phase would then lead to a commensurate (22, 23)¢./(24, 23), moiré with four beats within
the augmented cell.

Another property of the 4.2° rotated graphene moiré phase should be pointed out. As indicated in table 2,
this phase leads to a first-order moiré cell with ®,,6ire,cu = 62.2° £ 0.8° and with @656, = 58.2° £ 1.1°,
respectively. Due to the highly amplified revolution of the moiré cell, a slight further rotation of the graphene
layer causes a moiré pattern that is aligned with respect to the graphene lattice. Thus, a moiré cell aligned with
respect to the graphene lattice does not necessarily indicate that the graphene layer is aligned with respect to the
substrate lattice. In the case of g/Cu(111) this situation is already reached at very small rotation angles , a fact
that was overlooked by Lim et al who imaged several aligned moiré phases on g/Cu(111) by STM [48]. From
atomically resolved STM images the authors deduced two moirés with wavelengths of 25.8 A and 70.2 A,
respectively. Assuming that the imaged phases originated from a graphene lattice aligned to the Cu(111)
support, the authors extracted the graphene lattice constant from the detected moiré wavelength L ;¢ and
assigned the moirés toa (10, 0)c,/(11,0)gand a (27, 0)cy/(29, 0)g cell, as listed in table 2. This assignment
requires unreasonably highly contracted graphene lattices withe = —5.5% ande = —3.1% and the data have
to be reinterpreted. The above mentioned possibility of two graphene lattice orientations (aligned and slightly
rotated) that result in the appearance of an aligned moiré cell resolves the incorrect assignment of the
(10,0)cy/(11, 0)g moiré cell. At p = 4.7°a (10, 11)¢,/(11, 11), moiré cell appears in the commensurability plot
of figure 12(b) requiring an almost unstrained graphene lattice withe = —0.4%. The corresponding moiré cell
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Figure 12. First-order commensurability plots indicating possible moirés of the g/Cu(111) system for graphene lattice rotation angles
of (@) 0° < ¢ < 1.1°and (b) 3.7° < ¢ < 5.0°. Thelight blue squares in the left charts indicate the determined moiré parameter-
space from the analysis of the (1, 0); and the (1, 0)c,, spots of the LEED pattern shown in figures 11(a) and (b). The analysis of the first-
order satellite diffraction spots allows us to determine the quantity ®,,ir¢ co- Adding the isolines for constant ®y,eir¢,cy in the
magnified commensurability plots (green lines displayed in the right charts) allows us to narrow the parameter-space of possible
moirés (see text).

of this phase is turned by 60° (see table 2) and is thus aligned with respect to graphene lattice in accordance with
the atomically resolved data of Lim et al [48]. The slight misalignment of the moiré with respect to the Cu lattice
by 4.7° cannot be detected by STM if the graphene and the Cu(111) lattice are not imaged within the same
image. Since this was not the case in the STM study of Lim et al (see also discussion in section 3.2), we conclude
that the imaged moiré phase must have a cell size close to the mentioned (10, 11)c,,/(11, 11), cell. Our
assignment also agrees with the measured value for Lp,oir¢ = 25.8 A, as can be directly seen by the black crosses
in the corresponding graph of figure 11(c).

We should note that Lim et al also reported on further phases which were not atomically resolved. Since in
such cases all extracted data from the STM images suffer from large errors and one cannot easily derive the moiré
parameters x and  and only speculate on potential commensurate moiré cells. On the other hand, the authors
of [48] deduced a commensurate (27, 0)cy/(29, 0)g moiré cell for the surface phase where the 70.2 Abeating
frequency was resolved together with atomic resolution of the graphene lattice. In section 2.5 we showed that
such a moiré with the cell type (m, n)c./(r = m + 2,5 = n,), exists only for first-order moirés when referring to
aquadrupled cell, i.e. the unit cell should host four beats. Since the recorded STM image shows a cell with a
simple beat only, the proposed unit cell violates the properties of first-order moirés and cannot be correct.
Instead, the reported moiré may or may not be commensurate resulting from an aligned graphene lattice with
¢ = 0°and amoiré beat close to a (28, 0)c,/(29, 0), cell. In this case the assignment would require again an
almost unstrained graphene lattice with e = +0.4%. Again, figure 11(c) also indicates the consistency of our
assignment. Allin all, we can summarize that care has to be taken when analyzing moiré phases, where a highly
amplified rotation of the moiré cell appears. Also, the assignment of potential commensurate cells has to be done
in agreement with the general properties of moiré patterns. The presented example of the LEED data analysis on
moiré patterns at small rotation angles between the g- and Cu(111)-lattice shows how the relevant moiré
parameters can be consistently extracted.
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Figure 13. (a) LEED pattern of an approximately 20° rotated graphene layer on Cu(111). In addition to the LEED pattern, the right
chart displays the predicted k-space positions of diffraction spots resulting from electron double scattering, which coincide with the
calculated second-order moiré beating frequencies of 22.8° rotated graphene on Cu(111). (b) Upper row: calculated spatial second-
order frequencies for x = 1.038 and ¢ = 20.2° and 22.8° with their trajectories in k-space. Orange circles mark positions close to the
onesofthe (V7 x v/7)R e cell (see dashed lines in light gray), where triple and double spots meet in k-space during the graphene
lattice rotation. The augmented rotation of such spots with respect to their center of mass shown in the lower panel can be used to
precisely determine the lattice orientation of the graphene lattice on the Cu(111) support (see text). An animated version of this figure
is provided as supplementary data SD4.

The concept of LEED data analysis has to be changed when wanting to precisely identify moiré phases caused
by highly rotated graphene on Cu(111). As seen in figure 11(c), ata graphene lattice rotation ¢ between 5° and
10°, the moiré cell revolution of the first-order moiré starts to level off and finally reaches an angle @i, c, Of
about 100°. Also the moiré length does not change dramatically, when exceeding rotation angles of the graphene
lattice of about 10°. Thus when dealing with highly rotated graphene layers, we cannot exclusively address first-
order moiré spots in k-space for the extraction of high-precision data since no amplification effects can be used
to restrict the parameter-space of the g/Cu(111) moiré. As already pointed out, the close relation of a LEED
pattern and the construction of spatially beating frequencies of a moiré pattern enables us to use higher-order
spots for this purpose. Figure 13(a) shows the LEED pattern of monolayer graphene rotated by about 23° with
respect to the Cu(111) surface of the faceted Cu foil on which the graphene layer was grown by CVD (see
appendix A for experimental details). Similar to the LEED data shown in figures 11(a) and (b), the displayed
LEED pattern was generated by summing the LEED images of an I/ V data set between 70 eV and 170 eV so that
diffraction spots belonging to the aligned Cu(111) surface are intense, while all other ones belonging to inclined
Cufacets are distributed into faint lines in k-space, which accounts for the streaky appearance of parts of the
displayed LEED pattern.

The left part of figure 13(a) displays the LEED pattern and the position of the (0, 0) spot, the (1, 0)c, spots of
the Cu(111)-lattice and the corresponding (1, 0)g spots of the g-lattice. The right part of figure 13(a) repeats the
LEED pattern together with all the spatial beating frequencies of a second-order moiré that corresponds to a
22.8° rotated graphene layer on Cu(111). Figure 13(b) displays these beating frequencies for rotation angles of
© = 20.2° and 22.8° together with their calculated trajectories in k-space (see section 2.4). Two orange circles
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Figure 14. Extraction of the (x, ¢) parameters of the moiré shown in figure 13. For practical reasons, the parameters A, Band o were
extracted from the LEED image and compared with the predicted values from the second-order moiré frequencies. Three
symmetrically equivalent positions were analyzed and resulted in three different positions of the moiré parameter-space, as shown in
the right chart. The data scattering is caused by a slight distortion of the LEED image and define the error of the extracted moiré
parameters: p = 22.8° & 0.2°andx = 1.038 £ 0.002.

indicate k-space positions close to the ones of the (V/7 X V/7)R,9- unit cell (see dashed lines in light gray). Here
two and, respectively, three beating frequencies meet when approaching a graphene lattice rotation angle of

¢ = 21.8° followed by a separation of the respective spots at larger . These triple and double spots perform a
quasi-rotation around their center of mass, if the graphene layer is rotated with respect to the Cu(111) lattice (see
also the animated movie SD4 in the supplementary data). In the lowest row of figure 13 the orientation of the
triple and double spots is indicated for rotation angles ¢ = 20.2°, 21.6° and 22.8°. While the graphene lattice
rotates only by 2.6°, the triple and double spots rotate by about 60°. This highly magnified revolution can be used
to precisely determine the orientation of the graphene layer. This is indicated by the red circles in figure 13(a),
which mark the coincidence of the experimentally observed diffraction spots with the predicted second-order
moiré frequencies of the 22.8° rotated graphene layer sketched in figure 13(b).

In order to precisely determine the orientation of the graphene layer, we have to consider the effect of the
second moiré parameter x, which also affects the diffraction spot position and which has to be extracted at
highest possible precision. The corresponding analysis is shown in figure 14. For practical reasons we did not
calculate the rotation angle of the triple and double spots around their center of mass, because some of the LEED
spots are very weak. Instead, we determined the parameters A, B, and « of the indicated spots in the left graph of
figure 14. Extracting these numbers from three symmetrically equivalent positions of the experimental LEED
pattern and comparison with the predicted ones within the parameter-space (x, ¢) of the moiré leads to the right
chart of figure 14.

Although the data extracted from the three symmetrically equivalent positions should lead to the same spot
in the moiré parameter-space shown in the right chart of figure 14, distortions of the imaged diffraction plane
lead to small variations, which are the main source of error when performing diffraction measurements with a
LEEM instrument and using non-planar foil samples, as has been done in our case. As indicated in the right chart
of figure 14, our analysis still allows us to identify the moiré parameters of the analyzed graphene layer on
Cu(111)as ¢ = 22.8° £ 0.2°and x = 1.038 £ 0.002, which is much more precise than simply determining the
k-space spot positions of the reciprocal (1, 0)¢, and (1, 0); beams. Comparison with first- and second-order
commensurability plots for this parameter range verifies that the moiré is most likely incommensurate (see
figure SD5 of the supplementary data). Finally, we want to point out that the first-order spots of the identified
moiré phase at ¢ = 22.8° + 0.2° are not the diffraction spots closest to the (0, 0) beam. As a result, an
assignment of the satellite spots of the LEED pattern closest to the (0, 0) beam as first-order moiré beating
frequency will lead to a misinterpretation of the data. This fact shows why the outlined analysis addressing all
spatial beating frequencies of the moiré phase is mandatory in this case.

4. Conclusions

In the first part of this study we examined the general properties of hexagonal moirés by addressing their
symmetry and by analyzing the amount and the k-space position of all spatial beating frequencies present in an
nth-order moiré pattern. In particular, by addressing the latter case we could show that any hexagonal moiré
can be traced back to spatial beating frequencies that follow circular trajectories in k-space if the two coinciding
lattices are rotated one on another. The size and the lateral displacement of the circles have been shown to be
affected by the lattice constants of the two coinciding lattices only. Finally, the so-called moiré cell augmentation
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method was introduced, which greatly simplifies the search of commensurate moiré phases, as could be
explicitly shown by discussing the (6+/3 x 6+/3) R3¢ moiré of g/SiC(0001). In the second part of this paper, we
outlined strategies on how to apply our moiré frequency analysis to experimental SXRD-, STM- and LEED data.
Here, we showed that we can extract moiré parameters with high-precision, identifying potential
commensurate moiré phases and even treat incommensurate moirés. We also identified certain pitfalls that can
be avoided when relating experimental data to nth-order commensurability plots. Finally, we pointed out the
close relation of multiple scattering during electron diffraction in a LEED experiment and the high-order spatial
moiré beating frequencies that can be predicted by our geometrical construction. In this sense, multiple
scattering may be regarded as an advantage of the LEED technique, since the knowledge of higher-order spatial
moiré frequencies enabled us to determine the graphene lattice strain and alignment with a precision that
significantly exceeds the one of an experiment where first-order LEED diffraction spots were analyzed only.
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Appendix A. Experimental details

g/Ir(111)

The graphene growth was performed on thin single crystalline Ir(111) films. The 150 nm thick films were
supported by a Si(111) wafer with a buffer layer of yttria stabilized zirconia. A detailed description of the films is
given in [50]. The UHV preparation of the Ir films was performed according to [37]. The graphene layer shown
in figure 6 was grown by the adsorption of 50 Langmuir ethylene at 2.0 x 10~® mbar at 300 K followed by
annealing to 1073 K. The carbon film was grown and analyzed in a UHV chamber (base pressure in the low
10~"" mbar range), which was equipped with a modified SPECS STM 150 Aarhus HT STM. The graphene film
shown in figures 7 and 8 were grown by means of CVD at 973 K in an ethylene atmosphere of 2.0 x 10~ ® mbar
as described in [37]. Growth and analysis was performed in a second UHV chamber with a similar base pressure
that hosted a home-built STM.

g/Cu

The graphene growth on copper was carried out on a Cu foil inside a quartz tube reactor. The applied CVD
process followed the synthesis strategy described in [51]. The detailed process parameters were: temperature
ramping up to 1223 Kin pgpp) = 1 mbar within 40 min, followed by an oxygen dosing treatment of

P2 = 7.5 x 10~° mbarin 1 mbar Ar for 60 min. The subsequent graphene growth was performed at 1348 K
atp = 50 mbarin aH,/CH, gas mixture of p12)/pcriay = 750 for 2 h (figure 11(a)) andatp = 15 mbarina
H,/CH, gas mixture of p12)/pcray = 1000 for 0.5 h (figures 11(b) and 13). The displayed LEED /LEEM data
were acquired using the SPELEEM instrument at the nanospectroscopy beamline of the ELETTRA synchrotron
facility [42, 43].

Appendix B

As outlined in section 2.1, we used a coordinate system for the real-space lattice with unit cell definition
following the 120° notation. An alternative coordinate system may be chosen, where the real-space is described
by unit cell vectors that are rotated by 60° with respect to each other. Since this latter definition is also found in
the literature [18], we list in table B1 the conversion of the indexed commensurate moiré unit cells from one
notation into the other.

Appendix C. Clockwise and anticlockwise rotation—mirror symmetry

In the following, we prove that a moiré that evolves from a counterclockwise rotation ¢ of the g-lattice over the
TM-lattice has mirror symmetry with respect to the moiré pattern that is generated when performing the same
rotation clockwise, i.e. when rotating the g-lattice by —¢. The mirror symmetry applies with respect to one of the
main axes of the non-rotated TM-lattice and occurs for both commensurate and incommensurate moiré
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Table B1. Conversion of real-space indexing of commensurate moirés
with a moiré unit cell definition following the 120° notation into the one
corresponding to the 60° notation and vice versa.

Moiré cell according to the Moiré cell according to the
120° real-space notation 60° real-space notation
(m, n)yrm/ (1, 9)g => (m — n,m)p/(r — 5,9
(m + n,m)ypm/(r + 5,9)g <= (m, n)rp/ (15 9)g

A A
a) S b) S

Figure C1. The effect of the mirror operation on a (11, #)1\/(r;, 5)g moiré leading to a moiré pattern that is correctly indexed as (1,
m)rm/ (5, g (@) Indexing of the unit cell when relating to the TM-lattice. (b) Applied coordinate transformation when performing the
mirror operation on the rotated g-lattice. Please note that the mirror symmetry of the moiré shown in (a) is also reached for the
g-lattice after having performed the coordinate transformation into the g lattice.

patterns. In the second part or our proof, we show that the mirror symmetry operation on a commensurate (11,
1)yrm/ (1, 5)g moiré leads to a (1, n)rm/ (s, r)g moiré, when using the simplified notation of moiré patterns.

Let us first show that the moiré pattern develops mirror symmetry upon a clockwise rotation. For this proof,
we mimic the moiré pattern as the product of a lattice function fry(x, y) and the rotated lattice function fy(x, y),
i.e. we discuss the function fry(x, ) X R, fo(x, y), which was introduced in section 1. Using this notation, we
will show that:

fTM(x’ y) X ngofg(x’ y) = 5’{fTM(X, y) X Rgafg(x’ '}

with & representing a mirror operation. We choose the real-space lattice functions fry(x, y) and f4(x, y) with the
definition of the TM-lattice and its unit vectors 4; and 4, as already introduced in figure 1. The @, vector of the
TM-lattice is aligned along the vertical y-axis and we define & without loss of generality as the mirror operation
with respect to this axis, i.e. & { f (x, )} = f (—x, y). At first we note that:

6{fTM X fg} = &{fTM} X a'{fg} = afTM X ("ng

This is obvious, since

o {frmG ) X f 6 )} = 6 {fr (6 )} X 8 {f,(6 )} = frn (=% ¥) X f (=X, y). Wealso have the
following identity:

R ,=0R,0

as can be readily verified: 5R,6 = (_1 0)(cos p — SD)(_l 0) = ( cosy s @) =R_,.

—_

0 1/\siny cosy 0 —sin ¢ cos ¢
Using these two identities, we can now evaluate:

o {frm X Rofd = 0fpy X ORfy = Ofpy X OR6f, = fry X Ry,

where we have used the fact that the non-rotated lattices fr; and f, have mirror symmetry with respect to & (i.e.
& frm = frmand & f, = f, ). The above equation shows that the moiré pattern caused by the clockwise rotation
of the g-lattice has mirror symmetry with respect to the moiré caused by a counterclockwise rotation. In the case
of commensurability, the mirror of the moiré unit cell (111, 7)n/ (1, 5)g is correctly indexed when reversing the
order within each tuple, i.e. (1, m)1p/(s, 7)g. This is shown at first for the TM-lattice with the help of figure Cl1(a).
Using the already introduced definition of the TM-lattice with the vectors ) and 4, and the chosen mirror
operation & we can state that:
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&Ziz = 6_1'2 and 6'51 = —(6_1'1 + az)
The unit cell of the (1, 1)/ (1, 5)g moiré is defined by the vector tuple [(11, n); Ry0°(m1, n)] = [(m, n); (—n,
m — n)] when choosing a right-handed coordinate system and relating to the TM-lattice. This unit cell together
with the one after the mirror operation is also indicated in figure C1(a).
Using the above definitions, we can calculate the mirror operation on the moiré unit cell as:

o[(m, n); Ripoe(m, m)] =& [(m, n); (—n, m — n)]
= [(m6d; + nod,); (—nba, + (m — n)oa,)]
=[(—m(@@ + @) + nd>); (n(@ + @) + (m — n)a>)]
=[(=m, n — m); (n, m)] = [Rip°(n, m); (n, m)].

The mirror operation transforms the right-handed moiré unit cell into aleft-handed one, as can be seen in figure
C1(a). If we choose a right-handed notation the sequence of the unit cell vectors has to be reversed, which proves
that when relating to the TM-lattice the mirror of a (m, n)y; moiré is correctly indexed as (1, 1)1y

The same also holds true for the indexing (r, s); when relating to the rotated graphene lattice. This is shown
in the following with the help of figure C1(b), which displays the orientation of the unit vectors g and g, of the
g-lattice. Since the g-lattice is rotated by ¢ with respect to the TM-lattice, it has to be turned backward by - so
thatit reaches the same symmetry properties as the TM-lattice. Therefore, we derive at first a useful expression
from the already derived identity: R_, = & R,, &. Multiplying from the right side the operator identity & R_,,
leads to:

R ,6R ,=6R,66 R,=06 R, R ,=02.

Asisshown in figure C1(b), we will relate to three differently rotated coordinate systems: the original coordinate
system of the moiré (r, s), with the g-lattice rotated by ¢ with respect to the TM-lattice, the one aftera
subsequent rotation of —¢, which results in the g-lattice with the g, lattice vector aligned vertically and the
coordinates (7, s); and the coordinate system (r, s) 7> whichis rotated twice by — . With these abbreviations,
we can now calculate the mirror operation to the moiré unit cell vectors when relating to the g-lattice:

G [(r; $)gs Rizoe (1, $)gl = R-p0 Ry, [(1; $)g5 (=5, 1 — $)g]
=R_,0 [(r, $)g; (=s, 1 — 5)g]
R_, [Riae° (s, g5 (55 1)gl
= [Riao° (s, Nz (5, 1zl

Here, we could use the fact that after the first rotation R_, the mirror symmetry equivalent to the TM-lattice
exists, which leads to the expression in the second row. Again, using the notation of a right-handed system
proves that when relating to the g-lattice the mirror of a (, ), moiré isalso correctly indexed as (s, 7)g. The only
difference is that this cell is situated in the g-lattice coordinate system, which is rotated by — with respect to the
TM-lattice.

Appendix D. Analysis of spatial beating frequencies in the second-order moiré g/
SiC(0001)

Insection 2.6 the usefulness of the cell augmentation concept was discussed using the so-called

(6+/3 X 6+/3)R3pe moiré found for graphene on SiC(0001) [24]. Apart from the (0, 0) beam and the first-order
spots of the SiC-lattice and the g-lattice, ten spatial beating frequencies are identified for the second-order moiré
pattern within the sector spanned by the (1, 0)s;c and the (0, 1)g;c reciprocal-space vectors, as displayed in

figure 4(d). Following the building principle of second-order moiré beating frequencies, we can list their vector
coordinates, which is done in table D1.

As has been shown, the vectors k; and k; reside on k-space positions that span an incommensurate non-
augmented cell, while all other vectors ks...k;( reside on positions that are members of lattice positions
belonging to the commensurate tripled cell of the second-order moiré pattern. One of the six k-space vectors of
this commensurate cell is indicated as K¢ in figure 4(d). Table D2 lists possible linear combinations of the
identified spatial beating frequencies that equal symmetrically equivalent vectors of K;,pire.

The respective coordinates relating to the reciprocal-space g-lattice and SiC-lattice can be computed by
using table D1. In addition the order of each spatial frequency 1, and ng;c is listed in table D2. The larger of both
numbers within each line of the table equals the moiré order #, which would host K., ;. Comparing the listed
combinations shows that one would identify K, ;¢ in an eighth or higher-order moiré pattern. As aresult, the
unit cell of the (64/3 x 6+/3) R3¢ moiré of g/SiC(0001) can be identified only starting from an eighth-order
commensurability plot when relatlng to anon-augmented moiré cell. This is confirmed by a direct calculation of
all spatial beatings frequencies using k — kSIC’ where Ki,oir¢ also appears in the eighth-order (not shown). That
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Table D1. Coordinates of identified beating
frequencies in figure 4(d).

ky = (1, g — 0, 2)sic
k, = 2, Dy — (2, O)sic
ks = (1, 0)g — (1, Dsic
ky = (0, 1y — I, Dsic
ks = 1, D)y — 1, Dsic
ks = (2, 0)g — (1, Dsic
ks = (1, g — @2, O)sic
ks = (0, I — (0, 2)sic
ko = (0, 2)g — @, Vsic
kio = (2, 2)g — 2, 2)sic

Table D2. Linear combinations of spatial beating frequencies k; in the second-order moiré cell of the so-
called (6+/3 X 6+/3) Rspe moiré that lead to the vector Kpeire Or a symmetrically equivalent one. The
resulting coordinates relate to the reciprocal g-lattice and the SiC-lattice. Their respective orders 1, and
ngic are also listed in the table.

Linear combinations leading to K;,eir¢ or symmetrically equivalent vectors g fsic
2(k + k) — ks = (6, 0)g — (4, Dsic — (1, 0); — (1,D)sic = (7, 0)g — (5, 5)sic 7 10
2(k + ky) — kg = (6, 0)3 — (4, Hsic — (0, 1)y — (1, Dsic = (6, g — (5, 3)sic 6 8
2(k + k) — ks = (6, 0)g — (4, 4)sic — (1, D)g — (I, Dsic = (5, )g — (3, 5sic 6 8
3(k + ko) — ke = (9, 0)g — (6, 6)sic — (2, 0)g — (1, Dsic = (7, 0)g — (5, 5)sic 7 10
4(ky + k) — k= (12, 0) — (8, 8)sic — (I, g — (2, O)sic = (13, 1)y — (10, 8)sic 14 18
4(ky + k) — ks = (12, 0)g — (8, 8)sic — (0, I)g — (0, Dsic = (12, 1)g — (8, 10)sic 13 18
4k + k) — (1, 0)g = (12, 0)g — (8, 8)sic — (1, 0)g = (11, 0)g — (8, B)sic 11 16

the same cell can be identified in a second-order commensurability plot when relating to a tripled cell greatly
simplifies the search.
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