Fakultat fur Maschinenwesen
Lehrstuhl fir Angewandte Mechanik

Autonomous Robots in Unknown and
Dynamic Scenarios

Biped Navigation, Real-Time Motion Generation
and Collision Avoidance

Arne-Christoph Hildebrandt

Vollstdndiger Abdruck der von der Fakultat fir Maschinenwesen der Technischen Universitat
Miinchen zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. habil. Boris Lohmann

Priifer der Dissertation:
1. Prof. dr. ir. Daniel J. Rixen

2. Directeur de Recherche Olivier Stasse, Ph.D.

Die Dissertation wurde am 30.05.2018 bei der Technischen Universitdt Miinchen eingereicht und
durch die Fakultat fir Maschinenwesen am 01.10.2018 angenommen.

Abstract

Walking in real-world scenarios entails strong requirements on legged robotic systems.
Navigation in complex environments featuring obstacles, varying ground compositions
and external disturbances requires autonomous operation involving real-time motion
generation, perception and stabilization. Finding a combined solution for real-time motion
planning in unknown environments with external disturbances is one of the challenges of
current robotics research.

In this thesis, methods for motion generation together with their integration in an
overall real-time framework are presented. Special focus lies on the tight integration of
methods for motion generation with a module for perception and disturbance rejection.
Bipedal walking represents long motion sequences connecting successive foothold posi-
tions. This thesis provides a hierarchical approach to solve the resulting motion generation
problem. Discrete optimization techniques are combined with a mobile platform planner
to navigate safely in unknown environments. A parameter representation is applied
to represent the full motion in a compact way. Parameter and trajectory optimization
methods are developed to exploit the full capabilities of humanoid robots while respecting
dynamic feasibility.

Solving the motion planning problem for long sequences is an often posed question in
many robotic applications not only in bipedal walking. The applicability of the presented
methods to industrial and agricultural manipulators is discussed.

The methods presented in this thesis are validated with experimental results on the
robot LOLA. The experimental results show that real-time motion planning, perception
and disturbance rejection can be combined to improve the autonomy of legged robots in
unknown and dynamic environments. The robustness of the developed approach has
been demonstrated in several public presentations.

ii
Zusammenfassung

Gehen in unbekannten Umgebungen stellt zweibeinige Roboter vor grofie Herausforderun-
gen. Sie miissen in unbekannten Umgebungen navigieren, komplexe Bewegungen pla-
nen und gleichzeitig grofse Storungen ausgleichen. Diese Anforderungen erforden eine
Echtzeit-Bewegungsplanung, eine Umgebungswahrnehmung und eine Stabilisierung.
Bisher liegt noch kein Ansatz vor, welcher Methoden der drei Forschungsgebieten kom-
biniert.

In der vorliegenden Dissertation werden Methoden zur Echtzeit-Bewegungsplanung
vorgestellt. Besonderer Schwerpunkt wird auf ihre Integration in ein Gesamtsystem
in der Kombination mit Methoden zur Umgebungswahrnehmung und Stabilisierung
gelegt. Zweibeiniges Gehen besteht aus langen Bewegungssequenzen, welche diskrete
Standfufipositionen verbinden. Diese Arbeit bietet einen hierarchischen Ansatz um das
resultierende Bewegungsplanungsproblem zu 16sen. Diskrete Optimierungsmethoden
werden mit Navigationsalgortihmen kombiniert, um sicheres Bewegen in unbekannten
Umgebungen zu ermoglichen. Es wird eine Parameterdarstellung genutzt um die kom-
plexe Bewegung des humanoiden Roboters kompakt darzustellen. Entwickelte Parameter-
und Trajektorienoptimierungsverfahren konnen so in Echtzeit die Bewegungen planen
und die physikalischen Fahigkeiten zweibeiniger Roboter unter Berticksichtigung der
dynamischen Randbedingungen ausnutzen.

Die Bewegungsplanung von langen Sequenzen ist nicht nur eine Herausforderung
beim zweibeinigen Gehen, sondern stellt viele Robotikanwendungen vor Herausforderun-
gen. Daher wird in dieser Arbeit die Ubertragbarkeit des vorgestellten Ansatzes auf
industrielle und landwirtschaftliche Anwendungen diskutiert. Die vorgestellten Meth-
oden werden in Experimenten mit dem zweibeinigen Roboter LOLA untersucht. Die
experimentellen Ergebnisse zeigen, wie zweibeiniges Gehen in unbekannten und dy-
namischen Umgebungen moglich ist. Mehrere 6ffentliche Vorfiihrungen stellten zudem
die Robustheit des Ansatzes unter Beweis.

iii
Danksagung

Die vorliegende Dissertation entstand im Rahmen meiner Tatigkeit am Lehrstuhl fiir
Angewandte Mechanik der Technischen Universitdt Miinchen in der Zeit zwischen Mai
2013 und Mai 2017. Die meisten Ergebnisse der Arbeit basieren auf meiner Forschung im
DFG geforderten Projekt , Flexibles und Robustes Gehen in unbekannten Umgebungen”.
Ohne die Unterstiitzung zahlreicher Personen wére die vorliegende Arbeit nicht moglich
gewesen.

Mein besonderer Dank gilt meinem Doktorvater Prof. dr. ir. Daniel Rixen. Durch sein
stetes Interesse, seine Unterstiitzung und sein Vertrauen hat er mich motiviert, auch neue
Wege zu gehen. Hervorzuheben ist die hervorragende Arbeitsatmosphéire am Lehrstuhl,
die zu einem grofien Teil sein Verdienst ist. Die Korrektur der Dissertation und die Durch-
fithrung der zugehorigen Priifung bedeuten einen hohen Arbeitsaufwand. Daher bedanke
ich mich bei Prof. Dr.-Ing. habil. Boris Lohmann fiir die Ubernahme des Priifungsvorsitzes
und bei Directeur de Recherche Olivier Stasse, Ph.D. fiir die Korrektur der Dissertation als
Zweitpriifer.

Das Projekt , Flexibles und Robustes Gehen in unbekannten Umgebungen” wire ohne
die finanzielle Unterstiitzung der DFG nicht moglich gewesen. Fiir die Beantragung
der Fordergelder und die Ausarbeitung des spannenden Forschungsvorhabens gilt Dr.-
Ing. habil. Thomas Buschmann besonderer Dank. Er hat meine Begeisterung fiir das
faszinierende Feld der Robotik geweckt. Selbst nach dem Verlassen des Lehrstuhls hat er
das Projekt und meine Dissertation immer tatkriftig unterstiitzt.

Die erfolgreiche Arbeit an einer so hoch komplexen Maschine wie der eines humanoiden
Roboters ist alleine unmoglich. Wahrend meiner gesamten Zeit am Lehrstuhl - und
dartiber hinaus - konnte ich immer auf die Unterstiitzung des Lola-Teams zédhlen. Vielen
Dank Dr.-Ing. Robert Wittmann, Dr.-Ing. Daniel Wahrmann, Philipp Seiwald und Felix
Sygulla fiir die vielen aufschlussreichen Diskussionen, das gemeinsame Umsetzen von
neuen Ideen und die zahlreichen im Labor verbrachten Tage und Nachte. Vielen Dank
auch an das Lola-Team und Dr.-Ing. habil. Thomas Buschmann fiir das Korrekturlesen
meiner Dissertation.

Dass die Robotik nicht nur aus zweibeinigem Laufen besteht, hat mir die gute Zusamme-
narbeit mit Felix Ellensohn in der Robotik-Gruppe und Dr.-Ing. Christoph Schiitz in der
Robotik-Gruppe, der European Robotics Challenge und dem Landwirtschaftsroboter CROPS
vor Augen gefiihrt. Auch die interessante Zusammenarbeit mit Dr.-Ing. Michael Gienger
zum kooperativen Arbeiten von Robotern war eine Bereicherung.

Da die Robotik immer auf gut funktionierende Hardware angewiesen ist, bin ich Georg
Mayr zu Dank verpflichtet. Mit seiner Erfahrung und seiner angenehmen Arbeitsweise
ist er ein Garant dafiir, dass die mechatronischen Projekte am Lehrstuhl erfolgreich bear-
beitet werden konnen. Verlassen konnte ich mich zudem immer auf die Kollegen in der
Werkstatt Simon Gerer und Georg Konig, die dafiir sorgten, dass die Maschinen auch in
wichtigen Momenten immer funktionierten.

Dass am Lehrstuhl effizient gearbeitet werden kann, ist auch einer reibungslos funktion-
ierenden Infrastruktur zu verdanken, um die sich Dr.-Ing. habil. Thomas Thiimmel immer
hervorragend kiimmert und dabei von Frau Miiller-Philipp und Rita Schneider unterstiitzt
wird.

Abschlieffend mochte ich mich bei allen KollegInnen des Lehrstuhls und allen StudentIn-
nen, die ich betreut habe, bedanken. Der Erfolg meines Dissertationsvorhabens und
unseres Forschungsprojekts ist zum groflen Teil auch ihrer Motivation und ihrem Einsatz
zu verdanken.

Miinchen, 28. Oktober 2018

Table of Contents

Table of Contents
List of Abbreviations

1 Introduction

1.1 Problem Statement
1.2 Related Work e
1.3 Contributions and Outline of thisThesis

Motion Planning for Redundant Robots

2.1 Problem Description
211 RelatedWork
212 Solution Approach
2.2 Motivational Example - Predictive Kinematics
221 SequencePlaning
222 Trajectory Optimization
223 Reactive Adaptions L L L
23 SUMMATIY oo e

Framework for Versatile & Robust Walking

3.1 Hardware Overview
3.1.1 Sensors & Communication System
312 RelatedWork L
32 Stable& FastWalking
3.3 Versatile & Robust Walking
331 Overview e e
3.3.2 EnvironmentModeling
333 VisionSystem
334 MotionPlanning Lo o
335 RobustWalking
3.3.6 Implementation Details
3.4 Robust Walking with Geometrical Constraints
341 RelatedWork o L
342 Method Overview
3.43 Geometrical Constraints
3.44 Finding Safe Footholds
3.45 Footstep Modification with Geometrical Constraints
35 Summary

QT NN =

N

vi TABLE OF CONTENTS
4 Autonomous Navigation 53
4.1 Bipedal Navigation, 53
41.1 Human-Machine Interfaces 53

412 Problem Description 55

42 Related Work e 56
421 Graph-Search-Based Approaches 56

42.2 Not Graph-Search-Based Approaches 57

43 StepPlanning 58
43.1 Formal Definition 58

4.3.2 Discretization e 59

433 Graph-Search 59

434 CostFunctionDesign 60

43.5 State & Transition Evaluation 61

43.6 Real-Time Application 63

437 Results e 64

44 Reactive Navigation 65
441 RelatedWork e 66

442 ProposedMethod 67

443 2DPre-Planning 68

444 Coupling withStepPlanner 72

445 Real-Time Implementation 73

446 Results e e 74
4.4.7 Discussion on the Optimality of the A*-Search 74

4.5 Adaptive Discretization 0L 76
451 Local Adaptation 76

46 Summary 79
5 Real-Time Motion Generation 81
5.1 Literature. e 81
51.1 Bipedal Locomotion 82

51.2 RedundantRobots 83

52 MotionPlanning o Lo Lo 84
5.2.1 Center of Gravity (CoG) Trajectory Generation 85

5.2.2 Feedback Control & Inverse Kinematics 86

523 Limitations 87

5.3 Model-Predictive Kinematic Planning 88
531 Model 88

532 Optimization 0. 89

5.3.3 Initial Solution - Kinematic Evaluation. 89

5.3.4 ParameterSet 90

535 Step-Time Adaption 91

5.3.6 Gradients e 91

537 Integration. L. 92

5.3.8 Results -Simulation 94

5.4 Center of Mass Trajectory Planning 95
5.4.1 Trajectory Design - Torso Height Trajectory 99

5.4.2 Simplified KinematicModel 99

543 Initial Solution 100

544 Optimization 102

545 Results e e 103

5.5 Reactive Collision Avoidance 108

5.5.1 Task Space Trajectory Adaption 108

TABLE OF CONTENTS

552 Results L
56 Summary e

6 Autonomous Walking Results
6.1 StepSequence L L
6.1.1 Model-Predictive Kinematic Planning
6.1.2 Torso Height Optimization
6.2 Cluttered Environment
6.2.1 Reactive Navigation
6.2.2 Model-Predictive Kinematic Planning
6.3 Cluttered Environment with Disturbances
6.4 SteppingUpandDown
6.5 Dynamic Environment o 0 0oL,
6.6 Robustness e
6.7 ChapterSummary.

7 Conclusions
71 Summary
7.2 DiscuSSion e e e e e e e e
7.3 Directions for Future Work

A Gradients for Optimization
A.1 Gradients for Optimization of Redundancy
A.2 Gradients for Parameter Optimization

B Inverse Kinematics for Simplified 2D Model of LOLA
References
Author’s Publications

Supervised Student Theses

vii

112
112

113
113
113
114
116
117
118
119
121
121
125
126

127
127
128
129

133
133
133

135

137

145

147

List of Abbreviations

AIST National Institute of Advanced Indus-

trial Science and Technology
AM Chair of Applied Mechanics

BVP Boundary Value Problem

CoG Center of Gravity

CoP Center of Pressure
CROPS Clever Robots for Crops

DARPA Defense Advanced Research

Projects Agency
DFG Deutsche Forschungsgemeinschaft
DLR German Aerospace Center
DoF Degree of Freedom

EoM Equation of Motion
EU European Union

ix

EuRoC European Robotics Challenge

FoR Frame of Reference
FoV Field of View

GMM Gaussian Mixture Models

IK Inverse Kinematics
IMU Inertial Measurement Unit

KAIST Korea Advanced Institute of Science
and Technology

SSV Swept-Sphere-Volumes
TCP tool center point

ZMP Zero Moment Point

Chapter 1

Introduction

Until recent years, robot industrial applications have been limited to static and known
scenarios. In large-volume manufacturing lines, robots execute the same tasks, often their
whole lifetime. Their hardware design and the environment are perfectly optimized to al-
low for fast and reliable production. These setups are rarely changed. Unforeseen changes,
like humans entering the setup, are excluded by cages separating them. Exceptions lead
to emergency stops of the whole line. Since these scenarios are set up only once for a long
time, the planning of the robots” motion is not time-critical and does not have to consider
input from sensors perceiving the environment. That way, human operators can design
the robots” motion off-line, checking for their feasibility and optimality.

Robots working in dynamic and unknown scenarios are mainly limited to wheeled
mobile platforms. Due to constantly changing scenarios, motion planning has to react
to sensor feedback and becomes time-critical. State-of-the-art mobile platforms present
some degree of autonomy, but in most applications they are still mainly tele-operated
by a human controller. The human controller commands the tasks, plans the motions
and reacts to changes in the scenarios. Although prototypes show impressive results in
autonomous driving, even cars are still mostly operated by humans. The human controls
the car and commands directions and velocity of its motions.

In recent years, requirements on robots have been increasing. Instead of executing tasks
that are either repetitive or strongly guided by a human operator, robots should be able
to autonomously adapt to changing scenarios. That way, robots could be able to interact
and cooperate with humans, move in changing environments or allow for automation
of production lines with small unit numbers and complex products. The robots” limited
versatility seems to be one of the major bottlenecks to meet these requirements.

On the hardware side, one way to increase the mobility of robots in different kind
of environments is a redundant kinematic design. Especially, in cluttered environments
redundant robots are able to reach areas by using their additional degrees of freedom
(DoFs). The “king”, or in the case of this thesis the “queen”, of redundant robots is the
humanoid robot. Inspired by the human anthromorphique structure, its kinematic is
highly redundant. Thanks to this structure, they are suited to be employed in diverse and
complex scenarios. Similarly to humans, humanoid robots are in most cases not the best
solution for one particular task. Nevertheless, their design allows to serve as a human
replacement in a wide range of applications from standard industrial tasks in factories to
service robotic application in houses. This variety of possible applications is rarely met by
any other robot design.

The objective of this thesis is to exploit the potential of bipedal robots. Methods
are developed which use their intrinsic versatility and which allow for application of
humanoid robots not only in static environments but also in dynamic and unknown
scenarios.

2 Introduction

1.1 Problem Statement

Although companies are starting to show increasing interest in the topic, bipedal robots
are still the subject of fundamental research. From a research point of view, humanoid
locomotion is especially interesting. It combines challenges of different robotic research
fields.

Autonomous Navigation

In an abstract way, humanoids are mobile platforms. They are able to move in the same
environments as wheeled mobile platforms and they are restricted by the same constraints:
they have to perceive and model the environment in real-time, they have to exploit
unknown environments and they have to avoid collisions with the environment which
can be static but also dynamic.

Real-Time Motion Generation

In contrast to autonomous navigation of wheeled vehicles, autonomous navigation of hu-
manoids is not solved via a velocity and the corresponding direction. Bipedal locomotion
consists of sequences of discrete foothold positions. The swing foot movement, which
connects the discrete foothold positions, can be interpreted as the motion of a robotic
manipulator. This characteristic and their kinematic structure allow for stepping up and
down platforms or stepping over obstacles. Thus, on the one hand, humanoids can be
applied in much more complicated environments than wheeled vehicles. On the other
hand, the motion planning becomes more complex. Instead of searching a trajectory in a
three-dimensional space, trajectories of all DoFs have to be determined.

Regarding the motion planning problem, humanoid robots differ from manipulators
in that way that their base is not fixed. It changes its location with each discrete step.
Compared with conventional motion planning for manipulators, walking consists not
of one single motion from point A to point B. A couple of steps already represents a
long motion sequence. Furthermore, the robot’s motion has to cope with the dynamic
constraints of bipedal locomotion.

Stability & Sensor Feedback

Bipedal locomotion is not inherently stable. Real-time motion generation requires reduced
models of the complex robotic system, humanoid robot, and its interaction with the
environment. Thus, even in perfectly known environments without any perturbations,
sensor feedback is necessary to compensate for model inaccuracies and prevent humanoids
from falling down. Therefore, motion generation for bipedal walking always has to respect
modified trajectories and has to react fast to changes.

1.2 Related Work

In recent years, the interest in human-like machines has greatly increased in academia
as well as in industry. Their structure is adapted to tools and environments designed for
humans. Therefore, they are able to fulfill tasks which are too dangerous, too dirty or
too dull for human workers. While stable walking in flat terrain is achieved by various
research groups [29, 43, 53, 87, 103], locomotion in real environments is still limited.
A thorough review of humanoid robotic research groups is done by Buschmann [12]
and Wittmann [114]. Until recently, bipedal robots were not capable to reliably navigate

1.2 Related Work 3

through complex scenarios. Neither were they not capable to handle large disturbances
nor were they able to generate motions in complex environments.

These limitations question the assumed superiority of bipedal walking to wheeled or
tracked vehicles in rough terrain and limit their use in real application. To overcome these
limitations is the motivation for multiple research projects:

The IEEE RAS (Robotics and Automation Society) founded the Technical Comittee
Model-Based Optimization for Robotics [74]. The main intention behind this comittee is to
close the gap between the research comunities in the field of optimization theory and
robotics. Robots represent extremely complicated dynamical systems while optimization
techniques offer one way to generate automatically movements derived from basic prin-
ciples as, for example, the minimization of cost functions. Thus, the researchers taking
part in the comittee try to establish model-based optimization approaches for motion
generation for robotic systems. Their explicit objective is to implement and demonstrate
these on real robots in complex scenarios.

In 2013, in the course of these activities, the project Koroibot was initiated!. Itis a
European Union (EU) founded project with partners from all over Europe. The focus of
the project lies on the developement of methods for motion generation for humanoids in
complex environments. The project partners follow the idea to transfer motion primitives
observed by human walking to control strategies for humanoids. The transfer concepts are
based on inverse optimization. Due to computationally heavy models, the derived control
strategies are often not suitable for real-time control and adapted to the high number of
different walking situation in real application [58].

The 2011 earthquake in Japan and the following partial meltdown in the Fukushima
Dai-Ichi nuclear motivated the Defense Advanced Research Projects Agency (DARPA)
to organize a robotic competition?. In this competition, teams from all over the world
developed robots which had to solve tasks similar to tasks expected in disaster response ap-
plications. The robots had to solve these tasks semi autonomously. Due to the challenging
time restrictions the teams mostly developed methods to solve the specific tasks. The focus
lied mainly on tasks as navigation, manipulation and vision with help of tele-operation
rather than on autonomous walking control. The team from the Korea Advanced Institute
of Science and Technology (KAIST) won the competition [5].

In addition to these mainly university dominated initatives, publications and videos
show that also national research institutes and companies are cunducting research activi-
ties in this direction.

The German Aerospace Center (DLR) presented their humanoid TORO in 2014 [29]. In
contrast to most humanoids, TORO is equipped with torque sensors in each joint. Their
publications focus on multi-contact motions [112] and basic walking controllers [28]. The
mechanical design and the actuators of the legs, prevent TORO from making large and
fast strides which restricts its walking abilities in complex scenarios.

Since many years, the National Institute of Advanced Industrial Science and Technol-
ogy (AIST) publishes impressive results of humanoids walking in uneven terrain. Their
research focus lies on the control of stiff position controlled robots. Nishiwaki et al. [81]
gives an overview of recent achievements.

In addition to the scientific community, companies have always been interested in
humanoid robotics. Among others, Honda, Toyota or Sony pursue research in humanoid
robotics and barely publish their results [39, 103, 104]. In recent years, the world of robotics
has undergone erruptive changes. Many start up companies were founded which focus
on autonomous working robots. In addition to the old players in robotics such as Toyota
and Honda, new players as Alphabet and UbiSoft aggressively entered the marked buying

Lwww.koroibot.eu

ZDARPA Robotics Challenge www . theroboticschallenge.org

www.koroibot.eu
www.theroboticschallenge.org

4 Introduction

Parcours: Side View Parcours: Frontal View

Obstacles &
Uneven Terrain

=N

Ramp Unknown Terrain Platform
Characteristics

Figure 1.1: Motivational parcour for Deutsche Forschungsgemeinschaft (DFG)-project. It in-
cludes challenges for robust and versatile walking.

start ups and hiring a lot of experts from academia. In the context of this thesis, especially
important are the companies Boston Dynamics and Schaft. Both, companies have long
experiences in the technology of bipedal walking: the company Boston Dynamics exists
since more than 20 years. Schaft is a spin-off of the University of Tokyo, which is active in
the research area of bipedal locomotion since decades. Videos show their biped robots
walking impressively robustly outside the laboratory in complex terrain. Unfortunately,
beside the videos® and few basic publications [78, 107], no further information has been
published.

This thesis was written as part of the DFG-Project Walking in Uneven Terrain (BU 2736/1-
1). The project started in 2013 at the Chair of Applied Mechanics (AM) of the Technical
University Munich. The objective of this project was to develop methods to achieve robust
and versatile walking in complex scenarios. A scenario which represents a benchmark
environment is depicted in Figure 1.1. The environment is previously unknown to the
robot. It consists of a combination of obstacles and platforms and of unknown disturbances
as, for example, terrain with unknown characteristics or obstacles which are too small to
be detectable.

In the context of this project, versatility is used as a term to describe the robot’s charac-
teristic to exploit its physical capabilities. Methods are developed which allow for large
strides, step over obstacles and step onto platforms and stairs. In addition to versatility,
the project assumes robustness as an important characteristic in complex scenarios in
real-world applications. The robot should be able to recover from very large disturbances,
due to external forces or errors in the environment model. The project set special effort in
developing not methods for particular tasks, but a framework which allows for application
in scenarios which demand versatile and robust walking simultaneously. The methods
were verified in simulations and validated in experiments with the robot LOLA which
has been developed in the predecessor project Biological and Technical Aspects of Intelligent
Locomotion [67]. It is depicted in Figure 1.2. In January 2017, the project’s results were
publicly presented live in front of researchers from all over Germany*.

3Videos showing bipeds of the company Schaft - https://youtu.be/diaZFIUBMBQ - and Boston Dy-
namics - https://youtu.be/oK9SfUJg1_Y.

4A video showing the presented experiments is available at https://youtu.be/g6UACMHEt20. The
presented slides are available as well at goo . g1/GuReQu on the project side.

https://youtu.be/diaZFIUBMBQ
https://youtu.be/oK9SfUJg1_Y
https://youtu.be/g6UACMHgt20
goo.gl/GuReQu

1.3 Contributions and Outline of this Thesis 5

Figure 1.2: Photo of the humanoid robot LoLA.

1.3 Contributions and Outline of this Thesis

In the context of the previously mentioned DFG-Project Walking in Uneven Terrain, the
objective of the work presented in this thesis is to develop methods which allow for
versatile bipedal walking in complex scenarios. The particular contributions of this thesis
are the following:

* an approach is developed to generate motions for serial, redundant robots over long
sequences. The approach combines discrete optimization, parameter optimization
and methods for trajectory optimization. Applications of this method to industrial
and agricultural robots are discussed. In addition to bipedal locomotion, the ap-
proach has been partly validated with an agricultural robot and has been extended
in collaboration with the Honda Research Institute Europe to be applicable on an
industrial robot.

* methods are proposed for autonomous navigation of bipeds in dynamic and un-
known environments. The methods use discrete optimization techniques to search
for footholds in cluttered and dynamic environments. Local gradient based op-
timization methods and a mobile platform planner are integrated and analyzed
to accelerate computational times. The approach is highly applicable in parallel
software design.

* parameter and trajectory optimization methods are applied to a highly redundant
robotic system, the humanoid robot. The proposed methods are real-time methods
which respect dynamic constraints and exploit the physical capabilities of bipedal
robots to allow for versatile walking in cluttered environments.

¢ all methods are integrated in a framework for versatile and robust walking. It
combines methods for perception and stabilization. It has to be emphasize that all
methods work simultanously allowing for walking in complex scenarios including
external disturbances and unknown terrain.

6 Introduction

* the methods presented in this thesis have been validated in various experiments
with the bipedal robot LOLA. The robustness of the framework has been proven in
multiple public demonstrations.

The contributions of this thesis are presented as follows: Chapter 2 describes the problem
analyzed in this thesis. It presents the solution approach using a motivational example
and discusses application to a wide range of serial redundant robotic systems. Chapter 3
presents how the methods discussed in Chapter 2 can be applied to the humanoid robot
LoOLA and how they can be integrated in an overall framework for versatile and robust
walking. Chapter 4 and Chapter 5 presents the methods in more detail with respect to their
application on bipedal walking. Furthermore, the methods are analyzed in simulation.
Chapter 4 presents various methods for autonomous navigation in unknown and dynamic
environments while Chapter 5 presents parameter and trajectory optimization methods.
In Chapter 6 selected experiments validate the performance of the methods. Finally,
Chapter 7 is devoted to a summary, a discussion and recommendations for future work.

Chapter 2

Motion Planning for Redundant Robots

Motion planning for robotic systems is a wide and active research field. Nevertheless, most
developed motion planning methods are developed for specific hardware configurations
and are therefore not easily adaptable to other designs or applications.

This section presents the methods developed within this thesis in the context of motion
planning research. It defines the application and its challenges for motion planning
algorithms. While this thesis focuses on motion planning methods for bipedal walking
of humanoid robots as the most relevant application, an abstract example is used to
emphasize the general characteristics and applications to further robotic systems.

Section 2.1 describes the overall strategy for solving motion planning problems applied
in this thesis and puts it in the context of current research. In Section 2.2, the methods are
presented and analyzed using a minimal model. When implementing planning algorithms
for real systems, sensor feedback is used to modify the ideal planned motions. In this case,
the executed motion does not coincide with the planned one. Subsection 2.2.3 presents
methods to reactivly adapt ideal planned motions. Finally, Section 2.3 is devoted to a
conclusion.

2.1 Problem Description

In this section, the problem class to which this thesis provides an approach is presented.
The problem class can be visualized as depicted in Figure 2.1:

Based on a command from a human operator or a high-level unit, a robot has to reach
subsequently a series of way points with its tool center point (TCP) (see Figure 2.1 for
a motivational example). The way points themself are not known in advance, but have
to be determined based on the task the robot has to solve. The motions of the robot are
constrained by the environment which is cluttered with obstacles. These obstacles are
not fully known in advance and their approximation may change during the execution of
the motions due to sensor inaccuracies or obstacle movements. The combination of the
environment and the task, the robot has to carry out, is named “motion situation” in this
thesis. Additionally to the discrete way points and the environment, other constraints
may be imposed during the whole motion.

One of the problems introduced by this example is how the robot’s motion can be
planned and executed to fulfill the asked goals. For this thesis, the motion planning
problem is narrowed to the calculation of desired trajectories on joint level excluding the
tracking control. This motivational example poses the following requirements on the
motion planning: the way points, which the robot has to reach, have to be calculated
based on the robot’s specific task. The final motion of the robot connecting the way points
represents long trajectories on joint level. Since the environment model changes during
execution of the ideal planned motion, the motion planning has to be able to quickly react

7

Motion Planning for Redundant Robots

Figure 2.1: Redundant robot in blue, parameterized task-space trajectory in grey with unknown
way points w;j, obstacle in orange. Blurry obstacles are not fully known in advance.

to these changes. Finally, the redundancy of the robot, given by a number of DoF which is
higher than the imposed constraints, provides an optimization potential. This potential
has to be exploited by the motion planning to allow for complex movements which are
especially necessary in challenging environments.

This abstract problem description is true for motion planning for bipedal walking in
unknown environments.

Humanoid robots represent a highly redundant type of robot.

Humanoid robots have to set their feet subsequently on the ground, while the
foothold positions have to respect geometrical constraints. These foothold positions
are equivalent with the previously introduced way points the redundant robot has
to reach with its TCP.

Walking a distance of a couple of meters represents already a long motion sequence
on joint level.

The restriction of stable walking (“not falling down”) can be expressed as a task
space constraint on the upper body and the CoG.

Since the humanoid moves continuously, it approaches objects which haven’t been
known in advance due to the robot’s limited Field of View (FoV) (see Figure 2.3).
The objects approximation with respect to the robot changes during movement
out of several reasons: the odometry of the robot is not exactly known, because of
accumulated measuring errors, sliding on the ground over long walking sequences
or unknown contact states with the ground. The visual sensors” accuracy highly
depends on the distance between sensor and object. Therefore, approaching objects
will result in a better and changed approximation. Additionally, not only static
objects exist in real-world environment, but also dynamic moving objects.

Furthermore, humanoid robots are expected to interact with humans in real appli-
cations. These interactions may result in constantly changing commands for the
motion planning. The combination of environment and commands is refered to
walking situation in the style of motion situation. Similar to the motivational exam-
ple, a fast re-planning of the robot’s motions has to be possible due to the constantly
changing walking situations.

2.1 Problem Description 9

sensor’s FOV‘ »

Figure 2.2: LoLA’s FoV [110].

Humanoid robots are still mainly a research topic, but the motivational example is also
applicable to industrial scenarios.

On the example of the EuRoC, Hildebrandt et al. [121] and Wahrmann et al. [127]
discuss an industrial application. In the challenge, a manipulator fixed on an actuated
platform had to perform a sequence of pick and place tasks in an environment shared with
humans. This corresponds to typical tasks in Industrie 4.0 applications (see Figure 2.3).
From a motion planning point of view, the tasks of the challenge can be reduced to the
motivational example. First a sequence of way points has to be determined at which the
robot can pick and place objects with its TCP. Then, the robot has to follow the sequence
to pick and place the objects. While executing the motion, the environment may change,
for example, by the presence of humans!.

A very similar application is the harvesting of fruits as investigated at the AM within
the Clever Robots for Crops (CROPS) project [93]. Figure 2.3 shows a human tele-operating
the harvesting robot. A redundant manipulator has to detect and pick fruits. This
represents a sequence of way points, which are connected by the movements of the robot.
The environment in which the manipulator works is highly cluttered due to leafs and
stems. Therefore, parts of the environment can only be reached if the robot is interacting
with the environment.

2.1.1 Related Work

The research field of motion planning for robotic systems offers multiple approaches for
the described problem class. Choset et al. [24], LaValle [63], Nakamura [75], and Siciliano
et al. [100] provides a thorough overview. Out of the multitude of different methods, two
basic approaches can be identified for generating the motion of redundant manipulators:

(1) The search of collision-free paths directly in the joint space, often called configura-
tion space, of the robot via sampling-based methods. These methods search for executable
paths by discretizing the joint space. The discrete configurations are checked for their
feasibility. Once a path is found, the joint trajectories are determined by applying tra-
jectory optimization techniques. Only in the second step, the time-dependence of the
trajectories is taken into account. Since the dimension of the joint space depends on the
number of joints, it represents a high dimensional search space for redundant manipula-
tors. Therefore, mainly methods based on probabilistic-sampling approaches are suitable
for application. Examples are the Probabilistic Roadmap or the Rapidly-exploring Random
Trees presented by LaValle [62] resp. by Kavraki et al. [55], among others. Ioan A. Sucan,

LA video showing scenarios at the EuRoC is published at https://youtu.be/OTWEZd6BMKS.

https://youtu.be/OTWEZd6BMk8

10 Motion Planning for Redundant Robots

Figure 2.3: Left: A manipulator is performing a pick and place task at the European Robotics
Challenge (EuRoC) (Adapted from [121]). Right: Human operator is tele-operating a harvesting
robot [141].

Mark Moll [48] provides an open source library (OMPL) with a wide range of probabilistic
planners. A framework for motion planning was presented by Chitta et al. [23]. It uses
the OMPL and connects it with further open source libraries, for example for collision
checking [85]. The probabilistic character of the sampling-based motion planning methods
limits their usage in real-time applications. In general, the goal path is not optimal and
the search can not be aborted while providing a goal directed sub path.

(2) In contrast to the searching directly in configuration space, a second possibility is to
first plan the robot’s motion in task space. In a subsequent step the task space trajectories
have to be mapped into configuration space by solving the Inverse Kinematics (IK) and
solve the redundancy problem. The main difficulty in this approach seems to be the
design of appropriate task space trajectories. They have to respect the robot’s kinematic
and dynamic capacities while enabling collision-free motions. Siciliano et al. [100] and
Nakamura [75] give an overview over trajectory design and methods for mapping task
space trajectories in configuration space and vice versa. This approach is advantageous for
most real-time applications. The search for a collision-free task space trajectory can be done
in a lower dimensional task space. Additionally, not only the path but the whole trajectory
is determined. The IK can be calculated using efficient numerical methods with low
computational effort, as for example presented by Klein et al. [57]. In many applications
the IK do not have to be solved before execution of the motion, but can be calculated during
run-time. The approach is limited in complex environments. Determining task space
trajectories without knowledge about the robot’s kinematics may lead to non-executable
motions in complex environments. Nevertheless, in many applications simple heuristics
are sufficient to find executable task space trajectories.

Once executable trajectories, in configuration space or in task space, have been found,
optimization methods can be applied to successively optimize the motions. An overview
of optimization methods is given in J. Nocedal and S. J. Wright [49].

The discussed approaches represent possibilities to solve the motion sequence as
presented in Section 2.1. Nevertheless, calculating long sequences requires high compu-
tational effort. Instead, hierarchical methods are proposed. For example, Kaelbling et al.
[50] and Sacerdoti [91] propose strict separating of sequence planning and the robot’s
motion planning. The work presented in this thesis follows a similar idea as outlined in
the following.

2.1.2 Solution Approach

In this thesis, a hierarchical approach is applied to solve the motion planning problem
described in Section 2.1. The strategy is based on the application of hierarchical ordered
motion planning modules. They all use model-based approaches to predict and plan the

2.1 Problem Description 11

Time Sequence Planning

Horizon

p

Trajectory
Optimization

w,u

Level of
Reactive Detail
Adaptations

Figure 2.4: Hierarchical Approach for Motion Generation: the three modules Sequence Planning,
Trajectory Optimization and Reactive Adaption and their output resp. input, the parameter sets p,
the task space trajectories w and the nullspace input u. The output of the Reactive Adaption is
the reference motion, which the robot tries to follow.

robot’s motion. Figure 2.4 gives an overview of the modules. The different layers use
different levels of detail for the robot model as well as for the motion representation to
describe the motion planning problem. Due to the calculation time, the higher levels are
therefore able to take a longer time horizon into account than the subsequent layers, but
with less accurate models.

In a first step, the way points of the motion are calculated. The corresponding motion
planning layer is called Sequence Planning. It uses simplified models of the robot and
approximates the robot’s motion. That way, large parts of the environment and long
sequences can be evaluated. The result of the Sequence Planning is a set of parameters p
describing the way points and, roughly, the motion in between.

In a second step, the actual robot’s motion on joint level are calculated by a layer
named Trajectory Optimization. The way points p are connected via splines w(p). The
robot’s motion on joint level are calculated by using w(p) as task space trajectories and
exploiting the robot’s redundancy. By applying w(p) as task space trajectories the search
space for the joint motions is reduced. Both, task space trajectories as well as the robot’s
nullspace motion can be modified to optimize the robot’s motion in respect to a user
chosen criteria. Also the way points may be further optimized by taking the full robot
motion into account as long as the specific tasks can be full-filled. Depending on the
available calculation time, the time horizon of the Trajectory Optimization can be chosen.
The result of the Trajectory Optimization is an ideal planned motion over a time horizon of
parts of the sequence.

In a third step, a layer called Reactive Adaption modifies the robot’s motion at each
control cycle of the robot. On the one hand, this is necessary to be able to react to sensor
feedback. On the other hand, it can be interpreted as an additional more detailed layer.
Taking the Reactive Adaption into account already in the Trajectory Optimization layer
provides further optimization potential in addition to the discrete parameters. The result
of the Reactive Adaption is the reference motion, which the robot tries to follow.

The main motivation behind this approach is the assumption that the necessary level
of detail for long motion sequences in terms of modeling and motion planning strongly
depends on the time horizon. If it is assumed that the environment (or more generally the
current motion situation) may change during execution, a complete calculated motion plan
for the robot over the whole sequence may provide at advanced time instances only an
imprecise motion. Furthermore, it may even not be executable in dynamic environments.

12 Motion Planning for Redundant Robots

Figure 2.5: Example of sequence planning for collaborative working robots (left) with discretized
truss (right). Adapted from [142].

Consequently, the optimality of a motion plan on joint level describing the robot’s motion
with high levels of detail is at least questionable. A drawback of the applied approach is
inherent to the hierarchical structure. By determining constraints on successive layers the
optimization potential of the subsequent layers is limited. Thus, this hierarchical approach
will never find the overall optimal solution.

2.2 Motivational Example - Predictive Kinematics

In this section, the solution approach discussed above is presented using the motivational
example as depicted in Figure 2.1. Following the order of the hierarchical layers (see
Figure 2.4), first the application of the Sequence Planning to the motivational example
is discussed. This thesis focuses on the sequence planning for humanoid walking. A
generalization to a wider range of robotic systems has been developed in cooperation with
Dr.-Ing. Michael Gienger and Benjamin Kammermeier [117, 142] (see Figure 2.5).

Second, the presented methods for Trajectory Optimization are reviewed and compared.
Methods for parameter optimization and redundancy exploitation are presented. Fur-
thermore, these methods, Sequence Planning and Trajectory Optimization, are combined to
a novel method for motion optimization. Third, different possibilities are discussed for
reactive adaptions of the ideal planned motions.

2.2.1 Sequence Planing

The Sequence Planing will be discussed in more detail in Chapter 4 with the application
of bipedal walking. Here, only an overview of the used approach is given. Although,
a generic approach was developed for redundant robots [142], the Sequence Planing still
strongly depends on the particular application?. The presented approach is based on the
idea of reducing the planning problem to the search of multiple discrete configurations.
Depending on the application, the environment is segmented into different kind of objects.
The objects are described by characteristics, which are, for example, their DoFs. The objects
itself are discretized into areas at which the manipulator could get in contact with the
objects. In Figure 2.5 a truss is visualized which has to be picked and placed by cooperative
working robots. The struts of the truss are the areas at which the robots could carry it.
They are discretized into a set of possibilities which are used in the sequence planning.
Using the same idea, the surface where the truss can be placed would be discretized into a
set of areas. The manipulator is described by its kinematic limits. They limit the number
of contact possibilities the robot can reach from its current configuration. Its motions,

2Additionally, the algorithm [142] in its current implementation can not be applied to real-time applications.

2.2 Motivational Example - Predictive Kinematics 13

which connect the discrete configurations, are approximated by heuristics. Having a set
of all discrete configurations, a search tree with the discrete configurations as states and
the approximated robot motions as actions can be set up. This representation allows
to apply effective search algorithms to search for desired sequences. At this point, the
same algorithms can be used for all applications. The difference in the applications lies in
the identification of an abstract problem description which is suitable for the particular
application. To simplify the subsequent planning, additional configurations as way points
can be introduced to the robot’s motion providing start solutions. Referring to Figure 2.1,
the result of the Sequence Planning are the parameter sets w1y, wy, w3 and wy. In this
example, the discrete configurations are reduced to points in task space that the robot has
to reach with its TCP.

2.2.2 Trajectory Optimization

The Trajectory Optimization calculates the motion of the robot necessary to reach the points
calculated by the Sequence Planning. As discussed in Section 2.1, this is a task often
posed for serial robots to reach with their end-effector a sequence of points in space. The
methods” application to bipedal walking is presented in Section 5.3. Without the loss of
generality, the robot’s motion is only considered from some point A to another point B
in the following. One way to generate the robot’s motion is to describe the path of the
end-effector from A to B via trajectory primitives, for example polynomials, in task space.
The trajectories w = w(p) are configurable with the parameters p, which can be adapted
according to the overall desired motion. For redundant robots, the joint space’s dimension
n is larger than the task space dimension m (n > m). This kinematic characteristic needs
to be resolved during motion generation. Common approaches such as the Resolved
Motion Rate Control [113] or Automatic Supervisory Control [1] can be used to solve the
redundancy on velocity level at each discrete time step t;. Using these approaches, the
inverse kinematics problem can be expressed as

g(t;) = f(q(t:), u(t;), p,t;) (2.1)
= Jhw(p, t;) — aNu(t;)
q(ty) = qo, ti € [ty te] (2.3)

with the weighted Moore-Penrose-Pseudo-Inverse of the Jacobian matrix J,, of w with
respect to 4 defined as

It =W (W) ™! (2.4)

with the weighting matrix W. The nullspace projection matrix N is defined as N =
I—J%J,. For the sake of simplicity, the time dependency is omitted in the following.
The joint angles resp. angular velocities of the robot are denoted with g, 4. The nullspace
input, which can be freely chosen, is # and a € R is a weighting factor. The advantage
of this approach compared to a complete generation of motion directly in configuration
space is a reduction of complexity. First, the parameterized motion of an end-effector can
be generated in a more meaningful way in task space and second, redundancy can be
exploited for local optimality without interfering with the end-effector motion. Due to the
reduced dimension of the search space the computational complexity can also be reduced,
which makes this approach applicable in real-time applications such as, for example,
dynamic bipedal walking of humanoids with their high number of DoF or redundant
serial manipulators. In the following, several methods are discussed to determine the free
variables u and p.

14 Motion Planning for Redundant Robots

Figure 2.6: Model: redundant robot in blue, parameterized task space trajectory in grey, obstacles
in orange.

Application Scenario

For the sake of simplicity, the motion sequence of the 5-DoF manipulator of the illustrative
example is reduced to a planar motion. It is described by two straight trajectories which
connect three points wy, w; and w3 in an environment with two obstacles (see Figure 2.6).
Thereby, w, can be interpreted as a path point whose horizontal coordinate can be config-
ured by a parameter p. Here, the parameter dependency of w; and w3 is neglected. In this
case, the desired task space trajectory wy(t), defined by w1, wy(p) and ws, is supposed to
be collision free. Additionally the robot’s links may collide with the obstacle, which has to
be prevented. The timing of w(t) is defined via the fixed time instances 1, t, t3 at the
points w1, wy(p) and ws.

In the following, the motion of the robot is calculated by taking different characteristics
of the robot and the environment into account. First, an initial solution is calculated for a
planned motion (Local Kinematics). Then, the path is modified to take characteristics of the
environment into account (Task Space Optimization). Finally, the redundancy of the robot
is exploited to increase maneuverability (Redundancy Exploitation). Furthermore, these
methods are all combined (Task Space Optimization & Redundancy Exploitation).

Local Kinematics

A. Liegeois [1] proposed to choose the input u as the gradient of a cost function to exploit
the robot’s redundancy. The inverse kinematics of (2.1) lead to

q=f(qu)=Jiw— Nk (2.5)

q(ts) = 4o- (2.6)
‘3—; is the gradient of a cost function defined as

L= Ccoll,selcholl,self + Ccoll,obstholl,obst + CvelLvel + Ccmecmf~ (27)

L is the sum of cost functions which penalizes collisions of the robot links with themselves
(ccottsel f Leott sel) and obstacles (Ceott obst Leol ost) as well as high angular velocities (CyerLyer)-

2.2 Motivational Example - Predictive Kinematics 15

The cost function ¢y Lenmy is used to define a comfort pose [98]. This formulation also
applies to the inverse kinematic module of the walking control system of the humanoid
robot LOLA. In the following, (2.5) and (2.6) are referred to as Local Control 3

Task Space Optimization

In most robotic applications, it is not important that the end-effector exactly follows a
pre-defined task space trajectory, but that the end-effector moves from point A to point B
or, in the motivational example, from the point w; to ws. Following this line of thought,
the horizontal coordinate of the second point w, . (p) is chosen to be dependent on a single
parameter p (see Figure 2.6). Any parametric movement representation w(t, p) could
be applied to the presented method, also with more than a single parameter, but this is
considered to be one of the most illustrative ones. Thus, the task space trajectory depends
on p. The parameter p can be optimized to improve the robot’s motion. The optimization
problem is formulated as follows

te
ming(q) = g(a)l:. + / L(g)at @8
P)
q=f(q.p) =Thwp) - DcNa; (2.9)
q(ty) = q, (2.10)

with g(q)|;, denoting a cost term at t = t,. As described in Hildebrandt et al. [118] the
optimization problem can be solved using a gradient method for the parameter p. The
value of the cost function ¢(q) is evaluated by numerically integrating the robot’s motion,
described by (2.9) and (2.10) for p = p, over the whole sequence. The forward Euler
integration scheme is used including a drift control. The updating rule

Pis1 = Pr — hopt V() (2.11)

with the updating step-size h,p; is used to optimize p with respect to ¢(q) after each
evaluation k. In this context V,(+) is the gradient of (-) with respect to a variable x. It is
calculated by a finite difference using a small delta around the current x. A back-tracking
algorithm determines /,,; to improve the performance of the optimization process [49].
As long as the Armijo condition

Pi1(q) < Pi(q) — |V pdi(q) || hope 2.12)

is violated, the updating step-size is decreased by
hopt —p hopt (2.13)

and p, ,, is recalculated using (2.11). The parameters c and p € (0, 1) are freely chosen.
Figure 2.7 shows three snapshots of the resulting task space trajectory. The parameter p
is optimized such, that the links of the robot are shifted away from the obstacle which is
equivalent to a reduction of collision costs. Table 2.1 lists the optimized values.

Redundancy Exploitation

In Schuetz et al. [94], a model-predictive approach based on an indirect optimization
is presented to solve the inverse kinematics (see (2.9)) and to exploit the nullspace of

3The terms local and global are used with respect to the considered time horizon of the motion.

16 Motion Planning for Redundant Robots

Figure 2.7: Task Space trajectory before (gray) and after parameter optimization (green)

redundant manipulators. In contrast to direct optimization methods, it respects the
run-time constraints of the application as discussed in [93].

Instead of using a discrete number of parameters as optimization variable, a continuous
input u,; is searched as proposed in Nakamura et al. [76]. It replaces the local-acting
gradient %' It follows

min¢(q(u)) = g(q() ;. + [Llg(w))dt (2.14)
q=f(q,u)=J"w+aNu (2.15)
q(ty) = 99 (2.16)

As proposed in Schuetz et al. [94], the optimization problem is solved applying Pontryagin’s
Minimum Principle. It leads to an optimization problem for u# which is solvable with
gradient methods. Furthermore, the formulation is extended from velocity to acceleration
level. That way, discontinuous angular velocities are avoided. Figure 2.8 illustrates the
resulting motion. Treating the nullspace control as a global optimization problem leads
to a more predictable motion, which is superior in avoiding the obstacle located near the
kinematic links of the robot.

Task Space Optimization & Redundancy Exploitation

Methods for parameter optimization of task space trajectories and methods for optimiza-
tion of a continuous input vector to exploit the robot’s nullspace have been presented.
Having a parameterized task space trajectory and the continuous input vector u the
combined optimization problem results in

te
gg¢ww»=gww»M+/wa»w (2.17)
tp
q=f(q,u,p)=J"w(p)+aNu (2.18)
q(ty) = q, (2.19)

Bocek [10] presented an optimization formulation to simultaneously optimize a discrete
parameter describing the system and a continuous system input. This formulation is
applied as follows to combine the previously presented methods: by approaching the
computation of the inverse kinematics as the combined optimization problem stated in
equation (2.17) - (2.19), the Hamilton function is defined as:

H(q,Au,p) =L(q(u)) + A" f(q,u,p) (2.20)

2.2 Motivational Example - Predictive Kinematics 17

Figure 2.8: Motion with global exploitation of redundancy

with the adjoint variable A. In the application of the optimal kinematic planning approach,
the nullspace control vector as well as the task space parameterization are constrained vari-
ables. Therefore, Pontryagin’s Minimum Principle is applied to the combined optimization
problem. The following optimality conditions are obtained:

;|
1=y (2.21)
: oH oL d f> T
jo o8 _ 9L (9 4 2.22
oq oq <aq 222)
q(ty) = 49 (2.23)
A(te) =0 (2.24)
uopt = argmin H(q,,;, Aopt, #, Poyt) (2.25)
3 ko]
g) ‘
<) + [==dt| sp >0 (2.26)
[(ap , t, Op] P

The boundary condition (2.23) comes from the given initial position of the robot and those
in (2.24) stem from its free final form regarding the nullspace and the parameter. With
the conditions (2.21) - (2.24), A and q are calculated for any given nullspace control # and
parameter p. This allows us to solve the optimization problem by applying a projected
conjugate gradient algorithm.

Conjugate Gradient Method

It is well known that the descent gradient algorithm shows slow convergence?, there-
fore a nonlinear conjugate gradient method, described in Bocek [10], is applied for the
constrained nonlinear optimal control with parameterization. This algorithm provides
a computationally efficient solution of the optimal control problem. Furthermore, it has
the advantage for real-time applications that the optimization can be aborted at any given
time and partial results can be obtained. Thus, the robot can execute an intermediate,
but current best, solution. To speed up convergence, the solution of u(t) calculated by
the Local Control for the nominal parameter p can be used as a good initial solution ug
for the algorithm. The basic algorithm integrates the differential equation of the inverse
kinematics (2.18) (or equivalent to (2.21)) forward and the adjoint variable (2.22) backward
in time. The input u(t) and the parameter p will be modified according to the gradient
with a stepsize B. The correction stepsize may be chosen as either fixed or adaptable by
line-search algorithms. A detailed description is shown in Algorithm 1.

4See, for example, Schuetz [93].

18 Motion Planning for Redundant Robots

Algorithm 1 Conjugate Gradient method for
combined optimization

i+ 0
p 0« Pinitial
Converged < false

t
q° < [4(u° p°)dt (using local control and (2.23))
ty

19 FLg(u0))dt + gq(u)]s

ty
while Converged # true do
t

. b
A« [Ag', ', p')dt (from (2.22) with (2.24), backward in time: f, —)
te

oH!
gu A 8u ;
j e (QH\i
g, (1) + [yt
if i # 0 then
- P
,Bi<_ jt;glg;dt
Jiy gilgidt
858!
Y i F{gf T
Si — _gu +,BZ 1 1
¢ —g,+7 ¢
else
' —gy
i e
¢ —g,

utl — ul Al
p1+1 — pz —|—DCICZ

141 + 1
q f q(u', p')dt
tb
J' fL dt+g(q(u))|te
Converged — \] = | < tolerance
Results

The presented procedures are analyzed in a test case with the model presented before and
two obstacles. The task space trajectories are collision-free. Figure 2.9 shows snapshots of
the resulting motion using the local control and the combined optimization method. The
influence of the methods on the parameter and the nullspace is clearly visible. It can be
observed that the local character of the local control leads to a disadvantageous situation
during the second half of the motion. It almost leads to a collision. Contrary to that, the
global optimization of both, task space parameter and nullspace control, shows a more
anticipatory behavior, as expected. Figure 2.10 shows the resulting costs over time for all
four method combinations. Table 2.1 shows the resultant parameter and values of the cost
functions. Although parameter and nullspace optimization show separately impressive
results, the combined optimization is able to reduce the costs even more.

2.2 Motivational Example - Predictive Kinematics 19

Figure 2.9: Comparison of initial motion calculated with the Local Control (grey) and motion
with combined optimization (blue). Order is from top left to bottom right.

2.5 T T T T T

loc ——
2 nu —— _|
par ——
com ——
3 1.5 —
3
~ 1
0.5 H
0 Il
0 0.5 1 1.5 2 2.5 3

Time [s]

Figure 2.10: Total cost over time for local (loc), nullspace (nul), parameter (par) and combined
optimization (com).

Table 2.1: Detailed results of optimization process showing integrated cost parts over time. For
total cost over time, see Figure 2.10. Reference and initial parameter p = 60.0.

p Lyel Lcmf Lcoll,self Lcoll,obs
loc | const. | 6.1 | 9.0 84.7 146.24
par | 53.72 | 6.3 | 9.3 85.4 136.88
nul | const. | 6.5 |94 | 845 126.27
com | 3749 | 14.2 | 129 | 85.2 42.38

20 Motion Planning for Redundant Robots

2.2.3 Reactive Adaptions

Following the hierarchical approach, the methods presented above first determine a
sequence of way points. Then, the robot’s motion over the whole sequence is calculated. It
is crucial for real application to be able to modify the ideal planned trajectories locally out
of two reasons: (1) for long motion sequence, changes in the perceived environment likely
occur during execution. Changes in the environment, which was used to generate the
reference motion, could result in non-executable trajectories. (2) the motion of the robot is
governed by (2.1) as

q(t;) = Jhw(p, t;) — aNu(t;) (2.27)
q(ty) = qo.ti € [t te] (2.28)

In this representation, the robot’s motion is described by the input vector u# and the
parameter p. The parameter p influences the task space motion w(p, t;). Thus, the shape
of the trajectory strongly depends on the number of parameters. Since the calculation time
increases with each additional p;, the influence of the Trajectory Optimization is limited.
For this reason, the Trajectory Optimization may fail in complex scenarios, because it is not
possible to find executable task space trajectories.

In the following, two possibilities are presented to adapt the ideal planned motions.
Both, may be interpreted as extensions to the Local Control as presented in Subsection 2.2.2.
They modify the robot’s motion at each control cycle.

Task Space Adaption

One possibility to continuously influence the task space trajectories is to add a term w,;y4
tow(p,t;) as

q(ti> = Iﬁ;(w(l’/ ti) + wmod) - “Nu(ti) (2.29)
q(ty) = qo ti € [ty te] (2.30)

This term can be designed in such a way that changes in the environment can be taken
into account and the shape of the trajectories is modified. Depending on the application,
the modified trajectory may have to converge to the original reference trajectory.

Nullspace Adaption

Another possibility is to change the definition of the task space for those sections of the
trajectories, where following the exact task space trajectories is not necessary for the
success of the motion. By reducing the dimension m of the task space, the dimension n of
the nullspace gets larger. Consequently, the input to the nullspace of the robot’s motion
can change the motion without the necessity of a re-planning of the task space trajectories.

Since the weighted Moore-Penrose-Pseudo-Inverse is defined as in (2.4), simply chang-
ing the rank of J,, would result in undesired discontinuous angular velocities (see [70]).
Defining], ; as the column k of the Jacobian related to dimension k of the task space and
setting W to the identity matrix, J* can be written as

=T T]+ X (2.31)

where the non-linear parts of the pseudo inverse resulting from the coupling of the J,
are summarized in X,;. In order to change the dimension, a trigger vector h € i" with
h = [hy,..., hy] is introduced. It enables or disables specific coordinates of the task space.
To avoid discontinuities, it is applied as follows

m
Jh =gt b)+ [[hiXo (2.32)
i=1

2.3 Summary 21

The non-linear parts X,,; are calculated for exampple as

an,op = Iz;,op - Ifu,o - va,p- (2.33)

Furthermore, for turning on or off each coordinate i of the task space trajectories, the
corresponding trigger value h; has to be a continuous function from 1 to 0 with continuous
boundary values.® A similar approach was presented by Mansard et al. [70].

Discussion

Of both presented methods, only the task space adaption has been successfully applied to
bipedal walking in simulation as well as in experiments. It is discussed in further detail in
Section 5.5. The nullspace adaption was only evaluated in simulation (see Kunze [147]).
The task space adaption has the advantage of less computational effort in difference to
the nullspace adaption. For the nullspace adaption, at every control cycle step multiple
Moore-Penrose-Inverses have to be calculated (see (2.32)). Furthermore, for the transition
between two task space dimensions the behavior is not clearly defined.

In contrast to the task space adaption, the nullspace adaption has been implemented
in simulation and experiments with the CROPS robot (see the student thesis Diinhuber
[139], Jonas Wittmann [141], and Kissel [144])°. Both methods do not interfere with the
optimization since they modify only the system equations. Therefore, they are consistently
be taken into account in the optimization.

2.3 Summary

In this chapter, the problem class to which this thesis tries to provide a solution approach
is presented. For the sake of simplification it is reduced to a theoretical example. Nev-
ertheless, application to academia as well as industrial applications are discussed. An
outline of the solution approach used in this thesis is given. It is based on a hierarchical
planning consisting of three modules, Sequence Planning, Trajectory Optimization and Reac-
tive Adaptions. All three modules are presented and analyzed using a simple motivational
example. In the following chapters, in particular in Chapter 5, these methods are applied
to biped locomotion.

SFurther explanation and analysis can be found in Kissel [144], Kunze [147], and Smith et al. [153].
6A video of the experiments is available at ht tps: //youtu.be/uDiXij205Y4

https://youtu.be/uDiXij2O5Y4

Chapter 3

Framework for Versatile & Robust Walking

The methods presented in this thesis were developed in colloboration with Dr.-Ing. habil.
Thomas Buschmann, Dipl.-Ing. Robert Wittmann and Dipl.-Ing. Daniel Wahrmann
within the DFG-founded project Walking in Uneven Terrain. Although application of the
methods to different robots are shown throughout this thesis, the main motivation behind
it corresponds to the objective of the DFG-project to realize autonomous bipedal walking
in unknown terrain. Walking autonomously in unknown environments does not only
require real-time motion planning, but also environment perception and stabilization.
Developing methods separately from one another will not result in a high-performance
overall system. In the worst case, the methods are incompatible and the whole system
becomes not suitable for application in complex environment. In the following, the
resulting research question of bipedal walking in unknown environments is refered to as
versatile and robust walking.

In this chapter, the hardware setup of the experimental platform, the robot LOLA,
is presented. Section 3.1 gives an overview of its mechanic and electronic hardware
design. Furthermore, the framework for tightly integrating methods for real-time motion
planning, environment perception and stabilization is summarized. In Section 3.2, the
basic framework based on Buschmann [12] is presented. Three extensions to this common
platform are introduced.

A vision system as presented in Wahrmann [110] (Subsection 3.3.3), methods for real-
time motion generation as introduced in this thesis (Subsection 3.3.4) and methods for
robust walking (Subsection 3.3.5) as presented in Wittmann [114] are summarized. A
tight integration of perception, real-time motion generation and stabilization relies on
a common environment modeling and the integration of methods for real-time motion
generation in the generation of stabilizing motions as presented in Subsection 3.3.2 and
Section 3.4. While the basic framework for stable and fast walking is applied on the
humanoid robots JOHNNIE and LOLA [12], the extensions for versatile and robust walking
are experimentally validated only with the robot LOLA.

3.1 Hardware Overview

The experimental platform used in this work, the humanoid robot LOLA, was developed
between 2004 and 2010 within the DFG-funded project-cluster Natur und Technik intelli-
genten Laufens. It is the successor of the humanoid robot JOHNNIE [35]. LOLA’s principle
design objective was to allow for fast, human-like and autonomous walking.

Its physical dimensions are based on anthropometric data. LOLA weights approxi-
mately 60 kg and it is 180 cm tall. Figure 3.1 depicts LOLA and shows its joint distribution.
Within this thesis, the redundant kinematic design has to be emphasized. In total, LOLA
has 24 actuated joints with high power brushless DC motors: the 7 DoF of both legs and

23

24 Framework for Versatile & Robust Walking

Joint DoF
o
Shoulder 2
Elbow 1
Pelvis 2
Hip 3
Knee 1
Contact Ankle 2
Sensors Toe 1
Total 24

Figure 3.1: Left side: Photo of the humanoid robot LoLA. Sensors for measuring LoLA’s state
with respect to the environment are highlighted. Right side: kinematic approximation, joint
distribution and used world coordinate system. Adapted from Schwienbacher et al. [98].

the 2 DoF in the pelvis gives LOLA a large action radius to execute kinematically complex
motions. The 3 DoFs of the arm are mainly used for angular momentum compensation
and CoG tracking, which is especially beneficial during fast walking. Actuated toes allow
for larger strides. The head is equipped with 2 additional DoFs. These can be used for
exploring the environment when walking autonomously.

The overall design of the system follows the paradigm of extremely light-weighted
and stiff design to achieve good dynamic performance. Since the legs represent the parts
of the robot which execute fast motions while walking, special focus is set on their design:
all heavy parts of the legs, in particular the motors, are shifted upwards to reduce inertia
effects. Furthermore, the mechanic parts are constructed using prototype casting processes
and topology optimization. That way, the stiffness requirements could be met while the
weight of the parts could be extremely reduced.

3.1.1 Sensors & Communication System

In Figure 3.1, the sensors measuring LOLA’s state with respect to the world and its interac-
tion with the environment are highlighted. The Inertial Measurement Unit (IMU) located
in the upper body consists of three fiber-optic gyroscopes and three MEMS accelerometers.
The system includes internal sensor fusion algorithms that provide accurate, drift-free
measurements for the absolute orientation and rotation rate. Each foot is equipped with a
6-axis force-torque sensors (FTS) to measure the external forces and torques acting on the
robot. Furthermore, four contact sensors in each foot are used to detect ground contact.

An Asus Xtion PRO LIVE RGB-D camera! is mounted on the head for environment
perception. It has a frame rate of approx. 30Hz. Its FoV reaches approx. 4m with
decreasing precision depending on the distance (see Figure 2.3).

Two encoders, an absolute on the link side and an incremental encoder on the motor
side, measure the joint positions. These signals are directly used for independent joint
control with servo controllers from Elmo Motion Control?.

The distributed joint controllers communicate with the central control unit using an
Ethercat-bus protocol3 [126].

The two on-board computers for the vision processing software and LOLA’s real-time
control are located on its back. Each of the computers has an Intel Core i7-4770S@3.1GHz

1ASUS Xtion PRO LIVE, see http://www.asus.com/Multimedia/Xtion_PRO_LIVE/
2

3

www.elmomc.com
www.beckhoff.de

http://www.asus.com/Multimedia/Xtion_PRO_LIVE/

3.2 Stable & Fast Walking 25

i =

Walking Commands
A
€
= Step Sequence Generation <
8 by Event
—~
%s I Walking Pattern Generation
O <
Ideal Walking Pattern l
Walking Stabilization
4 é’ O 1ms
£3-
® g Jl Inverse Kinematics
& O <
Joint Data
A
Position Controlled Robot |«
O 0.1ms
Sensor Data

Figure 3.2: Control overview of the framework for stable and fast walking (adapted from
Buschmann [12]).

(4x) processor and 8GB RAM. The computer with the vision processing software runs
under a Linux OS and the other, on which the walking control is executed, runs under a
QNX-RTOS. Both computers use TCP to communicate with each other.

3.1.2 Related Work

The previous section give an overview of the hardware and the sensors of the experimental
platform used in this thesis. Dr.-Ing. habil. Thomas Buschmann and Dr.-Ing. Sebastian
Lohmeier mainly defined the design objectives and set up the first prototypes of LOLA.
Their theses, Buschmann [12] and Lohmeier [67] provide a more detailed description
of design and simulation software of LOLA. Dr.-Ing. Valerio Favot did important work
in setting up sensors, low-level communication and low-level control. His thesis gives
a thorough insight in sensor integration and low-level control [32]. Robert Wittmann
describes in his thesis [114] the adjustment of the low-level communication and control on
state-of-the-art commercial available hardware.

3.2 Stable & Fast Walking

The framework introduced by Buschmann [12] is the common basis for the methods for
versatile and robust walking. Its main design objective was to provide a software architecture
which allows for fast and stable walking of fully actuated bipedal robots. Figure 3.2 depicts
the overall framework. The user’s high-level input to the framework is a 2D velocity
vector or parameter describing the desired walking pattern. The framework’s output are
ideal joint data which are tracked by a low level joint control.

The framework itself relies on a hierarchical approach. The Global Control determines
the Ideal Walking Pattern (consisting of the ideal task-space trajectories of the robot) for a

26 Framework for Versatile & Robust Walking

time horizon of multiple steps. The subsequent Feedback Control locally modifies the Ideal
Walking Pattern to take into account disturbances and modeling errors. In the following,
an insight on the Global Control is given, followed by the Feedback Control and the Joint
Control are presented.

Global Control

Before each step, the Global Control is executed. Based on the user’s command, summarized
as Walking Commands, the Global Control generates the Ideal Walking Pattern for the next
Nsteps steps.

The Walking Commands can be expressed as a parameter set p,,, for each step which
describe the overall walking behavior. It contains, among others, the robot’s foothold for
each step, parameters describing the robot’s movements connecting the footholds (e.g.
height of CoG or swing-foot height) and the step time Tsy,).

The module Step Sequence Generation determines, based on the desired py), the next
Nsteps foothold positions and parameterizes the stepping motions. This is the input to
the Walking Pattern Generation-module, which generates the Ideal Walking Pattern. In
contrast to the step sequence, the Ideal Walking Pattern contains time-continuous trajectories.
They include the Center of Pressure (CoP) reference trajectories and the ideal task-space
trajectories w;;(t) € R™ which are composed of

¢ the CoG position,

¢ the torso orientation,

the toe angles,

the foot positions,

the foot orientations,
¢ and the pan and tilt angles for the alignment of the camera.

The task-space trajectories are represented as splines which are configurable with py).

The horizontal CoG movement is calculated to meet the constraints of dynamic stable
walking as follows: Buschmann et al. [14] proposed to approximate the robot’s multi-
body-system by a three-mass-model. One of the three masses approximates the upper
body dynamics and the others represent the legs” dynamics. The mass quantities are a
result of an optimization problem to reduce inclination errors of the torso during fast
walking. The movements of the masses are defined via the foot trajectories and the
vertical CoG trajectories included in the Ideal Walking Pattern. Further, the robot’s desired
CoP trajectory is given as input. Thus, a Boundary Value Problem (BVP) for the desired
horizontal CoG trajectories with boundary values at the end of nss.pscoc steps can be
stated. Buschmann et al. [14] propose to approximate the horizontal CoG trajectories via
cubic splines and solve the BVP using a collocation method. The simplified model enables
for model-predictive planning of the whole Ideal Walking Pattern within approx. 10ms.
The resulting Ideal Walking Pattern is the input to the Feedback Control.

Feedback Control

The Feedback Control uses the Ideal Walking Pattern as set points to calculate the desired
joint target data g; € R" and 4; € R" for the low-level control. The desired motion
and the desired total forces and moments acting on the feet at time t;, wizx = wig(tx)
and Ajgx = [Fia(tc), Ma(ty)], are modified locally taking sensor input into account. The
objective of the Walking Stabilization is to stabilize the robot by keeping the upper body

3.3 Versatile & Robust Walking 27

in an upright position. Therefore, the measured absolute inclination and inclination rate
errors are mapped via a PD-controller to stabilization moments and forces. Using an
explicit contact model for ground-foot contact, modifications of w;; ; are calculated to
follow the stabilization moments and forces. Further details are presented in Buschmann
et al. [16]. The modified task-space trajectories wy resp. wy are input to the Inverse
Kinematics on velocity-level. The methods presented in [1, 113] are used to solve for
the joint space velocities 4,, € R" from ;. The robot’s redundancies (m < n) are
exploited at each control cycle to minimize a cost function H,.. Thereby the motion in the
nullspace of the robot is used to take into account constraints as self-collision and joint
limit avoidance as well as minimization of angular momentum (compare Schwienbacher
[96] and Schwienbacher et al. [98]). The calculated q,, 4, are then processed by the
distributed joint controllers.

Results & Limitations

Buschmann [12] summarizes the performance of the framework. The implementation
on the humanoid LOLA allows to achieve fast walking speeds up to 1 and to reliably
follow arbitrary Joystick input in real-time. Ewald et al. [31] improved the stability for
early ground contacts by introducing an event-based phase switching strategy. Further-
more, Buschmann et al. [15] combined a vision system based on stereo cameras with the
presented framework. The vision system does not build up a global map but analyzes
the viability of a set of 2D trajectories with respect to the perceived environment. The
interface to the walking control consists of, similar to the interface for Joystick control, 2D
velocity vectors. This system allows for autonomous walking in unknown environment.
Since only 2D velocity vectors guide the robot, it does not exploit the robot’s capabilities to
traverse obstacles or step onto platforms. Buschmann [12] presents reactive step adaption
to allow the robot also to step over obstacles or onto platforms. The methods are restricted
to synthetic environments with one obstacle or platform at a time lying horizontal in
front of the robot. Furthermore, collision-free trajectories are chosen heuristically and
the methods are not coupled with the vision system. The Walking Stabilization performs
very well for flat terrain and compensates for small disturbances due to modeling errors
or irregularities in the assumed flat ground. However, large disturbances which can no
longer counteract with the contact forces lead to a falling of the robot.

3.3 Versatile & Robust Walking

The following subsections give an overview of the extended framework for versatile and
robust walking and presents the methods discussed in this thesis in the context of a system
for bipedal walking in unknown and uneven terrain.

3.3.1 Overview

A control overview of the extended framework is shown in Figure 3.3. The framework as
described in Section 3.2 was extended by the following modules:

* A Navigation- and Kinematic Optimization-module. It plans the kinematic motion of
the robot over a time horizon of multiple steps.

e Trajectory Adaptation-module. It takes sensor feedback into account to adapt the Ideal
Walking Pattern to account for disturbances at the planning level.

* The Feedback Control is extended by a Collision Avoidance-module. It modifies the
robot’s motion locally to reactively avoid collisions and joint limits.

28 Framework for Versatile & Robust Walking

i =

Walking Commands
\4
] Navigation -
Event
Kinematic Optimization
E
§ = |Walking Pattern Generation
—=
< |l Trajectory Adaption [«
S
G 3 O 20ms
Ideal Walking Pattern l
S Collision Avoidance
£ =
Z S tation 8 " I
o egmen » | Walking Stabilization
|~ DI
¢ 5 & O 1ms
2 Obstacles Surfaces % I Inverse Kinematics
= & <
A A
Joint Data
Point Cloud '
Data Position Controlled Robot [«
O 0.1ms
= Sensor Data

Figure 3.3: Control overview of the framework developed during the DFG-founded project
Walking in Uneven Terrain.

¢ To allow for environment perception, a new Vision System-module is set up. It
approximates the environment as 3D objects.

The developed modules may serve as standalone modules and can also be potentially
employed to other robotic systems (see for example Chapter 2). With regards to their
application on bipedal walking, their strengths rely on their mutual compatibility and
their tight integration in the overall framework for bipedal walking.

To achieve bipedal walking in unknown environments, a hierarchical approach is
followed. The robot’s control is divided into modules. The subsequent modules take the
result of the previous one into account and improve it. That way, the overall demand
of reactive dynamic walking is divided into smaller parts. These sub-problems can be
solved efficiently in real-time. Furthermore, the whole system becomes more robust, since
disturbances and errors are balanced by each subsystem.

The same approach is valid for the Vision System. Although it is a standalone vision sys-
tem, which is successfully applied to further robotic systems, its key value is the suitability
to bipedal navigation in unknown and dynamic environments. The environment repre-
sentation, which strongly affects the algorithms for vision processing, were developed
with respect to its application in navigation and motion planning for bipedal walking and
not for e.g. manipulation tasks. This allows for fast calculation times on both sides, robot
control and environment perception. It is presented in the following.

3.3 Versatile & Robust Walking 29

Po Po P1
o "
p2 P1
PSS LSS TSS

Figure 3.4: SSV elements used for distance calculations.

3.3.2 Environment Modeling

Motion planning for robot movements in general and bipedal locomotion in particular
needs fast calculation times to enable for fast movements in unknown environments.
In terms of computational time, collision detection is the most time-consuming part
[98]. Therefore, a trade-off between a high-level of detail object representations with
expensive distance calculations and a poor approximation but simple distance calculation
is necessary. In contrast to e.g. manipulation tasks, in most cases it is not important
for collision avoidance how to approximate the exact shape of objects. However, it
is important to approximate possible collision objects conservatively enough to avoid
contacts between collision pairs even while having sensor or model inaccuracies.

An object representation based on simple 3D volumes is chosen, the Swept-Sphere-
Volumes (SSV), throughout the framework. It is not suitable for exact representation of
object shapes but it is able to approximate objects with bounding volumes as conservatively
as desired and it is efficient for distance calculation.

Distance Calculation Library

Schwienbacher et al. [98] developed a software library for fast distance calculations
between SSV-objects. The SSV-objects are simple 3D objects, which can be described
as geometric 2D elements with a radius. Schwienbacher et al. [98] used three different
elements: the Point-SSV (PSS), a point pg and a radius 7, the Line-SSV (LSS), two points
po, p1 connected by a line and a radius r, and the Triangle-SSV (TSS), three points po, p1, p3
connected by lines in a shape of a triangle and a radius. Figure 3.4 depicts the three
elements. The representation of the elements as 2D elements based on line and points and
their convex shape allows for fast distance calculations. The SSV-objects can be arbitrary
combined to approximate objects. The variety of different element types, PSS, LSS and
TSS, and their combinations enable to model each object in any desired level of detail.
Further, Schwienbacher [97] presents approaches based on bounding box hierarchies to
accelerate the calculations. The library is applied to reactive self-collision-avoidance for
humanoid walking and to collision avoidance of the agricultural robot CROPS.

Collision World Modeling

The robot approximation proposed for self-collision avoidance was extended to a more
general collision world representation. In addition to the robot, surfaces onto which the
robot could step and obstacles are included. As published in Hildebrandt et al. [42], the
geometric world is approximated by a collision world model W. It consists of a robot
model R, and an environment model E: W = {E, R,, }. Depending on the desired level of
detail in the planning modules different robot models are chosen. The environment model

30 Framework for Versatile & Robust Walking

Robot Models R,, in different levels of detail

©/

L
*W,— '
e

Surface in Collision World Obstacle Approximations

Feedback Control Navigation

Figure 3.5: Cluttered environment represented in collision world: Consistent environment
approximation E in the Local Control and in the Navigation-module. E consist of elements
modeling surface edges and approximating obstacles. Robot R is approximated in different level
of detail for Local Control and the Navigation-module.

E is made up of np obstacles 4. To avoid collisions with surface edges, these edges are
included as obstacles and modeled as LSS. That way, they are consistently handled in the
methods for collision avoidance. R, is made up of ns segments, depending on the chosen
robot representation. In contrast to the robot model R,,;, obstacles in E are dynamically
added, removed or modified during run-time. In order to model the robot as well as the
environment accurately, each robot segment S; resp. obstacle Oy is approximated by ngy
resp. noy SSV objects V;. This is summarized in the following definition

Ry = {Si‘O <n; <ns}, (3.1)
E := {Ok]0 < nx < no}, (3.2)
Si == {V;j|0 < nj < ngy,i}, (3.3)

Ok := { V4]0 < nj < noy}- (3.4)

In Figure 3.5, two different levels of detail for robot modeling and the environment
approximation are depicted.

To avoid unnecessary distance calculations, the distance calculations are performed
only for n¢ defined collision pairs P;. Each pair consists of either two different segments
(Sr, ST) or a segment and an obstacle (Sg, Or). Between each collision pair the shortest
distance d; as well as the closest pair of points on the related SSV objects are calculated. To
sum up the collision pairs, the collision environments C,, is defined as

Cnm ::{PI‘O <lI< ﬂc}, (3.5)
Py :={(Sr,St) | S € Ri, ST € {R \ SFUE}}. (3.6)

450 far, E has been chosen to be always the same in all control modules. In more complex environments, it might
be advantageous also to chose E task dependent.

3.3 Versatile & Robust Walking

3D Point Cloud
A A \
Surface Plane Obstacle
Approximation Segmentation Approximation

Clustering

Tracking

not-so-RANSAC

31

plane coefficients

| .

Approximation Approximation

S0

Figure 3.6: Architecture of Vision System [110].

Robot-robot collision pairs in P; are predefined, while possible environment collision pairs
are dynamically generated at run-time.

Application in Software Framework

The presented object representation is an efficient and dense way to represent 3D bodies.
SSV elements are defined only by points, lines and corresponding radii. Thus, it does not
only allow for fast distance calculations, but also to approximate complex environments
without the need of high memory storage. Furthermore, the compact representation
simplifies the communication between the software modules. The whole environment can
be send with a reduced network traffic compared to more detailed representation as for
example OctoMaps [47]. The collision world representation used in the planning modules
is already clustered, which is inherent to the SSV approximation due to the hierarchy
of SSV objects, segments and robots resp. the environment. Thus, it is computationally
inexpensive to introduce bounding box hierarchies for distance calculations. This concept
was used not only as part of the Distance Calculation Library, but on the planning level to
omit unnecessary calculations. Furthermore, occupancy grids were analyzed to further
cluster E and accelerate calculations. In the analyzed environments, this has not shown
performance improvements. In more complex environments, it may be advantageous.

3.3.3 Vision System

For autonomous walking in unknown environments, perception is necessary. The fol-
lowing section gives a short overview over the developed Vision System. It was mainly
developed by Dipl.-Ing. Daniel Wahrmann. More details are presented in Wahrmann et al.
[128] and in his PhD thesis [110].

In contrast to current research in vision data processing, it was developed with its
application to bipedal locomotion in mind. It represents a link between motion planing and
vision data processing. The developed Vision System applies state-of-the-art algorithms,
which are improved with respect to the specific application.

The Vision System approximates the environment via SSV-objects as introduced in
Subsection 3.3.2. The input to the Vision System is a 3D point cloud. Instead of building
up a 2.5D grid based map as presented, for example, by Nishiwaki et al. [80] and Sabe
et al. [90] the 3D point cloud data are processed directly. First, all points belonging to

32 Framework for Versatile & Robust Walking

surfaces which are steppable are separated by a segmentation algorithm. Thus, the original
point cloud is divided in two - one point cloud containing all points belonging to the
surfaces and one including the remaining points. In parallel running processes, these two
point cloud data sets are simplified and approximated by simple geometries. To allow
for stepping onto platforms, surfaces are approximated by polygons. As discussed in
Subsection 3.3.2, the surface edges are approximated with obstacles using SSV objects to
avoid collisions.

For both, surface and obstacle approximation, this process consists of four consecutive
steps. Figure 3.6 shows an architecture overview:

1. in Segmentation, the point cloud data is filtered for points belonging to surfaces and
obstacles.

2. in Clustering, the points belonging to the same objects are grouped.
3. in Approximation, all point groups are approximated with simple geometries.

4. the geometries are tracked and filtered in Tracking to improve their approximation
with respect to sensor noise.

The module-based software architecture and the parallel running processes allow for high
update rates and, therefore, modeling of dynamic environments. The surface approxima-
tion runs with a frequency of 5 — 10Hz. Surfaces that move too fast, are classified as not
steppable and considered as obstacles. The obstacle approximation is only limited by the
performance of the sensor and it is able to approximate moving obstacles with a frequency
of 30Hz. The software of the Vision System is published open-source’. In the following,
the main steps are described.

Segmentation

The Segmentation is based on a modified Random Sample Consensus algorithm (RANSAC).
It uses the surface model

ax+by+cz+d=0 (3.7)

with the unknown variables 4, b, c and d. The basic RANSAC algorithm randomly chooses
three points and generates a surface. If enough points are lying in this surface, it is
classified as valid. This implementation has two extensions:

¢ In each frame, the surfaces of the previous frame are used as initial guess. Only then,
the basic RANSAC algorithm is started. That way, the run-time can significantly be
reduced (it is up to seven times faster).

* Surfaces are classified based on their inclination. Thus, only surfaces which are
steppable are further taken into account.

The modified RANSAC algorithm is named rnot-so-RANSAC (see Figure 3.6).

Surface Approximation

The Surface Approximation uses the points filtered in the Segmentation. First, the Clustering
(see left figure of Figure 3.7) groups the points depending on their distances in clusters.
Here, the inclination classification of the Segmentation is used to differentiate, for example,
the ground and ramps. Second, the Approximation (see center figure of Figure 3.7) filters the

5The software of the Vision System is available at http: //github.com/am-1lola/lepp3.

http://github.com/am-lola/lepp3

3.3 Versatile & Robust Walking 33

Figure 3.7: Surface approximation: Euclidean Clustering (left), Quickhull Approximation (center)
and geometric-first order filter Tracking (right).

outliers of each cluster using a Quickhull-Algorithm. The resultant polygon is iteratively
reduced by eliminating all points which modify least the full area of the polygon. The
algorithm stops when a desired number of corner points is reached. Third, the Tracking
filters the resulting surfaces. It compares and filters each new polygon A with the former
polygon B. For this step, a geometric PT1 Filter was developed. For each pointin A, A;, a
projection on B, A;;, and for each point in B, B}, a projection on A, B}, is generated. The
new polygon C is calculated as

C=(aAi+(1—a)Aj,U(l—a)Bj+aB;,)Vi,j (3.8)

with 0 < & < 1. Consequently, the number of corner points of C is the sum of points
of A and B. Thus, the reduction algorithm is executed again. The filter output is the
reduced polygon C. Using the developed filter, an accurate and stable approximation of
the surfaces is achieved.

Obstacle Approximation

The Obstacle Approximation models obstacles as SSV segments as introduced in Subsec-
tion 3.3.2. It follows the same procedure as Subsection 3.3.3. The input to the Obstacle
Approximation are all points, which do not belong to surfaces, as calculated in the Segmen-
tation.

Similar to the Surface Approximation, first, a Clustering groups all points in separated
clusters, using a version of the Gaussian Mixture Models (GMM). This is an approach
commonly used in Machine Learning to cluster non-supervised data. Typically, it consists
of an iterative approach that converges to a classification of points. In this application,
each iteration is executed on new point data and the covariance is filtered with a PT1-filter.
That way, different obstacles stay separated although their points lie next to each other
(see left picture of Figure 3.8).

Second, the Approximation (see picture in the center of Figure 3.8) calculates, motivated
by inertia tensors, geometric invariants of each cluster. Based on the principal moments
of inertia ILyin, Lyig und I,y the geometric invariants are determined as §; = }””'" und
¢1 = ””d . They are independent of the obstacle size and give a clue how the points are
d1str1buted in the space: Obstacles, that resemble a PSS, are described by ¢; >~ ¢, ~ 1 and
obstacles, that resemble a LSS, are described by §; < ¢» ~ 1. Further, obstacles are divided
until the resultant objects can be approximated with LSS or PSS elements.

Third, for the Tracking (see right picture of Figure 3.8) of obstacles a Kalman filter
is used. Constant obstacle velocity is assumed and Gaussian noise is applied on the
expectation value of position and velocity of the GMM.

The approximation processes run in parallel at maximum speed updating an internal
world map, which consists of a list of active surfaces and obstacles with velocities. This
set is sent to the motion planning with an update rate of 10 Hz.

34 Framework for Versatile & Robust Walking

Figure 3.8: Obstacle approximation: Gaussian Clustering (left), Inertia Tensor Approximation
(center) and Kalman Tracking (right).

3.3.4 Motion Planning

Section 3.2 summarizes the limitations of the basic control framework for bipedal locomo-
tion. To achieve a locomotion strategy that exploits the capabilities of bipedal walking,
the basic framework is extended by mainly three components for motion planning (see
Figure 3.3): (1) a new Navigation module explained in more detail in Chapter 4, (2) a
Kinematic Optimization module detailed in Chapter 5, and (3) a Reactive Collision Avoidance
module explained in more detail in Chapter 5 as well. In the following, a brief description
is made.

Navigation

The new Navigation-module replaces the Step Sequence Generation-module. The input to
the Navigation-module are the user’s Walking Commands represented as the parameter
set pyp,q4, which includes a desired step sequence as well as desired goal positions and a
snapshot of the current environment model as it is introduced in Subsection 3.3.2. Based
on its input, it calculates a sequence of foothold positions guiding the robot as close
as possible to the user’s input taking into account the environment such as obstacles
and platforms. Furthermore, it determines the height and the width of the swing-foot
movements necessary to step over obstacles, the height of the CoG trajectory to step onto
platforms and it adapts the step time Ts;., according to the stride. The resultant parameter
set can be summarized as the modified set pyy.

The Navigation-module is located on a high abstract level within the control framework.
It approximates the motions of the full robot by a simple model (see Figure 3.5), to be able
to solve the navigation problem taking a large area into account and long distance step
sequences. As part of the Global Control it is executed each step. This corresponds to a
cycle time of approx. 0.8s. On the one hand, it has to fulfill hard real-time constraints,
since an executable solution has to be provided for each step. On the other hand, the short
computational times allow for re-planning with high sample times. That way, the system
becomes robust to changes in the environment, highly responsive to user input and able
to handle dynamic environments.

Kinematic Optimization

A main deficit of the basic control framework (see Section 3.2) is the planning of the ideal
walking pattern without knowledge of the robot’s future motions. The Walking Pattern
Generation (see Figure 3.2) calculates based on p,,, ideal reference trajectories. The model
used for generating dynamically stable motions is a three-mass model without information
on the robot’s kinematics.

Planning trajectories without taking the future kinematics of the robot’s motion into
account requires high safety margins to avoid collisions and joint limits. Thus, well-

3.3 Versatile & Robust Walking 35

chosen heuristics are necessary to adapt the trajectories to the terrain. In real world
scenarios, walking situations are always different and also different from simulation cases.
Motions based on heuristics may lead to non-executable solutions, which would lead to a
system fail. To overcome these limitations, the Kinematic Optimization-module is introdued
[118]. It is sorted sequentially after the Navigation-module in the Global Control. Based
on pyy and the Ideal Walking Pattern, it integrates a full kinematic model over one step
while taking the local methods for collision avoidance of the Feedback Control (the full
kinematic model is depicted in Figure 3.1 and its collision approximation in Figure 3.5) into
account. Consequently, p;,, as well as the nullspace input, can be evaluated and optimized.
Here, a trade-off between calculation time and parameterization level of detail has to be
done. Based on the Kinematic Optimization’s output the Walking Pattern Generation-module
calculates the Ideal Walking Pattern.

Reactive Collision Avoidance

Both the Navigation- and the Kinematic Optimization-module are part of the Global Control.
They take the environment approximated by the vision system into account. As planning
modules, they influence the motion before it is executed. However, in real world scenarios,
the robot’s motions have to be adapted during execution to account for disturbances.
Furthermore, the environment may change, which cannot be accounted for during the
motion planning.

Therefore, a Collision Avoidance-module is introduced [124]. It optimizes the desired
motion locally taking kinematic constraints each control cycle into account. The main
motivation behind such an adaption of the desired motion lies in the idea that in many
applications, as also in bipedal locomotion, the exact execution of the planned trajectories
is not necessary. The restriction in bipedal locomotion on the executed motion is that the
CoG has to track its desired trajectory to guarantee a dynamically balanced motion and
that the swing leg hits the ground at the planned position and time. A local adaption of the
planned trajectories has an important influence on the trajectory optimization in the Global
Control. The real-time constraints limit the available processing time for optimization.
Consequently, the optimization is only able to influence the robot’s motion through few
optimization parameters. Without a local adaption of the planned motion, many kinematic
movements would not be possible due to the coarse description of the motions via the
parameter py,, and the, therefore, limited influence of the optimization.

3.3.5 Robust Walking

Ideal Motion

| '

Trajectory Optimization < State Estimator [<= Sensor Data

>

Prediction Model

A 4
Adapted Motion

Figure 3.9: Overview of methods for robust walking. They are included in the Trajectory
Adaption-module (see Figure 3.3). Adapted from [114].

36 Framework for Versatile & Robust Walking

In real world scenarios, the robot is expected to be exposed to disturbances which
cannot be anticipated by the planning modules. Possible reasons include model inaccura-
cies of the Vision System due to, for example, sensor noise, environment conditions which
prevent vision perception or, just, badly motivated persons pushing the robot. These
disturbances may be too large to be balanced by local adaptions in the Feedback Control.
Therefore, a model-predictive control was developed which adapt the desired motion of
the robot over an extended time horizon based on current sensor data. For stiff position
controlled robots, their absolute inclinations w.r.t. the ground are considered to be the
DoF with the main significance to the stability of the robot [132]. Consequently, the main
control objective of these methods is to hold the robot upright. They consist basically of
three components:

¢ a prediction model, which is used as common base for the state estimator and
trajectory optimization. It is introduced in Wittmann et al. [132].

e A state estimator to monitor the inclinations of the robot is introduced in Wittmann
et al. [133];

* a trajectory optimization to correct swing foot and CoG trajectories online, which is
introduced in Wittmann et al. [133, 135].

In Figure 3.3, the components are included in the block Trajectory Adaption. Figure 3.9 gives
a more detailed overview of the methods within the Trajectory Adaption. The input to the
Trajectory Adaption are the Ideal Walking Pattern and the IMU measurements, namely the
robot’s absolute inclination ¢,, and inclination rate ¢,,. The output are modified task space
trajectories w,,,3. The Trajectory Adaption adapts via the final values of the swing-foot
trajectories the foothold position in x-, y- and z-direction and its horizontal orientation.
Furthermore, the CoG trajectory is continuously modified. The following subsections are
largely inspired by the results published in Hildebrandt et al. [123].

Prediction Model

~

TZ lox @ \‘/Afﬂ

Figure 3.10: Prediction model with three point masses, 1, for the upper body and i for each
foot. The swing foot trajectories 7 ;; and their modifications Arsy and the trajectories of the
upper body 7 ;4 [123].

For real-time application, the robot’s multi-body system is approximated by a planar
dynamic model (see Figure 3.10). The same planar model is used for the x- and y-directions
(the motion in the sagittal and frontal plane, respectively) with different geometry and
input trajectories. In the following, the model predicting the motion in x direction is
described. The model in y direction can be analogously derived.

3.3 Versatile & Robust Walking 37

Inspired by the model used in Walking Pattern Generation, inertia effects of the full
robot model are approximated via three point masses approximating the robot’s upper
body and its feet, respectively. The relative position of the three masses is constrained.
They are assumed to perfectly track the ideal planned motions of the upper-body (71 (t))
and the feet trajectories (711 (t), T152(t)) as part of wj, in the planning Frame of Reference
(FoR). It rotates with the robot’s upper body (named T-system in Figure 3.10, index T,
x1, z1)). The model’s unactuated DoF are the inclination ¢, and the vertical translation z,
while the translation in x-direction, which corresponds to sliding of the robot, is neglected.
They describe the transformation from an inertial FoR (index I, xj, z;) to the T-system.
The contact between feet and ground is approximated as one point contact located at the
middle of the foot. The contacts are modeled as linear spring-damper pairs (stiffness k.,
damping d.) with the experimentally identified values from the real robot’s rubber sole
and the carpet in the laboratory. They act only in z;-direction and are considered to be
unilateral, since slipping is neglected. The Equation of Motion (EoM) for the model with
g = [z, ¢]T can be stated as

Mp(’?rt)"j + hp(‘?r g, t) = Ap(qr g,t) + Ts (3.9)

with M, as the mass matrix of the prediction model, h, containing all nonlinear terms
of the EoM and A, representing the resultant force and moment of all active contacts N,
projected on the model’s DoF. The robot’s local stabilization controller is approximated
via a torque T calculated as a saturated PD-controller.

State Estimation

The predictive-model approach is based on an accurate estimate of the current robot state.
The estimate is calculated from the sensor feedback provided by IMU measurements
of the absolute inclination ¢,, and inclination rate ¢,,. For large disturbances, the IMU
measurements include undesired oscillations which have to be filtered. In Wittmann
et al. [134] a state observer is proposed as filter. It is based on an extended Kalman filter
which compensates model errors and external disturbances. The observer is implemented
for both horizontal directions and provides an accurate initial state zo for the x- and
y-direction.

Trajectory Optimization

The objective of the trajectory optimization is to adapt the overall desired motion of the
robot to stabalize the robot. It adapts the final values of the swing-foot trajectories, the
foothold position in x-, y- and z-direction and its horizontal orientation according to
the prediction of the robot’s motion using the presented model. Furthermore, the CoG
trajectory can be continuously modified as described in Wittmann et al. [135]. In the
following, the modifications in x and y direction are considered decoupled. A parameter
AL, is introduced which describes the horizontal modification in x-direction of the final
swing foot position. The swing foot trajectory is adapted with a quintic polynomial. The
polynomial begins at the current position, velocity and acceleration and ends at AL, with
zero velocity and acceleration. Figure 3.10 depicts a polynomial A (ALy) added to the
ideal trajectory 7714 via

Trf1 = T7f1id + D171 (ALy). (3.10)

To compensate for the upper body inclination between the robot and the ground and
avoid early ground contacts, the polynomial includes a modification of the swing foot
height. Consequently, the contact force’s lever arm changes and, thereby, influences the

38 Framework for Versatile & Robust Walking

model’s state z = [q, §]. The overall first order differential equation with AL, is modified
to

. q
: M;l(q, t)[)\p(q/ 4, ALy, t) + Ts — hp(q/ q, t)]]
= f(z,t,ALy).

(3.11)

The objective of the Trajectory Adaption, to stabilize the robot, may be formulated mathe-
matically as a minimization of the quadratic cost function

tr
J = AzT(t£)S,Az(tf) +s,AL2 + | AzTQAz dt (3.12)
f f pPRLhx
to

over a time horizon t € [to, ¢ f]. The cost function weights, s,, S; and Q, are manually
parameterized to minimize the absolute inclination error, which is included in the state
error Az = z — z,,5. A direct shooting method is used to solve the optimization problem.
For a given inital value z(ty) = zp and AL,, the model’s motions can be determined
by integrating (3.11) numerically. The resultant trajectory z(t, ALy) is used to compute
the cost function J(z(t,ALy), ALy). This way, the problem is converted into the static
optimization problem

pmin, J(ALy). (3.13)
It can be considered as unconstrained as long as the variable AL, remains inside the
allowable set A;. A; can be interpreted geometrically as a valid area. It takes constraints
due to the robot’s kinematics as well as restrictions resulting from the environment into
consideration. The constraint optimization problem can be solved applying nonlinear
programming methods such as Newton’s method [49]. The modification in y-direction is
derived analogously.

3.3.6 Implementation Details

The following section gives more details about the implementation and real-time real-
ization of the presented framework. Overall, the framework can be divided in control
and vision modules. The control modules directly generate the robot’s motion. Thus,
they represent safety-critical units. Furthermore, the stabilization of the robot requires
short and fixed control cycles. Therefore, the control modules are executed on a computer
running with a real-time operating system QNX Neutrino 6.6, which guarantees hard
timing.

The environment perception is executed on a second computer. It does not rely on
tixed and short control cycles. Its control cycle mainly depends on the update rate of the
camera. Since fixed timing is not required, a Linux OS was pragmatically chosen which
already provides the required software for vision processing. The control as well as the
vision modules are split into different main processes to accelerate calculations. Figure 3.11
gives an overview.

Control Processes

The robot control is divided into three main processes: (1) The Global Control, (2) the
Feedback Control and (3) the Low Level Communication. They exchange data using shared
memory. In the Global Control, a separated thread executes the Navigation- and the Kinematic
Optimization-module during execution of step k for the following k + 1 to k + s steps.

3.4 Robust Walking with Geometrical Constraints 39

Step k l Step k+1
Control - Proc.1
Nav. & Kin. Opt. Step (k+ 1) to (k + nstep)
Ideal Walking Pattern E
Trajectory Adaption

Control - Proc.2

Fecdback Contro! [

Control - Proc.3
Low Level Communication O 500 ps

Vision System - Proc.4

Obstacte Approx. [
Surface Approx. [

Figure 3.11: Multi-process and multi-thread software architecture of LoLA’s real-time walking
control system. Adapted from [123].

The Walking Pattern Generation-module uses the result before each step k + 1 to calculate
its Ideal Walking Pattern. During execution of the current step, the Trajectory Adaption
modifies the reference trajectories sequentially to the Ideal Walking Pattern. The second
process executing the Feedback Control has a cycle time of 1ms. It communicates with the
local joint controller and the sensor data of the robot via the third process, the Low Level
Communication. This in turn runs with a cycle time of 500ps interpolating the data of the
Feedback Control. Wittmann [114] gives more details about the joint control and the sensor
data feedback.

Vision Process

The Vision System is divided in two main processes: (1) the Obstacle Approximation and
(2) the Surface Approximation. Limited by the frame rate of the camera, the Obstacle
Approximation runs with a cycle time of approximately 30ms, which varies according to
the scene. The Surface Approximation has a cycle time of approximately 100-200ms. The
Vision System sends updates to the robot control with a cycle time of 100ms.

3.4 Robust Walking with Geometrical Constraints

The methods presented in the following were developed in collaboration with Lisa Jeschek
[140] and they have been published in Hildebrandt et al. [123]. In the previous section,
methods for environment perception, for versatile walking and for robust walking are
presented. However, when navigating in complex scenarios, all methods have to perform
simultaneously. Figure 3.12 shows an exemplary situation based on this hierarchical
approach: the Vision System detects and approximates an obstacle and sends it to the
robot’s control system. The Navigation- and the Kinematic Optimization-module plan the
robot’s ideal motions based on the valid foothold location of the swing foot x;;, determined
by the step planner. Assuming an unknown disturbance, the Trajectory Adaptation then
modifies this position by Ax = [AL,, ALy]T to stabilize the robot. The resulting final
foothold position, however, would cause a collision. Thus, the desired output is a modified

40 Framework for Versatile & Robust Walking

stance foot

final swing foot

initial swing foot
Figure 3.12: Example for problem description: ideal collision-free final swing foot position and
the modified invalid position [123].

yet collision-free foot position
Xy = x5 + Ax". (3.14)

with feasible, collision-free modification Ax* instead of the modification Ax which could
lead to collisions with the environment.

Here, the main question is how constraints on the foothold positions can be described
and accounted for in a real-time optimization procedure as described in Subsection 3.3.5.
Since Trajectory Adaptions have to react instantaneously to unknown disturbances short
computation time is crucial. Longer calculation times would result in higher latencies
and which would degrade the performance of the feedback control. The requirements are
summarized as follows:

¢ Short computational time (< 1ms);

Several arbitrarily shaped obstacles may be present;

¢ Over-stepping of obstacles should be possible;

Kinematic limits must be respected;

A collision-free position has to be found reliably.

3.4.1 Related Work

In existing literature, scenarios as the presented above, are rarely investigated. Most
works handle versatile walking and robust walking separately. Only few authors present
approaches to allow for versatile and robust walking simultaneously. The authors of Chest-
nutt et al. [21] showed experiments of a robot walking on the spot and adjusting footstep
locations to reject perturbations while taking obstacles into account. They extended their
step planner to compute not only step sequences, but also safe regions around the target
footholds. The walking controller uses those regions to calculate permissible adjustments
of the target footholds to reject perturbations in the presence of obstacles. Following this
approach, only the step planner takes the environment into account. When the walking
controller adjusts the target footholds, it needs to recalculate the robot’s trajectories. Colli-
sions can thus only be avoided by using large safety margins, which do not prevent the
possibility for the robot to step close to or over obstacles. Recently, Naveau et al. [77]
published a method to extend their walking controller by taking convex obstacles as addi-
tional constraints into account. Using the walking controller, the robot HRP2 can adjust
footholds locally to avoid circular obstacles in experiments. They also proved their concept
in simulation to reject disturbances. To the best of the author’s knowledge the combination
of perturbations and obstacles has not been shown. Integration into a whole planning

3.4 Robust Walking with Geometrical Constraints 141

framework including a footstep planner is pending. It is a very interesting approach,
however, and in contrast to the method presented in this work, the model predictive
control with nonlinear constraints is solved at a high frequency. A simplified template
model of the robot thus has to be used to meet the real-time requirements. Approximation
of the environment and of the robot is kept simple. Complex scenes and self-collisions are
therefore difficult to consider in this framework.

In Kuindersma et al. [61], the authors present an optimization-based framework that
treats all tasks for planning and control in complex scenarios. A footstep planner calculates
valid footholds using mixed integer optimization. It is based on a height map segmented
into convex allowable regions represented as polytopes. A human operator has to provide
the algorithm seed points to find the polytopes. To include arbitrary static environments,
they perform the dynamic motion planning with the robot’s complete linear and angular
momentum equations. This enables multi-contact problems as well as the full kinematics
of the robot to be included. For feedback control, a QP is formulated that takes long-term
stability into account using the inverted pendulum model. It provides motor commands
via additional inverse dynamics for the current time-step. To the best of the author’s
knowledge, information about the environment is not used in the stabilization.

3.4.2 Method Overview

The hierarchical approach of the framework, presented in Section 3.3, has several advan-
tages: it is very robust, since each module takes the results of those preceding it into
account and improves them. Due to the breakdown of the motion generation problem to
sub-problems that can be solved in real-time, it is also able to allow for reactive bipedal
locomotion. Since the combination of the methods should not decrease the performance
of the overall system, it was decided to preserve the hierarchical control architecture.

Referring to the example of Figure 3.12, it is decided to first determine a collision free
motion that is then adapted for disturbance rejection based on sensor data. Furthermore,
it is stipulate upfront that avoiding a collision has a higher priority than rejecting a
disturbance. The decision is based on the assumption that disturbance rejection can take
place during more than one step, whereas a collision will lead to a system failure. This
means that the possible solutions of (3.13) are restricted to reachable and obstacle-free
regions. However, other criteria may be defined without changing the logic of this system.

There are basically two approaches to handle such complex scenarios: the first is to
determine an optimal step length modification without constraints and project the final
solution onto the cone of A;. The second approach accounts for the constraints during
optimization: however, this requires an optimization for the step length modifications
in both directions since the feasible set is at least two-dimensional and the boundaries
for ALy and AL, are coupled. For this reason, the decoupled planar models presented in
Subsection 3.3.5 are combined to a single 3D model.

In the following, the approach accounting for the constraints is derived. The approach
relying on projecting an invalid point onto a feasible region is discussed in the subsequent
part. This projection method is then applied to the stated problem and two solution
strategies are discussed. An overview of the control flow for the Trajectory Adaption taking
constraints into account is depicted in Figure 3.13.

3.4.3 Geometrical Constraints

The key point when taking the geometrical constraints imposed on robust walking, namely
kinematic constraints and obstacles, into account is their consistent and dense representa-
tion. To allow fast calculations, convex polytopes are chosen to represent both kinematic

42 Framework for Versatile & Robust Walking

Ideal Foothold
(Tia)

Environment Model (E) xk,
> Trajectory Adaption >
(Obstacles)

Sensor Data

(‘P’VVL’ ‘P’VVL)

Figure 3.13: Control flow of Trajectory Adaption taking into account constraints. Adapted from
Hildebrandt et al. [123].

constraints and obstacles.® This results in neq linear inequalities, c,g,
Cog,j 1= a].Tx > bj (3.15)

represented by the parameters a; and b; for j = 1, ..., neq. A set of n¢, linear inequalities
describes one convex polytope, C;, which is an invalid region (see for example Figure 3.18).
In total, the invalid area Ag consists of 1, polytopes and is defined as follows:

np
/_ls = C[l.. (3.16)
i=1
The corresponding valid area, As, is formally defined as
As = A - As, (3.17)

based on the total search area .4. The determination of Ag is described below.

Kinematic Limits

Starting with the current stance foot, the kinematically reachable area is heuristically
approximated by the convex polytope as depicted in Figure 3.14. The reachable area
results in ny;, convex polytopes (see Figure 3.14). The system of inequalities for one
convex polytope results in

Cl,kin,j = {x|V1 S {1, --'rnkin,j} : a[in,jrix > bkin,j,i}- (318)

Obstacles

As described in Subsection 3.3.2, 3D segments approximate obstacles and areas of the
environment the robot can not step onto. The former consist of 155y convex SSV-objects
to allow for a detailed approximation of the real objects. Like the representation of the
kinematic limits, the ngsy convex SSV-objects are reduced to 2D polytopes to comply with
the hard timing constraints. The SSV-objects are first projected onto the ground. Then, the
three types of SSV-objects — sphere, line and triangle — are represented as polytopes as

shown in Figure 3.15. For each object j, we get a convex hull, which is described by
CI,SSV,‘ ={x|Viel,..,n SSV,if -

i=1 ’T s egssvj} (3.19)

ussv,]',ix > bSSV,j,i}~

Kinematic limits already restrict the valid area for a step. Therefore, only obstacles within
this kinematically reachable area are considered. This approach greatly reduces the
computational costs for the inequality constraints.

©The representation as convex polytopes does not represent a limitation since concave polytopes can be decom-
posed in convex polytopes.

3.4 Robust Walking with Geometrical Constraints 43

stance foot
linear -/
inequalities kinematically

reachable
region

Figure 3.14: Kinematically reachable region (grey) and current stance foot (blue). Kinematically
reachable region bounded by seven linear equations Hildebrandt et al. [123].

Large Obstacles

Considering the robot’s whole kinematic movement, obstacle-free regions are not nec-
essarily steppable or kinematically reachable. Large obstacles, which the robot can not
over-step because of their height, make adjacent obstacle-free regions inaccessible due to
kinematic constraints. These large obstacles are already considered in the environment
representation to avoid repeated checks for obstacle-free regions and inaccessible regions.
Instead of introducing a polytope for the inaccessible region, the large obstacle’s represen-
tation is enlarged (refer to Figure 3.16). That way, the obstacle approximation as well as
the representation of the inaccessible region stay convex.

Foot Geometry

The sophisticated 3D representation of the foot and lower leg geometry used in the step
planner helps to give a better approximation of the robot’s whole kinematic movement.
Nevertheless the obstacles are enlarged by the foot geometry as shown in Figure 3.17.
Thereby, the desired foot rotation « are taken into account. Thus the geometric constraints
can be analyzed using only one point, which describes the foothold position.

3.4.4 Finding Safe Footholds

Below, the initially posed question is answered: given a modified but invalid foothold
position, how can the closest valid one be determined (see Figure 3.12)? Several methods
are described and compared in this subsection.

Sampling

One solution is to discretize the area around the modified foothold position. The discrete
positions are checked to determine whether they are valid or not. Among all the valid
positions, the one closest to the modified position is chosen. The advantage of this
procedure is that calculation time only depends on the number of equations and on the
discretization level. The calculation time is therefore deterministic making the method
suitable for real-time application. Furthermore, all discretized points can be checked in
parallel on multi-processor platforms. The disadvantage is the strong dependence between
the solution’s quality and the discretization grid. Fine discretization is computationally
expensive, but is necessary to find a solution in complex scenarios.

Geometric Testing

Another solution is to search for the closest valid point on the boundaries, which are
described by linear equations. This reduces the problem to a distance calculation between
this valid point in C;, and lines describing the boundaries of C;.. The closest point on the
line can be calculated based on the smallest distance between point and line. To accelerate

44 Framework for Versatile & Robust Walking

& o

Py
Ps Ps P1 —~ < P4

Ps p2 \
23 P Ps3

Figure 3.15: Approximation of SSV-Objects as polytopes [123].

the calculations, the residuum of the point and the inequalities is used: A small residuum
indicates a small distance between the point and the boundaries and is used to reduce
the number of distance calculations. However, this procedure is not possible for multiple
invalid regions that intersect each other. The closest point on one of the boundaries is
not necessarily valid since it may lie in another invalid region. This extended problem
is solved as follows: (1) the closest point on all boundaries is found. (2) Each of these
points is checked for validity. If one is invalid, the next nearest valid point on the same
boundary is chosen. (3) Finally, all resulting points are compared to find the closest
point. In contrast to the sampling-based approach, the quality of the solution does not
depend on the environment or prior assumptions (e.g., a discretization grid). However, the
closest point is searched for on each boundary and thus the computational costs increase
significantly with the number of invalid regions.

Safe Regions

The previously presented solutions all begin with an invalid starting point, x;,, and try to
find a valid point, x;,. Another possibility is to invert the problem: instead of finding the
closest valid point, As is divided into a set of convex valid regions Cy. In each of these
valid and convex regions, the closest point to the invalid starting point can be determined
separately and, because of the regions’ convexity, very efficiently. In contrast to the
Geometric Testing method, intersections of the valid convex regions do not pose a problem,
because the search is applied on a set of valid regions. The solutions are consequently
independent of each other. The best one is chosen based on the calculated set of closest
points. This procedure of searching valid convex regions instead of only considering the
invalid regions is largely inspired by Chestnutt et al. [21], who presented a method to
calculate a valid convex area around a valid starting point. The algorithm starts with a
convex area. It iterates around the starting point and it removes invalid parts of the initial
convex area. A drawback of the implementation is that only one convex area around the
starting point is found. Deits et al. [27] presented a powerful open-source tool, called
IRIS, which has already been applied to step planning [26]. IRIS uses the corner points
of invalid convex regions as input and calculates the corresponding inequalities. It also
determines the largest valid convex region which is closest to a starting point. Although
it seems to be well suited for the present problem, it exhibits some shortcomings with
respect to this application”:

* IRIS does not guarantee that the starting point lies in the convex region.

"The following statements are based on the authors experience with IRIS tool available as open source at
https://github.com/rdeits/iris-distro.

https://github.com/rdeits/iris-distro

3.4 Robust Walking with Geometrical Constraints 45

foothold adjustments inaccessible region
N\ N\
large _|
obstacle

Xm,1

Figure 3.16: Large obstacle and its representation as inaccessible region. ldeal x;; and modified
X, foothold positions [123].

* [RIS needs a predetermined search area. The algorithms seem to be very sensitive to
starting points close to the borders.

¢ [RIS only determines one convex area. When it is applied iteratively on the same
search area by respectively removing the determined regions, it often fails to find
additional valid regions.

The authors of Liu et al. [65] and Sarmiento et al. [92] presented methods to divide arbitrary
areas in convex regions. On the one hand, neither method is restricted to convex invalid
regions; however, neither benefits from reduced computational costs for convex problems.
In this application, only convex invalid regions are used, to gain the benefit in calculation
times. Like Liu et al. [65] and Sarmiento et al. [92] the objective here is to completely cover
the valid area with multiple convex regions that might intersect. The characteristics of this
mathematical problem are exploited to meet the timing limitation:

¢ (j; are all convex.

¢ The algorithm’s starting point, which is the ideal step location, x;4, calculated by the
step planner, always lies in Ag.

e The kinematic constraints limit .A.

The algorithm takes an iterative approach. A grid of seed points is set over A. The seed
points, which lie in Ag, successively become the starting points for searching a convex
region surrounding them. Once the convex region around a seed point is determined, it is
removed from the remaining valid area to avoid repetitive searches. Since it is valid per
definition, the ideal footstep location is used as a first seed point. This helps to reduce
the computational costs. For one seed point, the search for a valid convex region can
be summarized as follows: The closest boundaries to the seed point are determined
iteratively. The boundaries are therefore considered to be line segments with start and
end points. Once the closest boundary, /;, is found, it is added as a linear inequality to the
valid region Cy,. Here, the convexity of the invalid region is used to efficiently find the
closest boundaries. All boundaries outside Cy, are skipped and considered inactive for the
following steps (see Figure 3.18). The search stops when there are no active boundaries left.
Algorithm 2 summarizes the procedure. The calculation of Cy has to be done only once
before each of the robot’s physical steps. The kinematically reachable area lies outside the
camera’s FoV. Therefore, the representation of the environment does not change during
execution of the step.

46 Framework for Versatile & Robust Walking

current obstacle
swing foot

o
Xid

u enlaréed obstacle

Figure 3.17: Obstacle (red) enlarged by foot geometry (light red). The ideal foothold position
x;; and the foothold’s rotation « [123].

Obstacles

Figure 3.18: Finding convex valid regions. (1) and (2) obstacles and kinematic constraints. (3)
Seed point py. Already found inequalities in green. Current closest line in blue. Remaining active
boundaries in red. (4) Output of Algorithm; Multiple convex valid regions (different brightness
level of ivory) [123].

m.,

i
Pk p

Valid convex regions

Algorithm 2 Dividing As in convex regions [123]

1: function FIND-CONVEX-REGIONS(Ag, As)
2 initialize set of seed points Ps
3 Cy={}
4 for all p; € Ps do
5: if py is valid then
6: j<0
7 repeat
8 Calculate closest boundary line /; of Asg
9: Add [; as inequality to boundaries of Cy,
10: Remove all inactive boundaries of Ag
11: j—j+1
12: until no more active boundaries
13: remove Cy, from Ag
14: update Cy=Cy U CVk

15: Output: Cy

3.4 Robust Walking with Geometrical Constraints 47

Discussion

In summary, all of the methods presented can be used to find a valid point which is close
to the desired invalid point. In the tested implementation the sampling-based method
showed strong dependence on the grid size. The Geometric Testing-method and the Safe
regions-method showed similar results in terms of computational costs and quality of the
solution. However, the latter has the advantage that it calculates not only the closest point
but also Cy. These inequalities are suitable for optimization algorithms as shown below.
Therefore the Safe Regions-method is chosen for the final implementation on the robot.

3.4.5 Footstep Modification with Geometrical Constraints

Finally, this section describes how the algorithm for finding a point in the safe regions
can be combined with the optimization of the next foothold positions (compare Subsec-
tion 3.3.5) for stabilizing the robot.

Constrained Optimization Result

One straightforward solution for considering safe regions is to project the optimized
quantities Ax = [ALy, AL,]” onto the safe regions. This way optimization for the step
length modifications can be done separately in the x- and y-directions. The optimization
results are projected onto the cone of As. Two different criteria were tried to find the point
that is closest to the optimal solution: the geometric distance between Ax and Ax* and the
point with the best (lowest) costs determined using (3.12). For the second criteria several
candidate points are generated all lying on the cone of As. Nevertheless, this requires
additional time consuming evaluations of (3.11) and (3.12). Both methods were tried with
the result that they perform similarly and consequently the closest distance criterion was
chosen.

]- - Step k Step k+1 \
Control - Proc.1
Nav. & Kin. Opt. Step (k + 1) to (k 4 nstep)
Ideal Walking Pattern
Computation of Ag H
Trajectory Adaption \L

Control - Proc.2

Fecdback Contro! [

Figure 3.19: Integration of constraints calculation in multi-process and multi-thread software
architecture of LoLA’s real-time walking control system (compare Figure 3.11). Adapted from
Hildebrandt et al. [123].

Optimization with inequality constraints

It is mathematically more elegant to include the inequality constraints directly in the
optimization. This can be realized with hard constraints or using a penalty function.
The later has the advantage that the problem is again unrestricted and exhibits better
computational time. The prediction model (3.11) is extended by an additional passive DoF,

48 Framework for Versatile & Robust Walking

Table 3.1: Computational time summary for maximal four obstacles. Runtimes are obtained
from the real-time QNX computer [123]. See Section 3.1 for hardware specifications.

method avg. [us] max. [ps]

Computation of A 600 2000

Find closest point 4 250

Trajectory Adaptation (total) 1000 2500
I I

0.2 Do — - 200

Agpm,y -

= 01 Feote — 4 100 —

3 Z

o 0 =[><//\ /\, 0 3

| | | | |

t [s]

Figure 3.20: Synthetic simulation example: disturbance force and resulting inclination errors.

T
0.2 [\ -
El f‘
= 01 - f =
8
<
0 A
\ \ \ \ \
4 5 6 7 8 9
t [s]
0.1 ‘ ‘ ‘
£ S|
= 0
>
<
—0.1 \ \ \ \ |
4 5 6 7 8 9
Ideal Right — Left leg —
Right leg

Figure 3.21: Synthetic simulation example: foot trajectory adaptations for stabilizing the robot.
Ideal trajectory would be executed without the obstacle in front of the right foot (see Figure 3.22).

3.4 Robust Walking with Geometrical Constraints 49

¢y, which is an inclination in y-direction. The foot trajectory
TrF1 = 1 f1,i0 + D 1751 (AL, ALy) (3.20)

includes both final foot step modification quantities AL, and AL,. The EoM of the spatial
model with g, = [z, ¢, @] can be derived and written as first order differential equation

zo = f(zs,t, ALy, ALy) ,zs=[q,, 4" (3.21)

The cost function for the optimization is rewritten for the spatial model (3.21) as

y
Jo = 2.z, + AxTS,Ax + / 2T Qz.dt 52
0
+ h(Ax)
and extended by an additional penalty term
2 -
h(Ax) = B (am —xp)" xm € As (3.23)

that includes the distance from x,, = x;; + Ax to the closest valid point x, at the cone
of As. The additional weight B is set to a value higher than all other weighting matrix
entries. The optimization result from (3.21) and (3.22) is not necessarily valid since invalid
solutions are penalized but not completely avoided. Nonetheless, the solution is at least
close to Ag. Consequently, the validity of the optimization result, x,,, will be verified
and if necessary projected onto .Ag as described in Subsection 3.4.5. In simulation and
experiments this strategy shows the ability to find solutions that require over-stepping of
obstacles to maintain the robot’s balance. This is possible because not only one safe region
but a set of safe regions is used. Instead of using always the closest point as the starting
point for the optimization, the starting points in each of the safe regions can be used as
well. That way, multiple optimization processes can be run in parallel and the optimal
result out of all optimization processes can be chosen as final result. So far, this approach
has not shown superior results to just using the closest point as starting point. The same
extension is applicable for the method Footstep Modification with Geometrical Constraints.

Implementation Details

Figure 3.19 depicts the integration of methods for versatile and robust walking in the
overall software architecture. Before a new step k begins the ideal motion is planned
(Ideal Walking Pattern) and the set of valid regions As is computed from the environment
model. While the environment model is continuously updated by the Vision System, A; is
computed only once before a new physical step. This is sufficient since obstacles that are
within the kinematic limit of one step lie outside the camera’s FoV and are, therefore, no
longer updated. The Trajectory Adaption, as part of the Feedback Control prevents collisions
that a footstep adaptation between the swing foot and the obstacle might cause. This
may otherwise occur since only the final position is checked and the swing foot height
is adapted via a heuristic. The computational times of the presented algorithms are
summarized in Table 3.1.

Results

The method is presented in an simple synthetic example using a multi-body simulation.
The simulated LOLA is commanded to walk in place while it is subjected to a disturbance

50 Framework for Versatile & Robust Walking

t=4.72s t =552s
t=6.32s t=712s t=792s

t g § 0 § =8
7 7 7 2

Figure 3.22: Synthetic simulation example: collision model of the robot and footstep adaptation
with one obstacle at different time instants. The robot is stepping on the spot and a forward
disturbance force is given around t = 5s. See Figure 3.23 for the explanation of the 2D plots.

force in its walking direction (x-direction). One obstacle is placed close to the robot to limit
feasible footstep modifications. Figure 3.20 shows the disturbance force and the resulting
inclination errors for the constrained optimization result (see Subsection 3.4.5). The robot
is still able to stabilize itself with the limited foot positions (Figure 3.21). A snapshot at
each walking step of the 3D-collision model and the 2D-polytopes is shown in Figure 3.22.
An explanation of the 2D plot is given in Figure 3.23. The same simulation experiment
was conducted with the 3D-prediction model including the inequality constraints during
optimization (see Subsection 3.4.5). Results are not presented separately since they closely
resemble those shown above.

3.5 Summary

In this chapter, a control architecture to allow for versatile and robust walking in unknown
environments is presented.

The common platform, the basic framework for stable and fast walking, is summarized.
The basic framework is extended by three modules: a perception module, a motion
generation module and a module for disturbance rejection. These modules are introduced.

current swing foot position (mid point)

stance foot —— o
| collision free position (x;,)
Yid i i —— modified position (x;,)
As
kinematic limits /&\ | obstacle
_|—— obstacle enlarged by foot
geometry

Figure 3.23: Explanation of the 2D plots to visualize the overall “find safe foothold” algorithm.

3.5 Summary 51

Special focus is set on their integration in the overall concept and their integration with
each other. In addition to the introduction of the concepts, implementation details of the
software design are given.

Furthermore, the experimental platform, the humanoid robot LOLA, is presented. Its
hardware setup, including available sensors and computers, is presented.

Chapter 4

Autonomous Navigation

In the previous chapter, the framework for versatile and robust walking is presented. This
chapter focuses on the Navigation-module of the robot. The presented approach allows for
reactive path planning in previously unknown and dynamically changing environments.
In the scope of this thesis, it represents the Sequence Planning for humanoid locomotion
(see Figure 4.1).

An application scenario of these methods would include a planner or a user with
limited informations about the environment that roughly guides the robot. The developed
methods would reactively navigate the robot through dynamically changing environments
in short distances, as for example a distance of 1 — 10m in a room, relying only on
oboard sensing. Path planning methods for long distances are not investigated. However,
possibilities are presented to combine the reactive methods with long distance paths
calculated on a higher planning level. These methods are generalized to a concept for
whole body pose planning in Kammermeier [142].

In Section 4.1, a short insight on the characteristics of bipedal navigation is given.
Possible interfaces and basic requirements on the Navigation-module are defined. Fur-
thermore, a literature overview is given. Section 4.3 presents the methods for bipedal
navigation. It formally defines the planning problem and introduces an A*-based step
planner. Specifics of the presented approach are emphasized. This part is based on Hilde-
brandt et al. [42]. The first implementation of the step planner were done in collaboration
with Moritz Sattler, Wolfgang Wiedmeyer and Johannes Klotz [146, 150, 154]. Section 4.4
and Section 4.5 discuss different aspects of the methods presented in Section 4.3 and
present further extensions. Section 4.4 introduces a novel method for using a mobile
platform planner for bipedal locomotion. Different possibilities to beneficially couple the
mobile platform planner and the A*-based step planner are developed and discussed.
The methods as well as the results are published in Hildebrandt et al. [119]. Section 4.5
introduces methods for softening the discretization done in Section 4.3 and to exploit the
continuous range of values. Finally, Section 4.6 is devoted to a summary.

4.1 Bipedal Navigation

In the following, a short overview of interfaces for human-robot interaction are given.
They represent basic options which can be easily extended by more sophisticated solutions
as proposed in Section 4.4. Furthermore, Subsection 4.1.2 summarizes the navigation
problem of bipedal locomotion from a planning point of view.

4.1.1 Human-Machine Interfaces

According to its preferences and the application scenario of a bipedal robot, a user should
have the possibility to guide the robot with a joystick, give it desired walking parameters

53

54 Autonomous Navigation

Time
Horizon

p

Trajectory
Optimization

w,u

Level of
Reactive Detail
Adaptations

Figure 4.1: Hierarchical Approach for Motion Generation.

or set intermediate goal positions that the robot should reach. The robot should reactively
follow these high-level commands and take care of finding a safe and optimal path.
Different user interfaces pose different requirements on the navigation module. They are
discussed in the following.

Joystick — Control

The joystick—control is a direct interface for controlling the robot. Similarly to a video
game, the user gives the robot walking direction and speed as input via the joystick. To
allow for direct control of the robot, Buschmann et al. [15] implemented the velocity vector
to be relative to the current robot position.

It is assumed that the user has only limited information about the environment due to,
for example, limited bandwidth of data connections, in real world scenarios. Therefore,
the robot should be able to follow the user input as close as possible while taking care of
traversable obstacles. This concept is inspired by Chestnutt et al. [17].

In the presence of non-traversable obstacles, the joystick—control reaches its limits.
The robot has to differ largely from the desired input to find a valid path. Thus, the
interpretation of the user input gets difficult. Does the user want the robot to follow still
the original velocity vector? Should the robot interpret the velocity relative to its current
position or relative to the position when it receives the command?

Since large deviations of the robot from the original input do not coincide with the
user’s intuition [2], the user is expected to adapt its commands to the robot’s current
position. As presented in Wang et al. [111], feedback from the robot to the user, as for
example force feedback, would help to improve the interaction between user and robot.

For the Navigation-module, the following requirement is derived: the navigation
module should have small calculation times to be as reactive as possible. It should be able
to take changing user input at each step into account. Since the user input may change
continuously, planning horizons of more than a couple of steps are not required.

Desired Step Parameters

The user should be able to command the robot directly via setting desired step parameters
as rotation angle, step length or step width. The robot should stay as close as possible to
the user chosen parameter while taking the environment into account. This is similar to the
joystick—control, since the velocity vector can be transformed to desired step parameters.
However, the transformation between velocity vector and desired step parameters is done
by an algorithm.

4.1 Bipedal Navigation 55

way points

actions

Figure 4.2: Hierarchical approach: simplification of robot motion via foothold positions (way
points) and whole-body motions connecting the footholds (actions). Footholds in blue and green,
obstacles in orange.

Goal Position

Additionally to the direct way of controlling the robot’s motion via joystick or desired
step parameters, the user should have the possibility to set goal positions. The robot
should be able to walk autonomously to the goal positions taking the environment into
account, while staying close to a desired walking pattern provided by the user. It should
find the optimal path and may deviate from the direct way to the goal. In contrast to the
joystick—control, the user is not expected to change its input continuously.

This chapter focuses on the input via Goal Positions. The input via Desired Step Parameters
or joystick can be interpreted as the input via Goal Position by assuming virtual changing
goals to accelerate the navigation module as explained in the following. In real-world
scenarios, the robot is assumed to navigate in unknown and dynamic environments. Due
to the moving and limited field of view and sensor noise, even static environments are
perceived and modeled as dynamically changing. For this reason, regardless of the user
interface, calculation time plays a crucial role for the navigation module. It is discussed in
the following.

4.1.2 Problem Description

The proposed interfaces represent possibilities to interact with the robot and define re-
quirements. Most current humanoid control frameworks solve the motion generation
problem using a hierarchical approach to achieve real-time bipedal walking [12, 52, 80,
105]. In the following, this premise is followed.

The hierarchical approaches allow us to separate, up to a certain level, the navigation
problem from the walking pattern generation. First, consecutive states (the footholds) are
determined and then the full-body motion is calculated connecting the discrete footholds.
From a planning point of view, path planing for humanoids is an interesting and chal-
lenging research topic: a walking path of a bipedal robot can be described via consecutive
states. It is comparable with a set of end-effector poses a manipulator has to reach se-
quentially. Following this idea, the footholds are considered in the general concept of
end-effector poses way points (see Chapter 2). Each way points is connected via a continu-
ous motion to its predecessor. In the case of bipedal walking, the humanoid robot has to
execute a swing-foot movement to walk. This whole-body motion is called an action. Thus,
the position of each way point relative to its predecessor is limited by the capabilities of the
robot. Figure 4.2 depicts a sequence of way points and actions for bipedal locomotion.

The partially discrete character differentiate the navigation problem from continuous
2D path planning for, e.g., cars. On the one hand, the discrete character of the way
points complicates the motion planning problem. It is not possible to plan continuous
trajectories and directly use a mobile platform planner. The search space consist of discrete
areas which depend on each other and which are connected by the robot’s motion. On
the other hand, consequently, it gives the biped robot more possibilities to navigate in

56 Autonomous Navigation

complex environments, for example by traversing obstacles. While most mobile platform
planners can be applied to solve the navigation problem for bipedal robots by heuristically
adapting foothold position to the 2D path, it prevents exploiting the characteristics of
bipedal locomotion.

4.2 Related Work

In the following, the research on path planning for humanoid robots is divided in two
approaches: most of the published methods propose to discretize the robot’s kinematically
reachable area and to apply implicit graph search algorithms to search for step sequences
on the set of discrete areas. This body of literature is presented in Subsection 4.2.1.
Subsection 4.2.2 gives an overview of approaches which are not based on graph search
algorithms.

4.2.1 Graph-Search-Based Approaches

Early work on autonomous walking is presented by Kagami et al. [51] and Okada et al.
[83]. They use stereo data from a vision system which is transformed into a discrete
2D height map. Based on the 2D height map and on a discrete set of statically-stable
single-step motions, they propose to search footstep transition graphs for footstep se-
quences via heuristics. Although the system is limited to environments with sufficient
structure for dense stereo algorithms, their experimental platform, the robot H7, is able to
navigate through cluttered environments without colliding. Nishiwaki et al. [82] present
an extension which allows the robot to follow a color-coded object.

A similar approach is presented by Gutmann et al. [39]. Using only on-board sensing,
the proposed algorithm converts stereo data into a labeled grid with height information
and a 3D occupancy grid. The algorithm is limited to environments with enough texture,
as well. Based on the labeled grid, an A*-based algorithm computes a path assuming the
cells as nodes [90]. This allows the robot to climb stairs or navigate through obstacles, but
not to step over them. Additionally, the coarse grid limits the robot in its movements. This
approach is successfully tested on Sony’s robot QRIO.

Experiments on climbing stairs and avoiding obstacles is also conducted by Michel
et al. [72]. Based on object models, the robot is able to localize itself with respect to
recognized objects. Using an A*-based footstep planner, the robot avoids obstacles and
climbs stairs.

Although the presented approaches render humanoid robots more autonomous, they
are all restricted to environments which fit their particular assumptions. Chestnutt et al.
[20] generalize these results. They set up a laser scanner to build a 2.5D map of the
environment. The laser scanner has the advantage of providing quite accurate distance
measurements. That way, the system does not longer strongly rely on specific textures.
The required pivoting of the scanner to obtain a full 3D point cloud leads to a measurement
time of 1s per scan as reported by Nishiwaki et al. [80]. This leads to a delay for taking
new obstacles into account. Chestnutt [18] and Chestnutt et al. [19] present and compare
local methods to adapt the fix discrete action set of an A*-Search to the environment.
These methods improve largely quality and speed of the A*-Search applied to cluttered
environments. Furthermore, Chestnutt [18] discusses the influence of the local step
adaptations to the optimality of the search. They show very impressive experiments with
their experimental platform, the robot HRP2. Using an external motion capture system for
localization of the robot, it is able to move autonomously through a cluttered environment,
while traversing obstacles and stepping onto platforms.

Hornung et al. [45] and Hornung et al. [46] present several methods to speed up the

4.2 Related Work 57

A*-Search especially for long footstep plans: they evaluate the influence of the heuristics to
improve the speed of the A*-Search based footstep planning. They introduce combinations
of the A*-Search with locally acting, randomized components. This helps to avoid local
minima and accelerates the planning process. Furthermore, it reduces the dependence of
the A*-Search to well-designed heuristics. For further acceleration, Hornung et al. [45]
propose to exploit the knowledge of the terrain by using 2D path planning algorithms in
regions without obstacles and a more sophisticated footstep planner in cluttered regions.

Garimort et al. [33] and Hornung et al. [46] published the developed algorithms as
an open source library. This library is used by Stumpf et al. [102] for the DARPA Robotics
Challenge and adapted to the human-size robot Atlas.

The previously presented approaches have characteristics in common, namely that
they do not explicitly take the stepping motion of the robot in the footstep planning
into account. They use heuristics to decide whether a footstep location is reachable or
not. Perrin et al. [88] presented an approach which directly takes the stepping motion
into account. They divide each step in half-steps. At discrete configurations they check
for collisions using precomputed body approximations. In a second step, they smooth
the determined half step combinations to get an approximately dynamic motion of the
robot. For a near real-time solution, Baudouin et al. [7] simplified the collision checks.
Additionally, to handle the high dimensional search space in a reasonable time, they had
to take a random solution using an RRT method instead of the A*-Search into account.
This sped up the planning process, but it still needs 2.5 s to find a solution. This fact makes
an application in changing environments and/or changing user input difficult. They have
not integrated their navigation module in a framework with on-board-sensing. Instead,
either a known environment is assumed or a motion capture system is employed.

Maier et al. [68, 69] present a framework which combines perception, path planning
and collision checking for the robot Nao in a completely unknown and cluttered environ-
ment. They set up an RGB-D sensor to identify obstacles and patches the robot can step
on. To analyze the stepping motions in an A*—search based step planner, an approach
similar to Perrin et al. [88] is applied: all the robot’s possible actions are approximated
via inverse height maps. These height maps are further used for collision checks with
the environment. The inverse height map represents conservative approximations of the
kinematic capabilities of bipedal robots. They model the whole space traversed by the
robot’s parts with one collision object. Due to disturbances and timing problems between
encoder reading and depth camera data, the robot has to stop between every second step in
order to update the map. This makes fluent movements impossible. Although impressive
results were shown using graph-based search algorithms, they have the disadvantage,
that the quality of the resulting path always depends on the discretization level: a coarse
discretization has the advantage of a very fast search, but the quality of the solution is
suboptimal due to the limited discrete action set.

4.2.2 Not Graph-Search-Based Approaches

In contrast to the presented methods taking explicitly the discrete character of the consecu-
tive footholds into account, methods are presented which simplify the navigation problem
to the search of a continuous 2D path. Based on the 2D path, local methods are applied to
adapt the footholds. In 2004, Cupec et al. [25] and Lohmeier et al. [66] conducted experi-
ments with the robot Johnnie. The work is a break-through for vision-guided walking. The
proposed system is able to detect geometries based on their edges. Heuristically, a step
planner adapts the step length to step over or onto geometries lying horizontal or vertical
relative to the robot.

Buschmann et al. [15] applied a mobile platform planner to allow for autonomous
walking using only on-board sensing. Instead of building up a global map, they propose

58 Autonomous Navigation

to test 2D trajectories and check whether or not they are viable. The interface between the
step planner and the 2D path relies on the directed velocity. The step planner heuristically
adapts the step parameters to follow the desired velocity vector. This enabled safe robot
movements in an unknown environment. However, it does not allow the robot to step
onto or over objects.

Karkowski et al. [54] follows a similar idea. They propose to search for sub-goals
directing to the goal. The sub-goals are connected via line segments. The robot’s foothold
positions are geometrically calculated with respect to the 2D segments. The robot’s
kinematic capacities such as stepping over obstacles are not fully exploited, nor is the
solution’s optimality explicitly considered.

Within the DARPA Robotics Challenge Trails, Deits et al. [26] presented an interesting
method different to the previous approaches. The presented vision system determines
convex areas in which the robot is able to step. Starting with a fixed number of steps,
the step planning problem can be solved using a mixed integer optimization. Due to
the convex characteristic of the areas, the optimization problem converges fast and the
time consuming collision checks can be omitted. Drawbacks of this approach are the
beforehand defined total number of steps, the complex calculation of convex areas in the
presence of changing environments and the need of a user to define seed points for the
convex areas.

4.3 Step Planning

The objective of the navigation module follows ideas from Buschmann et al. [15] and
Nishiwaki et al. [80]. In contrast to most related work, its purpose is not to find long
distance paths but to give the user an reactive system which is able to safely navigate in
cluttered environments. This is especially important, if no full map of the environment
is available and the user as well as the robot depends only on the robot’s limited field of
view.

In the following, the navigation problem is formally defined. Subsequently, the ap-
proach developed within this thesis to solve the navigation problem is presented.

The methods as well as the results are partly published in Hildebrandt et al. [42].

4.3.1 Formal Definition

Chestnutt [18] presents a formal representation which is used in this work. As mentioned
in Subsection 4.1.2, the robot’s motion is approximated as a sequence of way points which
are connected by actions to handle the search space. The way points represent the robot state
reduced to the set of footholds Sr. Thus, one way point s consists of the current stance foot
stance = (right,left) and its global position r = (x,y, z) and orientations 8 = (6, 6,, ;).
Since 0,, Gy and z result directly from the position x,y and 6, in the environment (the
surface on which the foot stands), they do not represent DoFs, but they are needed for
further calculation as for example costs and actions. The way points are defined as

s = (x,y,z,0,,stance). 4.1)
The stepping motion is approximated by the action model. It is defined as
a = (Ax, Ay, Az, AO., hopst, Nstep, Ca)- (4.2)

Since the possible footholds are symmetric for the left and the right stance foot, one
action model is defined for left and right stance foot. Ax, Ay and A6, represent the
possible displacements and rotations relative to the current stance foot. In order to take
the stepping motion into account, the action model is augmented by hs; and hsep. The

4.3 Step Planning 59

Goal ‘ Goal ’

CH

WYV WYY

ﬂl,]
1
Start Start ot

(a)Search tree. (b)Costs.

Figure 4.3: A"—search: search tree with states (sx), actions (a;) and costs (c).

parameter h,;;; denotes the dimensions of the obstacles the robot has to step over or to
swing by to reach the next s. The parameter k., denotes the height change the action has
to make to allow for stepping up or down. The cost for each action is denoted by c,. The
costs are explained in Subsection 4.3.4 in more detail. Thus, the whole robot motion is
approximated with a sequence of way points and actions as follows

a a a a
S1 LI So 2 S3 > e Spa1. (43)

4.3.2 Discretization

Having a reduced state representation depending on three DoFs, it is possible to discretize
the search space and still search for a sequence of way points in reasonable calculation time.
Consequently, for each way point s; a set of ny;s. way points as possible successors s;1 is
obtained. These way points represent the kinematically reachable area relative to the current
stance foot. As mentioned above, the objective is to give the user the possibility to directly
influence the robot’s behavior. Buschmann [12] introduces an intuitive step sequence
representation using the three parameters, pg,, = (Lx, Ly, ¢) denoting the step lengths in
sagittal and in lateral direction and the turning angle. It uses a sequence representation
based on a standard circular path. p Step CAN be transformed to the displacement (Ax, Ay, Af;)
as

(Axl Ay/ AGZ) = f(pStep)‘ (44)

In contrast to most publications, pg,,, is discretized symmetrically around the user chosen
desired pg,, 4., in between set limits. The displacement (Ax, Ay, AB,) is not directly
discretized. That way, the user is able to intuitively change the discretization and influence
its walking behavior.

4.3.3 Graph-Search

Based on the discretized search space, a search tree can be set up. Starting with the current
way point sg of the robot, n ;. successors s; can be reached. Each successor sy ; has again
Ngisc successors s; and further on. The transition between the way points s; and s; are
defined by a; ;. Consequently, s; represent the search nodes of the tree and 4, ; the edges
with the costs ¢, ;. Graph-search algorithms applicable to search trees can be used to search

60 Autonomous Navigation

for a sequence s; of 140, steps

Mgoal
se= U si (4.5)
i=1
which guides the robot to the goal with the lowest total costs
Ngoal
;=) ca (4.6)
n=0

Figure 4.3 depicts a simplified search tree.

In this work, as most of the work presented in Subsection 4.2.1, an implicit A*-Search
[63] is used to search for the optimal step sequence. The implicit A*~Search allows to
construct the search tree during run-time. That way, only a small part of the whole search
space has to be discretized at the start of the search. This would be memory and time
expensive. Additionaly, the A*-Search allows to use a heuristic to guide the search to the
goal avoiding unnecessary node expansion. The A*-Search always expands the search
tree at the node which is currently the node with the lowest costs. The cost of each node ¢;
is a sum of the real cost of the sequence of ng;,s nodes guiding to the currently analyzed
node cgseq =):ZS:”(;’ c; and the heuristic cost cy estimating the remaining cost till the goal
is reached. It follows

Nstep

ct =) CatcCh. (4.7)
n=0

That way, a well chosen heuristic can significantly accelerate a search, since only nodes
which lead to the goal are analyzed and expended. In most published work on step
planners for humanoid robots, heuristics based on the Euclidean distance to the goal
are used (see Subsection 4.2.1). Section 4.4 proposes a new method for the choice of the
heuristic.

4.3.4 Cost Function Design

One of the shortcomings in publications of A*-based step planners is the cost function
design. Cost function design is especially important if a user should interact with the
robot. If the cost function is not designed in an appropriate way, the sequence executed by
the robot may not match the user’s expectations. Using, for example, an A*-Search with
a heuristic which overestimates the real costs would also lead to suboptimal way point
sequences. This questions the stated optimal character of an A*-based step planner with
respect to the chosen cost function.

The costs of the descritized way point suggestions have to be designed in a way that
the sequence calculated by the step planner meets the following requirements:

* Requirement 1: The user should be able to set goal positions interactively for the
robot to reach. The sequence of the robot has to be the optimal sequence with respect
to the chosen cost function.

* Requirement 2: The user has to be able to set desired step parameters Pstepdes =
(Ly des, Ly ges, $aes) reactively to adapt the robot movement to the current situation
(see Hildebrandt et al. [118] and Hildebrandt et al. [42]). The robot should execute
the desired step parameters, if possible, or the executed parameters should stay
as close as possible to the desired ones. In this context, the robot is explicitly not
expected to reach the goal as fast as possible, but to reach the goal executing the

4.3 Step Planning 61

desired step parameters. If the influence of minimizing the step number is too large
in the A*-Search, the robot would always try to move as fast as possible. To the best
of the author’s knowledge, in other A*-based footstep planner (see Subsection 4.2.1)
only goal positions or desired 2D paths are given to follow. This does not take the
speed resp. the step parameters of the robot into account which seems to be of
importance in case a user should interact with the robot.

¢ Requirement 3: The A*-Search has to be as fast as possible to meet the real-time
requirements and enable walking guided by a joystick.

Based on the requirements, the cost function is derived as follows: comparable to other
A*-based step planners, the total cost of each way point c; is calculated based on (4.7) with
the Euclidean distance as a heuristic for the search. To take rotations of the robot into
account the Euclidean distance is extended by the rotation angle. It follows

ca = ||W(xcurrent — XGoal) || (4.8)

with x = [x,y,0;] and W a weighting matrix to eliminate dimension effects due to the
comparison of rotations and length. For the optimality of the path (requirement 1), it has
to be ensured that the heuristic always under-estimates the remaining costs of the path

CS/Seqrngoal_nStep:
CH S CsrseqmgoalfnStep * (49)

The cost for each action is defined as

Ca =Cstep,des + kHW(x(pstep) - x(pstep,des)) H . (410)

Cstep,des denotes the execution cost of the desired step parameters. To ensure requirement 1,
¢, > Acy is demanded, the difference in the heuristic should be smaller than the cost of
the executed way point. The execution cost is set to

Cstep,des = HWAx(pstep,des) H/ (411)

which results in a ratio of 1 between Ax(py,,, 4.;) and cost for executing p,, 4,,- In order
to overestimate the heuristic and penalize deviation from the desired step parameters, the
scaling factor k has to be larger than 1.

4.3.5 State & Transition Evaluation

When a node is expanded, the n;js., successors s; are created. Each of them has to be
evaluated for viability. Therefore the position as well as transition from the current node
to its successor, the swing-foot movement, has to be analyzed. The node expansion and
in particular the analysis of each key pose with respect to the world is the most time
consuming part in the step planner. A disadvantageous choice in the world representation
and the corresponding robot approximation may lead to long calculation times and limited
robot movements. As stated in Subsection 4.2.1, most work on step planning for bipedal
locomotion, as for example Nishiwaki et al. [80], use a collision world representation
based on a binary 2.5D grid map. The corresponding robot model, the foot representation,
consist of a planar rectangle. The step planner checks the rectangle against the discrete
grid for the way point viability and its position in the world. Since the robot’s kinematic
movement is not taken into account, high safety margins are necessary.

62 Autonomous Navigation

n,
Lower Le :’X P4
& Obstacles P1 0 ' \ Ps
Approx. \
P>
—
= ‘/%' Po U4

03

/& ,,1

§'/' ~ -
U1 P3
Surface o P, 02

(a)Collisions model. (b)Surface representation.

Figure 4.4: Collision model of the step planner for LoLA stepping over an obstacle with movable
leg segments. Surface representation: corner points with edges. Edges modeled as SSV-Objects
for collision avoidance.

Collision Checking

A different approach is applied in this thesis. Instead of using a grid based environment
representation, the SSV-representation presented in Subsection 3.3.2 is used in the step
planner. That way, the step planner takes the same world approximation into account as all
modules for motion generation. This avoids inconsistent motion planning and redundant
information. Furthermore, the SSV-representation allows to check for viability in full 3D.
The robot model is not a planar rectangle but a 3D model of the lower leg including the
foot and a leg segment approximation. Instead of assuming a static approximation the
lower leg is rotated with a constant angle for each step relative to the corresponding foot.
The angle is calculated based on a heuristic taking the stance foot position relative to
the desired center of mass in the current step into account. Thus it is possible to check
more accurately for collisions in 3D already in the step planner. Therefore, the walking
movement is taken into account avoiding high safety margins of the stance foot positions
(see Figure 4.4a). The swing-foot movements are analyzed by approximating the motion
with a sampled straight line on a reference height of the swing-foot. On condition that
the robot’s SSV approximation intersects with one or more obstacles, the parameter h,s;
becomes the dimensions of the highest obstacle which overlaps with the robot’s SSV
approximation. If h;s exceeds a threshold the successor node is not viable.

Spatial Walking

In addition to the viability of a created way point the step planner has to evaluate the 6D
pose of the foothold. As introduced in Subsection 4.3.1, the rotation 6,, 6, and the height z
depend on the environment and x, y and 0,. Apart from areas the robot is not able to step
on (obstacles), areas are introduced the robot can step on (surfaces) to the environment
representation. As presented in Subsection 3.3.2, surfaces are represented by convex hulls
descriped by polygons and a normal of the surface (see Figure 4.4b). The robot is not able
to step onto the edges of the surfaces. Therefore, the edges are modeled as obstacles using
line-SSVs. This representation has several advantages:

* Based on the current x and y value of the way point the step planner is able to
determine the whole 6D pose of the foot just by checking in which polygon the
current way point is lying. This can be implemented very efficiently in terms of
computational time and memory space.

4.3 Step Planning 63

¢ Surfaces are completely defined by the corner points and the normal of the surface.
This is a extremely dense representation which is memory efficient and simplifies
communication between planning modules and vision system. The current imple-
mentation uses maximal eight corner points. Depending on the desired level of
detail it can be easily extended to a higher (or lower) number of corner points.

¢ Additionally, surfaces are included consistently using SSV elements in the colli-
sion avoidance framework [118, 124] to avoid collisions of the robot with edges of
platforms, stairs, etc..

4.3.6 Real-Time Application

Everybody who has played a video game knows how annoying it is when her or his
character does not react fast to the desired input. In real applications, long delays between
the users input and the robots reaction makes it difficult to command the robot. For
this reason, when commanding the robot via a joystick, and in order to take changing
environments into account, the step planner is expected to be as reactive as possible.

Error Handling

Due to the limited calculation time of Tegc < Tstep, the search may fail to find an executable
path. For this reason, it is proposed to start a second search if the first fails. The second
search uses an adapted discretization set preferring step length around zero to walk on
the spot. The desired step parameters Ly g5, Ly 4es and ¢g,s are set correspondingly. That
way, the discretization grid changes and influences the result of the search. Since both
searches do not depend on each other, they can be parallelized and executed on the same
time. Having only a limited number of processors, the current implementation uses still a
serialized implementation of the first and the second search. In real world application, it
is necessary to provide a fall back solution to avoid a failing of the system. One possibility
to solve this issue might be a set of searches running in parallel with different parameter
sets, similar to the proposed first and second search.

Joystick — Control

In the case the user guides the robot using a joystick, no goal position is explicitly set. In
order to accelerate the A*-Search and guide the robot close to the desired input, a virtual
goal is assumed. The virtual goal is calculated as the position the robot would reach
executing the desired step parameters.

Receding Search Horizon

In real application, the step planner searches for a limited number of steps and not for the
complete sequence connecting start and goal position for the following reasons: (1) The
robot has only a limited FoV. Therefore, obstacles which are too far away can not be taken
into account. (2) Calculating and then executing a long sequence of footholds requires an
exact knowledge of the robot’s odometry. It is assumed that the state of the robot diverges
from its ideal odometry considered in the step planner. This assumptions are confirmed
by observations in experiments. (3) The quality of the environment approximations of the
vision system depends strongly on the distance of the robot relative to the objects. There-
fore, the approximations” quality increases with decreasing distance. (4) Dynamic and
unknown environments require a constant re-planning with small cycle times. Therefore,
the number of steps the step planner should search for is limited. When a time limit is
reached and not enough steps are found the search is aborted resp. the proposed error

64 Autonomous Navigation

Table 4.1: Results for simple and complex environment (see Figure 4.5). The significance of the
quantitative search times for the real application is limited. It does not represent the search time
on the real-time system of the robot and includes necessary logging of data.

Environment simple | complex
number of node suggestions 85 85
number of steps 9 11
distance calculations 19699 | 293397
costs 5.02 5,5
search time step—planner [s] 0.33 9.64

handling is applied. Figure 4.6b depicts the result of a search which is aborted after a set
limit of 7 steps was reached. The robot would execute the first step and search for the next
steps when being closer to the goal. Naturally, the resulting sequence to the goal would
not be optimal with respect to the defined costs and the robot may get stucked in local
minima, but it represents a trade-off between reactivity and optimality. One possibility to
solve this issue is presented in Section 4.4.

Environment Representation

The collision checks are not only binary checks for viability, but calculate a distance
gradient. That way, for each node, the distances and the directions to the obstacles are
known. This characteristic of the used world representation can be exploited. In order to
save computational time the analysis of the swing-foot movement is omitted if no obstacle
is inside a radius r,s; around the current node. Furthermore, an advanced handling of the
distance calculation is implemented. Once the distances are calculated for one node to
all obstacles, all successor nodes can use these distance informations. Depending on the
distance of the current node to the last node having the distance information to all obstacles,
distance calculations can be omitted for obstacles which are too far away. That way, the
number of distance calculations can be reduced and therefore the search is accelerated.
Furthermore, a grid based approach is analyzed. Based on a 2D grid of the environment,
obstacles can be transferred to a quadtree representation widely used in informatics for
data structures [40]. This clustering allows to analyze only currently relevant obstacles.
In the analyzed environments, this approach has not shown an accelerated run-time. For
larger search spaces with more obstacles, this approach might be beneficial.

4.3.7 Results

The step planner is analyzed in multiple environments. Figure 4.5 depicts two exemplary
environments.! Figure 4.5a represents an environment with few obstacles and one plat-
form. It is chosen to be similar to the simple environment in Chestnutt [18]. Figure 4.5b
includes non-traversable and traversable obstacles. It is similar to the complex environment
in Chestnutt [18]. In both environments, the step planner is able to find a sequence which
leads to the goal exploiting the characteristics of bipedal locomotion as stepping on a
platform in the simple environment. Table 4.1 summarizes the results of the A*-Search. As
expected, the A*~Search in the complex environment is more complex. It needs significantly
more distance calculations which is directly coupled, as stated before, to the desired search
time. However, the significance of the search time for the real application is limited. It does
not represent the search time on the real-time system of the robot and includes logging of
data. But it is a way to compare the search results in both environments.

1A video showing the results is available online at ht tps: //youtu.be/0gZ90BdCNUO.

https://youtu.be/ogZ9oBdCNU0

4.4 Reactive Navigation 65

\ N\ 3 u
0 —
/] | .= 05 1°?
I:I 5]
/
!

x [m]

) 0.

N
M 0
i

O~ 1°

(a)Simple Environment. (b)Complex Environment.

Figure 4.5: Result of step planner in simple environment and complex environment. Search
analysis is presented in Table 4.1. Simple environment includes surface represented with light
green. Traversable obstacles in orange. Complex environment includes non-traversable obstacles
represented in (dark) grey. Security margin (light) grey. Goal location in dark blue.

4.4 Reactive Navigation

In real-world scenarios with dynamically changing environments, computation time
plays a crucial role. In the presence of non-traversable obstacles the search for discrete
consecutive footholds gets complex and time-consuming [18, 42]. The heuristics used in
the presented A*-search is one key to guide the search to the goal and, consequently, to
reduce planning time. Figure 4.6 depicts a result of the step planner applied in a simple
environment with one large obstacle. Figure 4.6a shows the evaluation of the analyzed
nodes. The effect of the heuristic based on the Euclidean distance is clearly visible. The
search is directed on a straight line to the goal, although the way is non-traversable. As a
consequence, the remaining goal distance is greatly underestimated. The search tends to
explore irrelevant areas and a large number of irrelevant step suggestions are evaluated.
This requires a lengthy computation time and the step planners becomes impracticable
for real-time applications. This example represents a typical application for conventional
mobile platform planner. It seems reasonable to consider the environment at different
detail levels and combine mobile platform planners with the step planner in order to
improve the performance (see Figure 4.7). In the following, work is presented which
analyzes the influence of the heuristic of the A*-search with focus on step planning.
Furthermore, applications of mobile platform planners in step planning are discussed.
The methods as well as results presented in this section are developed in collaboration
with Moritz Klischat [145] and they are published in Hildebrandt et al. [119].

66 Autonomous Navigation

))
- 4 - 4
- 3 - 3
E) O El
-1 28 - 28
g
41 0 41
g
- 0 0 -4 0
(a)Node expansion. (b)Calculated sequence.

Figure 4.6: Motivational example: large obstacle (grey) with security margin (light grey) in front
of robot. Goal location in dark blue. Heuristic based on Euclidean distance guides search to goal.
Search is aborted before goal is reached since desired number of steps is found.

4.4.1 Related Work

In Hornung et al. [46] the authors evaluate the influence of the heuristics to improve
the speed of an A*-Search based step planner. They propose to dynamically adapt the
weighting factor of the heuristic based on the Euclidean distance to the goal. Starting
with a high weighting of the heuristic, the search is strongly guided in direction of the
goal. That way, the calculation time can be reduced, but with the drawback of a resultant
sub-optimal step sequence. By successively reducing the weighting of the heuristic and
reusing results from the previous searches, the quality of the resultant step sequence is
improved. They call the adapted search the ARA*-Search. For reducing the influence of
well-designed heuristics, they introduce local-acting randomized components influencing
the heuristics. This helps to avoid local minima and accelerates the planning process. This
approach helps to find paths which follow predefined heuristics. Nevertheless, a poorly
chosen heuristic could still lead the search in wrong directions. This would result in long
calculation times. Chestnutt [18], Hornung et al. [45], and Karkowski et al. [54] propose
hierarchical path planning methods. Their common idea is to combine a simplified global
mobile platform planner with a detailed local step planner. The mobile platform planner
calculates a 2D path in a simplified environment representation which is used to guide the
local step planner search. Chestnutt [18] presents an hierarchical path planning approach
for branched buildings, which uses three levels of detail: On the top-level, a global 2D
path is divided into sub-goals. An A*-based mobile platform planner searches backwards
from the sub-goal to provide the low-level step planner with a heuristic. This approach
speeds up planning time significantly. Karkowski et al. [54], as shortly presented in
Subsection 4.2.2, proposes to first plan a global 2D path using an A*-Search, as well.
Then sub-goals are generated from the 2D path. The local step planner first constructs
a path from line segments which is subsequently used for geometrically generating the
foothold positions. This allows for real-time capability. However, the robot’s kinematic
capacities such as stepping over obstacles are not fully exploited, nor is the solution’s
optimality explicitly considered. Hornung et al. [45] proposes to use a combination of a
mobile platform planner and a detailed step planner. In contrast to previous authors, they
propose to switch between a mobile platform planner in regions without obstacles and to
use a more sophisticated step planner in cluttered regions which allows for stepping over

4.4 Reactive Navigation 67

Goal
°

Euclidean *
distance !

2D path

e

Figure 4.7: 2D Pre-Planning in A*—search.

obstacles. This method’s performance relies heavily on the availability of obstacle-free
space. Ayaz et al. [4] uses a simplified approach designed for finding multiple paths which
resembles the principle of visibility graphs. The planner aims at finding the lowest-energy
path. Sub-goals are placed next to the edges of obstacles and connected by straight step
sequences. Since a relatively simple step planner is used, the resultant paths are not
optimal. They are restricted to rather simple environments, even though small obstacles
can be traversed. Unlike the work described above, Buschmann et al. [15] do not use a
global map, but they propose to test a set of 2D trajectories whether or not they are viable.
This enables safe and reactive robot movements in an unknown environment using only
on-board sensing. This system, however, does not allow the robot to step onto or over
objects. Furthermore, Chestnutt [18] discusses the benefit of a heuristic provided by a
mobile platform planner. It is shown that the use of that heuristic, which is adapted to the
environment, helps to significantly accelerate the A*-based step planner. Nevertheless,
when using the mobile platform planner, the ability of the robot to step over obstacles or
onto platforms is neglected.

4.4.2 Proposed Method

Parametrization &
Goal location

Reduced map
—_— 2D Pre-Planning

2D paths

Full map v
—>| A*-based step planner

l Step sequence

Figure 4.8: Control flow of 2D Pre-Planning integration.

The proposed approach combines ideas from most of the cited publications. The objec-
tive is to exploit the possibility to accelerate the step planner by providing a continuous
guideline calculated by a mobile platform planner. However, the presented approach
differs from the ones presented above (see Subsection 4.4.1): (1) different levels of environ-
ment details are used for both planners. For the mobile platform planner, a reduced map

68 Autonomous Navigation

is used, which only takes non-traversable obstacles into account; the following A*-based
step planner uses the full map. That way, the search for a step sequence is accelerated by
using the 2D Pre-Planning, but still exploits the capacities of a bipedal robot. (2) sub-goals,
which guide the A*-Search via heuristics based on Euclidean distances, are not used.
Instead different strategies to use a continuous 2D path in the A*-Search are proposed
and evaluated. Sub-goals as presented in Ayaz et al. [4], Chestnutt [18], and Karkowski
et al. [54] could easily be integrated in this approach as intermediate goals. (3) In contrast
to Chestnutt [18], Hornung et al. [45], and Karkowski et al. [54] not one final 2D path, but
(similarly to Buschmann et al. [15]) different candidates are searched for. The set of 2D
paths guides multiple searches of the detailed step planner. This approach is necessary
as the mobile platform planner only uses a reduced map. Therefore, the quality of the
provided 2D paths greatly depends on the presence of traversable obstacles or stairs which
are not considered in the pre-planning. This approach is mainly suitable for real-time
applications such as navigation in unknown areas - the robot has to react quickly to the
newly discovered environment without global knowledge about the environment (in
contrast to Ayaz et al. [4] and Karkowski et al. [54]). Figure 4.9 shows the basic approach
of the method. A 2D Pre-Planning is first executed on a reduced map and provides the
step planner a set of 2D paths.

4.4.3 2D Pre-Planning

Parametrization &
l Goal location

Generation of Initial 2D Paths

Initial Paths
NO \4
Adaption of Initial Paths

Y

Collision-Free Paths

collision-free?
Yes

Selection of Unique Paths

Unique Paths
NO \ 4
> Paths Optimization
Final 2D Paths
converged?
Yes

Figure 4.9: Flow chart for 2D Pre-Planning.

Mobile platform planners plan continuous paths and, therefore, do not take the robot’s
capability to step over obstacles into account. The bipedal robot could traverse obstacles
which the continuous mobile platform planner would avoid. Following a continuous
path with a bipedal robot could unnecessarily lead the robot walk a long way around. An
overview of the method, which is presented in the following, is given in Figure 4.9. Based
on a reduced map, a set of inital 2D paths is generated. These 2D paths are adapted to get
collision-free paths. Out of all collision-free paths, subsets are identified which are not
separated by obstacles. For each subset, one unique path is selected and optimized. The

4.4 Reactive Navigation 69

optimized paths are the input to the subsequent step planner.

Environment Modeling

In order to preserve the robot’s ability to traverse obstacles, only non-traversable obstacles
are taken into account during 2D Pre-Planning. Since obstacles are clustered and approxi-
mated by combinations of SSV objects, this is efficiently implemented by checking for the
obstacle’s dimensions. In the subsequent detailed step planning, the full map is used in
turn.

Robot Modeling

The robot’s approximation is simplified for 2D Pre-Planning. The mobile platform planner
searches for continuous paths. The robot is represented by a point model with an addi-
tional safety margin. Consequently, no rotations of the robot are considered. Therefore,
the search space dimension is reduced by one DoF. Furthermore, collision checking and
detection are significantly simplified, since the complex foot approximation is omitted.

Reduced Map - Limitations

Standard path planning algorithms for mobile platforms [30, 34] search for one continuous
2D path. This path is the optimal path out of a set of multiple solutions with respect
to the cost definition used. The 2D Pre-Planning presented in this work uses a reduced

Goal e Goal

‘e

AN
traversable ;
‘ \/ obstacles ‘ N
" ’

(a)Full map (b)Reduced map

Figure 4.10: Reduction of the environment map.

environment map, since small obstacles are neglected (see Figure 4.10). This induces
an uncertainty regarding the resultant costs of the subsequent step sequence. Therefore,
the optimal path which is found by the mobile platform planner could turn out to be
sub-optimal when planning the step sequence and using the full map (see Figure 4.11). In
the presence of multiple small objects on the 2D—path, the optimal path could even not be
traversable. For this reason, the proposed mobile platform planner has to be designed to
find various path variants. Multiple 2D path options offer the opportunity to parallelize
planning of several step sequences and to choose the best variant.

70 Autonomous Navigation

Goal
°

L
Y Y |
T 4

(a)Path options (b)Chosen path

Figure 4.11: Several continuous 2D—paths in presence of obstacles. Grey obstacle is non-
traversable by bipedal robot. Orange obstacles are traversable.

Generation of Initial 2D Paths

The initial paths are generated by a set of n;,;; parabolas which connect start and goal
position (see Figure 4.12). The parabolas are parameterized with the parameter s which
defines the distance perpendicular to the direct connection between start and goal position.
The direction is defined by the unit vector n. The n;,;; parabolas and s are predefined
by the user and determine the discretization of the area. Using parabolas at this stage is
not paramount for the success of the procedure. The key point is that curves are used
which cover the area in which the robot has to navigate with a set of initial and different
solutions. Each parabola g is discretized with ng ¢ supporting points x; ¢ ; lying on the
initial parabolas. The supporting points are connected via linear splines.

Goal Wimax
o

Goal

I I <_I Start

(a)Initial set of 2D paths (b)Parametrization of initial paths

Figure 4.12: Discretization - Generating initial solutions.

Adaptation of Initial Paths

Up to this point, x; ¢ ; are created based on the set of parabolas without knowledge of the
obstacles. In the next step, x; ¢ ; lying inside in obstacles are iteratively shifted to become

4.4 Reactive Navigation 71

collision-free. To generate collision-free paths, a potential approach widely applied in
path planning [56] is used. This approach is presented for one exemplary path, but the
method is used simultaneously for all paths generated from the initial set of parabolas.
Each obstacle j is modeled by an artificial potential ¢; as

§i(xE) =In (rj(xg) (4.12)

with the shortest distance r]-(x’s‘, g/i) between an obstacle j and a given point x’;’ o, initeration
step k. Note: the same library for distance calculation as used in our methods for collision
avoidance [98] is used. Superposition of source terms of all 7,,; obstacles results in the
potential equation

Nops

Pt = LIn (1) (4.13)
£

For shifting each supporting point i, the derivative V¢ (xf 2 ;) is numerically calculated
with respect to n using the perturbation e:

P(xy; +en) — (xS,)

k
Vap(Xsqi) = - (4.14)
The translation increment is computed using a scaling parameter cgp; st
AX§g; =1 Cohifs * V(X g)- (4.15)
Xs,¢,i is updated as follows (see Figure 4.13 (a))
Xt = X];,g,i + Axlsc,g,i' (4.16)

5,81

If a supporting point is located inside an obstacle, no potential is defined. In this case,

the increment Axt o 1s set to the maximal Ax; g in direction n from both neighboring

supporting points / and o which are still collision-free (see Figure 4.13 (b)). The iterative

Q.

~
~
~

,I ~ N o
n ko
x i WAxi ?

. °
"?/X?\.\ Axlg
e \
Ax;c o
N
(a)Outside obstacles (b)Inside obstacles

Figure 4.13: Generating collision-free paths — updating of supporting points.

translation is terminated when either all paths are collision-free or a maximal number of
iterations has been reached.

Selection of Unique Paths

In a subsequent step, the paths are optimized to obtain not only collision-free, but optimal
paths with respect to the path length. To reduce computational effort, only collision-free
paths which tend to converge to different final paths are considered. This happens when
there is at least one obstacle between two paths (see Figure 4.11). First, each subset
of collision-free paths are identified which are not separated by an obstacle. Then, the
shortest path of each subset is selected for further optimization.

72 Autonomous Navigation

Path Optimization

In order to ensure smooth paths, the selected collision-free paths are optimized with
respect to the path length. The elastic band method is used, which simulates a contracting
force acting in an elastic band. It is described in Quinlan et al. [89].

Ordering - Cost Estimation

Costs for all available 2D paths are estimated in order to omit irrelevant path options. This
is necessary to reduce computational cost with and without parallelization. Additionally
to the 2D path length Irp 5, path costs are mostly related to small obstacles which have
to be traversed. Consequently, estimation of path costs is conducted as following: first,
all small obstacles in a distance d,.eyq,t Of the respective 2D path and the distance free
space d .. ; between two adjacent obstacles are identified. Then, the path cost estimates
are calculated with

& ar- ||21d - dfreei” , for dfreei < az
Cps = lps+ E Kpase + ’ ’ 4.17
p,s 2D,s - (base {O, for dfree,i > ()

The first term kj,s. adds constant costs for each small obstacle. Its value amounts to the
average additional step costs caused by traversing an obstacle. A second term weighted
by constant factor a; is added, since step costs tend to increase when obstacles are located
close to each other and therefore force the robot to deviate from the preferred step length
l3. Those additional costs are only added for dy,; below a certain value a3, because
for larger distances this effect vanishes. Furthermore, with small values of df.; the
probability increases that the region is not traversable and needs to be detoured. Based
on the estimated costs, the paths are ordered relatively to their costs. In Table 4.2 and
Table 4.3 the estimated path costs and the real costs for different test cases are compared.
The real costs are accurately estimated by the cost estimation. Furthermore, the estimated
costs are much more precise than just using the path length as estimation for ordering.

Alternative Methods

Furthermore, two different possibilities are considered to search for 2D paths. Generalized
Voronoi-Diagrams divide the reduced map in separate regions. Each region belongs to one
non-traversable obstacle. The border of the regions represent a network of edges which
always have the maximal distance to the obstacles. Thus, graph-search algorithms can
be used to search on this network for paths [6]. Advantages of the Voronoi-Diagrams
are its compact environment representation and its network of separated collision-free
edges. Since all paths are always separated by obstacles, it is not necessary to separate
them in a consequent step as it is proposed to do in the presented method. However, the
construction of generalized Voronoi-Diagrams is time-consuming and the resulting paths
are not optimal. Thus, a consequent optimization step is still necessary. Furthermore,
another considered option is to discretize the map and search on the grid for a path. The
advantage over the step planner is the largely reduced search space. Nevertheless, the
search has to be artificially limited to find more than one path option. Therefore, regions
on the map have to be determined which have to be blocked to guide the planner to
another path options. The implementation of such an algorithm turned out to be not
suitable for this problem.

4.4.4 Coupling with Step Planner

The 2D paths are passed to the A*-based step planner as described in Section 4.3. Although,
they can be combined with any node-based search algorithm for bipedal locomotion. The

4.4 Reactive Navigation 73

integration of the 2D path takes place in the A*-based step planner when a key pose is
expanded and new step suggestions are generated. Overall, three different methods are
proposed to use the 2D path for accelerating the search. These can be applied indepen-
dently from each other as well as in combination:

Heuristic

In this approach, the Euclidean distance to the goal used in the cost evaluation is replaced
by the distance along the 2D path. That way, the heuristic can better estimate the remaining
path costs. This accelerates the A*—search significantly (see Chestnutt [18]). The heuristic
costs c¢j, are computed by orthogonally projecting the position xs,¢ of a step suggestion
onto the 2D path. Integrating the arc length from the projection xg,, | to the goal yields
the remaining path length [,. To prevent the A*-search from deviating too much from the
2D path, the lateral distance from the path weighted by a factor w is incorporated in the
heuristic as well:

e =lg +wy || xsug —xsug,lH. (4.18)

For computing the projection and the remaining length a linear spline representation is
used for connecting the supporting points and approximating the 2D path.

Restriction of Search Area

It is assumed that the optimal step sequence is located within the immediate vicinity of
the 2D path. Therefore, the search area S of the A*—search can be restricted to a maximal
distance d,,,x from the 2D path. All step suggestions which lie outside the search area are
omitted, since they are considered to lead to sub-optimal step sequences:

Hxsug — Xsug, 1 H < diax- (4.19)

Consequently, the number of investigated step suggestions will be reduced. Choosing a
sufficiently large value d,,, still allows the step planner to react to small obstacles which
were ignored during 2D Pre-Planning.

Reduction of Search Space Dimension

Due to the tree structure of the A*-search graph, a reduction of the search space dimension
tends to decrease the number of investigated step suggestions exponentially. As described
in Section 4.3, the state of each node consists of the relative displacement x;,; and the
orientation ¢ of each foot. By orienting the angle ¢ relative to the 2D path, ¢ is no longer
considered in the search space S of the A*—search. That way, the search space is reduced
by one dimension. This greatly accelerates the search. ¢ is computed as the tangent’s
angle ¢ of the projection xg,¢ | on the 2D path of xsq.

4.4.5 Real-Time Implementation

The proposed methods are implemented for real-time applications. Like the step planner,
the 2D Pre-Planning is executed before each new step. If no feasible step sequence can be
found during the set time limit (approx. 400ms) and using the shortest 2D path, the error
handling introduced in Subsection 4.3.6 becomes active. The step planner searches for
a valid sequence to walk on the spot. Since multiple 2D paths after 2D Pre-Planning are
obtained the step planner could ideally be parallelized on a multi-core processor in order
to compare step sequences for different 2D paths. However, the calculations have not been
parallelized yet, since it has not been necessary so far in the current implementation.

74 Autonomous Navigation

4.4.6 Results

The proposed methods are evaluated in simulation and validated the real-time character
in experiments.?

Simulation

In the following, the step planner is compared with and without 2D Pre-Planning and the
different methods presented in Subsection 4.4.4. The test cases presented here are chosen
to discuss and illustrate different aspects of the methods. Longer step sequences than in
real experiments are shown, which may result in exceptionally-long calculation times.

Table 4.2: Results for different methods: (none) Euclidean distance as heuristic, (1) 2D path
heuristic, (2) restriction of search area, (3) reduced search space, (1 & 2) (1) & (2) combined, (1 &
3) (1) & (3) combined, (2 & 3) (2) & (3) combined, (1,2,3) all methods combined.

Coupling methods none 1 2 31 1&2 | 1&3| 2&3|123
goal reached in time no yes no yes yes no yes | yes
2D—path length [m] - 5.62 5.62 5.62 5.62 5.62 5.62 | 5.62
costs - | 5990 -| 7151 | 5990 | 6.900 | 6.841 | 6.900
estimated costs 5927 | 5927 | 5927 | 5927 | 5927 | 5927 | 5927 | 5.927
number of steps 12 14 14 18 14 18 18 | 18
distance calculations 324428| 403710| 401942| 131446, 403710 13596 | 41230 | 13596
search time [s] 60.016 | 16.607 | 60.001 | 7.151 | 16.607 | 0.169 | 4.347 | 0.169

The first test case represents a simple environment similar to Figure 4.15. The results are
summarized in Table 4.2. Using the method denomination mentioned in the legend of
Table 4.2, the following can be stated: When using only (none) or (2) the path planning
was not able to find a result in the set time limit. The results for the combination of (1) and
(2) are nearly the same as for (1) alone, since the heuristic already guides the search close to
the 2D path in this particular example. Results for (2) combined with (3) range in between
those for (3) alone and all methods activated. Step planning with all methods combined
yields the shortest search time even though the costs of the resulting step sequence are
slightly higher. This is mainly due to the combination of (1) and (3) as confirmed by the
result of this combination. All analyzed environments show similar results. For navigation
in unknown environments, slightly raised costs are accepted in favor of a significantly
reduced search time. Therefore, in the following, all methods are activated. The next
test environment is depicted in Figure 4.14b. Even in this complex environment the 2D
Pre-Planning was able to find multiple path variants (see Figure 4.14a). The final step
sequence for the shortest path is depicted in Figure 4.14b. To investigate the benefit of
finding multiple path variants, another test case with small obstacles is presented. The 2D
Pre-Planning finds two possible path variants and corresponding step sequences as shown
in Figure 4.15. The results are summarized in Table 4.3. When comparing the path costs
the right solution yields higher costs even though its 2D path is shorter than the left one.
This increase is caused by the presence of small obstacles, which result in more expensive
steps.

4.4.7 Discussion on the Optimality of the A*-Search

The presented methods influence the A*-Search and may jeopardize the optimality char-
acter of the A*-Search with respect to the predefined costs. The optimality of the 2D
Pre-Planning depends strongly on the discretization level of the search space by the initial

2Videos of the results are available online at https: //youtu.be/-VvxzFg9ATU.

https://youtu.be/-VvxzFg9ATU

4.4 Reactive Navigation

(a)Results of 2D Pre-Planning.

= Ot

w
x [m]

(b)Step sequence for shortest path.

75

Figure 4.14: Results of pre-planning and final step sequence for complex environment. Large
obstacles in dark grey, safety zones (different for step planner and mobile platform planner) in

light grey, shortest path in green, and other paths in blue.

(a)Longer 2D path (Solution 1)

(b)Shorter 2D path (Solution 2)

Figure 4.15: Step sequences for two different 2D—-paths.

Table 4.3: Results of a test case with two alternative solutions for step sequences (see Figure 4.15).

Solution 1 (left) Solution 2 (right)

length of 2D-path [m]
costs

estimated costs

number of steps

distance calculations
search time step—planner[s]
search time 2D planner[s]

6.15
6.42
6.26
17
2220
0.04
0.004

5.59
7.29
6.33

16
130725
14.2
0.004

76 Autonomous Navigation

set of parabolas. A trade-off between calculation time and coverage of the search space
has to be made. The 2D Pre-Planning presents a possibility to find multiple solutions,
which is important in the context of this work for the real-time application. Further-
more, it is important for considering the presence of traversable obstacles as shown in
Subsection 4.4.6.

However, a different mobile platform planner may find a better 2D path, which could
be combined with the methods presented in Subsection 4.4.4 as well. If it is assumed
that the 2D Pre-Planning finds all possible 2D paths, including the shortest path, in the
reduced map: (1) Using the shortest 2D path as initial estimate will always underestimate
the distance of the path subsequently optimized by the step planner and will therefore
not influence the optimality of the result of the A*—search. Further, the shortest path
approximates the remaining path costs better than a Euclidean distance. Therefore, it
accelerates the search, but will always underestimate the remaining costs. (2) Limiting the
search area of the A*-search and reducing the analyzed step suggestions influences the
optimality of the A*—search. It will still find an optimal solution, but only in the reduced
search area. Since, the search space is limited, it is important that the 2D Pre-Planning
determines more than one solution. In the presence of multiple obstacles not considered
in the reduced map, a 2D path may not be walkable. Searches following different 2D paths
significantly increase the probability to find an executable step sequence. (3) Calculating
@ based on the 2D paths reduces the dimension of the search space by one. Therefore, the
quality of the calculated step sequence will always be inferior to the solution of the search
in a higher dimensional search space.

In conclusion, only the integration of the 2D path as a heuristic in the A*—search
preserves the solution’s optimality. For real-time application, the advantage of significantly
faster calculation times is gained in the case of sub-optimal solutions when limiting the
search space or reducing the dimension of the search space. With the application of legged
robots in interaction with human users in mind, the method’s evaluation has another
facet. A robot trying to follow a 2D path instead of executing an internally calculated and
optimal step sequence may help a user to predict the robot’s behavior and interact with
it. Applying the methods presented in Subsection 4.4.4, the search for an optimal step
sequence could not only be improved, but a user has another option to guide a robot, for
example by a 2D path as input.

4.5 Adaptive Discretization

In the previous sections, an A*-based step planner was presented. A new method was
introduced which accelerate significantly calculation times by searching for a heuristic.
It guides the A*-Search taking into account non-traversable obstacles. In addition to the
heuristic, the capacities of the A*-Search depends largely on the action set. In the previous
section, a static action model was used.

Chestnutt et al. [19] showed how an adaptive action model can be used to find footstep
plans through cluttered environments without increasing the size of the action set. They
propose to alternate step suggestions around bad terrain locations to find valid positions.
In the following, a local adaptation method is presented, which makes the discrete A*—
search character “more continuous”. It is based on the ideas of Chestnutt et al. [19], but
exploits the characteristics of the presented collision world representation.

4.5.1 Local Adaptation

The key of the presented method is the world representation. The terrain is modeled as
obstacles or walkable surfaces. The collision check for each step suggestion checks not

4.5 Adaptive Discretization 77

Y 9

AL \
||ZZ:;”UC0” I__>___,: Oeoll /’

SN

LN (x/ Y, (Pz)k

Figure 4.16: Local adaptation of step suggestion with invalid position.

only the node suggestion’s viability but calculates a collision gradient, vy, as well. The
collision gradient is used to optimize the node suggestion locally in the direction the node
suggestion would be valid. That way, the action model is adjusted to the terrain. The
modified position results in

= Veoll +
|:Aymod ||vcoll H col Ay

(4.20)

with d,,;, the minimal required distance between obstacle and stance foot. The big advan-
tage of this procedure is, that the A*-Search uses a gradient information to find valid node
suggestions and does not have to alternate the step positions without further informations.
In order to avoid multiple node suggestions next to each other, the modifications are
limited to half of the minimal distance between two step suggestions of the originial
action set. In the case of more than one active vy, it is proposed to iteratively modify
the position. In the worst case, the local adaptation does not find a valid position in the
limited number of iterations and the analyzed node suggestion is invalid.

Results

Figure 4.17 depicts the resulting step sequence for the simple and complex environment
introduced in Subsection 4.3.7. The step planner uses the local adaptation to adjust invalid
node suggestions. In Table 4.4 the corresponding analysis of the search is presented.
Results of different discretization levels are compared. The step planner with activated
local adaptation outperforms the step planner without local adaptation in terms of costs for
both environments. An explanation is the adjustment of invalid nodes to valid nodes.
That way, the search tree becomes larger and the step planner is able to find a better
sequence out of a larger pool of possibilities. =~ The search time resp. the performed
distance calculations of the step planner with local adaptation is for the simple environment
significantly longer than for the conventional step planner. Chestnutt [18] observed a
similar tendency. In environments with few obstacles the step planner is able to find a
way to the goal also without adjusting invalid node suggestions. Therefore, adjustment
of invalid node suggestions provoke an augmented number of distance calculations and
consequently a longer planning time. In the complex environment, the step planner with
local adaptation outperforms the step planner without local adaptation. In this complex
environment, adjustment of invalid node suggestions is necessary to find a goal path
in a reasonable amount of time. So far, the benefit of the local adaptation is questionable.
Although, it performs better in terms of cost in the analyzed environments, it needs
significantly longer planning times in simple environments, because of the augmented
number of valid node suggestions. The local adaption can reduce the planning time only

78 Autonomous Navigation

4
o] 4 4
<[]
\D \ 3 1°
!
’ g I _2E
I:I 8 =
—I:I '_1 =11
.
40
O o~ 1°

(a)Simple Environment. (b)Complex Environment.

Figure 4.17: Result of step planner with local adaptation in simple and complex environment
(compare Figure 4.5). Search analysis is presented in Table 4.4. Simple environment includes
surface represented with light green. Traversable obstacle in orange. Simple environment includes
non-traversable obstacles represented in (dark) grey. Security margin (light) grey. Goal location
in dark blue.

[]
|
W~

[
D -1 0

Figure 4.18: Result of step planner with local adaptation for stair testcase. Search analysis is
presented in Table 4.4. Stairs include five platforms with different height level. Step planner
without local adaptation does not find a goal path.

4.6 Summary 79

Table 4.4: Results for simple and complex environment (see Figure 4.5) and stair testcase (see
Figure 4.18). Results produced with activated local adaption. step planner without local adaption
was not able to find goal in a limit of 50s with the reduced number of node suggestions. See

Table 4.1 for results with unactivated local adaption.

Environment simple simple | complex | complex stairs
number of node suggestions 85 34 85 34 85
number of steps 10 11 9 13 8
distance calculations 129412 5305 2079 14641 1632
costs 4.8191 5.53 3.85 6.28 424
search time step—planner[s] 16.43 0.1 0.02 0.17 0.07

for complex environments. Reducing the discretization level and consequently the number
of node suggestions makes the advantage of the adaptation clearly visible. Whereas the
step planner without local adaptation is not able to find valid goal paths, the step planner
with local adaptation finds sequences for both environments. Because of the reduced
number of node suggestions the cost of the final sequence is higher for both environments.
Nevertheless, the planning time for the simple environment is largely reduced and it
remains similar for the complex environment. Through analyses of multiple scenarios,
a similar tendency has always been observed. The local adaptation helps to reduce the
dependency of the search’s success on the chosen discritization level. Although it performs
worse in environments with only a few obstacles in terms of planning time, it also finds
valid paths in cluttered environments within the set time limits. This is not true for the
conventional step planner. An example is depicted in Figure 4.18. The environment
consist of a stair with five platforms with different heights. The step planner without
local adaptation is not able to find a goal path because of the limited step suggestions.
Furthermore, a step planner with the local adaptation allows for reduced discretization
levels. This does not improve the solution’s quality but further decreases planning time.

4.6 Summary

In this chapter, the module for high-level planning, the Navigation-module of the robot, is
presented. It allows for reactive path planning in previously unknown and dynamically
changing environments and users’ input.

The navigation problem of bipedal locomotion is transferred to a discrete optimization
problem. An A*-based step planner is applied to solve the problem. Instead of using the
foothold areas for feasibility checks, a 3D dynamic approximation of the feet and the lower
legs is applied. Thus, it is able to plan not only feasible foot-steps but also to compute
initial swing-foot trajectories. For further acceleration of calculation times two extensions
are presented:

(1) a novel method for using mobile platform planner for bipedal locomotion is intro-
duced. Multiple approaches are discussed and analyzed to beneficially couple the mobile
platform planner and the discrete optimization. (2) Furthermore, methods are introduced
to soften the discretization used in the discrete optimization and to exploit the continuous
range of values the footholds are able to reach.

Chapter 5

Real-Time Motion Generation

In the previous chapter, navigation methods for bipedal locomotion in unknown and
dynamic scenario are presented. For real-time applications, the long planning sequences
of multiple physical steps require an approximation of the robot’s motions. For this reason,
the robot’s motions are approximated via sequences of discrete key poses connected with
actions. This approximation allows for a condense motion representation with parameter
sets and, thus, a real-time motion planning.

In this chapter, methods are presented to generate the whole-body motion of bipedal
robots based on sequences of parameter sets. They are inspired by the methods presented
in Chapter 2 and they are integrated in the overall framework for versatile and robust walk-
ing as presented in Chapter 3. This chapter focuses on the modules Kinematic Optimization
and Collision Avoidance (see Figure 3.3). In the overall concept of the motion generation
approach, this chapter details the trajectory optimization and reactive adaptions (see
Figure 5.1).

In Section 5.1, an overview of current related research is given. Section 5.2 presents
the motion generation of LOLA and summarizes the current limitations. After that,
approaches are discussed which extend the current motion generation: in Section 5.3
model-predictive methods are presented which optimize the robot’s motion of the next
physical step. Based on the compact task space representation with parameter sets,
not only the redundancy can be exploited but the robot’s motion can be optimized in
task space as well. Section 5.4 focuses on the task space representation. It introduces
a new CoG trajectory representation which allows for more versatile motions. Using
a simplified model, the CoG trajectory can be optimized for avoiding future kinematic
limits in real-time while taking the constraints of dynamical feasible walking into account.
Disturbance rejection and non-static environments requires adaptions of ideal planned
motions. Therefore, reactive methods for collision avoidance are presented in Section 5.5.

This section describes work published in Hildebrandt et al. [118, 122, 124].

5.1 Literature

Most current humanoid control frameworks follow a similar approach as the one presented
in this thesis. They hierarchically divide the motion generation problem. Typically, the
navigation problem is reduced to a search of foothold sequences to take into account
geometric constraints. The navigation systems have the provision of foothold positions
in common, which can be summed up as a set of parameters. This set and, additionally,
user chosen parameters or parameters explicitly calculated by the step planner [42, 80], as
for example torso height or footstep height, roughly describe the robot’s desired motion.
It separates the handling of geometric constraints imposed by the environment from the
motion generation.

81

82 Real-Time Motion Generation

Time Sequence Planning

Horizon

p

Trajectory
Optimization

w,u

Level of
Reactive Detail
Adaptations

Figure 5.1: Hierarchical Approach for Motion Generation.

The robot’s multi-body-behavior is approximated by simple point-mass models. Using
these models and the parameter sets, reference trajectories allowing for dynamically
feasible walking are calculated without long latencies. The reference trajectories are set
points to generate the motion on joint level. Buschmann [12], Englsberger et al. [28], Kajita
et al. [52], Nishiwaki et al. [80], and Takenaka et al. [105], among others, are prominent
proponents of this approach for real-time motion generation.

By adapting the desired motion according to sensor feedback, Urata et al. [108] and
Wittmann et al. [132], among others, showed impressive results in rejecting unknown
disturbances even in the presence of obstacles [123].

All the above mentioned authors apply different methods for motion generation and
different models to approximate the robot’s dynamic behavior. However, they all have
the generation of reference trajectories governing the robot’s motion based on simplified
models and heuristically chosen parameters in common.

An approach for optimization of walking pattern parameters was presented by Buschmann
et al. [11]. Due to its offline character, it does not take the environment into account.

The environment was taken into account by Nishiwaki et al. [80]. They proposed
planning collision-free foot trajectories in the task space connecting the desired footholds.
However, the foot trajectories are calculated taking the kinematics of the robot only via
heuristics into account.

5.1.1 Bipedal Locomotion

Most of the previous approaches take the robot’s full kinematics only locally into account.
Thus, a large optimization space of the robot’s redundancy is neglected. Furthermore,
the robot’s ability to step over or onto obstacles can only be exploited by using heuristic
approaches to respect kinematic limitations.

Work on kinematic planning for humanoid robots considering a whole step movement
focuses mainly on narrow tasks such as stepping over [3, 38, 101, 109, 115] or onto
obstacles. Guan et al. [38] and Yisheng Guan et al. [115] investigate the feasibility of
humanoid stepping-over-motions. They propose a quasi-static trajectory planner for the
task of stepping over a rectangular obstacle.

Arbulu et al. [3], Stasse et al. [101], and Verrelst et al. [109] additionally take the Zero
Moment Point (ZMP) feasibility criteria via the preview control [52] into account. That
way, they are able to shift the result for stepping over an obstacle from quasi-static to
dynamic robot motions. Stasse et al. [101] and Verrelst et al. [109] extend the step planning
process. First, they calculate required step length and waist height to obtain a collision-free

5.1 Literature 83

double support phase. Second, smooth swing foot trajectories are generated based on
collision checks in key configurations. Furthermore, they propose to adapt the horizontal
foot trajectory on-line during step execution. Nevertheless, to the best of the author’s
knowledge, this has not been validated experimentally yet.

As opposed to Stasse et al. [101] and Verrelst et al. [109], Arbulu et al. [3] uses more
sophisticated body approximations for collision checks. Instead of line segments the
obstacle and the lower part of the swing leg are modeled as boxes. Arbulu et al. [3]
propose, similar to Stasse et al. [101] and Verrelst et al. [109], that collisions between
robot and obstacle be checked only for several key configurations. Smooth swing foot
trajectories are generated using clamped splines by interpolating the key configurations.
The robot’s full motion is generated based on the methods presented in Kajita et al. [52].
The desired motions are checked for feasibility by calculating the inverse dynamics of the
multi-body model.

The presented methods allow humanoid robots to step over one large obstacle at a
time. However, for the work’s purposes they have the following disadvantages:

¢ They all use very simplified geometric models. That way, complex 3D parts of the
robot or the environment cannot be adequately represented.

¢ They only consider collisions between the lower legs and one obstacle. Neither
potential self-collisions, nor collisions with several obstacles at the same time are
taken into account.

¢ They limit the foot movements in a plane. More general movements which exploit
all the robot’s DoFs are not considered.

* The methods are presented as stand-alone: they are not integrated in frameworks
involving perception and navigation. Thus, their compatibility with a whole motion-
generation framework has yet to be proven.

* They concentrate on the stepping-over motion over one obstacle. The robot’s whole
kinematic is not optimized and it is not considered in more general walking scenar-
ios.

The method presented by Koch et al. [58] is a more general approach. They generate the
stepping-over-motion from a whole-body-motion-optimization. The method is applied
to the test case of a stepping-over motion over one obstacle. However, this is an off-line
method and not yet applicable to real-time applications.

5.1.2 Redundant Robots

Looking at the stepping motion of humanoid robots in cluttered environments from a
point of view of whole-body-motion optimization seems important. Whole-body-motion
optimization allows for a more complete and more general exploitation of the robot’s
capabilities without searching for solutions for specific tasks.

In recent years, many frameworks for motion planning were developed [23, 95, 116].
In their objective to develop a motion planning framework for any kind of robotic system
lies the limitations for our purposes. They neither exploit nor take the characteristics of
humanoid walking into account. This makes it difficult to satisfy the hard constraints of
dynamic walking. Motion planning for humanoid robots has to satisfy hard real-time
constraints, it has to take the dynamics of bipedal walking into account and it has to react
to unknown perturbations.

Schulman et al. [95] and Zucker et al. [116], among others, present powerful gradient-
based frameworks: Zucker et al. [116] introduces the algorithm CHOMP. It minimizes a

84 Real-Time Motion Generation

cost function by covariant gradient descent taking into account the path smoothness and
penalizing collisions. Distance gradients are calculated based on pre-computed distance
fields to accelerate the computations.

Schulman et al. [95] name their presented algorithm TRAJOPT. It is an approach based
on sequential convex optimization, which takes the system’s boundary conditions as
cost functions into account. Both algorithms have been applied to legged locomotion:
Schulman et al. [95] present results for planning foot placements while maintaining static
stability under environmental constraints for the humanoid ATLAS. Zucker et al. [116]
apply CHOMP on the four-legged robot LittleDog walking on uneven terrain.

Gienger et al. [36] follow an approach similar to the one presented in this work.
Trajectories are presented using linear attractor dynamics with control points. The control
points are optimized by a gradient-based optimization algorithm. Depending on the
number of control points and the search space, the computation time can be adapted on
the problem. Since the methods were developed for grasping motions, they do no respect
the hard timing and geometric constraints of humanoid locomotion, e.g. foot-ground
contact. This is critical in order to maintain balance.

5.2 Motion Planning

This section summarizes parts of Chapter 3 and gives a detailed view on the motion
generation. As described in Chapter 4, the Navigation-module calculates a sequence s; of
ng key poses s;

S5t = (SO/Sll"'ISﬂs) (51)

with the corresponding actions 4;

a; = (ag, a1, ..., an,) (5.2)

before each step. As defined in (4.2) an action a; contains the walking parameters
(Ax, Ay, Az, hopst, hstep, cq)i- Combined with user-chosen parameters, the input of the
motion generation is generalized to a sequence of parameter sets Pup it

pwp,t = (pwp,O’ pwp,l’ e pwp,ns)' (53)

These parameter sets determine the overall motion of the robot. Based on p,,, ; the Ideal
Walking Pattern is generated. It includes the CoP reference trajectory resp. the desired

contact force and moment trajectories Ay (t) = [F, T}] T(t) and the ideal task-space
trajectories wj;(t) € R™ which are composed of

¢ the CoG position,

¢ the torso orientation,

* the toe angles,

* the foot positions,

¢ the foot rotations,

* and the pan and tilt angles for positioning of the camera.

They are time continuous trajectories based on spline representation. All but the lateral
CoG trajectories are fully described by p,,,; and the imposed C?-continuity condition.
In this work, special focus is set on the sagittal CoG trajectory and the foot trajectories.

5.2 Motion Planning 85

0.03 0.46
0.025 0.44]
£ 0.02 =
= 0.015 = 042 -
f k
w001 > 04 _
0.005
0.38 -
0
1.9 2 212223242526 1.9 2 2122 23 2425 26
time [s] time [s]
(a)Sagittal. (b)Frontal.

Figure 5.2: Sagittal and frontal foot trajectories. Both are represented via piecewise polynomials
fifth order. Vertical foot trajectory is parameterized with one free parameter denoting the
maximum height (dzscp).

They are represented by quintic splines connecting start and end position of each step
successively. The splines are fully defined by setting velocity and acceleration at the set
points to zero. The foot trajectories are connecting foothold positions and are, therefore,
defined by the step parameter pg,,, as described in Chapter 4. The sagittal foot trajectory
has an additional set point defining the height dzs., of the swing foot movement. This is
influenced heuristically by h,s;. Figure 5.2 depicts the trajectories. The generation of the
CoG trajectories is explained in the following.

5.2.1 CoG Trajectory Generation

The lateral and frontal CoG trajectories are generated to respect dynamic constraints and
to allow for dynamically feasible bipedal locomotion. In contrast to most of the approaches
in current research, the robot’s multi-body system is approximated by a three-mass model
instead of an inverse pendulum for real-time application. That way, dynamic effects
caused by fast leg movements can be taken into account. Wittmann [114] gives a detailed
overview of robot models, their characteristics and their application in bipedal locomotion.

The model is depicted in Figure 5.3. It has one mass m, representing the upper body
and two masses my; (i = 1,2) approximating the legs dynamic characteristics. The input
to the lateral and frontal CoG trajectory generation are the trajectories defining the motion
of the three masses: foot trajectories sz‘(Pwp) = [xfi(pwp),]/fi(Pwp): zfi(pwp)]l, the desired
torso height trajectory z, = z;(pwp) describing the movement of the upper body mass

my, and the desired contact moments trajectories T;; = [Tx, Ty, TZ]. The torso height
zp = zp(pwp) = z,(Hcog) is a fifth order polynomial with a configurable height Hc,g at
the end of each step.

Thus, the equation of motion results in a linear and time variant differential equation
for the lateral and frontal upper body mass trajectories x;, and y;. The equation for the
frontal direction can be stated as

mpzpiy — mpYp(Zp + g) = —Tx
+meyp(Zn +8) —mpzaiin (5.4)
+mpyp(Zp+8) — mpzpip

The equation for the lateral upper body mass movement can be derived analogously. The
method based on spline collocation proposed in Buschmann et al. [14] is used to solve a

LFor the sake of simplicity, the explicit dependency of Puwp is ommited in the following notation.

86 Real-Time Motion Generation

Figure 5.3: Three-mass model used for CoM trajectory calculation.

BVP for x; and y;, over two steps. The CoG trajectories xc,c and yc,c can be computed by
superposition based on the motions of the three masses m,, ms and mp,. It is important,
that the real CoG is included in w;; and therefore tracked in the Feedback Control and
not the trajectories r,(t) describing the upper body movement. That way, the chance for
reaching knee singularities, as reported in Nishiwaki et al. [81], can be reduced, since the
nullspace can be used to track the ideal CoG motion.

5.2.2 Feedback Control & Inverse Kinematics

In contrast to the Global Control, the Feedback Control is executed each control cycle of At =
1ms. It does not take the robot’s motion over a time horizon of multiple At into account,
but adapts the desired contact forces Ajzx = Ajz(tx) and the ideal work-space trajectories
wiqx = wig(tx) at each control instant ¢, to stabilize the robot according to sensor feedback.
The target joint data g4, € R" are calculated based on the adapted work-space trajectories
wy (including drift compensation) with the Jacobian J, = dw/dq € R™" as

4 = Jhwi — (E—Ji T)ux (5.5)
up = VyLy. (5.6)

They are executed by the robot. Here, E represents the identity matrix and
Jo =W o (JoW) (5.7)

represents the weighted pseudoinverse with a user-chosen diagonal weighting matrix W.
The vector u is a gradient to an optimization criterion L, which is designed as follows.

Cost Function

The cost function design is explained in more detail in Hildebrandt et al. [124] and
Schwienbacher et al. [98]. It is a weighted sum of costs which can be summarized as

Ly =cjiLj1 + cconrLeon+ 5:8)
Ccmecmf + Coer Lver + ClmgLang

The costs ¢ Lj; and ccop1Leon are devoted to penalize violations of constraints as joint-limits
resp. self-collision and collisions with the environment. c.;¢Lcy is a cost to penalize the
deviation of the robot’s motion from a desired comfort pose. While ¢;; L contributes only
to Ly, when joint angles reach a joint-limit, c.,,sLcnf keeps the joint angles close to desired
positions. c,. Ly is devoted to reduce angular velocities. The weights c; are chosen
taking dimensions of the costs into account to ensure that the constraints are met. The
kinematic chain of humanoid robots represents a particularity compared to conventional

5.2 Motion Planning 87

. Navigation
/\ Pap
‘ » |

Walking Pattern Generation
At = TStep

Ak, Wi l

Feedback Control
At = 1ms

G G l
Position Controlled Robot

Figure 5.4: Models used for LoLA’s motion generation.

manipulators: its arms are open kinematic chains without defined task space motions of
their end effectors. Schwienbacher et al. [98] presented a method to use the arms DoFs to
compensate for vertical angular momentum. cgngLang represents the corresponding cost.

5.2.3 Limitations

In a nutshell, ideal motions are generated by hierarchically dividing the search problem:
first, work-space trajectories are generated to enable dynamically feasible motions based on
a simplified model over a long time horizon. The system’s motion is not taken into account.
The work-space trajectories are represented as splines described with few parameters
which further reduces the number of free variables. Second, the robot’s inverse kinematic
is solved locally while exploiting the redundancy. LOLA’s motion framework with the
corresponding robot models is depicted in Figure 5.4. This hierarchical procedure allows
for real-time application, but implies several limitations:

* Since u is only projected into null-space, it doesn’t affect the reference trajectories
given in task-space. Consequently, ill-chosen w;; can cause violations of kinematic
constraints or collisions.

¢ The robot’s kinematics are not taken into account in a predictive way. The motion-
governing task-space trajectories are calculated without feedback about the resulting
kinematic motion. Therefore, high-safety margins are necessary to generate feasible
work-space trajectories. This limits artificially the robot’s motion. In the worst case,
this leads to task-space trajectories which are kinematically not executable.

* The current work-space trajectory representation by quintic spline is only config-
urable by few parameters. A higher number of parameters would increase its
versatility.

88 Real-Time Motion Generation

_ Navigation

Walking Pattern Generation
At = TStep

Ak, Wi l

Feedback Control
At = 1ms

G Gx l
Position Controlled Robot

Figure 5.5: Extended motion generation for Model-Predictive Kinematic Planning. The future
motions of the whole robot are taken already in the Ideal Walking Pattern-module into account.

¢ The null-space of the robot is only exploited locally without knowledge about the
future motion. As shown in Chapter 2, this neglect a large optimization potential.

In the following, methods are proposed to reduce these limitations and to exploit the
kinematic capabilities of humanoid robots.

5.3 Model-Predictive Kinematic Planning

The method and results presented in this section were developed in collaboration with
Tobias Scheuermann, Tobias Blume, Manuel Demmeler and Simon Schwerd [136, 151, 152]
and are published in Hildebrandt et al. [118, 122]. This section presents a model-predictive
approach to optimize the robot’s future motions.

The limitations described above are true for most of the current frameworks for real-
time control of bipedal walking (see Section 5.1).

For this reason, it is proposed to extend the Global Control by a model-predictive
kinematic evaluation and optimization. The underlying methods are based on the methods
presented in Chapter 2. The approach is based on LOLA’s kinematic model. Instead of
only generating the Ideal Walking Pattern, the robot’s next physical step is simulated using
the kinematic model as well as the environment approximation. Figure 5.5 shows the
extended Global Control. In the following, methods are presented to evaluate the motion’s
kinematics and to optimize them.

5.3.1 Model

The model-predictive approach uses the robot’s kinematic model as depicted in Figure 5.5.
It takes into account the Feedback Control without external influences or sensor feedback,
but including the Collision Avoidance. The equations describing the robot’s kinematic

5.3 Model-Predictive Kinematic Planning 89

movement (5.5) can be summarized as a first order differential equation of the form

<Z,> = f(q, w,u,wig, wig). (5.9)
Due to real-time constraints, a time horizon of one physical step of the robot is used for
time integration. The method could be extended to take multiple steps just by integrating
over a longer time horizon into account. The model’s initial conditions are determined by
the models’s state at the end of the previous step.

Contrary to the model described in Chapter 2, here, the work-space trajectories are not
only describing desired geometric motions but they are also used to meet the dynamic con-
straints of bipedal locomotion. The trajectories describing the horizontal CoG movements
are determined by the foot and torso height trajectories using the method presented in
Buschmann et al. [14] and cannot be changed without influencing the dynamic feasibility
of the bipedal walking.

5.3.2 Optimization

The different methods introduced in Section 2.2 on the example of a 5-DOF manipulator
can be applied directly to the prediction model. It represents a redundant robot as
explained in Section 3.1. The system equation depends on task space trajectories wj,,
which are fully described by a set of parameters p,,, and which are calculated before
each step. The redundancy of the system is exploited to minimize a cost function. The
input vector u to the nullspace motion is a continous input to the system. Currently, u is
calculated each control cycle step as the gradient to L, (see (2.6)). Nevertheless, it can also
be used to represent a result of a global optimization taking a longer time horizon than one
control cycle step as for example one physical robot step into account (see Subsection 2.2.2
or Subsection 2.2.2).

5.3.3 Initial Solution - Kinematic Evaluation

The Model-Predictive Kinematic Planning depends on an initial kinematic movement which
is executable. The parameter p,,, is set approximating the full kinematic movement
heuristically by the Navigation-module or by the user. For this reason, initially chosen
Pawp,init May lead to kinematically non-feasible movements. In Hildebrandt et al. [118]
the Kinematic Evaluation is introduced. By integrating the kinematic model parametrized
by Pups which would lead to kinematically non-feasible movements, can be identified.
Additionally, it is proposed to establish an advanced error handling. Using another set of
initial parameters including different footholds, the robot’s movement is analyzed again
and can be corrected. One obtains

Papji1 = re-init(p,,,) (5.10)

with the re-initialisation of p,,,. The re-initialisation of p,,, is chosen based on the projec-
tion of the gradient of the local collision and joint limits avoidance on the task-space as
described in Chapter 3. Therefore, it is an indicator of which task space trajectory, and thus,
which parameter, is limiting the movement. In this context, the challenge is to establish
an interaction of the planning modules, step planning and trajectory planning which
works reliably and fast enough to meet the real-time requirements.? Up to now, the initial
solutions p,,, ;,;; are evaluated sequentially. Since, the motion of the model only depends
on the robot’s initial state, parallelization of the model integration to evaluate different
Pawp,init At the same time could be beneficial. Different initial solutions could be generated

2The whole planning process has to be done in less than Tstep-

90 Real-Time Motion Generation

with an approach similar to the one presented in Section 4.4 using an approximation of
the robot’s motion kinematics.

5.3.4 Parameter Set

The robot’s kinematic motion is governed by wj; parametrized by p,,, as explained in
Subsection 5.2.2. For real-time application, it is focused on the subset p,, of p,,,. The
subset p ., consists of the parameter Hc,g and the set of supporting points p¢ describing
the height of the CoG resp. the swing-foot’s sagital and lateral movements. It is assumed
that they have the biggest influence on the overall motion.

Trajectory Design - Foot Trajectories

The task space representation via quintic splines limits the configuration possibilities with
psr- The frontal trajectory is represented with one quintic polynomial connecting start and
end position of the swing foot movement and is therefore not configurable. The sagittal
trajectory is only configurable with a parameter denoting the height of the swing foot
movement. Introducing additional supporting points in the trajectory representation with
quintic polynomial requires not only parameters defining the position, but also the velocity
and acceleration at this point. Since reasonable values on velocity and acceleration level are
missing and collision avoidance only depends on the robot’s configuration in task space
on position level, adding additional supporting points in the trajectory representation
via quintic polynomial seems not reasonable. Furthermore, quintic polynomials cause
undesired oscillations, which may provoke undesired motions.

Therefore, it is decided to use a trajectory representation x(t) based on cubic polyno-
mials ¢,k =1,...,N:

Cl(t), ifto <t<th

x(t) _ Cz(.t), 1f Hh<t<t (5.11)

CN(t), Zf tno1 St <ty
with
cr(t) = ar(t — t)® + be(t — t)* + e (t — t) + di. (5.12)

ax, by, cx and dy. are the spline parameters. Cubic splines have the advantage of reducing
oscilations, which are more likely with higher dimensional polynomials. For stable
humanoid walking the boundary conditions

x(to) =50 X(tN) = SN
X(to) =0 x(ty) =0
i(tg) =0 i(ty) =0
and the continuity on acceleration level of the trajectories are critical. To sum up, these
requirements result in 3 X N constraints and x(t) is described by (N — 1) x 4 free parame-
ters. Consequently, it is possible to impose for N — 4 supporting points nr ,,; additional
position constraints and design them according to the desired walking pattern. In the cur-
rent implementation the timing of the supporting points is fixed. It is choosen heuristically
based on simulations and experiments. Figure 5.6 shows an example of a trajectory of the
sagital foot displacement with np,,; = 3 (N = 7) before and after an optimization. The
parameter p,,, are chosen to consist of 7, parameters for the vertical and the horizontal

5.3 Model-Predictive Kinematic Planning 91

0.16 ‘ :
0.14 N, .
0.12 - -
— 01 \ _
=0.08 .
= f
2 0.06 | -
0.04 _
0.02 .
0 | \ \ \ \

Figure 5.6: Vertical foot trajectory of step 8 for LoLA stepping over an obstacle before and
after optimization. The parameters describing the initial foot trajectory are chosen based on a
heuristic.

swing-foot displacement and the height of the CoM H¢,c. Consequently, the number
of optimization parameters is 1nop; = 271r oyt + 1 in total. This choice of the optimization
parameters has proven to be detailed enough to improve the performance of the robot
in our experiments. However, the method is open to choose additional parameters or
different trajectory representations.?

5.3.5 Step-Time Adaption

The high level input of the control system may be a desired path, a joystick command or a
desired step-parameter set, which can all be represented by a desired velocity v, for each
step. The desired walking command is modified by the A*-search to make navigation in
cluttered environments possible. In order to guide the robot as close as possible to the
desired velocity v4e,, Tstep is adapted according to the output of the A*-search, the relative
displacement of the next foothold Al, and v, as follows:

; Al
TStep,minr Zf TStep,min > [Vdes]
— Al Al
TStep - [Vdes]” lf TStep,min < [Oes] < TStep,max (5-13)
Al

TStep,max/ if TStep,max < Todes]
That way, the time dependence can be excluded from the optimization. Tsep, min, Tstep,max
are manually set according to the robot’s dynamics.

5.3.6 Gradients

A main difficulty in applying the methods presented in Chapter 2 to the problem of biped
locomotion is the computation of the derivatives of the Hamilton function. In general,
the gradients could be computed by deriving an analytically expression of the gradients
which is solved in each time step or, alternatively, applying a finite-difference scheme. As
a third option, the Efficient Gradient Computation was presented by Toussaint et al. [106],
which is particulary suitable to parameter-dependent derivatives. In this approach, the
gradients are re-formulated by the chain rule and then computed by forward integration
from a known initial value.

3Further details to the trajectory design are presented in Blume [136].

92 Real-Time Motion Generation

In this case, gradients with respect to the nullspace control input u(t) can be derived
analytically, as shown in Schuetz et al. [94]. Furthermore, a finite-difference scheme for a
continuous trajectory would fail in real-time application due to its high computational
expense. The formulae are presented in Appendix A.

Further, derivatives with respect to step parameters p,,, can be computed either by
application of a finite-difference scheme or the Efficient Gradient Computation. The latter
comes with very low computational expense since a limited set of parameters is used
which are constant over the time of the motion. The gradients are derived in Appendix A.

5.3.7 Integration

Figure 5.8 gives an overview of the integration of the Model-Predictive Kinematic Planning
in the Global Control. The output of the Model-Predictive Kinematic Planning is dependent

Navigation

\Paop
Ideal Walking Pattern

A i+ 1
Puwp Y w,w

o Kinematic Model
u
Evaluation & Optimization

opt opt
Pwp u
A \

Ideal Walking
Pattern

Model-Predictive
Kinematic Planning

Interpolation

w, w lu
Y

Feedback Control

Figure 5.7: Schematic of predictive planning for combined parameter and nullspace optimization.

on the method applied - either an optimized parameter set pz,ppt or an optimized continous
input vector u°P! or both. Figure 5.8 shows the integration of parameter and nullspace
optimization separately. Since the nullspace optimization separately does not influence
the task space trajectories, p,,, still has to be evaluated for its feasibility. Applying the
kinematic evaluation as presented in Subsection 5.3.3 an evaluated parameter set p), is
used in the following.

The pq, pt resp. pf, is directly used to calculate the desired walking pattern. This is the
input as w, w to the Feedback Control. The optimized nullspace input u° is applied as a
feed-forward term to (5.5). Since the model used in the Model-Predictive Kinematic Planning
and the model used in Feedback Control do not perfectly correspond, a drift compensation
is added. It is similar to the drift compensation used in the inverse kinematics for the end
effector position to account for numeric drift. The resultant input vector is calculated as

u=u"+ Ku(qp — 9r) (5.14)

with the vector g,, and g representing the joint position of the model resp. the Feedback
Control and the constant matrix K,, which is positive-definite. This control architecture is
called Model-Predictive Planning in contrast to Model-Predictive Feedback Control. The basic

5.3 Model-Predictive Kinematic Planning 93

idea of the hierarchical control framework is that the desired motion is planned in advance.
Underlying control layers modify the desired motion to account for disturbances. Since
each control layer takes the previous one into account and improves its result, the whole
system becomes very robust.

lpwp lep
Ideal Walking Pattern Ideal Walking Pattern
[pitl w, W w, W
wp Y \

Kinematic Model i Kinematic Model
u
Evaluation & Optimization Evaluation & Optimization

|

opt ev opt
Pwp ’ pwp v v U
(a)Parameter optimization. (b)Nullspace optimization

Figure 5.8: Schematic of predictive planning for parameter and nullspace optimization separately.
Nullspace optimization is coupled with evaluation of Puwp:

Implementation Details

The multi-process and multi-thread software architecture of LOLA’s real-time walking
control system is presented in Chapter 3. Each stepping motion is analyzed and optimized
before it is executed. In consequence, the planning time for the whole planning process
of step k, including the calculation of the footholds and the planning of the desired
walking pattern, is limited to the step time of the previous step Tss.px—1 in the real-time
application (see Chapter 3). Ts, k1 varies between 0.5...1.2s, since it is user dependent.
Additionally, the step planner adapts Ts;,, according to the desired velocity of the robot
and the environment. To handle the varying hard time constraints, an advanced time
management is introduced. Based on Ts. k1 @ maximal number of iterations is calculated
before each step. It takes the time which is needed for one integration of the model
depending on the current number of obstacles and depending on the necessity of the
calculation of gradients into account. The calculation time for one integration with and
without gradient calculation is summarized in Table 5.1.

Table 5.1: Summary of maximal computation time for integration of kinematic model over one
physically step (Ts;p = 1.2s). Comparison of gradient computation for the different methods
and to integration of kinematic model without gradient computation. Runtimes are obtained
from the real-time QNX computer.

method max. [ps]

without gradient calculations | 75
Numeric Gradient 75 Nparam
Gradient of Nullspace 500

Since only a limited number of iterations is possible, in most cases it is sufficient to
calculate once the descent of the cost function and apply a line search or an interval nesting
method. That way, the time-consuming integration including gradient calculation has to
be done only once.

94 Real-Time Motion Generation

The real-time application of the algorithm depends heavily on the possibility of abort-
ing the optimization process at any given time. In the worst case, the optimization process
is not able to converge to a solution superior to the initial one. In this case, only the
kinematic feasibility is checked.

Furthermore, different integration step sizes are analyzed. The analysis showed that
an integration step size which is six times higher than the control cycle time still seems
to be an adequate trade-off between accuracy of the kinematic movement of the robot
and speed of the integration. Adaptable step lengths depending on the collision gradients
showed bad results, which corresponds to Betts [9].

A larger integration step size results in a coarse input vector u. To be applicable to the
Feedback Control it is interpolated between the discrete set points u; at time step t; using
third order polynomials. That way, the input u to the Feedback Control is no longer optimal,
but the methods become applicable to the real system. This is represented as Interpolation
in Figure 5.7.

5.3.8 Results - Simulation

The proposed methods are analyzed in simulation and experiments with the robot LOLA.
A video showing the simulations and the experiments can be found at https://youtu.
It. 2

It. 0 It. 1

0.012

0.01 i
0.008 - -
0.006 |- -
0.004 i

0.002 A .
0 / | \ \

8 8.2 8.4 8.6

Lj

(a)Joint limits avoidance.

0.025

0.02

0.015 -

0.01

Lcoll,self

0.005 -

0 | | _
8 8.2 8.4 8.6

Time [s]

(b)Self-collision avoidance.

Figure 5.9: Optimization of joint limit avoidance & self-collision avoidance costs. The costs
of joint limit avoidance and of self-collision avoidance for three iterations of the optimization
algorithm are shown.

be/twfDcsQVNBY. The multi-body simulation used to verifiy the implemented methods
includes unilateral and compliant contacts, motor dynamics as well as the joint control
loops. For details see Buschmann [12]. Two different test cases are chosen to analyze the

https://youtu.be/twfDcsQvNBY
https://youtu.be/twfDcsQvNBY

5.4 Center of Mass Trajectory Planning 95

loc com ——

25

20 + B
3 15 _
N
< 10 _

0] \ \ \

5 6 7 8 9 10 11 12 13 14 15 16 17
Time [s]

Figure 5.10: Simulation results for step sequence. Total costs for local (loc) and combined (com)
optimization.

methods in this work - walking a step sequence and stepping over a complex obstacle.

Step Sequence

In the first test case LOLA executes a simple straight-forward step sequence in an obstacle-
free environment. The step lengths are Ly = 0.3...0.4m. This test case is analyzed in
experiments as well (compare Section 6.1). The resulting total costs of the combined
optimization, the simultaneous optimization of # and the parameter p,,, and of the
local method are depicted in Figure 5.10. A strong cost reduction is observed. Since the
walking movement is a periodic and symmetric motion, results are very similar in each
step. Figure 5.9 shows the costs Lj; and Lgif,con Over the iterations of the gradient method.
The optimization is converged after two iterations for both, Lj; and Ly f,co1- Since possible
collisions may lead to a failure of the whole system, collision costs are strongly represented
in the total costs. For this reason the reduction in the total costs stems mainly from the
reduction of Ly, which depends on the distance between arms and hip of the robot.
Nevertheless, the other cost functions show moderate reductions as well.

Stepping Over a Complex Obstacle

In the second test case a scenario from Hildebrandt et al. [118] is adapted. It includes
stepping over a complex shaped obstacle as depicted in Figure 5.12 in the collision world
representation. This test case forces the robot to perform a kinematically complex stepping-
over motion. It has been shown in Hildebrandt et al. [118] that a model-predictive kinematic
parameter evaluation & optimization significantly improves the chance of success for the
biped motion planning. Similar to the first test case, the combined optimization reduces
the costs of Lo through nullspace optimization. Figure 5.13 shows the cost reduction
during the three relevant steps of the overstepping motion over the iterations. Almost
full cost reduction can be achieved with the first iteration of the gradient method, which
includes backtracking line-search. Table 5.2 shows the resulting parameters. The modifi-
cations show, that the heuristic of the Navigation-module provides accurate initial values,
but not optimal ones. In such complex scenarios, the predictive approach is superior to
the heuristic approach.

5.4 Center of Mass Trajectory Planning

The method and results presented in this section were developed in collaboration with
Konstantin Ritt and they are published in Hildebrandt et al. [120].

96

Walking Direction

Real-Time Motion Generation

Step 9

Step 6

@ m]

Figure 5.11: Step sequence for simulation test case with complex obstacle.

(a)Full Model.

(b)Kinematic Model. (c)Collision Model.

Figure 5.12: Representation of complex scenario in full dynamic simulation. LoLA’s full model,
Lola’s kinematic model and the collision model, while stepping-over complex shaped obstacle
(orange). Step corresponds to step 7.

Table 5.2: Optimized parameters for stepping-over complex shaped obstacle

Initial Optimized
Step | Heog dZstep Heog dZstep
6 0.880m 0.135m | 0.879m 0.134m
7 0.880m 0.135m | 0.883m 0.136m

9

0.880m 0.135m

0.882m 0.138m

5.4 Center of Mass Trajectory Planning 97

° Step 6 -
ep S
T Step 7 — 7|
6 Step 9 4
5 .
Q

4t -
3 L]
2 -]

1 \ \ \ \ \
0 1 2 3 4 5 6

Iterations

Figure 5.13: Cost over iterations for combined optimization. Gradient method includes back-
tracking line-search.

The capability to step up and down platforms or stairs makes legged locomotion
an alternative to wheeled locomotion. Motion generation for stepping up and down is
directly coupled with the open question of how the height of the robot’s CoG has to be
designed. A variable CoG height can result in several advantages for bipedal walking.
Human walking extensively utilizes the advantage of a variable CoG height. Imitating a
human-like walking may improve the energy efficiency [41].

Adapting the CoG to the current walking situation and terrain yields a greater kine-
matic versatility: larger strides are possible [64] and the maneuverability on stairs and on
uneven terrain is improved [81]. Reaching kinematic constraints such as joint limits can be
avoided. Furthermore, recent publications have even showed a self-stabilization influence
applying a well designed CoG trajectory [22, 59].

Literature Review

Over the last decades, a large variety of models and methods have been presented to derive
dynamically feasible CoG trajectories ([13, 52, 81, 104], among others). Often the robot is
represented by an inverted pendulum where the height is considered as constant. Variable
CoG height in motion generation is taken into account by Mayr et al. [71], Nishiwaki [79],
and Takenaka et al. [104], among others.

However, in humanoid robotics, vertical CoG trajectories are often generated in a
heuristic manner and not analyzed with respect to their influence on the overall motion.
Chevallereau et al. [22], Li et al. [64], and Shafii et al. [99], for example, propose to use
a cosine oscillation around an average height. The choice is motivated by observation
of humans. In the implementations, the wavelength corresponds to the step length and
the cosine is a function of the horizontal CoG position. Both works analyze the effects of
vertical oscillations in simulation. Additionally, Shafii et al. [99] apply learning methods
to optimize the function’s parameter.

To allow climbing of stairs, Park et al. [86] generate the CoG height trajectory as a 6th
order polynomial. They define boundary conditions and design parameters that are tuned
in simulation to reduce the Zero Moment Point (ZMP) error. This yields an almost linear
function, which the authors used for simplicity. Drawbacks of this simplification are not
examined.

Hong et al. [44] deploy varying trajectories in dual and single stance. While a constant
CoG height is assumed in single stance, cubic splines are used for the double support
phase. This interpolation allows a transition to different CoG heights. The authors do not
provide a rationale to motivate their choice but they demonstrate in simulations the ability
to walk stably in uneven terrain.

Miura et al. [73] always set the robot’s waist height as high as possible. When the

98 Real-Time Motion Generation

legs are fully stretched, the waist height is lowered. The resultant trajectory suffers
from discontinuities at the transitions between double and single stance phase. The
authors therefore smooth the trajectory in an optimization with respect to a cost function
constraining joint angles and velocities. The objective of the publication was to accurately
imitate human-like motion, which was demonstrated on even terrain.

Nishiwaki [79] propose a similar approach. Keeping the torso height as high as
possible while taking the solvability of the inverse kinematics and joint limits into account.
First, they calculate the maximum feasible torso height based on the maximum joint
velocities and maximum kinematically reachable torso height. Second, the torso trajectory
is designed iteratively, taking into account future height limitations and vertical velocity
and acceleration limits. In Nishiwaki et al. [81], the approach was modified using cubic
splines which are defined by three heuristically defined support points per step. These
points are chosen in such a way that the torso height stays close to its maximum, avoiding
knee singularities.

Proposed Method

The Model-Predictive Kinematic Planning as presented in Section 5.3 directly influences
zp by determining an optimal support point value Hc,; at the end of the next step.
zp is generated as a quintic polynomial interpolation between the current height and
the optimized support point. The parameterization of the torso height with only one
parameter per step limits the possibilities to influence the overall motion. This results in
violation of kinematic constraints in challenging scenarios:

joint limits define a maximum or minimum feasible torso height, which in turn deter-
mine indirectly the CoG height. Or, expressed the other way around, a wrongly chosen
torso height or CoG height trajectory may result in joint limit violations. The minimum
feasible torso height is commonly reached when the ankle joint cannot be further flexed.
The maximum feasible torso height is mostly determined by the knee joint limits.

A typical scenario in which the current trajectory design reaches its limits is stepping
up and down stairs or platforms*. Extending the sagital trajectory design of the CoG
similar to the extended foot trajectory design as presented in Subsection 5.3.4 for the
method presented in Section 5.3 seems not applicable for two reasons:

* In contrast to stepping over obstacles, motion kinematics when stepping up and
down are assumed to be mainly influenced by the sagittal CoG trajectory. Stepping
up and down is a complex motion, which is not completed after one step, but
strongly depends on the previous and the future steps. These assumptions have
been confirmed by the results presented in the following. Therefore, extending the
sagital CoG trajectory by additional supporting points may improve the motion
kinematics, but integrating the robot’s motion over multiple steps as presented in
Section 5.3 is not possible in the limited calculation time. For complex motions, as
stepping up and down, the time horizon of one step seems to be too short.

¢ As discussed in Subsection 5.3.7, the gradient computation already reaches the
timing limits. Additional parameters in the methods as described in Section 5.3
would significantly increase the run-time, and, therefore, real-time constraints would
be violated.

The approach presented in this section extends the Model-Predictive Kinematic Planning
taking the discussed limitations into account. The approach differs from the ones presented

4A video showing LoLa stepping up and down a platform with the trajectory design as presented in Section 5.2 is
available at https://youtu.be/ayj95PvVvqOM.

https://youtu.be/ayj95PVvq0M

5.4 Center of Mass Trajectory Planning 99

in Section 5.4 and extends the Model-Predictive Kinematic Planning taking the discussed
limitations into account.

The collocation method presented in Buschmann et al. [14] is used to include an
arbitrarily shaped trajectory for the CoG height. The method explicitly takes a predefined
arbitrary CoG height trajectory in the calculation of dynamically feasible CoG motions into
account. A new parametrization for the CoG height based on cubic spline representation
is presented (see Subsection 5.4.1). It can be configured by set points. With this approach,
the set of parameters used in the Model-Predictive Kinematic Planning is extended. Due to
real-time constraints, the large number of free parameters is not manageable. Therefore, a
simplified model approximating the kinematics is introduced in Subsection 5.4.2. This
model is used to separately solve a parameter optimization for the CoG height trajectory’s
set points with respect to an objective function, taking kinematic limitations and joint
velocities into account. The optimized torso height trajectory is used in the Model-Predictive
Kinematic Planning to determine the remaining parameters describing the robot’s motion
as presented in Section 5.3. This is a trade-off between optimality of the solution and
calculation time for real-time application. Figure 5.14 depicts the integration of the torso
height optimization in the overall framework.

l Pap Initial Solution

Torso Height Optimization

Lopts Paop Optimization

\
Model-Predictive
Kinematic Planning

Figure 5.14: Integration of CoG height optimization in control framework.

5.4.1 Trajectory Design - Torso Height Trajectory

In the methods presented so far, the torso height trajectory is composed of quintic polyno-
mials with two support points at the start and end of each step period (see Figure 5.16).
This representation provides C?-smooth trajectories, which is important in order to avoid
undesired discontinuities on acceleration level. A step period describes the interval be-
tween two consecutive double support phases. As explained above, additional support
points per step period would allow for more variable trajectories. The drawback of the
current representation with quintic polynomials is that the first and second derivative have
to be set at each support point. Consequently, each support point introduces three new
degrees of freedom (DoFs). Instead, the torso height trajectory is chosen to be represented
using cubic splines. Each additional support point introduces one degree of freedom to
the curve representation, while keeping the spline property of C2-smoothness. The new
torso height trajectory is represented by four support points per step period with the
heights z;,i = 0..3. Initial conditions reduce the DoFs to three parameters per step. In
Subsection 5.4.3, the choice for the support points is discussed in more detail.

5.4.2 Simplified Kinematic Model

During the optimization, the underlying model is evaluated frequently. To maintain real-
time capability, a low complexity of the model used is desirable. The robot’s kinematics
are approximated with a simple kinematic 2D model. Thus, the 2D kinematic chain of each

100 Real-Time Motion Generation

leg is fully determined with the trajectories r, = [xp, yp, 4], i, @, and the heuristically
defined toe trajectory ¢y... Figure 5.15 shows a 2D sketch of one leg depicting the variables.
The trajectories of rf;, ¢, and ¢y, are defined by p,,,. The horizontal trajectory of the body

Figure 5.15: 2D kinematic model approximating robot’s full kinematics. Input trajectories in
black, joint angles in red. See Appendix B for the equations describing the model.

mass point of the three-mass model (x;, ;) result from solving the governing equations
of motion (EoMs) (see (5.4)). As explained in Subsection 5.2.1, the torso height trajectory
zp itself is a necessary input to solve these equations. Providing an approximated initial
torso height trajectory and solving the EoMs yields a sufficiently accurate initial horizontal
trajectory. It is re-calculated after each iteration of the optimization. When r,, r;, ¢, and
P1oe are determined, the inverse kinematics can be solved analytically for the joint angles g
(see Appendix B). The joint velocities g are derived numerically. Thus, real-time capability
can be achieved.

5.4.3 Initial Solution

The nonlinear nature of the optimization problem requires an accurate initial solution
to avoid convergence to an undesired local minimum. Similar to Nishiwaki [79] and
Nishiwaki et al. [81], a so called maximum kinematic feasible torso height z,,, is used to
derive the initial torso height trajectory (see Figure 5.16). The value of z, is obtained
from the geometric model with a fully stretched knee with a joint angle of g; = 0, while
the horizontal torso position (described by xj, y;) is maintained. This approximation is
conservative since the 2D model omits degrees of freedom in the lateral direction and
does not include hip and pelvis movements. These additional degrees of freedom allow
an even higher torso height in 3D. For calculation of an appropriate initial solution, timing
of the support points and constraints have to be defined as follows.

Timing of Supporting Points

In the course of simulations the timing of the support points is found to be crucial for
finding a feasible and optimal torso height trajectory. In this implementation, the torso
height trajectory consists of four support points per step period. The first and last support
point are at the beginning and end of each step (see Figure 5.16). The remaining two set
points are chosen according to the current stepping scenario. Timing is not subject to

5.4 Center of Mass Trajectory Planning 101

a subsequent optimization due to limited calculation time. Therefore, fixing the timing
limits the set of available torso height trajectories. Two characteristic time points inherent
to each step period that achieved satisfying results are identified: The maximum height
Zmayx for a step period reaches a local minimum at the time of lift-off of the swing foot or
touchdown during downstairs movement (see Figure 5.16 for time ¢; and t4). Choosing
this characteristic point in time allows considerations of the kinematic significance in the
torso height. The second intermediate support point considers the human ideal. In human
walking, the torso is highest during the single stance phase. This maximum occurs when
the swing foot approximately passes the CoG’s hoizontal coordinate [64]. Figure 5.16
shows the resultant choice of support points for two step periods of moving up a platform.

1.15 I I

{
1.1 !
E 105 § :
N :
: I
1 i .
: ;
f @
0.95 i i i i i
to ty ty t3 ty ts te

time [s]

Figure 5.16: Support points of torso height trajectories for two steps periods (approx. 2s),
walking up a platform with Azg,;, = 7.5cm. The dotted line seperates the two steps. Trajectories
are shown with additional support points (z;(zx)) and with only one support point at the end of
each step (z;(H)).

Constraints for Initial Solution

The trajectory with N support points s; is composed of (N — 1) cubic spline segments and
has 4(N — 1) parameters. There are necessary constraints to obtain a smooth trajectory: the
first supporting point fulfills the boundary conditions to provide smooth C? connections
from the previous step. To further enforce C? continuity, 3(N — 2) continuity constraints
are introduced on acceleration, velocity, and position level at the segment connections. For
the initial solution three additional constraints per step period are empirically defined in
order to avoid unfavorable local minima in the optimization as explained in the following.
Figure 5.17 shows two step periods of stepping up a platform. The gray areas mark torso
heights that violate joint limits according to the simplified model. Increasing platform
heights Azg,;, leads to a smaller corridor of feasible solutions.

The constraints are imposed sequentially one step after another:

(1) In order to stay clear of the joint limits, a sufficient slope of the torso height trajectory
is necessary. The minima in z,,,, marks the point in time where this occurs (see Figure 5.16:
t; and t4). Correspondingly, the slope is constrained at these intermediate support points
to be proportional to the stepping height difference.

Two more constraints are imposed onto the supporting point at the end of each step
period (i.e. at t3 and f4). Both, a change in step length and step height, affect the range of

102 Real-Time Motion Generation

1.15 : : , 1.15 :] .
1.10 — | 1.11 |
1050 » / l 1.050 ‘, .]
£ 1| | £ 1]
N0.95) . G N0.951 _—
0.9 ») ' | 0.9 | v , |

0.85 10 11 12 0.85 10 11 12

time [s] time [s]
(@)Azgpgi = 5cm (b)Azg,ir = 10cm

Figure 5.17: Range of feasible solutions for Azgj,.

kinematically feasible torso height trajectories.

(2) Consequently, the height of the support points is constrained at t3 and t5 (see
Figure 5.16). In the case of upstairs or downstairs movement, the support points at t3 and
ts as end points of a step are set resp. higher or resp. lower than the corresponding start
point (at fp resp. t3). An increase of the step length leads to a lower minimum in z,,, since
the feet are further apart. Accordingly, the height of the end points at 3 and t¢ is adapted
relative to the corresponding start point.

(3) The slope at the end points is constrained to achieve periodicity in the initial
solution. In case neither step length nor height changed from the previous step, the slope
at the end is constrained to the slope at the start of the step period; otherwise the slope is
set to zero since no further insight about the slope is available.

The resultant cubic spline is uniquely defined with the complete set of 4(N — 1)
constraints.

5.4.4 Optimization

The previously defined initial trajectory serves as the starting point for a parameter
optimization. Constraints imposed on the initial solution are omitted for the optimization.
Only, the 3(N — 2) conditions to ensure C>—continuity as well as the three constraints
providing smooth initial conditions are required. Therefore, three parameters per step
period remain as degrees of freedom for optimization for N = 4. For each cubic spline
segment, one of the parameters describing the trajectory is subjected to optimization.
Consequently there are N — 1 optimization parameters z;. The parameters z; are grouped
in the parameter set z. It is the minimal representation of the overall torso height trajectory
zp. The optimization z yields the local minimum with respect to a cost function f(z). The
optimization problem is defined as follows:

Cost Function

The cost function f(z) is a scalar function of the optimization parameters z with

f(z) = /O . (wqq(z)Té](z) +wyLy(z) + wszzm(z))dt. (5.15)

Lj; and L, penalize kinematic constraints as the violation of joint limits or the violation
of the maximum torso height with the weighting factors w;. The kinematic constraints are
not included in the optimization problem as hard constraints. Considering the kinematic
limits as hard constraints would result in an increased run-time due to the nonlinear

5.4 Center of Mass Trajectory Planning 103

inequality constraints. Since the 2D model represents a conservative estimate of the real
robot, violations of the kinematic constraints of the optimization model are acceptable for
the full robot. Nevertheless, the optimization requires a well chosen initial solution, which
can be provided as explained in Subsection 5.4.3. Furthermore, the weighting factor w; for
the joint velocities is considerably lower than the other two. The overall cost is obtained
by numeric integration of the 2D geometric model over a time horizon ¢, and summing
up the discrete cost terms with a step size of At = 0.006s.

Time Horizon

The time horizon of the optimization problem is coupled to the robot’s physical steps. By
taking more than one step into account, future kinematic limits can be avoided. In this
work, 115teps > 1 steps can be included in the trajectory optimization. Every additional step
that is incorporated leads to an increased dimension of the optimization problem. As a
trade-off between computational cost and prediction quality, r15.ps = 2 steps are included
in the optimization of the torso height trajectory.

Algorithm and Real-Time Constraints

The optimization problem is solved using the open-source library for nonlinear opti-
mization NLopt>. The software package comes with a number of both global and local
optimization routines and provides a C++ callable interface. Experiments with different
available algorithms showed that the SLSQP algorithm [60], a sequential quadratic pro-
gramming (SQP) gradient-based optimization algorithm, yields the best results. Since the
torso height trajectory generation is part of the robot control, it has to satisfy real-time
constraints. In the experiments, the optimization has to be aborted after T,,; = 400ms.
The NLopt library allows the optimization process to be interrupted at any given time
and returns the current best solution of the parameter set z. This is especially important
in terms of satisfying the hard timing constraints. Furthermore, the integration time step
At,yp of the 2D kinematic model is increased in the experiments to At.y, = 8At to satisfy
real-time constraints. Its influence of the solution quality is analyzed in the following.

5.4.5 Results

Figure 5.18: Platform test case: snapshots showing LoLa in experiment and in simulation walking
ahead to platform.

The performance of the proposed torso height trajectory generation has been assessed
using the dynamics simulation framework and validated the presented approach in
experiments (see Chapter 6)°. The approach shows improved performance in challenging

Shttp://ab-initio.mit.edu/nlopt — The library is not used in the previous chapters, since it seems non-compatible
with the combined optimization process.
6A video of the experiments is available: https://youtu.be/ayj95PVvqOM.

https://youtu.be/ayj95PVvq0M

104 Real-Time Motion Generation

stepping scenarios involving obstacles, platforms, or stairs. Even walking, especially
fast walking, also yielded cost reductions. The presented simulation results compare the
proposed method to generate zj(z;) with optimized support points z; ("on") and the torso
height trajectory z;,(H), where the final torso height position H is optimized as part of the
Model-Predictive Kinematik Planning ("off").

Platform

In this scenario, a platform of height Azy,;, = 12.5cm is placed in front of the robot.
Figure 5.18 depicts LOLA in front of the platform in simulation and in experiment. LOLA
stepping up and down the platform in experiments is shown in Figure 5.22.

Platform - Validation of Kinematic Model

100

80

60

40

20

knee joint angle [deg]

0 I I I S I O B
8§ 9 10 11 12 13 14 15 16 17 18 19

time [s]

Figure 5.19: Validation between full 3D model and simplified 2D model: left knee joint model
comparison.

The performance of the proposed trajectory optimization strongly depends on the
validity of the presented 2D kinematic model. The ankle joint angles of the simple 2D
model follow the full kinematics sufficiently well. Comparing the knee joint angles
in Figure 5.19 shows that the 2D model differs by more than 15° compared to the 3D
model when the robot steps onto the platform (compare time approx. 10.5s). During this
movement, the DoFs in the hip and pelvis, which are not represented in the reduced model,
play an important role. Regarding the knee joint angle, the 2D model approximation is
conservative towards the lower joint limit. The simplified model angle could run into
the limits while the real joint angle is still in the working range. To exploit this open
optimization potential, the weight factor wj, for the knee joint limits is reduced in the
optimization.

Platform — Results of Simulation and Experiment

Figure 5.20 shows the resulting torso height trajectories using the proposed method on and
off. Furthermore, the upper and lower limits of the torso height trajectory calculated with
the 2D model are shown. It is clearly visible, how the torso trajectory with optimization
of the support points outperforms the former torso height trajectory by meeting the
kinematic constraints. When stepping down the platform, the ankle joint limit of the
back leg is reached when only the final torso position is optimized (see Figure 5.21). The

5.4 Center of Mass Trajectory Planning 105

Zmin,max Zb(zk) I Zb(H) —
1.2
1.1
E 1
N
0.9
0.8L 1 . .

| | | | | | |
8 9 10 11 12 13 14 15 16 17 18 19
time [s]
Figure 5.20: Platform test case: torso height trajectories. When stepping down (at time = 16s)

there remains no valid corridor for the torso height to stay within joint limits based on the
prediction using the conservative 2D kinematic model.

Or—T—T1T T 71T 7 T T T T 1
Ei

2

B 20

(¢

k=

g
2
240

(o]

oS A N Y N N TR O

8§ 9 10 11 12 13 14 15 16 17 18 19

time [s]

Figure 5.21: Platform test case: left ankle angle with optimization of final torso height position
(off) and with proposed method (on). The joint limit is reached at t = 16s. Consequently, the
joint angle stays constant at its limit.

Figure 5.22: Experiment — stepping up and down: snapshots showing LoLaA stepping dynamically
up and down a plaform using the proposed method.

mechanical limit is avoided by limiting the executable joint angle resulting in the constant
joint angle between t = 16s and t = 17s in Figure 5.21. This hard restriction affects the
smoothness of moving up and especially down platforms. The optimized trajectory zj(zj)

106 Real-Time Motion Generation

avoids the ankle joint limit when stepping down. This is a major improvement over the
former implementation and results in a much smoother stepping down movement. When
stepping down, there remains no valid corridor for the torso height to stay within joint
limits of the 2D kinematic model (f = 16s in Figure 5.20). As it is learned from validating
the 2D model, the model approximates the knee joint value conservatively. With the
reduced weight factor w; for the knee joint limit the optimization yields a viable solution
for the 3D case. In both approaches the knee joint limits are not violated.

Podium

Figure 5.23: Podium test case: snapshots showing LoLA stepping dynamically up and down
a podium with two different heigths. Left: LoLa fully modeled in dynamic simulation. Right:
LoLA’s kinematic model.

This test case consists of a podium with two consecutive stairs of height Azg,;, = 10cm
up and down. Figure 5.23 depicts LOLA stepping dynamically up and down the podium.
This test case has not been validated in experiments yet. Nevertheless, according to the
quality of the simulation and experimental proof for the platform test case, the author
is confident, that this scenario is manageable in experiment as well. The resulting torso
height trajectories are shown in Figure 5.24. Similar to the platform test case, it is clearly
visible, that the torso height trajectory calculated using the proposed method performs
best. The ankle joint angles in Figure 5.25 show that the new cubic spline trajectory avoids
ankle limit violations where the quintic spline formulation does not (between 8-9s and
12-13s). Furthermore, the torso trajectories calculated using the 2D model are compared

Zmin,max —— Zb(zk) Zb(H) —
1.3 T T T T T T T T

0.8 L L L L L L I L
7 8 9 10 11 12 13 14

time [s]

Figure 5.24: Podium test case: torso height trajectories.

with At and At.y, = 8At. Figure 5.26 shows that this decrease of accuracy leads to an only
slightly different trajectory in this complex stepping scenario.

5.4 Center of Mass Trajectory Planning 107

= 20

ﬁ 10

K9] 0

B0

= —10

E —-20

LS 30

Q

~ —40

% —50 | | | | | | | |
7 8 9 10 11 12 13 14

time [s]

Figure 5.25: Podium test case: right ankle angle with optimization of final torso height position
(off) and with proposed method (on).

Zb(At) Zb(8At) —_—

Zmax

0.9 L . .

7 8 9 10 11 12 13 14
time [s]

Figure 5.26: Comparison of integration step size of 2D kinematic model.

Complex Obstacle

In scenarios that involve stepping over an obstacle, kinematic joint limits are often violated
due to the complex foot movements. Adapting the torso height z;, to stay within the joint
limits yielded convincing results. Figure 5.27 shows the obtained torso height trajectory
zp(zx) in comparison to the trajectory with optimized endpoints z,(H) for the testcase
including the complex shaped obstacle (see Figure 5.12). In particular, when stepping
over the obstacle between times t = 6s and t = 9.5s, the trajectory z;(zj) differs from the
formerly employed trajectory by more than Az = 3cm. The torso inclination angle ¢, in

Zmax —— Zb(zk) Zb<H) -
1'1 T T T T T
E W
N
0.9 1 1 1 1 1
6 7 8 9 10
time [s]

Figure 5.27: Obstacle test case (see Figure 5.12): torso height trajectories.

Figure 5.28 remains by more than 0.5° closer to the vertical orientation when stepping over
the obstacle. After passing the obstacle during normal walking, the optimized trajectory
yields still a slightly reduced torso inclination error. Holding the upper body upright is
one of the main control objectives for stable walking in the used control approach [141,
134]. The kinematically improved motion also shows here a stability improvement.

108 Real-Time Motion Generation

on off

@y [deg]

¢y [deg]

1 Y Y |

-2 B | | | |
6 7 8 9 10

time [s]

Figure 5.28: Obstacle test case: Inertial Measurement Unit (IMU) angles with optimization of
final torso height position (off) and with proposed method (on).

5.5 Reactive Collision Avoidance

The ability to avoid collisions is crucial for locomotion in cluttered environments. It is not
enough to plan collision-free movements in advance when the environment is dynamic
and not precisely known. Especially when the robot has to modify its ideal planned
motion to react to disturbances, local collision avoidance is necessary. In the following, a
method is introduced which locally optimizes the task space trajectories in real-time. It
was published in Hildebrandt et al. [124].

The publication of Behnisch et al. [8] has to be emphasized for the presented method.
They combine a global sampling based search algorithm in task space with a local potential
tield based method which adapts the global solution and which will be used in a similar
way in this work.

5.5.1 Task Space Trajectory Adaption

The method is integrated in the Feedback Control as Collision Avoidance module (see Fig-
ure 3.3).

As described in Section 5.2, the method for self-collision avoidance introduced in
Schwienbacher et al. [98] is acting on the nullspace. Thus, it doesn’t affect the reference
trajectories given in task space. Consequently, ill-chosen reference trajectories can still
cause collisions. In order to face this problem and to integrate reactive collision avoidance,
it is suggested to modify the task space trajectories. Based on (5.5), the inverse kinematics
is calculated as follows

9r = T (i + rea) — (I = JhJuo)i (5.16)
g = VyLy. (5.17)

Wyeq TESP. Wie Tepresent the local modifications. This approach is largely inspired by
Behnisch et al. [8].

5.5 Reactive Collision Avoidance 109

Unlike Behnisch et al. [8], the influence of the cost function has to be limited to the six
DoF of the swing-foot which are described by wr € R®. Modifications of CoG trajectories
could destabilize the robot. The modifications of the swing foot movement and their
influence on the CoG trajectory can be balanced by the redundancy of the robot. w can
be written as w = [wk, wF]” with the remaining coordinates wgr € R("~%). A selection

matrix S € R®*™ and a selection matrix § € R("~6)xm
wr = 5w, (5.18)
wr = Sw. (5.19)

are defined. Hence, the modifications w,, are determined as follows: The objective
function for one time step At

1 .
o= Ewﬁlml + AHgca — min! (5.20)
is introduced with the first-order change of Hrca, AHrca = agf]“ gAt, which is a potential

related to collisions and wr ., as the swing foot modification. It is stated that 4 is derived
from the least squares solution of wr .,; = SJ, g yielding to the constraint

g = (SJuw) W0 (5.21)
With the optimality condition
0P . dHgca #
= At = 22
awprcol WE col + aq (S]w) 0 (5)
it follows directly
. T (0H T
Wr ol = O [(ST)"] (g;“) (5.23)
and
Wreq := [0, wF]T (5.24)
wr = —[(S])"]"V;Hgca- (5.25)

The pseudoinverse in (5.23)) is not directly calculated, but an algorithm similar to the
algorithm presented in [57] is applied to solve the linear equation system. The cost function
Hpgca used above is a combination of objective functions dedicated to collisions and joint
limit avoidance. Starting with the collision avoidance the different parts of Hrca are
presented in the following.

Collision avoidance

Here, the author resorts to the framework presented in Subsection 3.3.2. The full collision
model of the robot (see Figure 5.29) and the environment representation E are used. Not
only collisions between robot and obstacles are taken into account, but also self-collisions
as for example the two legs. According to Schwienbacher et al. [98], the cost function for
collision avoidance is defined here as a piecewise cubic and quadratic function of d;:

W(da_dl)g dy < d,
Lcoll(dl) = _%d% +sod; 1 d; < dgtc (5.26)
0 . dl Z da

where d, is an activation distance for collision avoidance and sy and t. are parameters that
adjust the different objective functions to each other. In this work the parameters d,, so
and t. are chosen differently for collisions pairs including an obstacle or including only
robot segments.

110 Real-Time Motion Generation

(a)Collision Model. (b)Boundingbox.

Figure 5.29: Collision world representation of complex scenario. LoLA’s collision model and
Lola’s collision model with the boundingbox, representing distance calculation hierarchy, while
stepping-over complex shaped obstacle (orange). Step corresponds to step 7.

Notes

Because of the time consuming distance calculations in every control cycle the presented
method is not applicable to environments with more than a few obstacles. To resolve this
problem, a hierarchical approach is used:

Instead of distance calculations of each collision pair including an obstacle, a calcu-
lation hierarchy is introduced. The whole robot is approximated as a line-SSV called
BBL (Bounding Box line-SSV) in the following and introduced in the distance calculation
framework. That way it is possible to verify the distances between BBL and obstacles first,
and only if the obstacles are inside BBL, the other collision pairs are taken into account.
Figure 5.29 depicts the robot’s approximation.

Joint Limit Avoidance

In order to avoid joint limits a quadratic objective function Lj;,,;; is added to take the joint
limits into account [98]. Since not all joints (especially the joints of the arms) are supposed
to not influence the swing foot movements, only the kinematic chain from the stance foot
to the swing foot is taken into account.

Ideal Reference Trajectory Attractor and Re-Planning

For the walking process it is crucial that the robot reaches at the end of each step ¢, the
ideal reference trajectories wy(t.). Otherwise an ill-conditioned initial contact of the swing
foot with the floor could result in a critical perturbation. A method composed of two
approaches is proposed:

First, an additional objective function is added to Hrca. It is a quadratic attractor
function which relies on the error e = w4 r — Wy r. L reduces the influence of
the rejecting objective functions defined previously. Therefore it is important to find a
parameter configuration which ensures collisions and joint limits avoidance.

Second, the trajectories proposed in [31] are used to plan the error er back to zero. The
new ideal reference trajectories of the swing foot wr ;4 , at t = t; results in

Wy rn = War +er(fy). (5.27)

5.5 Reactive Collision Avoidance 111

er(t) denotes the trajectories which lead the error er back to zero. An important character-
istic of the trajectories proposed in [31] is that they are overshoot-free. The re-planning
process starts a fixed time period before the foot will reach the ground. At this time
instance no further trajectory adaptions are allowed. In summary, the cost function Hrca
is denoted by

Hrca = Leon + Liimit + Latt- (5.28)

and the re-planning process ensures a correct initial contact of the swing foot with the floor.

Integration with Model-Predicitive Kinematic Planning

The Model-Predictive Kinematic Planning is able to provide collision-free, optimal whole-
body motions. However, for real-time application, only a limted number of parameters can
be included in the optimization problem. Thus, the influence on the shape of the task space
trajectories is limited. In addition to the necessary adaptions, when the robot’s motions do
not longer match with the ideal planned motions, the reactive adaptions represent one
possibility to continuously adapt the task space trajectories. Thus, much more complex
motions become possible. In order to consistently approximate the influence of the reactive
methods for collision avoidance, they are also integrated in the system equations of the
Model-Predictive Kinematic Planning (5.9).

0.14
0.12

0.1
0.08 -
0.06 |-
0.04 +
0.02
0 E ! ! [E ! -
7 7.2 7.4 7.6 7.8 8 8.2

yr |m]

(a)Lateral.

0 x x x
7 72 74 76 78 8 8.2

t [s]
(b)Vertical.

Figure 5.30: Lateral trajectories (denoted by yr) resp. vertical movements (denoted by zr) of
the left foot’s TCP for step 7 of testcase with complex shaped obstacle. Dashed lines show the
ideal trajectories, solid lines the trajectories with modifications of the reactive adaptions.

112 Real-Time Motion Generation

5.5.2 Results

The reactive adaptions are active in all results presented in this chapter. Even in static
scenarios they allow for much more complex motions. Figure 5.30 shows their influence
on the task space trajectories in the testcase with the complex shaped obstacle for step 7.
It only shows the most significant modifications, but all six DoFs of the swing foot are
modified.

5.6 Summary

This chapter focuses on methods for real-time motion generation of bipedal robots. The
algorithms presented in Chapter 2 are integrated within a model-predictive approach in
the framework for bipedal walking. The algorithms are extended to meet the requirements
of bipedal walking and real-time application.

Since the robot’s kinematics are not simplified, but the whole kinematic model of the
robot is used, whole-body collision avoidance including self-collisions as well as collisions
with the environment can be achieved. That way, the high redundancy of humanoid
robots can be exploited.

For further improving the versatility of bipedal walking, new task space parameteriza-
tions are discussed. A simplified kinematic model allows for optimizing the CoG trajectory
taking the constraints of dynamical walking into account.

The methods integrated in a model-predictive approach are combined with a method
which adapts online the robot’s movements for avoidance of collision and of violation of
kinematic constraints. This is especially important, when the ideal planned motions does
not longer match with the real motions or the robot is walking in dynamic scenarios.

All methods are analyzed in simulation.

Chapter 6

Autonomous Walking Results

In the previous chapters, methods for navigation and whole-body motion generation
with focus on bipedal locomotion are presented. All of the methods have been analyzed
and compared in simulation with respect to each other. The simulation results verify
their performance and effectiveness, but simulations can not prove their robustness and
their real-time capacities. Compared to simulations, in experiments the whole system
is exposed to various disturbances on all control layers due to sensor noise or model
inaccuracies. These disturbances have to be balanced by each module separately and by
their effective combination. Hard real-time constraints require an extended error handling
in the communication of the control modules. Last but not least, even small errors, which
are not visible in simulations would cause a system to fail in experiments.

In this chapter, experiments validating the method’s applicability on real and complex
robotic systems are presented. Different scenarios are presented to measure the perfor-
mance and the real-time ability the presented methods and the software framework. First,
the results of the robot executing a step sequence without vision input are presented in
Section 6.1. Then, results of experiments with the robot moving in cluttered environments
are shown. Section 6.2 sets special focus on the interaction of planning modules and envi-
ronment perception. In addition to model inaccuracies, the robot is explicitly exposed to
external disturbances by a human pushing it. The performance of the system is validated
without and with vision input. The results are presented in Section 6.3. Section 6.4 presents
results of the robot stepping up and down a platform with and without environment
perception. This is a demanding task with respect to the motion kinematics and the
robot’s stability. Finally, the experiments presented in Section 6.5 validates the systems
responsiveness. The robot has to traverse a dynamic environment.

The results presented in this chapter are partly published in Hildebrandt et al. [118,
119, 120, 122], Hildebrandt et al. [42], and Hildebrandt et al. [123, 124].

6.1 Step Sequence

The first experiment includes a simple step sequence in an environment without any ob-
stacles. LOLA executing the sequence is depicted in Figure 6.1. The robot walks a distance
of lox, = 5m with a step length L, = 0.3...0.5m, a step time of Ts = 0.7...0.8s and a step
height of dzs;ep = 0.04m. In the following, first the methods presented in Section 5.3 are
analyzed (see Subsection 6.1.1). Second, the influence of a variable torso height trajectory
on the robot’s motion as presented in Section 5.4 is shown in Subsection 6.1.2.

6.1.1 Model-Predictive Kinematic Planning

This experiment is similar to the simulation test case as presented in Subsection 5.3.8. In the
experiments, the real-time requirement forced to limit the optimized parameters to 1,,; =

113

114 Autonomous Walking Results

Figure 6.1: Experimental results: LoLA executing step sequence with combined optimization
[123].

2. Due to recent work by Hildebrandt et al. [118], dzst., and dy were chosen as optimization
parameters. They seem to be important in kinematically challenging situations. Joint
positions are directly measured to compute the cost functions. The measured costs in
Figure 6.3 show a comparison of the local and the combined optimization. The results
resemble the simulated case (for example the strong reduction of Le,1f), yet they are
quantitatively different. The reasons for this are the smaller number of iterations in the
gradient optimization given by the real-time requirements of the walking control which
are not completely reproducible in simulation and the presence of sensor feedback in the
Feedback Control. Figure 6.2 shows a frontal view on LOLA walking with and without
combined optimization. It clearly shows the effect of the reduced Ly s by the arm
motions. As expected, in this step sequence experiment the lateral swing parameter dy
does not change in optimization while the step height is decreased. This reduces the joint
velocities. Figure 6.4 shows a comparison of L;y,; for the periodic walking motion of
all presented methods - local method, parameter optimization, nullspace optimization
and combined optimization. It is clearly visible, that the combined optimization method
outperforms the others. The comparison between nullspace optimization and combined
optimization illustrates that for kinematically simple motions the cost reduction can be
mainly attributed to an optimized nullspace exploitation.

6.1.2 Torso Height Optimization

Furthermore, the results of the previous section are compared with a variable torso height
trajectory (compare Section 5.4). Due to real-time constraints, only the optimization
parameter H, describing the torso height at the end of the next step, is included in
the Parameter Optimization without using the methods for nullspace exploitation. The
methods for nullspace exploitation mainly modify the arm motions for straight walking, a
combination of methods for nullspace exploitation and the variable torso height would
further reduce the motion costs.

Figure 6.5 shows the torso height trajectory with optimized end points in comparison
to the proposed cubic spline obtained via optimization. The resultant optimized trajectory
strongly resembles the cosine torso height that can be observed in human walking. The
corresponding joint velocity costs L. are depicted in Figure 6.6. A cost reduction is

6.1 Step Sequence 115

3:-7;;1 53 1”\ |

with / without
combined optimization

Figure 6.2: Nullspace exploitation: LoLA walking with and without combined optimization.
Increased distance between arms and hip for Loy, reduction [123].

loc com

Lvel

Lang
—
ot

0.04 .

0.02 .

NN SYIANSYIAN

Time [s]

Lcolhself

Figure 6.3: Data of step sequence experiment: costs (Lyer, Lang, Lol serf) over time [123].

116 Autonomous Walking Results

nul par ——

com loc ——
50
40
3 30
3 20
10

Time [s]

Figure 6.4: Data of step sequence experiment: total costs for local method, parameter optimiza-
tion, nullspace optimization and combined optimization [123].

Zmax Zb(zk) Zb(H) I

1.1 , , ,
— 1.05)F i
2N) S S
N 1Lk]

0.95 L ' L

8 9 10

time [s]

Figure 6.5: Fast walking test case: torso height trajectories.

on off ——

Hvel

3 35 4 45 5 55 6 65 7
time [s]

Figure 6.6: Experiment — fast walking test case: cost function L,,; with optimization of final
torso height position (off) and with proposed method (on).

clearly visible. This confirms that the optimization performed using the reduced 2D
model also yields reduced velocities considering the full kinematics and all robot joints.
Figure 6.7 shows the joint velocity cost L, of the Parameter Optimization, including the
final torso height in the optimization, and of the Parameter Optimization, using the torso
height calculation based on the presented method for one step.

6.2 Cluttered Environment

In contrast to the experiments presented in the previous section, the experiments in this
section include on-board environment perception (see Subsection 3.3.3).
In the following experiments, although the environment is static, it is perceived as

6.2 Cluttered Environment 117

30

25

20

15

cost

10

85 86 87 88 89 9 9.1

time [s]

Figure 6.7: Fast walking test case: cost function terms with optimization of final torso height
position (off) and with proposed method (on). Results obtained with full kinematic model.

dynamic by the vision system: the robot’s walking speed is relatively fast and its FoV is
limited. Additionally, the vision sensor’s signal quality largely depends on the distance
between the robot and the objects [128]. Thus, the robot’s environment approximation
changes with every step.

Due to the complexity of the perception and planning modules of LOLA, it is hard
to conduct experiments in cluttered environments which can be reproduced exactly for
all different methods. Little changes in the environment setup lead to major changes in
step planning and subsequently in motion planning. This makes the experiment highly
demanding in terms of the method’s real-time capacities. Therefore, the main objective of
these experiments is not to compare the results of all methods against each other (that is
done more effectively in simulation) but to validate the real-time capacities of the overall
framework. It has to be possible to adapt planning time according to the current walking
scenarios and to abort the optimization methods at any given time.

6.2.1 Reactive Navigation

The first setup includes one non-traversable obstacle in front of the robot (a chair) and
multiple traversable obstacles at one side of the non-traversable chair similar to the
simulation testcase depicted in Figure 4.15. The robot has to reach a goal position 5m in
front of it. The desired user chosen step lengths are 0.2...0.3m. A sequence of snapshots
showing LOLA traversing the room while stepping over obstacles and avoiding the non-
traversable obstacle is shown in Figure 6.8a. Figure 6.8b depicts the internal motion
planning results at the second time instance of the depicted sequence. It shows the current
collision world approximation of the environment. Furthermore, the calculated 2D paths
are visible. At this instance in time the mobile platform planner provides two path options
guiding the robot to the goal. The calculated sequence based on the path option which is
estimated as the shorter one takes the traversable obstacles into account.

As visible in Figure 6.8b, the navigation module only searches for a limited number
of step positions. Since the collision world representation changes every step and new
obstacles are detected as they enter the limited FoV, longer step sequences do not provide
an advantage. To take the changing collision world approximation into account, the navi-

118 Autonomous Walking Results

(a)Snapshots showing LoLA at subsequent time instances.

Lola with Vision System Lola’s Collision Model
\ 2D paths

large obstacle
R =
step sequence — 7
-

(b)Collision world and 2D paths at time instance 2.

Figure 6.8: Reactive navigation: static environment with small and large obstacles, LoLA with
on-board vision system, SSV approximation of LoLA and of obstacles at time instance 2 in the
camera’s field of view, calculated 2D paths and calculated step sequence.

gation module is executed each walking step and calculates a new step sequence. A video
showing the whole experiment is available at ht tps: //youtu.be/-VvxzFg9ATU.

6.2.2 Model-Predictive Kinematic Planning

Figure 6.9: Model-predictive kinematic planning: LoLA executing step sequence with combined
optimization in environment with obstacles. Figure shows LoLA stepping over an obstacle.

The second experimental setup includes mainly traversable obstacles. LOLA has to
traverse the room with desired, user chosen step lengths of 0.2...0.3m. The experimental
setup and its approximation for the robot control is depicted in Figure 6.9 for one time
instance. As discussed for the navigation module, the changing environment approxima-

https://youtu.be/-VvxzFg9ATU

6.3 Cluttered Environment with Disturbances 119

loc —+— com ——

Ltota,l

Figure 6.10: Model-predictive kinematic planning with combined optimization for cluttered
environments: comparison between total costs resulting from combined optimization (com) and
from Local Control (loc).

tion is highly demanding in terms of real-time capacity of the model-predictive kinematic
planning. The navigation module adapts the step time of each step. Furthermore, the inte-
gration time of the model-predictive method is obstacle-dependent. For that reason, the
optimization, e.g. the number of iterations, has to be adapted for each step to the current
walking step, as presented in Subsection 5.3.7. Figure 6.10 shows L;,, for each step for the
combined optimization and the local method. For most steps, the combined optimization
method could reduce the total costs. In steps 14,15, 18,22 and 23 the optimization had to
be aborted because of the limited planning time. LOLA navigating among the previously
unknown obstacles is shown in Figure 6.15.

6.3 Cluttered Environment with Disturbances

e R R e

Figure 6.11: Cluttered environment with disturbances - Experiment 1: snapshots at different
time instances of LoLA stepping in front of an obstacle and being simultaneously pushed. Corre-

sponding obstacle approximation used in method presented in Section 3.4 and ideal and modified
foothold positions. See Figure 3.23 for further explanations.

The previous section presents experiments with the robot moving in cluttered envi-
ronments. In real world scenarios, the robot may be exposed to external disturbances in
addition to model inaccuracies. This is highly demanding for the overall interaction of the
different modules of the control framework. In this section, the robustness of the inter-
action of the methods for flexible and robust walking is validated. Its performance relies
mainly on the method presented in Section 3.4. Due to its reduced computational time, it

120 Autonomous Walking Results

0.2 _
£
S0l | -
) |
0 — "
! ! ! !
591 594 597 600
t [s]
right leg — left leg

Figure 6.12: Cluttered environment with disturbances - Experiment 1: modification trajectories
of the legs in x-direction.

is decided to test the footstep optimization only with the restriction of the optimization
result on the real robot.

In the following, two experiments will be presented. The first experiment is a synthetic
case resembling the simulation case presented in Subsection 3.4.5 whereas the second
exhibits a more general setup. In experiment 1, the obstacle is put right in front of the
robot. In contrast to experiment 2, the obstacle is manually approximated without input
from the vision system according to the simulation setup (c.f. Figure 6.11). The vision
system is not used for two reasons: (1) According to the simulation setup, the obstacle is
not in the camera’s field of view. (2) This experiment should examine only the procedure
for the method to consider obstacles during disturbance rejection without having the
uncertainties of a running vision system. The sequence in Figure 6.11 shows the robot at
different time instances after it is pushed from behind. The corresponding modification
trajectories for the feet and inclination errors of the upper body are depicted in Figures 6.12
and 6.13. The limitation of the footstep modification, AL,, can be seen in Figure 6.14. The
obstacle lying in front of the robot limits the right foot’s step motion, since the robot
shouldn’t step on it (second picture of Figure 6.11). In the next step the robot performs a
large step modification to avoid divergence of the inclination error.

Experiment 2 additionally includes the vision system. The setup is presented in
Figure 6.16. The robot is commanded to walk forward with 30 cm step lengths. While
walking the robot’s walking control registers the obstacles detected online. The modules
for flexible walking calculate an ideal step sequence and parameter set in real-time that
ensures collision-free movements. The ideal motion is modified based on the robot’s
state. The robot is pushed several times during the experiment and recovers from the
disturbances without colliding with the obstacles. The overall ideal step sequence and
modified footholds calculated are shown in Figure 6.17.

¢ [rad]

t [s]
AL;I _Apy -

Figure 6.13: Cluttered environment with disturbances - Experiment 1: resulting inclination
errors of the upper body (IMU-data).

6.4 Stepping Up and Down 121

0.3
. AL, +
%
0.2 oy ALY+
E) s,
B * +
5 01 ;“W + ,
< > + o o
+
0 Ty g #:;*W%*A
T
—0.1 | |
596 597 598 599

t]

Figure 6.14: Cluttered environment with disturbances - Experiment 1: optimization result of the
step length adaptions before (ALy) and after (AL}) collision check.

6.4 Stepping Up and Down

Real versatile walking includes not only walking on flat ground but also stepping up
and down platforms or stairs. As discussed in Section 5.4 the stepping up and down
movement is kinematically demanding. This section further discusses the experiment
presented in Subsection 5.4.5. The experimental setup is depicted in Figure 6.18.

Figure 6.19 shows the step sequence executed by the robot. The step sequence and
the initial parameters, which are heuristically determined, are the input as Pup to the
method presented in Section 5.4. It generates an optimal CoG trajectory. The following
Model-Predicitive Kinematic Planning optimizes the parameters dzs;,, and dy describing the
swing foot trajectories of the next step. Table 6.1 lists the initial parameters, determined
heuristically by the step planner, and the optimized parameter describing the swing foot
height. The heuristic provides a good initial guess, which is slightly optimized. For
real-time application only a limited number of parameters can be optimized. Thus, the
resulting movement may not meet all kinematic constraints including collision avoidance.
Therefore, the method, described in Section 5.5, locally modifies the swing foot trajectories.
Figure 6.20 shows its influence on the vertical swing foot movement for stepping up and
down. Without such a continuous adaption in each control cycle the movement would
not be executable.

6.5 Dynamic Environment

So far, only experiments in static environments were presented. The responsiveness of the

approach also allows for application in dynamic environments. This section presents an

experiment with LOLA moving among static obstacles and a dynamic moving human.
A sequence of snapshots of the experiments is depicted in Figure 6.21. The video of

Lola with Lola’s Step Sequence Obstacle
Vision System Collision Model Approximations

Figure 6.15: Setup for experiments in cluttered environments.

122

Autonomous Walking Results

Figure 6.16: Cluttered environment with disturbances - Experiment 2: snapshots at different
time instants of LoLA walking in cluttered environment while being pushed simultaneously.

Walking Direction

\
i!!g
i\

1 2

3

x[m]

4 5

Figure 6.17: Cluttered environment with disturbances - Experiment 2: ideal step sequence is
represented as black boxes. Modified and executed steps are represented as filled boxes. Relevant

obstacles in orange.

Table 6.1: Optimized parameters for stepping up and down a platform. Only steps up (Step 6
and 7) and down (Step 12 and 13) are listed (see Figure 6.19). dzstp denotes the relative height
of the swing foot trajectory relative to either the start or the final position of the swing foot

depending on the height.

Initial | Optimized
Step | dzstep dZstep
7 0.016m | 0.02m
8 0.04m | 0.04m
12 0.04m | 0.04m
13 0.016m | 0.02m

6.6 Robustness 123

Figure 6.18: Platform test case: snapshots showing LoLA in experiment walking ahead to
platform. It is the same experiment as discussed in Subsection 5.4.5.

the whole experiment is available online https://youtu.be/-VvxzFg9ATU. The
experiments validated the real-time capability of the presented methods: the environment
in the experiments is completely unknown and dynamic. It is modeled using our on-board
vision system.

Figure 6.22 shows the result of the mobile platform planner and the step planner
for three different walking steps. Since the field of view is limited, LOLA perceives a
new part of the environment with each step. Furthermore, LOLA has to react to the
human dynamically stepping in its way. This is clearly visible in the differences of the
environment of snapshots 1 — 3 in Figure 6.22. The mobile platform planner adapts to
the changing environment and determines executable 2D paths. The step planner uses
these 2D paths as a guideline and calculates step sequences. Figure 6.22 emphasizes the
real-time character of the step planner. It is aborted after 1, 4.5 steps are calculated or the
time limit is reached.

Walking Direction

N

O O w3 2s000
[5= L L Hpe L L

|
0 1 2 3 4
x[m]

Figure 6.19: LoLA stepping up and down a platform - executed step sequence. Experimental
setup is depicted in Figure 5.18.

https://youtu.be/-VvxzFg9ATU

124 Autonomous Walking Results

0 I I I I -
5 5.2 5.4 5.6 5.8
t [s]

(=)

(a)Stepping up.

0.2

0.15

0.1

zp [m]

0.05

0 B x x x x
10.6 10.8 11 11.2 114 11.6
t [s]

(b)Stepping down.

Figure 6.20: LoLA stepping up and down a platform - influence of reactive collision avoidance.
Vertical movements (denoted by zr) of the right foot’s TCP for step 7 and step 13. Dashed
lines show the ideal trajectories, solid lines the trajectories with modifications of the reactive
adaptions.

Figure 6.21: Dynamic environment: LoLA autonomously finding its path to a given goal position
in dynamic environment with moving human and multiple large obstacles at three different time
instances.

6.6 Robustness 125

\O

: : 10
Ho

: : O 1<t
H

2 3
x{m]

1) @) G)]<=

Figure 6.22: Experiment in dynamic environment with moving human and multiple large
obstacles: corresponding calculated step sequences and environment approximation at three
different instances. Corresponding snapshots are depicted in Figure 6.21.

6.6 Robustness

The robustness of the presented approach allowing for walking in uneven terrain is
difficult to quantify. On the one hand, a real quantification of the approach needs an exper-
imental setup which is reproducible. The setup does not only depend on the environment
but also on multiple additional factors which change for each experiment and can not be
controlled by the author:

¢ depending on the friction and the velocity of the robot, the robot slides on the
ground, which changes its position relatively to the environment;

* the sensors’ inaccuracy lead to differences in the perceived environment and the
robot’s internal state;

e it is difficult to ensure that the robot starts each experiment from the same position
in the environment and receives the same user input at the same instances.

These inaccuracies represent small changes in the experimental setups, but they may
change the calculated step sequences and therefore the walking situations completely.

Figure 6.23: LoLA stepping up and down a platform at final presentation of DFG project in front
of robotic researchers.

126 Autonomous Walking Results

On the other hand, a quantification would only consider some specific walking situa-
tions. Even in the laboratory, it is possible to set up a large number of different experimen-
tal setups which are not all quantifiable. The setups depend on the robot’s walking speed,
the exact location of the robot in the world and on its previous and future motions. Also
the human rarely executes the same steps subsequently and it also may fail in difficult
situations.

However, up to now, in the author’s opinion the most effictive way to analyze the
robustness of the approach is to execute multiple experiments in changing setups. The
experiments presented in this chapter are only a small selection of the multiple experiments
performed to analyze different aspects of the methods. Furthermore, the methods are
presented at several occasions for researchers but also in public presentations. The most
relevant one was the final presentation of the DFG-founded project in January 2017 in
front of multiple robotic researchers, where Lola performed a selection of the presented
experiments in unknown environments live. A picture of LOLA stepping up and down
a platform at the presentation are shown in Figure 6.23. A video of the presentation is
published athttps://youtu.be/g6UACMHgt 20.

6.7 Chapter Summary

In this chapter, experiments are presented validating the method’s applicatbility on real
and complex robotic systems. The presented experiments include

* execution of a simple step sequence,
¢ experiments in cluttered environments with vision system,
* experiments in cluttered environments with external disturbances,

¢ experiments including steppable platforms and experiments in dynamic environ-
ments.

These experiments represent a collection of a wider range of experiments highlighting
different aspects of the methods. Special focus is set on the method’s real-time capability
and the method’s integration with the vision system and the methods for disturbance
rejection.

https://youtu.be/g6UACMHgt20

Chapter 7

Conclusions

The robots’ limited autonomy in unknown and changing scenarios seems to be one of the
major bottleneck to employ them in real applications. While redundant hardware design
is beneficial in terms of autonomy in cluttered environments, its exploitation in real-time
application is one challenge of current robotic research. In the preceding chapters, methods
have been presented for motion generation of redundant robots in unknown and dynamic
scenarios. This thesis concentrates on humanoids as one prominent representative of
redundant mobile robots. Thanks to their kinematic structure, they are especially suited
to be employed in diverse and highly complex scenarios. Nevertheless, the methods
developed within this thesis are not limited to humanoid robots, but are applied to other
robots such as agricultural robots or industrial manipulators working in complex scenarios.
The following section gives a brief summary of key ideas and contributions of this thesis.
Section 7.2 and Section 7.3 discuss the achievements and point out directions of future
research.

7.1 Summary

The work, presented in this thesis, was done as part of the DFG-founded project Walking
in Uneven Terrain (BU 2736/1-1). The goal of the project was to develop methods which
allow to use biped robots outside tightly controlled laboratory conditions and make their
usage in real applications realistic. Specifically, the project addresses three shortcomings
in current research: (1) on-board environment perception and modeling for fast walking
in unknown and dynamic environments. (2) real-time motion generation, which closes
the gap between navigation and joint trajectory generation, and (3) robust walking control
to stabilize the robot even during large disturbances. A key component of the methods
success is their tight integration in one overall framework.

This thesis concentrates on methods for real-time motion generation. The developed
overall concept is a hierarchical approach. It is based on three layers, which use models
with differing levels of detail to predict and plan future motions. Figure 7.1 shows an
overview of the layers. For planning long motion sequences, first a set of way points is
calculated. These way points are described by sets of parameters. The robot’s motion in
between these way points are approximated by computationally simple weighted models
and heuristics. That way, long time horizons as well as large areas of the search space can
be investigated. In the second layer, the robot’s motion is optimized. Different methods
are proposed for optimization of task space trajectories as well as optimal redundancy
resolution. Since a full kinematic model of the robot is used, the time horizon is reduced
in comparison to the sequence planning in order to allow for real-time application. The
third layer modifies reactively the robot’s motion to take sensor feedback into account.
Although, the methods were developed having their application for bipedal walking in

127

128 Conclusions

Time Sequence Planning

Horizon

p

Trajectory
Optimization

w,u

Level of
Reactive Detail
Adaptations

Figure 7.1: Hierarchical approach for motion generation.

mind, an application on a 5-DoF manipulator is shown to emphasize their applicability to
a wider range of redundant robots.

This approach for real-time motion generation was applied and extended for bipedal
walking as follows. Navigation methods were developed for searching sequences of
foothold positions. An A*-search is applied to find the optimal one. Instead of investi-
gating only the footholds an articulated 3D approximation of the lower leg and the foot
is considered to find feasible and optimal footstep locations. Additionally, it provides
an initial solution for the swing-foot movement. Key for their effectiveness in unknown
and dynamic environments is their responsiveness to changes in the environment and the
user’s input. Methods which integrate a mobile platform planner in the step planner and
which continuously optimize the set of discrete step suggestions make fast re-planning
even in complex environment possible.

The robot’s motion is determined by splines in workspace configured by the parameter
sets. The robot’s redundancy resolution is dedicated to minimizing potential functions.
The robot’s full kinematic model is analyzed for one step ahead of the actual executed
motion. That way, non-executable motion can be identified before the robot starts ex-
ecuting them. An advanced error handling makes the motion more robust. Methods
for the parameter sets which describe the workspace trajectories as well as methods for
the redundancy resolution optimize separately and combined the overall motion. At
each control cycle step, reactive optimization methods modify the workspace trajectories
according to sensor feedback.

The real-time motion generation was verified and validated in multiple simulations
and experiments. Selected experiments are presented in this thesis. Furthermore, the
methods were integrated in an overall framework for bipedal walking control. They were
combined with an on-board environment perception system and stabilization methods.
That way, the approach could be validated in complex experiments including unknown
and dynamic environments and large disturbances. Autonomous walking in unknown
and uneven terrain is only possible when combining the methods. This overall framework
was successfully demonstrated at multiple public presentations as, for example, the final
presentation of the project Walking in Uneven Terrain with invited researchers from all over
Germany.

7.2 Discussion

In this thesis, literature of current research was analyzed and discussed. Although,
many research groups are focusing on bipedal walking in uneven terrain, very few of

7.3 Directions for Future Work 129

them presented experiments with the scope of the experiments of this project. Usually,
experiments showing results on stabilization methods, vision systems or motion planning
methods are presented separately and for very narrow tasks in predefined environments.
The compatibility with one another in changing scenarios and the scalability has yet to be
shown.

The methods presented in this thesis were successfully applied and validated on the
robot LOLA: They allow for navigation in dynamic environments, stepping up and down
platforms, stepping over obstacles and handling external disturbances in the presence
of previously unknown obstacles. In contrast to most of current research, they are not
limited to predefined scenarios and can be applied in combination.

Like for humans, walking in uneven and unknown terrain is a challenging task for
bipedal robots. Even in the labrotary, scenarios may still be too complex to be successfull
completed and they may provoke a fail of the system. On the one hand, this is due to the
technical limits of the system. LOLA was developed at a university and it is still a prototype.
Technical failures are inherent to a prototype. On the other hand, the developed methods,
represent approaches how walking in uneven terrain can be achieved. The robustness of
the methods have to be improved by further tuning in experiments.

In our simulations and experiments, the cost function design plays a crucial role for the
performance of the optimization methods. Although complex motions are feasible when
applying the presented methods, the question “What is optimal bipedal locomotion?” can
not be answered.

7.3 Directions for Future Work

The direction for future work can be divided in two parts: the first one is related to
improvements of the current methods. The second one covers open research questions for
which the current approach needs further improvements on the methodological level.

Outlook for Improving Current Implementation
Cost Function Design

In the current implementation of the methods presented in Chapter 5, the influence of
the collision avoidance is rather high. Zucker et al. [116] propose an approach of cost
weight scheduling to dynamically adapt the cost weighting. The influence of the collision
avoidance on the total costs is increased near obstacles. This results in better behavior
of the gradient method and could also improve the results in the presented applications.
Another possibility would be to introduce a strict task hierarchy as described in Ott et al.
[84].

Real-Time Application and Parallelization

The methods presented in this thesis are real-time methods. Based on an initial solution,
the methods improve the results. They are implemented such that it is possible to abort
the calculations at any given time instant. Thus, all of them could be easily parallelized
which could significantly improve their performance. This could be implemented for
the Navigation-module with multiple solutions of the mobile platform planner’s result as
suggested in Chapter 4. Parallelization would also be beneficial in the Model-Predictive
Kinematic Planning as presented in Chapter 5. Instead of starting with one initial solution,
the motion generation could be started with different sets of parameter including differ-
ent foothold positions. Furthermore, the implemented line search algorithms could be
accelerated analogously as discussed in Graichen [37].

130 Conclusions

Dynamic Environments

The presented methods for motion generation are able to deal with dynamic environments
due to their re-planning before each executed step. Dynamic moving objects are not
explicitly taken into account. First work of integration of dynamic moving objects in the
sequence planning explicitly has been done in cooperation with Tobias Kindsmueller [143].
The developed methods does not augment the search space by the dimension of the time
but only introduce time-dependence in the object approximations. Thus, the timing of the
step sequence is still calculated based on heuristics. In addition to the time-dependence of
the object approximations, confidence intervals for their motions are introduced. These
intervals represent the error in the estimation of the objects motions. The uncertanties
are taken into account in the step planning via additional costs. Till now, this approach
has shown good results in simulation but it has to be combined with the vision system
as presented in Buttner [137]. Including time as a free variable in the Navigation-module
would further increase planning time, but the capabilities of the robot would increase.

Robustness

Since the methods developed in this thesis are part of an overall framework for bipedal
walking in uneven terrain, the methods” quality has to be always evaluated with respect
to their interaction with the whole control of bipedal locomotion. This has to be done
in experiments, due to their great variety of requirements. For successfully conducted
experiments, robustness of the overall system is crucial. During the project, the robust-
ness of the software framework could be greatly improved by introducing test cases for
continous integration. Although, the overall system is evaluated, debugging could be
improved by using software testing of each sub module, unit tests, of the overall system.
Furthermore, defined input and output limits for the sub modules could help evaluating
the performance of the overall system.

Artificial Environment

In cooperation with Dipl.-Ing. Daniel Wahrmann, the simulation environment is currently
extended by an artificial environment. Instead of testing multi-body simulation and
vision system seperately, they have to be evaluated together already in simulation. The
objective of the artificial environment is to extend the current multi-body simulation by
the possibility to add arbitrary environments and to control the robot via continuous input
commands in the simulation, as for example with a Joystick. The vision software module
is integrated in the simulation framework to approximate the environment as in the real
experiments. That way, the interaction between walking control and vision system can
be tested in simulation instead of in time-consuming experiments [148]. Although the
combination of artificial environments with the vision system has already been achieved
[129], their integration in the simulation framework still has to be finished.

Outlook for Improving Current Methodology
Dynamics

The presented methods for motion generation improve the motion of the robot mainly
by using kinematic models. This allows for exploiting the kinematic capacities of the
robot. The dynamics of the system are only taken as constraints into account but not as
optimization potential. When executing fast motions, the dynamics of the system become
more important. Future research should also included the overall multi-body dynamics in
the methods for motion generation.

7.3 Directions for Future Work 131

Figure 7.2: Experiments at the Honda Research Institute Europe showing the applicability of
the concept in industrial applications [149].

Time Dependency

The methods presented in this thesis always rely on heuristics to determine the time
dependency of the motions. Furthermore, the timing is fixed with the calculation of the
foothold positions without knowledge about the robot’s motion. Nevertheless, the timing
of the trajectories has large influence on the motions. Therefore, optimized timing promise
large improvement potential, especially when including the dynamics of the robot into
the optimization methods, which can still be exploited.

Outside Laboratories and Error-Handling

The current methods have been validated in experiments in the laboratory. Only when
evaluating the methods performance outside the laboratory current limitations can be
identified. Furthermore, outside laboratories there will always exist scenarios, such as
large disturbances, which can not be handled by the robot. Although, the current control
architecture includes error handling for system failures, still it has to be extended. For
example, falling of the robot has to be taken into account not only by shutting down the
control system but by implementing falling strategies.

Human-Robot Interaction

Autonomous robots have to interact with human users. They have to autonomously
perform tasks, while respecting the user’s input. Even in the experiments in the laboratory,
the question arises to which extend the robot has to follow the user’s input to allow for
an intuitive handling or when it has to search its own path. This question should be a
general research question, which is important when trying to bring autonomous robots in
real applications.

Supporting with Arms

This thesis focuses on walking of humanoids. But it does not take the arms as additional
supporting points into account. The use of arms could largely improve the robot’s ro-
bustness and versitality in highly complex environments. They enlarge the robot’s action
radius and allow for using additional areas as, for example walls, to stabilize the robot.
The current approach for motion generation can still be applied to this problem, neverthe-
less the methods have to be extended. In colloboration with Benjamin Kammermeier and
Dr.-Ing. Michael Gienger a framework for sequence planning was developed which could

132 Conclusions

also be applied to bipedal walking taking arms into account [142]. First simulations show
promising results for a humanoid traversing a bridge while using its arms.

What Is Optimal Bipedal Locomotion?

As stated in the discussion, the methods presented in this thesis allow for complex mo-
tions; but they still rely on manual tuning of cost functions. An experienced developer
decides by designing functions and choosing weights of the costs what optimal bipedal
walking means. When bringing the robot in real environments out of the laboratory, the
environments and, therefore also the cost function design, will become more complex. One
option would be to use learning methods to choose the parameters of the cost functions.
In this context, the proposed Artificial Environment could not only be used for evaluation
of new methods, but also to produce data sets for the learning methods.

Generalization and Industrial Application

As presented in this thesis, the discussed approach is not limited to bipedal locomotion.
In collaboration with Dr.-Ing. Michael Gienger, Benjamin Kammermaier and Michael
Meissner the approach was extended to industrial robots. Dr.-Ing. Michael Gienger,
Benjamin Kammermaier and Michael Meissner could show simulations and experiments
at Honda Research Institute Europe which proves the applicability of the concept [117,
149]. Further work, has to combine the sequence planning with the motion generation.
Additionally when executing long motion sequences, small errors accumulate to large
deviations to the ideal planned motion. Reactive acting methods, as presented in Chapter 5
could be one way to solve this issue without large computational effort.

Appendix A

Gradients for Optimization

A.1 Gradients for Optimization of Redundancy

Considering the function f = f(q,u,p) = ¢ as shown in (2.1) and the Moore-Penrose-
Pseudo-Inverse J* = JT(JJT)~!, the analytical gradients necessary for redundancy opti-
mization can be formulated as follows

g — aﬂ 871# LI# #BI Al
g =I1-7J% (A.2)
ou
) JIER) LA
37 = e UTT) T [— () < I) (")] (A3)
L ey

5 =2(1- 40) (A4)
oy . (Of

o <8q> d (A
e _ . (3f

ou <8u> 1 (A.6)

with g, . a user defined comfort pose. The gradients to the cost functions of collision
and joint limit avoidance are detailed in Buschmann et al. [16] and Schuetz et al. [94],
respectively.

A.2 Gradients for Parameter Optimization

In the context of real-time application of the parameter optimization described in Sec-
tion 5.3, the calculation of the gradient V, Loy is challenging: for a small search space of
P,p: it may be advantageous to determine V, L,y numerically. The analytical derivation
may take more computational time than the additional integrations for the numerical
derivation with finite differences. With growing search space the use of an analytical
gradient becomes more significant.

133

134 Gradients for Optimization

Analytical Gradient

The goal function (5.8) consists of a sum of functions which depend on w and 4. Therefore,
w and g have to be differentiated w.r.t. p,, at each time-step of the numerical integration.

Similar to Toussaint et al. [106], differentiation of the discrete form of (5.9)

<Z)> -+ Abif (g1, Wi, g, (Popt), Wa, (Popr)), (A7)

@@

delivers the recursive formula for the gradients

<Vpuptq> _ <Vp0ptq>
V@) 41 Vo /
+ ALV fiV p i
+ AtV fiVp,, Wi

+ Ativwoﬁvpoptwoi
+ Ativa';ofiv
50,)
Vi / 0

The partial derivatives of f can be calculated analytically. They include derivatives of
Jw,]ff, and VHgca. The foot trajectories and the CoG trajectories are the p,,;-dependent
components of w,. The boundary problem of the CoG movement is solved applying
the collocation method as described in Buschmann et al. [14]. This generates the CoG
horizontal reference trajectories. Since its analytical differentiation is computationally
expensive and the calculation time of the horizontal CoG reference trajectories is negligible
compared to the integration of the robot’s state it is decided to use numerical gradients for

the corresponding derivatives. The derivation of the foot trajectories, as the splines are
linearly dependent of p,y, is straight forward.2

(A.8)

Popt woi 4

IFor the sake of simplicity, v(t;) is replaced by v;.
2Demmeler [138] describes the gradient calculation in more detail.

Appendix B

Inverse Kinematics for Simplified 2D Model
of LoLA

Figure B.1: 2D kinematic model approximating robot’s full kinematics. Input values in black,
auxiliary joint angles in red, output joint angles in blue.

The relative distances h, and h, can be obtained from robot dimensions and the
trajectories for feet and body. The law of cosines yields the angles «, y; and 7, in the
triangle between hip, knee and ankle joint (B.1)-(B.3).

I}+15—h
& = acos <21112 (B.1)
W+13-1
Y1 = acos <2hlz (B.2)
IF+h*—13
Y2 = acos (211}1 (B.3)

Together with the sign of hy, the distance from the origin in the ankle joint to the hip joint
projected in x direction of the mid foot, the three leg joint angles can be derived from the

135

136 Inverse Kinematics for Simplified 2D Model of LOLA

angles in (B.1)-(B.3) and some basic trigonometry (B.4).

h
he >0 o= Gankie = —72 — aCOS<hZ>

1 = Gknee = 180° — (B.4)

o h
92 = qnip = 180 —71+afﬂ”<||th>

References

(1]

[10]

[11]

[12]

[13]

[14]

A. Liegeois. “Automatic Supervisory Control of the Configuration and Behavior of
Multibody Mechanisms”. In: IEEE Transactions on Systems 12 (1977), pp. 868-871.

Adams, E. Fundamentals of Game Design. Ed. by Johnson, K. 3rd ed. 2013, p. 576.

Arbulu, M., Kheddar, A., and Yoshida, E. “An approach of generic solution for hu-
manoid stepping over motion”. In: IEEE-RAS International Conference on Humanoid
Robots. 2010.

Ayaz, Y., Munawar, K., Bilal Malik, M., Konno, A., and Uchiyama, M. “Human-like
approach to footstep planning among obstacles for humanoid robots”. In: IEEE
International Conference on Intelligent Robots and Systems. 2006.

Bae, H., Lee, I, Jung, T., and Oh, J. H. “Walking-wheeling dual mode strategy
for humanoid robot, DRC-HUBO+". In: IEEE International Conference on Intelligent
Robots and Systems. 2016.

Banerjee, B. and Chandrasekaran, B. “A Framework of Voronoi Diagram for Plan-
ning Multiple Paths in Free Space”. In: Journal of Experimental & Theoretical Artificial
Intelligence 25.4 (2013), pp. 457—475.

Baudouin, L., Perrin, N., Moulard, T., Lamiraux, F., Stasse, O., and Yoshida, E.
“Real-time replanning using 3D environment for humanoid robot”. In: IEEE-RAS
International Conference on Humanoid Robots. 2011.

Behnisch, M., Haschke, R., Ritter, H., and Gienger, M. “Deformable trees - exploiting
local obstacle avoidance”. In: IEEE-RAS International Conference on Humanoid Robots.
2011.

Betts, J. T. “Survey of Numerical Methods for Trajectory Optimization”. In: Journal
of Guidance, Control, and Dynamics 21.2 (1998), pp. 193-207.

Bocek, M. “Conjugate gradient algorithm for optimal control problems with pa-
rameters”. In: Kybernetika 16.5 (1980), pp. 454—461.

Buschmann, T., Lohmeier, S., Ulbrich, H., and Pfeiffer, F. “Optimization based gait
pattern generation for a biped robot”. In: IEEE-RAS International Conference on
Humanoid Robots. 2005.

Buschmann, T. “Simulation and Control of Biped Walking Robots”. PhD thesis.
Technical University of Munich, 2010.

Buschmann, T., Favot, V., Lohmeier, S., Schwienbacher, M., and Ulbrich, H. “Ex-
periments in Fast Biped Walking”. In: IEEE International Conference on Mechatronics.
2011.

Buschmann, T., Lohmeier, S., Bachmayer, M., Ulbrich, H., and Pfeiffer, F. “A colloca-
tion method for real-time walking pattern generation”. In: IEEE-RAS International
Conference on Humanoid Robots. 2007.

137

138

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

REFERENCES

Buschmann, T., Lohmeier, S., Schwienbacher, M., Favot, V., Ulbrich, H., Hun-
delshausen, F. von, Rohe, G., and Wuensche, H.-J. “Walking in Unknown Environ-
ments - A Step Towards More Autonomy”. In: IEEE-RAS International Conference
on Humanoid Robots. 2010.

Buschmann, T., Lohmeier, S., and Ulbrich, H. “Biped walking control based on
hybrid position/force control”. In: IEEE-RS] International Conference on Intelligent
Robots and Systems. 2009.

Chestnutt, J., Michel, P.,, Nishiwaki, K., Kuffner, J., and Kagami, S. “An intelli-
gent joystick for biped control”. In: IEEE International Conference on Robotics and
Automation. 2006.

Chestnutt, J. “Navigation Planning for Legged Robots”. PhD thesis. Carnegie
Mellon University, 2007.

Chestnutt, J., Nishiwaki, K., Kuffner, J., and Kagami, S. “An adaptive action model
for legged navigation planning”. In: IEEE-RAS International Conference on Humanoid
Robots. 2007.

Chestnutt, J., Takaoka, Y., Suga, K., Nishiwaki, K., Kuffner, J., and Kagami, S.
“Biped Navigation in Rough Environments Using On-board Sensing”. In: IEEE/RS]
International Conference on Intelligent Robots and Systems. 2009.

Chestnutt, J., Takaokaz, Y., Doiz, M., Sugaz, K., and Kagamiy, S. “Safe adjustment
regions for legged locomotion paths”. In: IEEE-RAS International Conference on
Humanoid Robots. 2010.

Chevallereau, C. and Aoustin, Y. “Self-Stabilization of 3D Walking via Vertical
Oscillations of the Hip”. In: IEEE International Conference on Robotics and Automation.
2015.

Chitta, S., Sucan, I., and Cousins, S. “Movelt! [ROS Topics]”. In: IEEE Robotics &
Automation Magazine 19.1 (2012), pp. 18-19.

Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G. A., Burgard, W., Kavraki, L. E.,
and Thrun, S. Principles of Robot Motion - Theory, Algorithms, and Implementations.
2005.

Cupec, R. and Schmidt, G. “An approach to environment modelling for biped walk-
ing robots”. In: IEEE-RS] International Conference on Intelligent Robots and Systems.
2005.

Deits, R. and Tedrake, R. “Footstep planning on uneven terrain with mixed-integer
convex optimization”. In: IEEE-RAS International Conference on Humanoid Robots.
2014.

Deits, R. and Tedrake, R. “Computing Large Convex Regions of Obstacle-Free
Space Through Semidefinite Programming”. In: Algorithmic Foundations of Robotics
XI. Springer International Publishing, 2015, pp. 109-124.

Englsberger, J., Ott, C., Roa, M. A., and Hirzinger, G. “Bipedal Walking Control
Based on Capture Point Dynamics”. In: IEEE/RS] International Conference on Intelli-
gent Robots and Systems. 2011.

Englsberger, J., Werner, A., Ott, C., Henze, B., Roa, M. A., Garofalo, G., Burger,
R., Beyer, A., Eiberger, O., Schmid, K., and Albu-Schiffer, A. “Overview of the
torque-controlled humanoid robot TORO”. In: IEEE-RAS International Conference
on Humanoid Robots. 2015.

REFERENCES 139

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Ersson, T. and Xiaoming Hu. “Path planning and navigation of mobile robots in
unknown environments”. In: [IEEE/RS] International Conference on Intelligent Robots
and Systems. 2001.

Ewald, A., Mayet, J., Buschmann, T., and Ulbrich, H. “Generating Smooth Trajecto-
ries Free from Overshoot for Humanoid Robot Walking Pattern Replanning”. In:
Autonomous Mobile Systems. Informatik aktuell. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012.

Favot, V. “Hierarchical Joint Control of Humanoid Robots”. PhD thesis. Technical
University of Munich, 2016.

Garimort, J., Hornung, A., and Bennewitz, M. “Humanoid navigation with dy-
namic footstep plans”. In: IEEE International Conference on Robotics and Automation.
2011.

Ge, S. and Cui, Y. “Dynamic Motion Planning for Mobile Robots Using Potential
Field Methods”. In: Autonomous Robots 13.3 (2002), pp. 207-222.

Gienger, M. “Entwurf und Realisierung einer zweibeinigen Laufmaschine”. PhD
thesis. TU Miinchen, 2004.

Gienger, M., Toussaint, M., Jetchev, N., Bendig, A., and Goerick, C. “Optimization
of Fluent Approach and Grasp Motions”. In: IEEE-RAS International Conference on
Humanoid Robots. 2008.

Graichen, K. Methoden der Optimierung und Otimalen Steuerung. Universitat Ulm,
2013.

Guan, Y., Yokoi, K., and Tanie, K. “Stepping Over Obstacles with Humanoid
Robots”. In: IEEE Transactions on Robotics 22.5 (2006), pp. 958-973.

Gutmann, J.-S., Fukuchi, M., and Fujita, M. “3D Perception and Environment
Map Generation for Humanoid Robot Navigation”. In: The International Journal of
Robotics Research 27.10 (2008), pp. 1117-1134.

Hanan Samet. The Design and Analysis of Spatial Data Structures. Ed. by Harrison,
M. A. Maryland: Addison-Wesley Publishing Company, Inc., 1990.

Herdt, A., Perrin, N., and Wieber, P. B. “LMPC based online generation of more
efficient walking motions”. In: IEEE-RAS International Conference on Humanoid
Robots. 2012.

Hildebrandt, A.-c., Wahrmann, D., Wittmann, R., Rixen, D., and Buschmann, T.
“Real-Time Pattern Generation Among Obstacles for Biped Robots”. In: IEEE/RS]
International Conference on Intelligent Robots and Systems. 2015.

Hirai, K., Hirose, M., Haikawa, Y., and Takenaka, T. “The development of Honda
humanoid robot”. In: IEEE International Conference on Robotics and Automation. 1998.

Hong, Y.-D. and Lee, K.-B. “Stable Walking of Humanoid Robots Using Vertical
Center of Mass and Foot Motions by an Evolutionary Optimized Central Pattern
Generator”. In: International Journal of Advanced Robotic Systems 13.1 (2016), p. 27.

Hornung, A. and Bennewitz, M. “Adaptive Level-of-Detail Planning for Efficient
Humanoid Navigation”. In: IEEE International Conference on Robotics and Automation.
2012.

Hornung, A., Dornbush, A., Likhachev, M., and Bennewitz, M. “Anytime search-
based footstep planning with suboptimality bounds”. In: IEEE-RAS International
Conference on Humanoid Robots. 2012.

140

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

REFERENCES

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. “Oc-
toMap: An efficient probabilistic 3D mapping framework based on octrees”. In:
Autonomous Robots 34.3 (2013), pp. 189-206.

Ioan A. Sucan, Mark Moll, L. E. K. “The Open Motion Planning Library”. In: [IEEE
Robotics & Automation Magazine 12.December (2012), pp. 72-82.

J. Nocedal and S. J. Wright. Numerical Optimization. 2nd ed. Springer Series in
Operations Research and Financial Engineering. New York: Springer New York,
2006.

Kaelbling, L. P. and Lozano-Perez, T. “Hierarchical task and motion planning in
the now”. In: IEEE International Conference on Robotics and Automation. 2011.

Kagami, S., Nishiwaki, K., Kuffner, J., Okada, K., Inaba, M., and Inoue, H. “Vision-
based 2.5D terrain modeling for humanoid locomotion”. In: IEEE International
Conference on Robotics and Automation. 2003.

Kajita, S., Kanehiro, F,, Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and Hirukawa,
H. “Biped Walking Pattern Generation by Using Preview Control of Zero-Moment
Point”. In: IEEE International Conference on Robotics and Automation. 2003.

Kaneko, K., Kanehiro, F,, Kajita, S., Hirukawa, H., Kawasaki, T., Hirata, M., Akachi,
K., and Isozumi, T. “Humanoid robot HRP-2". In: IEEE International Conference on
Robotics and Automation. 2004.

Karkowski, P. and Bennewitz, M. “Real-Time Footstep Planning Using a Geometric
Approach”. In: IEEE International Conference on Robotics and Automation. 2016.

Kavraki, L. E., Svestka, P, Latombe, J. C., and Overmars, M. H. “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces”. In: IEEE
Transactions on Robotics and Automation 12.4 (1996), pp. 566-580.

Kim,].-O. and Khosla, P. K. “Real-time obstacle avoidance using harmonic potential
functions”. In: IEEE Transaction on Robotics and Automation 8.3 (1992), pp. 338-349.

Klein, C. A. and Huang, C.-H. “Review of pseudoinverse control for use with
kinematically redundant manipulators”. In: IEEE Transactions on Systems, Man, and
Cybernetics SMC-13.2 (1983), pp. 245-250.

Koch, K. H., Mombaur, K., Stasse, O., Soueres, ., Koch, K. H., Mombaur, K., Stasse,
0., and Optimization, P. S. “Optimization based exploitation of the ankle elasticity
of HRP-2 for overstepping large obstacles”. In: IEEE-RAS International Conference
on Humanoid Robots. 2014.

Koolen, T., Posa, M., and Tedrake, R. “Balance control using center of mass height
variation: limitations imposed by unilateral contact”. In: IEEE-RAS International
Conference on Humanoid Robots. 2016.

Kraft, D. “Algorithm 733; TOMP - Fortran modules for optimal control calcula-
tions”. In: ACM Transactions on Mathematical Software 20.3 (1994), pp. 262-281.

Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen,
T., Marion, P.,, and Tedrake, R. “Optimization-based locomotion planning, estima-
tion, and control design for Atlas”. In: Autonomous Robots 40.3 (2016), pp. 429-
455.

LaValle, S. M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. Tech.
rep. Computer Science Dept, Iowa State University, 1998.

LaValle, S. M. Planning Algorithms. Cambridge: Cambridge University Press, 2006.

REFERENCES 141

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Li, Z., Vanderborght, B., Tsagarakis, N. G., and Caldwell, D. G. “Fast bipedal walk
using large strides by modulating hip posture and toe-heel motion”. In: IEEE
International Conference on Robotics and Biomimetics. 2010.

Liu, H., Liu, W., and Latecki, L. J. “Convex shape decomposition”. In: IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (2010).

Lohmeier, S., Loffler, K., Gienger, M., Ulbrich, H., and Pfeiffer, F. “Computer system
and control of biped "Johnnie"”. In: IEEE International Conference on Robotics and
Automation. 2004.

Lohmeier, S. “Design and Realization of a Humanoid Robot for Fast and Au-
tonomous Bipedal Locomotion”. PhD thesis. TU Miinchen, 2010.

Maier, D., Lutz, C., and Bennewitz, M. “Integrated perception, mapping, and
footstep planning for humanoid navigation among 3D obstacles”. In: IEEE/RS]
International Conference on Intelligent Robots and Systems. 2013.

Maier, D., Stachniss, C., and Bennewitz, M. “Vision-Based Humanoid Navigation
Using Self-Supervised Obstacle Detection”. In: International Journal of Humanoid
Robotics 10.2 (2013).

Mansard, N., Remazeilles, A., and Chaumette, F. “Continuity of Varying-Feature-
Set Control Laws”. In: IEEE Transactions on Automatic Control 54.11 (2009), pp. 2493—
2505.

Mayr, J., Gattringer, H., and Bremer, H. “A Bipedal Walking Pattern Generator
that Considers Multi-Body Dynamics by Angular Momentum Estimation”. In:
IEEE-RAS International Conference on Humanoid Robots. 2012.

Michel, P. and Chestnutt, J. “GPU-accelerated real-time 3D tracking for humanoid
locomotion and stair climbing”. In: IEEE/RS] International Conference on Intelligent
Robots and Systems. 2007.

Miura, K., Morisawa, M., Kanehiro, F,, Kajita, S., Kaneko, K., and Yokoi, K. “Human-
like walking with toe supporting for humanoids”. In: IEEE International Conference
on Intelligent Robots and Systems. 2011.

Mombaur, K., Kheddar, A., Harada, K., Buschmann, T., and Atkeson, C. “Model-
based optimization for robotics”. In: IEEE Robotics and Automation Magazine 21.3
(2014), pp. 24-26.

Nakamura, Y. Advanced Robotics - Redundancy and Optimization. Ed. by Addison-
Wesley. 1991.

Nakamura, Y. and Hanafusa, H. “Optimal Redundancy Control of Robot Manip-
ulators”. In: The International Journal of Robotics Research 6.1 (Mar. 1987), pp. 32—
42.

Naveau, M., Kudruss, M., Stasse, O., Kirches, C., Mombaur, K., and Soueéres, P. “A
Reactive Walking Pattern Generator Based on Nonlinear Model Predictive Control”.
In: IEEE Robotis and Automation Letters 2.1 (2017), pp. 10-17.

Nelson, G., Saunders, A., Neville, N., Swilling, B., Bondaryk, J., Billings, D., Lee, C.,
Playter, R., and Raibert, M. “PETMAN: A Humanoid Robot for Testing Chemical
Protective Clothing”. In: Journal of the Robotics Society of Japan 30.4 (2012), pp. 372—
377.

Nishiwaki, K. “Online design of torso height trajectories for walking patterns that
takes future kinematic limits into consideration”. In: International Conference on
Control, Automation and Systems. 2011.

142

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

REFERENCES

Nishiwaki, K., Chestnutt, J., and Kagami, S. “Autonomous navigation of a hu-
manoid robot over unknown rough terrain using a laser range sensor”. In: The
International Journal of Robotics Research 31.11 (2012), pp. 1251-1262.

Nishiwaki, K., Chestnutt,]., and Kagami, S. “Planning and Control of a Humanoid
Robot for Navigation on Uneven Multi-scale Terrain”. In: Springer Tracts in Advanced
Robotics. Vol. 79. Berlin, Heidelberg, 2014, pp. 401-415.

Nishiwaki, K., Kagami, S., Kuffner, J., Inaba, M., and Inoue, H. “Online humanoid
walking control system and a moving goal tracking experiment”. In: IEEE Interna-
tional Conference on Robotics and Automation. 2003.

Okada, K., Kagami, S., Inaba, M., and Inoue, H. “Plane segment finder: algorithm,
implementation and applications”. In: IEEE International Conference on Robotics and
Automation. 2001.

Ott, C., Dietrich, A., and Albu-Schiffer, A. “Prioritized multi-task compliance
control of redundant manipulators”. In: Automatica 53 (2015), pp. 416—423.

Pan, J., Chitta, S., and Manocha, D. “FCL: A general purpose library for collision
and proximity queries”. In: IEEE International Conference on Robotics and Automation.
2012.

Park, C.-S., Ha, T., Kim, J., and Choi, C.-H. “Trajectory generation and control for a
biped robot walking upstairs”. In: International Journal of Control, Automation and
Systems 8.2 (2010), pp. 339-351.

Park, I. W, Kim, J. Y., Lee, J., and Oh, J. H. “Mechanical design of humanoid robot
platform KHR-3 (KAIST humanoid robot - 3: HUBO)”. In: IEEE-RAS International
Conference on Humanoid Robots. 2005.

Perrin, N., Stasse, O., Baudouin, L., Lamiraux, F., and Yoshida, E. “Fast Humanoid
Robot Collision-Free Footstep Planning Using Swept Volume Approximations”. In:
IEEE Transactions on Robotics 28.2 (2012), pp. 427-439.

Quinlan, S. and Khatib, O. “Elastic bands: connecting path planning and control”.
In: IEEE International Conference on Robotics and Automation. 1993.

Sabe, K., Fukuchi, M., Gutmann, J.-S., Ohashi, T., Kawamoto, K., and Yoshigahara,
T. “Obstacle avoidance and path planning for humanoid robots using stereo vision”.
In: IEEE International Conference on Robotics and Automation. 2004.

Sacerdoti, E. “Planning in a Hierarchy of Abstract Spaces”. In: Artificial Intelligence
5.1974 (1974), pp. 115-135.

Sarmiento, A., Murrieta-Cid, R., and Hutchinson, S. “A sample-based convex cover
for rapidly finding an object in a 3-D environment”. In: IEEE International Conference
on Robotics and Automation. 2005.

Schuetz, C. “Trajectory Planning for Redundant Manipulators”. PhD thesis. Tech-
nical University of Munich, 2017.

Schuetz, C., Buschmann, T., Baur, J., Pfaff, J., and Ulbrich, H. “Predictive Online
Inverse Kinematics for Redundant Manipulators”. In: IEEE International Conference
on Robotics and Automation. 2014.

Schulman, J., Ho, J., Lee, A., Awwal, I., Bradlow, H., and Abbeel, P. “Finding
locally optimal, collision-free trajectories with sequential convex optimization”. In:
Robotics: Science and Systems. 2013.

REFERENCES 143

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Schwienbacher, M. “Vertical Angular Momentum Minimization for Biped Robots
with Kinematically Redundant Joints”. In: International Congress of Theoretical and
Applied Mechanics (2012).

Schwienbacher, M. “Efficient Algorithms for Biped Robots”. PhD thesis. Technical
University of Munich, 2014.

Schwienbacher, M., Buschmann, T., Lohmeier, S., Favot, V., and Ulbrich, H. “Self-
Collision Avoidance and Angular Momentum Compensation for a Biped Hu-
manoid Robot”. In: IEEE International Conference on Robotics and Automation. 2011.

Shafii, N., Lau, N., and Reis, L. P. “Learning a fast walk based on ZMP control
and hip height movement”. In: IEEE International Conference on Autonomous Robot
Systems and Competitions. 2014.

Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. Robotics. Advanced Textbooks
in Control and Signal Processing. London: Springer London, 2009.

Stasse, O., Verrelst, B., Vanderborght, B., and Yokoi, K. “Strategies for Humanoid
Robots to Dynamically Walk Over Large Obstacles”. In: IEEE Transactions on
Robotics 25.4 (2009), pp. 960-967.

Stumpf, A., Kohlbrecher, S., Conner, D. C., and Stryk, O. V. “Supervised Footstep
Planning for Humanoid Robots in Rough Terrain Tasks using a Black Box Walking
Controller”. In: IEEE-RAS International Conference on Humanoid Robots. 2014.

Tajima, R., Honda, D., and Suga, K. “Fast running experiments involving a hu-
manoid robot”. In: IEEE International Conference on Robotics and Automation. 2009.

Takenaka, T., Matsumoto, T., and Yoshiike, T. “Real time motion generation and
control for biped robot - 1st report: Walking gait pattern generation”. In: IEEE/RS]
International Conference on Intelligent Robots and Systems. 2009.

Takenaka, T., Matsumoto, T., and Yoshiike, T. “Real time motion generation and
control for biped robot - 3rd report: Dynamics error compensation”. In: IEEE/RS]
International Conference on Intelligent Robots and Systems. 2009.

Toussaint, M., Gienger, M., and Goerick, C. “Optimization of sequential attractor-
based movement for compact behaviour generation”. In: IEEE-RAS International
Conference on Humanoid Robots. 2007.

Urata, J., Nakanishi, Y., Okada, K., and Inaba, M. “Design of high torque and high
speed leg module for high power humanoid”. In: IEEE/RS] International Conference
on Intelligent Robots and Systems. 2010.

Urata,]., Nishiwaki, K., Nakanishi, Y., Okada, K., Kagami, S., and Inaba, M. “Online
Decision of Foot Placement Using Singular LQ Preview Regulation”. In: IEEE-RAS
International Conference on Humanoid Robots. 2011.

Verrelst, B., Stasse, O., Yokoi, K., and Vanderborght, B. “Dynamically Stepping Over
Obstacles by the Humanoid Robot HRP-2". In: IEEE-RAS International Conference
on Humanoid Robots. 2006.

Wahrmann, D. “Environment Modeling for Bipedal Robots (submitted)”. PhD
thesis. Technical University of Munich, 2017.

Wang, X. W. X,, Seet, G., Lau, M., Low, E., and Tan, K. “Exploiting force feedback in
pilot training and control of an\nunderwater robotics vehicle: an implementation
in LabVIEW”. In: OCEANS 2000 MTS/IEEE Conference and Exhibition. 2000.

144

[112]

[113]

[114]

[115]

[116]

REFERENCES

Werner, A., Henze, B., Rodriguez, D. A., Gabaret, J., Porges, O., and Roa, A. “Multi-
Contact Planning and Control for a Torque-Controlled Humanoid Robot”. In: IEEE
International Conference on Intelligent Robots and Systems. 2016.

Whitney, D. “Resolved motion rate control of manipulators and human prostheses”.
In: IEEE Transactions on Man-Machine Systems 10.2 (1969), pp. 47-53.

Wittmann, R. “Robust Walking Robots in Unknown Environments (submitted)”.
PhD thesis. Technical University of Munich, 2017.

Yisheng Guan, Yokoi, K., and Tanie, K. “Feasibility: Can Humanoid Robots Over-
come Given Obstacles?” In: IEEE International Conference on Robotics and Automation.
2005.

Zucker, M., Ratliff, N., Dragan, a. D., Pivtoraiko, M., Klingensmith, M., Dellin, C. M.,
Bagnell, J. a., and Srinivasa, S. S. “CHOMP: Covariant Hamiltonian optimization
for motion planning”. In: The International Journal of Robotics Research 32.9-10 (2013),
pp- 1164-1193.

Author’s Publications

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

Gienger, M., Ruiken, D., Bates, T., Regaieg, M., Meifiner, M., Kober, ., Seiwald, P,,
and Hildebrandt, A.-C. “Human-Robot Cooperative Object Manipulation with
Contact Changes (submitted)”. In: IEEE/RS] International Conference on Intelligent
Robots and Systems. 2018.

Hildebrandt, A.-C., Demmeler, M., Wittmann, R., Wahrmann, D., Sygulla, F,, Rixen,
D., and Buschmann, T. “Real-Time Predictive Kinematic Evaluation and Optimiza-
tion for Biped Robots”. In: IEEE/RS] International Conference on Intelligent Robots and
Systems. 2016.

Hildebrandt, A.-C., Klischat, M., Wahrmann, D., Wittmann, R., Sygulla, F.,, Sei-
wald, P, Rixen, D., and Buschmann, T. “Real-Time Path Planning in Unknown
Environments for Bipedal Robots”. In: IEEE Robotics and Automation Letters 2.4
(2017), pp. 1856-1863.

Hildebrandt, A.-C., Ritt, K., Wahrmann, D., Wittmann, R., Sygulla, E,, Seiwald, P,,
Rixen, D., and Buschmann, T. “Torso Height Optimization for Bipedal Locomotion
(accepted)”. In: Journal of Advanced Robotic Systems (2018).

Hildebrandt, A.-C., Schuetz, C., Wahrmann, D., Wittmann, R., and Rixen, D. “A
Flexible Robotic Framework for Autonomous Manufacturing Processes: Report
from the European Robotics Challenge Stage 1”. In: IEEE International Conference on
Autonomous Robot Systems and Competitions. 2016.

Hildebrandt, A.-C., Schwerd, S., Wittmann, R., Wahrmann, D., Sygulla, F,, Seiwald,
P, and Rixen, D. “Kinematic Optimization for Bipedal Robots (submitted)”. In:
Journal of Autonomous Robots (2017).

Hildebrandt, A.-C., Wittmann, R., Sygulla, F,, Wahrmann, D., Rixen, D., and
Buschmann, T. “Versatile and Robust Bipedal Walking in Unknown Environments
(submitted)”. In: Journal of Autonomous Robots (2017).

Hildebrandt, A.-C., Wittmann, R., Wahrmann, D., Ewald, A., and Buschmann, T.
“Real-Time 3D Collision Avoidance for Biped Robots”. In: IEEE/RS] International
Conference on Intelligent Robots and Systems. 2014.

Sygulla, E, Ellensohn, E, Hildebrandt, A.-C., Wahrmann, D., and Rixen, D. “A Flex-
ible and Low-Cost Tactile Sensor for Robotic Applications”. In: IEEE International
Conference on Advanced Intelligent Mechatronics. 2017.

Sygulla, E,, Wittmann, R., Seiwald, P, Berninger, T., Hildebrandt, A.-C., Wahrmann,
D., and Rixen, D. “An EtherCAT-Based Real-Time Control System Architecture
for Humanoid Robots”. In: IEEE International Conference on Automation Science and
Engineering (2018).

Wahrmann, D., Hildebrandt, A.-C., Schuetz, C., Wittmann, R., and Rixen, D. “An
Autonomous and Flexible Robotic Framework for Logistics Applications”. In:
Journal of Intelligent & Robotic Systems December (2017).

145

146

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

AUTHOR'’S PUBLICATIONS

Wahrmann, D., Hildebrandt, A.-C., Wittmann, R., Rixen, D., and Buschmann, T.
“Fast Object Approximation for Real-Time 3D Obstacle Avoidance with Biped
Robots”. In: IEEE International Conference on Advanced Intelligent Mechatronics. 2016.

Wahrmann, D., Hildebrandt, A.-C., Wittmann, R., Sygulla, E,, Seiwald, P,, Rixen, D.,
and Buschmann, T. “Vision-Based 3D Modeling of Unknown Dynamic Environ-
ments for Real-Time Humanoid Navigation (submitted)”. In: International Journal
of Humanoid Robotics (2018).

Wahrmann, D., Knopp, T., Wittmann, R., Hildebrandt, A.-C., Sygulla, F.,, Seiwald,
P, Rixen, D., and Buschmann, T. “Modifying the Estimated Ground Height to
Mitigate Error Effects on Bipedal Robot Walking”. In: IEEE International Conference
on Advanced Intelligent Mechatronics. 2017.

Wahrmann, D., Wu, Y., Sygulla, E, Hildebrandt, A.-C., Wittmann, R., Seiwald, P.,
and Rixen, D. “Time-Variable, Event-Based Walking Control for Biped Robots”. In:
International Journal of Advanced Robotic Systems 15.2 (2018).

Wittmann, R., Hildebrandt, A.-C., Ewald, A., and Buschmann, T. “An Estimation
Model for Footstep Modifications of Biped Robots”. In: IEEE/RS] International
Conference on Intelligent Robots and Systems. 2014.

Wittmann, R., Hildebrandt, A.-C., Wahrmann, D., Buschmann, T., and Rixen, D.
“State Estimation for Biped Robots Using Multibody Dynamics”. In: IEEE/RS]
International Conference on Intelligent Robots and Systems. 2015.

Wittmann, R., Hildebrandt, A.-C., Wahrmann, D., Rixen, D., and Buschmann, T.
“Real-Time Nonlinear Model Predictive Footstep Optimization for Biped Robots”.
In: IEEE-RAS International Conference on Humanoid Robots. 2015.

Wittmann, R., Hildebrandt, A.-C., Wahrmann, D., Sygulla, E, Rixen, D., and
Buschmann, T. “Model-Based Predictive Bipedal Walking Stabilization”. In: IEEE-
RAS International Conference on Humanoid Robots. 2016.

Supervised Student Theses

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

Blume, T. “Development and Kinematic Optimization of a Novel Collision-Free
Swing Foot Trajectory for a Humanoid Robot”. Diploma Thesis. Technical Univer-
sity of Munich, 2015.

Buttner, C. “Position and Velocity Estimation of Obstacles for Humanoid Robots”.
Interdisciplinary Project. Technische Universitat Miinchen, 2016.

Demmeler, M. Gradientenberechnungen fiir die Optimierung der FufSkurve. Tech. rep.
Munich: Technical University of Munich, 2016.

Diinhuber, S. “Model Predictive Kinematics”. Bachelor Thesis. Technical University
of Munich, 2017.

Jeschek, L. “Robustes Gehen unter geometrischen Beschrankungen”. Master Thesis.
Technical University of Munich, 2016.

Jonas Wittmann. “Autonome Robotik - Reaktive Pfadplanung in der Landwirtschaft-
srobotik”. Semester Thesis. Technical University of Munich, 2016.

Kammermeier, B. “Multi-Pose Planning for Sequential Movements”. Master Thesis.
Technical University of Munich, 2017.

Kindsmidiller, T. “Humanoide Schrittplanung in dynamischen Umgebungen”. Semester
Thesis. Technical University of Munich, 2016.

Kissel, M. “Optimierung von Robotertrajektorien”. Bachelor Thesis. Technical
University of Munich, 2015.

Klischat, M. “Autonome Robotik - Flexibles Laufen in unbekanntem Geldnde”.
Semester Thesis. Technical University of Munich, 2016.

Klotz,]. “Entwicklung eines Schrittsequenzplaners fiir humanoide Roboter”. Mas-
ter Thesis. Technical University of Munich, 2016.

Kunze, L. “Adaptive Arbeitsraumdefinition fiir humanoide Roboter”. Bachelor
Thesis. Technical University of Munich, 2017.

Makhani, A. “Simulated point clouds for the evaluation of 3D Computer vision
algorithms”. Interdisciplinary Project. Technische Universitdt Miinchen, 2016.

Meissner, M. Minimum-jerk Movement Optimization for Time dependent Sequential
Motions. Tech. rep. Munich/Offenbach: Honda Research Institute Europe, 2017.

Sattler, M. “Schrittplanung fiir Zweibeiner”. Bachelor Thesis. Technical University
of Munich, 2014.

Scheuermann, T. “Trajektorienoptimierung fiir den humanoiden Roboter Lola”.
Semester Thesis. Technical University of Munich, 2016.

Simon Schwerd. “Modellpradiktive Kinematikplanung bei humanoiden Robotern”.
Master Thesis. Technical University of Munich, 2016.

147

148 SUPERVISED STUDENT THESES

[153] Smith, T. and Hildebrandt, A.-C. Dokumentation Minimalmodell - Nullraumschalten.
Tech. rep. Munich: Technical University of Munich, 2015.

[154] Wiedmeyer, W. “Entwicklung eines Schrittsequenzplaners fiir humanoide Roboter”.
Semester Thesis. Technical University of Munich, 2015.

	Titlepage
	Table of Contents
	List of Abbreviations
	Introduction
	Problem Statement
	Related Work
	Contributions and Outline of this Thesis

	Motion Planning for Redundant Robots
	Problem Description
	Related Work
	Solution Approach

	Motivational Example - Predictive Kinematics
	Sequence Planing
	Trajectory Optimization
	Reactive Adaptions

	Summary

	Framework for Versatile & Robust Walking
	Hardware Overview
	Sensors & Communication System
	Related Work

	Stable & Fast Walking
	Versatile & Robust Walking
	Overview
	Environment Modeling
	Vision System
	Motion Planning
	Robust Walking
	Implementation Details

	Robust Walking with Geometrical Constraints
	Related Work
	Method Overview
	Geometrical Constraints
	Finding Safe Footholds
	Footstep Modification with Geometrical Constraints

	Summary

	Autonomous Navigation
	Bipedal Navigation
	Human-Machine Interfaces
	Problem Description

	Related Work
	Graph-Search-Based Approaches
	Not Graph-Search-Based Approaches

	Step Planning
	Formal Definition
	Discretization
	Graph-Search
	Cost Function Design
	State & Transition Evaluation
	Real-Time Application
	Results

	Reactive Navigation
	Related Work
	Proposed Method
	2D Pre-Planning
	Coupling with Step Planner
	Real-Time Implementation
	Results
	Discussion on the Optimality of the A*–Search

	Adaptive Discretization
	Local Adaptation

	Summary

	Real-Time Motion Generation
	Literature
	Bipedal Locomotion
	Redundant Robots

	Motion Planning
	cog Trajectory Generation
	Feedback Control & Inverse Kinematics
	Limitations

	Model-Predictive Kinematic Planning
	Model
	Optimization
	Initial Solution - Kinematic Evaluation
	Parameter Set
	Step-Time Adaption
	Gradients
	Integration
	Results - Simulation

	Center of Mass Trajectory Planning
	Trajectory Design - Torso Height Trajectory
	Simplified Kinematic Model
	Initial Solution
	Optimization
	Results

	Reactive Collision Avoidance
	Task Space Trajectory Adaption
	Results

	Summary

	Autonomous Walking Results
	Step Sequence
	Model-Predictive Kinematic Planning
	Torso Height Optimization

	Cluttered Environment
	Reactive Navigation
	Model-Predictive Kinematic Planning

	Cluttered Environment with Disturbances
	Stepping Up and Down
	Dynamic Environment
	Robustness
	Chapter Summary

	Conclusions
	Summary
	Discussion
	Directions for Future Work

	Gradients for Optimization
	Gradients for Optimization of Redundancy
	Gradients for Parameter Optimization

	Inverse Kinematics for Simplified 2D Model of Lola
	References
	Author's Publications
	Supervised Student Theses

