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Abstract

Cardiovascular diseases (CVD) are among the leading causes of death worldwide.
Clinical management of CVD seeks to improve patient outcomes and attempts to
reduce treatment risks and costs throughout the whole life-cycle of the disorders,
hence less-invasive and percutaneous techniques are continuously sought after.

This thesis is concentrating on two novel, image-based applications that aim to
improve the existing clinical practice of CVD.

In the first application, an image-based blood pressure drop estimation method is
proposed as a non-invasive alternative to the current gold standard invasive, catheter-
based measurement. The framework combines statistical shape models of the arterial
tree and a hemodynamic computational model of aortic blood flow. Robust machine
learning is applied to fit model parameters to patient data. The introduced approach
is evaluated on routine clinical images of human patients from multiple centers. Quan-
titative evaluation is performed in the context of the diagnosis, treatment planning
(outcome prediction) and follow-up of coarctation of aorta. Experiments demonstrate
that the workflow is fast and prediction is accurate and reproducible.

Second, a hybrid imaging system consisting of fluoroscopy and echocardiography
is presented. Wherein we introduce a purely image-based method for peri-operative
fusion of X-Ray fluoroscopy and volume intracardiac echocardiography (ICE). The
proposed model-based registration algorithm allows 6 degrees of freedom pose estima-
tion of catheters (equipped with radiopaque fiducials) from single X-Ray projection.
The method is applied to a prototype ICE catheter whereby target registration error
is investigated. Experiments performed on synthetic and porcine in-vivo data indicate
initial feasibility. The complementary nature of the two modalities would potentially
allow navigation and guidance during emerging cardiac interventions such as the ther-
apy of structural heart disease. Furthermore, ICE carries the promise of removing
sedation or general anesthesia associated with transesophageal echocardiography.







Zusammenfassung

Herz-Kreislauf-Erkrankungen gehoren weltweit zu den haufigsten Todesursachen.
Deswegen zielen klinische Anstrengungen kontinuierlich ab auf die Verbesserung der
Therapieergebnisse dieser Erkrankungen, bei gleichzeitiger Reduktion der Risiken und
Kosten entlang des gesamten Krankheitsverlaufs. Weniger invasive und perkutane
Methoden stehen dabei im Mittelpunkt des Interesses. Vor diesem Hintergrund un-
tersucht die vorliegende Arbeit zwei neuartige bildgebungsgestiitzte Verfahren. Mit
beiden Verfahren wird eine Verbesserung der bestehenden klinischen Praxis fiir Herz-
Kreislauf-Erkrankungen angestrebt.

Der erste Losungsansatz stiitzt sich auf eine bildbasierte Methode zur Detektion von
Blutdruckabféllen, als nicht-invasive Alternative zum derzeitigen Goldstandard der
invasiven kathetrischen Messmethode. Dieser Ansatz kombiniert Statistische Form-
modelle des arteriellen Gefabaums mit einem numerischen hamodynamischen Modell
des Aortendurchflusses. Robustes Machine-Learning wird herangezogen, um die Mod-
ellparameter an die Patientendaten anzuschmiegen. Das eingefiihrte Verfahren wird
auf Routineaufnahmen von Patienten verschiedener Kliniken getestet. Eine quanti-
tative Evaluierung wird vorgenommen fiir die Bereiche Diagnose, Therapieplanung
(Ergebnisvorhersage) und Nachsorge der Aortenisthmusstenose. Experimente zeigen
die Schnelligkeit des Verfahrens und demonstrieren, dass seine Vorhersage genau und
reproduzierbar ist.

Der zweite Losungsansatz fuflt auf hybrider Bildgebung aus Fluoroskopie und Echo-
kardiographie. Hierzu wird eine rein bildbasierte Methode zur perioperativen Uber-
lagerung von Rontgenfluoroskopie und intrakardialer Volumen-Echokardiographie
(ICE) eingefithrt. Anhand réntgendichter Landmarken auf dem Katheter schétzt
der vorge-stellte modellbasierte Registrierungsalgorithmus die Katheterlage in sechs
Freiheitsgraden aus einer einzigen Rontgenprojektion. Angewandt auf einen proto-
typischen ICE-Katheter, wird der Registrierungsfehler untersucht. Tests ausgefiihrt
auf synthetischen und in-vivo-Schweinemodell-Bildern weisen auf eine grundsatzliche
Tauglichkeit hin. Die sich ergénzenden beiden Bildmodalitaten sind so potenziell fiir
die Lokalisierung und Navigation bei neu aufkommenden kardialen Engriffen geeignet
- beispielsweise fiir die Behandlung struktureller Herzkrankheiten. Dartiber hinaus
hat eine so durchgefiihrte ICE das Potenzial, die Notwendigkeit einer Sedierung oder
Vollnarkose bei transésophagealer Echokardiographie aufzuheben.
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CHAPTER 1

Introduction

Today, we are living in a world characterized by increased life expectancy and aging
population [140] where cardiovascular diseases (CVD) are the number one causes of
human deaths [55, 138].

To address this phenomenon, medicine is shifting to become an interdisciplinary
field of science. First, through research towards better understanding of the phys-
iome (biology, diseases and pharmaceuticals) and second, through benefiting from
health-care related innovative technical development (physics, electrical engineering
and computer science). Continuous improvement of medical imaging and innovation
in percutaneous therapies and devices are the two cornerstones of this progress.

1.1. Motivation

Recent statistics from 2013 [55] show that cardiovascular diseases (CVD) accounts
for every third death in USA, and is the leading cause of death in Europe [138].
CVD consists of defects of the heart, diseases of the great vessels and the circulation.
Patients effected by various types of CVD generally have shortened life expectancy,
often require risky treatment and need costly medical care. In the USA alone, esti-
mated cost of CVD in 2009 were: $312.6 billion, the highest cost among all disease
groups [55]. Similar statistics from Europe state €195.5 billion on estimated economic
costs of CVD [138] in 2012.

Besides loss of productivity and monetary aspects, CVD incurs significant social
costs and difficulties for those affected. Often lifelong medical attention is required
for patients.

CVD troubles such high numbers of the population [90], that inpatient operations
and procedures increased 28% between the 2000-2010 decade [55]. This upsurge




1.1. MOTIVATION

Treatment
. . Planning
Diagnosis > (Outcome > Treatment > Follow-up

Prediction)

Figure 1.1.: Simplified management strategy including four phases of medical care for
cardiovascular diseases.

was partly enabled by a revolution of wider applicability of minimally invasive, non-
surgical treatment options.

Even though acquired form of CVD is considered a lifestyle disease, where preven-
tion (changes in diet, physical activity, smoking) does help [207], forecast indicates
increased CVD prevalence and costs [65, 158]. Effective strategy to CVD is needed
to improve patient outcomes and control its projected burden.

The typical path CVD patients have to take, involves four phases of medical care
(Fig. 1.1): diagnosis, treatment planning (outcome prediction), therapy and follow-
up. The cycle of these steps may be repeated, depending on the response of the
patient and severity, complexity and deterioration of heart defects.

Cardiovascular disease patients may be divided into two large groups.

The first is congenital heart defects (CHD) [72], covering patients born with heart
structure abnormalities. Among congenital CVD, coarctation of the aorta (CoA) is
the 5-6 most common defect lesion [36, 105]. Coarctation of aorta manifests itself
as a stenosis (narrowing) of the aortic isthmus, creating a downstream blockage of
the systemic circulation. Currently even the gold-standard for diagnostic severity
assessment is an invasive method: blood pressure drop catheterization under ionizing
X-Ray fluoroscopy. As CoA patients are predominantly treated at young age, non-
invasive or less invasive alternative diagnostics procedures are of high importance.

The second subgroup is of patients with acquired CVD. Within this group a large
portion of patients suffer from structural diseases of the heart (SHD) contracted at
a later stage in life, such as valvular heart diseases or heart rhythm disorder. These
patients are typically elderly, thus, certain medical treatment (such as open heart
surgery) might pose high operative risk. Introduction of innovative prosthetic valves
and closure devices allowed — starting with the highest-risk cohort — more and more
of the patients to instead receive minimally invasive, percutaneous, catheter-based
interventional therapy. During these operations direct view of the organs of inter-
est is not possible and image-based guidance is needed. This led to development of
“hybrid operating rooms” where a surgical suite is equipped with imaging instru-
ment from a catheterization lab (C-arm mounted X-Ray fluoroscopy) and optionally
a transesophageal echocardiography (TEE) machine. However TEE requires general
anesthesia, and results in patient discomfort due to the large size of the echo trans-
ducer. Alternative echo imaging, that requires sedation only, could generally allow
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faster discharge from the hospitals [8, 26, 92].

The above outlined reasons indicate, that less invasive options are sought after
throughout the entire clinical management of CVD to reduce patient risk and proce-
dure costs, enable faster interventions and improve effectiveness. It is also becoming
clear, that the clinical management of CVD is increasingly relying on imaging, both
outside and inside the operating room. This motivates the search for personalized
methods involving less catheterization, reducing radiation and use of contrast agents
and avoiding general anesthesia.

1.2. Objectives

Given the major trends presented in the previous section 1.1, this dissertation is
focused on evolving all four stages of CVD health-care (Figure 1.1). This is demon-
strated through two powerful, image-based, computer-aided applications.

As the first application (Chapter 3) we look at coarctation of aorta, a common con-
genital heart defect. We propose a non-invasive alternative method to the currently
gold standard invasive measurement of blood pressure that is used for diagnostics and
follow-up. Towards these goals, the following specific aims are pursued:

e Create a geometrical model of the aorta including the main branches of the
aortic arch.

e Develop a robust method to estimate model parameters from routinely acquired
non-invasive 3D MR images.

e Design a fast computational framework, coupling vessel geometry with hemo-
dynamics to compute blood pressure conditions non-invasively in-silico.

The second application is aiming to propose a purely image-based, general anesthe-
sia free guidance method for emerging beating heart (percutaneous off-pump) inter-
ventions (Chapter 4). The goal is to allow introduction of soft-tissue information in
the traditionally X-Ray-based interventional navigation. The feasibility of this fused
echo-X-Ray technique is investigated through the following objectives:

e Develop a fast and robust method to find and extract an echocardiography
catheter from C-arm based X-Ray fluoroscopy images.

e Provide a registration approach of echocardiography and fluoroscopy for fused-
image procedure guidance.

e Design an experimental setting to evaluate the accuracy of the registration
method.
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1.3. Challenges

To reach these goals, certain challenges have to be overcome. When proposing an
alternative clinical method, it is desired that the new procedure is not excessive
and minimizes introduction of demanding changes into existing clinical protocols and
workflows.

In the context of the first application (non-invasive blood pressure estimation), the
method should reduce invasiveness (less radiation, less catheterization). It should
be robust and allow to use clinical images that match the quality of retrospective
examinations, thus the methods needs to be general and able work on low resolu-
tion and noisy images, or images that are not capturing the best view of anatomy.
Inter-patient and pathological variations of anatomy morphology should be robustly
handled. Fast hemodynamic computations are desired, otherwise the method is diffi-
cult to incorporate into interactive clinical workflows. The method should be aiming
to allow predictive, personalized use. Automation is sought after, to avoid manual
parameter setting. Inside sterile environments (the operating theater) interaction is
difficult and automated solutions are easier to accept.

During the second — intra-operative image fusion — part, different difficulties are to
be addressed. Ideally the approach should reduce invasiveness (less use of contrast
agent, avoidance of general anesthesia) and allow faster procedures through improved
guidance. The method should allow registration of the two modalities from a single-
shot of X-Ray view. The echocardiography catheter is small compared to the C-arm
geometry. Fiducials are required to fit inside the rigid catheter tip. The fiducials may
not increase the length of the catheter tip and should not interfere with the acoustic
window. The method should be able to solve this ill-posed (close to collinear) problem
and recover the catheter pose. The registration algorithm used for fusion should be
real-time and ideally fully automatic.

1.4. Contributions

This dissertation attempts to advance the field with the above challenges in mind.
The major contributions of this thesis along with the corresponding publications are
summarized in the following two sections.

1.4.1. Non-invasive Blood Pressure Drop Estimation

Our aim is to minimize the invasiveness of blood pressure drop estimation. Cover-
ing the diagnosis, treatment planning and follow-up of coarctation of aorta (CoA)
patients, we propose a fast, end-to-end workflow for non-invasive image-based hemo-
dynamic CoA assessment. This includes robust arterial lumen/stent segmentation
from MRI, that is suitable to make the (i) pre-operative diagnosis, (ii) follow-up
stented CoA and to (iii) predict treatment outcomes through “virtual stenting”.
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e Define a statistical shape model of the geometry of the aorta and
main branches. The model is designed to be able to capture the shape of
the aortic lumen, for both pathological, operated and healthy subjects. The
geometry and shape are described in a hierarchy of coarse-to-fine details: the
aortic root (Ro), aortic arch (Ar), walls of ascending- (AAo) and descending
(D Ao) aorta, the trunks of the brachiocephalic- (Br), left common carotid- (Lc)
and left subclavian (Ls) arteries.

e Introduce machine learning based parameter estimation of the model
(developed in previous step). Relying on volumetric image information (from
standard cardio-thoracic examinations), model parameters are estimated in
a Bayesian statistical inference framework to match patient-specific morphol-
ogy [153, 199]. Robust, supervised machine learning based techniques are intro-
duced for fast model estimation based on 3D images from various cardiac MRI
protocols.

e Parameterize a state-of-the-art hemodynamic circulation method us-
ing the above aortic model and velocity encoded MR images, to allow fast
and personalized hemodynamic computations, including estimation of blood
pressure conditions. Coupling with both quasi-1D [153] and 3D [151, 156, 152]
hemodynamic computations are investigated. The computational hemodynamic
models are not developed as part of this thesis but were separately introduced
by Itu and Sharma [84] and Mihalef [131, 130].

e Design an experimental setting, for qualitative analysis of non-invasively
estimated and invasively measured blood pressure drop for coarctation of aorta
(CoA) patients. Targeting three phases of CVD care: estimation for pre-
operative (diagnostics), post-operative (follow-up) and “virtual stenting” (vir-
tual treatment outcome prediction) we have evaluated our method [154] on
retrospective data from 6 patients from multiple hospitals.

1.4.2. Peri-operative Image Fusion

In the context of image-based therapy guidance, a novel technique that does not
require general anesthesia is devised. We introduce the first (to the best of our
knowledge) purely image based peri-operative system to register intracardiac echocar-
diography (ICE) and X-Ray involving 6 degrees of freedom (DoF) pose recovery of
an ICE catheter through the following:

e Introduce a mathematical model of fiducials equipped ultrasound
catheter. The model is defined in the space of 2D projections of the catheter.
Inside the catheter tip, the model describes the phased array (PHA) ultrasound
transducer and 6 embedded ball marker fiducials [155].
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e Estimation of model parameters from interventional X-Ray images.
Parameters of the catheter model are estimated from single, interventional X-
Ray projection images. Intra-operative applications require real-time perfor-
mance of guidance algorithms, thus fast, machine learning based methods are
used to discriminate background from devices. In addition, catheter-like hy-
potheses are robustly fused together with ball marker candidates to determine
the true catheter.

e Recover 3D pose of catheter with respect to X-Ray image, to enable
peri-operative registration (fusion) of intracardiac echo and X-Ray for procedure
guidance [155]. Correspondence of extracted ball markers and perspective pose
recovery of catheter model is solved in a joint formulation.
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1.5. Thesis Overview and Reading Guidelines

Through two image-based applications, this thesis concentrates around improving all
four steps in the life-cycle of CVD care (Figure 1.2). Based on the clinical, thera-
peutic and image analysis background introduced in Chapter 2, the two applications
are described in chapters 3 and 4. These methodological chapters may be mostly
independently read from one another. Chapter 5 concludes the thesis.

Treatment
, . j > Planning j > >
Diagnosis (Outcome Treatment Follow-up

Prediction)

Chdpter 4.

Chapter 3.

Figure 1.2.: Chapters 3 and 4 describe different phases of the life-cycle of CVD care
and may be mostly independently read from one another. Chapter 3 pro-
poses a method to be used in diagnosis, follow-up and treatment planning.
Chapter 4 proposes a novel method for treatment.

A brief description of individual chapters included in this work is presented in the
following.

Chapter 2: Background

In this chapter, we provide a brief introduction to the human circulatory system
and prevalence of cardiovascular diseases. In particular congenital heart defects and
structural heart diseases are reviewed together with current clinical practice for their
diagnosis and treatment. Similarly, we review CVD related state-of-the-art medi-
cal procedures, devices and imaging equipment and their typical applications areas.
Lastly an overview is provided on image analysis techniques (segmentation, image-
based computations and registration/fusion) and applied machine learning that pro-
vide context for the following methodological chapters.

Chapter 3: Non-invasive Assessment of Aortic Coarctation for Diagnostics,
Treatment Outcome Prediction and Follow-up

Coarctation of the aorta (CoA), is a congenital heart disease characterized by a
abnormal narrowing of the proximal descending aorta. Severity of this pathology
is quantified by the blood pressure drop (AP) across the stenotic coarctation lesion.
In order to evaluate the physiological significance of the pre-operative coarctation and
to assess the post-operative results, the hemodynamic analysis is routinely performed
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by measuring the blood pressure drop (AP) across the coarctation site via invasive
cardiac catheterization.

The focus of this chapter is to present an alternative, non-invasive measurement
of blood pressure drop AP through the introduction of a fast, image-based workflow
for personalized computational modeling of the CoA hemodynamics.

We propose an end-to-end system comprising of shape and computational models
and their personalization setup using MR imaging. Supervised machine learning
methods are employed to estimate model parameters based on imaging data. A
fast, non-invasive method based on computational fluid dynamics (CFD) is discussed
to estimate the pre- (diagnosis) and post-operative (follow-up) hemodynamics for
coarctation patients. A virtual treatment (outcome prediction) method is investigated
to assess the predictive power of our approach.

Chapter 4: Peri-operative Registration of X-Ray and ICE for Therapy
Guidance

Hybrid imaging systems, consisting of fluoroscopy and echocardiography, are increas-
ingly selected for intra-operative support of minimally invasive cardiac interventions.
Intracardiac echocardiography (ICE) is an emerging modality with the promise of
removing sedation or general anesthesia associated with transesophageal echocardio-
graphy (TEE).

We introduce a novel 6 degrees of freedom (DoF) pose estimation approach for
catheters (equipped with radiopaque ball markers) in single X-Ray fluoroscopy projec-
tion and investigate the method’s application to a prototype ICE catheter. Machine
learning based catheter detection is implemented in a Bayesian hypothesis fusion
framework, followed by refinement of ball marker locations through template match-
ing. The 2D-3D image fusion task is formulated as a feature-based registration prob-
lem. Marker correspondence and 3D pose estimation are solved through iterative
optimization of a least-squares type cost function.

The machine learning tools in this chapter build upon the methods introduced in
Chapter 3.

Chapter 5: Conclusions

In the last chapter, the introduced methods are summarized. We reflect on the
obtained results and their clinical relevance. For a truthful evaluation, limitations of
the proposed techniques is discussed. Wider clinical applicability and required further
validation is investigated.




CHAPTER 2

Background

2.1. Physiology, Pathology and Therapy

2.1.1. Human Cardiac Anatomy and Function

The heart is the central pump of blood flow, the key to circulation. The human
heart is an approximately fist sized organ, built of heart muscle (endocardium and
myocardium), surrounded by the sac of pericardium. The heart is located in the
middle of the thorax (chest), behind the sternum, among the lungs and above the
diaphragm. Its main function is to supply nutrients and gases through blood flow to
the entire body.

The heart may be divided into two major parts, based on function: the left and
right sides. The left side of the heart pumps oxygenated blood into the body (systemic
circulation) to feed all tissue, while the right side collects oxygen poor blood - mostly
through veins - and pushes it through the lungs (pulmonic circulation). Furthermore,
each side of the heart consists of two cavities (the upper atria and lower ventricles)
with heart valves regulating the flow at the entrance (atrioventricular valves) and
outlet (semi-lunar valves) of the ventricles (see Figure 2.1a). The purpose of the
regulation is to only allow antegrade flow and block retrograde flow.

Throughout its lifetime, the heart is repeating contraction (systole) and relaxation
(diastole) phases to maintain the blood flow. The diastolic phase starts when the
semi-lunar (aortic and pulmonic) valves close, followed by the isovolumetric relaxation
of the ventricles, once the pressure inside the ventricles drops, the atrioventricular
(mitral and tricuspid) valves open up to allow the blood to fill the ventricles from
the atria. The last event of diastole is called atrial systole, when the atria contract
to completely fill the ventricles. The atrioventricular valves close at this point, and
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Figure 2.1.: Chambers, valves and in- and outlets of the heart (reproduced from [5]).

systole begins: the ventricular isovolumetric contraction starts to raise the blood
pressure above that of the aorta and pulmonary artery. During the last (stroke)
phase, the semi-lunar valves open, and the ventricular ejection pushes blood jets out
of the heart. The pulsatile flow (pulse) is created by this periodic pumping into
the arteries. Systematic activation of the heart contraction is driven by a regular
electrical impulse originating from the sinus node. At rest, the average normal heart
rate is around 60 — 80 bpm, and the cardiac output (combined ejection of left and
right sides) is approximately 5 L/min.

The aorta is the greatest vessel in the body, making the connection between the
left ventricle of the heart and the systemic circulation. The average diameter of the
ascending aorta is about 30 — 35 mm in adults [119]. It goes above and descends
posterior to (behind) the heart. All oxygenated blood is pumped through the aorta
to supply the body tissue. The thoracic aorta has a characteristic inverted "U’ shape,
divided into four parts: ascending aorta, aortic arch, aortic isthmus and descending
aorta. The ascending aorta contains the coronary ostia and feeds the coronary ar-
teries (and indirectly the myocardium) with blood, while the aortic arch usually has
three main bifurcations: the supra-aortic arteries (SAoA) that supply the arms, neck
and head. Typical arrangement of the SAoA is (along the flow of bloodstream) bra-
chiocephalic trunk, left common carotid artery and left subclavian artery. The aortic
isthmus is the part distal to the left subclavian bifurcation, connecting the arch with
the descending aorta (see Figure 2.2a). The aorta further continues down the body,
bifurcating into arteries to feed tissue of the whole body.

The walls of the aorta are built from elastic tissue types. During left ventricular
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ejection, not all blood is pushed into the capillaries, but the aorta expands and stores
the “surplus” volume. During diastole, the elastic vessel wall contracts, and this
recoil is maintaining perfusion. This is called the windkessel effect and is shown in
Figure 2.2b. The windkessel phenomena is damping the sharply fluctuating increase
and decrease in blood pressure. The blood pressure is represented as a pair of numbers
measuring the high (systolic) and low (diastolic) values, the normal values are in the
120/80 mmH g range.

The veins close the loop of systemic circulation. These vessels collect oxygen poor
blood from body tissues and deliver it back to the heart.

2.1.2. Congenital Heart Defects and Structural Heart
Disease

Such a complex apparatus as the cardiovascular system has many different ways to
malfunction, and a wide variety of disorders are documented. Among all cardiovas-
cular diseases (CVD) we focus our investigation on congenital heart defects (CHD)
and the field of structural heart disease (SHD). The umbrella term “structural heart
disease” was coined only recently — in 1999 according to Steinberg et al. [183] —
and SHD covers “non-coronary cardiac disease processes and related interventions”.

With the advent and proliferation of various minimally invasive trans-catheter ther-
apies the SHD population is growing. More patients and disorders become eligible
for minimally invasive interventions. Thus, the prevalence of SHD is hard to ac-
curately quantify. It may be described as the combined effect of congenital heart
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Figure 2.2.: a) Anatomic regions of the thoracic aorta (reproduced from [4]). b)
Windkessel effect of the elastic aortic walls (reproduced from [157]).
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defects (CHD) and acquired non-coronary cardiac disorders [183]. The prevalence of
the latter increases with age, and the elderly are the fastest growing subset of the
SHD population. CHD is among the leading causes of birth-defect related deaths,
affecting approximately 1 of 100 live births according to studies conducted in the
USA [72], Europe [36] and Germany [105].

CHD and structural heart disease is rarely an individual condition, often multiple
concomitant disorders are present. Many of these are abnormal connections between
heart chambers as well as other blood vessels around the heart (e.g. aorta and pul-
monary artery) [210, 28]. These abnormal connections may allow the mixture of
unoxygenated and oxygenated blood, or may let oxygen poor blood to flow to the
body instead of to the lungs, or allow oxygenated blood to flow to the pulmonic
circulation instead of reaching the body. They reduce the efficiency of the pumping
heart, and may also cause heart failure.

CHD and SHD are broad categories, where the most common examples of congen-
ital heart defects (in infants and children) and structural cardiac diseases (in adults)
include [183]:

e Heart valve defects. These may result in a narrowing of the valves (e.g. aortic
stenosis, mitral valve stenosis, pulmonary valve stenosis), or a complete clo-
sure that obstructs normal blood flow. Bicuspid aortic valve (BAV) leaflets are
the most common congenital aortic valve disease. Other valve defects include
calcified or stenosed leaky valves that don’t close properly thereby allowing
retrograde blood flow. Such as mitral valve insufficiency (regurgitation with
reduced coaptation area or prolapse) that may be caused by ruptured or elon-
gated chordae tendineae. Repaired or replaced valves might not seal completely
and allow paravalvular leaks to pass by.

e Defects in the walls between the atria and ventricles of the heart (atrial and
ventricular septal defects, ASD and VSD, respectively). Holes or passageways
between the heart’s different cavities may allow abnormal intermixing of oxy-
genated and unoxygenated blood between the right and left sides of the heart
or introduce altered structure of flow pattern. Similarly, patent foramen ovale
(PFO) is a congenital shunt (hole) between the atria of the heart, that failed
to close after birth. In adulthood septal rupture might develop.

e Patent ductus arteriosus (PDA) is a congenital disorder that allows blood to
bypass the lungs, preventing oxygen from circulating throughout the body.

e Tetralogy of Fallot (ToF), a combination of four different heart defects that
occur together at birth.

e Atrial fibrillation (AF) and left atrial appendage (LAA). AF is a sustained
arrhythmia (irregular heartbeat) of the upper chambers (atria) of the heart.
AF might create conditions in the appendage of the left atrium that prohibit
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normal blood flow, and instead allow the pouch to be a source of thrombus
(blood clot) formation. This carries the direct risk of thrombosis and arterial
embolisms, and may lead to stroke. According to Mobius-Winkler et al. 90% of
atrial fibrillation associated strokes are the result of emboli from the LAA [132].

e Coarctation of the aorta (CoA), detailed in the Section below.

Figure 2.3.: a) Coarctation of the aorta (CoA) as shown on 3D cardiac MR volume
(circled); b) Volumetric reconstruction of MRI showing a pathological
aortic isthmus, where a collateral bypass had developed around the nar-
rowing of the CoA.

We pay particular interest to explain coarctation of aorta (CoA), as our method in
Chapter 3 is aiming to propose a non-invasive method for quantitative characteriza-
tion of blood pressure drop in this disease.

Coarctation of the aorta (CoA) is a congenital defect characterized by a severe
narrowing of the aortic isthmus. CoA accounts for 5 —8% of the 8 of 1 000 congenital
heart disease (that is 4 — 6 of 10 000) live births [163, 162, 72] in the USA and an
incidence of 3.6% (3.9 of 10 000) in Germany [105]. CoA is the fifth or sixth most
common lesion in congenital heart disease (CHD) [189, 36] that still results in lower
than average life expectancy for patients [202, 39, 98] due to hypertension, increased
stroke risk, aneurysm development and early appearance of coronary artery disease
(CAD).

The effect of CoA is a stenosis distal to the aortic arch (see Figure 2.3a), result-
ing in pathophysiological processes that restrict the circulation of oxigenated blood
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through the narrowing. This necessitates increased cardiac output and may lead to
left ventricular (LV) hypertrophy. Generally CoA results in persistent upper body
hypertension and lower body hypotension.

Unrecognized or untreated coarctation may result in the development of collateral
bypass vessels to maintain downstream perfusion, as illustrated in Figure 2.3b.

2.1.3. Diagnostic and Therapeutic Procedures

Generally three therapeutic options have been developed for the treatment of the
congenital heart defects and in the context of structural heart disease: drug therapy,
surgery and percutaneous intervention.

The clinical decision making for CHD and SHD starts with risk stratification activ-
ities. The New York Heart Association Functional Classification is used to categorize
patient symptoms. In order to quantitatively manage the inherent challenges per-
taining to comorbidities, various risk estimation system have been devised such as
the EuroSCORE [167], STS-Score [68].

As there exist no medications specific to curing these diseases. Current drugs
enable mostly stabilization of the condition and are limited to treating collateral
symptoms in mild and very high risk patients [168, 132]: anti-coagulation (warfarin),
antithrombotic therapy (dabigatran), heart rate (S—blockers) and rhythm control
(amiodarone) and blood pressure regulation.

Patients born with CHD and CoA require lifelong medical care [189]. Depending
on the severity of the case, age, size, general health and risk level of the patient the
management strategy resorts to either open heart surgery, or — in patients where
surgery is denied due to carrying high operative risk — percutaneous, minimally inva-
sive procedures (MIP) are selected. In some cases invasive catheterization is required
already for diagnostics (e.g. blood pressure measurement).

Surgery

Several different congenital heart defects are recognized and treated early in infancy.
Traditionally, invasive open heart surgery is performed. In certain cases heart replace-
ment is the last option with the highest likelihood of complications and operative risk.

During a cardiac surgery the cardiac region is accessed through a large, surgical
opening of the chest (sternotomy or thoractomy). The patient might need to be
connected to cardiopulmonary bypass (heart-lung machine or pump) to take over the
function of the pumping heart and lungs. During surgery holes may be closed with
stitches or a patch, location and form of vessels could be re-configured and arteries
or valves could be opened wider. Sometimes multiple surgeries and interventions are
needed to correct more complex anomalies.

The surgical repair options [11, 69, 143] of CoA include various forms of invasive
aortoplasty. The first surgical correction was performed in 1944 in Sweden by Crafo-
ord and Nylin [23] introducing the end-to-end anastomosis technique (see Figure 2.4a)
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Figure 2.4.: Invasive surgical repair techniques of CoA involving thoractomy: a)
end-to-end anastomosis and b) subclavian flap procedure. (reproduced
from [93, 94])

()

Figure 2.5.: Transcatheter implantable SHD repair devices: a) AMPLATZER DUCT
OCCLUDER II Patent Ductus Arteriosus (PDA) closure device on de-
livery system - by St. Jude Medical [128] b) CoreValve prosthetic heart
valve - by Medtronic [129] ¢) Watchman LAA closure device - by Boston
Scientific [171] d) MitraClip device - by Abbott [2]

to completely resect the narrowed wall segment. The subclavian flap angioplasty was
introduced by Waldhausen in 1966 to spare the aortic wall and try to help avoid
re-coarctation (see Figure 2.4b) [143].

Percutaneous Techniques

The first transcatheter valvuloplasty was performed by Rubio-Alvares, Limon and
Soni in 1952 in Mexico [165]. This pioneering work is considered the beginning of
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Figure 2.6.: a) Cuff-based blood pressure is usually measured at extremities, typically
at the arm - by Nucleus Communications, Inc. [139]; b) Currently invasive
blood pressure measurement through cardiac catheterization is the gold
standard for CoA severity assessment - by ADAM Inc. [78]

SHD therapy. Thanks to the procedural, technological and imaging advances, in
the last twenty years cardiac catheterization has evolved from its primary diagnostic
function towards therapeutic applications in a multitude of lesions [183]. To reduce
invasiveness of surgery, hybrid procedures have been developed whereby skills from
both pediatric surgeons and interventional pediatric cardiologists are required [6]. In
these procedures direct view of all relevant anatomy is not be possible and require
peri-operative imaging for guidance and navigation. The introduction of imaging
devices (such as C-arm, echocardiography, CT, MR [158]) in the surgical suite allowed
widespread adaptation of hybrid operating rooms.

During percutaneous MIP a small incision is made on the skin typically at the
groins to access the femoral arteries/veins, through which a catheter guide wire is
threaded to the site of the repair in the heart. In certain cases walls of the heart
need to be crossed (septal puncture) to allow for necessary distance and angles for
landing sites. Depending on the defect, a corrective device (such as a prosthetic
valve, stent, balloon or closure device) is tunneled trough vessels along the catheter
to be deployed. The interventionist is often navigating the catheter under X-Ray flu-
oroscopy (see Section 2.2.3) or echocardiography (see Section 2.2.2) guidance. During
MIP the patient is under general anesthesia or sedation. The use of percutaneous
transcatheter procedures are becoming available for patients in inoperable conditions
too and generally promise easier recovery and quicker hospital discharge [183].

The foremost successes in SHD is probably the breakthrough transcatheter aor-
tic valve implantation (TAVI) technology. In 2002 Alain Cribier performed the first
TAVI procedure in a human [24]. TAVI is indicated for severe symptomatic aortic
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stenosis in high-risk patients who are excluded from surgery. The procedure enjoys
widespread adaptation: in Europe alone, an estimated more than 20 000 TAVI proce-
dures were carried out between 2007 and 2011 [40]. Figure 2.5b shows an example of a
contemporary prosthetic aortic valve. TAVT is actively researched, various prosthesis
designs are under development and are aiming to improve deliverability and patient
outcomes. Besides the most common angiographic guidance, echocardiography is
investigated for TAVI [7, §].

Surgical repair of mitral insufficiency usually require cardiopulmonary-bypass, but
not all patients are eligible for such surgery. Endovascular clipping of a regurgi-
tant mitral valve (MV) was first investigated in 2003 [180] using echo guidance. For
patients denied surgery the MitraClip (see Figure 2.5d) device was cleared by the
FDA in 2013, and recently the feasibility of MitraClip deployment using 3D intrac-
ardiac echo [147] was shown. Prolapsing MV may develop due to damaged chordae
tendineae. As a less-invasive option to open-heart chordal surgery, a percutaneous,
beating-heart repair was introduced with the NeoChord device [172]. This transapi-
cal procedure is guided with echocardiography, and performance of the repair and
residual leaks are routinely assessed by Doppler echo.

Transcatheter closure devices were shown to be able to treat pathological blood
passages of PDO, ASD, VSD and PFO (Sec. 2.1.2) percutaneously. Double-disk
umbrella shaped devices such as the one shown in Figure 2.5a conform to various
lesions. In AF patients, transcatheter occlusion of the LAA was shown to be a safe
and feasible to alleviate the risk of thrombembolic stroke. Figure 2.5¢ depicts a
closure device. Both types of devices allow tissue in-growth after the implantation.

Figure 2.7.: a) Bare metal and graft covered Cheatham-Platinum (CP) stents for
CoA repair; b) Balloon-in-balloon device used to uniformly expand the
CP stent; ¢) CP stent mounted on delivery catheter in closed and inflated
state - by NuMED Inc. [80, 79, 81]

Pre-operative evaluation of CoA severity relies predominately on non-invasive arm/leg
blood pressure (see Figure 2.6a) drops or, if anatomy does not make that comparison
feasible, estimation by Doppler ultrasonography. Alternatively CoA is character-
ized [202] by greater than 50% narrowing of the aorta as compared to the diaphrag-
matic aorta diameter based on radiographic measurements. Nevertheless, the clinical
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gold-standard is obtained by invasive cardiac catheterization to measure AP across
the coarctation site (see Figure 2.6b). Systolic blood pressure drop between the
ascending aorta (AAo) and descending aorta (DAo) above 20 mmH g characterizes
severe CoA and serves as an indicator for treatment [202].

Besides invasive surgical repair — after the neonatal period — CoA treatment op-
tions [63, 31, 192, 37] include stent implantation (see Figures 2.7a,2.7c and 2.8) and
balloon angioplasty (see Figure 2.7b).

2.2. Cardiovascular Imaging Modalities

Medical images provide insight into internal structures of the body, where direct view
or access is not possible without opening the patient. Imaging evolved to help un-
derstanding the cardiac system: capturing morphology and dynamics (movement) of
the heart together with measuring the blood flow. Clinical images are heavily relied
on throughout the lifetime of cardiovascular disease management: from establish-
ing diagnosis and assessment, through treatment planning and therapy guidance to
follow-up.

The roots of medical imaging go back to the end of the 19th century, when Wilhelm
Roentgen [166] described the first radiograph using ionizing X-Ray radiation. Starting
with the early 1950s, the first successful medical ultrasound equipment was developed.
A next major wave of innovation came in the 1970s, when commercial cross-section
(tomographic) image scanners became available (X-Ray Computed Tomography and

Figure 2.8.: Schematic overview of percutaneous CoA repair via balloon expandable
graft covered stent - by BVM Medical [127]
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Magnetic Resonance Imaging). In the 1980s digitization of the image reconstruction,
processing and review pipelines started, while the 1990s brought wider availability of
3D imaging.

Depending on the underlying physical phenomena, individual modalities have ad-
vantages and limitations in assessing the cardiovascular system. Images are used
not only to understand the anatomic morphology, but additionally certain imaging
modalities provide temporal and functional information (such as tissue dynamics,
chemical composition, metabolism or blood flow quantification) of cardiac status and
performance or enable intra-operative navigation.

In the following sections we will provide a brief introduction to the cardiac imag-
ing modalities that are relevant for the clinical context of coarctation of aorta (see
Chapter 3) and image-guided cardiac interventions (see Chapter 4).

2.2.1. Cardiac Magnetic Resonance

(a) (b)

Figure 2.9.: (a) Modern MRI scanner (Magnetom, Siemens, Erlangen, Germany);
(b) Contrast-enhanced MR angiogram (CE-MRA); (c¢) Volumetric recon-
struction of 3D cardiac MRI, showing the aortic arch and surroundings
in presence of CoA.

Cardiac magnetic resonance (CMR) is an imaging technique relying on high-strength
magnetic fields and radio frequency (RF) waves to excite molecules and sense their
resonance in the body. Current MRI equipment (such as seen on Figure 2.9a) is typ-
ically wide-bore: using cylindrical superconducting magnets to create uniform mag-
netic fields of 1.5 or 3 T'esla around the patient’s body. The RF sequences/protocols
used in MRI most often interact with Hydrogen nuclei in the body. This creates
images depicting the water concentration in tissue. All material in the body contain
water in varying amounts, thus MRI produces excellent tissue contrast.

MR provides flexible region-of-interest imaging: acquisition of arbitrary oblique
planes and volume slabs are possible through application of RF excitation facilitating
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Figure 2.10.: (a) In a flow encoded 2D phase contrast MR image stationary tissue ap-
pears gray, air appears as noise (lungs and outside of body) while bright
and dark colors show through-plane flow in opposing directions (ascend-
ing and descending aorta); (b) The sparse 3D vector field captured by
a “4D Flow” CMR image, is shown here as particle traces.

localized imaging of key cardiac structures. Besides static images, the typical cardiac
MR imaging protocol is the cine mode: here the MR image acquisition is synchronized
to the electrocardiogram (ECG) signal thus multiple frames within the cardiac cycle
are captured. Cine MR is most often used to visualize the motion of heart walls, great
vessels or valves over time. Thereby prevailing imaging of the heart is through stacks
of short- or long-axis cine slices [150]. The aorta is typically imaged through 3D MR
angiography (see Figures 2.9b and 2.9¢) with gadolinium contrast agent administered
into the blood stream.

MR is capable of functional cardiac imaging. Using “phase contrast” (PC) se-
quences, flow sensitive images are acquired, where image intensity is representing
local spatial velocities instead of anatomic composition. Typical PC-MRI measures
through-plane velocities in a 2D slice (see Figure 2.10a). Recently termed “4D
Flow”[122, 121] measures velocities in all three spatial directions at each voxel of
a sparse 3D volume (see Figure 2.10b). PC-MRI is typically used in cine mode to
record the temporal evolution of blood flow during the entire cardiac cycle.

Besides widespread diagnostic applications, research was lately directed towards
intra-operative uses of cardiac MRI to aid catheterization [158].

The advantages of MRI include excellent imaging of stationary structures, and high-
quality 2D imaging of moving (cardiac) structures. 3D volume imaging of moving
anatomy is still an emerging area. As a result of the above properties, MRI is one
of the non-invasive reference imaging modalities for congenital heart disease patients.
Nonetheless the cost of scanner machines and lengthy scan times limit the practicality
of MRI. Further complication is the requirement for magnetically shielded rooms for
MR equipment and incompatibility with ferromagnetic tools, devices and implants.
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Risk factors pertaining to use MR contrast agents are still unclear, especially for
patients with renal problems.

2.2.2. Echocardiography

Echocardiography (or echo) refers to the ultrasonic imaging of the cardiac anatomy.
Echo is the routine examination used for assessment of cardiac anatomy, morphology,
function and hemodynamics.

The principles of sonographic imaging are the same across cardiac and non-cardiac
applications: the ultrasound transducer (probe) emits sound waves into the body
tissue and receives their reflections. The resulting image is showing the acoustic
structure of the underlying anatomy. Typical 2D and 3D imaging applications use
frequencies above the audible range of humans, in between 1 — 15 M Hz. Doppler
echocardiography is able to create velocity encoded images by calculating the fre-
quency shift in moving samples (e.g. blood flow).

Usual ultrasound equipment includes two key components, the transducer and a
visualization platform, such as the SC2000 (Siemens Medical Solutions Inc., Mountain
View, CA, USA, see Figure 2.11a).

Ultrasound imaging carries many advantages, among which the most important are:
good image contrast in soft tissue, non-invasive and real-time image formation. Echo
provides flexible pre-, intra- and post-operative imaging as echocardiography may be
freely performed where the ultrasound machine is transported: in the catheter lab,
in the interventional suite or at the bedside. Ultrasound equipment is usually more
cost-effective in comparison to other modalities (e.g. MRI).

At the same time, sonography has a number of drawbacks including shallow pen-
etration (maximum depth of 8 — 15 ¢m from the transducer), limited field of view,
operator and view dependent noisy images (speckle [38]) and restricted view behind
bones (shadowing). Image compounding was shown to be a feasible but difficult way
to increase the limited field of view [203] of ultrasound. Metallic devices and tools
also result in image distortion. However there is great deal of knowledge, experience
and techniques to manage the limitations and contribute greatly to the widespread
availability of ultrasound.

Cardiologists are most often trained to use echo. Besides diagnostic use, echocar-
diography was introduced into the operating room to guide procedures [7, 172, 100]
and navigate interventional devices. Intra-operative use of echo evolved from sim-
ple 2D TTE (Transthoracic Echocardiography) towards volumetric ICE and TEE
(Transesophageal Echocardiography). While 2D imaging is limited to a single plane,
3D allows visualization of spatial context.

The main interventional and diagnostic uses of ultrasound in structural heart dis-
eases are discussed in the following paragraphs.
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Transthoracic Echocardiography (TTE)

Transthoracic Echocardiography (TTE) is historically the standard cardiac ultra-
sound imaging. The sonographer holds the transducer in his hand freely, pushes to
the patient’s thorax and finds an acoustic window between the ribs to image the
heart through the chest. Current TTE probes allow acquisition of 2D or 3D images.
Among other views, TTE is able to depict the structure of the heart, including all four
chambers (see Figure 2.12a) and valves. It provides ways to determine the ejection
fraction, quantify regurgitation [59] or perform stress imaging. However the back side
of the heart is hard to image due to its distance the probe. Interventional application
of TTE is limited due to compromise of the sterile field.

Transesophageal Echocardiography (TEE)

In Transesophageal Echocardiography (TEE), a special ultrasound transducer — only
larger than a thumb (see Figure 2.12b) — is inserted into the patient’s esophagus. It
is fixed to an end of a flexible endoscopic tube. During TEE, the probe is pushed to
a position behind the heart in the esophagus where the echo beam reaches the heart
almost directly, without traveling and attenuating through thicker tissue. Rear parts
of the heart, such as the left atrium are depicted clearly in TEE. This examination
is semi-invasive and requires sedation/anesthesia due to swallowing discomfort, thus
TEE is primarily used peri-operatively. Diagnostic TEE is indicated if the patient’s
anatomy or condition doesn’t allow for TTE.

TEE is capable of acquiring color Doppler and B-mode (2D planar, bi-planar and
volumetric) images. Modern TEE uses a matrix of piezo-electric elements to form
echo beams to capture 3D images in real-time.

Intra-operative TEE is routinely used during structural heart disease interven-
tions [7]. TEE images provide good view of the valvular morphology and vegetation
(see Figure 2.12b). It was shown [41] that transcatheter aortic valve implantation
(TAVI) is possible under TEE guidance and allows to avoid angiography (the use of
contrast agent during Fluoroscopy). After TAVI, TEE also allows evaluation of the
prosthesis function and detection of paravalvular leakages. Further, TEE may also
be used to look for complications such as pericardial effusion or aortic dissection [62].
Lately transapical mitral valve leaflet prolapse repair with the NeoChord [172] de-
vice was presented under TEE guidance. Recently published guidelines and recom-
mendations on the 3D echocardiography aim to standardize volumetric views and
examination protocols [100].

Volumetric Intracardiac Echocardiography (ICE)

Through the miniaturization of electronics and advanced machining, phased-array
echocardiography transducers have emerged [53, 208] that fit into the size of a cardiac
catheter: intracardiac echocardiography (ICE). ICE was first introduced clinically in
1993[169] to provide real-time acquisition of images, from the inside of the heart
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Figure 2.11.: (a) Siemens SC2000 Echocardiography system; (b) Schematic view of
an ICE catheter in the heart, highlighting a possible 2D scan; (c) Flow-
encoded 3D Doppler image of PFO syndrome captured by ICE catheter

(a)

Figure 2.12.: (a) Transthoracic Echocardiogram (TTE) showing four-chamber view
of the heart; (b) Volumetric TEE image of the mitral valve opening,
and reformatted 2D slices through the anatomy; (c¢) Siemens AcuNav V
volumetric ICE catheter with steering handle

(Figure 2.11b). ICE is often used in electrophysiology (EP) procedures and it may be
navigated anywhere inside blood vessels where the lumen diameter is greater than the
thickness of the catheter tip (e.g.: 10F or 3.3 mm). Modern ICE catheters, such as the
AcuNav V (Siemens Medical Solutions, Mountain View, CA, USA) enable acquisition
of 3D volumes (see Figure 2.12¢) and Doppler measurements (Figure 2.11c) as well.

The approach for ICE catheter insertion is typically trans-femoral venous, alterna-
tively through the jugular or subclavian veins. These methods allow positioning the
probe in the right side of the heart through the vena cava.

The ICE catheter may be inserted under local anesthesia. The main benefit of
ICE compared to trans-esophageal echo (TEE) is the removal of general anesthesia
(GA) from the ultrasound imaging procedure. Furthermore it may be important for
high-risk or elderly patients to breath freely on their own during the intervention,
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as GA may interfere with cardiac functions and alter intra-cardiac pressures. Thus
recent interventional literature suggests great potential to ICE [92, 95, 175] in guiding
non-coronary cardiac interventions.

3D imaging provides real spatial context outside the standard 2D imaging plane
enabling anatomy and instrument visualization. Furthermore 3D avoids the point-of-
intersection ambiguity of a 2D imaging plane, where one e.g. can not tell the difference
between a cross section of an instrument or the tip of the given tool. In Doppler ac-
quisition mode ICE and TEE are the standard tools to locate and assess paravalvular
leaks. TTE and TEE are most often used to quantify volume of valvular regurgita-
tion. Figure 2.11c shows a three dimensional ICE image of blood flow through septal
wall (in a patent foramen ovale (PFO) patient).

Intravascular Ultrasound

Intra-vascular ultrasound (IVUS) is an other catheter based ultrasound imaging
modality. IVUS creates two-dimensional cross-sectional images at the tip of the
catheter (see Figure 2.13a). These near field images are most frequently used to assess
severity of plaque deposits within the coronary arteries to diagnose CAD. IVUS helps
differentiate various types of plaques and allows detailed measurements of the magni-
tude of the plaque area, calcification, lumen morphology and vessel cross-section. To
allow passing through small vessels, the typical IVUS diameter is 3.5F (1.166mm) -
4F (1.333mm).

Figure 2.13.: (a) Screen capture from the Siemens IVUSmap clinical software, show-
ing coronary artery wall structure in a cross-sectional view. (b-c) IVUS
machine and catheter - by Volcano Corporation [22, 21|

24



CHAPTER 2. BACKGROUND

2.2.3. X-Ray Fluoroscopy and Angiography

X-Ray (XR) Fluoroscopy is a type of imaging that uses ionizing X-Rays beamed
through the patient to create a projection image. Image contrast is in proportion
with attenuation of X-Rays as they travel through the body. As a consequence
soft tissue appears brighter than bones, while metallic structures (such as guide-
wires, catheters, devices) have a dark appearance (see Figure2.14b). Due to their
homogeneous radiopacity, soft tissues are rarely distinguishable in XR.

During a fluoroscopy procedure, XR images are acquired continuously, creating a
cinematic “movie” projection of the patient. In angiography, radiopaque contrast
agent is administered into the blood stream to highlight vessels, heart chambers or
blood cavities in XR in more detail. Nowadays catheter labs are usually equipped

Figure 2.14.: (a) Siemens Zee robotic C-arm mounted interventional X-Ray system;
(b) Typical X-Ray fluoroscopy (XR) image of a cardiac intervention:
marginal contrast for soft tissue, low contrast for bones, excellent con-
trast for metallic tools, devices and implants; (¢) Volumetric reconstruc-
tion of cardiac C-arm C'T image.

with C-arc robotic arm mounted XR machines, consisting of a vacuum tube and
a flat-panel digital XR detector. These instruments allow XR images to be taken
through the patient in arbitrary directions. Widely available robotic C-arm systems
—such as the Zee (Siemens AG, Forchheim, Germany) ceiling mounted system shown
in Figure 2.14a — enable rotational angiography (C-arm CT, see Figure 2.14c) as well.
During a C-arm CT scan, the arm is rotated and spinned around the patient. During
the sweep a few hundred 2D images are acquired. This projection sequence is then
used to reconstruct a 3D volume. Such systems usually allow the C-arm gantry to be
retracted from the operating table to allow freeing up space around the patient when
no imaging is performed.

The advantage of XR is real-time display and high resolution of the acquired im-
ages. On the downside patients receive a dose of ionizing radiation. However the
risk carried by the therapy itself (e.g. catheterization, anesthesia, contrast agent) is
usually greater than the radiation risk. Hence XR is the routine navigation tool for
catheter insertion and manipulation, as well as stenting during minimally invasive
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interventions. Due to the projective nature of the modality, XR provides limited
visualization of 3D structures.

Fluoroscopy remains the dominant imaging modality interventional cardiologists
and radiologists are trained to use: for patient selection, for intra-procedural naviga-
tion, and to assess procedural outcomes. Figure 2.15 shows a typical application of
X-Ray Fluoroscopy in the catheterization lab: minimally invasive CoA stenting pro-
cedure. Here all steps are performed under XR guidance: threading the guide-wire
into the aortic arch, placement of the closed stent and stent expansion for deployment.
For percutaneous coronary interventions (PCI) fluoroscopy is the standard imaging

Figure 2.15.: Three steps of an endovascular stenting procedure observed through X-
Ray angiography: a) guide-wire within the aorta, with arrow indicating
location of coarctation lesion, and injected contrast agent showing the
lumen outline; b) stent mounted on a balloon is positioned along the
guide-wire to the CoA; c) the expanded stent restores unobstructed flow.

modality, but percutaneous SHD requires additionally soft tissue imaging.

2.2.4. Other modalities

In the previous sections, we have introduced the anatomical imaging modalities that
are forming the foundations of the methods described in Chapters 3 and 4, however
besides the above listed ones, there exist many more different imaging systems. For
the completeness we briefly mention other major cardiac imaging modalities even
though these modalities are not directly used in this work.

The working principles of Computed Tomography (CT) are very similar to XR
(Sec. 2.2.3), in this case the rotating gantry with multiple detectors reside in a closed
housing. Cardiac CT scans are typically 3D volumes or ECG gated 4D time-series
of the cardiac cycle. In the cardiovascular space CT is predominantly used for pre-
operative planning and modeling [212, 82].
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3D radionuclide imaging techniques such as single-photon emission computed to-
mography (SPECT) or positron emission tomography (PET) are often used for my-
ocardial muscle perfusion imaging to assess coronary artery disease (CAD) and to
stratify risk of future cardiac events.

2.3. Overview of Medical Image Analysis

According to Frangi et al., over the last 40 years the field of medical image analysis
“became a distinct discipline of its own” [48]. Medical image analysis is concerned
with the acquisition, reconstruction, enhancement, visualization and semantic inter-
pretation of medical images. The goal of these investigations is to derive clinical
evidence from imaging data and to discover knowledge, for example to define image-
based bio-markers, to perform measurements, enhance diagnosis, improve therapy or
predict outcomes.

During the last decades substantial development in image acquisition and recon-
structions has resulted in increased resolution of images and faster acquisition rates.
Concomitantly images are increasingly being used outside of traditional diagnostic
radiology, for telemedicine and digital pathology [97] and — more relevant to CVD
— interventionally for peri-operative guidance and navigation [176]. Due to these
tendencies less time is available for manual interpretation of images and automated
analysis methods are sought after, especially interventionally to avoid extending pro-
cedure times [205].

Medical image analysis methods are built upon the achievements of computer vi-
sion, pattern recognition, machine learning and numerical methods. As these fields
yielded more and more sophisticated tools, medical image analysis was transformed
from processing of images to semantic analysis. This allowed the focus to be shifting
towards systemic image interpretation through higher-level, data-driven, personalized
models. Methods independent of the underlying imaging modality are of exceptional
interest.

During the last decade so called “grand challenges” were established where repre-
sentative data-sets are available to researchers. The goal is standardized evaluation
and the challenges facilitate direct quantitative comparison of image analysis methods
for a given task [46].

Our investigation is mainly concerned with semantic interpretation of cardiac im-
ages: segmentation and registration, using powerful machine learning algorithms.
The next sections are dedicated to introducing a compact review of these research
areas, their formalism and literature.

2.3.1. Image Segmentation and Object Detection

In computer vision, classically, image segmentation is concerned with partitioning an
image into disjoint groups/sets of pixels where each set is labeled differently from
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a discrete number of labels. By semantically partitioning the image into segments
the goal is to identify meaningful structures against image background. The case
of two labels defines a binary or foreground-background segmentation problem. In
medical imaging these structures or regions of interest most often represent organs,
lesions, pathologies, vessels, fiducials or devices. Due to the high variety of imaging
modalities, varied image content and non-uniformity of image quality, there is no
single method for medical image segmentation that performs in a satisfactory way on
every image or modality. Medical and cardiac image segmentation is still an active
field of investigation [47, 103, 150].

Segmentation methods may be classified from multiple perspectives. The mode
of operation may either be automatic or require manual interaction. Frequently,
in the clinical setting automatic segmentation methods are preferred. Automatic
segmentation is key to reproducibility to avoid the bias of intra-user variability and
allow autonomous operation during intra-operative navigation and guidance.

An other classification of segmentation methods is possible based on the employed
mathematical formalism. Early works such as thresholding, morphological operations,
watershed transform and clustering operate on image intensities directly without
considering information from the problem domain or object of interest.

Graphical models have been successfully applied to segmentation, predominantly
in the Markov Random Field formulation of graphs built from images. On such
structured graphs well understood graph optimization is possible, for example using
an efficient max-flow energy minimization algorithm [14] for binary segmentation or
through random walks [58] for multi-class problems. These semi-automatic methods
require some pre-specified seeds (labeled pixels) for initialization and subsequently
assign a label to each unseeded pixel.

Deformable models evolve an initial surface or curve, ideally to the boundary of
the object of interest [126]. The front moves under the influence of internal curva-
ture constraints in addition to external, image-based forces. Deformable models may
have explicit formulation including active contours [88], or implicit such as level sets
of a higher dimensional scalar function [145]. Since 1995, when Cootes et al. [20]
introduced it, active shape models (ASM) became popular for medical image seg-
mentation. Statistical shape analysis and related techniques capture prior knowledge
of shapes with statistical models of populations. Statistical shape models where suc-
cessfully used to segment organs where topological changes need not be considered:
such as the liver [66], the prostate [107], all chambers [212] and valves [83] of the
heart and knee bones [209, 13]. During the training phase of the model, domain spe-
cific shape variations are learned. Whereas at evaluation time on unseen images the
model is used for shape regularization to favor probable shapes. Active Appearance
Models (AAM) encode - in addition to shape statistics — the variation of gray-scale
appearance (texture) of the images too.

Segmentation algorithms that require manual initialization are efficiently combined
with automatic object detection to provide initialization of the region of interest
as global location and pose. In the 2000s the Viola-Jones object detection frame-
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work [198] sparked a very successful line of object detection algorithms. The core of
the method lies in an exhaustive, dense sliding window search, efficiently computed
2D Haar-like features and boosting-based learning algorithms. These methods have
been successfully applied to face-detection [198] in computer vision and parsing of
medical images of the heart [212, 82]. In order to avoid the sliding window search
with a cascade of binary classifiers evaluated at each step, an elegant approach was
proposed by Zhou et al. [219]. The authors build on the strong spatial context —
relationship of organs — in medical images, and learn a boosted ridge regressor. For
each image patch the regressor votes for the relative offset of an object of interest.
Pauly et al. furthered the concept to simultaneous regression of multiple objects in
2011 using random forests [148].

Recently, neural networks have also shown promising results in challenging 3D
object localization in volumetric medical data [217].

For cardiac images, tracking is an other important concept. Tracking considers
image sequences over time (for example over the cardiac cycle) to identify objects
and infer their motion. Tracking of the left ventricle [211] and heart valves [83, 220]
was recently presented in 4D echocardiography.

2.3.2. Computational Image Analysis

Routinely in the treatment of cardiovascular diseases the primary clinical intention
is to restore blood circulation to tissues. Often multiple therapy options are feasible
and before performing an invasive repair physicians would like to predict possible
outcomes. This creates demand for understanding geometry /anatomy information in
conjunction the function and pathological processes as well.

Acknowledging this need, the development of multi-scale biophysical models was
prioritized by various research councils. The European Union funded the Virtual
Physiological Human program and the Physiome Project is commissioned by the
International Union of Physiological Sciences. Common in these international efforts
is the desire to pursue development of holistic, personalized computational models to
enable predictive medicine.

Personalized computational models and numeric analysis emerged in a wide va-
riety of problems in the context of structural heart disease (SHD) and cardiac dis-
eases. Voigt et al. have demonstrated that a coupled image-based and biomechanical
model of the mitral valve leaflets results in lower tracking errors [200]. Further, it
was shown that a biomechanical model of the mitral leaflets might allow therapy
planning and patient selection for the MitraClip procedure [118]. Mihalef et al. in-
troduced a patient-specific organ level model of the human heart that integrates 4D
CT based morphology, dynamics and computed haemodynamics [130]. It is key in
cardiac resynchronization therapy (CRT) to understand the electrical properties of
the patient’s heart for efficient planning of the leads. In [173] a computational model
was established for regional parameter estimation. Mansi et al. presented an image-
based model of heart growth and remodeling to correlate with pathology in tetralogy
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of Fallot patients [117]. Recently a method was disclosed to estimate the mechanical
properties of the aortic wall (compliance, resistance) based on coupled fluid-structure
interaction model [18] that may be fitted to “4D Flow” CMR (Sec. 2.2).

The effort to extract knowledge from cardiac images using computational methods
is bearing fruit, one of the most prominent example of success is in coronary artery
disease (CAD). The non-invasive estimation of fractional flow reserve (FFR) from
cardiac CT angiographies [174, 191] allows severity assessment of coronary artery
stenoses and likelihood of ischemia. The personalized coronary circulation is sim-
ulated with computational fluid dynamics (CFD) models of the blood flow in the
patient specific coronary geometry segmented from 3D cardiac CT.

2.3.3. Interventional Image Registration and Fusion

During image registration the goal is to establish the spatial correspondence between
the pixels of two or more images (for our investigation we focus on registration of two
images, the target and reference). In other words, a correct alignment of the images
is to be determined. The purpose of traditional registration is many-fold, e.g. to
extend the field of view of images (mosaicing), to bring additional or complementary
information into the same coordinate system, to compensate for organ motion or to
facilitate atlas-based segmentation approaches.

The registration task relates the spaces of the target and reference images depending
on the type of the geometrical transformation. The most important transforms may
be categorized as rigid, affine, perspective projection, deformable models.

Another classification is possible depending on the basis of the registration: image
intensity-based or feature-based (point-based and surface- or model-based).

In the operating room (OR), notably during SHD repair, we encounter two highly
desired goals of interventional fusion. Solutions to the these problems are one of the
key enablers of minimally invasive (trans-catheter) cardiac interventions and we will
briefly review the literature of this active area of investigation.

First intent is to make diagnostic information (segmentation, anatomic models,
measurements and plans) derived from high-quality pre-operative images available
during a procedure where X-Ray fluoroscopy or C-arm CT (Sec. 2.2.3) lacks such
detail. Based on the dimensionality of the involved images the registration problem
may be classified as 3D-2D and 3D-3D. Recently Markelj et al. [120] provided an
extensive survey and review of 3D-2D registration methods where 3D pre-operative
MR/CT images are aligned to intra-operative X-Ray/fluoroscopy images through
estimation of perspective projection. Grbi¢ et al. demonstrated cardiac multimodal
3D-3D registration of pre-operative segmented CT images and intra-operative 3D
C-arm CT using the trachea [60] and pericardium [136] models as anchor anatomy.

The second major objective is to enable image-based procedure guidance and tool
navigation. Various trans-catheter structural heart diseases (SHD) interventions are
enabled by information fusion in hybrid operating rooms with live C-arm and echo
available. The complementary image information between multiple peri-operative
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imaging modalities allows accurate co-visualization of tools and soft tissue in the
same coordinate frame. In the context of TAVI, multiple groups have investigated
registration of TEE and X-ray fluoroscopy. These techniques are based on the visi-
bility of the TEE probe in X-ray projections. Peters and colleagues [99] introduced a
fiducial-based pose estimation system. Intensity-based registration methods were
demonstrated for probe tracking (Gao et al. [52]) and TEE mosaicing (Houdsen
et al. [76]). Mountney et al. [133] evaluated machine learning based image fusion,
while Heimann et al. had shown transfer learning as a way to augment limited labeled
training data [67]. The feasibility of image-based registration of fiducial equipped ICE
(Sec. 2.2.2) catheter and X-ray fluoroscopy was shown in 2014 [155].

In Chapter 4 further details of interventional image registration and fusion are
surveyed and discussed.

2.3.4. Machine Learning in Medical Image Analysis

Originally developed in the field of artificial intelligence, machine learning has enjoyed
a prosperous period in medical image analysis in the last two decades. Supervised
learning methods have been proven to deliver expert-level performance in multiple
medical image analysis problems [205], including object localization [178], segmenta-
tion [212] and registration [60, 136, 67].

In supervised learning the focus lies on discovering knowledge from labeled data
to allow later applying the learned information to analyze unseen data. Learning-
based methods have shown strong impact in areas where analytic solutions are not
obtainable and defining rules that lead to the right decisions is not obvious but it
is possible to learn from examples. The probabilistic Bayesian inference framework
enables efficient maximum a posteriori (MAP) modeling in the high dimensional space
of images.

Development of fast-to-compute 2D and 3D Haar-like and LBP image features
(198, 193, 148] together with novel boosting and randomized decision forest algo-
rithms [193, 148] have been shown to be able to effectively recognize patterns in the
underlying data and estimate model parameters through image-based classification
and regression. Decision trees are particularly efficient to run inference on. As a pre-
requisite to statistical learning, the training of efficient discriminative models require
large, expert annotated database of examples.

It is generally expected that current machine learning methods would reach higher
precision given larger labeled training data sets [205]. However this presents a chal-
lenge as high quality annotated databases are very time consuming and costly to
build, and open databases are not yet available for most medical imaging problems.
Crowd sourcing of image annotations and algorithmic techniques such as transfer
learning [67] were recently shown as a possibility to address this limitation in certain
domains.
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2.4. Conclusions

The heart is the central pump of blood flow, driving the circulation in the entire
body. It is a complex organ consisting of cavities with contracting walls, blood flow
regulating valves and the largest vessel connections. The blood is locked and pumped
periodically at high pressure in this closed system. Failure of the many components
is inevitable, underlined by the fact that CVD is number one cause of human deaths
worldwide.

No medications exist that are able to cure congenital heart defects and the pro-
gression of structural heart disease: drugs only help stabilizing conditions. Whereby
cardiac surgery remains the operation carrying the highest likelihood of complications
and operative risk. To extend the patient population for whom effective treatment
options exist less invasive therapies are sought after.

Management of certain cardiovascular diseases require invasive intervention not
only during therapy but for routine diagnostics too — such as the invasive blood pres-
sure catheterization in severity assessment of CoA. Additionally, procedure planning
relies on manual measurements and simplified approximate methods leading to sub-
optimal and non-reproducible results. Medical image analysis is expanding towards
image interpretation through data-driven, personalized models to provide clinical in-
formation with predictive power. Image-based computational modeling of anatomy
and function facilitate personalized in-silico evaluation of diagnostic and therapeutic
procedures and treatment outcome prediction. Applied machine learning proved to
be a very efficient tool in fitting these models to patient’s data.

In parallel — during the last two decades — various percutaneous procedures and
in particular transcatheter implantable devices and techniques have been introduced
in cardiac medicine. These developments and widespread adaptation are enabled by
procedural, technological and imaging advances. Improved imaging, the availability of
peri-operative imaging modalities in hybrid operating rooms and better exploitation
of complementary imaging information from intra-operative modalities through novel
live fusion and image registration methods are being investigated to help to improve
outcomes.

On one hand we expect future challenges to include further development of inte-
grated anatomical, functional and computation models to derive clinical information
to enable preventive, predictive, personalized medicine; on the other hand, we foresee
the search for better patient outcomes through introduction of more effective and
less-invasive procedures.
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Non-invasive Blood Pressure Drop Estimation

The effect of coarctation of the aorta (CoA, see Sec. 2.1.2) is a stenosis distal to the
aortic arch, resulting in pathophysiological processes that restrict the circulation of
oxigenated blood through the coarctation. This necessitates increased cardiac output,
and may lead to left ventricular (LV) hypertrophy. Generally CoA results in persistent
upper body hypertension and lower body hypotension. Patients born with CoA
require lifelong medical/surgical care [189], that includes invasive and non-invasive
imaging, drug therapy and if the CoA recurs, invasive catheterization or surgical
intervention to reduce the blood pressure in the ascending aorta. Treatment options
include various surgical repairs and after the neonatal period, stent implantation and
balloon angioplasty [11, 63, 31, 192, 37, 69].

Pre-operative evaluation of CoA severity relies predominately on non-invasive arm-
leg blood pressure gradients or, if anatomy does not make that comparison feasible,
estimation by Doppler ultrasonography. Alternatively CoA is characterized [202] by
greater than 50% narrowing of the aorta as compared to the diaphragmatic aorta
diameter. Nevertheless the clinical gold-standard is obtained by invasive cardiac
catheterization to measure A P across the coarctation site. However each catheteriza-
tion carries the risk of thrombus formation, embolization and infection. Systolic blood
pressure drop between the ascending aorta (AAo) and descending aorta (DAo) above
20 mmH g characterizes severe CoA and serves as an indicator for treatment [202].

Recently, Doppler ultrasound [101] and phase contrast (PC) MRI based meth-
ods [149, 108, 122]| have been proposed for a non-invasive estimation of AP by using
simplified relationships (e.g. modified Bernoulli equation) between flow and pressure.
However these methods were shown to be inaccurate [75].

Thus, there is a growing need for comprehensive and truthful morphological and
hemodynamics analysis of CoA for diagnosis, intervention planning, outcome predic-
tion and assessment of lesion progression. Our work in this chapter is directed at

33



3.1. MORPHOLOGICAL MODEL OF THE THORACIC AORTA

these goals. Additionally, as the CoA population includes young patients, less inva-
sive and less expensive (reducing fluoroscopy and catheterization) methods are sought
after for AP estimation. For these reason our attention is turned to computational
fluid dynamics (CFD) methods for more faithful characterization of blood flow in the
aorta.

This chapter introduces morphological and hemodynamics models of the thoracic
aorta and trunks of main branches. A novel technology is described to personalize the
model parameters and fit the models to patient data. The model is used to estimate
patient-specific blood pressure drop in CoA. The chapter is organized as follows.

Section 3.1 describes the morphology model of the thoracic aorta and main branches,
the parts-based decomposition and compact statistical shape representation of patient
population. An accurate geometrical representation of the lumen boundaries of the
aorta and supra-aortic arteries is essential for subsequent hemodynamic computations.
The goal of lumen estimation is to automate the vessel morphology measurement pro-
cess, and should require manual intervention in a mostly supervisional manner. The
aim of Section 3.2 is to present the machine learning-based, robust, patient-specific
parameter estimation method that fits the morphological model to patient’s imaging
data.

In Section 3.3 a computational model of the thoracic aortic circulation is described.
Personalization of the hemodynamic computational model is discussed in Section 3.4
based on patient-specific geometry, computational fluid dynamics (CFD) and fluid-
structure interaction. Further, Section 3.4 discusses the extraction of the aortic lumen
cross sections from 2D+t PC-MR, and the aortic in- and out-flow waveform computa-
tions. Lastly, the image-based personalization is introduced (Sec. 3.4.1) for three CoA
use-cases: pre-operative (Sec. 3.4.2), post-stenting (Sec. 3.4.3) and “virtual stenting”
(Sec. 3.4.4).

In the interest of easing translation of personalized CoA models into wider clinical
practice we set out to meet certain expectations. In Section 3.5, 3D lumen geometry
segmentation is demonstrated in 212 volumes (Sec. 3.5). Moreover, blood pressure
drop is estimated in CoA: we examined six patients’ retrospective data, acquired in
multiple cardiac centers from USA and EU in various stages of CoA management:
pre-operative assessment, treatment outcome prediction and post-operative follow-up.

Our results are discussed in Section 3.6. While, initial work on extensions of hemo-
dynamic assessment is presented in Section 3.7.

3.1. Morphological model of the thoracic aorta

Non-invasively acquired images are a cornerstone of current management of CHD
and SHD, however high resolution 3D images are not trivial to interpret directly.
Modern medicine demands techniques to process large amounts of data into clinically
relevant information in a precise, reproducible and fast manner. For cardiovascular
defects such as CoA, the extraction of anatomical and functional bio-markers through
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morphological and physiological models is indispensable for quantification, severity
assessment and intervention planning.

3.1.1. Background

Ongoing imaging research has been directed at segmenting the thoracic aorta from
3D images. We provide a brief overview of existing aortic models reported in the
literature. Work presented by Zhao et al. [214] applies level-sets and manual seed ini-
tialization to extract the aorta lumen from MR volumes. Recently, another marching-
based method was introduced for aorta segmentation in MRI [45]. Machine learning
based automatic aorta detection [216] was successfully combined with shape models
and applied in intra-operative guidance, based on rotational C-arm CT volumes.

All three of these segmentation approaches consider the aorta only, excluding the
supra-aortic arteries. For our investigation, the supra-aortic arteries are of great im-
portance as the blood flow that leaves the aortic arch through these vessels (approx-
imately 35%) should be considered in the subsequent hemodynamic computations.

On high resolution 3D CT angiograms the feasibility of accurate carotid artery
segmentation was extensively demonstrated [61]. Segmentation of the aorta, including
the supra-aortic arteries from MR volumes, was initially presented in our previous
works [199, 153].

Figure 3.1.: Thoracic aorta parts in MR images: aortic root, aortic arch, trunk of
brachiocephalic artery, trunk of left common carotid artery, trunk of left
subclavian artery

3.1.2. Parts-based Model of Vessel Tree

In this section we introduce an organ-level morphological model of the aorta and
the trunk of its main branches. The model is a mathematical description of patient-
specific lumen geometry. For CoA investigation the definition of the spatial and
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computational domain is the lumen of the thoracic arterial tree. The aorta (including
the ascending and descending parts and the transverse arch) together with the trunk
of its main branches (the supra-aortic arteries) are modeled to delineate the vascular
morphology and geometry. The fitted model is used to perform clinical measurements,
for assessment, diagnosis and therapy planning and to personalize the hemodynamic
computational model in Sections 3.3 and 3.4.

The hierarchical, parts-based decomposition of the aorta model is shown in Fig-
ure 3.1. The model involves the following levels of abstraction in the hierarchy: i)
global location and pose of parts and ii) lumen surface morphology. The surface
model is dependent on and spatially linked to the global location and pose of the
parts.

Parameterization
aortic arch ‘
ascending aorta | descending
aorta

aortic root -

Aorta Supra-aortic Complete Wi
arteries aortic model

Figure 3.2.: Parts-based model of the thoracic aorta.

On the one side, the cardiac image scans vary in field of view and obliqueness, on
the other side CVD patients present heterogeneous morphological morbidities of the
heart and aorta. This necessitates parameterizing the global location and pose of the
aorta parts to define a subsequent frame of reference in the volumetric images. The
global location 8, of the parts p are parameterized as a similarity transform in 3D
space (Eq. 3.1),
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Figure 3.3.: UV parameterization of open cylinder illustrated through the trunk of
the three supra aortic arteries. U defined around the circumference, V
increases along the vessel in the direction of antegrade blood flow.

0, = |{ts, ty, t2}, {, B, 7}, {52, 5y, 52} t,,Ip, 8, € R3 pe {Ro, Ar, Br, Le, Ls}
\_?,_/ —_——— ——
(3.1)

defined over nine pose parameters (three for position: t,, three for orientation: r,
and three for anisotropic scaling: s,). The r, rotational parameters are expressed as
Euler angles, describing rotation around the Cartesian coordinate axes in the fixed
Z-axis, Y-axis and X-axis order. Our model of global location and pose includes the
following anatomic parts: aortic root (Ro), aortic arch(Ar), and the trunk of supra-
aortic arteries — brachiocephalic artery trunk (Br), left common carotid artery trunk
(Lc), left subclavian artery trunk (Ls) — and lastly for post-operative cases the stent
region (St).

0 = [eRm eAra eBra eLca eLs] (32)

Thus the model 0 requires 5 x 9 = 45 parameters to describe the global location and
pose of the five parts in a volume I.

The modeled vessel parts p are abstracted at two levels, first as their pose (similarity
transform) and second, their lumen surface as a triangular surface meshes (Figure 3.2).
All parts are associated with a surface describing the lumen boundaries in that vessel
area!, these surfaces are embedded in a bounding box defined by the above similarity
transform. The deformable surfaces have a fixed point correspondence across subjects.

M(0) = {vi, v, , v} v; € R®, s € {Ro, Ar, Br, Lc, Ls, AAo, DAo}  (3.3)

Surface meshes are defined with a fixed mesh topology (open cylinder — see Fig-
ure 3.3). The cylinders are parameterized as follows: V' is defined along the vessel
center-line increasing in the direction of antegrade flow, while U is defined along the

"However the walls of ascending (AA0) and descending aorta (D Ao) do not have a global pose due
to their variable lengths.
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circumference of the vessel. The trunk of all three supra aortic arteries is represented
by U x V = 16 x 15 = 240 vertices and 448 triangular faces. The aortic root is
modeled by 32 x 17 vertices and 1024 triangles, while the aortic arch model contains
32 x 34 vertices 2112 triangles. The model does not implicitly define the V' length of
the ascending and descending aorta, but those parts contain U = 32 circumferential
vertices as well.

M(0) = [Mro, Mar, Mpr, Mrc, MLs, Maao, Mpao| (3.4)

Anatomical definition of Ro is from the level of the aortic valve hinge points to
the level of the left and right coronary ostia. The aortic root has a distinct scalloped
shape, see Figure 3.1. The aortic arch Ao is defined by the transverse section of the
aorta until the aortic isthmus.

Notable property of the model is that its parameters are independent of the imaging
modality.

3.2. Patient-specific Parameter Estimation

In the previous Section 3.1 we presented a parts-based model of the lumen of the
thoracic aorta and trunk of main branches, defining the target parameters and model
of their spatial distribution. In this section we are aiming to introduce a coarse-to-fine
approach to estimate patient-specific values for those parameters from non-invasive
3D images.

Figure 3.4.: Effects of implanted metallic stent on MR image quality. Left: 2D spin-
echo MR image, note that the whole descending aortic lumen is contin-
uously visible. Middle: In a 3D cardiac MR volume (typical to our
investigation) of the same region (red volume), the metallic stent pro-
duces a signal “drop-out” artifact rendering the lumen visually missing.
Right: Bounding box of a stent region fg;.
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I

S

Figure 3.5.: Overview of estimation procedure for the parts-based thoracic aorta
model. Given a cardiac volume, first a global search is performed to
localize the parts and respective poses. Subsequently, deformable lumen
boundaries are fitted in local context.

The estimation of the aorta model parameters @ and M from an image [ is a
challenging task due to the large number of model parameters, the pathological vari-
ations presented by CVD patients, limited MR image quality and unconstrained field
of view of the scans. Nevertheless, robust solutions are sought after that are able to
fit the model to noisy clinical data. To make this problem more tractable it is in-
evitable to incorporate prior knowledge about the morphology. Supervised machine
learning offers an effective technique to incorporate prior knowledge through expert
annotated examples. In our case we had approximately 200 MR volumes available to
perform statistical learning. We have seen in Section 2.3.4 that machine learning pro-
vides a powerful probabilistic framework in comparison to alternative image analysis
methods.

The probabilistic Bayes’ theorem provides a concise framework to describe param-
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eters of a statistical model given data:

p (Data|Parameters) - p (Parameters)
p (Data)

p (Parameters|Data) = (3.5)

Concretely, we may formulate our parameter estimation problem through Eq. 3.5:

116, M) - p (6, M)
p(I)

here p (68, M|I) is the posterior probability, p (1|0, M) is the likelihood and p (6, M)
the prior term (we assume the normalization factor p (I) to be one).

A generative learning strategy would allow to approximate the likelihood probabil-
ity p (1|0, M) with parametric schemes. However, due to the above outlined complex-
ities generative learning algorithms are generally out of reach for volumetric images:
either too expensive to construct or rely on simplistic assumptions about the joint
data distributions. Further, generative learning approaches are focused on produc-
ing the minimum variance, rather than prediction rules for the separation of classes.
On the other hand, discriminative methods are trying to directly learn separation
boundaries to partition classes [85, 137, 12]. This is ensured in MAP (maximum a
posteriori) estimation by the fact that a discriminative estimator converges to the
conditional probability density that minimizes the classification loss. During infer-
ence, the model is fitted to unseen images thereby hypotheses are being evaluated
while iterating though the parameter space, and the target prediction is achieved by
the maximization of the following objective function:

p (0, M) = 24

(3.6)

0", M" = arg maxp (6, M|I]) (3.7)
O m

In order to simplify the objective function in Eq. 3.7, we propose decomposing the
argument:
p(O.M[I)~ p(0]I) - p(M|6,]) (3.8)
—— —_——
global pose deformable shape

The approximation transforms the segmentation problem into a sequence of two sim-
pler estimation tasks in a coarse-to-fine fashion: global search and estimation of
rigid object parameters (Section 3.2.1) and free form deformation of lumen bound-
aries (Section 3.2.2). Furthermore this decomposition matches the hierarchical model
structure we have introduced in Section 3.1.

3.2.1. Discriminative Learning Techniques

According to the above reasoning we express the parameter estimation (Eq. 3.8) as a
discriminative classification task to produce the posterior probability p (0|1) learned
from image features during training.

40



CHAPTER 3. NON-INVASIVE BLOOD PRESSURE DROP ESTIMATION

An image I is most often defined as a mapping from d-dimensional space to a
scalar:

I:Q—-R, QeN (3.9)

Images are representing a measurement of some physical quantity (Section 2.2) in a
uniform grid of voxels in volumetric (d = 3) images (pixels for d = 2 planar images).
Intensities of the voxel values are proportional to the measured physical quantity. In
digital images the intensities as well as the spatial sampling is discretized.

We aim to discriminatively learn a binary, foreground-background classifier

H(V) = p(ylV) (3.10)

to be used to evaluate image regions V', where V' C I. Here the labeling y € {—1,+1}
is describing the probability p(y = +1|V') that the image region V' contains the object

of interest (foreground: a positive sample) and p(y = —1|V) is the probability of
image patch V not containing the object (belongs to the image background: negative
sample).

Discriminative learning methods include support vector machine (SVM), boosting,
randomized decision forests and neural networks. Thanks to its high generalization
performance, in the rest of our investigation we will use variants of boosting as the
supervised learning algorithm of our choice. Boosting is described in the next para-
graph, while in the following paragraphs we will explain the different image-based
features used for learning.

Boosting Algorithms

In this paragraph we show how a boosting procedure is able to learn a prediction
function H(V') = p(y|V) (Eq. 3.10) to minimize the mis-classification loss.

AdaBoost AdaBoost was introduced by Schapire and Freund in 1995 [49]. The
basic principle is to boost the performance of “weak” learners to transform them into
a “strong” learning algorithm.

Given a training set S = {(x1,11), -, (Tm,Ym)} ©; € X,y € {+1, —1} where each
sample x; belongs to some domain X, and each label y; in some label set Y. The
AdaBoost algorithm learns a “strong” classifier (H(z)) as a linear combination of

“weak” classifiers (hy):
T
H(zx) = sign (Z athy (x)) (3.11)
t=1

The only criterion against weak learners is that each has to perform better than ran-
dom guessing (if one performs worse than random guessing a sign-flip allows it to be
incorporated). We sequentially apply the weak learner to a repeatedly updated ver-
sion of the data, thereby learning a sequence of weak classifiers hy(x) (t =1,2,...,T).
Here aq, as, ..., ar are the weights for the “weak” classifiers computed by boosting.
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At step t of the iteration, the samples mis-classified by the previously trained h;_(x)
are assigned an increased weight, whereas the weights w; (i = 1,2,...,m) of the cor-
rectly classified training samples are decreased. This results in a iterative increase of
influence of the samples that are difficult to classify. Effectively instructing the next
classifier to focus on samples “overlooked” by earlier phases [50]. The final classifier

Algorithm 1: The adaptive boosting (AdaBoost) algorithm introduced by
Freund and Schapire in [49]
Data: A training set S = {(x1,y1),  , (Tm, Um) } ;2: € X,y € {+1,—1}
Data: Number of iterations T’
Initialize weight vector wy(i) =1/m i=1,2,...,m;
for each iterationt =1,2,...,T do
Select weak classifier hy : X — {+1, —1} to fit the weight distribution
with minimum error;
Compute error using mis-classification loss:

Doy wisign [y; # i ()]
D iy Wi

€t =

Update: oy = log (ﬂ»

€m

for each training sample 1 =1,2,...,m do

L Wiy (1) = wy (i) - et sionlyirhe(@)]

Result: H(z) = sign Lilatht (x)]

H(z) is the weighted average of the weak learners h;(z). AdaBoost has desirable
properties, convergence of the scheme is guaranteed if ¢, < % with the training error
approaching zero, and strong bounds for the generalization performance were also
proven to help avoid over-fitting [50]. The training procedure for AdaBoost is shown
schematically in Algorithm 1.

Probabilistic Boosting Tree If the distribution of the data set x; is complex,
the error ¢, approaches % quickly thereby rendering converge of AdaBoost slow. To
address this limitation, Zu [193] proposed probabilistic boosting tree (PBT) based
on a divide and conquer strategy to keep the complexity of the training distribution
tractable. Algorithm 2 illustrates the procedure to train PBT. During training, PBT
is recursively building a tree (Figure 3.6a). For each node of the tree a strong classifier
is learned, using e.g. AdaBoost with an early termination 6 = 0.45. All training sam-
ples of this node are evaluated with the currently learned classifier and an e threshold
to control over-fitting. The response of a strong classifier at sample x is denoted as
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Algorithm 2: The probabilistic boosting-tree training procedure as intro-
duced by Zhuowen Tu in [193]

Data: A training set

S = {(xlaylaw1)7 T a(xmvymawm)} T; € Xay € {+17 _1}7Zw2 =1

Data: Maximum tree depth L
Data: confusion tolerance € (e.g. € = 0.1)
Data: early exit threshold 0 (e.g. 6 = 0.45)
compute the empirical distribution ¢(y) = >, w0(y; = v);
while current tree depth < L do
On the training set .S, train a strong classifier with a boosting algorithm
with T weak classifier and exit early if ¢, > 6;
Initialize two empty sets Srepr and Sgighs;
For each sample (z;,y;) compute the probability ¢(+1|z;) and ¢(—1|z;)
using the learned strong classifier;
if g(+1|z;) — 3 > € then
‘ (25, Yi, 1) = Sright;
else
if g(—1|z;) — 3 > € then
| (@i, Y, 1) = Spep;
else
L (@i, yi, ¢(+1]25)) = Sright;
(w5, yi, q(—=1|z;)) — Sreft;

Normalize all weights of the samples in Sief:, repeat the procedure
recursively;

Normalize all weights of the samples in Sgigne, repeat the procedure
recursively;

1, x = True
and 0(z) = 0, otherwise °
Based on this, samples are assigned to the left or right sub-trees, while confusing
samples failing this test are assigned to both children. Operating under this scheme,
positive and negative samples are naturally clustered into sub-trees and thus reduc-
ing the complexity of the training distribution. In contrast to AdaBoost the tree
structure preserves the order of the learned decisions (features), that may correspond
to semantic patterns in the data. Tree depth and the T" number of weak learners
per node being two other parameter influencing over-fitting. Each weak learner is
encoded as a pair of a binary histogram of polarities (a;) over the responses during
training and the feature identifier (Fig. 3.6b).

2H (z) —2H(x)
e and g(—1lz) =

follows: ¢(+1|x) = Tre—2A0)

43



l

[

3.2. PATIENT-SPECIFIC PARAMETER ESTIMATION

During inference (shown in Algorithm 3) PBT is evaluating the tree starting at its

root node. Child nodes are trying to refine or “correct” the answer of the current
node. It is important to note that boosting predicts not only a label y but also
computes a probability score of confidence p(y|z).

Algorithm 3: Evaluation of the probabilistic boosting-tree during inference
as introduced by Zhuowen Tu in [193]

Data: Given tree node N

Data: Given sample x

compute qy(+1|z) and gy(—1|z) using the learned classifier at current tree
node NV;

if g(+1|z) — 5 > € then

ﬁRz’ght(y) = HRight(N) (L y);

Prest(Y) = Qresuny(y);

else

if ¢(y + 1|z;) — 3 > € then

Dright(Y) = Qright(v)(Y);

Prest(y) = Hrepuny (2, y);

else

ﬁRz‘ght(y) = HRight(N) (z,9);

| Presi(y) = Hrepony (2, 9);

PN (Yl2) = gn(+1]2) - Prigne(y) + an(=112) - Presi(y);
Result: Hy(z,y) = pn(y|z) at tree node N
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Figure 3.6.: Left: Illustration of the probabilistic decisions stored in the tree. Each

node corresponds to a strong classifier. Dark nodes are leaves. Repro-
duced from [193]. Right: Weak classifiers are encoded as a binary his-
togram of polarities (o).
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Image-based Features

Image features are knowledge or evidence about an image. There is a large variety
of image features that have been introduced in the pattern recognition literature.
Prominent image feature descriptors are HoG [27], SIFT [110] and SURF [9]. These
features provide high detection rates at the expense of computational time. We
have seen in the previous examples that boosting only demands weak evidence from
features. As boosting methods are very efficient at feature selection and picking
discriminative features, in our investigation we prefer image features that are fast and
easy to compute instead of being sophisticated constructs. Such features Haar-wavelet
like templates, local binary patterns ([141]) and steerable feature patterns. In the next
paragraphs we focus on introducing Haar-like and steerable features. Feature pool
in a window centered around an image location with thousands of feature responses
collected in a feature bank.

Haar-like features To represent image appearance, Haar wavelet like features have
been reported as early as 1997 by Oren et al. [144] for pedestrian detection. In their
seminal work, Viola and Jones applied them successfully to face detection [198] and
Zheng et al. [212] extended the concept from 2D images to 3D (Figure 3.7). The
response of a Haar feature is defined as the difference of the sum of intensities in
neighboring cuboid regions. To increase the number of samples, the filter templates
may be mirrored, translated, flipped or rotated by multiples of 90°. On the one hand
the concept appears rather simple and the responses are not rotationally invariant.
On the other hand thousands of such features extracted in a local search window
and filtered through boosting to select the most discriminative ones appears to enjoy
a high predictive power for visual patterns in various computer vision and medical
image analysis tasks [144, 198, 212, 83, 177, 200, 209, 178] for the last decade and
half. We hypothesize that the robustness of Haar features is a result of operating on
relative intensity changes instead of absolute values.

The second contributing factor to the success of Haar-like features is computational
efficiency. Integral images (or summed area tables as reported in computer graphics
literature) provide an efficient way to compute Haar-like features (see Figure 3.8).
For a 3D volume, the summed area table SAT at image location (x,y, 2) contains
the sum of pixel values above and to the left of (z,y, z), inclusive (assuming the image
origin lies in the upper left corner):

Width Height Depth
SAT (z,y.2)= > Y > I(z,y.2) (3.12)
z=1 y=1 =1
Using this formulation, it becomes obvious how to compute the value of 2D region
A in Figure 3.8: YA = SAT (z1,y1) — SAT (z1,y0) — SAT (0, y1) + SAT (z0, yo)-
Further, it is possible to compute the response of any Haar-like feature as a matter
of a few additions and subtractions. Additionally, the SAT is computed only once
and reused during the computation of all feature responses from that image.
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Figure 3.7.: Possible Haar-like 2d and 3d feature templates in a search window. The
feature response is the difference of the sum of intensities in the dark and
bright regions. Reproduced from [34].

Steerable features Computation of integral images and thus Haar features is only
efficient parallel the image axes. Oblique or rotated templates would require expensive
resampling of the original image. Zheng et al. [212] introduced steerable features to
allow efficient capture of the orientation and scale of objects though a non-uniform
grid sampling pattern. In contrast to Haar features, steerable features are naturally
scalable and easy to rotate as shown in Figure 3.9. At each sampling point simple
local features (e.g. voxel intensity, gradient) are extracted thereby capturing the
distribution of orientation and scale at the sampling points.

For the parameterization of concrete hypothesis [{t;,t,,t.},{, 8,7}, {5z, Sy, 2}
(e.g. from an aorta part in Eq. 3.1) the sampling patterns are centered at {t,,t,,t.}.
The orientation of the sampling axes are aligned with the local rotation factors
{a, 8,7} and the size of the sampling grid is dictated by the scaling coefficients

}! ‘.- yl .. ..
ii(x,y) ii(x, ¥)) ii(x, y)

Figure 3.8.: A pixel (z,y) of the SAT summed area table (denoted i in the figure)
contains the sum of pixels above and to the left of (x,y), inclusive.
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Figure 3.9.: Sampling points of a steerable feature in 2D. Sampling locations are de-
noted by +. Left: Pattern centered at location (x,y), Middle: Pattern
additionally oriented to v, Right: Next, the pattern scaled proportional
to scaling parameters (s, s,). Reproduced from [212].

{84, 8y, 5.}. The following 24 features are extracted at each sampling location (z, z, y):
I VI T 12, B log(D), gl /gl /Mgl gl gl tog(llgl), 1, i, &7, 42,
w3, log(i)y Gy Gys sy N+ Gy Ny - g, Ny - g similar to Zheng et al. [212]. Where at a
sampling location (x, z,y), I is the voxel intensity, g = (¢, gy, g-) the local intensity
gradient and p = arccos(n, - g) the angle between the gradient g and the z axis of
the object-oriented local coordinate system. Thus the feature response consists of
24 x N? values where N is the number of sampling point in one direction.

Marginal Space Learning

In this section we have looked at the p (8|I) estimation sub-task from Eq. 3.8. This
step has to be carried out for each part of the vessel tree model (Eq. 3.2) and involves
prediction of nine parameters per object (Eq. 3.1).

The exhaustive search of the nine dimensional parameter space would be pro-
hibitively expensive. To reduce the high computational demands, Zheng et al. [212]
introduced an elegant sequential [32] sampling strategy: marginal space learning
(MSL). MSL is based on the observation that the nine dimensional parameter space
is inherently clustered in many object detection problems. Moreover, to eliminate
large parts of the search space MSL subdivides the original parameter domain
into subsets of spaces with increasing dimensionality [199]:

;C;C'“C;EZ (3.13)

This means that the classification task in ), ; is trained in a much smaller parameter
domain than in ) ,. For object pose estimation the search space is decomposed
in the following manner: in the first phase only position hypotheses are regarded
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>, = {tu,ty,t.} € R® and the most probable candidate locations are passed on, in
the second phase the search is augmented with rotational parameters at the candidate
locations Y, = {ts, t,, t-,a, 3,7} € R® and finally the different anisotropic scales are
searched in Y, = {t;, 1y, t., @, 8,7, Sz, Sy, $-} € R?. Between the subsequent phases of
computations typically 50 — 100 of the detection candidates with highest probability
are preserved and propagated to the next level.

3.2.2. Statistical Shape Models

As we have seen in the previous Section 3.2.1, model-based estimation of rigid objects
is well established. However the challenges presented by the estimation of deformable
models (p(M]|0,1) from Eq. 3.8) require a different tool set. One desire against
deformable models is to confine the search to characteristic variations of the object
class. This is especially true for organs where topological changes are not expected in
the patient population. The most influential result in statistical shape analysis may
be the 1995 work of Cootes et al. [20] introducing active shape models (ASM).

In order to learn prior knowledge about patient populations ASM employs point
distribution models (PDM) to encode shape information, and captures domain spe-
cific statistical variation. A PDM describes a shape by defining a number of points
on the surface. For a 3D shape with n landmark points this leads to a vector x:

X:[mlyx%'"7$n7y1>y27'"7yn7Z17227"'7Zn]T XERsn (314)

The first step of building a shape model is alignment of shapes. The goal of alignment
is to establish a coordinate reference, to examine the shape statistics. This is achieved
by filtering out all translational, rotational and scaling effects. To remove the variance
in terms of similarity transform from the training shapes, a shape metric needs to be
defined.

The most commonly used shape metric is the procrustes distance [20]. The pro-
crustes shape metric D is least-squares type of distance metric [182] to describe the
translational, rotational and scaling differences between two shapes x; and x5. It is
a precondition that the two shapes consist of the same number of points n and have
an identical point correspondence.

D* =" [(wj — 22)” + (U — 4j2)” + (21 — 2)°] (3.15)

J=1

First the centroid of the respective shapes is computed:

o 1 & 1 & 1 &
(QT,Q,Z) = (Hzxjagzyjaﬁzzj> (316)
j=1 j=1 Jj=1
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Scaling is estimated through the size metric (using e.g. the 2-norm) based on the
centroids:

n

S(x) = | D[y =22+ (y; = §)* + (55 — 2)7] (3.17)

J=1

After the two shapes are normalized in scale, translation is estimated through the
centroids. To estimate the rotation between the two shapes, singular value decom-
position (SVD) is used. Re-arranging X; and X, into N x 3 matrices X7, X, allows
to perform SVD on XX, to calculate UDVT. The rotation matrix for optimal
alignment equals to VUT [182].

Even though a closed-form analytic solution exists [74, 194], the alignment of the
training set of shapes is computed iteratively through the generalized procrustes anal-
ysis (GPA) [56]. GPA involves four steps [182]:

1. Choose an initial estimate for the mean shape, e.g. x;, the first shape in the
training set

2. Align all other training shapes to the current mean shape using the distance
metric outlined above.

3. Re-estimate the mean shape from the newly aligned shapes
4. Iterate starting with 2) until convergence of the mean shape.

If the mean shape was not changed significantly during an iteration, the scheme is
assumed to has converged and the shape alignment is complete. With the N aligned
shapes, the procrustes mean shape can be expressed:

| N
j=1
With alignment of the training set of shapes X1, Xs,...,Xy to the reference frame

of the mean shape X, we may proceed to the next task: capturing the distribution
of shape variation within that frame. The key insight from Cootes et al. [20] was to
state that neighboring points of the PDM do not move independently across subjects
— the authors have hypothesized that the landmark points are partially correlated.
With the further assumption that the position of the landmarks follows a Gaussian
distribution, we may compute the 3n x 3n covariance matrix I:

L= Z(xi —%)(x; — x)T (3.19)

Using principal component analysis (PCA) on the symmetric matrix C, the eigen-
values \; and eigenvectors ¢; (i = 1,2,...,3N) may be computed. The eigenvectors
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corresponding to the largest eigenvalues describe the highest variation of landmarks.
Thus, it is possible to approximate ¥ with a matrix ® = [p1¢5 . .. ¢;] composed of the
column eigenvectors (modes) corresponding to the ¢ largest eigenvalues [20, 182, 25].
Using & it becomes possible to synthesize any instance x4 in the shape space of the
training set with the following weighted linear combination:

t
XA~ X+Pb =X+ il (3.20)

i=1
where b = (by,bs,...,b)T is composed of model parameters describing the defor-

mation (weights of principal components/eigenvectors). To confine b within three
standard deviations of plausible shapes seen during model building, the constraint
3v/A; > |b;| is enforced during inference through regularization.

In summary, the learned statistical shape model consists of the mean shape and
modes of variation (X, ).

3.2.3. Model Estimation - Segmentation

In supervised learning two stages are distinguished: training and inference. During
the offline training procedure the database of labeled data (in our case a set of an-
notated 3D cardiac MR volumes) is processed with statistical learning algorithms to
build “knowledge” in a compact form. During inference the “knowledge” is applied
to an unseen volume to estimate model parameters.

Database Guided Model Estimation

We have previously developed [199, 153] a fast, machine learning based method to
automatically extract the aortic lumen from 3D MR volumes. Here we will explain
this segmentation algorithm.

Substituting Eq. 3.2 into the first term on the right hand side of Eq. 3.8 yields:

p<0|1) :p(eRO70AT7QBT70LC70LS|I) y (321)
and we may write the complete pose parameter estimation as an optimization:

60" =[O0, 0ar U5y 01, 0L

= arg max p (9R07 9,47"7 937"7 ech 6LS|I)

9R079Ar 7937‘79L676LS

(3.22)

where 8" represents the optimal pose parameters of the aorta model parts given a 3D
MR volume 1.

Unfortunately the joint estimation problem in Eq. 3.22 does not have an analytic
solution in general. We address this by decomposing the argument, to be estimated
sequentially.
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By analyzing the database of our annotated volumes, we have observed that the aor-
tic root and arch appear to be the most distinctive objects to be detected. However,
their relative pose with respect to each other is strongly scattered due to disparate
A Ao morphology of patients. With differences in MRI field-of-view their position in
[ is also variable. Thus search for { Ro, Ar} is performed independently, in the whole
image I. On the other hand, the supra-aortic arteries are almost always branching
off the same arch region and it makes sense to represent the prior knowledge of this
anatomic dependency as spatial constraints (reduced search ranges) in our model.
The same principle is true for the stented CoA region, that is located at the aortic
isthmus with its pose in low variance relative to 64,. This allows for a sequential
decomposition, thus we may rewrite the argument of Eq. 3.22:

P (Oro, 0ar, 05y, 01, 015, 05| 1) =
P (Orol 1) p (Oar|T) 0 p(6,|04.1) (3.23)

pi€{Br,Lc,Ls,St}

Anatomic dependencies between the parts allows us to reduce the search-space, and
focus only on the most probable locations/poses during search, formalized in:

p (sz 0ar, [) = f(g;lh QAT)p (epzu) (324)

for parts o; € {Br, Lc, Ls, St}. In other words, we include a pair-wise prediction
weight f(6,,/04,) describing the likelihood of pose of o; given the known pose of the
aortic arch [177].

The vessel part estimation is expressed as the inference of the pose parameters
from the MR volumes. To estimate the posterior distributions, we propose to use
discriminative classifiers. P(0|I) = f(+1|0, ) is the posterior probability of object
presence at @ in a given image I, where f is the learned detector model (fitted using
Probabilistic Boosting Tree [193] and 3D Haar-like and Steerable features). In order
to efficiently search the 9D parameter space of similarity transforms describing a pose,
we follow the sequential sampling strategy consistent with MSL:

p(0p|1) = p(Ep‘[)p(Fp’€p> 1)p(Sp[Tp, Epv I) (3.25)
thereby first focusing on location estimation, followed by orientation estimation at the
most likely locations and subsequently estimation of object scale. The pair-wise spa-
tial anatomic constraints (f(6;|0;), the priors) are modeled as Gaussian distributions,
that are aggregated over the available training data. Noting that Eq. 3.22 is similar
to the the multi-object detection problem discussed in the context of the integrated
detection network (IDN) framework [177], hence we have implemented the proposed
solution to Eq. 3.7 in IDN.

On unseen images, the learned model is applied in a sliding window manner to
detect the anatomic parts. In the hierarchical scheme from Eq. 3.24 we first estimate
the pose of Ro and Ar (performed on the whole MR volume), then based on 64, and
the learned anatomic constraints the search spaces for the rest of the parts are pre-

dicted around the most likely locations. In the proximity of these candidate locations
a localized search follows for { Br, L¢, Ls, St}.
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3.2. PATIENT-SPECIFIC PARAMETER ESTIMATION

Lumen Surface Estimation

The second phase of the segmentation procedure estimates the lumen boundaries as
densely tessellated surfaces. Similar to the ASM [20] framework, landmark points in
a PDM are displaced under regularization constraints (Section 3.2.2) in an iterative
manner. This relies on the bounding boxes (6,) of the anatomic “skeleton” computed
in the previous step, to initialize shape models and apply learning based boundary
detectors [212, 216, 177] to refine them towards the true lumen boundaries. Similar
to Eq. 3.21, the deformable shape search is decomposed to individual parts (Eq. 3.4):

p (M|97 I) =D (MR(M MAT: MBT; MLm MLs|9R07 0147‘7 037’7 eLca ‘9Lsa ]> (326)
and estimated sequentially for each part:

p(MRoyMAruMB’mMLm MLS|9R070A7‘7QBT70LC70LS7I) - H p(MmZ|0mzaI)
m;€{Ro,Ar,Br,Lc,Ls}
(3.27)

To initialize the individual boundaries, we are warping the learned mean shape
(Eq. 3.18) to the bounding box defined by the estimated similarity transform of
respective model part p:

xp = f5, 0 fx, 0 fg, (X) (3.28)

where fs,, fr, and f;, perform the scaling, rotation and translation according to
Eq. 3.25, thereby linking the rigid pose to the initialization of the deformable bound-
ary [106].

Initialization of the shape subspace occurs in a similar way as rigid parameter
estimation, and first proceeds by detecting a shape in a learned PCA sub-space [212,
106]. To describe the parameters in the shape space, a PCA detector is trained
discriminatively to estimate the first three by, by, b3 shape coefficients using PBT and
Steerable features sampled at the vertices of the surface [177]:

(b17 bg, b3>p = arg max p(bl, bQ, b3|9p, I) (329)
—3/%; <bi, <3V

During inference, the point distribution model is weighted with the estimated b;
following Eq.3.20 and three modes of variation:

3
Xp = fs, 0 fr, ° [, (X + Z¢zbz> : (3.30)

producing the initial lumen segmentation.

The following step is an iterative free-form refinement of the initial lumen surface
mesh regularized by shape prior [106, 177]. The mesh refinement deforms the bound-
ary at the landmark points of the PDM. At each vertex v; with surface normal n; an
offset d; is estimated for the boundary displacement v; <— v; 4+ d;n;. While ASM [20]
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relied on the strongest gradient along the normal, we have trained a discriminative
model to obtain d;:
d; = arg max p(d;|v;, n;, I), (3.31)
—7<d;<T
where 7 is the search range along the normal. This update is followed by PCA shape-
space projection, a second iteration of boundary displacement and surface smoothing
and updating of the normal, n;.

The walls of the ascending and descending aorta are treated separately. Their
pathological morphology and large length variability do not allow for compact sta-
tistical representation. The surfaces of the AAo, D Ao are assembled from individual
circles, that are tracked on axial slices of the volume, to connect the root with the
arch (for AAo), and descend from the arch to the diaphragm level (for DAo). Circles
are initialized from the previous slice, and the contours are refined by in-plane radial
boundary detectors, similar to the ones applied in the shape models [216].

The final lumen model is obtained by merging the separately estimated surfaces.
From the lumen surface meshes, four connected centerlines are computed, one for the
aorta and three for the supra-aortic arteries (SAoA).

The explicit modeling of the stented isthmus was necessitated by the fact that
post-stenting 3D MR volumes have a signal drop-out inside the metallic stent, that
“hides” the normal appearance of the aortic lumen, even when contrast agent is
present (Figure 3.4). To address this, post-operative volumes are detected by checking
the histogram of the volume along the center-line of the segmented aortic isthmus.
Near-zero intensity regions are signifying the loss of MR signal, and in these cases the
O, detector is applied. The stent is estimated as a linearly tapering tubular surface
connecting the transverse arch and the lower descending aorta.

3.3. Computational model of the thoracic aorta

In this section, we would like to introduce the computational model of the thoracic
aorta, that was constructed to describe hemodynamic conditions in CoA patients.
To provide technical background to our work, in section 3.3.1 we provide a brief
review of the literature of image-based hemodynamics computations conducted in
connection with CoA and the thoracic aorta. Afterwards, Section 3.3.2 introduces
the computational domain of the aortic vessel tree, derived from the segmented lumen
surface.

3.3.1. Image-based Computational Modeling

The field of image-based personalized computational hemodynamics was pioneered
in 1999 by Taylor et al. [190]. Since then the approach was adapted from vessels of
lower extremities through cardiac hemodynamics [187, 130] to cerebral aneurysms of
the brain [15, 185].
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The first step in an image-based simulation is the definition of the computational
domain. For CoA investigation, this is the lumen of the thoracic arterial tree. The
aorta (including the ascending and descending parts and the arch together with the
trunk of supra-aortic arteries) is segmented to delineate the vascular morphology.

Multiple groups have investigated CoA hemodynamics through computational mod-
eling. Recent studies have suggested that good agreement may be reached between
measured and simulated hemodynamic and morphologic indices if subject-specific
boundary conditions are employed [51].

Coupling the aorta with a lumped parameter model of the left side of the heart,
Kim et al. [91] applies realistic inflow boundary conditions to pre- and post-operative
setup of two patients within resting and stress loaded conditions. This personaliza-
tion scheme was extended by Coogan et al. [19] with elastic vessel wall properties
to simulate effects of change of distensibility and stiffness in a virtually implanted
stent against virtual surgical CoA repair. Even though development of these state-of-
the-art boundary conditions and methods ensure high fidelity, the long computational
times (3 —10 days on a 96 core super computer) pose questions on widespread clinical
application. LaDisa et al. [98] applies detailed boundary conditions and a similarly
sophisticated simulation procedure, to conclude that stent implantation doesn’t no-
tably increase the LV workload. Imaging data was specifically acquired for the study,
and potentially difficult to reproduce in standard exams.

A cohort of seven cases is examined by Valverde [195] and colleagues. Arterial
in- and out-flow boundary conditions are prescribed from clinical measurements, em-
ploying simple heuristics at the supra aortic branches, the authors have reached good
agreement of CoA AP at rest and moderate agreement at stress.

Recently a larger study [57] of 13 CoA patients was published. The authors’ ap-
proach combined pre-operative CMR angiograms and peri-operative fluoroscopy im-
ages to define the aorta lumen boundaries. Simulation of pre-operative blood pres-
sure was calculated with remarkable correlation. Furthermore, treatment outcome
prediction was performed by adapting the pre-operative geometry with post-stenting
fluoroscopy measurement of the restored aorta diameter.

Besides full 3D CFD simulations, reduced order circulation models have been in-
vestigated [142]. These models are known for their computational efficacy, and have
been successfully applied to various problems [181, 160].

3.3.2. Axisymmetric Arterial Tree Model

MR examination of a coarctation patient usually involves at least two different images
as shown in Fig. 3.10a: a 3D thorax scan and planar velocity encoded PC MR flow
image (Sec. 2.2). While the 2D slice is later used to estimate personalized blood inflow,
the 3D scan is used to segment the lumen surface (Fig. 3.10b). Subsequently the
patient-specific lumen morphology is used to construct the domain of hemodynamic
computations: along the center-lines, the combined lumen surface is partitioned into
9 segments (Fig. 3.10c). For each linear tapering tube segment the length [ and
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Figure 3.10.: a) Standard CoA MR exam with pair of images: 3D MRA and flow
encoded 2D+t PC-MRI. b) Combined surface of segmented lumen of
thoracic aorta and trunk of main branches. c¢) Semantic view of arte-
rial tree with discrete axisymmetric segments and terminal boundary
conditions.

proximal 7, and distal r,,; radii are computed: S; = {l, 7, Tou },7 € {0,...,8} from
the combined lumen surface. S7 is either the CoA narrowing or the stent. The start
and end cross-sections of the coarctation were taken as the locations where the radius
decreases under 95% of the aorta diameter downstream the left-subclavian trunk, and
respectively increases above 95% of the reference value for the diaphragmatic aorta.

3.4. Personalization of the computational model

The modeling apparatus introduced in the previous Section 3.3 requires patient-
specific boundary conditions and parameterization to provide personalized assess-
ment. The proposed clinical workflow and model personalization is introduced in this
section. Figure 3.11 provides a graphical overview of the computational steps.

Estimation of the Patient-Specific Blood Flow From PC-MRI

To quantify each subject’s measured aortic blood flow conditions, a single velocity
encoded 2D+t PC-MRI cine image slice is used. These sequences contain through-
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Figure 3.11.: Overview of our personalized image-based quasi 1D hemodynamic sim-
ulation workflow.

plane blood flow measurements in an oblique arrangement, intersecting the aorta
twice: at the root of ascending aorta and in the region of the descending aorta distal
from the CoA (Fig. 3.10a). As both MRI images are acquired with the assumption
that the patient does not move in the scanner in between scans, MRI machine co-
ordinates allow for a coarse registration of the MR anatomy and the PC-MR plane.
Thus, given the centerline of the aorta calculated from the previous segmentation,
delineation of aortic flow boundaries on the PC-MR image plane is initialized using
the lumen contour from the 3D surface mesh (Sec. 3.2.3) . The single time-point
segmentation is then tracked throughout the cardiac cycle, propagating the contour
based on deformable registration[87] of the n time frames in the cine series. In the
patches inside each contour, sampling of the PC-MR image is performed at the pixel
centers to obtain velocity values over the entire cardiac cycle. These velocity fields
are integrated over the area of the patches to derive the measured ascending- and
descending aortic blood flow rates (gusc and qgese)-

3.4.1. Axisymmetric Quasi 1D CFD

For pressure-drop computations in clinical settings, the total execution time of the
algorithm is of paramount importance. Thus we have chosen a reduced-order, quasi
1D approach, which together with terminal windkessel elements represents a reduced-
order circulation model for the aorta?. The quasi 1D fluid-structure interaction model
consists of the mass (Eq. 3.32) and momentum (Eq. 3.33) conservation equations, and
a state equation for wall deformation (Eq. 3.34). The vessel wall is modeled as a purely

elastic material [160]:
dA(x,t) N dq(z,t)

o 2 =0 (3.32)
0A(z,t) 6 [ ¢*x,t)\ | Alz,t)op(z.t) . qlz,t)
ot * 5t (a A(m,t)) i p Sxr KRA(x,t) (3:33)

2Please refer to Appendix C for a complete listing of notation used.
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P, 1) = 4FE-h; (1 _ AA—O15)> + o (3.34)

) ro (x,

where 7 is the initial radius corresponding to diastolic pressure py. At the outlets,
terminal windkessel elements are applied in order to close the system of equations:

@:R5_q_ D q(R, + Rq)
ot Pst Ry -C R,-C

(3.35)

To build the discretized geometric mesh from the center-line and cross-sectional
areas, we use an approach similar to previously introduced ones [181], wherein for each
vessel of the arterial model, we use several distinct 1D segments .S; with longitudinally
varying cross-sectional area values in order to obtain an axisymmetric geometry close
to the 3D geometry acquired through MRI (Sec. 3.3.2).

Boundary conditions at the ascending aortic inlet are dictated by the time-varying
flow rate ¢us. computed from PC-MRI (Sec. 3.4).

We are using a finite difference solver with patient-specific fixed time step and
explicit stability constraints [84].

In all of our computations we apply a Newtonian rheological model, where the
blood density and dynamic viscosity are set to literature-based values for healthy
individuals. The following sections describe the estimation of the wall properties and
the windkessel parameters at the outlets.

3.4.2. Preoperative model personalization and configuration

The inlet boundary condition is prescribed by the time-varying flow rate determined
through PC-MRI (Sec. 3.4), while the estimation of the wall properties and the wind-
kessel parameters at the outlets is performed as described in the following. Physio-
logically motivated three-element windkessel boundary conditions [184, 197] require
estimation of three quantities (two resistances: proximal - R, and distal - R4, and
one compliance - C) at each outlet from measured patient data. Mean arterial pres-
sure (P,), defined as the average pressure over the cardiac cycle is responsible for
perfusion: driving the blood into the distal vessels and ultimately into the tissues.
P, is related to the total distal resistance by the following expression: Py = @ - R.
Here @) is the average flow at a point in the arterial circulation, and R is the total
distal arterial resistance. For the aorta, the following equation holds at each supra
aortic outlet i: Py = Q; - (R;);, where Q; is the average flow rate through outlet i
and (R;); is the total resistance, which is the sum of the two windkessel resistances
(R; = R, + Ry). In the ascending aorta, Py is estimated from the non-invasive cuff
pressures [159], as: P4 = Py + [% + Hp - 0.0012} - (P, — Py) where Hp is the heart
rate and Py, (Py;) are the systolic (diastolic) blood pressures. The time-averaged flow
rates at the ascending (Qus.) and at the descending aorta ((Qges.) are measured from
the PC-MRI slices. Thus the combined flow to the three supra-aortic outlet vessels
(quprafaortic) is determined by quprafaortic = Qasc - Qdesc- We use the Square law of
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Zamir et al. [213] stating that for the first few branches starting from the aortic root,
the flow (Q;) is distributed to the branching vessels proportionally to the square of
the radius. Thus,

3
Qi = qupra—aortic : T?/Z TJQ' (336)
j=1

where r; is the radius of the supra-aortic branch 7. Since the pressure difference
between the ascending aorta and the three supra-aortic branches is minimal (the
viscous losses are negligible), the same average pressure is used to estimate the total
resistance of each supra aortic branch:

(Ry)i = Pa/Qi. (3.37)

For the CoA patients, the above assumption does not hold true for the descending
aorta because the narrowing at the coarctation site introduces a pressure-drop along
the length of the aorta, which can be translated into a flow-dependent resistance
R.(q). Accordingly, the total resistance, which represents the sum of the resistance
of the coarctation and that of the outlet windkessel model, is estimated as follows:

(Rt)desc + RC(Q) = P_A/Qdesc- (338)

One of the assumptions made during the derivation of the reduced-order model is
that the axial velocity is dominant and the radial components are negligible. This
assumption holds well for normal, healthy vessels, but in case of sudden changes in
lumen diameter, e.g. for a narrowing like the coarctation, the radial components
can no longer be excluded. Thus, for the coarctation segment we use the previously
introduced comprehensive pressure drop model [84]:

2
pK, Apiso
AP =K —1
v (w) R’ch + QA%HAO ( Ac ) |Q| q

)
+KuLu6—f + K. () Ryeq

(3.39)

where the first term captures the viscous energy losses, the second term captures
the turbulent energy losses due to sudden expansion, the third term represents the
inertial effect and the fourth term is a continuous pressure-flow component. K, =

L.
1+0.053 - w?A./Ap;a, is the viscosity coefficient and R, = 87“ i %mdl is the viscous
0

1

7,2(l)dl is the inertance; K, = 0.0018w? is a continuous

resistance and L, = £

coefficient. Similarly, the morphologic CoA stenosis rate (T¢,4) is computed from the
segmented lumen surfaces as Tooa = (1 — A./Apiao) (see Appendix C for notation).
The flow-dependent resistance of the coarctation segment S; is computed by averaging
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the resistance values of each time frame:

R(q) = (Z M) /n (3.40)

1 Qdesc (t)

where AP(e) is computed through Eq. 3.39. For the estimation of compliance values,
we first compute the total compliance of the systemic circulation (Cj,) similar to
Stergiopulos et al. [184]. Next, the compliance of the proximal vessels (Cpoy) is
computed by summing up the volume compliances of each proximal segment. Finally,
the total outlet compliance (Coye) is determined by subtracting Cp,o, from Cy, which
is then distributed to the four outlets based on the cross-sectional area values at the
outlets.

An important aspect of blood flow computations with compliant vessels is the
estimation of the mechanical properties of the aortic wall. We use a method based
on wave-speed computation [142], where the wave-speed ¢ is related to the properties
of the aortic wall by the following expression:

|2 E-h
== . 3.41
‘=3 (3.41)

To estimate the wave speed, we use the transit-time method [77], whereby ¢ = Az /At.
Here Ax is the distance (measured along the center-line) between the inflow at the
aortic root and the outlet at the descending aorta, and At is the time taken by the
flow waveform to travel from the inlet to the outlet location. Once the wave speed is
known, for all aortic segments the quantity %, in Eq. 3.41, is computed as:

E-h; 3pc?

To 2

. (3.42)

The wall properties of all the aortic segments are determined using this equation.

Since the time-varying flow rate (and thus pulse transit information) at the indi-
vidual supra-aortic branches is not known, a different method is applied for these
vessels. The estimation of their wall properties is based on the supposition that arte-
rial bifurcations lead to minimal reflections of forward propagating waves[89]. Hence,
first the reflection coefficient at bifurcation & is computed using [134]:

Yy = 2. (Ya):

M= —&——
Y+ (Ya)

(3.43)

where Y}, and Y, represent the characteristic admittance (inverse of the characteristic
resistance) of the parent and daughter vessels respectively. Next, the characteristic
resistance of the daughter vessel which is a supra-aortic branch is determined by
setting I" equal to 0:

R o Raortafp . Raortafd 44
supra—aortic — R R . (3 )
aorta—d * Llaorta—p
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E-h;
T0

Finally, the wall properties (=) for the supra-aortic branch ¢ are determined as [84]:

E-hi 3-Z-n-rk
- T "o (3.45)
To 2p

3.4.3. Postoperative model personalization and configuration

In the post-operative configuration, since the same type of information is available as
for the pre-operative configuration, the model personalization is performed similarly.
None of the post-operative models had residual coarctations. As a result: (i) The
stented coarctation segments are modeled as regular 1D segments, with large stiffness
(the wave speed is approx. 15-times higher than the wave speed of a regular healthy
aortic segment). Since the wave speed of the stent is fixed and the length is known,
the transit time along the stented segment can be computed directly (the stented
segment is excluded from the computation of wave speed in Eq. 3.41), (ii) R.(q) is
considered negligible and the total resistance of the windkessel model applied at the
outlet of the descending aorta is computed directly from Eq. 3.38.

3.4.4. Virtual stenting configuration

A third configuration considered in this study consists of performing a virtual stenting
procedure on the pre-operative aortic model. For prediction of blood pressure drop
change after stent implantation, the pre-operative model is altered, by replacing the
stenosed segment (S;) of the arterial tree with a segment of the same length that
is interpolating the cross-section information between the diameters of segments Sg
and Sg. This is meant to model the implantation of a straight stent into the aortic
isthmus. The inflow rate is identical to the one used in the pre-operative configuration
and the model personalization from the post-operative configuration is reused.

3.5. Experiments and Results

To validate our CoA assessment workflow, we have evaluated our models on in-
viwo patient data. Clinical data was retrospectively collected from cardiac institutes
around the world: (i) the FDA approved multi-center COAST [163] (Coarctation of
Aorta Stent Trial) trial and (ii) OPBG (Ospedale Pediatrico Bambino Gesu). We
have conducted two main experiments, one to quantify the accuracy of 3D lumen
segmentation (Section 3.2) and a second one to characterize the blood pressure drop
estimation (Section 3.4).

3.5.1. Clinical Protocol

The standard CoA protocol at our clinical partners includes the following: acquisition
of MR images of the thorax and aortic flow, measurement of the blood pressure with

60



CHAPTER 3. NON-INVASIVE BLOOD PRESSURE DROP ESTIMATION

catheterization, heart rate, and cuff measurement at the upper extremities.

MR patient data was acquired using a heterogeneous set of protocols and vendors
(Siemens, Philips, GE), employing 1.5 Tesla scanners. The 3D MR volumes are
usually oblique stacks of dimension 256 x 256 to 512 x 640 with 56 — 140 slices, in-plane
resolution isotropic 0.605 — 1.562 mm, slice thickness of 0.889 — 1.8 mm. Among the
3D volumes were contrast enhanced MR angiogram (CE-MRA) and Balanced Turbo
Field Echo (BTFE) acquisition protocols. Patients were at resting conditions during
imaging, and the 3D volumes only consisted of a single, static time frame.

The ECG gated Cine PC MR images are typically oblique axial time-series encoding
through-plane velocities in the isotropic resolution of 0.742 — 2.083 mm, dimension
126 x 144 to 384 x 512, VENC found in the range of 140 — 300 ¢m/s (it has been
ensured that velocity magnitude wrap-around was not present in the PC-MR data).
The slices are routinely positioned to provide two different aorta cross-sections, one
somewhere around the aortic root, the other in the DAo (if there is a stent implant, in
the direction of the blood flow below the stent location) as illustrated in Figure 3.10a.
Each time-series corresponds to one heart cycle and has n = 20 — 40 frames per cycle.
The heart rates of the examined patients range from Hgr = 60 — 114 bpm.

The invasive pressure catheterization was performed in a pullback procedure. The
systolic P_sy and diastolic Py cuff measurements were taken at the arms.

Figure 3.12.: Illustration of heterogeneous image quality and varying field of view of
cardiac MRI. Left: Signal “drop-out” due to stent implanted in aortic
isthmus. Center: Oblique acquisition. Right: Noisy scan quality
around the aortic arch.
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3.5.2. Segmentation Experiments

In this section, we evaluate the proposed method for aorta segmentation on 212
volumes of 99 patients. The data sets capture CoA patients who often present co-
morbidities, such as various severity of aortic dilation and bicuspid aortic valves. The
goal is to demonstrate the performance of the model-based estimation approach by
fitting (6, M) to patient images. In each volume, the lumen surface of the aorta and
main branches were delineated by an expert operator, and converted to a triangular
mesh. This annotation was considered as Ground Truth during model training and
testing.

All MR studies were performed in supine position of the patient, which allowed the
oblique volumes to be resampled to a stack of axial slices, and reduce variance in the
aorta appearance before segmentation. The anisotropic volumes were sub-sampled
on a 3mm — lmm Gaussian pyramid of uniform grids. The similarity transform of
the vessel parts are detected on 3mm images, while the boundary detector is run
on the finer 1mm volume (Table 3.1). The symmetric point-to-mesh [215] distance

| Eom | Mean£SD (mm) | Median (mm) |
aotta (Mpo, Mang, My, Mpay) 1.80 =+ 0.26 1.82
brachiocephalic trunk (Mp,) 3.40 £ 1.89 2.90
left common trunk (M) 4.59 + 3.58 3.16
left subclavian trunk (M) 4.64 £+ 3.33 3.06
complete aortic model 3.00 + 1.58 2.43

Table 3.1.: Lumen surface segmentation accuracy averaged from four-fold cross val-
idation of 212 3D MR volumes. Displayed as symmetric point-to-
mesh [215] distance metric in mm.

metric Ep,, is used to measure match in boundary delineation of surfaces. At each
vertex of a surface, the closest point (not necessarily a vertex) is computed on the
other surface using L, (Euclidean) distance. The metric is symmetric, because the
calculation is performed in both direction between the two meshes (Ground Truth
and detected result).

Moreover, the quantitative capabilities of our system are demonstrated on 32 pa-
tients with aortic anomalies (age: 5 — 36 years, 17 with CoA and 15 with bicuspid
aortic valve (BAV) and ascending aortic dilation) by comparing a set of morpho-
logical measurements [146] automatically derived by our personalized model to mea-
surements manually extracted by our cardiologist collaborators. The aortic smallest
(Egmin) and largest (Egpnq.) diameters were measured on a plane perpendicular to the
aortic center-line at five landmark cross sectional locations (dashed lines in Fig. 2.2a):
aortic sinus (AS), sino-tubular junction (STJ), ascending aorta (AAQ), transverse
arch (TA), and descending aorta (DA). Table 3.2 summarizes the mean measurement
errors for each landmark locations separately.
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| | AS (mm) | STJ (mm) | AAo (mm) | TAA (mm) | DAo (mm) |
Egmin | 161 £09 | 207£15 | 161£19min| 1.70+1.2 0.8£0.5
Egmar | 1.06 213 | 1.28+£1.0 | 1.56 = 1.3max | 1.34+1.1 092+ 0.6

Table 3.2.: Comparison between manual and model-based clinical diameter measure-
ments at five landmark locations along the aorta (mm).

3.5.3. Experiments on CoA Blood Pressure Drop Estimation

AAo in- ‘ D Ao out-
flow change after
Patient | Stenting Age | Sex | Stenosis Rate (Tcoa) | stenting (MRI)
#1 18 F 59.14% —24.96% 15.89%
#3 27 M 37.05% 87.56% 13.45%
#4 12 F 42.86% 7.83% —2.32%
#5 15 M 37.48% —32.52% —6.75%
#6 22 M 41.47% 37.98%* 17.75%
#9 11 F 27.61% 14.12% —1.07%

Table 3.3.: General information on the population of 6 coarctation patients assessed
with our blood pressure drop computation method. Flow rate changes are
given over a period of one minute.

For the demonstration of the proposed workflow for non-invasive blood pressure
drop assessment, we investigated data-sets from 6 CoA patients. From the above
mentioned 99 patients, we extracted 9 subjects, for whom the database contained
both pre-operative and post-stenting state: MR volumes, MR flow measurements and
invasive pressure catheterization, heart rate and cuff based P_Sy and P measurements.
Three of these subjects developed collateral circulation around the coarctation and
were excluded from the experiment, leaving 5 patients from COAST and 1 patient
from OPBG (Table 3.3).

Using the pipeline introduced in Sections 3.2 and 3.4 the patient-specific geomet-
ric arterial tree model and corresponding time-resolved flow profiles were estimated
from the MR images. To make sure that segmentation errors do not influence the
simulation outcomes, the vessel tree geometry was reviewed by a manual operator in
all cases before simulation.

Given the patient-specific anatomy, measured flow rates at the AAo and DAo, the
flow transit time, systolic and diastolic cuff pressures and heart rate, we performed
a non-invasive parameter estimation of the boundary conditions for each patient.
Afterwards the simulation (Sec. 3.4.1) was performed without any further tuning of
the parameters. The blood pressure drop estimates across TTAA — D Ao is reported
between the end of segment Sy and the start of segment Sg, whereas the clinically
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more relevant AAo — DAo are measured between the end of segment Sy and the
start of segment Sy of the axisymmetric arterial tree. The pressure differences are
determined at the time-instant when the flow rate through the descending aorta is
maximal (peak-to-peak).

1See discussion (Sec. 3.6) for details.
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Estimation of Pre-operative CoA Pressure Drop

Pati- AAo-DAo TAA-DAo
ent APZrp ‘ APTCaTH ‘ |AP| | APZxp ‘ APTCATH ‘ |AP|
#1 53.85 55 1.14 53.35 53 0.35
#3 11.32 8 3.32 12.10 8 4.10
#4 27.36 30 2.63 31.94 28 3.94
#5 15.74 14 1.74 13.04 18 4.95
#6 7.26 39 31.73 7.43 43 35.56
#9 11.07 8 3.07 11.06 N/A N/A

| APPre| 22.38 +0.82 23333+ 1.76

Table 3.4.: Comparison of the pressure obtained from invasive catheterization [1]
(APP ) and our proposed non-invasive method (APE,): peak-to-
peak blood pressure drops (mmHg) between AAo-DAo and transverse
aortic arch TAA-D Ao in pre-operative CoA.

The results obtained for the non-invasive pressure drop (C'F'D) in pre-operative

CoA are summarized in Table 3.4, together with the invasive pressures obtained from
cardiac catheterization (/ICATH).

Estimation of Post-stenting CoA Pressure Drop

Pati- AAo-DAo TAA-DAo
ent | APZrp | APfGarn | [AP] | APSE | AP Gamm | |AP)
#1 7.15 8 0.84 5.38 6 0.61
# 3 -0.92 -2 1.07 -0.14 -9 8.85
# 4 1.23 2 0.76 0.70 -1 1.70
#5 1.26 0 1.26 1.02 0 1.02
# 6 3.69 4 0.30 0.92 3 2.07
#9 2.35 0 2.35 1.20 N/A N/A
| APPost| 1.10 +0.63 32.85 + 3.04

Table 3.5.: Peak-to-peak post-stenting pressure drop in mmHg. Comparison of in-
vasive catheterization (AP}’S‘ZT ;) Mmeasurement and estimate by our non-
invasive method (APZ%},) in post-stenting CoA.

During treatment of the 6 subjects, the stenoses received repair through balloon
angioplasty and stent implantation. After the intervention the patients underwent

2Excluding case #6 (see the discussion in Section 3.6 for details).
3Excluding case #9, as APrcary between TAA-DAo was not measured clinically.

65



3.6. DISCUSSION

follow-up examination — similar to the first exam — to acquire MR images of the
thorax and aortic flow, to measure the blood pressure with catheterization, and to
perform cuff measurement at the upper extremities. Analogous to the pre-operative
case, we have performed the processing pipeline (Sec. 3.4.3) to estimate the post-
stenting hemodynamic conditions. The comparison of measured and estimated blood
pressure drop results is displayed in Table 3.5. Pre- and post-operative evolution of
computed aortic flow is show in Fig. 3.14.

CoA Virtual Stenting Experiment

Pati- AAo-DAo TAA-DAo
ent APZrp AP})((;XTH ‘ |AP| | APEFp AP?((;ZtTH ‘ |AP]
#1 -1.10 8 9.10 -0.79 6 6.79
# 3 -0.93 -2 1.06 -0.54 -9 8.45
# 4 7.91 2 3.82 4.51 -1 3.83
#5 -2.84 0 3.12 -2.03 0 2.25
#6 0.06 4 4.25 -0.04 3 3.17
#9 7.98 0 7.85 7.88 N/A N/A

|APVs| 24.99 4+ 3.00 2:35.33 £ 2.42

Table 3.6.: Virtual stenting analysis: comparison of computed (APZ%,) and inva-
sively measured post-stenting pressure drop (APF S 75)-

The last clinical use-case is aimed at “predicting” the blood pressure drop of post-
stenting conditions prior to the treatment. By applying the introduced methodology
(Sec. 3.4.4) to pre-operative data, clinicians would be able to virtually evaluate the
outcome of the stenting in terms of aortic blood pressure drop (Tab. 3.6). Figure
3.13a and 3.13b show the blood pressure drop results for all three configurations
graphically, while pre- and post-operative evolution of computed aortic flow is shown
in Figure 3.14.

3.6. Discussion

This chapter has introduced a non-invasive method to estimate patient-specific aorta
morphology and predict personalized blood pressure in the thoracic aorta. In the
previously explained experiments (in Section 3.5) we have quantified the performance
of our computational pipeline, in this section we will further elaborate on the results.

3.6.1. Lumen Segmentation

Firstly, we studied the static 3D lumen surface extraction accuracy on a wide set of
volumes. Note that our 3D lumen segmentation method is capable of processing a
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Figure 3.13.: a) Absolute values of pre-, post- and virtual-stenting blood pressure
drop estimates. Allowed uncertainty of APjcary data also shown [1].
b) Bland-Altman plot of pressure drop differences?.
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Figure 3.14.: Temporal evolution of measured (dashed lines) and computed (solid
lines) pre- and post-stenting flow rates.

wide range of morphological and pathological aorta variations, not only coarctation
patients. The accuracy of the fused aortic vessel tree segmentation was evaluated by
using the symmetric point-to-mesh distance [215] metric (Table 3.1) in four-fold cross
validation setup of the 212 cases, which shows a good agreement of segmentation
results. Due to the morphologic variation of the supra-aortic arteries, their lumen
segmentation accuracy is below that of the aorta. It was generally observable that the
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MR images exhibit some loss of signal towards the borders of the volume (e.g. towards
the neck of the patient), which resulted in reduced contrast around the supra-aortic
arteries. This is a possible explanation for the difference in accuracy.

As shown in Table 3.2, the clinically relevant measurements on the aortic lumen
show good agreement between the model-based and manually measured minimum and
maximum aorta diameters. These measurements are crucial in clinical management
of aortic diseases for optimal treatment selection and decision making [11].

In the model-based segmentation approach we have presented, neither the morpho-
logical model itself nor the estimation method is tied to the MR imaging modality
often used in CVD. The approach should be applicable to other imaging modalities
too. Automatic feature selection performed in the PBT learning method ensures that
the most discriminating cues are retained during training.

3.6.2. Hemodynamic Computations

As can be seen from the results (Tab. 3.4, Fig. 3.13a), the proposed method performs
well for most of the pre-operative cases. For patients #1, #3, #4, #5 and #9, our
simulation (APYy ) reproduces the catheterization blood pressure drop (AP}aary)
within a narrow margin: mean absolute error of |APPre| = 2.38 £ 0.82 mmH g. Dur-
ing the review of our results for pre-operative case #6, we observed an incorrect
PC-MR acquisition plane (intersecting the aortic valve and left ventricular outflow
tract instead of the AAo) that results in an erroneous inflow boundary condition ini-
tialization (see lower left panel of Fig. 3.14) and drives the simulation off the course
of real aortic inflow. We have included this case in the results for symmetry with the
other experiments, and to demonstrate the behavior of the method when fed incon-
sistent data. Our results are comparable to ICATH, especially in the light of the
allowed uncertainty involved in IC AT H measurements. According to the IEC stan-
dard [1], invasive blood pressure catheters are required to be accurate within +£3 %
of the absolute value of blood pressure. Looking at the patient data, we may observe
that a variety of both mild (AP;cary = 8) and severe (APjcary = 55) CoA patients
are included and that our method is able to accurately recover the blood pressure
drop independent of graveness of this condition (Fig. 3.13b).

The goal of stent implantation is to reduce the difference in blood pressure between
the upper and lower body, optimally to completely eliminate the pressure drop. Thus
it is reasonable to expect close-to-zero AP values in the post-stenting subjects. How-
ever, in some cases residual blood pressure drop persists. Our simulation model for
post-stenting (Tab. 3.5) was able to compute very truthful estimates, marked by
|APprost| = 1.10 + 0.63 mmHg. As shown on the lower right panel of Fig. 3.14, the
PC-MR inflow for post-stenting patient #9 does not resemble the characteristic ejec-
tion curve of the heart. In this case — similar to pre-op patient #6 — the MR
inflow plane was acquired too low, it does not measure the ascending blood velocity
at the aortic root, but includes the leaflet motion of the valve. Nevertheless, the
AP estimates even for #9 are quite accurate, because most of the PC-MR inflow
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was still captured correctly. We believe that our stiff stent-wall post-operative model
configuration produces results consistent with the effects of stenting.

To predict the intervention outcome in terms of residual blood pressure drop, we
proposed “virtual stenting” (Sec. 3.5.3). Here our model was parameterized to “pre-
dict” the pressure drop change attributed to the removal of the obstruction lesion. In
Fig. 3.14, virtual-stenting flow is not shown, because a high degree of match between
pre-operative measured flow and post-stenting simulated flow is not our principal aim
for this configuration. Instead, this use-case is better characterized by the AAo-DAo
pressure drop comparison. The estimated AP is tabulated in Table 3.6 and shows a
reasonable (4.99+3.00 mmH g) agreement with the invasively measured post-stenting
catheter values. It is a well observed process that remodeling of the post-stenting
aorta is not limited to the vessel wall reinforced by the stent struts: nearby aor-
tic lumen morphology often changes as well, and collateral arteries might reduce or
disappear. Without modeling these changes, the mere replacement of the stenosis
segment S; of the arterial tree will not perfectly forecast the real post-stenting vessel
and pressure drop, as seen on Fig. 3.13b. Accurate morphological measurement of
the stenosis and inflow-rate were shown [16] to have the strongest influence on AP in
image-based hemodynamic simulations. As our measured data indicates (Table 3.3),
aortic flow rates do change after stenting. This creates an additional challenge for
the VS analysis, as only pre-operative flow is available for outcome prediction. We
believe that this is the second factor behind the largest average error obtained in the
VS experiment.

Within these analyses, we have considered all important phases of CoA stenting
where currently invasive catheterization is required (severity assessment and post-
treatment follow-up) or data is not available (virtual stenting). Our non-invasive
results are clinically relevant, especially in comparison with the 20 mmH g clinical
cut-off value, and agree with invasive measurements.

Besides accuracy, the aspect of fast computations is highly desirable in the general
clinical practice, and our work provides a first effort to reduce the runtime of CoA
simulation workflows. Average detection time of the combined lumen model (for all
surfaces) is in the range of 8 seconds. The semi-automatic PC-MR flow segmentation
and contour tracking takes approximately one minute per case. Our reduced order
CFD model is much faster (8 — 10 minutes) than conventional unsteady 3D flow
computations (all times measured on an Intel Core i7 laptop computer).

Finally, Table 3.7 shows a quantitative review of state-of-the-art investigations of
CoA hemodynamics and illustrates the position of our contributions against literature.
The table provides an overview of the questions recent research has addressed, such
as the type of clinical use-cases, number of subjects examined, included methods and
their run-times. We should note that the subjects are different, and therefore a direct
comparison of pressure drop results is not feasible across the different works.
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“normal cases were considered in the same group as post-operative (as we expect near-zero AP).

Sapproximated from similar complexity reports[91, 19].
SExcluding case #6 (see the discussion in Section 3.6 for details).
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Closest to our work is the recent study [57] of 13 patients. The authors performed
image-based rigid wall 3D simulations of CoA patients. Their investigation included
two CoA use-cases, one for pre-treatment estimation of blood pressure drop (very
similar to our first experiment), and a second experiment that falls in between our
post-stenting and virtual stenting use-cases. In the latter, the authors have recon-
structed the post-operative aorta geometry from X-Ray images after the treatment
and used the pre-operative PC-MR inflow. As this configuration uses pre-operative
inflow and post-intervention geometry, we compare it against our third experiment.
Even though their average error of pressure estimation is lower than ours, several
aspects limit the benefits of their workflow: first, the simulation time is an order
of magnitude larger than ours, second, the blood flow is simulated only at a single
time point (systolic state), and third, their high quality vessel measurements require
ionizing fluoroscopy.

In general, most hemodynamic simulation studies investigate cases where the whole
patient data acquisition is driven by specific computational needs. On the other hand,
our methods work on real clinical images that were acquired retrospectively and not
specifically for this computation study. As shown, this comes with its own challenges,
for example the sensitivity of positioning the PC-MR plane or sub-optimal image
quality. However, a solid advantage is that further validation of our methods would
be possible using existing (previously acquired) data.

3.7. Extensions

3.7.1. Patient-specific 3D CFD Simulations

In their article titled “Cardiology Is Flow” Richter et al. [161] argue that restoration of
blood flow and understanding of flow patterns should be the primary form to elucidate
CVD lesions. Our work towards blood pressure drop assessment was conceived in
this fashion. The blood pressure assessment method devised in Section 3.4 uses a
reduced order quasi 1D model of hemodynamics and fluid-structure interaction. This
computational model only provides spatial information about flow along the center-
lines of the vessel tree.
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Figure 3.15.: Left: Blood pressure distribution mapped on lumen boundary, Right:
Volume rendered velocity magnitude (for cases pre-operative #5, post-
operative #6). Note the different scales.
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Figure 3.16.: Computed blood flow conditions in BAV patients (first, second and third
columns show velocity and fourth column shows pressure). (a) normal
control. (b) and (c) show BAV with mild and severe (respectively)
aortic dilation as comorbidities.
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However, certain blood flow patterns, hemodynamic indices and biomechanical
interaction with the vessel walls may only be observed in 3D computations. Therefore
initial, qualitative investigation of 3D flow patterns in CoA and BAV patients were
carried out.

To obtain comprehensive flow information in three dimensions we solve the full
3D Navier-Stokes equations in the luminal aortic domain calculated, using the per-
sonalized outflow boundary conditions for pressure. We use an embedded boundary
method for automatic transfer of the segmented triangular lumen mesh into a Carte-
sian domain. The embedding function is a signed-distance function computed using
the Closest Point Transform [124]. The computational domain cells are tagged based
on their relation with the inlet triangular mesh as follows: Exterior (no computa-
tion is taking place), Interior (computation is taking place), Inlet, Outlet and Wall
(appropriate boundary conditions are imposed). The Inlet and Wall cells are all in-
terior to the domain, while the Outlet cells are situated on the domain boundaries,
by extending the lumen of each vessel in its centerline direction until it reaches the
Cartesian boundary, based on [130]. Our embedded boundary Navier-Stokes solver
uses a fractional step method [10] that computes in a first step an intermediate ve-
locity field, using the nonlinear advection-diffusion equation for velocity, and then
projects the intermediate velocity onto the field of divergence free and tangent to the
vessel boundary vector fields. For the velocity advection we use second-order upwind,
Van-Leer slope limiting methods, while for the diffusion force components we use a
semi-implicit approach as in [104] which is first order accurate and unconditionally
stable in 3D. We solve the pressure projection Poisson equation using an efficient im-
plicit multi-grid preconditioned conjugate gradient solver. The boundary conditions
for the velocity are Dirichlet in the Inlet cells, no-slip (Dirichlet) in the Wall cells,
and Neumann in the Outlet cells [130].

For CoA computations, we use a variable-in-time flat inlet velocity profile, and
outlet pressure boundary conditions provided by the corresponding axisymmetric 1D
simulations (Section 3.4). For BAV computations we use a variable-in-time spatially
constrained inlet velocity profile from PC-MRI to capture the asymmetric blood flow
trough the aortic valve. The blood density and viscosity are set to literature based
values for healthy individuals (1.05g/cm? and 4mPa - s).

The results from the 3D simulations for two patients are presented in Figure 3.15.
There is a significant pressure gradient observable across the coarctation at peak
systole, which gradually disappears towards the end of diastole. A volumetric visu-
alization of the velocity magnitude at peak systole, late systole and end diastole are
shown in the three figures at the right. The high velocity jet in the stenosis region
is clearly visible as expected. Similar methodology can also be applied to the post-
operative data, by taking into consideration the modified wall-stiffness introduced
from the stent implantation. Preliminary results are shown in the bottom row of Fig-
ure 3.15. Here, the pressure gradients between AAo-DAo and TAA-DAo have been
partially restored to normal values. A similar effect can also be noticed in the flow
patterns: highest velocity in the aortic arch, and reduced Reynolds number.
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Ascending aortic dilation is a widening of the ascending aorta and involves high
risk of aortic rupture and dissection if untreated. It was shown, that the incidence
of ascending aortic dilation is higher in bicuspid aortic valve (BAV) patients [188]
in comparison to normal controls. In BAV two leaflets of the aortic valve are fused
while in normal cases all three leaflets move and regulate blood flow independently.
Due to its shape, BAV distorts the blood flow through the aortic valve. We have
carried out 3D flow simulation as described above, Figure 3.16 shows detailed spatial
distribution of velocity and pressure. In the BAV cases formation of a high speed jet is
recognizable that is not present for normal aortic valve. The momentum transmitted
by the jet onto the dilated aortic wall may correlate with the progression of dilation.

3.7.2. Integrated Clinical Prototype

Figure 3.17.: Screen capture of integrated software prototype.

During the development of the image-based hemodynamic assessment workflow de-
scribed in this chapter, a computer software prototype was also realized. All compu-
tational steps of complete CoA hemodynamic workflow (Figure 3.11) was realized in a
single integrated clinical application prototype as shown in Figure 3.17. The software
prototype allows browsing and selecting relevant MR images from DICOM, perform-
ing the complete model-based segmentation process (Section 3.2), allows morphology
measurement, therapy planning, segmentation of PC-MRI slice, hemodynamic com-
putations, interactive volumetric visualization and analysis of flow fields similar to
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ideas outlined by Taylor et al. [190] in their seminal work about image-based predic-
tive medicine.

7






CHAPTER 4

Peri-operative Image Fusion

Percutaneous structural heart disease (SHD) interventions start to gain wider accep-
tance in therapy as we have seen in Section 2.1.2. Image guidance is a key facilitator
of minimally invasive cardiac interventions: the technical challenges posed by these
operations are addressed by hybrid operating rooms (OR), where image guided nav-
igation is becoming crucial part of therapeutic practice.

The current gold standard for image based interventional guidance is C-arm X-Ray
Fluoroscopy (XRF, Section 2.2.3). 2D real-time fluoroscopic images are acquired us-
ing ionizing radiation requiring the interventional team to repeatedly absorb elevated
doses. X-Ray visualizes metallic instruments (guide wires, catheters, stents) with
excellent contrast, but soft tissue (the heart is composed entirely of muscles — soft
tissue) and calcification is shown poorly if at all. Administration of contrast agents
enables to display cavities (chambers, vessels) and delineate respective boundaries,
but poses additional risk to the patient. Furthermore the presented projected view
doesn’t provide intuitive depth perception.

Intracardiac echocardiography (ICE) is an emerging, real-time, non-ionizing peri-
operative modality with the promise of removing sedation or general anesthesia (GA)
associated with Transesophageal Echocardiography (TEE) at comparable image qual-
ity (Sec. 2.2.2). High-risk cardiac patients tend to have a lower tolerance towards GA
and intubation, thus avoiding these factors enables earlier hospital discharge. Recent
technological advances enable real-time acquisition of 3D imaging data through ICE
ultrasound catheters. This opens up the possibility to support interventionalists with
additional live 3D images during the intervention, with excellent soft tissue contrast.

The desirable co-registration and fusion of intra-operative echocardiography and
C-arm X-Ray fluoroscopy (XRF) aims to combine the complementary benefits of the
two imaging systems for use in hybrid operating rooms. For this reason, the goal
of this chapter is to propose an imaging system that could support the current and

79



4.1. REGISTRATION FOR PERI-OPERATIVE IMAGE FUSION

emerging transcatheter SHD interventions in a hybrid OR setting with a focus on
avoiding general anesthesia. The method is built around model-based 2D-3D regis-
tration (Sec. 4.1). We model an ICE catheter equipped with radiopaque ball marker
fiducials (Sec. 4.2). The model is fitted to single-shot fluoroscopy images including
the catheter (Sec. 4.3). The extracted fiducial projections are used as feature points
to investigate 3D pose recovery (Sec. 4.4) and establish the registration transforma-
tion between XRF and ICE. Quantitative experimental results on synthetic digitally
reconstructed radiographs (DRR) and in-vivo porcine images are demonstrated in
Section 4.5. Finally, the feasibility of the image fusion system and clinical usefulness
is discussed in Section 4.6.

4.1. Registration for Peri-operative Image Fusion

4.1.1. Interventional Image Fusion

Transcatheter procedures rely on interventional imaging for guidance. The effec-
tiveness of fusing information from multiple live imaging modalities during cardiac
procedures is well known and documented [196, 99, 52, 133].

In classical interventional cardiology the primary navigation aid is X-Ray, where
catheters introduced into the vessels are well visible. However X-Ray shows no soft
tissue, uses ionizing radiation and blood visualization requires use of radio-opaque
contrast agents. With a long background in diagnostic cardiology, echocardiography
is gaining a foothold in therapy due to ease of use, real-time imaging and excellent
soft tissue contrast, but only has a limited spatial field of view. The complementary
nature of these two modalities makes their concurrent application (fusion) a helpful
guidance tool. Current drawback of TEE guidance is the need for general anesthesia
and patient discomfort. Catheter based intracardiac echocardiography (ICE) has the
promise of removing general anesthesia during SHD interventions [175, 147] and has
already proved valuable during electrophysiology procedures (EP) [206]. However ex-
isting X-Ray—ICE image-fusion solutions rely on additional electromagnetic tracking
(EMT) equipment for registration that might not be desirable in the already crowded
operating theater. A purely image-based alternative method would be of interest.

Catheter detection in XRF is a well researched issue, automatic methods exists to
extract various instruments [112, 113] at interactive rates. Wang et al. [204] describes
a system for tracking an IVUS catheter in cine X-Ray to perform image registration.
In other ultrasound-angiography registration scenarios the 3D pose of the transducer
is required, too: the CartoSound [206, 186] system employs electromagnetic tracking
built into the C-arm to localize the ICE catheter. Robotic self-tracking [114] has
also been investigated for echo guidance. Often such external hardware setups are
not feasible, and recently research interest was directed towards introducing purely
image registration based systems for fusion of X-Ray with TEE [99, 52, 133] and
ICE [155].
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4.1.2. Image Registration

In this section we will review the mathematical formalism of medical image regis-
tration that serve the basis of fusion. Image registration estimates a transformation
between two images. Assuming the fixed F : 0 — R and the moving M : Qy — R
images and a set of transformations ¢ : 0, — Q7 image registration seeks to com-
pute optimal parameters of a transformation ¢*

*=arg min€& (4.1)
¢

in a manner to minimize an “error” or “energy” & such that the underlying anatomy
is correctly aligned. £ quantifies the quality of fit, measured through a data term D
depending on the alignment of corresponding information obtained by the transfor-
mation parameters.

In Eq. (4.1) € appears as the argument of minimization based on noisy measure-
ments, resulting in an optimization problem.

Registration Data Term

As we have seen above, correspondence is a key factor in registration. How cor-
responding information is represented influences the data term. In the standard
dichotomy introduced by the survey of Maintz and Viergever [116] two registration
basis are mentioned: extrinsic, feature-based and intrinsic, voxel intensity-based.
These approaches differ in their way of defining the data term.

Similarity Measures in Intensity-based Registration

Voxel intensity based registration approaches assume dense, pixel-wise correspon-
dences across the fixed reference and moving template images to define a similarity
measure directly on the gray values. Thus the similarity measure Dg); describes the
quality of fit in the data term in the objective function of equation (4.1):

qb* = arg min Dg s (f,gb(./\/l)) D - Q].‘ X QM — R (42)
2

where ¢ (M) denotes interpolated value of a voxel at the transformed location ¢ in the
moving image. A good similarity measure takes its minimum at the transformation
¢ where the alignment is best between the fixed and moving images. Most intensity-
based registration algorithms rely on iterative optimization to solve equation (4.2).
Some of the most distinguished similarity measures are: sum of squares of intensity
differences (SSD), correlation coefficient (CC) and normalized mutual information
(MI) based [71, 179].
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Using the SSD similarity measure, the intensity differences are described at different
¢ transforms:

DEP = = 3 (Fly) - My)) Yy € Fno(M). (13)

y=1

In order to make the area of overlap not influence the resulting measure, SSD is
normalized over all voxels in the overlap region (F N @(M)). It was shown that SSD
is the optimal measure if the images only differ through Gaussian noise [71]. SSD
is very sensitive to large voxel intensity differences between the fixed and moving
images, due to this SSD is suitable only in a limited set of problems (e.g. consecutive
slices of an MR volume).

In most registration tasks the above assumption of Gaussian differences does not
hold. However if two images conform to a linear intensity relationship between them,
an other similarity measure, the normalized cross correlation was shown to be the
ideal measure [179].

>y (Fy) = F)(6M(y)) - M)

Dgs; =
VI F) = P S, (6(M(y) - M)

where F and M are the mean of voxel values in images F and transformed M in the
overlap domain.

Especially in intra-modal registration both the Gaussian model of noise and linear
intensity relations are too restrictive and different similarity measures were developed.
An information theoretic approach to registration tries to minimize the shared amount
of information between two images. This is expressed by the normalized mutual
information:

Vy e FAoM).  (4.4)

H(F) + H(p(M))
H(F, p(M))
where H is denoting the marginal and joint entropy of the two images. Mutual
information was successfully applied to e.g. cranial MR-CT volume registration [179].
For further details on mutual information and entropy based similarity measures we

recommend the book of Medical Image Registration [T1].

MI __
DSM -

(4.5)

Distance Measures in Feature-based Registration

In feature-based image registration geometric structures or segmented salient land-
mark points are identified in both images. Afterwards registration becomes the prob-
lem of finding i) a transformation to align and ii) a correspondence to match these
feature points. In feature-based registration the data term is described with a distance
measure Dpyy defined over the discrete feature points. Following equation (4.1):

o, C" = arg(b]éninDDM ({f;}, {m;}) (4.6)
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Dpu (i}, {mi}) = Z d (£, $(C(£;, {m;})))’ (4.7)

where f; denote the features from F and m; the features from M, while C is the as-
signment of pair-wise correspondence. For data-points outside of the discrete features,
the computed transform ¢ is extrapolated.

Euclidean Distance If the features are point-like, often the /2 norm or Euclidean
distance is used as d(-,-) in Eq. (4.7). The [?> norm of two n-dimensional points p
and q is equal to the length of the straight segment connecting them?!?:

d(p,a) = VPTa= (@ —p1)> + (@2 — p2)2 + -+ (dn — pa)? =

(4.8)

Hausdorff Distance Sometimes it is desirable to compare “maximum distance of a
set to the nearest point in the other set” [164], especially when describing localization
results. Given two sets of points A = {a;,as,...,a,} and B = {by,by,...,b,} (say
detection results and ground truth position), the one-sided Hausdorff distance from
A to B is:

dm (A, B) = max min la — b (4.9)
while the symmetric Hausdorff distance is defined as:

dy(A, B) = max(dy (A, B), dy1 (B, A)). (4.10)

Transformations

Image registration problems may involve various geometrical transformations. Typ-
ical medical applications are covered by the following dimensionality of transforma-
tions: 2D — 2D, 2D — 3D and 3D — 3D. A transformation ¢ : Qy — Qr maps a
point x in the domain of the moving image Q2 to an other point x’ in the space
of the fixed image 2. Depending on the medical task, the most common class of
transformations are: rigid, similarity, affine, projection, curved.

Many applications in medical image registration involve objects with rigid behavior.
Examples are bones or objects attached to bony structures. Rigid transformations
preserve all distances and are limited to translation and rotation. Rigid transforma-
tions may be illustrated in the form

X, = TRigid(X) =Rx+t (411)

! Alternatively the [? norm is denoted d(p,q) = ||p — 4.
2Note that the [2 norm is symmetric d(p,q) = d(q, p).
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where R € SO(3) is a 3 x 3 orthogonal matrix and t € R?®. Additionally to avoid
reflections det(R) = 1. A rigid transformation has six degrees of freedom, defined
as translation along the three Cartesian coordinate axes t = (¢,,1,,t,) and three for
rotation around the same axes («, 3,7).

If uniform scaling is allowed in addition to a rigid transformation, we are arrive at
similarity transformations:

x = TSimilarity(X) =sRx+t (412)

where the scalar s is the isotropic scaling factor. A similarity transform may be
described with 7 parameters.

Nonrigid transformations may occur in inter-patient registration of rigid objects
or due to nonrigid anatomy. Anisotropic scaling and shearing in addition to a rigid
transform define an affine mapping?:

2 a1 a2 a1z Iy T
/
) y At a1 Qoo agz 1 Yy
X W Af fineX |: OT 1 :| X asy Qgs asz U, z ( 3)
1 0 0 0 1 1

without restrictions on the elements of A € R3*3. Affine transforms preserve par-
allelism and are useful to represent cases where an image may be skewed. Affine
transformation require 12 parameters: a;; ¢ =1,2,3 j =1,2,3 and t = (t,,t,,t.).

The most general linear transforms are projective transformation. Projective trans-
formation are ubiquitous in 2D-3D registration problems (for example perspective
projection in X-Ray images). Projective transformations preserve straightness of
lines and planarity of surfaces [179]. General projective transformations may have up
to 16 degrees of freedom and might require a 4 X 4 matrix):

/

xXr A
! At
x = Z/ = TProjectionX = [ pT o :| Z (414)
w' 1

Due to their importance in this work, we will look at projective transformations in
more detail in Section 4.1.3.

Deformable or non-linear, curved mappings [71] are also possible (e.g. in deformable
inter-patient organ registration), but fall outside of our investigation.

4.1.3. 2D-3D Registration

Perspective projections relate three dimensional objects to their planar projection
images. In rigid 2D-3D registration Eq. (4.1) is solved where the data term describes

3Following the notation introduced in Multiple View Geometry in Computer Vision [64], both x
and x’ denote points in homogeneous coordinates when affine or projective transformations are
discussed.
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Figure 4.1.: The pinhole camera model assumes no skew and square pixels. Repro-
duced from [35].

a perspective projection P. Perspective projections are conveniently represented by a
3 X 4 matrix:
¢ =P =K[R|t] (4.15)

where the right-hand side of Eq. (4.15) is composed of the intrinsic and extrinsic
camera parameters. Here the intrinsic camera parameters are captured within the K
calibration matrix:

Ay S
K=| 0 «a ¢ (4.16)
0 0 1

where o, and o, are the scale factors in the x and y directions, s is the skew parameter
and (¢, ¢,) are the coordinates of the principal point. The principal point is where
the camera optical axis intersects the imaging plane.

In the pinhole camera model (Fig. 4.1) no skewness is assumed (s = 0) and pixels
are presumed to be square (o, = o, = focal length)

[0 ¢
Kpinhole = 0 f Cy (417)
0 0 1
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with f being the focal length of the camera. The extrinsic camera parameters [R|t]
describe a rigid transformation from world coordinate system to camera coordinate
system.

The estimation of P within Eqs. (4.2) or (4.6) constitutes the rigid 2D-3D registra-
tion problem. For the interested reader Markelj et al. [120] provides a comprehensive
survey of 2D-3D registration methods for image-guided interventions.

4.1.4. Feature-based 2D-3D Registration

Substituting Eq. (4.15) into Eq. (4.6) yields the general formulation of feature-based
2D-3D registration:

¢*,C* = arg mand 56 (C (£, {m;})))”. (4.18)

Due to its combinatorial nature*, the correspondence estimation is often solved out-
side of the transformation estimation. Additionally, if in Equation 4.18 the camera
calibration K is known, we are left to estimate the extrinsic camera parameters [R|t]
(next Section).

4.1.5. 2D-3D Pose Estimation, the PnP Problem

The estimation of the extrinsic camera parameters [R*|t*]
= arg mlnz d (x, K [R]t] x;)° (4.19)

means trying to determine the pose (orientation and position) of a calibrated cam-
era from 2D-3D point correspondences. The 2D-3D pose estimation is known as
Perspective-n-Point (PnP) problem in computer vision and (space) resection in pho-
togrammetry. The PnP problem received much attention in the vision community, al-
ready at least since 1971 when the direct linear transform (DLT) method was formally
published [3]. Since then various iterative (using weak perspective approximation [33],
orthogonal iteration [111], semi-definite programs [170] or classical non-linear least
squares [64, 109]) and direct, closed-form (employing virtual control points [102] and
polynomial systems [70, 218, 96, 135]) solutions were proposed showing the practical
importance and fundamental difficulty of the problem.

Even though closed form solutions exists, iterative methods [33, 54, 73] tend to
achieve more robust matches with noisy 2D marker projections. These methods
operate under the assumption, that 2D-3D point correspondences are known a priori,
while [29] solves the simultaneous pose and correspondence estimation problem.

4Tt may be very difficult to compute the gradient in combinatorial problems.
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To solve the PnP problem at least three points are required. If at least n > 4 point
correspondences are available PnP becomes a non-linear problem with the number
of solutions dependent on n and the point constellation. Each point correspondence
gives two equations to the system of residuals defined in Eq. (4.19) due to scaling
ambiguity in the projection.

In the next sections we provide a brief overview of three different approaches to
solve the PnP problem.

DLT

The direct linear transformation (DLT) method estimates the intrinsic and extrinsic
matrices jointly [3]. We are following Hartley et al. [64] to introduce the overview of
DLT. In the right hand side of Eq. (4.19) we calculate the distance of the measured
and projected point correspondences. Assuming no measurement noise and perfect
perspective projection matrix P the following holds®:

X, =Px;:Vie {1,2,...,n} (4.20)

where x, =€ P? x; =€ P3. In Eq. (4.20) both sides x} and Px; are homogeneous
vectors, defined up to a magnitude scale factor. Based on the observation that the
vectors are pointing in the same direction but are not necessary equal, we may write

X, x Px; = 0. (4.21)
Moreover using the notation of p*? € R'** being the rows of P:
p!7x; p!T
Px; = | p?'x; |, st. P= |p?T (4.22)
p37x; p37

and writing the matrix form of the cross product in Eq. (4.21) yields

T
wix! o —zxI'| | p?| =0. (4.23)

/T OT

1T 3
—YiX; T;X;

p

Here the column vector p contains the elements of the desired projection matrix P:

pl

p=[p?], peR*. (4.24)

p3

We may not need the third equation of Eq. (4.23), as only the first two equations
are linearly independent, yielding

! / / ! ! ! / /
0 0 0 0 —wr —wy —wgz —wwi Yt Yy Yz Y

/. ’ ’ / ’ ’, N N pP= Aip =0.
WL WY, Wiz Ww; 0 0 0 0 —Xpr; XY —T% —TW;

(4.25)

P4 denoting the d dimensional projective space as in Hartley et al. [64].
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where A; € R?*!2. Stacking A; for all n point correspondences we obtain Ap =
0, A € R™12 With n > 6 point correspondences, the equation system is over-
determined (P has 12 entries and 11 degrees of freedom, ignoring scale) [64]. Due to
noisy measurements of x; and x;, generally, there is no exact solution to Ap = 0 besides
the null solution. To avoid this, ||Ap|| is minimized with the constraint of ||p|| = 1.
The solution to this linear least-squares problem is the last column of V, where the
singular value decomposition of A is A = UDV?. The DLT method minimizes algebraic
error with the residual Ap, however this quantity is not geometrically meaningful.
The derivation of the solution is further explained in A5.3 of [64].

POSIT

The “Pose from Orthography and Scaling with ITerations” (POSIT) algorithm [33]
is an iterative estimation of the perspective projection under the weak-perspective
assumption. A weak perspective approximates a full perspective with uniform scaling
and an orthographic projection. Given a known camera calibration matrix K, for each
point correspondence ¢ = 1,2, ...,n we may write:

whu, ! f 0 ¢ (RYT T,
w | =y | =xi=Px;,= |0 f ¢ | | R* T,]|x. (4.26)
w; w; 0 0 1 R T,
Further, assuming central projection, the principal point is at (c.,¢,)” = (0,0)"
(Fig. 4.1):
whu fRYT fT,
wiv; | = | [RT T, | xi (4.27)
w; R T,

where R*T € RY3 are the row vectors of the rotation matrix.

As the perspective projection is only defined up to a multiplicative factor, Eq. (4.27)
could be rewritten by multiplying the projection matrix with 1/7, and denoting
s=F/T,:

Z;
wiu; sR'T T, Ui
(wgvi> - (SR2T STy> 2 (4.28)
1
and
w, =R+ (2, y;,2)" ) T2 + 1 (4.29)

Assuming w, = 1, Eq. (4.28) describes a scaled orthographic projection [33]. In
Eq. (4.28) there are 8 unknowns: sR', sT,, sR? sT,. If at least n > 4 non co-planar
point correspondences are given, the equation system can be solved for s, R', R? R?,
T,,T,,T, Starting with w = 1, we can solve the system of equations in (4.28),
substitute the values into Eq. (4.29) to re-estimate w. This iteration is repeated until
convergence.
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Rotation parameterization

Central question in solving Eq. (4.19) is how to parameterize the rotation matrix. The
nine elements of the 3 x 3 rotation matrix R only have three degrees of freedom and
need to satisfy RRT = RTR = I3*3_ det(R) = 1 and R? = R™!, where I3*3 is the identity
matrix. Various representations were proposed in the literature such as unconstrained
3 x 3 matrix, Cayley-Klein [70], unit- [96] or non-unit quaternion [218] or Rodrigues’
form [64, 109]. Each has different strengths for the various solving strategies. Early
works employed a two step approach, first relaxing the orthogonality constraint and
in a second phase enforcing it. Cayley and quaternion representations are preferred if
the problem is solved as a multivariate polynomial system, while Rodrigues’ rotation
formula uses trigonometric functions and avoids any singularities.

Rodrigues’ form encodes a rotation around an arbitrary axis a = LI with angle

[z
a = ||r|]|. We define

C=|a 0 —a,| st a=|aq (4.30)
Ay Qg 0 a,

and thus the rotation is expressed as

R(r) = I +sinaC + (1 — cosa)C? (4.31)
yielding
cosa + a2(1 — cos a) azay(l —cosa) —a,sina  aysina + aza,(1 — cos )
R(r) = | a;sina + azay(1 — cosa) cosa+ay(l —cosa)  —azsina+aya.(l —cosa)
—aysina + aza,(1l —cosa) agsina + aya.(1 — cos ) cosa + a?(1 — cosa)
(4.32)

During minimization this formula enforces the special orthogonal group property on
the elements of R without additional constraints. As a result it is ensured that R is
an orthogonal rotation matrix.

We can now further specify the PnP optimization problem from Eq. (4.19) substi-
tuting the rotation matrix from Rodrigues’ form (4.31) and Euclidean norm:

r*,t* = arg min » _ [K[R(r)|t]x; — x}|* (4.33)
rt o

where r, t € R3.

Iterative refinement

The two previous methods approached the PnP minimization problem in Eq. (4.19)
with simplifying assumptions. DLT minimizes a un-intuitive algebraic error, while
POSIT iterates under an approximate weak-perspective assumption. However in
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Algorithm 4: Iterative, gradient descent optimization

Data: given cost function F'
Data: given initial parameter values xg
Data: given maximum number of iterations kp;ax
k=0, x := Xo;
do
find descent direction: hy;
find a step length giving a good decrease in the cost: «;
apply correction x := x + ahy;
k:=k+1;
while £ < kyax and ”hdH > €,
Result: Pick x* = x as local minimizer

Eq. (4.33) the minimization is constructed over the geometrically meaningful dis-
tance between the measured and estimated image coordinates. This distance is the
cumulative residual of the projection error of the feature points.

The classical approach to solve such non-linear least-squares problems are iterative,
gradient-based methods [115]. See Algorithm 4 for overview of the general gradient
descent method. Gradient-based minimization® attempts to find the parameter values
x* that result in the smallest energy (cost) starting from an initial parameter value
xo and using the first derivative (gradient) and maybe second derivative of the cost
function F. The search for global optimum is very difficult and generally only local
minimizers are attainable, depending on the initial value. The method searches for a
local stationary point indicated by zero gradient.

Various approaches have been proposed to compute the descent direction hy. The
Levenberg-Marquardt (LM) algorithm combines the steepest descent and Gauss-
Newton methods for finding the descent direction. This approximation takes place
without computing the Hessian containing the second derivatives [115]:

(J"3+pI) by = =37 f (4.34)

where p is a scalar damping parameter and J € R?*"*¢ is the Jacobian matrix contain-
ing the partial derivatives of the function components (residuals) of the cost function
F, and n is the number of point correspondences. The Rodrigues’ parameterization
allows both symbolic and numeric differentiation to compute the Jacobian.

If the distribution of noise in the measurements follows Gaussian assumption, the
least squares solution is the maximum likelihood (ML) estimate. The iterative refine-
ment may be initialized by the output of the DLT or POSIT algorithms.

For further information on the PnP problem and non-linear least squares minimiza-
tion see the books on Multiple View Geometry in Computer Vision [64] and Methods
for non-linear least squares problems (2ns ed.) [115].

5During optimization we could also search for a maximizer.
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4.1.6. Error Analysis

W

TREproj

X-—ray source detector plane

Figure 4.2.: Illustration of error measures. Reproduced from van de Kraats et al. [30].

To describe the quality and performance of an interventional fusion system and
the underlying registration approach, we have to assess both the accuracy and the
robustness of the method at hand.

A point-based, rigid registration algorithm accumulates error from multiple sources.
The classical nomenclature introduced by Maurer et al. [125] defines the following
metrics: i) fiducial localization error (FLE) describing the accuracy of localizing the
fiducial markers used as registration points; ii) fiducial registration error (FRE) which
is the root-mean-squared error of corresponding fiducial points after calculating align-
ment transformation and iii) target registration error (TRE) is representing the dis-
tance between corresponding points not used during registration. TRE is generally
considered the clinically most important error measure of registration accuracy. Fitz-
patrick et al. [43, 44, 42] investigated statistical properties of the target registration
error in 3D — 3D and proved that TRE and FRE are uncorrelated. This means that
for truthful registration accuracy evaluation the FRE should not be used and the
TRE needs to be computed.

In order to quantify registration accuracy, a reference of comparison has to be
defined as well. van de Kraats et al. [30] developed a “gold standard” evaluation
framework for 2D — 3D registration between X-Ray and CT/MR. The authors’ pro-
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tocol established the ground truth results through a calibrated C-arm CT scan and
implanted fiducial markers. The calibration means that the optimized projection
parameters P = K[R|t] are available for all X-Ray projection images used for 3D re-
construction of the C-arm CT volume. Key to the methodology is a 3D — 3D rigid
registration T3p_3p to align the fiducial markers in C-arm CT and the target CT/MR.
Assuming a projection image, van de Kraats et al. proposes the “gold standard” reg-
R t
of 1

Besides the above method, van de Kraats et al. [30] proposed three different ac-
curacy measures specific of 2D-3D registration (see Figure 4.2). The evaluation is
proposed to be carried out on a fixed set of k 3D points {p;},i =1,2,..., k uniformly
distributed in the volume of interest. The mean value of TRE (mTRE) over this set
is computed as

istration as Tyeq = Tsp-3D; Tgola € R4

k
1
mTRE = z; I TregPi — TgotaDil (4.35)

such that T,., € R*** is the registration transformation. mTRE is the normalized,
accumulated Euclidean distances between points p; transformed by the registration
and “gold standard” mappings.

To quantify the registration error in the X-Ray image plane [30] proposed the pro-
jection of the TRE: mean projection distance (mPD) denoting the distance between
the projections of the registered and “gold standard” points:

k
mPD = Z H(Mregpi - Mgoldpi)H . (436)
i=1

| =

where Mgoig = TprojTgora and Myeg = TprojTreg With Tpr € R3** denoting the known
C-arm system calibration matrix (intrinsic projection parameters).

An other way to interpret the error is through the mean reprojection distance
(mRPD) [123, 30]. mRPD measures the distance between the “gold standard” posi-
tion of a point and a ray from the X-Ray source to the registered point position:

k
1
mRPD =+ > IDLp(Li(X R source, Tyegps), TgolaPs) | (4.37)
=1

where Dy p is the 3D distance between a line and a point. Additionally we propose the
metric “effective TRE”. The effective value of TRE (ETRE) is computed by keeping
only the TRE vector components which are parallel to the detector plane.

mETRE =

| =

k
S (TregPi — Tyotapi) - A | (4.38)
i=1

where ‘11| denotes projection onto the imaging plane and i is the negative projection
direction (see Figure 4.3). The motivation behind this metric may be explained by
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Figure 4.3.: Illustration of effective TRE accuracy measure in comparison to TRE
and RDP.

the overlay nature the fusion system is expected to be used: ultrasound images (or
ultrasound segmentation) are projected onto the XR image. In this scenario, the
depth component of the error would visually “vanish”.

Assessment of registration robustness is aimed at understanding the statistical
properties of a registration method: what is the confidence value in the accuracy?
Typically performed in a controlled experiment, the failure rate of the algorithm is
evaluated under varying noise of the input data. In point-based 2D — 3D registration,
the sensitivity of the registration accuracy (TRE) on noisy fiducial localization (FLE)
is of interest. Success is usually defined by a clinical user as a tolerance or threshold
on e.g. TRE dictated by requirements of the envisaged procedure.

4.2. Model of Fiducials Equipped Ultrasound
Catheter

4.2.1. Fiducials in Feature-based Registration

Even though during a cardiac intervention both fluoroscopy and echo image the same
anatomy, due to the high-contrast dynamic clutter (e.g. catheters, guide-wires and
tools in XRF) and the different principles of imaging, defining a practically useful
similarity measure between these two modalities is a very difficult task. On the other
hand, during an intervention the projection of the ICE catheter is captured in XRF
images. Based on this observation, we will use features of the catheter itself that are
visible in XRF to define correspondences and the registration data term: Equations
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(4.6) and (4.7).

Point-based registration was extensively studied in the 1990s. Mauerer et al. [125]
devised a system that allowed 3D — 3D registration of CT and MR volumes. The
authors have developed fiducial markers that were brightly visible both in CT and
MR as point-like structures. Five of these fiducial markers were rigidly screwed to
the skull. The space of correspondence was exhaustively searched, while 3D — 3D
point fitting was performed in the least-squares sense, for which closed-form solution
exists [194]. Thorough evaluation showed that the system is accurate enough for
neuro-surgical use.

Jain et al. [86] investigated robustness of fiducial designs for single-image X-Ray
fluoroscopy tracking. The authors argue that non-spherical fiducials achieve higher
registration accuracy due to more precise segmentation. Thereby Jain et al. intro-
duced the FTRAC fiducial design consisting of carefully aligned ellipses, lines and
points. FTRAC was realized as a rigidly attachable device with 30 x 30 x 50mm
dimensions. Phantom-based accuracy studies indicated sum-mm translational and
sub-degree rotational accuracy. The authors simulated 10 x 10 x 20mm FTRAC
design with similar results.

Figure 4.4.: Illustration of Figure 4.5.: (a)Typical view of ICE prototype in

ball  marker XRF. (b)Model used for 2D localiza-
sizes in  a tion: steerable grid pattern defined
prototype ICE by positions of {B,1, Byua}

catheter.

4.2.2. Fiducial Marker Design

Even though we would have preferred to use state of the art fiducials, the catheter di-
mensions constrained the design. The fiducial configuration may not block the acous-
tic window of the ICE catheter and the fiducials must be compatible with catheter
production diameter of 13F = 4.333mm and approximately 35mm long rigid tip.
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Figure 4.6.: Volume rendered C-arm CT reconstruction of fiducials equipped proto-
type ICE catheter. The 3D constellation of the beads is visible. The
metallic beads appear larger due to partial volume effect and interpo-
lated transfer function.

To facilitate our needs, we have developed a prototype ICE catheter and fitted it
with radiopaque ball markers (beads, Figures 4.4 and 4.6). Each marker is assigned a
unique virtual identifier (b;,7 € {1,..,6}), the empirical design of five distal and single
proximal ball markers is shown in Figure 4.5 together with the phased array (PHA)
transducer. The 3D catheter pose is parameterized as (', y/, 2’) position and rotation:
around “long axis” of PHA (agey), out-of-plane (Spyen) and in-plane (Yyqu)-

4.3. Fitting the Model to Interventional X-Ray
images

4.3.1. Overview

During cardiac interventions, multiple catheters, wires and tools are commonly visible
in XRF. The C-arm may have arbitrary oblique angulations, dye injection could
change contrast conditions. As opposed to TEE that is always directed down the
esophagus, ICE might arrive from different directions to the target area, unrestricted
in 6 degrees of freedom (DoF). In summary, it is expected that fluoroscopic images
will not provide global context to support the detection problem.

Our automatic 2D catheter detection algorithm (Figure 4.7 and Algorithm 5) con-
sists of (i) permissive ball marker detector and likelihood measure of PHA fore-
ground/background, (ii) robust hypothesis fusion strategy and (iii) accurate hypoth-
esis refinement.

In the last part, we discuss technical details for registration of ICE and XRF'. Build-

ing on the catheter detection method, we use 2D location of ball markers from a single

projection X-Ray for point correspondence determination and 3D pose estimation of
ICE.

Throughout the method, we assume that the tip of the ICE catheter (including the
ball markers and transducer) is rigid.
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Algorithm 5: ICE-XRF fusion algorithm
Data: given XRF image [ including the ICE catheter
Data: given 3D constellation of bead centroids in ICE catheter {x;}
Coarse 2D catheter localization in I using PBT inference:
Op = {(1:7 y)7 VY aws 833};
Refine detection of 2D bead centroids in neighborhood of 85: {b’};
for each combination of correspondences C = 1,2, ...,6! in parallel do
Perform POSIT with given correspondence;
to calculate initial estimate of r, t;
Perform iterative refinement of r,t using non-linear optimization with
LM,
Compute cumulative projection residual of beads:

Eierty = Z ||K r)[t] beg) — bZH

Result: Pick {C,r,t} with smallest projection error £.
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Figure 4.7.: (a)Initial ball marker estimates and likelihood measure of Phased Array
(PHA) transducer foreground are integrated for (b)robust, coarse local-
ization of catheter. (c)Ball marker locations are refined. (d)6 DoF 3D
pose is estimated together with 2D-3D point correspondences.

4.3.2. Approximate 2D Catheter Localization

The goal of the first step is to define the region of the XRF image I containing the
catheter. We search for catheter parameters 8" maximizing the posterior probability:

0" = arg max p(0|I) (4.39)
0
It is difficult to provide an analytic solution for Eq. (4.39), as @ is defined in the

space of 2D projections of the 3D catheter/markers. Thus, for coarse localization,
the catheter model is approximated as a line segment (Figure 4.7 (b)):

0~0p={(2,9),Vvaw Sz (4.40)
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CHAPTER 4. PERI-OPERATIVE IMAGE FUSION

where (2,9), Yvaw, Sz are 2D position, orientation and length of PHA. In contrast
to TEE [133], the elongated shape of ICE catheter is not distinctive enough for
these parameters to be estimated directly, hence we introduce a natural, parts based
decomposition of @p. The segment is described as a pair of {b,;, b2} ball markers’
and the likelihood fpya = f(p(PHA|I), by, bys) of the phased array located in
between them:

{<xay)77Yaw73x} = g(bulabu%fPHA) (4.41)

with (z,y) = 2(bu1 + bu2), Yvaw = tan (g—z(bug —by1)) and s, = ||bys — by ||. This
hierarchical decomposition allows to rewrite the argument of Eq. (4.39) too:

where p(b;|I) and p(PHA|I) refer to the posterior distribution of ball markers and
the phased array in I, respectively.

Training the Model

The hierarchical decomposition defines the search spaces in more tractable terms. Our
goal is to train two pixel wise classifiers, both employed in a sliding window approach:
one bead detector for p(b;|I) similar to [112], and secondly a classifier p(PH A|I) for
the likelihood of a pixel belonging to the phased array transducer. Both detectors
are implemented as a cascade of two levels, where during training the second level
is trained on false positives from the first level as negative examples. Probabilistic
boosting trees [193] are constructed to a depth of three, and include 50 weak learners
in each node. The weak learners are image responses of discrete Haar-like features.
The detectors are implemented in the flexible integrated detection network (IDN)
framework [177]. p(b;|]) is trained on super-sampled 0.25 mm resolution images,
while sub-sampled 1 mm is used for the PH A likelihood measure to smooth out the
finer, rotationally variant structure of the phased array transducer.

Detection Procedure and Hypothesis Fusion

During detection, the goal is to estimate the segment 05 using the trained model on
unseen images. Due to scattered background, both bead and transducer classifiers
produce a high rate of false alarms. In order to reliably extract the ICE catheter, we
exploit local context (g (-) in (4.41)) and fuse pairs of ball markers {b,, b2}, and
PH A candidates.

The hypothesis fusion consists of the following steps: (i) the top 40 locations in-
dicated by p(b;|I) are clustered, (ii) p(PHA|I) is evaluated on the whole image,

TAt this point b,; may be any of the five distal beads (ambiguities in perspective projection of
various ICE poses hinder determination of exact distal marker id), also b,; and b,s may be
swapped as the segment is invariant to 180° rotations).
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4.3. FITTING THE MODEL TO INTERVENTIONAL X-RAY IMAGES

producing a confidence map for the transducer likelihood and (iii) we select all pos-
sible pairs of marker hypotheses that satisfy the distance constraint® and finally (iv)
the candidate pairs are scored by fpma a steerable filter (Figure 4.5(b)), defined on
the likelihood map: first taking the maximum response in each “column” along <?,
then the 10th percentile of the remaining single row, in order to penalize hypotheses
with low max. response along the {b,,b,s} axis. This score is used to sort all 85
candidates in Eq. (4.39).

4.3.3. Search for Fiducials in 2D

- —p g
g T =1 =
.
F 4. |

Gegd | g,
i 1 i

. "1‘.: 3 : 1
g 3 "
.'1:7.'?':"'_. ¥ 1

Figure 4.8.: Results of approximate localization (@ g, red frame), and predicted search
ranges for fiducial ball markers (V,1,V,2; yellow and blue frames)

The approximated coarse location is used to anchor two bounding boxes enclosing
the two tails (Figure 4.8) of the phased array: {V,i,V.2}. Searching within these
reduced neighborhoods, we intend to accurately localize and determine the identity
of the visible fiducial beads and decide which end of the catheter is the distal one.
Under various projections, the ball markers start to touch each other and overlap,
making the identification difficult. In order to be able to recover partially overlapping
markers, we created a circular template image (with its diameter dictated by the
smallest marker in our images). The template is overlayed {V,1,V,2} in a sliding
window manner, the response for each pixel is calculated as the correlation coefficient
of the overlapping regions. Local peaks are extracted that are further apart than one
pixel. The resulting peaks are treated as marker candidates. The distal end of the
catheter and {bg;s,} is indicated by more beads among the two neighborhoods. If
more than one marker is present in the proximal area, we suppress the non maximum
responses to keep the most likely one as by,

8from the C-arm we know the source-table distance that together with allowed catheter pitches
(Figure 4.5(a)) limits the 2D span of the proximal and distal markers visible in the X-Ray
projection
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4.4. Pose estimation and Registration

Registration of ICE and XRF is establishing a spatial relationship between ICE voxels
PICEJ}OJZ (mla Yr, ZI) and XRF piX@lS PFluoro<u> U):

_ mC—arm ICE_cathrICE _vox
PFluoro(“, U) - T%FluoroT%CfarmTHICE,cathPICEJUOCC(xb Yr, ZI) (443)

Here, the cone-beam perspective projection, intrinsic parameters (defined in the pin-
hole camera model) and C-arm angulation are combined in 7<,/™™ = and are consid-
ered known from the calibrated C-arm system itself. Also, the geometric relationship
between the ICE image and ICE catheter T'G22° . is considered known from calibra-
tion, leaving the 3D pose of the ICE catheter in the 3D C-arm coordinates TZ(F-cath
unknown in (4.43).

Estimation of TTZF-¢at" hased on fiducial beads constitutes solving a feature-based
2D-3D registration problem defined in Eq. (4.18). Thus the purpose of pose es-

timation is to infer the rigid transform TZ{F-c4th consisting of a rotation R(r) =

(Rolt, BPitchs ’)/yaw)T and translation t = (2, v/, 2/ )T. For this we need to determine
the correspondence C between ball markers on the catheter {b;} and the extracted
2D marker projections {b;}.

We address the correspondence problem within {bgy;, } with an exhaustive search:
for each combinations of markers, we solve the PnP problem in Eq. (4.19). We execute
a version of POSIT [33] and the results are used to initialize iterative optimization
of pose using the Levenberg-Marquardt method (Sec. 4.1.5). The estimated pose of
beads is projected to the X-Ray plane. Using the sum of 2D point-to-point () P2P=
ety = SO ||K [R(r)[t] xc(;) — x}||) distance, we pick the marker combination that
yields the smallest residual. It is notable that each iteration of the combinatorial
search is independent and may thus be performed concurrently.

4.5. Experiments and Results

4.5.1. Data Sets

Our learning based models require large amounts of examples to train a classifier.
Manually labeling markers in real X-Ray sequences is a laborious task, and reliable
3D Ground Truth (GT) location of the markers would require a co-registered C-arm
CT. As such data was not readily available, we synthesised Digitally Reconstructed
Radiographs (DRR) from a 3D image of the catheter and background fluoroscopies
without ICE. DRRs allow the 3D GT to be generated at the same time. We produced
11 000 (0 < A Roll < 360, —30 < BPitch < 30, —180 < VY aw < 180) randomized images
for training and 1 000 images for testing. In addition, we captured 641 XRF frames
from an in-vivo porcine study and manually annotated the beads. 400 of these frames
were used for training, the remaining 241 for testing. Example images are shown in
Figure 4.9.
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Figure 4.9.: Synthetic digitally reconstructed radiograph (DRR) and in-vivo porcine
X-Ray images of the fiducial equipped prototype ICE catheter.

synthetic | in-vivo
No. of Images | 1000 241
Success/Rate | 979/97.9% | 235/97.5%
Avg+Std 1.2040.55 | 1.10+0.58

Table 4.1.: 2D catheter @p localization performance, translation error in mm.

Line segment detection accuracy is shown in Table 4.1. More than 97% of the cases
are successfully (|| (6x,0y) | < 5 mm, yya < 5°) detected which is comparable to
the state of the art [113, 112].

For the rest of the evaluation, we have selected those cases, where hypothesis fusion
and template matching was able to localize a single proximal (Bp,,,;) and five distal
beads (|[{bpis:,}|| = 5). These represent those cases where direct correspondence
can be established, assuming beads do not overlap. 715 (71.5%) and 193 (80.0%)
such cases were detected for DRR and in-vivo data, respectively. Native resolution
of the tested X-Ray images is in the range of 0.3 to 0.4 mm, sub-pixel accuracy is
achieved by our marker detection shown in Table 4.2. We also report the symmetric
Hausdorff distance’ of the marker localization to show the maximum distance of
closest detections and closest ground truth.

To evaluate the accuracy for the envisioned image fusion application, we employ
the target registration error (TRE). The target points are defined as the four corners
of the sound cone at the depth of 50 mm. The effective value of TRE (ETRE) is
computed by keeping only the TRE components which are parallel to the detector

9See Eq. (4.10) for definition.
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synthetic in-vivo
No. of Images | 715 (71.5%) | 193 (80.0%)
Symmetric 0.31+1.55 0.22+0.19
Hausdorff 0.67+3.73 0.36+0.51

Table 4.2.: Point-to-point 2D marker localization performance, error in mm, dis-
played as mean#+std. dev. Considered in images where @p succeeded
and [[{bpis, }[| = 5.

plane. Due to lacking 3D GT, we could only evaluate the 6 DoF pose estimation on
the 715 DRR images for which all markers could be detected. 12 cases were excluded,
where the sum of 2D point-to-point distance was above 1 mm. In the remaining
703 images the correspondence and 3D pose estimation performed well, yielding an
average TRE of 8.06 £ 7.2 mm and ETRE of 2.81 4+ 1.5 mm (Table 4.3).

Roll °

Pitch °

[e)

Yaw

Depth mm

TRE mm

ETRE mm

Mean+Std.

2.03£1.5

2.07£1.6

0.13£0.2

7.28+7.8

8.06+7.2

2.81£1.5

Median/Pgo

1.76/4.21

1.68,/4.37

0.10/0.25

4

74/17.93

5.54/17.58

2.59/4.84

Table 4.3.: 3D pose estimation accuracy on DRR cases where |[{bps, }|| = 5. From
715, we excluded 12 cases where Y P2P projection error is above 1 mm.

An other interesting error measure links the uncertainty of marker localization
(FLE) to the accuracy of the target registration error (TRE). Using the synthetic DRR
data-set, we have simulated the uncertainty of FLE by superimposing anisotropic
Gaussian noise to the ground truth 2D marker locations and calculated the registra-
tion error. The results are tabulated in Table 4.4.

4.6. Discussion

The overall 2D marker detection error is lower for in-vivo data compared to synthetic.
This is due to the fact, that the X-Ray sequences used as background for DRR
generation are from actual cardiac interventions, and contain various other wires and

noise P2P | noise Y P2P Roll ° Pitch ° Yaw ° | Depth mm | TRE mm
0.13£0.06 | 0.75%0.16 2.16+1.8 2.08£1.8 | 0.11£0.1 | 6.88+£7.2 7.76£6.8

0.28+0.15 | 1.68+0.36 5.17£4.5 4.81+4.3 | 0.26£0.2 | 16.19+16.5 | 18.14£15.5
0.40+0.21 | 2.38+0.51 7.50£7.1 7.41+£7.0 | 0.38£0.3 | 23.58£25.0 | 26.62£23.2
0.574+0.30 | 3.39£0.75 | 11.80£12.8 | 10.49£9.0 | 0.5940.5 | 33.91£33.6 | 38.68+30.8

Table 4.4.: TRE as a function of increasing uncorrelated Gaussian noise in FLE shown
as mean=+tstd. dev.
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tools that appear similar to the ICE catheter, while the porcine data featured less
clutter.

The 3D TRE is non-isotropic: the depth direction contributes the major part of
the error, as small inaccuracies of detected beads in the X-Ray detector plane are
magnified along its normal. Similarly the large pitch error is related to imperfect
depth recovery. When targets are displayed as overlays on the 2D XRF images,
the depth error “disappears”. To reflect this clinical scenario, we introduced the
ETRE. The 2.81 £1.5 mm ETRE is comparable to the 5 mm range envisaged by our
interventional collaborators as clinically useful.

a4

Figure 4.10.: Number of visible markers. The X and Y axes show roll and pitch,
respectively in degrees.

Fitzpatrick et al. have shown that the 3D constellation of the fiducial markers
influences the target registration error [44]. The empirical design of bead placements
(Sec. 4.2.2) — due to the small elongated shape of the catheter tip — resulted in an
almost collinear configuration with respect to the C-arm projection cone. Solving
the PnP problem under collinear configuration is not possible in all six degrees of
freedom, and a close to collinear geometry makes recovery of the rotation around the
axis of collinearity difficult. This is consistent with our results showing large error
in roll recovery. As an effect of the relative pose of the catheter and C-arm, in the
projection image beads do overlap!® and it becomes not possible to distinguish them
based on their location XRF alone (Fig. 4.10).

The results in Table 4.4 indicate an almost linear relationship between the average
FLE and average TRE.

In our investigation we have considered the both the C-arm calibration T,
CE vox

and ultrasound calibration T7GE°% . given. In reality these calibrations are not
completely perfect either and should be included in an end-to-end error analysis.

10We define overlap as the projected fiducial centroids’ distance smaller than a XRF pixel.
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4.6.1. Clinical Application Scenarios

Figure 4.11.: Interventional fusion of Doppler-mode volumetric ICE and X-Ray fluo-
roscopy.

In Section 2.2.2 various interventional uses of ICE were described in SHD patients.
The additional clinical value of the system outlined in this chapter could be realized
by bringing information extracted from live echo images and combine it with X-Ray
fluoroscopy at registered locations. For example, after the transcatheter implantation
of heart valves, a crucial step involves checking for a good seal and looking for par-
avalvular leaks. Echocardiography could provide fusion of blood flow (Doppler echo)
information (see Fig. 4.11) without contrast agent. Similarly, residual leaks and re-
gurgitation may be overlaid on X-Ray at the registered location. Furthermore, after
registration, segmented objects or soft-tissue landmarks (virtual landmarks) could
be transferred to X-Ray that are otherwise not visible. Candidate methods include
the recent work of Voigt et al. [201], where the feasibility of real-time ultrasound
segmentation of soft tissue such as mitral heart valve (MV) was demonstrated.
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CHAPTER b

Conclusions

The focus of this dissertation has been image analysis based methods for treatment
outcome prediction and intervention guidance in cardiovascular diseases (CVD). In
this chapter the proposed models and thesis contributions are reviewed, limitations
of the models are identified and possible future works outlined.

5.1. Summary

CVD is the leading cause of death in the USA and Europe. Invasive cardiovascu-
lar procedures have proven to be the riskiest and most expensive type of therapy.
In Section 2 we have briefly reviewed the human cardiac anatomy and function, in-
cluding pathological variations of congenital and structural heart disease. Adding to
the background, cardiac imaging modalities (Sec. 2.2) were briefly surveyed. To ad-
dress the burden of CHD and SHD, medicine is increasingly relying on personalized,
predictive and less-invasive practices. Data-driven, advanced medical image analy-
sis methods enable building knowledge from personalized anatomical, functional and
computational models to support clinical decisions (Sec. 2.3).

In this spirit, in Section 3, our main contribution to the field is an end-to-end
pipeline for image-based hemodynamic assessment of blood pressure drop in coarcta-
tion of the aorta without invasive catheterization. The system was shown to compare
well against invasive blood pressure catheterization. The complete workflow is real-
ized in a fast, automated system that can be integrated into a clinical setting, where
manual interaction is required in a mostly supervisional manner. A set of validation
experiments has shown that the proposed methods work on a wide variety of low-
quality, retrospective data. Automatic thoracic aorta segmentation was applied on a
population of 212 3D MR volumes, with mean point-to-mesh error of 3.00 +1.58 mm
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and average computation time of 8s. Good agreement between computed blood
pressure drop AP and catheter measurements is shown through quantitative evalu-
ation of corresponding retrospective pre- (2.38 + 0.82 mm Hg) and post-operative
(1.10+0.63 mm Hg) data and virtual stenting (4.99 +3.00 mm Hg) setup of 6 CoA
patients. The data stems from regular clinical practice of multiple cardiac centers in
the USA and the EU and was not explicitly acquired for simulation studies. Further-
more, all data used for parameter personalization were acquired noninvasively, which
is important considering the often young age of CoA patients. We have demonstrated
that the framework is applicable to three stages of CoA care: preoperative severity
assessment, post-stenting follow-up, and treatment outcome prediction through “vir-
tual stenting”. We believe that the presented non-invasive in-silico method has the
potential — given more thorough clinical validation — to replace invasive pressure
catheterization for CoA.

Advanced image guidance and information fusion in hybrid operating rooms enables
emerging minimally invasive procedures and devices for SHD. The complementary
imaging information from live fluoroscopy and echocardiography has the potential to
guide structural heart disease interventions. Section 4 — to the best of our knowl-
edge — discusses the first published method to automatically register intracardiac
echocardiography with X-Ray fluoroscopy avoiding general anesthesia. Extraction
of the echocardiography catheter relies on robust and fast machine learning meth-
ods. The registration method is agnostic to catheters as long as both ends are beads
marked, and connected with a visible part in between, hence, general enough to be
used for other devices. We provided quantitative evaluation on a number of real and
synthetic images and arrived at convincing preliminary results. The method reached
8.06 + 7.2 mm TRE on 703 cases with an in-plane component (effective TRE) of
2.81 + 1.5 mm.

Through sections 3 and 4 we have shown how two image-based methods could re-
duce invasiveness in all four phases of CVD management. The question arises whether
the two systems could be used together? We believe, yes, during percutaneous ther-
apy of the coarctation of aorta, the image fusion system could be used. It should be
noted however, the greater efficiency enabled by advanced guidance could benefit the
treatment of more complicated (Sec. 2.1.2) forms of CVD, especially where X-Ray
fluoroscopy alone is not sufficient.

5.2. Limitations and Future Works

5.2.1. Non-invasive Blood Pressure Drop Estimation

We have shown, that the presented models can be used to assess the blood pres-
sure conditions of CoA. However, our method opens several technical and clinical
questions.

Our pre-defined anatomic part and shape model based segmentation method applies
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only to cases that exhibit shape variation, but do not change in topology. In complex
congenital heart defects topological changes in the circulation cannot be ruled out,
CoA often coincides with other aortic arch morbidities. The presented morphology
model and lumen segmentation is not directly able to represent such pathological
variations, thus extraction of diseased vessel anomalies (e.g. other than three supra-
aortic arteries, loop of aorta, collateral circulation as shown on Fig. 2.3b) would
be beneficial to be included in the system. Currently we do not handle such cases
automatically.

Secondly, a single plane of velocity encoded cine PC-MR image might not be able
to capture the flow of intercostal arteries and collateral vessels. If such arteries are
present bypassing the coarctation site, possibly multiple PC-MR planes are required
to capture their flow, and the clinical imaging protocol would have to be extended.

It would be interesting to quantify the sensitivity of the hemodynamic simulation
results as a function of the accuracy of the segmented aorta and coarctation lumen
surfaces, similar to [17].

5.2.2. Peri-operative Image Fusion

The current technique requires all 6 fiducial markers to be extracted from the X-
Ray to allow pose recovery of the echocardiography catheter. It would be desirable
to allow pose estimation with more or less number of detected fiducial hypotheses.
Future work should be aimed at techniques to recover pose from only 3 or 4 visible
distal markers, and to automatically exclude extraneous marker candidate outliers
(e.g. using RANSAC).

The current fiducial bead constellation was developed empirically. With simple
fiducials such as the spherical beads it should be possible to optimize the marker
configuration geometry to minimize overlaps in projection images. Once the catheter
is navigated to scan the desired part of the anatomy, it would be interesting to
understand what are the most optimal C-arm angulations to look at the catheter to
minimize the target registration error?

Moreover, investigation of propagation of temporal information (catheter track-
ing) across consecutive XRF images would be desirable to increase detection rate in
challenging backgrounds.

107






APPENDIX A

Publications

A.1. Publications as First Author

A.1.1. Journal

K. Ralovich, L. Itu, D. Vitanovski, P. Sharma, R. Ionasec, V. Mihalef, W.
Krawtschuk, Y. Zheng, A. Everett, G. Pongiglione, B. Leonardi, R. Ringel, N.
Navab, T. Heimann, D. Comaniciu: Non-invasive Hemodynamic Assessment,
Treatment Outcome Prediction and Follow-up of Aortic Coarctation from MR
Imaging, Medical Physics, 42: 2143-2156, 2015

A.1.2. Conference

K. Ralovich, M. John, E. Camus, N. Navab, T. Heimann: 6DoF Catheter Detec-
tion, Application to Intracardiac Echocardiography, Medical Image Computing
and Computer-Assisted Intervention - MICCAI 201/, 2014

K. Ralovich, L. Itu, V. Mihalef, P. Sharma, R. Ionasec, D. Vitanovski, W.
Krawtschuk, A. Everett, R. Ringel, N. Navab, D. Comaniciu: Hemodynamic
Assessment of Pre- and Post-Operative Aortic Coarctation from MR Images
Proceedings of the 15th International Conference on Medical Image Computing
and Computer Assisted Interventions (MICCAI), Nice, France, October 2012,
2012

K. Ralovich, L. Itu, V. Mihalef, P. Sharma, R. Ionasec, D. Vitanovski, A.
Everett, W. Krawtschuk, M. Suehling, N. Navab, D. Comaniciu: Non-invasive
Assessment of Aortic Coarctation through Blood Flow Computation and MRI

109



A.2. PUBLICATIONS AS CO-AUTHOR

VPH2012 Integrative approaches to computational biomedicine - The Virtual
Physiological Human Initiative Scientific Sessions 2012, 2012

e K. Ralovich, V. Mihalef, P. Sharma, L. Itu, D. Vitanovski, R. Ionasec, M.
Suehling, A. Everett, G. Pongiglione, N. Navab, D. Comaniciu: Modeling and
Simulation Framework for Hemodynamic Assessment of Aortic Coarctation Pa-
tients ISMRM ’12: Proceedings of the 20th Scientific Meeting and Exhibition of
International Society for Magnetic Resonance in Medicine, 2012

e K. Ralovich, R. Ionasec, V. Mihalef, P. Sharma, B. Georgescu, A. Everett, N.
Navab, D. Comaniciu: Computational Fluid Dynamics Framework for Large-
Scale Simulation in Pediatric Cardiology, Computational Biomechanics for Medicine
VI (CBM6) MICCAI Workshop, 2011

A.2. Publications as Co-author

A.2.1. Journal

e L. Itu, P. Sharma, K. Ralovich, V. Mihalef, R. Tonasec, A. Everett, R. Ringel,
A. Kamen, D. Comaniciu: Non-Invasive Hemodynamic Assessment of Aortic
Coarctation: Validation with In Vivo Measurements; Annals of Biomedical En-
gineering, 2013

e M. Sofka, K. Ralovich, J. Zhang, K. Zhou,: Progressive Data Transmission
for Anatomical Landmark Detection in a Cloud; Methods of Information in
Medicine, 2012, Invited Paper., 2012

A.2.2. Conference

e D. Vitanovski, K. Ralovich, Razvan Ioan Ionasec, Yefeng Zheng, M. Suehling,
W. Krawtschuk, J. Hornegger, D. Comaniciu: Personalized Learning-based Seg-
mentation of Thoracic Aorta and Main Branches for Diagnosis and Treatment
Planning IFEFE International Symposium on Biomedical Imaging, Barcelona,
Spain, 2012

e M. Sofka, K. Ralovich, N. Birkbeck, J. Zhang, K. Zhou: Integrated Detection
Network (IDN) For Pose And Boundary Estimation In Medical Images IEEE
International Symposium on Biomedical Imaging: From Nano to Macro (ISBI
2011), Chicago, Illinois, USA, March 30 - April 2, 2011, 2011

e M. Sofka, K. Ralovich, J. Zhang, K. Zhou,: Progressive Data Transmission for
Hierarchical Detection in a Cloud Proceedings of the 2nd International Work-
shop on High-Performance Medical Image Computing for Image-Assisted Clin-
ical Intervention and Decision-Making (HP-MICCAI 2010), Bejing, China, 22
Sep 2010., 2010

110



APPENDIX B

Patents, Invention Disclosures

B.1. Granted Patents

e 8811697, Progressive Data Transmission for Hierarchical Detection in a Cloud,
United States Patent, http://www.freepatentsonline.com/8811697.pdf

e 9 135 699 B2, Hemodynamic Assessment of Pre- and Post-Operative Aortic
Coarctation from MR Images, United States Patent
http://www.freepatentsonline.com/9135699.pdf

111


http://www.freepatentsonline.com/8811697.pdf
http://www.freepatentsonline.com/9135699.pdf

B.1.

GRANTED PATENTS

(12)

United States Patent
Sofka et al.

US008811697B2

US 8,811,697 B2
Aug. 19,2014

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

")

(1

(22)

(63)

(60)

(51)

(52)

(58)

DATA TRANSMISSION IN REMOTE
COMPUTER ASSISTED DETECTION

Inventors: Michal Sofka, Franklin Park, NJ (1IS);
Kristof Ralovich, Princeton, NJ (US):
Jingdan Zhang, Plainshoro, NJ (US);
Shaohua Kevin Zhou, Plainsboro, NI
(US); Gianluca Paladini, Skillman, NJ
(U5} Dorin Comaniciu, Princeton
Junction, NI (US)

‘J 1 o l.l -5,

I B

(DE)

llschaft, Munich

Notice:  Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
US.C. 154(b) by 411 days.

Appl. No.: 13/080,801

Filed: Apr. 6, 2011

Prior Publication Data
LIS 200 /0243407 Al Oct. 6, 2011

Related U.S. Application Data

Provisional application No. 61/321,222, filed on Apr.
&, 2010.

Int. CL.

GO6K 900 (2006.01)

GiGK %62 (200601 )

GO6T 700 (2006.01)

U.s. CL

CPE GOGK 976256 (2013.01): GOGT 220720016

(2013.00): Gl 19231 (2013.01): GosT

2200016 (2012.01), GOGT 74012 (2013.01)
IISPC: i IB2/128: 382131 382132 3827154
382240
Field of Classification Search
USPC . 3B2/128, 131, 132, 133, 154, 240
See application file for complete search history.

12—\

CAD Server

I 15

memory ,

14‘\

(56} References Cited
LS. PATENT DOCUMENTS
6,314,452 B1* 112001 Dekel et al o TOS 203
6,891,973 BL* 52005 Atsumielal. 3821232
20050129271 Al®  G2005 Hhietal ... el 1]

20100119137 Al
2010:0240996 Al

52010 Schwing et al.
920010 lonasec ef al.

OTHER PUBLICATIONS

Tu Z. Probabilistic Boosting-Tree: Leaming Discriminative Models
for Classification, Recognition, and Clustering. In: CWVPR. vol. 2;
2005, p. 1589-1596.

Viola F, Jones MJ. Rapid object detection using a boosted cascade of
simple features. In: CVPR. vol. 1; 2000, p. 511-518.

Schnitzspan Py, Fritz M, Roth S, Schiele B. Discriminative structure
learning of hierarchical representations for object detection. In-
CVPR; 2009 p. 2238-2245,

Zhang W, Zelinsky G, Samaras D). Realdime Accurate Object Dietec-
tion using Multiple Resolutions. In: ICCY; 2007,

(Continued)
Primary Examiner — Tom'Y Lu
(57) ABSTRACT

For clond-based computer assisted detection, hierarchal
detection is used. allowing detection on data at progressively
greater resolutions. Detected locations at coarser resolutions
are used to limit the data transmitted at greater resolutions.
Data is only transmitted for neighborhoods around the previ-
ously detected locations. Subsequent detection using higher
resolution data refines the locations, but only for regions
associated with previous detection. By limiting the number
andl/or size of regions provided at greater resolutions based on
the previous detection, the progressive transmussion avoids
transmission of some data. Additionally, or altematively,
lossy compression may be used without or with minimal
reduction in detection sensitivity.

20 Claims, 2 Drawing Sheets

16\‘_

PACS Client
Viewer

PACS Client
. ™ Viewer

14/

o’

Figure B.1.: Granted US Patent 8 811 697

112



APPENDIX B. PATENTS, INVENTION DISCLOSURES

a2 United States Patent

Ralovich et al.

US0091

5699B2

US 9,135,699 B2
Sep. 15, 2015

A,
S

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(21)
(22)

(65)

(60)

(51

(52)

METHOD AND SYSTEM FOR
HEMODYNAMIC ASSESSMENT OF AORTIC
COARCTATION FROM MEDICAL IMAGE
DATA

Applicants:Kristof Ralovich, Munich (DE); Lucian
Mihai Itu, Brasov (RO); Viorel Mihalef,
Keasbey, NJ (US); Puneet Sharma,
Monmouth Junction, NJ (US); Razvan
Toan Ionasec, Princeton, NJ (US); Dime
Vitanovski, Erlangen (DE); Waldemar
Krawtschuk, Erlangen (DE); Dorin
Comaniciu, Princeton Junction, NJ (US)

Inventors: Kristof Ralovich, Munich (DE); Lucian
Mihai Itu, Brasov (RO); Viorel Mihalef,
Keasbey, NJ (US); Puneet Sharma,
Monmouth Junction, NJ (US); Razvan
Ioan Ionasec, Princeton, NJ (US); Dime
Vitanovski, Erlangen (DE); Waldemar
Krawtschuk, Erlangen (DE); Dorin
Comaniciu, Princeton Junction, NJ (US)

Siemens Aktiengesellschaft, Munich
(DE)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 315 days.

Appl. No.: 13/826,307
Filed:  Mar 14,2013

Prior Publication Data
US 2013/0243294 Al Sep. 19,2013

Related U.S. Application Data

Provisional application No. 61/611,057, filed on Mar.
15, 2012.

Int. CL
GO6K 9/00 (2006.01)
GO6T 7/00 (2006.01)
Us. ClL

CPC ... GO6T 7/0012 (2013.01); GO6T 2207/10076

(2013.01); GO6T 2207/10096 (2013.01); GO6T

2207/30104 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,150,292 A *  9/1992

Hoffmann et al.
5,579,767 A * 12/1996 Pri

Prince ......

5,953,444 A *  9/1999 Joseph et al.
7,860,290 B2 12/2010 Gulsun et al.
7,953,266 B2 5/2011 Gulsun et al.

8,098,918 B2
8,386,188 B2

1/2012 Zheng et al.
2/2013 Taylor et al.

(Continued)
OTHER PUBLICATIONS

“Effects of exercise and respiration on hemodynamic efficiency in
cfd simulations of the total cavopulmonary connection,” Marsden A.
L., etal, Annals of Biomedical Engineering, vol. 35, No. 2, Feb. 2007,
pp. 250-263.*

(Continued)

Primary Examiner — Wenpeng Chen

(57 ABSTRACT

A method and system for non-invasive hemodynamic assess-
ment of aortic coarctation from medical image data, such as
magnetic resonance imaging (MRI) data is disclosed. Patient-
specific lumen anatomy of the aorta and supra-aortic arteries
is estimated from medical image data of a patient, such as
contrast enhanced MRI. Patient-specific aortic blood flow
rates are estimated from the medical image data of the patient,
such as velocity encoded phase-contrasted MRI cine images.
Patient-specific inlet and outlet boundary conditions for a
computational model of aortic blood flow are calculated
based on the patient-specific lumen anatomy, the patient-
specific aortic blood flow rates, and non-invasive clinical
measurements of the patient. Aortic blood flow and pressure
are computed over the patient-specific lumen anatomy using
the computational model of aortic blood flow and the patient-
specific inlet and outlet boundary conditions.

29 Claims, 8 Drawing Sheets

206

208

Figure B.2.: Granted US Patent 9 135 699

113



B.2. PATENT APPLICATIONS

B.2. Patent Applications

e US 20160287214 Al, Three-dimensional volume of interest in ultrasound imag-
ing, United States Patent Application
http://www.freepatentsonline.com/20160287214.pdf

114


http://www.freepatentsonline.com/20160287214.pdf

APPENDIX B. PATENTS, INVENTION DISCLOSURES

a9 United States
a2 Patent Application Publication () Pub. No.: US 2016/0287214 A1

Ralovich et al.

US 20160287214A1

(43) Pub. Date: Oct. 6, 2016

(54)

(1)

(72)

@n
(22)

THREE-DIMENSIONAL VOLUME OF
INTEREST IN ULTRASOUND IMAGING

Applicant: Siemens Medical Solutions USA, Inc.,
Malvern, PA (US)

Inventors: Kristof Ralovich, Erlangen (DE);

Tobias Heimann, Erlangen (DE); Wilko

Gerwin Wilkening, Mountain View, CA

(US)

Appl. No.: 14/673,583

(52) US.CL
CPC . A61B 8/483 (2013.01); A61B 8/08 (2013.01);
AG1B 8/5215 (2013.01); AGIB 8/463
(2013.01); AGIB 8/469 (2013.01)

(57) ABSTRACT

A volume of interest is ultrasonically imaged. An object of
interest is automatically located from a volume scan. In one
approach, a geometric bounding box surrounding the object is
found by a classifier. Inanother approach, an option for zoom-
ing to the object is indicated to the user. A scan region is
defined around the object or the bounding box automatically,

Filed: Mar. 30, 2015 . ¢ é
whether in response to user selection of the option or not. The
Publication Classification scanregion is shaped based on the ultrasound scan format, but
is smaller than the volume. The volume of interest defined by
Int. CI. the scan region is used to generate images with a greater
AGIB 8/08 (2006.01) temporal and/or spatial resolution than scanning of the entire
A6IB 8/00 (2006.01) original volume.
30— Initial Scan(s) of Volume
32 ~< Locate Anatomy/Bounding Box
33 = Present Zoom Option
A
34 =] Position Scan Shape around Anatomy/Box
4
36 =~ Scan Volume of Interest
38 =~ Generate Image

Figure B.3.: US Patent Application 2016/028 7214 Al

115



B.3. INVENTION DISCLOSURES

B.3. Invention Disclosures

e Sparse Ultrasound Acquisition with Image-defined 3D ”Volume of Interest”
2014E17199 DE

e Sparse Ultrasound Acquisition with ”Smart” Focus 2014E09822 DE

e Spatial Compounding of 2D and 3D Volume ICE, based on catheter pose track-
ing from Fluoroscopy 2014E09820 DE

e 6DoF Catheter Detection for Intracardiac Echocardiography 2014E05374 DE

e Computational Fluid Dynamics Framework for Large-Scale Simulation in Pedi-
atric Cardiology 2011E27119 US 201127

e Progressive Data Transmission for Anatomical Landmark Detection in a Cloud
2011E22168 US 201122

e Integrated Detection Toolkit (IDTK) for Multiple Object Detection 2011E01050
US 201101

e Integrated Detection Network (IDN) for Pose and Boundary Estimation in Med-
ical Images 2010E25957 US 201026

116



APPENDIX C

Notation and Nomenclature

S; segment 7 in axisymmetric model of arterial tree
Apiso | cross sectional area at diaphragm level
A, coarctation minimum cross sectional area
L. coarctation (pre-operative S7) length
P arterial pressure
q (Q) | flow rate, time-varying (constant, averaged)
t time
x location along centerline
« the momentum-flux correction coefficient
w Womersley number
P) = 1.055 g/cm?, blood density
1 = 4.5 mPa - s, dynamic viscosity
Kr friction parameter (Eq. 3.33)
K, = 1.52, turbulence coefficient (Eq. 3.39)
K, = 1.2, inertance coefficient (Eq. 3.39)
E Young’s modulus
h; wall thickness of segment ¢
0, similarity transform of part o
Tcoa | stenosis rate (morphologic)
Hg heart rate
Py mean arterial pressure
P, (Py) | the systolic (diastolic) cuff pressures (arm)
n number of PC-MR frames (per cardiac cycle)
c pressure wave speed
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