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Abstract

In this dissertation we explore the intersection of computer science and mathematics to address
challenging problems in numerical quantum physics. We introduce, analyze and evaluate novel
methods for the approximation of physical quantities of interest as well as the optimization of
performance criteria in quantum control. These methods are based on techniques from the fields
of tensor networks, numerical analysis and machine learning. Furthermore, we present work
on the relation between machine learning and tensor network methods for the representation
of quantum states.

We introduce a general algorithm which for the first time allows to approximate global
functions Trf(A) of matrix product operators A which represent Hermitian matrices of very
high dimensionality. Following this, we present an analytical analysis of the partial results
computed by the procedure. This analysis leads us to the discovery of a more efficient variant
of the algorithm and we subsequently show that it can be applied to a large class of spin
Hamiltonians in quantum physics. We finally demonstrate how our method yields a novel
strategy to approximate properties of thermal equilibrium states, some of which were so far
inaccessible for numerical methods.

In the second part, we present a novel and broadly applicable method for solving quantum
control scenarios. The method employs a particular class of recurrent neural networks, the long
short-term memory network, to probabilistically model control sequences and optimize these
models with tools from supervised and reinforcement learning. In a first version, we use an
optimization procedure inspired by evolutionary algorithms to train the networks. We demon-
strate in a quantum memory setting that the method can produce better results than certain
analytical solutions. We then improve on these results by introducing a different optimization
strategy based on insights from reinforcement learning known as policy gradient algorithms.
The combination of long short-term memory networks and policy gradient optimization schemes
allows us to tackle a wide variety of control problems, which we demonstrate numerically.

Finally, we show results on the relation between tensor networks and a particular class of
machine learning models, the restricted Boltzmann machine. We find that restricted Boltzmann
machines can be generalized in the tensor network framework and gain insight about their
efficiency in representing states of many-body quantum systems.
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Zusammenfassung

In dieser Dissertation erkunden wir die Schnittstelle von Informatik und Mathematik, um her-
ausfordernde Probleme in der numerischen Quantenphysik zu adressieren. Wir präsentieren,
analysieren und evaluieren neuartige Methoden zur Approximation physikalischer Eigenschaften
sowie der Optimierung von Optimalitätskriterien in der Quantenkontrolle. Diese Methoden
basieren dabei auf Techniken aus den Gebieten der Tensornetzwerke, der numerischen Anal-
ysis und des maschinellen Lernens. Darüber hinaus präsentieren wir Arbeit zur Verbindung
zwischen Methoden des maschinellen Lernens und der Tensornetzwerke im Rahmen der Ap-
proximation von Quantenzuständen.

Wir stellen einen allgemeinen Algorithmus vor, der zum ersten Mal die Approximation von
globalen Funktionen der Form Trf(A) ermöglicht. Dabei ist A hier ein Matrixproduktoper-
ator, der hermitische Matrizen sehr hoher Dimensionalität repräsentiert. Daran anknüpfend
präsentieren wir eine analytische Untersuchung der vom Algorithmus berechneten Teilergeb-
nisse. Diese Analyse führt uns zu der Entdeckung einer effizienteren Variante des Algorithmus
und wir zeigen im Folgenden, dass diese auf eine große Klasse quantenmechanischer Systeme
anwendbar ist. Schlussendlich demonstrieren wir, wie unsere Methode eine neue Strategie
zur Approximation von physikalischen Eigenschaften thermaler Gleichgewichtszustände zulässt.
Einige dieser Eigenschaften waren dabei zuvor unzugänglich für numerische Methoden.

Im zweiten Teil stellen wir eine neue und vielfältig anwendbare Methode zur Lösung von
Quantenkontrollszenarien vor. Diese Methode nutzt eine bestimmte Klasse von rekurrenten
neuronalen Netzwerken, den Langes-Kurzzeitgedächtnis-Netzwerken, um Kontrollsequenzen
probabilistisch zu modellieren. Die Modelle werden dabei mit Werkzeugen aus dem überwachten
und bestärkenden maschinellen Lernen optimiert. In einer ersten Version nutzen wir eine von
evolutionären Algorithmen inspirierte Optimierungsprozedur, um diese Modelle zu trainieren.
Wir demonstrieren in einem Quantenspeicherszenario, dass die Methode bessere Ergebnisse
als bestimmte analytische Lösungen erreichen kann. Daraufhin verbessern wir die Methode
durch die Einführung einer anderen Optimierungsstrategie, welche auf als Vorschriftsgradien-
tenmethoden bekannten Erkenntnissen des bestärkenden Lernens basiert. Die Kombination
von Langes-Kurzzeitgedächtnis-Netzwerken und Vorschriftsgradienten-Optimierungsmethoden
erlaubt es uns, eine hohe Bandbreite von Kontrollproblemen zu adressieren. Dies demonstrieren
wir numerisch.

Zum Schluss präsentieren wir Ergebnisse zu der Beziehung zwischen Tensornetzwerken und
einer bestimmten Klasse von Modellen des maschinellen Lernens, den beschränkten Boltzmann-
Maschinen. Wir finden heraus, dass beschränkte Boltzmann-Maschinen im Tensornetzwerkrah-
menwerk generalisiert werden können und gewinnen Einsichten bezüglich ihrer Effizienz in der
Repräsentation der Zustände von Vielteilchen-Quantensystemen.
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1 Introduction

But they are useless! They can only give you answers.

- Pablo Picasso on computers in 1964

Although the second part of the above statement remains correct in essence even more than
50 years after it was originally made, this has not stopped computers from deeply affecting
almost every aspect of human society and inspiring many profound questions since then. Their
ability to ‘answer questions’ has indeed been put to use with great success in areas ranging from
industrial manufacturing over communication, medicine and transportation to politics, to only
name a few. Even art and computers have started to engage in a symbiotic relationship. But
most importantly, the computational paradigm has permeated science, especially the natural
and formal sciences, and proved to be an indispensable enabler of insight in the face of ever
more complex and numerous data generated by experiments and predictions made by theory. It
is thus considered a fact that scientific computing and data science have established themselves
as the third pillar of science, next to the traditional theory and experiment.

Among the various fields of science, quantum machanics (QM) can safely be regarded as
one of the most challenging and fascinating disciplines as its underlying phenomena are both
utterly alien to the human mind, evolved to understand Newtonian mechanics, and at the
same time among the most accurately demonstrated in all of physics. Even more so, quantum
physics poses a great challenge for computational scientists. The main reason for this is that the
amount of information needed to be stored and processed to describe a quantum system grows
exponentially with the number of particles in the system. The required storage capacity and
processing power thus exceeds the capabilities of even the most powerful computers available
today by orders of magnitude already for systems of moderate size. To counter this quantum
instantiation of the curse of dimensionality, computational methods thus need to represent and
process quantum physical systems in a compressed form or be able to make accurate predictions
about them based only on a fraction of the potentially observable information.

The approach of compressing the required information has in recent years been implemented
very successfully by tensor network (TN) methods. TNs are based on the insight that it is
possible to decompose the matrices and vectors describing quantum systems into sets of smaller
tensors which, combined in a certain way, allow for the retrieval of the original information.
These tensors generally each represent the information of an individual particle in the system.
Their dimensionality in an exact representation is hereby determined by the inter-particle
correlations in that system. Reducing the dimensionality of a tensor then corresponds to
ignoring certain information for the benefit of a more efficient representation and constitutes
a lossy compression. It has been found that TNs allow the accurate description of physically
interesting classes of quantum states and some of their properties and dynamics with a number
of parameters only polynomial in the number of particles. TNs thus provide a way to break or
at least mitigate the curse of dimensionality for physically relevant problems, allowing them to
be treated computationally. Hence, at the time of this writing TNs pose the most successful
approach to numerically simulating many-body quantum systems.

Machine learning (ML) methods on the other hand have become an important numerical tool
for problems of automated statistical inference, pattern recognition, optimal control, clustering
and more but have so far not been used extensively in numerical QM. An ML problem can be
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1 Introduction

generally described by specifying an error function and a class of solution functions over which
an optimization is performed based on available data. This training data is assumed to be
obtained from a data-generating process or probability distribution. At the core of the solution
to the ML problem then lies optimizing the function parameters given the training data such
that the optimized parameters perform well for all potentially observable data generated by
the same process. This property is commonly referred to as generalization and discriminates
ML from pure optimization.

As we have seen above, an algorithm for quantum simulation must in general be able to
compute accurate results from an at most polynomial subset of an exponential space of pa-
rameters or data in at most polynomial time. A similar problem can also be found in the
related task of numerical quantum control. Here, the problem of simulating the time evolu-
tion of a physical system often representing an experiment is combined with an optimization
over a space of sequences of parameters controlling the time evolution. This sequence space
is at least exponential in the number of discrete time steps, independently of the size of the
physical system whose simulation is challenging in itself for the above reasons. Despite this,
the algorithm should be of at most polynomial complexity in the number of time steps and
number of particles to be generally applicable. These considerations illustrate that a certain
form of generalization is required for computationally feasible quantum simulation and control
to perform well.

There is thus an alignment of the challenges in numerical QM with the problems of interest
in ML which suggests that it is worthwhile to investigate ML as a promising candidate for
tackling computational quantum problems. At the same time, the particular nature of quantum
computation could potentially lead to the development of novel and possibly superior quantum
ML (QML) algorithms. This mutually beneficial relationship has been recognized by a growing
number of physicists and computer scientists in recent years, leading to the birth of the field of
quantum machine learning. At the time of this writing the field is still in its infancy but shows
great promise from our perspective.

As we have seen, obtaining a computationally feasible representation of a system or its
state poses a major challenge in computational QM. However, such a representation usually
is only the first step as one is often interested in approximating certain properties of a given
system or state. One prominent example is the approximation of the lowest eigenvalue or
ground state energy of a system which can be cast as a variational optimization problem.
Many other properties of interest however take the form of a function of the system or its
state that generally can not successfully be treated as an optimization problem. These include
(properties of) thermal states in equilibrium or time evolved states and correlation functions as
well as norms, distances and entropies. Although in certain cases symmetries can be exploited
to project a system onto a space that is small enough to directly compute any function, this is
not the case in general as not all physical systems exhibit such symmetries. For some of these
functions TN approximation algorithms have been developed but many of them so far remain
infeasible to approximate. This holds especially true for functions which are global in the sense
that they take into account information about the entire system and not, for instance, only
pairs of particles.

In addition to the approximation of functions of quantum states and systems, we have seen
that in quantum control one needs to optimize certain parameters of a system’s time evolution.
This optimization over control sequences can for instance be implemented as the gradient-
based optimization of the individual control parameters when an exact mathematical model
of the quantum system is available and it is feasible to compute the related time evolution
operators. While this approach works well for certain problem domains, it can not always be
assumed that an exact analytical expression of the system is possible to obtain, especially for
complex experimental setups. If in this case a simplified analytical model is employed for the

2
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Figure 1.1: Figure (a) illustrates the position of the individual publications (A-F, following the order of
the appendix) contained in this thesis and the thesis (T) itself in the triangle between com-
puter science (CS), math (M) and quantum mechanics (QM). In Figure (b), we show their
location between machine learning (ML), numerical analysis (NA) and tensor networks
(TN).

optimization or an analytical solution of such a model is used directly, the obtained solutions
then likely are sub-optimal. In addition to this, the exact computation of the time evolution
operators based on an analytical description of a system can only be done for small system
sizes and so far it thus remains an open problem to perform numerical quantum control of
many-body systems.

In this thesis, we aim to advance the state of the art in computational QM by introducing,
analyzing and evaluating novel methods for the approximation and optimization of functions
in quantum simulation and control. More concretely, in a first line of work we introduce the
first TN method for the approximation of a general class of functions commonly encountered
in QM. We provide an analytical analysis of it and discover a more efficient version of the
method for particular inputs which we demonstrate to occur in QM. Finally, we demonstrate
how the method can be applied to approximate several physically interesting quantities of
particular systems to capture signals of thermal phase transitions and analyze inter-particle
correlations. In a second line of work we explore the frontier of numerical QML. In this
context we introduce a method for ML-based quantum control which relies on the probabilistic
modelling of control sequences with an established class of recurrent neural networks. We
present two variants of the method based on different training algorithms for these networks.
We show how they can be used to solve relevant control problems and demonstrate that in
certain cases they achieve better results than analytically derived solutions based on simplified
assumptions. Finally, we present work on the connection between certain ML models and TNs
which can both be used to approximate states of many-body systems. For our methods to be
able to address the issues pointed out above, they rely on a minimized set of assumptions about
the particular problems. As we demonstrate, the general methods can be easily combined with
domain knowledge to tackle relevant problems which in some cases hitherto have not been
possible to adress numerically at all.

We would like to point out that the work presented here is highly interdisciplinary as it
combines methods from the areas of TNs, numerical analysis (NA) and ML to address relevant
problems in numerical QM. From a different perspective, it is positioned between the fields of
computer science, mathematics and quantum physics. In Figure 1.1(a) and (b), we illustrate
the thematic orientation of this thesis and the individual works as shown in the appendix for
the reader’s information.
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1 Introduction

The scientific contribution of this thesis is three-fold. Firstly, by introducing novel numerical
methods it broadens the range of problems that can be tackled numerically in QM. It also
shows how to solve certain problems so far treated with tailored solutions by more general
methods. Secondly, it contributes to establishing the field of QML by providing evidence that
the automated optimization of quantum control parameters can be successfully tackled with
ML techniques. Thirdly, this thesis permeates the walls of ignorance unfortunately often found
even between related scientific disciplines by introducing concepts from computer science and
numerical mathematics to the numerical QM community. It additionally tries to promote QM
as an interesting numerical application.

The rest of this work is structured as follows: in Chapter 2, we will briefly introduce quantum
physics and provide more rigorous explanations for the concepts more casually used above. This
is followed by a short introduction to the relevant aspects of TNs in Chapter 3 and to Krylov
algorithms and their connection to Gauss quadrature in Chapter 4. Chapter 5 introduces the
relevant aspects of ML. We conclude with a discussion of the main results of this thesis against
the background of related work in Chapter 6. The Appendices A-F finally show the publications
this dissertation is based on.
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2 Quantum physics

In this chapter we will provide a brief introduction to some of the core concepts of quantum
physics. As befits the numerical nature of this thesis, we will introduce these concepts from
a linear algebra perspective and assume systems to be of finite size. For a more thorough
introduction to quantum physics we refer the reader to the standard literature [1, 2].

To be notationally compatible with QM literature, we will in the following make use of the
Dirac notation. In our case then |ψ〉 denotes a complex column vector ψ, 〈ψ| stands for its
conjugate transpose and 〈ψ|ψ′〉 is the inner product of two vectors |ψ〉 and |ψ′〉. The outer
product is consequentially denoted as |ψ〉 〈ψ′|.

2.1 Quantum states

We begin by defining the state or wave function |ψ〉 of a d-level particle s. In this thesis d will
be referred to as the physical dimension. Now, |ψ〉 is an element of the d-dimensional complex
Hilbert space Hd that is normalized such that it holds

〈ψ|ψ〉 = ‖ψ‖2 = 1. (2.1)

This state can naturally also be written as a linear combination of basis states

|ψ〉 =
∑

s

ψ(s) |s〉 (2.2)

where the sum runs over all d basis states s can be in. The elements ψ(s) of |ψ〉 are commonly
referred to as the amplitudes of the state. Unless explicitly stated otherwise, we will in this
thesis always assume d = 2 and s to be a spin-1/2 particle. Such 2-level particles also play an
important role in quantum computation where they are called quantum bits or qubits. While
most of the results of this thesis are independet of d, some results of the works in Appendices B
and F assume d = 2.

Now, the next logical step is to define the state |ψ〉 of a system of L particles s1, s2, · · · , sL.
As before, |ψ〉 is a normalized element of complex Hilbert space but now we have that

|ψ〉 ∈ H1 ⊗H2 ⊗ · · · ⊗ HL = H⊗L (2.3)

where the Hi are the local Hilbert spaces of the spin particles si, ⊗ denotes the Kronecker
product and we have omitted the subscript d for the sake of clarity. This state can again be
expressed in terms of its basis and the bases of the local Hilbert spaces as

∑

s1,s2,··· ,sL
ψ(s1, s2, · · · , sL) |s1, s2, · · · , sL〉 (2.4)

where |s1, s2, · · · , sL〉 = |s1〉 ⊗ |s2〉 ⊗ · · · ⊗ |sL〉 and the sum runs over all spin particles si. The
above formulation allows us to briefly introduce three important concepts in quantum physics.

Firstly, we see that the state of a system with L spin particles is formally described by a
complex vector of dimension 2L. The exponential growth of the Hilbert space in the number of
particles poses the main challenge for computational QM as even simply storing a quantum state

5



2 Quantum physics

for systems with L � 20 is computationally infeasible. At the same time, many interesting
phenomena in quantum physics can only be studied for relatively large systems as they in
principle only occur in the thermodynamic limit L → ∞. This necessitates the study of
approximative computational methods in numerical quantum physics.

Secondly, it was shown above that the Hilbert space of a system consisting of L particles
corresponds to the Kronecker product of the L local Hilbert spaces. As can be easily verified,
it is however not true that all states in H⊗L have the form

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψL〉 (2.5)

of a Kronecker product over local states |ψi〉. Such states are fully defined by the states of
the individual particles and are due to their form called product states. This in turn implies
that those states in the Hilbert space that do not take this form must also contain information
about inter-particle correlations. These states are called entangled states and play a central
role in quantum physics and quantum technology. The term entanglement hereby refers to the
inter-particle correlations existing in such states.

Thirdly, the requirement for states in quantum physics to be normalized corresponds to the
fact that the squared amplitudes ‖ψ(s1, s2, · · · , sL)‖2 are usually interpreted as probabilities for
the system to be in the respective basis state. The squared complex amplitudes thus constitute
a discrete probability distribution over the set of basis states. If this distribution is not trivial,
i.e. ψ(s1, s2, · · · , sL) < 1∀s1, s2, · · · , sL, then the system is said to be in a superposition of
states.

While the above definition of quantum states already allowed us to briefly elaborate on some
fundamental concepts in QM, we now need to introduce a generalization of states relevant for
this thesis, called density operators. A density operator or mixed state is defined as

ρ =
∑

j

pj |ψj〉 〈ψj | (2.6)

where it holds that pj ∈ R, pj ≥ 0 and
∑

j pj = 1. The states |ψj〉 are in this context called
pure states and correspond to states of one or more particles as defined above. By writing ρ
in an orthonormal basis one obtains the corresponding density matrix. Density operators can
thus be perceived as defining a probability distribution over pure states. For a measurement,
in QM represented by a Hermitian operator O, the expected value of its outcome is then given
by

〈O〉 =
∑

j

pj 〈ψj |O |ψj〉 = TrρO. (2.7)

Because of their probabilistic nature, mixed states described by density operators can be an-
alyzed with analytical tools also known in classical information theory such as for instance
entropy measures. An important property of both pure and mixed states is the scaling of the
entanglement between subsystems. If a system is split into two parts and the entanglement
between these two parts grows at most proportionally with the size of the boundary between
these parts, it is said to exhibit an area law scaling [3, 4]. If it however scales with the volume
of the boundary, it is said to obey a volume law. This notion can be made more precise in
terms of the von Neumann entanglement entropy, which however exceeds the scope of this
chapter. From this description it should only become clear intuitively that a state following an
area law scaling requires less information to be described accurately than one obeying volume
law scaling. Indeed, TN techniques implicitly rely on an area law scaling for an efficient and
accurate representation of a state to be possible [5, 6].

6



2.2 Quantum systems

2.2 Quantum systems

Having described states of quantum systems, we now turn to the description of the systems
themselves. A system in quantum physics is described by a matrix, called the Hamiltonian
matrix or simply Hamiltonian, which for an L-particle spin system takes the form of a Hermitian
matrix H ∈ C2L×2L . The Hamiltonian describes the energy configuration of the given system
and determines the interaction between its particles. One well-known example of a Hamiltonian
describing a string of spin particles with nearest-neighbour interactions is the Ising Hamiltonian
given by

H = J
L−1∑

i=1

I⊗i−1 ⊗ σx ⊗ σx ⊗ I⊗L−i−1 + g
L∑

i=1

I⊗i−1 ⊗ σz ⊗ I⊗L−i (2.8)

+ h
L∑

i=1

I⊗i−1 ⊗ σx ⊗ I⊗L−i (2.9)

where J, g and h are real scaling constants or field strengths, I is the identity and σx,y,z denote
the Pauli matrices

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

Note that in the physical literature, the identity matrices are typically omitted for convenience.
In this model, the first term of the sum corresponds to the interaction between two neighbouring
particles on the string whereas the last two terms only affect the individual particles. Although
the Ising Hamiltonian is only one particular case, it suffices to illustrate the structure of sums
of Kronecker products of local Hamiltonians that is common to Hamiltonians in QM. This
structure reflects the tensor product structure of the underlying Hilbert space and in some
cases allows for the efficient and exact expression of Hamiltonians in TN form [6].

As we have stated above, a Hamiltonian describes the energy configuration of a system. This
is made explicit by the famous time-independent Schrödinger equation

H |ψ〉 = E |ψ〉 (2.10)

where E is the total energy of the system. From a mathematical perspective, this equation
is a standard eigenvalue problem. It reflects the fact that H as a Hermitian matrix admits a
spectral decomposition

H =
∑

i

Ei |ψi〉 〈ψi| (2.11)

in terms of real eigenvalues or energies Ei and eigenstates |ψi〉. Then, the time-independent
Schrödinger equation states that the action of the Hamiltonian on one of its eigenstates is
equal to the scaling of that state by its energy. The eigenstate corresponding to the lowest
energy E0 is of particular interest in quantum mechanics and is referred to as the ground state.
An important property of Hamiltonians thereby is, whether, roughly speaking, there exists
a finite difference ∆ between the ground state energy E0 and the energy of the first excited
state E1, independently of L. Such Hamiltonians are referred to as gapped. A common way of
approximating the ground state and its energy is to make use of the relation

〈ψ|H |ψ〉
〈ψ|ψ〉 ≥ E0 (2.12)

and minimize over |ψ〉. This is known as the variational method of quantum physics and poses
a major application of TNs [7, 8].
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2 Quantum physics

Until now we have discussed several static properties of quantum systems and states but
left open the question of how quantum systems evolve in time. The answer to this question is
provided by the time-dependent Schrödinger equation

ih
δ

δt
|ψ(t)〉 = H |ψ(t)〉

where h is Planck’s constant and t denotes the time. Solving the equation for |ψ(t)〉 yields the
quantum time evolution

|ψ(t)〉 = U(t) |ψ(0)〉

with the unitary time evolution operator U(t) = e−itH/h. In the rest of this thesis, we will for
convenience set h = 1. The equation obviously implies that the evolution of a quantum system
in time is reversible, which for instance has severe effects on the way quantum computation
must be implemented.

2.3 Quantum control

We will now use this insight to give a short introduction to quantum control as it is relevant for
the work presented in appendices D and E. Here, we assume time to be discretized with time
steps ∆t and total time T . In quantum control, one then assumes to be able to control the time
evolution by application of in our case time-independent control Hamiltonians H1, H2, · · · , HC ,
which yields the controlled time evolution

|ψ(T )〉 = U(∆t, cN ) · · ·U(∆t, c2)U(∆t, c1) |ψ(0)〉

where N = T/∆t, U(∆t, ck) = e−i∆t
∑C

j=1 ckjHj and the ckj are time-dependent scaling constants
for H1, H2, · · · , HC . It will however in general not be the case that we have full control over
the system, for instance because of noise effects or because we expose the system to a constant
magnetic field. Such effects can be modelled by introducing a noise or drift Hamiltonian H0.
In this thesis, we assume the drift Hamiltonian to be time independent which leads us to the
final formulation

|ψ(T )〉 = U(∆t, cN , H0) · · ·U(∆t, c2, H0)U(∆t, c1, H0) |ψ(0)〉

of the controlled time evolution with U(∆t, ck, H0) = e−i∆t(H0+
∑C

j=1 ckjHj). Note that it is also
possible to derive a controlled time evolution for density operators [9], which we however omit
here for the sake of brevity.

Having obtained a precise formulation of the controlled time evolution, we need to formalize
the actual control problem. It is natural to assume that we start with an initial state |ψ(0)〉 or
the respective density operator ρ(0) and would like to steer it towards a target state |ψ∗〉 or ρ∗.
This requires us to define some distance function or measure of similarity between the intial
and target state which can be optimized over the control parameter space. A natural candidate
for this is the overlap as given by the inner product between the states, which is defined as

S(ψ∗, ψ(T )) = 〈ψ∗|ψ(T )〉 orS(ρ∗, ρ(T )) = Trρ∗†ρ(T )

respectively for Hermitian operators where † denotes the conjugate transpose. The states
|ψ(T )〉 and ρ(T ) denote the result of the controlled time evolution. For a non-Hermitian
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2.3 Quantum control

density operator, one can use only the real part given by Re(S(ρ∗, ρ(T ))). Using this figure of
merit or error function, a formal definition of the control problem is then given by

max
{ckj}

S(ψ∗, ψ(T, {ckj}) or max
{ckj}

S(ρ∗, ρ(T, {ckj})

where we emphasize the resulting state’s dependence on the control parameters. This problem
statement is general enough to cover all control tasks considered in this dissertation.
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3 Tensor networks

This chapter will provide a short introduction to some concepts from the field of tensor networks.
Since in this thesis we only deal with particular classes of TNs called matrix product states
(MPS) and matrix product operators (MPO), and certain generalizations of them, we will
mainly focus our explanation on these. For a general introduction, we refer the interested
reader to the overview articles in Refs. [10, 11, 12, 13]. In this chapter, we will take a numerical
perspective and hence follow standard mathematical notation.

3.1 Basic concepts

Before we introduce MPS and MPO however, we will provide some brief background on tensor
networks in general. To build up an intuition for TNs, it is instructive to familiarize oneself
with the graphical notation used in the field to describe basic linear algebra operations on
scalars, vectors, matrices and tensors of higher order. Figure 3.1 shows the notation for these
linear algebra objects. The important aspect hereby is that the indices of a given tensor are
depicted as lines going out from the square or circle representing the object itself. These lines
are colloquially referred to as the legs of a tensor. Based on this notation for tensors, it is
easy to represent the summation over a common index. This summation is in TN terminology
referred to as the contraction of an index shared between two tensors. Figure 3.2 illustrates
the standard matrix-vector and matrix-matrix products as well as the contraction of multiple
indices between multiple tensors. The last contraction also is an example of a small tensor
network which represents a tensor Dmik by a network of three tensors Anij , Bljk and Cmnl such
that

Dmik =
∑

j,l,n

AnijBljkCmnl. (3.1)

Looking at the graphical representation of this sum, it then also becomes clear why it can be
called a tensor network as the contractions can be identified with a graph. In this graph, the
set of vertices V then corresponds to the set of tensors in the network and the set of edges
E contains all contracted indices. In the above example, this would yield V = {A,B,C} and
E = {j, l, n}. The indices not contained in E are often called the open indices and constitute
the indices of the resulting tensor D.

A natural question arising from these explanations is the question of how to find the rep-
resentation, i.e. a decomposition, of a given tensor. While there exist several algorithms to
find a decomposition for different classes of TNs most of these rely on two core routines,
the matricization of a tensor and the singular value decomposition (SVD). Because of their
central role for computing and understanding tensor decompositions we will now briefly de-
scribe both concepts. For a tensor Ai1,i2,··· ,iL ∈ Cn1×n2×···×nL , the mode-k matricization
Mat(Ai1,i2,··· ,iL , k) ∈ Cnk×n1n2···nk−1nk+1···nL is given by

Mat(Ai1,i2,··· ,iL , k) = Aik,(i1,··· ,ik−1,ik+1,··· ,iL) =
∑

i1,i2,··· ,iL
ai1,i2,··· ,iLeike

T
i1,··· ,ik−1,ik+1,··· ,iL (3.2)

where ei1,··· ,ik−1,ik+1,··· ,iL = ei1⊗· · ·⊗eik−1
⊗eik+1

⊗· · ·⊗eiL and ei are the columns of the identity
matrix. The matricization thus provides a tool to express a tensor in terms of matrices, which
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3 Tensor networks

𝑐 𝐴𝑖

𝐴𝑖𝑗 𝐴𝑖𝑗𝑘

Figure 3.1: The graphical notations for tensors with zero, one, two or three indices from the top left
to the bottom right. Higher numbers of indices are depicted following the same scheme.
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Figure 3.2: Examples of the graphical notation for contractions. The top left contraction corresponds
to the standard matrix-vector product in linear algebra, whereas in the top right the
matrix-matrix product is shown. In the bottom row, the contraction of a small tensor
network is depicted.

for instance allows to perceive the contraction over an index ik as the multiplication of mode-k
matricized tensors. This multiplication is referred to as the k-mode product. The matricization
also gives rise to the concept of the multilinear rank (r1, r2, · · · , rL) of a tensor Ai1,i2,··· ,iL ,
which is simply defined in terms of the matrix rank as rk := rank(Mat(A, k)), where we have
omitted the indices for clarity. While there also exists a well-defined concept for the rank of a
tensor [14], the concept of the multilinear rank is of high importance for the computation of
tensor decompositions.

Being able to express tensors in matrix form leads us to the SVD. The SVD of a matrix
A ∈ Cm×n is defined as

A = UΣV ∗ (3.3)

with U ∈ Cm×m and V ∈ Cn×n being unitary matrices and Σ ∈ Rm×n being a rectangular
diagonal matrix with min(m,n) non-negative singular values σi on its diagonal. While the
SVD is of great importance in many numerical fields, in the context of tensor networks it poses
an elemental building block for the decomposition of a matrix or a matricized tensor. This
is due to the fact that a matrix A can be easily decomposed into two matrices B and C by
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3.2 Matrix product states and operators

Matrix Product State

Matrix Product Operator

Matrix Product Operator
x

Matrix Product State

Figure 3.3: Graphical representations of an MPS, an MPO and MPO-MPS multiplication correspond-
ing to matrix-vector multiplication. The top row shows the MPS, the middle row depicts
the MPO and in the bottom row the multiplication is shown.

computing its SVD and defining, e.g., B = U and C = ΣV ∗. By restricting the decomposition
to only consider the r largest singular values with the respective parts of U and V , one then
obtains a truncated expression of rank r that is optimal with respect to the Frobenius norm.
This property is known as the Eckart-Young-Mirsky Theorem [15]. The error of the truncation
is determined by the magnitudes of the ignored singular values. This fact can be used to
dynamically choose r when computing tensor decompositions. There exist generalizations of
the SVD to tensors of higher order as most importantly the higher-order SVD [16] (HOSVD)
which is based on the Tucker decomposition [17]. For the HOSVD, it is however the case that
diagonality of Σ can not be guaranteed and only a weaker form of the Eckart-Young-Mirsky
Theorem holds. As even the computation of the HOSVD relies on the repeated application of
it, the SVD thus forms the backbone of many tensor decomposition schemes. In the context
of QM it can furthermore be shown that the SVD is equivalent to the Schmidt decomposition,
a measure for the entanglement of two systems. This equivalence provides justification for the
application of the SVD in quantum physical tensor networks.

3.2 Matrix product states and operators

Following this more general introduction, it is now time to present MPS and MPO with their
most important properties. As the name suggests, matrix product states and matrix product
operators constitute a class of TNs designed to represent and approximate high-dimensional
vectors and matrices. At the time of this writing, MPS and MPO approaches provide the
foundation for some of the most successful simulation algorithms in numerical quantum many
body physics. They are also used with success as analytical tools for the study of such systems.
In quantum physics, MPS and MPO were first recognized to be useful numerical tools in the
context of the density matrix renormalization group [7, 8], the most successful algorithm for
the approximation of low-energy states today. Apart from the prime example of approximating
ground states we already briefly mentioned in Chapter 2, e.g., also thermal states in equilibrium
can be successfully tackled [18, 19] with MPS/MPO methods. However, an equivalent concept
has also been independently developed in numerical mathematics and is there referred to as
the tensor train (TT) decomposition [20]. Although we take a primarily numerical perspective
in this chapter, we will mostly make use of the terminology used in numerical many-body
quantum physics for the sake of compatibility with QM literature.
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3 Tensor networks

Now, an MPS describes the decomposition of a vector v ∈ CN such that

vi = vi1...iL = TrAi11 A
i2
2 · · ·AiLL (3.4)

where we have split up the index i into L sub-indices i1, . . . , iL of dimension d. The tensors
A1, . . . , AL ∈ Cd×D×D are called the core tensors of the matrix product state. While the Ai
in this generic formulation do not necessarily hold any interpretable information, in quantum
physics each core tensor represents an individual particle on a ring or string. In fact, the
dimension d then is precisely the physical dimension of the particles we have discussed in the last
chapter. From the physical perspective, D controls the possible amount of information shared
between neighbouring particles and is correspondingly called the bond dimension. The physical
dimension is accessed by the indices ij of the Aj . In numerical mathematics or computer science,
the approach of splitting up the index i is a common way to obtain the MPS representation of
a vector.

Above we have introduced the Ai to be of equal dimension. This naturally must not be
the case as, e.g., in a quantum system the amount of entanglement must not be equal among
all pairs of particles. Likewise, not all particles must be of equal type such that in principle
also d can vary within an MPS. For the sake of simplicity and without loss of generality, we
however assume D = maxiDi for the potentially differing bond dimensions Di of the Ai. We
furthermore assume all core tensors to have the same physical dimension, which is also justified
by the fact that in this thesis we only consider systems of spin-1/2 particles. Note that we
have also assumed here that N = dL, which, as we have seen in Chapter 2, occurs naturally
in quantum physics. This relation provides the basis of the ability of MPS to represent very
high-dimensional vectors.

One can also define a slightly different version of matrix product states such that

vi = vi1...iL = Ai11 A
i2
2 · · ·AiLL (3.5)

where A1 ∈ Cd×1×D and AL ∈ Cd×D×1. From a physical perspective, this slightly simpler
representation corresponds to a system with oben boundary-conditions (OBC), i.e. a string of
particles. The form shown in equation 3.4 consequentially describes a system with closed or pe-
riodic boundary-conditions (CBC or PBC), hence forming a ring. Comparing both expressions,
it also becomes clear that OBC poses a special case of PBC. If not explicitly stated otherwise,
we will in this work always assume open boundaries. Our results are in general unaffected
by this assumption. It holds for both kinds of MPS that a given element of the vector v is
represented by a sequence of matrix multiplications. This explains the names of matrix product
states and tensor trains.

Using equation 3.5, we can write the entire vector v as

v =

d∑

i1,...,iL

(Ai11 A
i2
2 · · ·AiLL ) (ei1 ⊗ ei2 ⊗ · · · ⊗ eiL) (3.6)

=

D∑

k2,...,kL−1

(
d∑

i1

Ai11,k2
ei1

)
⊗
(

d∑

i2

Ai22,k2k3
ei2

)
⊗ · · · ⊗




d∑

iL

AiLL,kL−1
eiL


 (3.7)

=

D∑

k2,...,kL−1

u1,k2 ⊗ u2,k2k3 ⊗ · · · ⊗ uL,kL−1
(3.8)

where the ej again refer to the jth columns of the identity matrix and the subscripts kj and

kj+1 correspond the row and column indices of the matrices A
ij
j . From this expression, it
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3.3 Properties of matrix product states and operators

becomes clear that MPS do in fact exhibit the same tensor product structure we already found
in quantum mechanics. For instance, it is easy to see that an MPS with a bond dimension of
D = 1 is a product state as defined in Chapter 2. This also illustrates the connection between
the bond dimension of an MPS and the entanglement of the represented state. Furthermore,
this representation of MPS allows for a more easy comparison with other tensor decompositions
in numerical computer science and mathematics, such as the canonical polyadic decomposition
(CPD) [14].

We now move on to the representation of matrices as matrix product operators. To represent
a matrixB ∈ CN×N as an MPO, the OBC MPS decomposition introduced above can be adapted
in a straight-forward fashion such that

Bij = Bi1...iLj1...jL = Ai1j11 Ai2j22 · · ·AiLjLL (3.9)

where the two indices i and j have again been split up and we thus have that A1, . . . , AL ∈
Cd×d×D×D. In a direct generalization of the vector-case, one can now also express the entire
matrix as

B =

d∑

i1,...,iL,j1,...,jL

(Ai1j11 Ai2j22 · · ·AiLjLL ) · (ei1 ⊗ ei2 ⊗ · · · ⊗ eiL)(eTj1 ⊗ eTj2 ⊗ · · · ⊗ eTjL) (3.10)

=
d∑

i1,...,iL,j1,...,jL

D∑

k2,...,kL−1

(Ai1j11,k2
Ai2j22,k2k3

· · ·AiLjLL,kL−1
) · (ei1eTj1)⊗ (ei2e

T
j2)⊗ · · · ⊗ (eiLe

T
jL

) (3.11)

=
D∑

k2,...,kL−1

U1,k2 ⊗ U2,k2k3 ⊗ · · · ⊗ UL,kL−1
(3.12)

with ej again being jth column of the identity matrix. However, the same expressions can also
be derived for other product bases as, e.g., the Pauli basis. In fact, several spin Hamiltonians
can be expressed exactly in MPO form with a small bond dimension of for instance only D = 2
or D = 3 [21, 6].

3.3 Properties of matrix product states and operators

Based on the above equations one can relatively easily derive expressions for basic linear algebra
operations like the multiplication with a scalar, addition, the inner product or the matrix-vector
product. In Figure 3.3 we depict an MPS and MPO in the graphical notation introduced before
and show the tensor network corresponding to the multiplication of the MPO onto the MPS.
Performing an addition or the multiplication of an MPO onto an MPS exactly however increases
the bond dimension D of the representation. Adding two MPS or MPO with bond dimensions
D and D′ results in an MPS or MPO with bond dimension D′′ ≤ D + D′. In case of the
multiplication it holds D′′ ≤ D ·D′ [10]. This is a direct consequence of the expressions for the
respective operations.

From the above discussion it has also become clear that the bond dimension D is the critical
factor determining the expressive power of a given MPS or MPO. While it is in principle always
possible to represent a vector or matrix exactly by an MPS or MPO, the bond dimension
required for this might in the worst case be exponential in L and go up to dbL/2c for MPS [22].
This implies that for a limited maximal value of D, not all vectors and operators can be
expressed exactly anymore. For these vectors and operators, the representation as MPS or
MPO hence gives rise to approximation errors. This case of an approximative represention is
then referred to as the representation with a truncated bond dimension. When appropriate,
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3 Tensor networks

we will indicate that a vector v or matrix B is approximated using a bond dimension D by
writing v[D] and B[D] respectively. Still, for many physically interesting states and operators
it was discovered that matrix product states and operators yield good approximations for
D ∈ O(poly(L)) [5, 18, 19]. Such D leads to a total number of parameters LdD2 ∈ O(poly(L))
for MPS and Ld2D2 ∈ O(poly(L)) for MPO in contrast to dL or d2L for the entire respective
vector or matrix. In this context, properties such as the area law discussed in the last chapter
then become important.

Because of their ability to efficiently approximate relevant physical states to a good degree,
MPS and MPO constitute the most successful TN approaches in numerical QM. Note that a
polynomial complexity would not necessarily be considered efficient in computer science. But
since in this case the actual complexity is exponential, we find it justified to make use of the term
in this thesis. We would also like to point out that there is active research in the generalization
of the above approaches to two or three dimensions. These approaches however face the major
problem that already the contractions necessary to approximate states are infeasible to perform
exactly [23]. We will thus and in the interest of brevity not comment further on this topic.

Because of their importance, several algorithms have been introduced in both the numerical
and physical community that try to find optimal and canonical MPS or MPO representations
for a given D. A general scheme that most successful methods follow hereby is to perform the
optimization of the given MPS or MPO with respect to a certain error function in terms of local
updates. Starting with the left- or right-most core tensor Ai, these methods update the current
tensor (or two tensors in some cases) with all other core tensors being treated as constants.
Then, they move on to the next respective tensor, perform the update and continue in this
way until they reach the other end of the chain. The complete iteration over all core tensors
is called a sweep and typically an algorithm sweeps back and forth until some convergence
criterion is met. Because all except the current one or two tensors are assumed fixed, these
algorithms typically allow for an efficient implementation in a dynamic programming style.
Providing a more thorough introduction to the various algorithms unfortunately lies outside
the scope of this chapter and thus we again refer the interested reader to the overview articles
[10, 11, 13, 12].
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4 Krylov methods

As they play an important role in this thesis, we will in this chapter explain the most relevant
aspects of the Lanczos and global Lanczos algorithms as examples of Krylov methods. We will
again take here a numerical perspective, underlined by use of mathematical notation.

4.1 Lanczos algorithms

Krylov algorithms constitute a well-established method in several numerical domains including
numerical quantum physics and are used among other things to solve linear systems [24, 25, 26],
find eigenvectors [27, 28, 29, 30] or approximate the time evolution of a quantum state [31, 32].
The general scheme of these algorithms is that for a given matrix A ∈ CN×N and an initial
vector u ∈ CN , they iteratively build up an orthonormal basis UK = [u1, u2, . . . , uK ] ∈ CN×K
of the Krylov subspace KRK = {u,Au,A2u, . . . , AK−1u}. Here, K denotes the dimension of
that space. Then, the projection of A on KR can be used to approximate various properties of
A. We will now make this notion more precise by introducing the Lanczos algorithm and then
later generalize our findings for the global Lanczos algorithm.

The Lanczos algorithm constitutes a special type of the Krylov algorithm in that it assumes A
to be Hermitian and employs the Gram-Schmidt orthogonalization algorithm to construct UK .
While constructing the basis UK , the algorithm simultaneously builds up a matrix TK ∈ RK×K
given by

TK =




α1 β2 0

β2 α2
. . .

. . .
. . . βK

0 βK αK



, (4.1)

with αi and βi being defined by lines 4 and 10 in Algorithm 1. With these definitions, it then
directly follows from the orthonormality of UK and the hermiticity of A that

U∗KAUK = TK (4.2)

where U∗K denotes the conjugate transpose of UK . From this relation we then obtain that A is
similar to TN , where TN is the tridiagonal matrix of full dimension N . This is an important
insight, as it shows that the Lanczos algorithm can be perceived as computing a projection
of A onto a lower-dimensional space. It also provides some intuition for the fact that the
eigenvalues, also called spectrum in this thesis, of A are approximated by the eigenvalues of
TK . These eigenvalues are also referred to as the Ritz values of A [33]. We would also like to
point out here that TK ∈ RK×K must hold since the βi are norms and the αi on the diagonal
must also be real-valued since A is Hermitian and similar to TN .
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4 Krylov methods

Algorithm 1: Lanczos Algorithm

Input : Matrix A ∈ CN×N , Starting Vector u ∈ CN , Number of Dimensions K
1 u0 ← 0 ;
2 v0 ← u ;
3 for i← 1; i ≤ K do
4 βi ← ‖vi−1‖ ;
5 if βi = 0 then
6 break ;
7 end
8 ui ← vi−1/βi ;
9 vi ← Aui − βiui−1 ;

10 αi ← u∗i vi ;
11 vi ← vi − αiui ;

12 end
Output: Orthonormal Basis UK ∈ CN×K , Tridiagonal Matrix TK ∈ RK×K

To gain further insight, we now define the extended version T̂K of TK as

T̂K =




α1 β2 0

β2 α2
. . .

. . .
. . . βK

0 βK αK
0 . . . 0 βK+1




(4.3)

and obtain the partial Lanczos decomposition

AUK = UK+1T̂K = UKTK + βK+1uK+1e
T
K (4.4)

which connects UK to UK+1 for K < N . The decomposition illustrates that the change between
two iterations of the algorithm is proportional to βK+1. This implies that the algorithm stops
for K < N when βK+1 = 0. In this case UK then spans the eigenspace of A. To see why this
decomposition holds, it is instructive to consider a three-term recurrence relation that follows
directly from Algorithm 1. By construction, we have

Aui = βi+1ui+1 + βiui−1 + αiui (4.5)

which can also be expressed as

βi+1ui+1 = (A− αiIN )ui − βiui−1 (4.6)

with IN being the identity matrix of dimension N . We will return to this equality later as it
plays an important role in this thesis.

From the discussion above, it is clear that for every vector v ∈ span (UK) it holds that

v =
K−1∑

i=0

ci(A
iu) =

(
K−1∑

i=0

ciA
i

)
u = pv(A)u (4.7)

with pv(A) being a polynomial in A of degree K−1. For a given analytic function f : CN×N →
CN×N it then follows that there exists a va ∈ span (UK) for which pva(A) corresponds to a
power-series approximation around 0 of degree K − 1 of f(A). This perspective provides some
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4.1 Lanczos algorithms

Algorithm 2: Global Lanczos Algorithm

Input : Matrix A ∈ CN×N , Starting Matrix U ∈ CN×M , Number of Dimensions K
1 U0 ← 0 ;
2 V0 ← U ;
3 for i← 1; i ≤ K do
4 βi ← ‖Vi−1‖F ;
5 if βi = 0 then
6 break ;
7 end
8 Ui ← Vi−1/βi ;
9 Vi ← AUi − βiUi−1 ;

10 αi ← 〈Ui, Vi〉F ;
11 Vi ← Vi − αiUi ;

12 end
Output: Orthonormal Basis UK ∈ CN×KM , Tridiagonal Matrix TK ∈ RKM×KM

initial insight into the connection between Krylov algorithms and function approximation. It
also makes it clear that K plays a critical role for the accuracy of such an approximation.

Having discussed some important aspects of the original Lanczos algorithm, we now turn to
a particular generalization of it, namely block Lanczos algorithms. Block Lanczos algorithms
mainly differ from the original algorithm by assuming to be provided with an initial block
vector, i.e. a block of column vectors. These algorithms have been developed to, e.g., solve
linear systems with multiple right-hand sides. Hereby, they rely on efficient implementations of
the matrix product to achieve better complexity than the repeated application of the original
Lanczos algorithm. While there exist several block versions of the Lanczos algorithm [34, 35,
36, 37, 38], we will here only discuss the global Lanczos algorithm [39] since it is most relevant
for this thesis. Correspondingly, we will in the following assume to have an initial matrix
U ∈ CN×M with M ≤ N and denote by UK ∈ CN×KM the basis consisting of K basis matrices
Ui.

To generalize the Lanczos algorithm to matrices, we must first define an inner product with
respect to which the basis matrices Ui are orthogonalized. For the global Lanczos algorithm it
is chosen as the Frobenius inner product

〈Ui, Uj〉F = TrU∗i Uj (4.8)

where Ui, Uj ∈ CN×M . This choice of the inner product then induces the Frobenius norm

‖Ui‖F =
√
〈Ui, Ui〉. (4.9)

Note that in quantum physics it is more common to refer to these functions as the Hilbert-
Schmidt inner product and norm, which generalize the above definitions to operators in possibly
infinite spaces. It is easy to see that the Frobenius inner product is in fact a direct generalization
of the vector inner product employed in the standard Lanczos algorithm. In the context of this
work, it is of crucial importance that the above inner product and norm are not defined in terms
of individual columns of the Ui as in other block algorithms, but act on the entire matrices.

Having chosen the required inner product and norm, we find that Algorithm 2 indeed is a
direct generalization of the standard Lanczos algorithm to matrices. Thus, we again obtain
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4 Krylov methods

that the algorithm constructs a projection TK of A, given by

TK =




α1 β2 0

β2 α2
. . .

. . .
. . . βK

0 βK αK



, (4.10)

resulting in the partial global Lanczos decomposition

AUK = UK T̃K + βK+1UK+1E
T
K (4.11)

with T̃K = TK⊗IM ∈ RKM×KM and ETK = [0, · · · ,0, IM ] ∈ RM×KM . In analogy to the results
we showed for the original Lanczos, it then also holds that

βK+1UK+1 = (A− αKIN )UK − βKUK−1 (4.12)

as well as

U∗KAUK = TK . (4.13)

In fact, all properties of the original Lanczos algorithm stated above also hold for the global
Lanczos algorithm.

4.2 Connection to Gauss quadrature

We have already briefly touched upon the fact that Krylov methods can be used to approxi-
mate functions of the input matrix A. There does however exist a more rigorous explanation,
involving the Gauss quadrature, we will now elaborate on. In this explanation we focus on the
global Lanczos algorithm as its connection to Gauss quadrature is most important for the work
presented in this dissertation.

To connect the global Lanczos algorithm and Gauss quadrature, we begin by realizing that

u∗f(A)u = u∗VAf(ΛA)V ∗Au =
N∑

i=1

f(λi)µ
2
i =

∫ b

a
f(λ)dµ(λ) (4.14)

where VAΛAV
∗
A is the spectral decomposition of A, µi = eTi V

∗
Au and

µ(λ) =





0 if λ < λ1 = a∑j
i=1 µ

2
i if λj ≤ λ < λj+1∑N

i=1 µ
2
i if b = λN ≤ λ

(4.15)

is a nondecreasing and piecewise-constant distribution function. As is customary, we assume
that the eigenvalues of A are ordered ascendingly. From this equality, we then obtain

If := Tr(U∗f(A)U) =

N∑

i=1

e∗iU
∗VAf(ΛA)V ∗AUei =

N∑

i=1

∫ b

a
f(λ)dµi(λ) =

∫ b

a
f(λ)dµ(λ) (4.16)

where U can for instance be the starting matrix of the global Lanczos algorithm. Here, µi(λ)
is defined analogously to equation 4.15 and µ(λ) :=

∑N
i=1 µi(λ).
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4.2 Connection to Gauss quadrature

Hence the above integral is a Riemann-Stieltjes integral which can be approximated by
Gauss-type quadratures. In the most general case, these take the form

Gf :=

K∑

k=1

ωkf(θk) +

M∑

m=1

νmf(τm), (4.17)

where θk and τm are referred to as the nodes and ωk and νm as the weights of the quadrature.
The remainder of a Gauss-type quadrature approximation is

Rf :=

∫ b

a
f(λ)dµ(λ)− Gf

=
f2K+M (η)

(2K +M)!

∫ b

a

M∏

i=1

(λ− τi)




K∏

j=1

(λ− θj)




2

dµ(λ)

(4.18)

where λ1 < η < λN . By letting M = 0 one obtains the Gauss quadrature, whereas using
prescribed nodes τi results for instance in the Gauss-Lobatto and Gauss-Radau quadratures
[40, 39]. In case of the Gauss quadrature, the sign of the approximation error then corresponds
to the sign of the 2K-th derivative of the function f . This provides a relatively easy way of
knowing if the Gauss quadrature poses a lower or upper bound to the true value for a given
function. It also follows that GKf is exact for all polynomials of degree smaller or equal to
2K − 1 [40].

To perform a Gauss quadrature approximation, one must thus be able to determine optimal
weights and nodes. To find such ωk and θk, a possible way is to construct a sequence of
polynomials {p0, · · · , pK} that are orthonormal in the sense that

∫ b

a
pi(λ)pj(λ)dµ(λ) = δij (4.19)

and follow the recurrence relation

βipi(λ) = (λ− αi−1)pi−1(λ)− βi−1pi−2(λ), (4.20)

with p−1(λ) ≡ 0 and p0(λ) ≡ 1. The roots of the polynomial pK have been shown to be optimal
θk [40, 41]. From the above recurrence relation one can obtain a recurrence matrix TK given
by

TK =




α1 β2 0

β2 α2
. . .

. . .
. . . βK

0 βK αK



, (4.21)

whose eigenvalues constitute the roots of pK(λ) and thus are optimal θk of Gf [41]. The weights
ωk are determined by the squared first elements of the normalized eigenvectors of TK such that

Gf = eT1 f(TK)e1 = eT1 VT f(ΛT )V ∗T e1, (4.22)

with VTΛTV
∗
T being the spectral decomposition of TK .

The above recurrence relation and tridiagonal matrix bare strong resemblence to what we
saw in the introduction of the Lanczos algorithms. In fact, the basis matrices Ui as computed
by the global Lanczos algorithm can be perceived as containing polynomials in A

Ui = pi−1(A)U (4.23)
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4 Krylov methods

where pi−1 is a polynomial of degree i− 1. From the orthonormality of the Ui, we then obtain

〈pi−1(A)U, pj−1(A)U〉 = 〈Ui, Uj〉 = δij (4.24)

and making use of equation 4.16 we also find

〈pi−1(A)U, pj−1(A)U〉 = Tr(U∗pi−1(A)∗pj−1(A)U) =

∫ b

a
pi−1(λ)pj−1(λ)dµ(λ). (4.25)

This shows that the global Lanczos algorithm constructs a sequence of orthonormal polyno-
mials which follow the recurrence relation stated in equation 4.20. The tridiagonal matrix TK
produced by the global Lanczos algorithm hence poses a recurrence matrix as it is required for
the Gauss quadrature.

As a final remark we note that choosing U ∈ CN×N to be square and unitary results in

Trf(A) = Tr(U∗f(A)U) =

∫ b

a
f(λ)dµ(λ) ≈ eT1 f(TK)e1. (4.26)

For U with fewer columns than A and non-unitary U ∈ CN×N , it however only holds Trf(A) ≈
Tr(U∗f(A)U) and thus the Gauss quadrature does not approximate the actual function Trf(A).
While it is generally not assumed to be feasible to choose a U of size equal to A, we will
introduce a way to achieve this (and unitarity) by means of tensor network representations in
this dissertation.
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5 Machine learning

As we have now reviewed in brief quantum physics, tensor networks and Krylov algorithms,
what is left is to provide some background information on machine learning. This chapter will
thus give a short introduction to machine learning in general and then present two classes of
machine learning models which are relevant for this thesis. For a general introduction to the
field and a more in-depth discussion of the topics presented below, we recommend the standard
literature [42, 43, 44, 45].

5.1 Basic concepts

Machine learning (ML) can from an abstract perspective be defined as the study of algorithms
that improve their performance P on some task T with experience E, such that P is not only
improved for E itself but in general for all instances of T . This property is called generalization
and as we have already hinted at in the introduction, it lies at the heart of machine learning.
Without the generalization property, the above definition could also be interpreted as a pure
optimization problem. Since it can be assumed that generalization is only possible if the
structure of T is captured at least to a certain degree by the algorithm, the term learning
is employed here. ML can thus also be perceived as tackling the problem of performing an
optimization of P for some task T via solving the surrogate problem of optimizing P over a
finite set of instances E of T . The crucial questions then are to determine until which point the
optimization of the surrogate problem is equivalent to optimizing the actual problem, i.e. how
long the learned structure generalizes, and how to maximize this overlap. An important concept
in this context is that of overfitting, which refers to the misinterpretation of randomness in E
as structure of T up to the point of simple memorization of the experienced instances. Opposed
to this, the term underfitting is used to refer to the situation when relevant information in the
data is ignored. Both phenomena adversly affect the generalization of a learning method.

While ML today is a wide field consisting of many separate lines of research, it can be roughly
subdivided into three main branches: supervised learning, unsupervised learning and reinforce-
ment learning. In the context of this thesis, especially supervised and reinforcement learning are
relevant, but for the sake of completeness, we will also briefly introduce unsupervised learning.

5.1.1 Supervised learning

In supervised learning, we assume E to take the form of a training data set D = {(xi, yi)}Ni=1

of N tuples of input-output pairs xi and yi. These tuples have been generated by a function
f : X → Y such that xi ∈ X, yi = f(xi) ∈ Y where X,Y can in principle be any set. The
term supervised now derives from the fact that the learning algorithm is given a set of samples
xi together with correct answers or targets yi. Additionally, we have a set H of functions
h : X → Y , often called hypothesis space with the functions correspondingly called hypotheses.
In this thesis, the hypothesis space will mostly correspond to certain classes of artificial neural
networks (ANN) with a set of free parameters Θ that must be optimized. We will often refer
to a given instance of an ANN as a model.

The task T now is to predict y from x based on H. The performance P for this task is
measured by a loss function L(y, h(x)) with L : Y ×Y → R and the optimization problem then
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5 Machine learning

can be written as

arg min
h∈H

LT (h) = arg min
h∈H

N∑

i=1

L(yi, h(xi)) (5.1)

to minimize the total loss by optimizing over the hypothesis space. If instead of the total
loss the average loss, also called risk, (1/N)LT (h) is minimized, one obtains empirical risk
minimization as defined in statistical learning theory (SLT) [46, 47]. The process of performing
the above optimization is commonly referred to as training.

This formulation of the learning problem only refers to the given data but does so far not
reflect the fact that we would like to choose h ∈ H such that it performs well on the entire
domain X. To address this issue, one commonly adds a regularization term LR(h) to LT (h)
that penalizes strong adaption to the training data. Optimizing the regularized average loss
then can be perceived as performing structural risk minimization from the SLT perspective.
The reasoning behind regularization is that adapting too strongly to the training data likely
results in overfitting. On the other hand, regularizing too strongly might prevent learning of
characteristics that generalize. Thus, choosing the right kind of regularization is an important
problem not only in supervised learning but in ML in general.

The regularization problem leads us to another tightly connected and important tradeoff
in ML, namely the bias-variance tradeoff. The higher the expressive power or capacity of
a set of hypotheses, the better it can fit or even overfit structure in the training data and
the more volatile the results for training it on different training sets will be when no suitable
regularization is applied. Such high volatility and overfitting are a case of high variance. If
the capacity is too low however, it is likely that the relevant structure in the data can not be
captured well enough by the hypotheses, they underfit, and the loss can not be minimized to a
satisfying degree. This then is a case of high bias. The structure which is found in the data on
the other hand then is unlikely to be simply random noise and will thus likely generalize. Since
low capacity induces high bias and high capacity induces high variance, both sources of error
unfortunately can not be minimized simultaneously. The tradeoff hence consists of choosing
the capacity such that the induced variance does not result in overfitting but the bias is also
not too high to learn the structure of the task. While the notions above can be made more
precise by employing tools from SLT, we will in the interest of briefness not further dive into
this.

As a last remark, we would like to point out that while the above introduction took a
more traditional and frequentist perspective, supervised learning can also be conducted in the
Bayesian probability framework. It is often possible to derive loss functions of the above form
by taking the log-likelihood ln

∏
i ph(yi|xi) =

∑
i ln ph(yi|xi) of the training set with respect

to a defined probability distribution ph(yi|xi) which is parameterized by the hypotheses h.
Optimizing the corresponding loss then constitutes performing a maximum likelihood estimation
of h. If one furthermore assumes a prior distribution over hypothesis space to apply some kind of
regularization, the optimization corresponds to an a posteriori estimation. As a more thorough
review of Bayesian machine learning is out of scope for this chapter, we refer the interested
reader to the standard literature [42, 43].

Supervised learning is most commonly applied to solve classification or regression problems.

5.1.2 Unsupervised learning

In contrast to supervised learning, unsupervised learning assumes to be only given a training
set D = {xi}Ni=1 of samples xi ∈ X from some data-generating process or distribution over
the domain X. The term unsupervised is hence used to reflect the absence of any provided
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target values for the xi. Thus, the task is not directly to learn a mapping from X to some
image space Y but to find structure in the data itself, i.e. learn something about the data-
generating process or distribution. One particular case of unsupervised learning for instance
is the problem of clustering. Hereby, the domain X is assumed to be divided into several
clusters whose members are similar according to some distance measure. These clusters are
to be determined from D. A different variant of unsupervised learning makes the assumption
that X can be mapped to a latent space Y of lower complexity than X which however still
captures all or at least the major factors of variation. In this case, the learning problem is often
formulated such that two functions e : X → Y and d : Y → X have to be learned such that
L(xi, d(e(xi))) is minimized where L : X ×X → R is some distance measure. By solving this
learning problem, one then hopes to gain a deeper understanding of the data or find a compact
representation from which also new valid instances of the underlying process or distribution
can be generated.

5.1.3 Reinforcement learning

Reinforcement learning (RL) again takes a different perspective that is more akin to how
learning is thought to happen in biological systems. The learning process here is thought of as
an action-feedback loop between a learning agent and an environment. The agent performs an
action according to some policy, affecting the environment, and in turn receives a reward for the
action as well as the new state of the environment after the action. Based on this information,
the agent adapts its behavior to maximize the reward and the interaction continues.

This learning model is formally based on Markov decision processes (MDP), which are defined
as a 5-tuple (S,A, P,R, γ) with S being a set of states of the environment and A denoting a
set of actions the agent can perform. The probability of transitioning to a state s′ ∈ S after
performing action a ∈ A in state s ∈ S is given by the function P : S × S × A → [0, 1] with
P (s, s′, a) = p(st+1 = s′|st = s, at = a). Here, p is the corresponding Markovian probability
distribution and the subscripts t and t + 1 refer to consecutive points in time. The reward
of an action a conducted in state s and resulting in state s′ is given by the reward function
R : S×S×A→ R, R(s, s′, a). The scalar γ is called the discount factor and is used to quantify
the preference for short-term over long-term rewards.

While MDPs pose the formal basis of RL scenarios, it is important to note that RL methods
explicitly assume not to have access to their mathematical description. Especially P or R
are assumed to be unknown to the learning agent. RL methods can thus be divided into two
classes, depending on whether they try to infer knowledge about the MDP or not. The former
approaches are referred to as model-based while the latter are consequentially called model-free.
We will here only consider model-free methods.

Given an MDP, the learning problem in our case then consists in finding an optimal policy
π : S × A → [0, 1] where π(s, a) = pπ(at = a|st = s) again corresponds to a conditional
probability distribution. For such a probabilistic policy and deterministic state transitions, as
we assume in this thesis, the learning problem can be formalized as the maximization of the
expected discounted total reward

arg max
π

Eπ[R(τ)] = arg max
π

∫
π(τ)R(τ)dτ (5.2)

= arg max
π

∫ T∏

t=0

π(sτ,t, aτ,t)

T∑

t=0

γtR(sτ,t, sτ,t+1, aτ,t)dτ (5.3)

where τ = sτ,0, aτ,0, sτ,1, aτ,1, · · · , sτ,T , aτ,T , sτ,T+1 is a trajectory or rollout of the MDP with
policy π. As shown above, we define π(τ) and R(τ) in terms of π(s, a) and R(s, s′, a) at the
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individual time steps. Note that π need not necessarily be Markovian in the sense that at
only depends on st, although this is known to suffice in general. While in principle T can be
infinitely large, in the context of this thesis we will assume it to be finite.

A policy that optimizes the above criterion thus yields the maximal expected discounted
reward maxπ Eπ[R(τ)]. If a certain initial state s0 is fixed, this expression can be understood
as a probabilistic generalization of the value function

V (s0) = max
{at}

T∑

t=0

γtR(st, st+1, at) (5.4)

as defined in the context of the Bellman equations for dynamic programming [48, 49]. Indeed,
finite MDPs of small to medium size can be solved for deterministic policies in a dynamic
programming fashion. However, there also exists a plethora of RL methods which can deal
with large or infinite sets of states and actions as well as probabilistic policies in absence of
explicit knowledge of P or R. In the interest of brevity, we will however only elaborate on the
method relevant for this thesis.

In principle it would seem like a natural idea to directly optimize the reward with respect
to π. This would be especially convenient if π depended on a set of continuous parameters Θ
which could be optimized with gradient-descend methods, using modern numerical frameworks.
Unfortunately however, we can not assume the reward function to be given in a closed-form
equation that can be differentiated with respect to Θ. In fact, the reward is generally treated
as a black-box function in RL scenarios. Employing a probabilistic policy πΘ however provides
a remedy for this situation as in this case it holds

∇ΘEπΘ [R(τ)] =

∫
∇ΘπΘ(τ)R(τ)dτ =

∫
πΘ(τ)∇Θ lnπΘ(τ)R(τ)dτ = EπΘ [∇ lnπΘ(τ)R(τ)].

(5.5)

By sampling from πΘ, this expectation value and thus the gradient of the expected reward
with respect to Θ can be approximated. This identity is known as the REINFORCE trick [50]
and the class of RL techniques making use of it are called policy gradient algorithms. Policy
gradient methods are conceptually relatively close to supervised learning as they allow for
standard gradient-based optimization of policies for instance parameterized by ANNs. For a
more in-depth introduction to RL, we refer the interested reader to the standard work by Sutton
et. al. [51].

5.2 Long short-term memory networks

We will now give an introduction to recurrent neural network (RNN) models. To this end,
we begin by introducing the basic variant and then show how it can be extended to the long
short-term memory (LSTM) networks used in this thesis. RNNs constitute a class of ANN
architectures for the modelling of discrete time-series data of often non-Markovian nature where
an observation xt ∈ RN at some time t is influenced by previous observations xt−1, . . . , x1.
Examples for successful applications can for instance be found in language-related tasks such
as speech recognition, natural language processing and automated translation [52, 53, 54, 55].

A standard RNN consists of two non-linear functions ht : RN → RH and ot : RH → RO given
by

ht = tanh(Uxt + V ht−1 + bh) (5.6)

ot = fo(Wht + bo), (5.7)
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where U ∈ RH×N , V ∈ RH×H , W ∈ RO×H , bh ∈ R1×H , bo ∈ R1×O and thus the set of
parameters is Θ = {U, V,W, bh, bo}. Note that the parameters do not depend on t. The non-
linearity fo is chosen depending on whether the output of the RNN poses the input to another
layer in a larger network or is the final output. In the latter case, fo must yield values in
the domain expected by the loss function, which could, for instance, be formulated in terms of
probabilities. More intuitively, an RNN maintains a hidden state h which encodes information
about all previous time steps. At a given time t, this information is combined with the new
observation xt to yield the new state ht. This combination is determined by the weight matrices
U and V and the bias-vector bh. Based on ht, the output ot for the current time step is then
computed as determined by W , bo and fo. The dimensionality of the state clearly plays a
central role in determining the expressive power or capacity of the RNN.

Training an RNN on time-series data is commonly done by taking tuples (xt, xt+1) from
the data and letting the model predict xt+1, given xt. The distance between the prediction
x̂t+1 and the target value xt+1 is in these cases normally given by an error function which is
differentiable with respect to Θ, allowing for gradient-based optimization.

In theory an RNN is capable of keeping relevant information about all previous time steps
in ht and combining this information with the newly obtained xt to generate the output ot. In
fact, certain RNNs have been shown to be Turing-complete [56]. In practice however, training
the standard RNN model breaks down already for relatively small total times T . This is due
to the fact that according to the product rule of calculus, the gradient of δht/δV includes
a product over all previous time steps. When the norms of the individual gradients are not
very close to one, the overall gradient will quickly take on values of very large or very small
magnitude. This is being referred to as the exploding or vanishing gradient problem.

To increase the stability of the gradients, Hochreiter et. al. introduced LSTM [57] networks,
which can be understood as defining the state ht in a slightly more involved way. An LSTM
cell is given by the equations

it = sigm(U ixt + V iht−1 + bi) (5.8)

ft = sigm(Ufxt + V fht−1 + bf ) (5.9)

gt = sigm(Ugxt + V ght−1 + bg) (5.10)

c̃t = tanh(U c̃xt + V c̃ht−1 + bc̃) (5.11)

ct = ct−1 ∗ ft + c̃t ∗ it (5.12)

ht = tanh(ct) ∗ gt (5.13)

with xt again being the input at time t, ht−1 being the previous state and ct being referred to as
the cell state. In relation to this, c̃t is often called the candidate state. Hereby, U i, Uf , Ug, U c̃ ∈
RH×N , whereas V i, V f , V g, V c̃ ∈ RH×H , bi, bf , bg, bc̃ ∈ R1×H and ∗ denotes the Hadamard
product. The sigmoid function is defined to be sigm(x) = 1/(1 + e−x). As becomes clear
by considering the above equations, the core idea of an LSTM is to equip the model with a
better means of control over the information that is propagated through time. This control
is implemented by the gates it, ft and gt which take values in [0, 1] and, from an intuitive
perspective, control the flow of information from and to the cell state ct and the state ht. As
we will see below, the cell state ct is of crucial importance for the ability of LSTMs to learn
long-term dependencies. We will in the following refer to it as the input gate, to ft as the forget
gate and to gt as the output gate and now briefly describe their function from an intuitive
perspective.

• At time t, xt and the previous state ht−1 are combined in the LSTM cell as in the standard
RNN. The result is squashed to the interval [−1, 1] via the tangens hyperbolicus to yield
candidate values for the next cell state c̃t.
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Figure 5.1: A graphical illustration of the long short-term memory cell.

• The input gate it now controls how much of the information from the candidate cell state
enters the final cell state ct. In the same way the forget gate ft controls the information
flow from the old cell state to ct. The gated previous cell and candidate states are then
added to yield the current cell state ct.

• The cell state then again is brought to the interval [−1, 1] by application of the tanh non-
linearity. The output gate gt finally determines how much information of the squashed
cell state is allowed to flow into the new state ht of the LSTM unit.

We would finally like to point out two important consequences of this design. Firstly, by
setting the forget gate ft to zero and, the input gate it and output gate gt to one, one almost
obtains the state of the standard RNN. The only difference here is, that tanh is in fact ap-
plied twice. Secondly, when ft is set to one but it is set to zero it holds that ct = ct−1 and
thus the current input and previous state are ignored. This allows the LSTM to propagate
a constant signal through time which in turn results in significantly more stable gradients.
As a consequence, this specific configuration of the gates facilitates the training on long-term
dependencies in the training data. It is called the constant error carousel and since the gate
parameters are also subject to optimization, an LSTM cell is in principle able to learn when
to function quasi like a standard RNN and when to ignore any new information and simply
pass on an old cell state. The computations carried out within an LSTM cell are illustrated in
Figure 5.1.

5.3 Restricted Boltzmann machines

As the second machine learning model of relevance for this thesis, we will now discuss the most
important aspects of restricted Boltzmann machines (RBM). RBMs draw heavily from concepts
of statistical physics [58] and have so far mainly been used as unsupervised learning models
for the approximation of discrete probability distributions P (v, h). Here, v is a configuration
of visible units v1, v2, · · · , vV and h is a configuration of the hidden units h1, h2, · · · , hH . Very
importantly, both the vi and hi are hereby assumed to be binary valued variables, such that
vi, hi ∈ {0, 1}. A particular configuration of visible and hidden units is then assigned an energy
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Figure 5.2: An illustration of a restricted Boltzmann machine.

given by

E(v, h) = −
∑

j

ajvj −
∑

i

bihi −
∑

i,j

wijhivj (5.14)

where a ∈ RV , b ∈ RH and W ∈ RH×V . This shows that RBMs can be direcly understood
as classical spin systems. The energy E(v, h) hereby is defined such that only interactions
between visible and hidden units vi and hi are modelled but neither between visible or hidden
units themselves. An RBM thus corresponds to an undirected bi-partite graph with the group
of vertices vi being called the visible layer and the group of vertices hi being referred to as the
hidden layer. This structure is illustrated in Figure 5.2.

An RBM thus is, as the name suggests, a restricted version of the more general Boltzmann
machine which also allows for intra-layer connections. For given configurations of visible and
hidden units, the probability P (v, h) is then defined to be

P (v, h) =
e−E(v,h)

Z
(5.15)

where Z =
∑

v,h e
−E(v,h) is the partition function. Note here that the partition function is

generally intractable as it is an exponential sum. This is a fact that optimization and prediction
algorithms have to account for. From this formulation it becomes apparent why this class of
models is called restricted Boltzmann machines as they consitute a Boltzmann distribution.
From a physical perspective, Equation 5.15 corresponds to a thermal state in equilibrium with
unit temperature.

From the machine learning perspective, an RBM is now supposed to approximate the distri-
bution a given training set {xi} was sampled from. In this context, the hi model the correlations
between different visible units vi which correspond to the observed data xi. To obtain the dis-
tribution over configurations v alone, we must consequentially marginalize over the hidden units
such that we have

P (v) =
∑

h

e−E(v,h)

Z
. (5.16)
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The particular structure of the interactions in the RBM then allows us to write P (v) as

P (v) ∝
∑

h

e−F (v,h) (5.17)

∝
∑

h

e
∑

j ajvj+
∑

i bihi+
∑

i,j wijhivj (5.18)

∝ e
∑

j ajvj
∑

h1

eb1h1+
∑

j w1jh1vj
∑

h2

eb2h2+
∑

j w2jh2vj · · ·
∑

hH

ebHhH+
∑

j wHjhHvj (5.19)

∝ e
∑

j ajvj
∏

i

(1 + ebi+
∑

j wijvj ) (5.20)

∝ e
∑

j ajvj
∏

i

esoftplus(
∑

j wijvj+bi) (5.21)

with the softplus-function being given by softplus(x) = log(1 + ex). In the case of assuming
vi, hi ∈ {−1, 1}, we can in the same way derive the corresponding expression for P (v) to be

P (v) ∝ e
∑

j ajvj
∏

i

cosh(
∑

j

wijvj + bi). (5.22)

This variant of the RBM is of importance for the results shown in Appendix F. In this context
we also note that the probability is expressed as a product over the hidden units hi.

The independence of the hi and vj also allows us to write P (v|h) =
∏
j P (vj |h) and P (h|v) =∏

i P (hi|v). Having efficient expressions for the conditional distributions is important for the
training of RBMs as the exact gradient is intractable but can be approximated via a Gibbs-
sampling algorithm commonly known as contrastive divergence [59]. In a similar way, trained
RBMs can for instance be used to complete partial data or sample new instances from the
approximated distribution by performing Gibbs sampling. ML models which allow to generate
new data following a learned distribution are referred to as generative models. This is in
contrast to purely discriminative models that are for instance often used in classification and
simply produce a target value for a given input.
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In this concluding chapter, we will discuss the main results of this thesis against the background
of related work. The chapter is structured based on the employed numerical methods, such
that we will discuss the results of Appendices A to C in a first part focussing on our work
in the context of tensor networks. In a second part, we will then elaborate on the machine
learning oriented work shown in Appendices D and E. In a short final section, we discuss the
work shown in Appendix F as it combines methods from ML and TNs.

6.1 Tensor networks

For quantum states represented by density matrices ρ, as introduced in Chapter 2, many
quantities of interest naturally take the form Trf(ρ) with f : C2L×2L → C2L×2L . An important
example for instance is the von Neumann entropy

S(ρ) = −Trρ log ρ (6.1)

which is a direct generalization of the entropy as defined in information theory and classical
statistical mechanics to the quantum regime. In this particular case then, fS(ρ) = −ρ log ρ
and thus S(ρ) = TrfS(ρ). Another interesting example is the trace norm or, more formally,
Schatten 1-norm of a state ρ given by

‖ρ‖1 = Tr
√
ρ†ρ (6.2)

where consequentially f1(ρ) =
√
ρ†ρ and we hence have that ‖ρ‖1 = Trf1(ρ). The trace norm

can for instance be used as a distance measure between two states ρA and ρB. This class of
functions has the defining characteristic that they depend on the entire spectrum of ρ in a
non-trivial way, like the logarithm or square root in the examples above. This is opposed to,
e.g., the Frobenius norm ‖ρ‖F =

√
Trρ†ρ, in which the trace is simply a sum over the squared

singular values. We also use the term global to refer to properties which are a function of the
entire spectrum of a given matrix or more generally to signal that the entire mathematical
object is considered instead of individual parts in a decomposition.

As we have seen in Chapter 3, TNs rely on the local decomposition of quantum systems
rather than a global description. Still, we have argued that basic linear algebra operations can
be performed in the TN framework and thus also global quantities like the Frobenius norm
based solely on these operations can be approximated. However, it is not directly possible to,
e.g., compute the logarithm of a matrix product operator

log




d∑

i1,...,iL,j1,...,jL

(Ai1j11 Ai2j22 · · ·AiLjLL ) · (ei1eTj1)⊗ (ei2e
T
j2)⊗ · · · ⊗ (eiLe

T
jL

)


 (6.3)

or any other non-linear function for that matter. Even if it were possible to obtain the exact
spectral decomposition of a given MPO, computing a function of it would still be intractable
as the number of eigenvalues is in general exponential in L. Thus, even though functions of
the type Trf(ρ), or more generally of an MPO A, are of high relevance in quantum physics,
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there existed no method to approximate such functions for many-body systems represented as
MPOs.

In the work shown in Appendix A, we presented the first method to efficiently approxi-
mate functions Trf(A) of Hermitian MPOs A for analytic functions f . The presented method
combines the global Lanczos algorithm as introduced in Chapter 4 with the TN framework to
perform a Gauss quadrature of the Riemann-Stieltjes integral representing Trf(A). Hermiticity
hereby is a requirement that is naturally fulfilled by operators in quantum physics but does
also arise in other areas of application such as ML or network analysis. The requirement for f
to be analytic ensures its approximability by quadrature algorithms.

While the Lanczos algorithm has already been used in the TN formalism to for instance
approximate ground states [60] and time evolution [31, 61, 62, 32, 63], block variants were so
far not employed to the best of our knowledge. An important reason for this is the fact that
most block Krylov algorithms define the orthogonality criterion of their basis blocks in terms
of the orthogonality of the individual columns of these blocks, see for instance Refs. [36, 35].
These formulations are thus susceptible to the curse of dimensionality in its quantum variant,
meaning that these algorithms are in principle intractable for block sizes scaling more than
polynomially with the size of the quantum system.

As we discussed in Chapter 4, the global block Lanczos [39] algorithm poses an exception to
this rule as it makes use of an inner product which can be efficiently expressed in the TN format
even for block sizes exponential in the system size. This algorithm was however previously
unknown in the numerical QM community. In contrast to the standard matrix version of the
global Lanczos algorithm, our TN algorithm now allows us to use unitary starting blocks of
size equal to that of A. Indeed, the natural choice of the identity matrix has an exact MPO
representation with minimal bond dimension D = 1 and so we have in our method that

Tr(U∗f(A)U) = TrIf(A)I = Trf(A) (6.4)

where U = I is the starting matrix of our method and we denote the conjugate transpose by
∗ to stress the generality of the expression. While possible theoretically, such a choice of U
is not considered in block Algorithms for full matrices as their underlying assumption is that
it is only computationally feasible to perform matrix-vector multiplication or matrix-matrix
multiplication for blocks with a significantly lower number of columns than that of A. In these
cases it thus only holds TrU∗f(A)U ≈ Trf(A) and the integral approximated by the Gauss
quadrature merely poses an approximation to the true integral.

We again note here that there exists work in numerical mathematics on approximating Trf(A)
for large full matrices A. These methods generally work by sampling starting vectors u to
approximate u∗f(A)u with Krylov methods and essentially computing Monte Carlo estimates
of Trf(A). The field is based on the results of Golub et. al. [41] we also made use of in
Chapter 4. Apart from the work on the global Lanczos algorithm, other interesting related
work was for instance presented in Ref. [64]. Before discovering the method presented here,
we investigated such sampling-based approaches and were able to reformulate some of them
in the TN formalism. However, we generally found the number of samples required for good
approximations infeasible already for relatively small system sizes.

The combination of the global Lanczos algorithm with the TN framework hence allowed us
to firstly address problems of size intractable before and secondly opened up the possibility
to approximate the true integral. It furthermore allows for the incorporation of new results
both from the side of TNs as well as from the side of numerical analysis, as for instance from
Ref. [65]. However, it is clear that the method still only consitutes an approximation. This has
two main reasons. Firstly, the number of Krylov dimensions K, which directly corresponds to
the number of nodes used in the Gauss quadrature, must be limited to a feasible amount. This
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6.1 Tensor networks

amount is likely lower than the number of nodes required for exactness. Secondly, although we
start with an exactly represented initial matrix, the sequentially constructed basis matrices can
in general only be approximated by an MPO, since we need to define an upper bound Dmax

for the bond dimension used in a run of the algorithm. This in turn implies that the accuracy
of the method can be controlled by adjusting K and Dmax.

Indeed, we showed that the method converges to the exact result in absence of approximation
errors and assuming a sufficently large K. One could in fact argue that Dmax is the most
important parameter of the method as the approximation error in the basis matrices influences
the degree to which the Ui are orthogonal, which in turn determines how well the basis of the
Krylov space is approximated.

It is clear that the values of K and Dmax required for a specific accuracy depend on the MPO
A and the function f . As is also indicated by the numerical results we presented in the respective
work, if f for instance is such that only a few eigenvalues of A are relevant to determine
f(A) with high accuracy, already relatively small errors in the nodes of the quadrature might
cause large deviations. Additionally, more quadrature nodes might be required to accurately
represent the relevant part of the spectrum. On the other hand, the bond dimensions of A and
its structure determine how well its powers computed during a run of the algorithm can be
approximated with a given bond dimension.

To gain a better understanding of how the structure of A influences the partial results
computed by the method, we subsequently conducted an analysis of their relation for the case
of exact representations. The obtained results were presented in the work shown in Appendix B.
One of the main findings of this analysis is that the basis matrices Ui as computed by the method
indeed exhibit several properties derived from A, such as for instance symmetry/hermiticity,
centro-symmetry/centro-hermiticity or certain commutation relations. This is relevant for the
computation with MPO approximations insofar as certain symmetries and other properties can
be checked for efficiently to monitor approximation errors and in some cases can be enforced.
Furthermore, it is well-known [66, 32] that certain symmetries can be exploited to reduce the
required bond dimension and thus obtain more efficient and accurate representations.

As another major result of the analysis, we found that for input MPOs A with a spectrum
that is symmetric around zero, the tridiagonal matrix TK takes the form

TK =




0 β2 0

β2 0
. . .

. . .
. . . βK

0 βK 0




(6.5)

as it holds in this case that all αi = 0. This implies that for such an input, basis matrices
Ui and Ui−1 are orthogonal by construction. While this property can clearly be monitored at
runtime, it also yields a more efficient version of our method as in this case Ui in principle must
not be orthogonalized against Ui−1. We note here that these results also hold for the global
Lanczos [39] algorithm with full matrices. As our underlying assumptions about the size of the
Ui are however conflicting with the assumptions for the full matrix case, our particular setting
was to the best of our knowledge not considered so far.

Having obtained the above insight, we then continued to investigate which kinds of Hamilto-
nians as possible inputs for our method exhibit the required spectral property. Here, we did in
fact find a large class of spin Hamiltonians with finite-length neighbour interactions to have a
spectrum symmetric around zero. A prominent example of this class is, e.g., the transverse-field
Ising Hamiltonian, a special case of the Ising Hamiltonian shown in Chapter 2. This part of
our analysis can be considered an extension of the one presented by Kressner et. al. in Ref. [67].
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Our interest in Hamiltonians stemmed from the fact that, although we introduced the method
in terms of the approximation of functions of states ρ, we did in fact find it to be possible and
very advantageous to directly consider Hamiltonians as inputs in certain cases. More concretely,
during the search for a first proper application of our method in QM, we realized that it could
be beneficially applied to the approximation of properties of thermal equilibrium states. The
thermal equilibrium or Gibbs state of a Hamiltonian H is given by

ρ(β,H) =
e−βH

Z
(6.6)

where β corresponds to the inverse temperature and Z = Tre−βH is the partition function.
This is precisely the form of probability distribution we have already encountered in Chapter 5
for RBMs. These states are normally approximated by an algorithm commonly referred to as
imaginary time evolution [31, 18, 19] which yields a TN representation of ρ for a given bond
dimension.

While this TN approximation of ρ could in its MPO form be used as input of our method,
it has two main problems. Firstly, the input only consitutes an approximation to the exact
state we would like to approximate a property of. This naturally reduces the accuracy of the
approximation. Second, it likely has a bond dimension which is already relatively high, slowing
down the computation significantly. Making use of the generality of our algorithm, we realized
that it is of course possible to express properties of Gibbs states as properties of the generating
Hamiltonians. As an example, we can write the von Neumann entropy of a thermal equilibrium
state ρ(β,H) as

S(ρ(β,H)) = −Tr e−βH

Tre−βH
ln

e−βH

Tre−βH
= β

Tre−βHH
Tre−βH

+ lnTre−βH = β
F

Z
+ lnZ (6.7)

where F = Tre−βHH and Z again denotes the partition function. We can thus approximate
the von Neumann entropy of the state directly from H by means of approximating F and Z
and combining the approximations as shown above. As F and Z are functions of the same
Hamiltonian, we can furthermore approximate both in a single run of the algorithm since they
only differ in the function that is applied to the projected matrix TK . Even more so, we can
in principle approximate the entropy for a whole range of temperatures within one run of the
method, as β is simply an argument to the function of H. This parallelization strategy to
some extend makes up for the fact that the algorithm itself is clearly of sequential nature and
parallelization can thus only be employed in the core linear algebra routines.

The main advantage of computing the approximations directly from the Hamiltonian how-
ever is that many Hamiltonians have an exact expression as MPOs with often very low bond
dimension of D = 2 or D = 3, as already hinted at in Chapter 2. We thus can start the approx-
imation from an exact input and have significantly faster computations. While it is true that
in this case we generally have to add multiple terms with an approximation error, we found
the gain in accuracy resulting from the exact input to outweigh this potential disadvantage.
Additionally, a lower bond dimension of the input allows us to use higher values of Dmax in the
same runtime. In this context, we also found that our method can be used to approximate ex-
pectation values TrOf(A) of certain positive operators O. For positive operators, it is possible
to write TrOf(A) = Tr

√
O
∗
f(A)

√
O. Due to the positivity of O, this expression again yields a

Riemann-Stieltjes integral that can in principle be tackled via Gauss-quadrature. If O admits
an efficient MPO representation of

√
O, we can then simply use

√
O as starting matrix of the

algorithm to approximate the expectation value.

We used these findings in Appendix C to demonstrate how our method can be employed to
detect signals of a thermal phase transition for the Lipkin-Meshkov-Glick [68, 69, 70] (LMG)
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Hamiltonian and approximate two-particle correlation functions for the transverse Ising Hamil-
tonian. The LMG Hamiltonian can be successfully studied analytically [71, 72, 73] which
allowed us a comparison to reference results. On the other hand, due to the Hamiltonian
exhibiting long-range interactions, its Gibbs states can not be approximated efficiently via
imaginary time evolution. Hence, it was out of reach for TN methods thus far. Since our
method does not require an MPO representation of ρ, it is unaffected by this property of the
LMG or other Hamiltonians. It thus poses the first TN method to efficiently approximate
properties of thermal equilibrium states with long-range interactions.

Having an MPO representation of ρ when it is feasible however is helpful, e.g., for the
computation of two-particle correlation functions. This is due to the fact that the correlation
between each pair of particles is given by a different operator. In this case, we were however
still able to show that both the imaginary time evolution approach and our method produced
very similar results for the transverse Ising Hamiltonian.

Although we have at the time of this writing introduced, analyzed and successfully demon-
strated our method, more can still be done. Obviously, it would be interesting to identify
and engage further promising areas of application in quantum many-body physics. However,
from an algorithmical perspective it would also be worthwhile to see how far we can exploit
the symmetry properties of the basis MPOs Ui to obtain more efficient and accurate results.
Another interesting line of work would be to combine our algorithm with established methods
to approximate extremal eigenvalues of MPOs. These approximations would likely yield more
accurate (extremal) nodes for the Gauss quadrature performed in our method. This might help
especially for Gibbs states ρ close to the ground state as in these cases only a few eigenvalues
or energies still play a role. Finally, it would certainly also be interesting to explore what other
insights from numerical analysis can be incorporated into our method.

6.2 Machine learning

Building an automated scientist has been a dream of some researches [74, 75] since the dawn of
the computer era. With artificial intelligence (AI) having made drastic progress in recent years
and now excelling in problems previously believed out of reach for the foreseeable future [76,
77, 78, 79, 80], this dream might today seem much closer to reality. But one may well ask the
question if scientific discoveries made by machines can be understood by humans in the same
way as if they had walked the path to these discoveries themselves. And if this is not the case,
what is the value of a discovery not fully understood by humans? Are we willing to deligate
scientific discovery to machines to speed up progress while sacrificing understanding, control
and responsibility? These questions certainly are far-fetched given today’s state of the art in
machine learning, as the most successful branch of AI. At the time of this writing, it does so far
lack any serious semantic reasoning capabilities as would certainly be required to do science.
We would however like to point out that it is our opinion that science should always remain
a human endeavor as it is, or should be, done to satisfy human curiosity and improve human
and other animal’s lives. The work presented here is thus not meant to replace humans in the
research pipeline.

Having made our position on this issue clear, we are however convinced that ML can play
an important role in supporting humans in many routine tasks of scientific and engineering
work. Furthermore, in some cases it might even be a necessary requirement for progress to
perform, e.g., a post-processing of scientific data via ML techniques as can for instance be seen
in experiments with the Large Hadron Collider (LHC) [81, 82, 83]. Related to this example,
one task in physics that lends itself especially well to treatment with ML approaches is the
calibration or optimization of experiments.
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While the outcome of experiments is of scientific relevance, obtaining the desired results often
involves careful calibration of parameters, as for instance strengths of magnetic fields, whose
precise values are not of high interest. Furthermore, especially for more complex experiments
with many interacting parts, there likely exists no accurate analytical model which could be
used to obtain optimal parameters. The proper calibration of an experiment thus can be a
tedious task of only secondary interest to the experimental physicist. In this case, finding an
optimal configuration of parameters is more important than fully understanding the reasons
for its optimality. This is why the optimization of such experimental control variables poses a
prime use-case for automated methods aiming to support rather than replace scientists.

Indeed, this has already been realized by experimental physicists and examples for automated
optimization of experimental parameters range from gradient-based optimization [9, 84] over
evolutionary algorithms [85] to, more recently, ML approaches [86, 87, 88, 89, 90]. From the
computer scientific perspective, the existing methods however, while certainly successful in
achieving their respective goals, leave room for improvement. Firstly, the ML-based methods
introduced so far often make use of proprietary algorithms and models tailored to a specific
application and effectively ignore the recent developments in machine learning. Partly as a
consequence of this, these approaches then in some cases only consider simplified versions
of the learning problems by for instance discretizing continuous parameters. Secondly, pure
gradient-based optimization methods require an analytical model of the given experiment. As
we have already argued above, such a model will likely only be available for comparatively simple
experimental setups. An exact analytical model can additionally only be used for relatively
small system sizes if the dimension of the Hilbert space can not be reduced by exploiting
symmetries. Furthermore, gradient-based optimization methods typically only yield at most a
small set of solutions which are in many cases not guaranteed to be optimal. To obtain new
solutions, the optimization process often has to be restarted from scratch. Thirdly, evolutionary
or hill-climbing algorithms typically converge relatively slowly.

In the works presented in Appendices D and E, we took a step towards solving these problems
by introducing a novel general method to find optimal parameters in experiments. More pre-
cisely, we showed how to approximate the probability distribution of optimal or near-optimal
sequences of control parameters by LSTM networks and introduced two algorithms to train
these representations. As a concrete and important area of application in quantum physics, we
hereby focussed on the problem of quantum control as introduced in Chapter 2. Our method
thus constitutes an automated way of optimizing sequences of quantum control parameters by
employing state-of-the-art machine learning models. It is designed such that it could also be
used in conjunction with, e.g., gradient-based optimization methods by integrating their results
into the training process of the LSTMs.

We based the development of our method on four main assumptions.

1. Optimal or near-optimal sequences of parameters for a given control problem share com-
mon structure. This is a necessary requirement for a ML model to be able to learn and
justified by the high amount of structure often found in physical phenomena.

2. An analytical model of the control problem can not be assumed to be available or feasible
to approximate. This reflects our goal of the methods to be generally applicable, also for
more complex settings. In an ML sense, our methods are thus model-free. This black-box
assumption also allows our method to find solutions tailored to a given hardware setup
in a real experiment and not to an idealized model of it.

3. The figure of merit or reward function R can only be evaluated for entire sequences. By
the laws of quantum physics, a measurement makes certain information of a quantum
state permanently inaccessible. As evaluating an error function in general involves some
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measurement, this can hence only be done after the controlled quantum time evolution
is complete. From an RL perspective, this assumption results in a very sparse reward
signal. Our method can however easily incorporate any kind of intermediate reward signal
if available.

4. Repeated execution of a given control scenario is feasible such that sampling of results for
given inputs is possible. In quantum control terminology, this corresponds to a closed-loop
scenario.

Based on these assumptions it becomes clear that the ML model employed in our method must
be able to capture structured time-series data as which the sequences of control parameters can
be perceived. From an ML perspective, this quite naturally leads to the choice of long short-
term memory networks as discussed in Chapter 5. The inherent property of ANN architectures
to be stacked also potentially allows an LSTM network to consider structure at different time
scales. While there do also exist similar RNN architectures [91], LSTMs are arguably the most
established and so far no other superior architecture has been introduced [92]. Despite LSTMs
being a natural fit, they were to the best of our knowledge previously not discussed in the
numerical physics literature. Our work was thus the first to employ these models in numerical
quantum physics. Note that LSTMs can also be used to simply model dependencies between
variables, such that even experimental parameters which do not constitute a time series but
can be thought of as sequentially dependent on each other can potentially be treated with this
model.

Apart from the choice of the machine learning model, another fundamental and related
decision is the modelling of the learning problem. In our work, we decided to treat the problem
probabilistically in that the ML task was defined to be the approximation of the probability
distribution of optimal and near-optimal sequences. This decision was made to reflect the
fact that due to assumptions 2 and 3 there must be uncertainty about the optimal value of
a control parameter at a given time step. Additionally, learning a distribution over the good
sequences parameterized by an LSTM allows us to efficiently sample from it and examine the
distribution’s properties. This in turn facilitates a deeper analysis of the structural properties
of the good solutions if desired. Furthermore, a trained LSTM representing the distribution
of good solutions for a given control problem can be used as starting point for related control
problems which likely yield similar solutions.

In contrast to pure gradient-based optimization methods, our ML method thus does not
necessarily need to start from scratch for each new problem and can in principle even cope
with changing conditions in an experiment. In this context it is noteworthy that the flexibility
of LSTMs and ANN architectures in general allows them to parameterize any probability dis-
tribution that is sufficiently characterized by a finite number of parameters. This means that
for discrete distributions such as for instance the Bernoulli or Categorical distributions, the
networks can simply output an array of discrete probabilities pi ∈ [0, 1] with

∑
i pi = 1 in the

latter case. For continuous distributions, the network on the other hand can simply predict
the required parameters like, e.g., the mean µ and variance σ2 for the normal distribution.
Note that with an LSTM we can approximate the full distribution over the time-series data
p(x1, x2, · · · , xT ) =

∏
t p(xt|x1, x2, · · · , xt−1) as they are not limited to the Markovian case.

The final important question then was how to actually train the LSTMs given the starting
condition that we assumed to neither have access to a gradient of the error function, nor to be
in possession of a data set from which the distribution could be learned.

In the first work shown in Appendix D, we provided a possible answer at the example of
dynamical decoupling for quantum memory. In this setting, a qubit or a system of qubits
which is prepared in a certain state is coupled to an environment of other particles. The simple
objective then is to preserve the qubit system’s state over time. This is not a problem in
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classical computers but in quantum computation, the interaction between the system and its
environment causes detrimental effects such that information is eventually lost. One possibility
to counter this effect is known as dynamical decoupling [93, 94] (DD) where the system is actively
manipulated over time such that it is in the best case completely separated or decoupled from
the environment. Under certain ideal assumptions such sequences are known to be optimal.
The decoupling is often achieved by applying sequences of the Pauli matrices, including the
identity, which can be perceived as rotations of the system’s state. It had previously been
shown that good DD sequences can be found via simple evolutionary algorithms [85]. Inspired
by this result, we introduced an evolutionary-style algorithm to train the LSTMs, which in
essence follows a nested optimization loop consisting of two steps:

1. Sample data set Dnew from pΘ(c), evaluate it with respect to R and combine it with the
old data Dold to create a new training set D from Dnew ∪Dold.

2. Maximize
∑

c∈D ln pΘ(c).

Hereby pΘ(c) denotes the probability distribution over the sequences c which is parameterized
by the LSTM weights Θ. The new training data D is obtained by sorting the set Dnew ∪Dold

according to the sequences’ quality as measured by the reward R(c) and taking the best N se-
quences. Thus, the first step optimizes R(c) with respect to D while the second step optimizes
the likelihood of D with respect to the LSTM parameters Θ. Note that of course also regu-
larization can be applied here. From the perspective of evolutionary algorithms, our training
algorithm can thus be perceived as replacing the common mutation and crossover operations by
sampling from a probability distribution which depends on the data of the previous iteration.
A similar approach can for instance be found in Ref. [95] but to the best of our knowledge,
LSTMs had previously not been used in this way. We would also like to point out here that
solutions obtained from other control methods can be easily integrated into the training process
by augmenting the sampled data with them.

In numerical experiments, we then evaluated our method for a particular quantum memory
scenario. This scenario was chosen such that it violated some idealistic assumptions, needed
to show optimality of the DD sequences, in favor of a more realistic setting. Our interest
here naturally was to investigate if our method was able to compete with existing analytically
optimal solutions. Another important aspect of these experiments however was to examine
if the deviation from the ideal setting would allow our automated method to improve upon
the analytical solutions. We indeed found our method to beat all considered classes of DD
sequences for the examined control scenario. Furthermore, we found that replacing the LSTM
by a simple n-gram model, which just approximates the conditional distribution for the last
n time steps, resulted in worse outcomes. These findings thus showed that the generality of
our method allowed it not only to perform well on the given problem but also to improve over
solutions based on idealized assumptions. They also demonstrated the usefulness of LSTMs
when compared to simpler probabilistic models. The fact that the LSTM networks were so
successful in learning also implies the correctness of assumption 1 at least for the considered
quantum memory scenario. However, while the work provided some justification for our ideas
on ML-based quantum control, the optimization method itself was still rather simple and not as
data efficient as would be desirable. Additionally, we had in this work dealt with sequences of
Pauli matrices which resulted in a learning problem with discrete control parameters. We thus
had so far not considered control problems with continuous parameters. In the subsequent work
shown in Appendix E, we improved on this situation by employing tools from reinforcement
learning.

After finishing the work described above, we realized that policy gradient methods as briefly
descriped in Chapter 5 can be employed to approximate the gradient of R with respect to the
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6.2 Machine learning

LSTM parameters of a given distribution. In fact they quite naturally fit to our previously
stated assumptions 2 and 4. Due to their more sophisticated exploitation of the sampled data,
they were also likely to be more efficient in training the LSTM networks. While first RL
approaches were already discussed in the literature [86, 87], it had so far not been realized that
the policy gradient approach could be used. We reviewed the literature on policy gradients
and chose to base our improved method on the proximal policy optimization (PPO) algorithm
introduced by Schulman et.al. [96]. One major contribution of the article was to introduce
a new loss function for the policy gradient update that significantly increased its robustness
while being easily applicable. Optimizing the loss was shown to lead to new reference results
for various benchmark RL tasks.

To introduce our finding to a broader audience, we discussed and analyzed our approach to
the quantum control problem from a reinforcement learning perspective. Based on this, we then
introduced an improved version of the PPO algorithm. The main improvement hereby consisted
of employing the agent with a memory of the best observed sequences. The memory is used in
conjunction with newly sampled data to compute an update of Θ. We argued this to improve
the convergence behavior of our method and obviously prevent good solutions from being lost.
Furthermore, we showed how to use the memory to dynamically scale variance parameters of
the continuous distributions employed in this work. When sampling from a probabilistic model
of the sequences it is clear that a smaller variance results in the sampled sequences being closer
to the predicted mean sequence, while a larger variance causes the opposite behavior. The
variance of the employed distributions is thus a way to control the greediness of the learning
agent and hence of great importance for the result of the optimization.

Employing the policy gradient approach and introducing our specific improvements then
resulted in the following new abstract optimization loop:

1. Sample new data D from pΘ(c), evaluate it with respect to R and update memory M .

2. Optimize 1/|D ∪M |∑c∈D∪M LMPPO(c,Θ) for a fixed number of iterations.

3. Adapt variance parameters based on M .

Here, LMPPO(c,Θ) denotes the new loss function

LMPPO(c,Θ) = min(r(Θ, c)A(c), clip(r(Θ, c), 1− ε, 1 + ε)A(c)) (6.8)

with r(Θ, c) = pΘ(c)/pΘold
(c) and Θold denoting the weights of the previous iteration of the

loop. The function clip(x, a, b) simply ensures a ≤ x ≤ b and A(c) = R(c) − R(copt) with copt
being the best sequence in the memory. The parameter ε controls the magnitude of r(Θ) and
optimizing LMPPO(c,Θ) thus results in a bounded conservative update of Θ. Note that in the
second step of the loop, the loss is typically only optimized for a small number of iterations.

To evaluate the validity of the improved method, we presented results for the quantum
memory scenario which we had already tackled in the previous work. We also considered two
generalizations of it to continuous control parameters. We found the improved method to
converge to good solutions relatively fast for all considered learning problems and were able
to reproduce the results of the previous work in the discrete case. Furthermore, we provided
a comparison of our method to another RL algorithm recently introduced in the context of
controlling the transition of quantum systems between ground states [86]. Here we were also
able to reproduce the reference results, although unfortunately the respective method can only
tackle discrete problems. We also showed for this case how generalizations of the control
problem to the continuous domain can be solved by our method.

For all the considered learning tasks, we explicitly demonstrated how our general method
can be combined with insights about the control problems at hand. We found doing so very
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advantageous for the learning behavior, especially for the continuous control tasks. While we
explicitly made use of assumption 3 in this work, we also demonstrated how our method can
be easily adapted to the optimization not over entire sequences but for instance parameters of
individual time steps. For the considered learning tasks we did however find this to lead to
worse results than optimizing over the complete sequences. Finally, we provided some further
evidence for the correctness of assumption 1 by demonstrating the common structure of the
best performing sequences for several of the considered control settings.

In conclusion, we thus found that combining LSTMs with our memory proximal policy opti-
mization (MPPO) algorithm provides a versatile method to solve both discrete and continuous
quantum control tasks. As we have seen, this even holds true in the challenging situation when
no analytical model of the given problem is available and information about the quality of a
control sequence can only be obtained for entire sequences. Indeed, shortly after the publication
of our work, another article appeared that showed how to solve a different quantum control
problem by a combination of LSTMs and standard policy gradients [97]. Not surprisingly, the
article shares many of our ideas and arguments for the use of LSTMs and policy gradients in
quantum control, especially for real experiments. This article was followed quickly by work [98]
on using bi-directional LSTMs for yet another quantum control problem. These developments
in combination with our own results suggest that the ideas developed in the context of this
thesis do in fact pose a valid and promising approach to automated quantum control as an
example of the ML-based optimization of experiments. As we employed numerical simulations
of the control settings in absence of experimental implementations, our work can furthermore
be seen as a successful example of the combination of classical simulation and machine learning
in science.

There are however still many more possibilities for future work. Firstly, it would be very
interesting to apply our method to an experimental implementation of a control problem.
Secondly, there are still many ML methods which at the time of this writing have not been
explored in this context but might well prove highly useful. Thirdly, it would be useful to
establish a set of benchmark problems to properly evaluate and compare existing and new
methods. Finally, there exist rigorous results on the controllability of quantum systems. This
knowledge should not be ignored in real applications and it should be investigated how to best
combine it with machine learning approaches. Generally, as the entire field of quantum machine
learning is still in a very early phase, there is much room for exploration.

6.3 Tensor networks and machine learning

While tensor network methods such as MPS and MPO have been very successful in quantum
many-body physics, the field naturally seeks to improve upon existing methods. One interesting
attempt was recently made by Carleo et. al. [99], who showed how to approximate quantum
states of spin systems with RBMs. In this picture, the state of a system of spins s1, s2, · · · , sL
is expressed by

|ψ〉 =
∑

s1,s2,··· ,sL
e
∑

j ajsj

H∏

i=1

2cosh(
L∑

j=1

wijsj + bi)/Z |s1, s2, · · · , sL〉 (6.9)

where the amplitudes of the wave function are given by the spin-1/2 formulation of the RBM
as shown in Chapter 5. Here, H denotes the number of hidden units. It was shown how
this parameterization can for instance be used to approximate ground states by employing
variational Monte Carlo (VMC) techniques [100, 101]. Using an RBM as parametrization of
the wave function has the advantage that the hidden units hi are connected to all spins. The
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6.3 Tensor networks and machine learning

RBM thus yields a more global description of a system as, e.g., compared to MPS which
are inherently local as we have seen. These results quickly motivated further work on the
subject [102, 103].

In the work of Appendix F, we discovered an unexpected relationship between certain kinds
of tensor networks and RBM states. At the core of this discovery lies that fact one can rewrite
the above expression as

|ψ〉s1,s2,··· ,sL = e
∑

j ajsj

H∏

i=1

2cosh(

L∑

j=1

wijsj + bi)/Z (6.10)

= 2/Ze
∑

j ajsj

H∏

i=1

Tr

(
e
∑L

j=1 wijsj+bi 0

0 e−
∑L

j=1 wijsj−bi

)
(6.11)

= 2/Ze
∑

j ajsj

H∏

i=1

Tr




L∏

j=1

(
ewijsj+bj/L 0

0 e−w1jsj−bj/L

)
 (6.12)

= 2/Ze
∑

j ajsj

H∏

i=1

TrAs1i,1A
s2
i,2 · · ·AsLi,L (6.13)

where sj ∈ {−1, 1} as discussed before. The physical index sj of the core tensors simply denotes
whether sj = 1 or sj = −1 in the respective 2× 2 matrix. This expression is proportional to a
product of MPS and in fact corresponds to a special case of string bond states (SBS) [104, 105].
Furthermore, the fact that the matrices in the core tensors are diagonal shows that by allowing
for non-diagonal matrices, a generalization of RBM states can be obtained. These findings
motivated a further analysis and indeed we found several connections between RBMs and SBS
as well as other state representations.

We were additionally able to provide numerical evidence for that fact that RBM states and
their generalizations can approximate ground states of chiral Hamiltonians [106, 107, 108], as
an especially challenging numerical problem, better than previously possible with TN methods.
We however have to point out that the optimization of RBM states via VMC is very demanding
from a numerical perspective and much less efficient than optimizations in the TN framework.

Our results have subsequently been referred to in several works, see for instance Refs. [109,
110, 111], and indicate that RBMs will certainly become more relevant for the simulation
of many-body quantum systems in the future. The connection between RBMs and TNs we
found might also yield a new direction for the application of TN techniques in machine learn-
ing. Finally, our findings provide an illustrative example of the closeness of many seemingly
independent concepts employed in machine learning, tensor networks and quantum physics.
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[63] T. Keilmann and J. J. Garćıa-Ripoll. Dynamical creation of bosonic cooper-like pairs.
Physical Review Letters, 100(11):110406, 2008.

[64] I. Han, D. Malioutov, H. Avron, and J. Shin. Approximating spectral sums of large-
scale matrices using stochastic chebyshev approximations. SIAM Journal on Scientific
Computing, 39(4):A1558–A1585, 2017.
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[97] T. Fösel, P. Tighineanu, T. Weiss, and F. Marquardt. Reinforcement learning with neural
networks for quantum feedback. arXiv:1802.05267 [quant-ph], 2018.

[98] M. Ostaszewski, J. Miszczak, and P. Sadowski. Geometrical versus time-series represen-
tation of data in learning quantum control. arXiv:1803.05169 [quant-ph], 2018.

[99] G. Carleo and M. Troyer. Solving the quantum many-body problem with artificial neural
networks. Science, 355(6325):602–606, 2017.

[100] W. L. McMillan. Ground state of liquid he 4. Physical Review, 138(2A):A442, 1965.

[101] S. Sorella, M. Casula, and D. Rocca. Weak binding between two aromatic rings: Feeling
the van der waals attraction by quantum monte carlo methods. The Journal of Chemical
Physics, 127(1):014105, 2007.

[102] X. Gao and L.-M. Duan. Efficient representation of quantum many-body states with deep
neural networks. Nature Communications, 8(1):662, 2017.

[103] Y. Huang and J. E. Moore. Neural network representation of tensor network and chiral
states. arXiv:1701.06246 [cond-mat.dls-nn], 2017.

[104] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac. Simulation of quantum many-body
systems with strings of operators and monte carlo tensor contractions. Physical Review
Letters, 100(4):040501, 2008.

[105] A. Sfondrini, J. Cerrillo, N. Schuch, and J. I. Cirac. Simulating two-and three-dimensional
frustrated quantum systems with string-bond states. Physical Review B, 81(21):214426,
2010.

[106] S.-S. Gong, W. Zhu, and D. Sheng. Emergent chiral spin liquid: Fractional quantum hall
effect in a kagome heisenberg model. Scientific Reports, 4:6317, 2014.

[107] T. Wahl, H.-H. Tu, N. Schuch, and J. Cirac. Projected entangled-pair states can describe
chiral topological states. Physical Review Letters, 111(23):236805, 2013.

[108] D. Poilblanc. Investigation of the chiral antiferromagnetic heisenberg model using pro-
jected entangled pair states. Physical Review B, 96(12):121118, 2017.

[109] H. Saito and M. Kato. Machine learning technique to find quantum many-body ground
states of bosons on a lattice. Journal of the Physical Society of Japan, 87(1):014001, 2017.

[110] S. R. Clark. Unifying neural-network quantum states and correlator product states via
tensor networks. Journal of Physics A: Mathematical and Theoretical, 51(13):135301,
2018.

[111] G. Carleo, Y. Nomura, and M. Imada. Constructing exact representations of quantum
many-body systems with deep neural networks. arXiv:1802.09558 [cond-mat.dls-nn],
2018.

49





Acknowledgements

I would like to sincerely thank my family, friends and colleagues, who have in many ways
contributed to making my PhD the great experience that it was. In particular, I would like to
thank

• Thomas Huckle for accepting me as his student and supporting me during the entirety
of my work. The level of support I had the luck of receiving from him is one that most
PhD students can only dream of.

• Hans Bungartz for allowing me to join his chair and establishing a working culture based
on own initiative and responsibility, common sense, encouragement, liberty and flexibility.
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of the global block Lanczos algorithm in the framework of tensor networks. As a first step,
we discussed the connection between the global Lanczos algorithm and Gauss quadrature.
Following this, we demonstrated how the global Lanczos algorithm can be expressed in
the tensor network framework to allow for the approximation of Trf(A) for very high-
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Abstract. We present a method to approximate functionals Trf(A) of very high-dimensional Hermitian matrices
A represented as Matrix Product Operators (MPOs). Our method is based on a reformulation of a block Lanczos
algorithm in tensor network format. We state main properties of the method and show how to adapt the basic Lanczos
algorithm to the tensor network formalism to allow for high-dimensional computations. Additionally, we give an
analysis of the complexity of our method and provide numerical evidence that it yields good approximations of the
entropy of density matrices represented by MPOs while being robust against truncations.
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1. Introduction. Approximating functionals of very large matrices is an important prob-
lem in many fields of science, such as network analysis [3, 9, 11, 26] or quantum mechanics
[33, 37]. In many cases, the respective matrices are Hermitian due to either the underlying
physical properties of the systems they describe or the way they are constructed from, e.g.,
a graph. Naturally, as the dimensionality of the matrices becomes very high, i.e., several
tens or hundreds of thousands and above, explicit methods of function evaluation, like exact
diagonalization, break down and approximations must be made.

One paradigm for the approximation of high-dimensional matrices that has gained a lot
of attention especially in the quantum information, condensed matter, and numerical linear
algebra communities are tensor network representations [2, 15, 18, 27, 33, 37]. Among the
class of tensor networks, matrix product states (MPS) and matrix product operators (MPO)
count among the best established methods. These representations approximate large tensors
by contractions of multiple low-rank tensors in a row and have been shown to yield efficient
parametrizations of many relevant states of quantum many-body systems [17, 28, 35].

In this work, we introduce a novel method to approximate functionals of the form Trf(A)
where we assume f : CN ×CN → CN ×CN to be smooth and defined on the spectrum of A
as well as A to be Hermitian and given in MPO format. For our method, we have reformulated
a block version of the Lanczos algorithm in MPO/MPS-representation. This particular block
Lanczos algorithm will be referred to as global Lanczos algorithm in the following and has
already been used to approximate functionals of the given form for explicitly stored matrices
[4, 8]. Rewriting it for the tensor network formalism, however, allows us to consider block
vectors of size identical to A, which was previously prohibitive. Our method is thus able
to approximate Trf(A) for certain f(A) requiring only one carefully selected starting block
vector. This means that we get rid of the approximation error induced by the need to combine
the results obtained for multiple different starting block vectors. At the same time, we find
the numerical error induced by the MPS/MPO representation to be comparably small. Our
method can be applied whenever A is efficiently approximated by an MPO. We will in the
following, however, focus on the case where A has directly been defined as an MPO.

The rest of this work is structured as follows: after a basic introduction to matrix product
states and operators in Section 2, we will introduce the block Lanczos method we employ in
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this work and explain its connection to Gauss quadrature in Section 3. Following this, we
will then state our method in Section 4, show how we have reformulated the global Lanczos
method in the tensor network formalism, and discuss its properties as well as give an analysis
of its complexity. Finally, in Section 5 we will provide numerical evidence for the fast and
robust convergence of our method for the case of the trace-norm and von-Neumann entropy
of quantum mechanical density matrices. We conclude with a discussion of the results in
Section 6.

2. Matrix product states and operators. In the area of tensor networks, MPS and
MPOs form a well-established class of tensor decompositions that allow for efficient and
stable approximation of very high-dimensional vectors and matrices, respectively. While they
are commonly used in theoretical and numerical quantum many-body physics to model, e.g.,
ground and thermal states [10, 29, 33, 35, 36, 37, 38, 39, 41], they also have been independently
introduced in the numerical mathematics community under the name of Tensor Trains (TT)
[27] as a general approximation tool. Since our work is mainly motivated by applications in
quantum physics, we will adapt the respective terminology in the following.

A matrix product state is a decomposition of a vector v ∈ CN such that

vi = vi1...iL = TrCi11 C
i2
2 · · ·CiLL ,

where the index i is split up into L sub-indices of dimensionality d, called physical indices,
i1, . . . , iL. We will refer to C1, . . . , CL ∈ Cd×D×D as the sites or core tensors of the MPS
and D is called the bond dimension. The superscripts ij of the Cj correspond to the physical
indices. The concept of splitting up the index i is the standard way to represent vectors and
matrices in TT/MPS form and is also used for so-called quantized tensor trains (QTT) [21] in
the numerical community. While in principle every site may have its own bond dimensions,
as long as they allow for contraction with neighbouring sites, for simplicity and without loss
of generality, we will assume all sites to have identical bond dimension D. The physical
dimension d is likewise assumed to be identical for all sites. It is important to note that
N = Ld, as this relation forms the basis for the ability of MPS/MPOs to represent vectors and
matrices of very high dimensionality.

A slightly different representation can be chosen, where

vi = vi1...iL = Ci11 C
i2
2 · · ·CiLL ,

with C1 ∈ Cd×1×D and CL ∈ Cd×D×1. In physical terms, the former representation
corresponds to systems with closed boundary conditions (CBC) whereas the latter assumes
open boundary conditions (OBC). It is clear that OBC is a special case of CBC. For the
remainder of this work, we assume open boundary conditions for the sake of simplicity, but
the algorithm can be applied to the CBC case, albeit with a modified computational cost.
Following this decomposition, a particular element of v is described by a chain of matrix
multiplications, explaining the name of the representation.

Now, the whole vector v can be written as

v =
d∑

i1,...,iL

(Ci11 C
i2
2 · · ·CiLL ) (ei1 ⊗ ei2 ⊗ · · · ⊗ eiL)

=

D∑

k2,...,kL−1

(
d∑

i1

Ci11,k2ei1

)
⊗
(

d∑

i2

Ci22,k2k3ei2

)

⊗ · · · ⊗
(

d∑

iL

CiLL,kL−1
eiL

)
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=

D∑

k2,...,kL−1

u1,k2 ⊗ u2,k2k3 ⊗ · · · ⊗ uL,kL−1
,

where ej denotes the jth column of the identity matrix and the subscripts kj and kj+1 denote
the row and column indices of the matrices Cijj , respectively. This expression sheds some
light on the underlying tensor product structure of MPS and facilitates comparisons with other
tensor decomposition schemes.

We now turn our attention to the representation of operators and matrices. Abstractly, one
can define an MPO as an operator with an MPS representation in a direct product basis of the
operator linear space. More concretely, for the representation of a matrix A ∈ CN×N as an
MPO, the approach presented above can easily be adapted to yield

Aij = Ai1...iLj1...jL = Ci1j11 Ci2j22 · · ·CiLjLL ,

where i, j have been split up as before, resulting in two superscripts this time, and with the
matrices C1, . . . , CL ∈ Cd×d×D×D. In analogy to the case for a vector, we can write the
whole matrix as

A =
d∑

i1,...,iL

d∑

j1,...,jL

(Ci1j11 Ci2j22 · · ·CiLjLL )

· (ei1 ⊗ ei2 ⊗ · · · ⊗ eiL)(eTj1 ⊗ eTj2 ⊗ · · · ⊗ eTjL)

=
d∑

i1,...,iL

d∑

j1,...,jL

D∑

k2,...,kL−1

(Ci1j11,1k2
Ci2j22,k2k3

· · ·CiLjLL,kL−11
)

· (ei1eTj1)⊗ (ei2e
T
j2)⊗ · · · ⊗ (eiLe

T
jL)

=
D∑

k2,...,kL−1

U1,k2 ⊗ U2,k2k3 ⊗ · · · ⊗ UL,kL−1
,

where ej is again the jth column of the identity and eTj is its transpose. Note that this also
holds true for other product bases, like for instance the Pauli basis. Making use of these
formulations, it is easy to show that basic operations such as scalar multiplication, addition,
and inner product as well as the multiplication of an MPS by an MPO or of two MPOs can be
performed in the formalism. The addition and non-scalar multiplication, however, lead to an
increase in the bond dimension D. For the addition of two MPS/MPOs with bond dimensions
D and D′, the new bond dimension is D′′ ≤ D+D′, and for the multiplication, D′′ ≤ D ·D′
[33]. This can again easily be verified.

It is obvious from the above explanation that the bond dimension is the decisive factor
for the expressive power of the formalism. An exact representation of a vector (operator)
as an MPS (MPO) is always possible if we allow the bond dimension D to be big enough,
which may mean exponentially large in L, up to dbN/2c [38]. When the maximum value
of D is limited to some fixed value (truncated) smaller than the one required for exactness,
not all vectors or operators can be represented, which may give rise to approximation errors.
We will in the following denote that some vector v or matrix A is approximated with bond
dimension D by writing v[D] and A[D], respectively. Nevertheless, it has been found that
for many physically relevant states and operators, MPS/MPO yield good approximations for
D ∈ O(poly(L)) [35, 36, 41] leading to the total number of parameters LdD2 ∈ O(poly(L))
as opposed to dL or d2L for the whole vector or matrix, respectively. This constitutes another
main reason for their usefulness as an efficient approximation scheme.
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Algorithm 1: Global Lanczos Algorithm.

Input :Matrix A ∈ CN×N , Starting Matrix U ∈ CN×M , Number of Dimensions
K

1 U0 ← 0 ;
2 V0 ← U ;
3 for i← 1; i ≤ K do
4 βi ← ‖Vi−1‖F ;
5 if βi = 0 then
6 break ;
7 end
8 Ui ← Vi−1/βi ;
9 Vi ← AUi − βiUi−1 ;

10 αi ← 〈Ui, Vi〉 ;
11 Vi ← Vi − αiUi ;
12 end

Output :Orthonormal Basis UK ∈ CN×KM , Tridiagonal Matrix TK ∈ RKM×KM

Naturally, many methods have been developed to find optimal and canonical represen-
tations for a given D both in the numerical and the quantum physics community. The most
important algorithms for optimizing a given MPS/MPO with respect to some error function
and bond dimension thereby rely on local updates of the individual Ci with all other sites being
treated as constants, rather than considering all parameters simultaneously. These algorithms,
starting with the left- or right-most site, generally sweep back and forth over the chain of
sites updating one site per step until convergence. As all sites not considered in a given step
are treated as fixed, this sweeping scheme allows for reusage of previously computed values
in a dynamical programming fashion. As explaining the details and the complexity of these
algorithms exceeds the scope of this section, we refer the interested reader to the overview
articles [2, 15, 33, 37].

3. The global Lanczos algorithm and Gauss quadrature. The idea of employing
variants of Krylov methods to solve various types of problems, for instance, solving linear
systems [19, 22, 31], finding eigenvectors [1, 5, 23, 24] or approximating the action of an
exponential operator onto a vector [12], is already well-established. To solve, e.g., linear
systems with multiple right-hand sides and for reasons of efficiency, block versions of the
originally vector-based Krylov algorithms have been developed. While there exist several
block versions of the Lanczos algorithm [6, 8, 13, 16, 25], we will only consider the one
presented in [4] as it does not require the columns of the basis blocks to be orthogonal, which
would be prohibitive for very large matrices.

Starting from an initial matrix U ∈ CN×M , the algorithm will build up a basis of matrices
Ui = [U1, · · · , Ui] with Ui ∈ CN×iM . Now, we first need to state the inner product with
respect to which the individual Ui must be orthonormal and define it to be

〈Ui, Uj〉 = TrU∗i Uj ,

where Ui, Uj ∈ CN×M . This induces the well known Frobenius norm

‖Ui‖F = 〈Ui, Ui〉1/2,

and hence this definition of the inner product is a straightforward generalization of the one used
in the standard Lanczos algorithm. Naturally, one may also choose different inner products [8].
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For this work, we do, however, choose the Frobenius norm as it can be efficiently computed
for MPOs. Equipped with this definition, we can see that Algorithm 1 is in fact a direct
generalization of the standard Lanczos algorithm to the matrix-case. As such we find that after
i steps, the method has produced the reduction Ti of A given by

Ti =




α1 β2 0

β2 α2
. . .

. . . . . . βi
0 βi αi




and yields the partial global Lanczos decomposition

AUi = UiT̃i + βi+1Ui+1E
T
i ,

where we define T̃i = Ti ⊗ IM ∈ RiM×iM and ETi = [0, · · · ,0, IM ] ∈ RM×iM . Further-
more, it holds that

βi+1Ui+1 = (A− αiIN )Ui − βiUi−1
and

U∗iAUi = Ti,

if we apply the inner product defined previously. From now on, we will implicitly make use
of this inner product whenever appropriate. Then, all other results obtained for the original
Lanczos method carry over to the global Lanczos case.

To establish the link between the global Lanczos method and Gauss quadrature, we start
by observing that

u∗f(A)u = u∗VAf(ΛA)V ∗Au =

N∑

i=1

f(λi)µ
2
i =

∫ b

a

f(λ)dµ(λ),

with VAΛAV
∗
A being the spectral decomposition of A, µi = eTi V

∗
Au and

µ(λ) =





0 if λ < λ1 = a∑j
i=1 µ

2
i if λj ≤ λ < λj+1∑N

i=1 µ
2
i if b = λN ≤ λ

being a piecewise constant and nondecreasing distribution function. Here we assume the
eigenvalues of A to be ordered ascendingly. We can use this result to obtain

If := Tr(U∗f(A)U) =
N∑

i=1

e∗iU
∗VAf(ΛA)V ∗AUei =

N∑

i=1

∫ b

a

f(λ)dµi(λ)

=

∫ b

a

f(λ)d
N∑

i=1

µi(λ) =

∫ b

a

f(λ)dµ(λ)

for a matrix U like the initial matrix of the global Lanczos method, where we define µi(λ)

analogously to the case above and µ(λ) :=
∑N
i=1 µi(λ). This Riemann-Stieltjes integral can

now be tackled via Gauss-type quadrature, the most general formulation of which is given by

Gf :=
K∑

k=1

ωkf(θk) +
M∑

m=1

νmf(τm),
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where θk and τm are called the nodes and ωk and νm the weights of the quadrature. In this
work we only consider the case where M = 0.

It is well known that in order to determine the ωk and θk that satisfy this property, one
can construct a sequence of polynomials {p0, · · · , pK} that are orthonormal in the sense that

∫ b

a

pi(λ)pj(λ)dµ(λ) = δij

and that satisfy a recurrence relation given by

(3.1) βipi(λ) = (λ− αi−1)pi−1(λ)− βi−1pi−2(λ),

where p−1(λ) ≡ 0 and p0(λ) ≡ 1. Then, the roots of pK can be shown to be the optimal
θk [7, 14]. Now, the recurrence relation yields a recurrence matrix TK defined by

TK =




α1 β2 0

β2 α2
. . .

. . . . . . βK
0 βK αK



,

whose eigenvalues are the zeros of pK(λ) and consequentially the θk of Gf [14]. The ωk are
given by the squared first elements of the normalized eigenvectors of TK and so,

Gf = eT1 f(TK)e1 = eT1 VT f(ΛT )V ∗T e1,

where VTΛTV
∗
T is the spectral decomposition of TK .

Now, the Ui from the global Lanczos method can be expressed by

Ui = pi−1(A)U,

with pi−1 being some polynomial of degree i− 1. Then, it is clear that

〈pi−1(A)U, pj−1(A)U〉 = 〈Ui, Uj〉 = δij

and taking into account the above derivations

〈pi−1(A)U, pj−1(A)U〉 = Tr(U∗pi−1(A)∗pj−1(A)U)

=

∫ b

a

pi−1(λ)pj−1(λ)dµ(λ).

Hence, the global Lanczos method produces orthonormal polynomials [24] that in addition
satisfy the recurrence relation stated in equation (3.1) by construction as we have seen above.
The Ti obtained by the global Lanczos algorithm is thus the recurrence matrix needed to
perform a Gauss quadrature with i nodes. If we choose U ∈ CN×N to be unitary, it follows
that

Trf(A) = Tr(U∗f(A)U) =

∫ b

a

f(λ)dµ(λ) ≈ eT1 f(Ti)e1.
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Algorithm 2: Approximation Algorithm.

Input :MPO A[DA] ∈ CN×N , Starting orthogonal MPO U [Dinit] ∈ CN×N ,
Number of Dimensions K, Maximal Bond-Dimension Dmax, Stopping
Criteria S

1 U0 ← 0 ;
2 V0 ← U ;
3 D ← Dinit ;
4 for i← 1; i ≤ K do
5 βi ←

√
contract(Vi−1, Vi−1) ;

6 if βi = 0 then
7 break ;
8 end
9 Ui ← multiplyScalar(1/βi, Vi−1) ;

10 D ← min(Dmax, D ·DA) ;
11 Vi ← multiplyAndOptimize(A,Ui, D) ;
12 D ← min(Dmax, D +DUi−1) ;
13 Vi ← sumAndOptimize(Vi,−βiUi−1, D) ;
14 αi ← contract(Ui, Vi) ;
15 D ← min(Dmax, D +DUi

) ;
16 Vi ← sumAndOptimize(Vi,−αiUi, D) ;
17 VTΛTV

∗
T ← spectralDecomposition(Ti) ;

18 Gf ← β2
1e
T
1 VT f(ΛT )V ∗T e1 ;

19 if checkStop(Gf,ΛT ,S) then
20 break ;
21 end
22 end

Output :Approximation Gf of Trf(A)

4. Assembling the parts. Now that we have reviewed the relevant theoretical aspects,
we will proceed by showing how we put together the pieces to obtain our algorithm. The
whole algorithm is presented in Algorithm 2.

Since the global Lanczos method is based on matrix-matrix multiplications, additions of
matrices, and multiplications of matrices by scalars, these operations have to be formulated
for the MPO case. As the bond dimension of the basis-MPOs grows with the number of
multiplications and additions, we need to keep track of the bond dimensions and perform
projections onto lower bond dimensions whenever necessary. Thus, the input parameters of
our method are the MPO A[DA] ∈ CN×N , an orthogonal starting MPO U [Dinit] ∈ CN×N ,
the maximal Krylov-dimension K, a set of stopping criteria S , and finally the maximal bond
dimension Dmax of the Ui.

It should be stressed that we assume U [Dinit] to be unitary and of the same dimension
as A[DA]. This allows us to replace the approximation that had to be made previously
by combining the estimations for several starting matrices by the exact computation since
now it holds that Trf(A) = TrU∗f(A)U if we assume U to be normalized without loss of
generality. This is only possible due to the fact that we translate the Lanczos method to the
MPO formalism.

Besides the case of very large matrices that can be explicitly stored but are too large for
multiplications with equally sized matrices, this is especially important for the case where the
respective matrices are only given in MPO format and N is of the order of several millions, as
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in the case of quantum many-body systems. While we introduce some approximation error
by using MPOs, we will show in Section 5 that these errors can be comparably small already
for low bond dimensions in cases of practical interest. In the following, we will omit the
declaration of the bond dimension of an MPO whenever it increases clarity.

While in principle every orthogonal MPO can serve as a starting point, in this work
we choose U [Dinit] to be the identity matrix because it has a minimal MPO formulation of
Cjki = δjk. This allows us to start from the minimal bond dimension Dinit = 1 and thus
maximizes the amount of relevant information that we can store for a given Dmax. In certain
cases it might however be possible to choose a better starting MPO, e.g., when A is very close
to being diagonal. Note that starting with the full identity matrix does not imply convergence
in one step as the identity is not a basis of the space implied by the Frobenius inner product.
For the implementation of the inner product and norm used in the global Lanczos algorithm,
we observe that

〈Ui, Uj〉 =
N∑

k=1

N∑

l=1

Ui,klUj,lk = U∗i,vecUj,vec ,

where Ui,vec and Uj,vec are the vectorized versions of Ui and Uj , respectively. This allows
us to make use of an efficient, exact way of computing the inner product of MPS [33]
by rewriting the Cjikii as Cj

′
i
i with dim j′i = dim ji · dim ki and hence vectorizing the

MPO. This functionality is implemented in contract(). The implementation of the scalar
multiplication multiplyScalar() is straightforward as it corresponds to multiplying an
arbitrary Ci—we choose C1 for simplicity—of the respective MPO by the scalar at hand.

A bit more care has to be taken when implementing the functions for the multiplica-
tion and summation of MPOs, multiplyAndOptimize() and sumAndOptimize(),
respectively. One possibility would be to first perform the respective operation exactly, i.e.,
use the bond dimension required for the exact result, and to project the resulting MPO onto
the current D via the singular value decomposition (SVD) of its Ci in a second step. It has
however been found that performing the projection simultaneously to the multiplication or
summation at the level of the individual Ci yields superiour results; see [33, 37, 40]. In case
of the multiplication, we implement this strategy by solving the optimization problem

min
C̃i

‖AUj [Dold]− Ũj [Dnew]‖2F ,

where Dold is the bond dimension used previous to the multiplication and Dnew is the bond
dimension used for the optimization. Ũj [Dnew] denotes the result of the multiplication of
A on Uj and the C̃i are its tensors. The implementation hence performs the multiplication
of the MPOs at tensor level and directly optimizes the resulting tensors for the chosen bond
dimension by employing the sweeping scheme sketched in Section 2. In order to apply this
algorithm to the case of MPO-MPO multiplication, we rewrite AUj as

(I ⊗A)Uj,vec =




A 0 0

0 A
. . .

. . . . . . 0
0 0 A







Uj,1
Uj,2

...
Uj,N


 ,

with Uj,k being the kth column vector of Uj . Due to technical reasons, we do in fact use
Uj ⊗ I and Avec. For the summation, we apply the same strategy and solve

min
C̃i

‖
(
Uj [Dold] +

∑

k

γkUk[Dk
old]

)
− Ũj [Dnew]‖2F ,
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where Dold is the bond dimension used before the addition, Dk
old are some other previously

used bond dimensions, Dnew is the bond dimension to be used for the optimization, and
γk ∈ C are some scalars. Ũj [Dnew], similarly as before, represents the outcome of the
summation and the C̃i are its tensors.

As it can be seen in Algorithm 2, we allow for exact multiplication and summation as
long as the resulting bond dimension does not grow beyond Dmax. This, however, happens
quickly since D can grow exponentially with the number of iterations, and so most of the Ui
will be represented based on Dmax. This underlines the importance of Dmax for the accuracy
of the approximation.

After the algorithm has completed one iteration of the global Krylov method, the spectral
decomposition of Ti is performed and the current approximation is computed. Based on the
approximation and the eigenvalues of Ti, the algorithm then determines if it should be stopped
in checkStop. Here we have to account for several factors.

Firstly, we know that Gf converges to the correct value in absence of approximation
errors. So, the algorithm can terminate when the distance between the previous and current
Gf becomes smaller than some ε.

Secondly, it is clear that the projection of the generated MPOs down to Dmax introduces
an approximation error. While it is possible to obtain the error of the optimization problems
described above, it is not clear how the accumulated error influences Gf precisely. However,
a possible way of detecting when the approximation error has become too large is to check
for the violation of some theoretical constraints. For instance, in case of a positive A, we
know that the Ritz-values of A must be positive as well. If Ti starts to develop significant
negative eigenvalues relative to the allowed numerical precision, we thus know that the total
approximation error has reached a level that leads to unreasonable results. The same reasoning
could be applied for other intervals in which one knows the spectrum of A to be in.

It is well known that, depending on the sign of the derivative of f in (λ1, λN ), Gf can
yield an upper/lower bound and that it converges to the true value. Based on this it is possible
to show that GM < GM+1 for the lower-bound case and GM > GM+1 for the case of an upper
bound [14]. This provides another stopping-criterion.

As the accumulation of truncation errors can lead to unreasonable results even before
the violation of the above property, we propose to keep a moving average of the last k
approximations and employ the 3σ-rule to detect improbable results. To dismiss unlikely
results, the 3σ-rule makes use of Chebyshev’s inequality, according to which the probability
for a sample from a probability distribution with finite expected value and variance to be
farther away from the expected value than three times the variance is roughly 11%. This
heuristic is justified by the guaranteed convergence in the absence of numerical errors.

After having explained the algorithm, a few remarks are in order:
(i) In this version of the algorithm, we only consider the Gauss quadrature. This is

mainly due to the fact that obtaining good lower or upper bounds on the spectrum of
A is in general not possible because of the size of its dimensions. Analogously to [4],
our algorithm can nevertheless be adapted to perform Gauss-Radau or Gauss-Lobatto
approximations.

(ii) To improve numerical stability and prevent ‘ghost’ eigenvalues from occurring, it
could be beneficial to perform reorthogonalization. Due to the MPO representation,
this would, however, be very costly and not necessarily result in a large improvement.
Thus, we do not consider this extension. It can, however, be easily added to the
algorithm.

(iii) In the presented algorithm, we stick to the canonical way of orthogonalizing the
new matrix against the old matrices individually. In the case of exactly stored
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FIG. 4.1. The number of Krylov dimensions needed to converge to the correct value of Tr
∑g
i=0(A) over the

degree of the polynomial for the exact version of the algorithm with L = logN = 10.

matrices/vectors, this scheme increases the numerical stability. Since we now employ
approximations of the exact matrices, it might, however, be worth considering to
compute αi first and then optimize the sum containing both Ui and Ui−1. The
advantage of being able to optimize the whole expression at once might outweigh the
disadvantage of orthogonalizing against both matrices simultaneously. On the other
hand, computing αi first might lead to different and possibly worse results.

(iv) As we have stated above, it is possible to obtain approximation errors from both
multiplyAndOptimize and sumAndOptimize. But these errors naturally
only refer to the current optimization and do not allow for strict bounds on the overall
error. One could of course try to increase the bond dimension for each individual
optimization until its error converges to make sure the partial result is close to exact.
The problem here is that due to the possibly exponential growth of the bond dimension
needed for exactness, Dmax is typically reached within very few iterations. From this
point on, it is not possible to increase D any more and so, the information about the
error provides little useful information. This is why we have resorted to the approach
of checking for the violation of theoretically guaranteed behaviour.

(v) From the above explanations it is clear that K and Dmax are the parameters that
control the accuracy of the approximation. For the algorithm to be of use for very high-
dimensional matrices, we must impose the restriction that K,Dmax ∈ O(poly(L)).
This property is particularly relevant for quantum mechanical simulations where N
grows exponentially with the number of particles.

While it is very difficult to rigorously analyze the convergence behaviour of our method
when facing truncation errors introduced by the MPO/MPS representation, we are able to
make a statement for the case of exact arithmetic without truncations.

THEOREM 4.1. For f : CN × CN → CN × CN being a polynomial of degree g or
a smooth function that is arbitrarily well approximated by its power series expansion up
to g and exact arithmetic without truncations, Algorithm 2 converges to the exact value in
min{g∗, bg/2c+ 1} steps, where g∗ is the degree of the minimal polynomial of A.

Proof. 1.) It follows from the fact that we perform a Gauss quadrature, which for i nodes
is exact for all polynomials up to degree 2i− 1, and employ the full identity matrix as starting
matrix for our algorithm that our method requires maximally bg/2c+ 1 steps to converge to
the exact value. 2.) Furthermore, it follows from the underlying Lanczos algorithm that our
method will converge in maximally g∗ steps, where g∗ is the degree of the minimal polynomial
ofA. From 1.) and 2.), it directly follows that our method will converge in min{g∗, bg/2c+1}
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TABLE 4.1
A listing of the complexity of the subfunctions of Algorithm 2. L = logN is the number of tensors of the MPOs,

d is the physical dimension. For simplicity, all Ui are assumed to have bond dimension Dmax and Ti is assumed to
be in RK×K .

Function Complexity

contract O(LD3
maxd

2)

multiplyAndOptimize O(LD3
maxDAd

2)

sumAndOptimize O(LD3
maxd

2)

multiplyScalar O(D2
maxd

2)

spectralDecomposition O(K3)

checkStop O(1)

steps in the exact case.
It is worth noting that this result would also hold for the global Lanczos method as

introduced in [4] if the authors would not explicitly restrict themselves to starting matrices
of significantly smaller dimension than that of A, as that restriction prevents the Gauss
quadrature from converging to the exact value. While truncation errors introduced by the
tensor network representation will deteriorate the convergence behaviour and the statement
above will therefore not be directly applicable to practical applications in general, it is still
instructive to understand the behaviour of the algorithm in the ideal case.

To illustrate the result, Figure 4.1 depicts the number of steps needed by the algorithm
without truncations to converge to the correct result with a relative error of 10−12 for increasing
degrees of the polynomials of the form f(A) =

∑g
i=0A

i and N = 1024. For a full diagonal
matrix with entries randomly sampled from the uniform distribution over [−1, 1], the algorithm
in fact needs as many steps as required by the Gauss quadrature to reach exactness. On the
other hand, for the Hadamard matrix, which only has two distinct eigenvalues, the method
always converges in two steps. A full symmetric matrix with entries uniformly sampled from
[0, 1] typically only has a few dominant eigenvalues, which corresponds to the number of steps
needed to converge being six in this case.

We will conclude this section with an analysis of the complexity of our algorithm. The
complexities of the subfunctions of Algorithm 2 are listed in Table 4.1. For the analysis of
multiplyAndOptimize, we have assumedDA to be smaller or of the same order asDmax.
If it were significantly larger, the complexity would change toO(LD2

maxD
2
Ad

2). Note that this
analysis does not extend to the number of sweeps necessary for the optimizations to converge.
For the spectral decomposition, we have for simplicity assumed all Ti to be of size K ×K.
Combining all the different results, we thus find that the overall complexity of Algorithm 2
is O(KLD3

maxDAd
4) with L = logN and since we require K,Dmax ∈ O(logN), this is

equivalent to O(poly(L)).

5. Numerical results. In this section we present numerical results obtained for a chal-
lenging problem of relevance in quantum many-body physics. Our goal thereby is to study
the convergence of the results with increasing K and Dmax. The problem we consider is
the approximation of the von Neumann entropy. For a quantum state ρ1, the von Neumann
entropy is given by S = −Trρ log ρ. In the following, we will focus on the case of states of
the form ρ = e−βH /Tre−βH , i.e., thermal equilibrium states for a Hamiltonian H at a certain

1ρ is a positive operator with unit trace, representing an ensemble of pure states.
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inverse temperature β2. Here, we assume H to be the Ising Hamiltonian with open boundary
conditions that is given by

H = J
L−1∑

i=1

σxi σ
x
i+1 + g

L∑

i=1

σzi + h
L∑

i=1

σxi ,

where σ{x,y,z} are the Pauli matrices

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

Note, however, that here by σ{x,y,z}i we actually denote the tensor product I1 · · · ⊗ Ii−1 ⊗
σ
{x,y,z}
i ⊗Ii+1⊗· · ·⊗IL and analogously for σ{x,y,z}i σ

{x,y,z}
i+1 for simplicity of notation. The

Hamiltonian describes a chain of spin particles with nearest neighbour interactions and two
magnetic fields acting only on the individual particles. This choice of H has the advantage that
it is exactly solvable for h = 0, a case commonly known as ’transverse Ising’, and thus opens
the possibility to obtain a reference solution for system sizes for which it could otherwise not
be obtained [20, 32, 34]. Hence, in the following we will assume h = 0.

It is possible to find an MPO approximation to the thermal equilibrium state ρ by means
of standard MPS-techniques [12, 36, 41]. It is customary to use a purification ansatz for this
purpose, where ρ(β/2) is approximated by standard imaginary time evolution, and the whole
state is then written as ρ ∝ ρ(β/2)∗ρ(β/2). In the context of our algorithm, nevertheless,
applying exactly this ρ involves a larger cost and worse numerical condition. Instead, we apply
the method as described above to ρ(β/2) and absorb the necessary squaring into the function
that is to be approximated. In our case this means that instead of computing f(λi) = λi log λi
for each Ritz-value, we can compute f ′(λi) = λ2i log λ2i for λi corresponding to ρ(β/2).
This allows us to apply the algorithm to a possibly much more benign input at the cost of
an only slightly more complicated function. Due to truncation errors, the operator ρ(β/2)
may not be exactly Hermitian. This can be easily accounted for by taking its Hermitian part,
1
2 [ρ(β/2)∗ + ρ(β/2)], which is an MPO with at most twice the original bond dimension. In
our experiments we, however, did not find this to be necessary.

Apart from the entropy, another interesting function to examine would have been the trace
norm given by ||ρ||1 = Tr

√
ρ∗ρ, i.e., the sum of the singular values. But as we only consider

positive matrices in this scenario, this sum is equal to the trace which we know to be equal
to 1 due to the normalization of the thermal state. Directly related to this, we find that α1 as
computed by our algorithm is given by

α1 = TrU∗1V1 = TrU∗1 ρU1 =
1

β2
1

TrU∗ρU =
1

β2
1

Trρ.

So, our algorithm computes the trace of the input MPO A in one step. We verified this result
numerically and found it to hold for all considered cases. This means that the algorithm also
computes the trace norm of ρ(β) in one step in this case.

It is well known that if its sign is constant over the considered interval, then the 2Kth
derivative of f determines whether Gf poses a lower or upper bound of the true value. In our
case and for K > 1, it is given by

d2K − λ2i lnλ2i
d2Kλi

=
4(2K − 3)!

λ2K−2i

,

2Note that β is not related to the βi computed by our algorithm.
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Transverse Ising with β = 0.1 and g = J = −1
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FIG. 5.1. Convergence behavior of the algorithm for L ∈ {10, 20, 30, 50, 100}, β = 0.1 and varying
Krylov-dimension K. In (a), the convergence of the approximation is depicted. In (b), the convergence of the relative
error is shown.

Transverse Ising with β = 1 and g = J = −1
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FIG. 5.2. Convergence behavior of the algorithm for L ∈ {10, 20, 30, 50, 100}, β = 1, and varying Krylov-
dimension K. In (a), the convergence of the approximation is depicted. In (b), the convergence of the relative error is
shown.

with λi being the ith eigenvalue of ρ. Hence, we can expect our algorithm to provide
increasingly tight lower bounds for the correct value. We use the violation of this property
as a stopping criterion to account for the situation when truncation errors become too large.
Additionally, we keep the average of the last three or four—depending on β—approximations
and employ the aforementioned 3σ-rule. In case these stopping criteria are not met, we
terminate the algorithm when the absolute difference between successive approximations is
below 10−10.

In our experiments we considered systems of size L ∈ {10, 20, 30, 50, 100}, Hamiltonian
parameters J = g = 1, and inverse temperatures β ∈ {0.1, 1.0}. The bond dimension used
to obtain ρ(β2 ) was set to 20 for all cases. The convergence of the approximation as well as
the relative error for β = 0.1 and β = 1 are shown in Figure 5.1 and Figure 5.2, respectively.
Note that in order to compute the relative error, we used numerical diagonalization for L = 10
and the analytical solution [32] for L > 10. In all cases except for L = 10 and β = 0.1, where
the algorithm was stopped when the distance between successive approximations reached
the threshold, the algorithm was stopped when meeting the 3σ stopping criterion. Table 5.1
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FIG. 5.3. The spectra of ρ(β) and ρ(β
2
) of the transverse Ising Hamiltonian with J = g = −1 for L = 10

and β ∈ {0.1, 1}.

shows the change of the relative error of the final approximations with growing Dmax for
L ∈ {50, 100} and β ∈ {0.1, 1}.

For the case of β = 0.1 we observe fast convergence to good approximations in K and
Dmax as shown in Figure 5.1. The maximal bond dimension required for good convergence
only grows mildly with L allowing our method to scale very well with the size of the input.
The plots in Figure 5.1b show a plateau in the relative error at 10−7. This corresponds to the
non-vanishing difference between the exact solution and the numerical MPO used as input.
Note that for L = 10, where the input is exact, the method is able to achieve a smaller error.

The results for the larger inverse temperature β = 1 paint a slightly different picture.
While the overall behavior of our method remains the same and Figure 5.2a depicts good
convergence especially for L < 100, Figure 5.2b shows that the relative error achieved is
noticeably worse than for the case of β = 0.1. It also seems that larger values of Dmax are
required to achieve reasonable results. This phenomenon naturally becomes more pronounced
with larger L.

We conjecture that the difference in the performance observed for the two considered
values of β has two main reasons. Firstly, the bond dimension required for a good approx-
imation of ρ grows with larger β. This might in turn increase the value of Dmax required
for good accuracy, and, correspondingly, increase the approximation error incurred by ρ, so
that the computed function will be farther from the analytical solution. Secondly, the spectral
properties of the obtained MPOs for the two considered cases are significantly different. In
Figure 5.3, we show the spectra of ρ for both values of β and β/2 for L = 10, respectively.
It is clearly visible that β = 0.1 poses a much more benign case. This is underlined by the
condition numbers, which are roughly 11.9, 5.68 · 1010, 3.5 and 2.38 · 105 for β = 0.1, β = 1,
β = 0.05 and β = 0.5, respectively. They show that β = 1 in fact yields highly ill-conditioned
MPOs, functions of which are hard to approximate. These considerations also make it clear
that by absorbing the necessary squaring of the eigenvalues into the function, we obtain much
more well-conditioned input MPOs of lower bond dimension. Hence, we can conclude that
our method, while being influenced by both aforementioned factors, is relatively robust and
even works reasonably well for very difficult cases.

Table 5.1 illustrates that while our method achieves a low error for β = 0.1 and a
moderate error for β = 1 even for a small Dmax, it profits from an increase of the maximal
bond dimension. This effect is more pronounced for the lower β which is likely due to the
reasons mentioned above. For instance, for L = 100 and β = 0.1, the error decreases by
two orders of magnitude from 10−5 to about 10−7 when Dmax is raised from 20 to 180,
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TABLE 5.1
Relative error in the entropy of the transverse Ising Hamiltonian with J = −1 forL ∈ {100, 50}, g ∈ {1, 0.1}

and increasing values of the maximal bond dimension Dmax.

Dmax L = 100, β = 0.1 L = 100, β = 1 L = 50, β = 0.1 L = 50, β = 1

20 1.14 · 10−05 9.75 · 10−02 2.73 · 10−07 -
40 3.96 · 10−06 9.14 · 10−02 8.04 · 10−08 2.75 · 10−02

60 1.67 · 10−06 9.32 · 10−02 1.12 · 10−07 1.84 · 10−02

80 1.41 · 10−06 7.95 · 10−02 1.15 · 10−07 1.89 · 10−02

100 2.38 · 10−07 7.81 · 10−02 - 1.26 · 10−02

120 4.01 · 10−07 7.37 · 10−02 - 1.11 · 10−02

140 2.77 · 10−07 7.04 · 10−02 - 1.05 · 10−02

160 2.29 · 10−07 7.11 · 10−02 - 9.56 · 10−03

180 6.43 · 10−08 7.03 · 10−02 - 9.06 · 10−03

TABLE 5.2
Comparison of the runtime in seconds between SciPy’s expm function and Algorithm 2 for Tr exp(A) and

increasing values of L. Lower runtimes are printed bold.

L scipy.expm Algorithm 2
10 1 23
11 3 23
12 20 31
13 129 43
14 994 50

which still constitutes a strong truncation. It is conceivable that a further increase of the
maximal bond dimension would improve the accuracy. For L = 50 and β = 0.1, the error still
decreases when Dmax is raised from 20 to 40, but a further increase shows now effect due to
the aforementioned small error already introduced by ρ(β). We also found that Dmax limits
the number of basis MPOs that can be successfully orthogonalized and therefore effectively
controls the maximally reachable K. Hence, Dmax can be regarded as the decisive parameter
of our method.

We do not provide a proper comparison to other methods at this point because of the
simple reason that to the best of the authors knowledge there is no other algorithm that can
solve the considered kind of problem for L � 20, but for L ≤ 20 we expect the existing
highly optimized methods to outperform our method in terms of runtime. However, from
our analysis of the complexity we know that our method scales as O(logN) with the matrix
dimension N when all other parameters are kept constant. This is in contrast to methods based
on full diagonalization, which scales as O(N3). One can therefore expect our method to
eventually outperform such approaches as well as approaches with super-logarithmic scaling
in general for growing N when all other parameters are kept fixed. In Table 5.2, we provide a
small comparison of the runtime of our algorithm to that of the expm function from the SciPy
package for Python which implements a squaring-and-scaling approach. We approximated
Tr exp(A) where A is the transverse Ising Hamiltonian with L ∈ {10, 11, 12, 13, 14}. We
set Dmax = 30 which yielded good approximations and K = 100 to prevent the method
from reaching the maximal Krylov dimension before convergence. We then let the algorithm
run until the relative error between successive approximations was smaller than 10−8. The
results were obtained on an Intel i7-4790 CPU with 32GB RAM. While for smaller matrices
up to L = 12 our method is significantly slower, it does not suffer from the same drastic
increase in runtime with growing matrix size and hence outperforms expm for L > 12. We
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found the expm function to break down due to memory requirements for L > 14. The
results show that for the given parameters, the runtime of our method remains small for all
considered matrix sizes. However, depending on Dmax the runtime can significantly increase
to several hours. Note though that there exist several ways to speed up computations in the
MPO/MPS representation via exploitation of symmetries which we did not consider in our
implementation.

6. Discussion. In this work, we have introduced a method to approximate functionals
of the form Trf(A) for matrices of dimension much larger than 220. We started by giving
an overview of the mathematical and algorithmic ideas behind the method. Following this, a
detailed description of the algorithm together with an analysis of its complexity was provided.
We then presented numerical results for a challenging problem in quantum many-body physics.
These results indicate that our method is able to produce good approximations for a number of
Krylov steps and a maximal bond dimension logarithmic in the size of the matrix as long as
the matrix exhibits some structure that can be expressed well in the MPO/MPS-formalism and
is moderately well-conditioned. It was also shown that the maximal allowed bond dimension
is the decisive parameter of the algorithm.

There are several ways to build upon this work. Firstly, an investigation of preconditioning
methods suitable for our method could be fruitful. Secondly, a more thorough analysis of
the effect of the approximation error introduced by the tensor network formalism on the
approximation error of the Gauss quadrature would be an interesting addition. Thirdly, the
connection of the approximability of a matrix by an MPO to the convergence behavior of
our method could provide deeper understanding. Fourthly, it could be investigated which
of the many improvements over the normal Gauss quadrature, as for instance [30], can be
incorporated into our algorithm to make better use of the expensive information obtained in
the Krylov iteration. Finally, the method naturally could be applied to solve practical problems
of interest.

While our method was tested for a quantum mechanical problem, it is of course general
in nature and can be applied to any case where the matrix in question can be formulated as an
MPO or well approximated by one. Especially for matrices of dimension larger than 210 that
however can still be explicitly stored, it might be interesting to consider computing the desired
function for the MPO representation.
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Summary This article poses a direct continuation of the work shown in Appendix A. After
we had introduced our method to approximate functions Trf(A), this work aimed at the
extension of our theoretical understanding of the method. To achieve this, we consequen-
tially analyzed the partial results produced by the underlying algorithm and showed that
the basis matrices Ui inherit several symmetries and other properties from the input A.
More concretely, we found that TrUi = 0 if TrA = 0, all Ui commute with A and that the
Ui inherit symmetry, persymmetry and centro symmetry from A (or Hermiticity in the
complex case). We argued that these properties of our method can be leveraged to detect
and correct approximation errors in the Ui. Furthermore, we proved the existence of a
more computationally efficient variant of our method for inputs A exhibiting a spectrum
that is point-symmetric around zero. For such inputs, we found the projected matrix TK
to take the form

TK =




0 β2 0

β2 0
. . .

. . .
. . . βK

0 βK 0




(B.1)

where all αi = 0. This poses an analytical guarantee for orthogonality between subsequent
basis matrices Ui−1 and Ui. We illustrated the relevance of this finding by proving that
a large class of spin Hamiltonians with finite-length neighbour interactions do in fact
exhibit such a spectrum. Finally, we provided numerical results to support our analytical
findings. We compared the runtime behavior of the specialized version of our method with
the more general one and indeed found a speedup to exist. Furthermore, the numerical
findings supported the results of our complexity analysis shown in Appendix A.

Contribution For this work, the contributions of the author again range from the derivation of
the analytical findings, over the implementation and evaluation of the newly discovered
variant of the algorithm to the writing of the article. In the derivation of the analytical
results, Prof. Huckle kindly provided support by discussing ideas. Especially for the
results concerning symmetric spectra of Hamiltonians, Prof. Huckle supported the au-
thor in discussing approaches to formalize and prove this property. The implementation
end evaluation of the adapted algorithm was again based on the tensor network library
provided previously by Dr. Dr. Bañuls and conducted by the author. All figures shown
in the article were prepared by the author and also the text itself was written by author.
Here, Prof. Huckle again kindly provided support by proof-reading the article.

75



TOWARDS A BETTER UNDERSTANDING OF THE MATRIX PRODUCT
FUNCTION APPROXIMATION ALGORITHM IN APPLICATION TO QUANTUM

PHYSICS

MORITZ AUGUST∗ AND THOMAS HUCKLE†

Abstract. We recently introduced a method to approximate functions of Hermitian Matrix Product Operators
or Tensor Trains that are of the form Trf(A). Functions of this type occur in several applications, most notably in
quantum physics. In this work we aim at extending the theoretical understanding of our method by showing several
properties of our algorithm that can be used to detect and correct errors in its results. Most importantly, we show that
there exists a more computationally efficient version of our algorithm for certain inputs. To illustrate the usefulness
of our finding, we prove that several classes of spin Hamiltonians in quantum physics fall into this input category.
We finally support our findings with numerical results obtained for an example from quantum physics.

Key words. tensor decompositions, matrix product states, tensor trains, numerical analysics, Lanczos method,
Gauss quadrature, quantum physics

AMS subject classifications. 65F60, 65D15, 65D30, 65F15, 46N50, 15A69

1. Introduction. Approximating functions of the form Trf(A) where f : CN×N →
CN×N is analytic and smooth for large Hermitian matrices A ∈ CN×N is a problem of inter-
est in areas such as computational chemistry, graph theory or quantum physics. In quantum
physics, fundamental properties of states of many particle systems such as the entanglement
entropy, the trace norm, heat capacity or expectation values are defined as functions of this
form [48].

While computing Trf(A) is not challenging for small to medium size matrices, it be-
comes significantly harder for larger matrices of size 2L with L � 20 where numerical di-
agonalization becomes computationally infeasible. We have recently addressed this issue by
presenting the first algorithm [2] that is able to approximate such functions even for matrices
of very high dimensionality via a combination of the global Krylov method with its connec-
tion to Gauss-type quadrature and the matrix product state (or tensor train) tensor decom-
position scheme. Our method constructs a basis [U1, . . . , UK ] of span{A0, A1, . . . , AK−1}
where Ui ∈ CN×N and yields the projection TK of A onto that space, which is used to
approximate the desired function.

We have shown that our algorithm converges to the exact result or an arbitrarily good
approximation thereof in the case of exact arithmetics and exact representation of the Ui.
While this result is instructive to understand the theoretical capability of the method, in prac-
tice the tensor decomposition is used to approximate A and the Ui and hence introduces an
approximation error into the calculations. Unfortunately, it is very difficult to analyze the
propagation of such approximation errors over the course of a complete run of the algorithm
and their influence on the final function approximation. It is therefore important to gain a
deeper understanding of theoretical properties of partial results of the computation, namely
the Ui and Ti, in order to be able to detect and possibly correct unwanted artifacts caused by
the approximation errors. In addition to that, we would of course like to avoid unnecessary
operations that might introduce approximation errors and waste runtime whenever possible.
Thus, in this work we present several results regarding analytical properties of the Ui and
Ti in the exact case and also show how these results can be used to obtain a more efficient
version of our algorithm for a certain case of input matrices A.

∗Department of Informatics, Technical University of Munich, 85748 Garching, Germany (august@in.tum.de)
†Department of Informatics, Technical University of Munich, 85748 Garching, Germany (huckle@in.tum.de)
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Algorithm 1: Approximation Algorithm

Input : MPO A[DA] ∈ CN×N , Starting orthogonal MPO U [Dinit] ∈ CN×N ,
Number of Dimensions K, Maximal Bond-Dimension Dmax, Stopping
Criteria S

1 U0 ← 0 ;
2 V0 ← U ;
3 D ← Dinit ;
4 for i← 1; i ≤ K do
5 βi ←

√
innerProduct(Vi−1, Vi−1) ;

6 if βi = 0 then
7 break ;
8 end
9 Ui ← multiply(1/βi, Vi−1) ;

10 D ← min(Dmax, D ·DA) ;
11 Vi ← multiply(A,Ui, D) ;
12 D ← min(Dmax, D +DUi−1) ;
13 Vi ← sum(Vi,−βiUi−1, D) ;
14 αi ← innerProduct(Ui, Vi) ;
15 D ← min(Dmax, D +DUi

) ;
16 Vi ← sum(Vi,−αiUi, D) ;
17 VTΛTV

∗
T ← spectralDecomposition(Ti) ;

18 Gf ← β2
1e
T
1 VT f(ΛT )V ∗T e1 ;

19 if checkStop(Gf,ΛT ,S) then
20 break ;
21 end
22 end

Output: Approximation Gf of Trf(A)

While our algorithm is of general nature, as was hinted at above an important field of
application can be found in numerical quantum physics. Here, tensor networks have already
been applied with great success for some time [19, 49, 57, 27, 55, 60, 59, 56, 43] but so
far a method to approximate functions of the type considered here was lacking. Because of
this, we will additionally present an analysis of possible use cases of our newly discovered
algorithmic improvement for the application of spin Hamiltonians, an important problem in
numerical quantum physics.

The rest of this work is structured as follows: in Section 2, we briefly introduce our
method. Equipped with this knowledge, we present our analytical findings in Section 3. In
Section 4, we then present our analysis of possible applications of the previously introduced
results in quantum physics. Following this, we proceed to provide numerical evidence of the
correctness of our claims regarding the existence of an improved version of our algorithm in
Section 5. Finally, we conclude this work in Section 6.

2. The Algorithm. As we have stated above, our goal is to approximate functions of the
form Trf(A). For smaller to medium sized matrices, there already exists a well-established
method to achieve this in performing a Gauss-type quadrature via the projection of A onto a
Krylov space starting with a carefully chosen initial vector [7, 5, 21, 53, 44].

For symmetric or Hermitian matrices, the global Lanczos method recently was intro-
duced as a formulation of the classical Lanczos method in terms of basis matrices with the

2



Frobenius inner product defined as

〈Ui, Uj〉 = TrU∗i Uj

andUi, Uj ∈ CN×M [7]. Note that this inner product acts on entire matrices, meaning that the
global Lanczos method differs from other block Krylov methods in that it only orthogonalizes
whole matrices in contrast to the individual columns therein. The algorithm iteratively builds
up a basis Ui = [U1, U2, . . . , Ui] of the Krylov space and yields the partial global Lanczos
decomposition

AUi = UiT̃i + βi+1Ui+1E
T
i

where T̃i = Ti ⊗ IM ∈ RiM×iM and ETi = [0, · · · ,0, IM ] ∈ RM×iM . It was shown that
the connection between the Lanczos algorithm and Gauss quadrature extends to the global
Lanczos method. Hence, for an initial matrix U ∈ CN×M it in general holds

TrU∗f(A)U =

∫
f(λ)dµ(λ) ≈ Trf(A)

with µ being the distribution in the Riemann-Stieltjes integral generated byU and TrU∗f(A)U
yields a Gauss quadrature of Trf(A). However, for the algorithm to remain computationally
efficient or at least more efficient than computing the eigenvalue decomposition ofA directly,
it is required that M � N and thus U can not be orthogonal/unitary. This implies that
U∗U 6= I and consequentially the method does in general not converge to the exact result so
that sampling over multiple starting matrices is required if the approximation error is to be
minimized. Additionally, for very large matrices even the computation of the aforementioned
inner product becomes infeasible.

To allow for approximations of larger matrices, we reformulated the global Lanczos al-
gorithm in terms of matrix product operators (MPO) which support all basic linear algebra
operations. A matrix product operator decomposes a matrix A ∈ CN×N such that

Aij = Ai1...iLj1...jL = TrCi1j11 Ci2j22 · · ·CiLjLL

where the indices i, j are split up into i1, . . . , iL and j1, . . . , jL respectively and are called
the physical indices. We here assume all physical indices to be of equal dimension d = 2
which corresponds to the assumption that N = dL but our results also carry over to the case
of varying dk. The Ck ∈ CDk×Dk×d×d are called the core tensors where Dk is referred
to as the bond dimension or auxiliary index. We additionally define the bond dimension
of the MPO D = maxkDk to be the maximal bond dimension over all core tensors. It
follows that Cik,jkk is a matrix of size at most D × D and the right-hand side of the above
equation yields a scalar. The matrix product operator representation of a matrix requires
Ld2D2 parameters which, depending on the choice of D, either poses an approximation
or suffices for an exact representation. While naturally the accuracy of the approximation
increases with growing D, it is commonly chosen such that Ld2D2 ∈ O(poly(L)) and thus
yields an efficient,i. e. polynomial in contrast to exponential in L, representation. It has been
found that such choices of D often suffice for a good approximation. Note that especially in
numerical quantum physics, it is possible and common to formulate matrices of interest, such
as Hamiltonians, directly as matrix product operators and perform computations on them so
that an explicitly stored matrix is at no point required. While explaining the decomposition
in more detail exceeds the scope of this section, we refer the interested reader to the overview
articles [49, 42, 24].
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Our algorithm can thus be perceived as the global Lanczos algorithm reformulated for
matrix product operators. However, the differences between the methods extend beyond the
different possible sizes of the input matrices. In our method, we choose the identity matrix
written as a matrix product operator as initial matrix U . This can be done exactly with a
minimal bond dimension of D = 1. Thus, we are theoretically and practically able to start
our computation with an orthogonal/unitary matrix of the same dimensionality as A which
is not feasible in the original method as discussed above. Hence, instead of the previous
equation

TrU∗f(A)U ≈ Trf(A)

with U ∈ CN×M and M � N , in our method it holds

TrU∗f(A)U = Trf(A)

and U ∈ CN×N is orthogonal/unitary. Our algorithm consequentially computes a Krylov
basis of span{A0, A1, A2, · · · , AK−1} and the approximation error in Trf(A) is controlled
by the maximal Krylov dimension K and the maximally allowed bond dimension Dmax.
This implies that our algorithm produces an approximation of the exact result which can in
principle be made arbitrarily accurate by increasing K and most importantly Dmax. The
method is shown in Algorithm 1. Note that the subfunctions multiply and sum involve
solving an optimization problem to find a good representation of the result for a given bond
dimension D. The respective optimization algorithms employ the sweeping scheme typical
for tensor network optimizations where the individual core tensors are optimized sequentially
in a dynamic programming fashion. In conclusion, our algorithm poses the first method to
approximate functions of the form Trf(A) of matrices of size significantly larger then 220

and has no analytical lower bound on the approximation error.

3. Analytical Results. As in practice we must impose D ∈ O(poly(L)) to remain
computationally feasible, it is important to be able to detect when the approximations made
lead to unreasonbly large errors in the computed basis matrices Ui and the projections Ti
of A. This is especially important as it is clear that since the basis matrices are computed
iteratively and depending on the previously computed ones, any error introduced in a given
iteration will be propagted and influence all following iterations. Additionally, since the basic
arithmetic operations are comparibly costly in the matrix product operator domain and can
infuse errors into the computation, we would like to reduce their number whenever possible.
In this section we will thus present some analytical results on properties of the basis matrices
Ui and the projection Ti that can be checked for during a run of Algorithm 1 and that finally
give rise to a more efficient version of our method for a special class of inputs. All following
proofs and corollaries assume the matrix A ∈ CN×N to be Hermitian and the initial matrix
U to be of the same dimensions as A. Note that we additionally assume exact arithmetics
and exact representation of the Ui as our aim is to derive insight about the algorithm’s ideal
behaviour to be able to detect deviations from it. As we will make use of these equations in
all following proofs of this section, it is worthwhile to explicitly state the update rules

Un+1 = (AUn − αn+1Un − βnUn−1) /βn+1

and

αn+1 = TrU∗nUn+1

4



as implied by Algoritm 1. Note also that our analysis is based on the Frobenius inner product
that was, to the best of the author’s knowledge, for the first time employed in the original
global Lanczos algorithm [14, 7] and our consecutive work [2]. Combined with the fact that
we assumeA andU to be of equal dimension this shows that our results are complementary to
other work on structured matrices in Krylov type algorithms [36, 17, 9, 8, 50, 37, 61]. Given
these assumptions it is also clear that existing analyses of standard Lanczos type algorithms
working on column vectors can not cover the following results.

We begin by stating a result about the inheritance of tracelessness of the basis matrices
from the input A. Since it is possible to efficiently compute the trace of a given MPO, this
property of the Ui can be efficiently checked for and, if desired, enforced during a run of the
algorithm.

THEOREM 1. If A ∈ CN×N is traceless and U0 ∈ CN×N = IN/β0, all basis matrices
Ui ∈ CN×N , i ∈ {1, · · · ,K} as constructed by the algorithm are traceless.

Proof. We prove the statement by induction over the iteration number n of the algorithm.
For n = 1, it is easy to see that TrU1 = TrA/(β1β0) = 0 as α1 = TrA/β2

0 = 0. We now
obtain for n = 2 that TrU2 = (β1β0TrU

∗
1U1 − α2/(β1β0)TrA − β1/β0TrI)/β2 = 0. This

establishes the inductive basis.
In the inductive step for n ≥ 2 we then have

TrUn+1 =(TrAUn − αn+1TrUn − βnTrUn−1)/βn+1

=(TrAUn − αn+10− βn0)/βn+1

=0

Next, we present a result about the commutation relation of A and the Ui that will also
become useful for proving subsequent statements. As for the previous result, this property can
be efficiently checked for during an execution of the algorithm assuming MPO representation
of the Ui by computing the Frobenius norm, which is efficiently computable for MPOs, of
the distance between AUi and UiA.

THEOREM 2. If A ∈ CN×N commutes with U0 ∈ CN×N , A commutes with all basis
matrices Ui ∈ CN×N , i ∈ {1, · · · ,K} as constructed by the algorithm.

Proof. We again prove the statement by induction over the iteration number n. To start,
we note that [U1, A] = ((AAU0 − α1AU0)− (AAU0 − α1AU0)) /β1 = 0.

In the inductive step for n ≥ 1, it is now straight forward to see that

[Un+1, A] = [(AUnA− αn+1UnA− βnUn−1A)− (AAUn − αn+1AUn − βnAUn−1)] /βn+1

= [(AAUn − αn+1AUn − βnAUn−1)− (AAUn − αn+1AUn − βnAUn−1)] /βn+1

=0

COROLLARY 1. We note that any A ∈ CN×N commutes with IN . Thus it follows that
the above statement holds for Algorithm 1.

The following finding addresses the symmetry properties of the basis matrices in rela-
tion to the input A and the initial basis matrix U0. These symmetry properties can as well
be tested efficiently in a manner similar to the way the commutation relation can be checked
since the permutation matrix J , like I , permits a formulation in MPO format with minimal
bond dimension. Additionally, symmetries could be leveraged to obtain more efficient repre-
sentations of the Ui by reflecting them in the structure of the MPOs and thus obtaining more
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efficient and stable expressions.
THEOREM 3. If A ∈ RN×N is symmetric, persymmetric or centrosymmetric and U0 ∈

RN×N is symmetric, persymmetric or centrosymmetric and commutes with A, all basis ma-
trices Ui ∈ RN×N , i ∈ {1, · · · ,K} as constructed by the algorithm are symmetric, persym-
metric or centrosymmetric.

Proof. As for the above statements, we prove this statement by induction over the it-
eration number n. To establish the inducte basis, we observe that for the case of symme-
try UT1 = ((AU0)T − α1U

T
0 )/β1 = (AU0 − α1U0)/β1 = U1. Likewise, we find that

U1J = (AU0−α1U0)/β1J = J((AU0)T −α1U
T
0 )/β1 = JUT1 for persymmetry and finally

JU1 = J(AU0 − α1U0)/β1 = (AU0 − α1U0)/β1J = U1J for centrosymmetry.
For n ≥ 1, we can now make the inductive step by

UTn+1 =((AUn)T − αn+1U
T
n − βnUTn−1)/βn+1

=(UnA− αn+1Un − βnUn−1)/βn+1

=Un+1

for symmetry,

Un+1J =(AUn − αn+1Un − βnUn−1)/βn+1J

=(JATUTn − αn+1JU
T
n − βnJUTn−1)/βn+1

=JUTn+1

for persymmetry and

JUn+1 =J(AUn − αn+1Un − βnUn−1)/βn+1

=(AUnJ − αn+1UnJ − βnUn−1J)/βn+1

=Un+1J

for centrosymmetry.
COROLLARY 2. As can be easily verified based on its proof, the above statement extends

to the case of hermiticity, perhermiticity and centrohermiticity when A,Ui ∈ CN×N , i ∈
{0, · · · ,K}.

COROLLARY 3. We note that the matrix IN is symmetric, persymmetric and centrosym-
metric as well as hermitian, perhermitian and centrohermitian. Hence the above statements
hold for Algorithm 1.

We now turn our attention to a description of the Ui in terms of polynomials as might
seem natural given the underlying Lanczos algorithm. However, we restrict our analysis to
the particular case where all αi = 0 to obtain a result that will become important in the proof
of the subsequent statement.

THEOREM 4. If for A ∈ CN×N all αi = 0, i ∈ {1, · · · ,K} as computed by the
algorithm and U0 ∈ CN×N = IN/β0, then all Ui ∈ CN×N , i ∈ {1, . . . ,K} are polynomials
of the form

∑
j∈2N0≤i cjA

j if i is even and
∑
j∈2N−1≤i cjA

j if i is odd.
Proof. We again prove the statement by induction over the iteration number n. We estab-

lish the inductive basis by observing thatU0 = A0/β0,U1 = A/(β1β0),U2 = A2/(β2β1β0)−
β1/(β2β0)A0 and U3 = A3/(β3β2β1β0)− (β2

2 + β2
1)/(β3β2β1β0)A are all polynomials of

the types specified above.
6



In the inductive step, we then find for even n that

Un+1 =(AUn − βnUn−1)/βn+1

=


A

∑

j∈2N0≤n
cjA

j − βn
∑

j∈2N−1≤n−1
djA

j


 /βn+1

=


 ∑

j∈2N−1≤n+1

cjA
j − βn

∑

j∈2N−1≤n−1
djA

j


 /βn+1

=
∑

j∈2N−1≤n+1

(cj − βndj)/βn+1A
j

and analogously for odd n

Un+1 =(AUn − βnUn−1)/βn+1

=


A

∑

j∈2N−1≤n
cjA

j − βn
∑

j∈2N0≤n−1
djA

j


 /βn+1

=


 ∑

j∈2N0≤n+1

cjA
j − βn

∑

j∈2N0≤n−1
djA

j


 /βn+1

=
∑

j∈2N0≤n+1

(cj − βndj)/βn+1A
j

where we defined dn+1 := 0.
We can now use this result to obtain a more profound insight.
THEOREM 5. If A ∈ CN×N has a spectrum that is point-wise symmetric around zero

and U0 ∈ CN×N = IN/β0, all the αi, i ∈ {1, · · · ,K} as computed by the algorithm are
zero.

Proof. As done previously, we prove this statement by induction over the iteration num-
ber n. We start by observing that by assumption TrA = 0 and hence α1 = TrA/β2

0 = 0.
Consequentially, we have that α2 = Tr(AU1)∗U1 = 1/(β1β0)2TrA3 = 0 which is our
inductive basis.

Now for the inductive step, we begin by noting that it follows from the inductive hypoth-
esis that all Ui, i ∈ {1, · · · , n} are polynomials of the form defined in the previous statement.
Then for odd n, it follows that

αn+1 =TrUnU
∗
nA

=Tr


 ∑

j∈2N−1≤n
cjA

j




 ∑

j∈2N−1≤n
cjA

∗j

A

=
∑

j∈2N+1≤2n+1

cjTrA
j

=0.

Analogously, it follows for even n that
7



αn+1 =TrUnU
∗
nA

=Tr


 ∑

j∈2N0≤n
cjA

j




 ∑

j∈2N0≤n
cjA

∗j

A

=
∑

j∈2N−1≤2n+1

cjTrA
j

=0.

From this finding, we finally obtain the following corollary.
COROLLARY 4. For A ∈ CN×N having a spectrum point-wise symmetric around zero,

Algorithm 1 produces a bidiagonal matrix

TK =




0 β1 0

β1 0
. . .

. . .
. . . βK

0 βK 0



.

This insight yields on one hand a more efficient version of the algorithm as each Ui is in
theory guaranteed to be orthogonal to Ui−1 and hence only one orthogonalization has to be
performed in each iteration of the algorithm. Since orthogonalizations of MPOs require solv-
ing an optimization problem and are hence significantly more computationally demanding
than the orthogonalization of full matrices, avoiding them results in a measurable reduction
of the runtime as we will illustrate later. On the other hand, we obtain yet another means
of checking for the effect of truncation errors by monitoring the magnitude of the αi when
it is known they must be zero. It is of course also possible to still orthogonalize against
the previous two basis MPOs but always set αi = 0 to increase the approximations accuracy.
However, it is worth noting that the condition of the αi being equal to zero is necessary but not
sufficient for the overall approximation of Trf(A) to be accurate. The deviation from zero of
the αi does not allow us to draw strong conclusions about the accuracy of the approximation
of Trf(A). To illustrate this point, we add a few remarks.

• Although it seems reasonable to assume that when the ‖αi‖ remain small the approx-
imated values of βi are also close to their true values, we have no way of inferring
the error in the βi from the error in the αi. This is mainly the case because we
do not have access to the true values of the βi and we believe it not to be possible
to establish an analytical practically relevant connection between both errors in our
algorithm, especially when truncations come into play.

• If however we find some αi to be significantly larger in magnitude than zero, we
know that the respective two basis MPOs are not orthogonal as they should be which
usually leads to the reocurrence of previously observed approximated eigenvalues.
Although we know that the accuracy of the overall approximation will suffer from
this, it is unfortunately not possible to make a more precise statement as we cannot
tell in detail how a deviation from zero relates to amount and magnitude of such
‘ghost’ eigenvalues and again we do not know the error in the βi.

• Although in principle one could counter growing magnitudes of the αi by increasing
D of the basis MPOs and (re)orthogonalizing, in practice the bond dimension of
the basis MPOs reaches Dmax after already a few iterations and by definition we
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cannot exceed this value. Still, it would be possible to either restart a failed run with
a larger maximal bond dimension or increase it dynamically until the αi become
small enough. The latter approach however could be argued to defeat the purpose of
the Dmax parameter.

4. Spectra of Hamiltonians. The results obtained in the previous section naturally raise
the question what kinds of matrices exhibit a spectrum point wise symmetric around zero
and how many cases of relevance there are. While we cannot give a general answer to this
question, we can provide a partial answer for a specific application, namely spin systems in
quantum physics. These systems are often studied analytically and numerically because they
exhibit interesting physical phenomena while still allowing for the derivation of mathemati-
cally rigorous results and comparably efficient simulations by tensor network approaches.

Spin systems are described by their corresponding Hamiltonians which for open bound-
aries and interactions between direct neighbours take the form

HOBC =
∑

(i,α)∈I

L−i∑

j=0

hijαI
⊗j ⊗ σ⊗iα ⊗ I⊗L−i−j

where L ∈ N is the number of spin particles and I is a set of tuples (i, α) ∈ NL × {x, y, z}
denoting the number of consecutive applications of σα. In this case, σx,y,z denote the Pauli
matrices

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

and the hijα ∈ R simply are scaling constants. Similarly, the case of closed or periodic
boundaries is expressed as

HPBC =
∑

(i,α)∈I

L−i∑

j=0

hijαI
⊗j ⊗ σ⊗iα ⊗ I⊗L−i−j +

∑

(i,α)∈I

i−1∑

k=1

hikασ
⊗k
α ⊗ I⊗L−i ⊗ σ⊗i−kα .

We will in the following denote the individual terms in the sums of the Hamiltonians as inter-
action terms and refer to the products of multiple Pauli matrices inside these interaction terms
as blocks. This terminology is derived from the fact that each term describes the interaction
between the particles at whose position there is a Pauli operator in the product. While the for-
mulations introduced above naturally do not describe all possible Hamiltonians, they cover
many interesting cases which are furthermore treatable via tensor network methods. This
typically gets much more difficult for cases of arbitrary and long-range interaction patterns,
which are not covered by the above expressions.

Now, one sufficient condition for the existence of a point-wise symmetric spectrum
around zero looks as follows: for a given H ∈ C2L×2L , there exists a unitary and Hermi-
tian matrix R of equal size, such that

RH = −HR

and consequentially by the standard eigenvalue formulation Hv = λv it holds that

H(Rv) = −λ(Rv).

In the following, we will make statements about the existence of such anR for several classes
of spin Hamiltonians. Although absence of such an R does not imply that the Hamiltonian
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in question does not exhibit a point symmetric spectrum around zero, the above formulation
captures a large class of possible symmetries and thus poses a relevant albeit not final char-
acterization of point symmetric spectra. Note that in quantum physics it is already known
that one can make use of the rotation transformation properties of spin operators to change
the sign of particular terms in a Hamiltonian [48]. However, here we tackle the problem of
changing all terms, from now on also called interaction terms, in a Hamiltonian to relate dif-
ferent eigenvalues/-states to each other and our focus lies on formally defining classes of spin
Hamiltonians for which such an R exists and which hence are valid inputs for our improved
algorithm. A related mathematical discussion for general square matrices was presented by
Fassbender et. al. [17].

Before we start, we remind ourselves that the Pauli matrices are Hermitian and unitary
and that each pair of Pauli matrices anticommutes such that for α, β ∈ {x, y, z} it holds

{σα, σβ} = 2δα,βI.

Furthermore, we note that the Kronecker product of Hermitian and unitary matrices is again
Hermitian and unitary. These properties will be used in all following proofs.

We start by considering Hamiltonians with open boundaries and neighbour interactions
of arbitrary length for a single Pauli operator.

THEOREM 6. For every spin Hamiltonian with open boundaries of the form

HOBC,α,i =
L−i∑

j=0

hjI
⊗j ⊗ σ⊗iα ⊗ I⊗L−i−j

where α ∈ {x, y, z} and i, L ∈ N and i ≤ L, there exists a unitary R ∈ C2L×2L such that
RHOBC,α,i = −HOBC,α,iR.

Proof. We can construct R =
(
I⊗i−1 ⊗ σα′

)⊗L/i ⊗ I⊗L%i with α′ 6= α as we need
only apply one σα′ for each block σ⊗iα to change the sign in every term of the sum in Hα,i

and thereby ultimately the sign of Hα,i itself. Hereby, ⊗L/i denotes the repition of the given
expression for L/i times whereas I⊗L%i simply refers to a ‘padding’ of R to the required
length L.

While for the case of open boundaries and a single Pauli matrix the statement is quite
universal, the additional structure introduced by periodic boundaries forces us to restrict the
statement to odd interactions lengths.

THEOREM 7. For every spin Hamiltonian with periodic boundaries of the form

HPBC,α,i =
L−i∑

j=0

hjI
⊗j ⊗ σ⊗iα ⊗ I⊗L−i−j +

i−1∑

k=1

hkσ
⊗k
α ⊗ I⊗L−i ⊗ σi−kα

where α ∈ {x, y, z} and i ∈ 2N − 1, L ∈ N and i ≤ L, there exists a unitary R ∈ C2L×2L

such that RHPBC,α,i = −HPBC,α,iR.
Proof. By defining R = σ⊗Lα′ with α′ 6= α we obtain an odd number of sign changes in

every term of the sum in HPBC,α,i inducing a sign change of HPBC,α,i.
These two statements together show that a large subset of spin Hamiltonians with inter-

action terms involving only one particular Pauli matrix exhibit a point symmetric spectrum
around zero. Not surprisingly, the situation becomes more involved when considering Hamil-
tonians with up to two different Pauli operators and differing interaction lengths. We first
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examine the case of interaction terms involving two differing Pauli operators.
THEOREM 8. For every spin Hamiltonian with open boundaries of the form

HOBC,α,β,i,k =
L−i∑

j=0

hαjI
⊗j ⊗ σ⊗iα ⊗ I⊗L−i−j +

L−k∑

l=0

hβlI
⊗l ⊗ σ⊗kβ ⊗ I⊗L−k−l

where α, β ∈ {x, y, z}, α 6= β, i, k, L ∈ N and i, k ≤ L, there exists a unitary R ∈ C2L×2L

such that RHOBC,α,β,i,k = −HOBC,α,β,i,kR.
Proof. We have to distinguish two cases regarding the relation of i and k.
Case i = k
In this case there is a γ ∈ {x, y, z} \ {α, β} such that σασγ = −σγσα and σβσγ =

−σγσβ . Hence, we can again define R =
(
I⊗i−1 ⊗ σγ

)⊗L/i ⊗ I⊗L%i to obtain a uni-
tary that induces a sign change in every block σ⊗iα and σ⊗kβ and hence changes the sign of
HOBC,α,β,i,k.

Case i 6= k
Let w.l.o.g. i > k. Then we can construct R as the Kronecker product of L matrices

such that at every k-th position we apply σα and at every i-th position we apply σβ . In the
case where multiples of i and k coincide, we again choose γ ∈ {x, y, z}\{α, β} and apply it
in these positions. The remaining free factors are again chosen to be the identity. It is evident
from the construction of R that it induces exactly one sign change in every block σ⊗iα and
σ⊗kβ respectively.

A different situtation presents itself when we again restrict the interaction terms in the
Hamiltonian to involve only one Pauli operator but allow two different interaction lengths.

THEOREM 9. For every spin Hamiltonian with open boundaries of the form

HOBC,α,i,k =
L−i∑

j=0

hijI
⊗j ⊗ σ⊗iα ⊗ I⊗L−i−j +

L−k∑

l=0

hklI
⊗l ⊗ σ⊗kα ⊗ I⊗L−k−l

where α ∈ {x, y, z}, i, k ∈ 2N− 1, L ∈ N, and i, k ≤ L, there exists a unitary R ∈ C2L×2L

such that RHOBC,α,i,k = −HOBC,α,i,kR.
Proof. We again have to distinguish two cases regarding the relation of i and k.
Case i = k
In this case, the Hamiltonian is a member of the class considered in Theorem 6.
Case i 6= k
In this case, we can again choose an α′ 6= α and define R = σ⊗Lα′ . R then induces an

odd number of sign changes in every term of HOBC,α,i,k and consequentially a sign change
in the whole Hamiltonian.

This result can now easily be generalized to the case of more than two interaction lengths
for a fixed Pauli operator.

COROLLARY 5. By a straight forward generalization of the above proof we obtain that
for all Hamiltonians with open boundaries and one Pauli operator of the form

HPBC,α =
∑

i∈I

L−i∑

j=0

hijI
⊗j ⊗ σ⊗iα ⊗ I⊗L−i−j

where α ∈ {x, y, z} and I ⊂ 2N − 1, there exists a unitary R ∈ C2L×2L such that
RHPBC,α = −HPBC,αR.
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While we restricted the interaction lengths to be odd for the statements above, we find
that there exists another case for arbitrary interaction lengths with a certain relation between
them.

THEOREM 10. For every spin Hamiltonian with open boundaries of the form

HOBC,α,i,k =
L−i∑

j=0

hijI
⊗j ⊗ σ⊗iα ⊗ I⊗L−i−j +

L−k∑

l=0

hklI
⊗l ⊗ σ⊗kα ⊗ I⊗L−k−l

where α ∈ {x, y, z},i, k ∈ N, i/k ∈ 2N − 1, L ∈ N, and i, k ≤ L, there exists a unitary
R ∈ C2L×2L such that RHOBC,α,i,k = −HOBC,α,i,kR.

Proof. Also here, we have to distinguish two cases regarding the relation of i and k.
Case i = k

In this case, the Hamiltonian is a member of the class considered in Theorem 6.
Case i 6= k

We can construct R =
(
I⊗k−1 ⊗ σα′

)⊗L/k⊗ I⊗L%k with α′ 6= α . Since i/k ∈ 2N− 1
we find that R induces an odd number of sign changes in all terms of HOBC,α,i,k and thus in
the overall Hamiltonian.

What is now left to discuss for Hamiltonians involving up to two different Pauli operators
is the case of periodic boundaries, which again introduces more constraints. Hence we find
that we can only make a positive statement about odd interaction lengths as follows.

THEOREM 11. For every spin Hamiltonian with periodic boundaries of the form

HPBC,α,β,i,l =
L−i∑

j=0

hαjI
⊗j ⊗ σ⊗iα ⊗ I⊗L−i−j +

i−1∑

k=1

hαkσ
⊗k
α ⊗ I⊗L−i ⊗ σi−kα

+

L−l∑

m=0

hβmI
⊗m ⊗ σ⊗lβ ⊗ I⊗L−l−m +

l−1∑

n=1

hβnσ
⊗n
β ⊗ I⊗L−l ⊗ σl−nβ

where α, β ∈ {x, y, z}, i, l ∈ 2N−1, L ∈ N and i, l ≤ L, there exists a unitary R ∈ C2L×2L

such that RHPBC,α,i = −HPBC,α,iR.
Proof. As before we can choose γ ∈ {x, y, z} \ {α, β} and define R = σ⊗Lγ . Since

i, l ∈ 2N− 1, R induces and odd number of sign changes in ever term of and consequentially
in HPBC,α,β,i,l.

This statement can again be readily generalized to multiple interaction lengths and hence
more complex Hamiltonians.

COROLLARY 6. By a straight forward generalization of the above proof we obtain that
for all Hamiltonians with periodic boundaries and at most two different Pauli operators of
the form

HPBC,α,β =
∑

i∈I

L−i∑

j=0

hijαI
⊗j ⊗ σ⊗iα ⊗ I⊗L−i−j +

∑

i∈I

i−1∑

k=1

hikασ
⊗k
α ⊗ I⊗L−i ⊗ σ⊗i−kα

+
∑

l∈J

L−l∑

j=0

hljβI
⊗j ⊗ σ⊗lβ ⊗ I⊗L−l−j +

∑

l∈J

l−1∑

k=1

hlkβσ
⊗k
β ⊗ I⊗L−l ⊗ σ⊗l−kβ .

where α, β ∈ {x, y, z} and I,J ⊂ 2N − 1, there exists a unitary R ∈ C2L×2L such that
RHPBC,α,β = −HPBC,α,βR.
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Now, we finally come to the case of Hamiltonians consisting of interaction terms gener-
ated by up to three Pauli operators which is clearly the most complicated setting. We begin
by inspecting Hamiltonians with open boundaries involving all three Pauli matrices.

THEOREM 12. For every spin Hamiltonian with open boundaries of the form

HOBC,α,β,γ,i,k,m =

L−i∑

j=0

hαjI
⊗j ⊗ σ⊗iα ⊗ I⊗L−i−j +

L−k∑

l=0

hβlI
⊗l ⊗ σ⊗kβ ⊗ I⊗L−k−l

+

L−m∑

n=0

hγnI
⊗n ⊗ σ⊗mγ ⊗ I⊗L−m−n

where α, β, γ ∈ {x, y, z}, α 6= β 6= γ 6= α,k, L ∈ N, i,m ∈ 2N− 1, i < k and i, k,m ≤ L,
there exists a unitary R ∈ C2L×2L such that RHOBC,α,β,γ,i,k,m = −HOBC,α,β,γ,i,k,mR.

Proof. We define R =
(
σk−1β ⊗ σα

)⊗L/k
⊗ σ⊗L%kβ . It is clear that R induces an odd

number of sign changes in all blocks σ⊗iα since i ≤ k − 1 is odd. Similarly, it is obvi-
ous that R causes exactly one sign change in every block σ⊗kβ through the single σα in the
product. As both σα and σβ cause sign changes in the blocks σ⊗mγ and m is odd, it is ev-
ident that R also induces and odd number of sign changes in this case. Hence it holds that
RHOBC,α,β,γ,i,k,m = −HOBC,α,β,γ,i,k,mR.

Finally, we examine the case of two Pauli matrices and three different interaction lengths
for open boundary conditions.

THEOREM 13. For every spin Hamiltonian with open boundaries of the form

HOBC,α,β,i,k,m =
L−i∑

j=0

hαjI
⊗j ⊗ σ⊗iα ⊗ I⊗L−i−j +

L−k∑

l=0

hβklI
⊗l ⊗ σ⊗kβ ⊗ I⊗L−k−l

+
L−m∑

n=0

hβmnI
⊗n ⊗ σ⊗mβ ⊗ I⊗L−m−n

where α, β ∈ {x, y, z}, α 6= β,L ∈ N, i, k,m ∈ 2N − 1, i < k and i, k,m ≤ L, there exists
a unitary R ∈ C2L×2L such that RHOBC,α,β,i,k,m = −HOBC,α,β,i,k,mR.

Proof. As before we can choose γ ∈ {x, y, z} \ {α, β} and define R = σ⊗Lγ . Since
i, k, l ∈ 2N − 1, R induces and odd number of sign changes in ever term of and consequen-
tially in HPBC,α,β,i,l.

This statement can now again be generalized to multiple interaction terms.
COROLLARY 7. Again by a straight forward generalization of the above proof we find

that for all Hamiltonians with open boundaries and two Pauli operators of the form

HPBC,α,β =
∑

i∈I

L−i∑

j=0

hijαI
⊗j ⊗ σ⊗iα ⊗ I⊗L−i−j +

∑

k∈J

L−k∑

j=0

hkjβI
⊗j ⊗ σ⊗kβ ⊗ I⊗L−k−j

where α, β ∈ {x, y, z} and I ⊂ 2N − 1, there exists a unitary R ∈ C2L×2L such that
RHPBC,α = −HPBC,αR.

To the best of our knowledge, we cannot make a positive statement for periodic bound-
aries and interaction terms involving all three Pauli operators. As a remark, we would like to
point out that in addition to the Hamiltonians treated in this section, positive statements about
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FIG. 5.1. Comparisons of the runtime in seconds between the improved and the vanilla version of the algo-
rithm. Left: Comparison of average runtime of one iteration over L with Dmax = 50. Right: Comparison of
average runtime of one iteration over Dmax with L = 50.

the existence of an R as considered here should be easy to proof in a very similar way for
arbitrary interactions, i.e. interactions not between nearest neightbours but arbitrary particles,
and odd numbers of particles affected by the interaction terms. Furthermore, as a special case
of the Hamiltonian matrices discussed by Fassbender et. al. [17] symmetric two-by-two block
matrices of the form

[
B C
C −B

]

with B,C ∈ RN×N and B,C symmetric generally exhibit a spectrum symmetric around
zero and can thus be considered valid inputs to the presented variant of our method. This
of course is subject to the condition that they yield a sufficiently accurate and small MPO
representation. As a final remark, we note that positive definitive Bethe-Salpeter Hamiltonian
matrices in principle also pose a valid input to the algorithm [8, 51].

We have shown in this section that a significant subset of all spin Hamiltonians exhibits a
point symmetric spectrum around zero according to the introduced characterization and that
consequentially there exists a strong use case of our improvement of Algorithm 1 in quantum
mechanical simulations. In the next section, we will now use a well known Hamiltonian
belonging to this subset to numerically illustrate the advantage of the improved algorithm in
this case.

5. Numerical Evidence. To provide numerical evidence of the correctness of our state-
ments in Sections 3 and 4, we will now state results obtained by conducting some numerical
experiments for the well known Ising Hamiltonian with a transverse field. The Hamiltonian
is given by

H = J
L−1∑

i=1

I⊗i−1 ⊗ σx ⊗ σx ⊗ I⊗L−(i+1) + g
L∑

i=1

I⊗i−1 ⊗ σz ⊗ I⊗L−i

where σx,z are again the Pauli matrices. As we have seen in Section 4, the transverse field
Ising Hamiltonian clearly has the spectral property required to apply the improved version
of the algorithm. It also has the additional advantage that it can be diagonalized analytically
to obtain reference results. Given a Hamiltonian, its thermal equilibrium, or Gibbs, state is
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FIG. 5.2. Comparisons of the relative error in Z between the improved and the vanilla version of the algorithm.
Left: Comparison of the relative error over L with Dmax = 50. Right: Comparison over the relative error over
Dmax and L = 50.

described by

ρ(β) =
e−βH

Z

where β is the inverse temperature and

Z = Tre−βH

is the so called partition function or simply the normalization constant of the distribution.
As our goal in this section is to compare both versions of the algorithm and not to provide
physically relevant results, we will simply approximate Z by chosing

f(H) = e−βH

where we set the scaling coefficients of the Hamiltonian and the inverse temperature to J =
g = β = 1.

To provide a thorough comparison between the vanilla, i.e. standard, and the improved
version of our algorithm in terms of runtime and accuracy, we have conducted two sets of
experiments. Firstly, we fixed the maximal bond dimension to be Dmax = 50 and computed
the average runtime for one iteration of the algorithm over a run of 50 iterations for L, i.e., the
system size, increasing from 10 to 100. Secondly, we set L = 50 and increased Dmax from
10 to 100 and again computed the average runtime of one iteration over a run of 50 iterations.
The comparison of the runtimes is depicted in Figure 5.1.

For both of these settings, we also evaluated the approximation accuracy as the relative
error in Z when we let the algorithm run until the relative difference between approximations
results became smaller than 10−6. These results are illustrated in Figure 5.2. All results
reported here were obtained for a C++ implementation of our algorithm on an Intel i5-5200U
mobile CPU.

The results in Figure 5.1 clearly show an advantage in runtime for the improved version
of the algorith for all considered settings. On average over all conducted experiments this
advantage is around 20%, which seems like only a modest improvement but can easily amount
to several hours of runtime less for large systems and large values of Dmax. The results
additionally illustrate the linear complexity in L and cubic dependence on Dmax we have
claimed in [2] and which is not affected by the improvement introduced in this work.
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FIG. 5.3. Heatmaps of the first six basis matrices as computed by the algorithm without approximations for
the transverse Ising Hamiltonian with L = 10.

In Figure 5.2 we can furthermore observe that for the case of an input that exhibits the
required spectral symmetry the accuracy of both versions of the algorithm is similar with
slight advantages for the improved variant. This might be due to the fact that the unnecessarily
computed partial results in the vanilla version of the algorithm are not exactly zero and hence
introduce a small amount of additional error into the approximation.

Finally, in Figure 5.3 we show heatmaps of the first six computed basis matrices in a run
of the algorithm without approximations for L = 10. While the first basis matrix is simply
the scaled transverse field Ising Hamiltonian, the following matrices represent its orthogo-
nalized powers. Although this naturally does not constitute a rigorous argument, we can find
by simple visual inspection that the basis matrices inherit the symmetric properties of the
Hamiltonian, providing some intuition for the statements made in Section 3.
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6. Conclusion. In this work we have tried to shed some more light on the analytic prop-
erties of the matrix product function approximation algorithm by analyzing the characteristics
of the partial results computed during a full run. As a result, we have found that the basis
matrices as computed by the algorithm inherit a range of properties from the input matrix.
We have also seen that these properties then yield a more efficient version of the algorithm
for a particular kind of input class, namely the class of matrices with point symmetric spec-
trum around zero. We then went on to show for the application of quantum physics that a
variety of spin Hamiltonians exhibits this spectral symmetry property and that hence in this
field of application the discovered improvement can be successfully applied in many cases.
Finally, we demonstrated and verified our findings in numerical experiments conducted for
the example of the Ising Hamiltonian with a transverse magnetic field.

While we were able to improve our understanding of the algorithm, more remains to be
done, especially with respect to our understanding of the influence of the introduced trunca-
tion errors on the overall approximation accuracy. In addition to his, it would be interesting
to see further applications of the algorithm outside of numerical quantum physics. Another
possible route of further research would be the exploration of possible combinations of our
algorithm with other methods that approximate single extremal eigenvalues. The approxima-
tions of extremal eigenvalues could be used to improve the accuracy of the approximation of
the entire spectrum as computed by our algorithm.
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Summary Based on the previous results of the works shown in Appendices A and B, we demon-
strated in this article, from a physical perspective, how to approximate any operator func-
tion of the form Trf(A) provided that the input A is expressed as a Hermitian matrix
product operator. We argued that our method gives access to global quantities of interest
that are challenging or impossible to access with established tensor network techniques.
Based on this, we showed how our method yields a novel strategy for approximating
thermal properties of both short- and long-range Hamiltonians. This is due to the fact
that in our method thermal properties can be approximated directly as functions of the
Hamiltonian as opposed to an MPO representing the thermal state. Our method thus
avoids the necessity to obtain such an MPO expression of a Gibbs state by performing
the costly imaginary time evolution. We demonstrated how global quantities such as the
von Neumann entropy

S(ρ) = −Trρ log ρ, (C.1)

the heat capacity, the trace norm or the thermal fidelity can be approximated with our
method. Additionally, we showed how the method can also be employed to approximate
expectation values for positive operators O. We then illustrated the performance of our
method by providing numerical results for thermal equilibrium states of two Hamiltonians,
the transverse-field Ising and the Lipkin-Meshkov-Glick Hamiltonians. For the former we
showed how to approximate two-particle correlations. We compared our results to results
obtained via computing the correlations from a matrix product operator representation
of the thermal state and generally found a good agreement. For the latter Hamiltonian,
the numerical results illustrate that our method is able to approximate thermodynamic
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Building on a previously introduced block Lanczos method, we demonstrate how to approximate
any operator function of the form Trf(A) when the argument A is given as a Hermitian matrix
product operator. This gives access to quantities that, depending on the full spectrum, are difficult
to access for standard tensor network techniques, such as the von Neumann entropy and the trace
norm of an MPO. We present a modified, more efficient strategy for computing thermal properties
of short- or long-range Hamiltonians, and illustrate the performance of the method with numerical
results for the thermal equilibrium states of the Lipkin-Meshkov-Glick and Ising Hamiltonians.

I. INTRODUCTION

Tensor networks (TN) have proved to be adequate
ansätze for the description of ground states, low energy
excitations and thermal equilibrium states of quantum
many body systems [1–3]. Within some limitations, they
can also be used to simulate real time dynamics [4–6]. In
particular, the matrix product state (MPS) ansatz con-
stitutes the best understood and most used TN family,
and it underlies the success of the celebrated density ma-
trix renormalization group algorithm (DMRG) [7].

The matrix product operator (MPO) generalizes MPS
to operators, and provides a variational ansatz for mixed
states [8–10]. It can also be used to efficiently describe
many Hamiltonians of physical interest, as well as ap-
proximate evolution operators, among others, and has
become a most useful tool in the application and under-
standing of TN algorithms in one and two dimensions.
An operator given in MPO form can be efficiently ap-
plied to a MPS using standard TN techniques, and this
operation constitutes a building block for algorithms that
search for the ground state or simulate time evolution of
a MPS.

The MPO form allows also an efficient calculation of
some operator properties (e.g. the trace of the operator
or of a few of its integer powers, which gives access to
some integer α-Renyi entropies with α ≥ 2 [11]). How-
ever, already for moderate system sizes, it is in general
not possible to access the full spectrum of the MPO, and
hence there are physical properties that are difficult to
estimate. This includes for instance the von Neumann en-
tropy of a mixed state, or the trace distance between two
MPOs. These quantities have in common that they can
be written as functions of Hermitian matricesA ∈ CN×N ,
such as Hamiltonians or density operators, that for finite
dimensional systems take the form Trf(A), or more gen-
erally sums and products of such terms.

We have recently introduced a numerical method [12]
that based on a particular version of the Lanczos algo-
rithm reformulated for MPOs approximates such func-

∗ august@in.tum.de
† banulsm@mpq.mpg.de

tions for arbitrary Hermitian inputs. The algorithm im-
plicitly performs a Gauss quadrature approximation and
we have shown that it converges to the exact value in the
absence of approximation errors.

In this paper we demonstrate that the algorithm can
be used to compute physical quantities that are difficult
to access in standard MPO calculations. The method
reveals to be particularly useful in the case of thermal
equilibrium states, since many thermal properties can be
written as functions of the Hamiltonian. If the latter
has a MPO expression, this can be used, for instance, to
detect thermal phase transitions.

The rest of this work is structured as follows: in sec-
tion II we briefly introduce our approximation method.
Section III explicitly shows how to use the method to
approximate observables in thermal equilibrium, as well
as distances between Gibbs states. This strategy is illus-
trated with numerical results in section IV. Finally we
summarize our conclusions in section V.

II. THE APPROXIMATION METHOD

Krylov type methods have already been used with suc-
cess in combination with matrix product states (MPS) for
the approximation of extremal eigenstates [13] or time
evolution [4, 14–17] and dynamical correlation functions
[18] as well as spectral functions [19].

In general these methods, that rely on a solid mathe-
matical theory [20, 21], construct a basis of the Krylov
subspace for an input matrix A and an initial vector b,
K(A, b) := span{A0b, A1b, A2b, · · · , AK−1b}, and a pro-
jection of A onto the subspace, TK . Their implementa-
tion only requires basic linear algebra operations, such
as scalar multiplication, addition and inner products of
vectors, which allows an easy reformulation in the ten-
sor network framework. In particular the Lanczos algo-
rithm, one of the best known Krylov subspace methods,
finds the most significant eigenvalues and eigenvectors of
a Hermitian matrix.

The basic vector-based Lanczos algorithm can be gen-
eralized to matrices by considering them to be block vec-
tors comprised of several individual column vectors, each
of them corresponding to an individual Krylov subspace.
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These block Lanczos methods can then construct a basis
of block vectors starting from a usually not square initial
block that plays the role of the starting vector b used in
the standard Lanczos algorithm, see e.g. [22, 23]. The
benefit of these algorithms thereby lies in their ability to
approximate several extremal eigenvalues or the solution
of linear systems with multiple solution vectors simul-
taneously from a possibly larger search space while of-
ten yielding implementations with a better runtime com-
pared to the repeated application of the original Lanczos
algorithm.

While most block Lanczos algorithms are based on in-
ner products and norms for the individual column vectors
constituting the block vectors, a variant, called global
block Lanczos algorithms, has been developed [24–26]
which is based on inner products and corresponding
norms defined for matrices. Based on these works, in [12]
we recently presented a global block Lanczos method,
from now on also simply referred to as block Lanczos
method, for MPO operators that makes use of TN tech-
niques. In particular we use the Hilbert-Schmidt inner
product 〈U, V 〉 = Tr

(
U†V

)
and the induced Frobenius

norm, and choose the identity matrix as the starting
point. The algorithm then constructs a basis for the (op-
erator) subspace K(A) = span{A0, A1, A2, · · · , AK−1}.

Lanczos methods can be used to approximate func-
tions of the form b†f(A)b when numerical diagonaliza-
tion is infeasible [27], a result which relies on a rigor-
ous connection to Gauss quadrature. In the case of the
global block method, this connection can be exploited
to approximate functions of the form Tr (f(A)). More
precisely, using any unitary complex initial matrix U ,
the trace can be written as a Riemann-Stieltjes integral,
Tr [f(A)] = Tr

[
U†f(A)U

]
=
∫
f(λ)dµ(λ), where the in-

tegral is over the spectrum of A, and the measure µ(λ) is
a piecewise constant distribution depending on the choice
U , see e.g. [12] for details. It can be shown [26] that the
eigenvalues of the projection TK of A onto the Krylov
subspace, produced by the global block Lanczos method
for the initial matrix U , correspond precisely to the nodes
of the K-node Gaussian quadrature approximation of the
integral above. The corresponding weights are contained
in the respective eigenvectors. When the function f is
applied to the projected matrix, the first element of the
diagonal of f(TK), scaled by the squared norm of the
starting matrix b, evaluates the Gauss quadrature and
thus provides an approximation to the trace. However,
using a fully unitary starting matrix has so far been pro-
hibitive in practice since in this case the complexity of the
algorithm is no better than that of exact diagonalization.

The algorithm proposed in [12] and further analyzed
in [28] applies the above property to approximate global
functions of an operator A given in MPO form. We show
the method schematically as pseudocode in Algorithm 1.
As explained above, it proceeds by applying a global
block Lanczos method with the identity as initial matrix.
The identity is chosen here simply because it yields an
exact MPO representation with bond dimension D = 1.

Algorithm 1: MPO Function Approximation

Input : MPO A[DA] ∈ CN×N , Starting unitary
MPO U [Dinit] ∈ CN×N , Number of
Dimensions K, Maximal Bond-Dimension
Dmax, Stopping Criteria S

1 U0 ← 0 ;
2 V0 ← U ;
3 for i← 1; i ≤ K do

4 βi ←
√
〈Vi−1|Vi−1〉 ;

5 if βi = 0 then
6 break ;
7 end
8 Ui ← multiply(1/βi, Vi−1) ;
9 Vi ← multiply(A,Ui, Dmax) ;

10 Vi ← sum(Vi,−βiUi−1, Dmax) ;
11 αi ← 〈Ui|Vi〉 ;
12 Vi ← sum(Vi,−αiUi, Dmax) ;
13 VT ΛTV

∗
T ← spectralDecomposition(Ti) ;

14 Gf ← β2
1e

T
1 VT f(ΛT )V ∗T e1 ;

15 if checkStop(Gf,ΛT ,S) then
16 break ;
17 end

18 end
Output: Approximation Gf of Trf(A)

In principle however, any unitary MPO could be used,
a fact we will take advantage of in Section III. It is im-
portant to note here that only due to the use of the TN
framework we are able to use full unitary starting ma-
trices. The method then constructs the orthogonal basis
of the Krylov subspace in the usual way, i.e. succes-
sively applying the operator A and orthogonalizing, but
restricting all the basis matrices to be of the MPO form
with a maximum bond dimension of Dmax. Iteratively,
the method thus constructs the projection matrix

TK =




α1 β2 0

β2 α2
. . .

. . .
. . . βK

0 βK αK




where the αi and βi are computed as shown in Algo-
rithm 1. The spectrum of TK then in essence constitutes
an approximation to the spectrum of the input MPO A.

The multiplication and the sum of MPOs, denoted as
the subfunctions sum and multiply in the pseudocode,
involve an optimization over MPOs for a given target
bond dimension. In our algorithm we use the bond di-
mension required for an exact representation until it ex-
ceeds the maximal bond dimension Dmax. All the op-
erations involved can be carried out efficiently for MPO
operators, so that the method allows the approximation
of functions of the A which would be otherwise inacces-
sible, as in principle they would require to compute the
whole spectrum.

Representing the basis elements as MPS, or vectorized
MPOs, with limited bond dimension up to Dmax intro-
duces a truncation error. Together with the error intro-
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duced by the limited dimension of the Krylov subspace,
the truncation error determines the accuracy of the ap-
proximation. Since in absence of these errors the method
is known to converge to the exact result, by adjusting
these parameters, the numerical errors can be controlled.

Further details about the theoretical background and
the algorithm itself can be found in [12, 26, 27]. In the
next sections we show how this method can be applied
to compute physical quantities in quantum many-body
systems.

III. FUNCTIONS OF GIBBS STATES

For a quantum system governed by a Hamiltonian H,
the operator

ρ(H,β) =
e−βH

Z
(1)

describes the thermal equilibrium state at inverse tem-
perature β and is called Gibbs ensemble. The denom-
inator in the expression is the partition function, Z =
Tre−βH .

It has been shown that MPOs can approximate Gibbs
states of local Hamiltonians accurately [29, 30]. From a
numerical perspective, MPO approximations to thermal
states can be found with efficient imaginary time evolu-
tion algorithms [4, 8, 9].

In principle, we could then apply the block Lanczos
method to the MPO approximation found with one such
approximation algorithm, in order to evaluate a given
function f(ρ). However, the particular form of the Gibbs
state allows us to write quantities directly as a function of
the Hamiltonian, so that instead of approximating f(ρ)
as a function of ρ, we can approximate f [ρ(H,β)] as a
function of H.

This strategy offers multiple advantages. Firstly, for
many interesting physical problems, for instance for lo-
cal interactions, H has an exact MPO representation.
In that case the method does not suffer from initial ap-
proximation errors, in contrast to the case where an ap-
proximation of ρ(H,β) is used as input. In the case of
a long-range Hamiltonian, often a good MPO approxi-
mation of H exists with reduced bond dimension [10].
In contrast, approximating the Gibbs state as an MPO
may be prohibitive in terms of bond dimension, such that
this strategy allows access to thermal observables which
would be otherwise difficult or infeasible to approximate
numerically. A second advantage is that the (exact or
approximate) MPO representation of H usually has a
much lower bond dimension than what is required for a
good approximation of ρ(H,β), significantly reducing the
overall execution time of the algorithm. Thirdly, since
the Krylov subspace constructed by our algorithm only
depends on H, we can in principle use it to approximate
multiple different functions of H and a broad range of
different temperatures in a single run. As we illustrate in

the next paragraphs, this strategy can be applied to com-
pute different physical quantities which are not easy to
estimate for a general MPO, including the von Neumann
entropy, or the trace norm distance between two thermal
states at different temperatures. The latter quantity, as
the equally accessible thermal fidelity, can be used to de-
tect thermal phase transitions [31, 32]. Other quantities
that can be approximated by this method include the
heat capacity [33] and correlation functions.

1. Thermodynamic quantities

The von Neumann entropy is defined as S(ρ) =
−Tr (ρ ln ρ). For a thermal state it can be written as
a function of H,

S [ρ(H,β)] = β
F

Z
+ lnZ. (2)

where F = Tr
(
e−βHH

)
is the free energy. Thus S can

be expressed in terms of two trace functions, F and Z,
that depend on the same input operator H. Therefore, as
discussed above, we can approximate and then combine
F and Z to yield S in a single run of the algorithm. On
the other hand, β is just a parameter of the function,
so that we can also approximate S for arbitrarily many
values of β simultaneously in one run of the method. In
the following, we will consider the von Neumann entropy
per particle denoted as s = S/L where L is the system
size.

We can also estimate other thermodynamic quantities
that derive from the partition function, i. e. any quan-
tity that is expressible in terms of derivatives of Z or
lnZ. Next to the von Neumann entropy, one other such
quantity, which is especially relevant in the context of
probing thermal phase transitions, is the specific heat
capacity (i.e. heat capacity per site)

c =
β2

L

∂2 lnZ

∂β2
(3)

which can be written as

c =
β2

L

[
G

Z
−
(
F

Z

)2
]

(4)

where G = Tr
(
H2e−βH

)
. We can obtain c by simulta-

neously approximating F , G and Z, as in the case of the
von Neumann entropy.

2. Distance measures

The trace norm of an operator A, defined ‖A‖1 =

Tr
√
A†A, is difficult to compute for MPOs, as in gen-

eral no efficient MPO description exists for the square
root. However, it can be easily computed using the block
Lanczos method, as we discussed in [12]. If the operator
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is a function of the Hamiltonian, the strategy presented
here will in general improve the approximation as com-
pared to the case where an MPO representation of A†A
is used as input.

This strategy gives easy access to the trace distance
between thermal states at different temperatures. More
concretely, for two inverse temperatures β0 and β1, the
trace distance

DT (β0, β1) =

∥∥∥∥
e−β0H

Z(β0)
− e−β1H

Z(β1)

∥∥∥∥
1

(5)

is a function of the Hamiltonian H. To approximate it
with our method we need an estimate for the partition
functions at both temperatures Z(β0) and Z(β1). As be-
fore, the latter can be approximated independently, and
their values can then be used to evaluate the trace dis-
tance. Notice that the distance between two arbitrary
MPO operators can be approximated by straightforward
application of the method in [12] to the MPO that repre-
sents their difference. Using this procedure we can com-
pute also trace distances between thermal equilibrium
states at the same temperature, but varying Hamilto-
nian parameters, whenever a MPO approximation can
be found to the Gibbs states. This however may be dif-
ficult, for instance if the Hamiltonian has long-range in-
teractions.

Another distance measure between quantum states is
the Uhlmann fidelity, which for a pair of states ρ and σ is

defined as F (ρ, σ) = Tr
√
ρ1/2σρ1/2. As was shown in [31]

and further studied in [32], the thermal fidelity, i.e. the
fidelity between two thermal equilibrium states for the
same Hamiltonian at different temperatures, can detect
a thermal phase transition. For two inverse temperatures
β0 and β1, the thermal fidelity can be expressed in terms
of three partition functions,

FT (β0, β1) =
Z
(
β0+β1

2

)

√
Z(β0)Z(β1)

, (6)

which implies that it can be approximated with the strat-
egy outlined in the previous section.

3. Other expectation values

Interestingly, the same method can also be used to ap-
proximate the expectation values of some observables.
Generically, expectation values take the form Tr [f(A)O]
which in principle cannot be directly approximated.
However, if O is positive, we can write

Tr [f(A)O] = Tr
[√

Of(A)
√
O
†]

=

∫
f(λ)dµO(λ), (7)

with a function µO specific for the operator O. The pos-
itivity of O is required to ensure that µO is a distribu-
tion function. If

√
O admits an efficient representation

as MPO, we can compute the expression above by simply

using
√
O
†

as the starting point of our algorithm, instead
of the identity. Even if the operator O is not positive,
it can always be written as linear combination of posi-
tive terms, e.g. splitting it in positive and negative part,
although other decompositions with more terms may be
more convenient. If each of these positive terms has an
efficient MPO representation of its square root, it will be
possible to approximate the expectation value by com-
puting each contribution independently. Operators that
allow this treatment, are, for instance, few-body spin cor-
relators, as we detail in the next section.

IV. NUMERICAL RESULTS

To illustrate the performance of the method we present
numerical results for the exploration of a thermal phase
transition in a long-range model, and the extraction of
two-point spin correlation functions.

A. Phase Transition of the LMG model

The Lipkin-Meshkov-Glick (LMG) Hamiltonian [34–
36] for a system of L spin-1/2 particles is given by

H = −S
2
x

L
− 2hSz, (8)

where Sα =
∑L
i σ

α
i /2 for α ∈ {x, y, z} are the collective

spin operators, and each σαi stands for the corresponding
Pauli operator at site i. The model exhibits a quantum
phase transition for h = 1 [37] and a thermal phase tran-
sition for h < 1 at a critical temperature

Tc(h) =
h

2 tanh−1(h)
. (9)

The model has been largely studied in the literature, at
both zero and finite temperature. Here we focus on the
properties of the thermal equilibrium states, so specially
related to our study are some recent works that explored
the thermal phase transition from a quantum information
point of view. The first study of the finite temperature
phase diagram of the model using the thermal fidelity was
performed in [32]. In Wilms et. al. [33], using both an-
alytical and numerical results, it was demonstrated that
the mutual information, which measures quantum and
classical correlations, was sensitive to the phase transi-
tion. The fidelity metric was also used by Scherer et.
al. [38] to explore analytically the phase transition of the
isotropic LMG model.

Besides the thermal fidelity, other quantities can be an-
alyzed to locate the critical temperature from numerical
studies of finite systems. Here we use the block Lanczos
algorithm described in the previous sections to compute
the specific heat capacity and the entropy density, as well
as the thermal fidelity and trace distance, and we show
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(c) Extrapolation of Tc

FIG. 1. Heat capacity per particle in the thermal equi-
librium state of the LMG model, for different system sizes
40 ≤ L ≤ 80 and h = 0.2 (a) and h = 1.2 (b) as a function of
temperature. The vertical scale is the same in both plots for
the sake of comparison. Our results are in good agreement
with those presented in [33]. The black vertical line in Figure
(a) indicates the critical temperature Tc. Figure (c) shows the
scaling of the peak position with the system size. The error
bars of the data points reflect the imprecision in the location
of each peak. Extrapolating the results of the largest systems
(L = 70, 80) we estimate a critical temperature Tc ≈ 0.47.

how the results are sensitive to the presence of a phase
transition.

The Hamiltonian (8) can be exactly expressed as an
MPO with constant bond dimension D = 3. In con-
trast, approximating the Gibbs state as an MPO would
be difficult, due to the long-range interactions. Although
specific algorithms exist that can approximate the re-
quired imaginary time evolution for long-range Hamil-
tonians [39–41], the bond dimension required for an ac-
curate description can get large, up to the point of not
being computable in practice. Thus, expressing the ther-
mal observables directly as functions of the Hamiltonian
and applying the block Lanczos method to the latter is
a more reasonable strategy for this kind of models.

We consider here finite systems of sizes L ∈
{40, 50, 60, 70, 80} and use our method to probe the be-
havior of the quantities of interest as a function of tem-
perature in the interval T ∈ [0.1, 1], for h ∈ {0.2, 1.2},
(only for h < 1 the system exhibits a phase transition).
The maximal size of the Krylov basis is set to 70, and
the maximal bond dimension of the basis MPOs varies
from D = 150 for L = 40 to D = 250 for L = 80. For
the sake of brevity, we will in the following refer to the
thermal fidelity at a given temperature T , for states that
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FIG. 2. Top row: von Neumann entropy per site s of the
Gibbs state for the LMG Hamiltonian for h = 0.2 (a) and
h = 1.2 (b) over the temperature T for several system sizes.
Bottom row: the discrete temperature derivative of s over T
for h = 0.2 (c) and h = 1.2 (d).
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FIG. 3. Thermal fidelity FT in the Gibbs state for the LMG
Hamiltonian, for h = 0.2 (a) and h = 1.2 (b) and several
system sizes. The black vertical line in Figure (a) indicates
the critical temperature Tc.

differ in δT , as FT (T ) := FT ( 1
T ,

1
T+δT ) and define the

trace distance DT (T ) analogously.
Note that for a given system size L and field strength h,

the algorithm can approximate all the required functions
for all values of T in a single run.

Our results are shown in Figures 1 (heat capacity per
site c), 2 (entropy per site s), 3 (thermal fidelity FT ) and 4
(trace distance DT ). Comparing the plots for both values
of h studied, specially for heat capacity, thermal fidelity
and trace distance, we see a clear signal of the presence of
the phase transition for h = 0.2, despite the system sizes
considered here being far from the thermodynamic limit.
In particular, the location of the maximum (minimum
in the case of FT ) can be used to estimate the critical
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FIG. 4. Trace distance DT between thermal equilibrium
states of the LMG model as a function of the temperature
for different system sizes L and h = 0.2 (a) and h = 1.2
(b). The black vertical line in Figure (a) indicates the critical
temperature Tc in Eq. (9).

temperature. Finite size effects are noticeable, with the
location of the extremes of all quantities moving closer to
the exact Tc (9) for larger system sizes. We can estimate
the location of the critical temperature by a finite size
extrapolation, as shown in Figure 1(c). Using the data
of the heat capacity for L = 70, 80, provides already
a relatively good estimation of the critical temperature
Tc ≈ 0.47 ± 0.04, where the error corresponds to the
difference with respect to the estimator obtained from
including also L = 60 in the fit. The extrapolated value
is already close to the exact solution, and compatible
with it within the error bars. To obtain a more precise
estimate of the critical temperature, more data for larger
systems sizes and possibly a smaller temperature step
could be computed with our method.

The von Neumann entropy per site does not show a
sharp peak, but it also exhibits a qualitatively different
behavior for both values of h. For h = 0.2, where a phase
transition exists, the value of the entropy per site of the
thermal equilibrium state develops a rapid change from
s = 0 at low temperatures, to s ≈ 0.7 after the criti-
cal temperature, with the increase becoming faster with
growing system sizes. In contrast, in the case h = 1.2 the
entropy density increases smoothly and does not show a
clear finite size scaling. This different behavior is made
more apparent by looking at the (discrete) derivative of
the entropy with respect to the temperature, shown in
Figures 2(c) and 2(d). In these plots, similar to the be-
havior of the heat capacity, we appreciate a sharp peak
signaling the phase transition only in the case h = 0.2.

Overall the results show that already with moderate
computational effort, our method can be used to reveal
interesting physical phenomena that would otherwise be
hard to access numerically. As the method is theoret-
ically guaranteed to converge to the exact solution in
absence of numerical and approximation errors, more ac-
curate results can in principle be obtained by increasing
the maximal bond dimension and size of the Krylov ba-
sis. Indeed, due to the permutation symmetry of the
Hamiltonian (8), in this particular model large systems
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FIG. 5. Two-site correlation function Czz(L/2, L/2 + ∆L)
in the thermal state of Ising and LMG Hamiltonians, as a
function of the distance ∆L, for a system size L = 60. The
discrete data points shown as markers correspond to the re-
sults computed with our algorithm, while for the Ising case,
quasi-exact results from the MPO approximation are shown
as lines, for reference. In (a), the absolute values are shown
for both Hamiltonians while (b) depicts the relative error for
the Ising model.

can be explored with exact diagonalization, as was done
in [32, 33]. The goal of the calculations presented above
was thus not to compete with those results, but to use
them as reference and to probe the performance of the
algorithm. We expect that the strategy presented here
will be most useful for cases where the dimension of the
problem is genuinely exponential, and exact diagonaliza-
tion cannot be applied.

B. Two-site correlations

An interesting property of thermal equilibrium states
may be the two-site correlations at a certain distance.
If the Gibbs state admits a good MPO approximation
which can be efficiently found, for instance via standard
imaginary time evolution algorithms, then such correla-
tions can be accurately computed. Our method will be
most useful when no such MPO representation is avail-
able, but for the purpose of benchmarking we choose a
model where a good MPO approximation of the thermal
state is easy to find. In particular, we consider the Ising
model in a transverse field on finite open chains,

HI = J
L−1∑

i=1

σxi σ
x
i+1 + g

L∑

i=1

σzi , (10)

and use the standard approximation of the Gibbs ensem-
ble as an MPO as a quasi-exact reference to benchmark
the estimations obtained with our method. We will also
illustrate the results obtained for the thermal states of
the LMG Hamiltonian discussed above, although in that
case no MPO approximation is available for comparison.

We define a two-point correlation function Czz(i, j) =
〈σzi σzj 〉 − 〈σzi 〉〈σzj 〉. In the case of a mixed state ρ,

Czz(i, j) = Tr
(
ρ σzi σ

z
j

)
− Tr (ρ σzi )Tr

(
ρ σzj

)
, (11)
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which yields three expectation values that need to be
computed or approximated. We have seen in Section III
that our method can approximate expectation values of
positive operators O, if there is an efficient MPO repre-
sentation for

√
O. Although σzi and σzi σ

z
j are not positive,

they can be decomposed using σzi = Πi
0 −Πi

1 and

σzi σ
z
j =

(
Πi

0Πj
0 + Πi

1Πj
1

)
−
(

Πi
1Πj

0 + Πi
0Πj

1

)
, (12)

where Πi
s := |s〉〈s| for s = 0, 1 projects the i-th site

of the chain onto state |s〉 and acts as the identity on
the remaining sites. For simplicity we do not explicitly
show the identity operators. Each of the terms within
brackets is a projector, and therefore positive, and has a
square root (itself) that admits an MPO-representation
with bond dimension D = 1 for σzi or D = 2 for σzi σ

z
j .

This formulation thus provides us with a means of ap-
proximating two-site correlations with the block Lanczos
method.

In the particular case of the Ising model, the spin-
flip symmetry of the Hamiltonian (10) allows a further
simplification, since we can write

Tr
[
ρ(HI , β)σzi σ

z
j

)
] =2

{
Tr
(
ρ(HI , β)Πi

0Πj
0

)
(13)

−Tr
(
ρ(HI , β)Πi

1Πj
0

)}
, (14)

halving the number of expectation values that need to
be approximated and consequentially improving accuracy
and runtime.

In Figure 5, we show the results for the correlation
Czz(L/2, L/2 + ∆L), between the middle site and the
right half of the chain, in the Gibbs state at temperatures
T ∈ {0.05, 0.1, 1}, for a system size L = 60, J = 1 and
transverse field g = 1. The bond dimension was set to
D = 250 and the maximal Krylov dimension to 100. We
compare the results to those from the MPO obtained by
imaginary time evolution with the purification ansatz,
which were obtained using bond dimension D = 120 for
the purification and Trotter step δ = 0.01 and checked
to be sufficiently converged for this comparison.

Figure 5(a) shows that the results obtained for the
Ising Hamiltonian by the two different methods are in
good agreement for all the temperature values consid-
ered. The correlations in the thermal equilibrium state
decay exponentially with distance, with the correlation
length becoming larger for lower temperatures, as the
quantum critical point at T = 0 is approached. The
relative errors, shown in Figure 5(b), in general increase
with the distance, which we attribute to the fact that the
absolute values are indeed smaller, since we observe an
approximately constant absolute error for all distances.
Notice that the results for the LMG case, shown also in
Figure 5(a), show that the method can capture the cor-
relation of the model despite its long-range interactions.
We observe that for the smallest temperature, T = 0.05,
the error is considerably larger. We attribute this com-
paratively larger deviation mainly to an error in the ap-

proximation of the partition function as it enters all ap-
proximated expectation values. The error reflects the
fact that a larger bond dimension and possibly a larger
Krylov dimension is required for T = 0.05 to obtain more
accurate estimates.

V. CONCLUSION

In [12] we introduced a block Lanczos method for ap-
proximating functions of the form Tr [f(A)] of any Her-
mitian operator A given as an MPO. The method gives
access to global functions of the operator that depend
on the full spectrum and are usually not accessible with
standard tensor network tools. In this work we have dis-
cussed how to use the method for physically interest-
ing quantities, such as the von Neumann entropy or the
trace norm of an MPO, and in particular how to most
efficiently approximate thermal properties. As we have
argued, by expressing the quantities of interest in the
thermal equilibrium state as functions of the Hamilto-
nian, and applying the Lanczos method directly to the
latter, we can explore the thermal properties in an effi-
cient way. The strategy allows the evaluation of a variety
of properties without the need of a prior approximation
of the thermal state as an MPO, and can be applied for
long-range interactions. We have discussed how a sin-
gle run of the algorithm is enough to evaluate different
functions over the whole range of possible temperatures.

We have then shown how to approximate several phys-
ical quantities for Gibbs states, namely the heat capac-
ity, thermal fidelity, trace distance, von Neumann en-
tropy and some expectation values. To illustrate the
performance of the method we have presented results for
the thermal states of the Lipkin-Meshkov-Glick and Ising
Hamiltonians. In the LMG model, we have shown how
the method can estimate multiple quantities that detect
the presence of a thermal phase transition. The case of
the Ising model has been used to benchmark the approx-
imation of correlation functions.

This algorithm provides a new tool to extend the ca-
pabilities of the tensor network toolbox, by giving access
to global functions whose calculation would otherwise be
unfeasible. The calculations presented in this paper aim
at benchmarking the method with known results, but we
expect the technique to be most useful in cases when an
MPO approximation of the Gibbs state is not available,
but the Hamiltonian has an MPO description, as can be
the case for long-range interactions.

Apart from algorithmic improvements such as leverag-
ing symmetries in the input to reduce the required bond
dimension and runtime, an interesting and promising di-
rection of future research would be to identify additional
physical applications of the algorithm that so far were
out-of-reach for tensor network algorithms. The algo-
rithm’s generality and capability of approximating global
quantities make this seem like a worthwhile endeavor.
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Journal of Physics 14, 075003 (2012).
[7] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[8] F. Verstraete, J. Garcia-Ripoll, and I. Cirac, Physical

review letters 93, 207204 (2004).
[9] M. Zwolak and G. Vidal, Physical review letters 93,

207205 (2004).
[10] B. Pirvu, V. Murg, I. Cirac, and F. Verstraete, New

Journal of Physics 12, 025012 (2010).
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Summary In this work we demonstrated how recurrent neural networks can be employed to
optimize dynamical decoupling in quantum memory. We introduced LSTM networks
and argued that they are well suited for probabilisticaly modelling control sequences for
dynamical decoupling. Dynamical decoupling hereby poses a comparably easy method
to suppress errors in time-evolving quantum systems under certain assumptions. We
presented an optimization algorithm which is inspired by evolutionary algorithms. In
each iteration of a nested optimization loop, it first constructs a data set of (increasingly
good) control sequences by sampling from the LSTMs and then trains them on it. This
process is repeated such that finally LSTMs approximating the probability distribution
over optimal or near-optimal sequences are obtained. Furthermore, the presented method
can be easily employed in real experiments to find sequences tailored to the particular
hardware setup, since it treats the error function as a black box. We evaluated our method
for a quantum memory setting with a reasonable set of physical assumptions. Here, we
found the LSTM networks to improve over time and finally generate sequences with
performance superior to certain analytical solutions. These results were thereby obtained
with minimum use of domain knowledge and starting from uniformly random sequences.
Additionally, we compared the results obtained by modelling the sequences with LSTM
networks to the case where n-gram models were used instead. Here we found the LSTM to
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We utilize machine learning models that are based on recurrent neural networks to optimize dynamical
decoupling (DD) sequences. Dynamical decoupling is a relatively simple technique for suppressing the errors in
quantum memory for certain noise models. In numerical simulations, we show that with minimum use of prior
knowledge and starting from random sequences, the models are able to improve over time and eventually output
DD sequences with performance better than that of the well known DD families. Furthermore, our algorithm is
easy to implement in experiments to find solutions tailored to the specific hardware, as it treats the figure of merit
as a black box.
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I. INTRODUCTION

A major challenge of quantum information processing
(e.g., quantum computation and communication) is to preserve
the coherence of quantum states. While in principle we can
build a fault-tolerant quantum memory or universal quantum
computer once the error rate of the device is below a certain
threshold, it is still beyond nowadays experimental capacity to
build a decent-size quantum computer. One less explored area
is the optimization of implementing a fault-tolerant protocol
on a concrete experimental setting. This is often a tedious
problem, due to the amount of details in the real devices and
the fact that the architectures of both experimental devices
and theoretical protocols are still rapidly changing. Thus, an
attractive approach is to automatize this optimization task.
Apart from convenience, it is conceivable that with less human
intuition imposed, the upper bound of the performance will
be higher. This has previously been proven to be true in
fields such as computer vision where artificial neural network
(ANN) models that try to solve tasks without using handcrafted
representations of data have overtaken approaches based on
human insight in tasks such as image classification and object
recognition [1]. Another interesting recent example is the
ability of ANNs to learn how to play games on a human or even
superhuman level without any or just little prior knowledge
about the respective games [2,3].

Automatically optimizing parameters in real (or numerical
simulations of) experiments is not a new idea. For example, it
has been applied to optimizing the pulse shape of a laser,
the parameters of Hamiltonians to achieve certain unitary
operations, or the parameters of dynamical decoupling and
cold-atom experiments. Most works that attempt to obtain
optimal parameters use genetic algorithms [4–8] or (to some
degree [9]) local searches such as gradient descent [7,10–14]
and the Nelder-Mead simplex method [15–17]. It is argued
that by using these optimization methods directly on the
experiments, we can avoid the difficulty of modeling the

*august@in.tum.de
†xiaotong.ni@mpq.mpg.de

imperfect control and the system-environment interaction.
However, one possible weakness of these optimization meth-
ods is that they generate new trials only by looking at a fixed
number of previous ones and often they need to restart once
they reach a local minimum. Thus, in the long run, they do not
fully utilize all the data generated by the experiments.

In this work we propose an orthogonal approach, where we
try to mimic the structure of good parameters by building a
model that approximates the probability distribution of these
parameters. After an initial optimization, this model can then
be used to efficiently generate new possible trials and can
be continuously updated based on new data. In particular,
based on the problem we attempt to solve, we choose this
model to be a variant of the recurrent neural network (RNN),
which makes our approach very similar to the way in which
natural languages or handwriting are currently modeled.
This ansatz enables us to exploit the models and insights
developed by the machine learning community and possibly
translate further progress there into the field of quantum
control. It is worth pointing out that the machine learning
part of this work is purely classical; only the (classical) data
are related to quantum time evolution. Among the previous
works, the approach by Wigley et al. in [18] is the most
similar to ours, as they attempt to build a model from the
data and utilize the model to perform optimization. Classical
machine learning is also used in [19–21] to characterize
the error models in quantum error correction and to react
accordingly.

To demonstrate the feasibility of using our method to
help optimize quantum memory, we consider the problem of
automatically learning and optimizing dynamical decoupling
sequences (almost) without using any prior knowledge. Dy-
namical decoupling (DD) [22] is a technique that combats
certain noise by applying a sequence of unitary operations on
the system (see [23,24] for a review). It has a less stringent
requirement compared to general error correction protocols,
which allows it to be demonstrated in experiments [15,23,25]
in contrast to other methods. Moreover, known classes of
good DD sequences have a relatively simple and well-defined
structure. Based on the assumption that this holds true also
for yet unknown and possibly better classes of sequences, it is
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conceivable that a learning algorithm could eventually sample
them without the need of using heavy mathematics.

To clarify, we do not attempt to solve the following two
questions.

First, what do RNNs try to learn? It is known that RNNs
can incorporate both short- and long-range correlation, which
is desirable in our case, but it is unclear which one the gradient
training method prioritizes. Indeed, it is an ongoing study
to understand the behavior of RNNs [26]. Nevertheless, we
choose to use RNNs since there are heuristic arguments on
the advantage of them compared to similar models [27] and
they benefit greatly from modern machine learning libraries
and hardware.

Second, what is the optimal machine learning algorithm to
find the best DD sequences? It is clear that we cannot claim
our algorithm is the best one as there is not much theoretical
understanding on RNNs. Indeed, the present authors believe
there is much room for improvement, possibly by using better
heuristics or taking into account more prior knowledge of DD.
However, our work demonstrates that with a general model
and a small amount of human effort, we can already achieve
nontrivial results for certain problems.

II. BACKGROUND

A. Dynamical decoupling

The majority of dynamical decoupling schemes are de-
signed for error models where the system-environment in-
teraction can be described by a Hamiltonian. We will use
HS and HB to denote the Hilbert space of the system and
environment (often called bath), respectively. The difference
between system and environment is that the former represents
the part of the Hilbert space we can apply the Hamiltonian on
and in which we store quantum information. The total noise
Hamiltonian is

H0 = HS ⊗ IB + IS ⊗ HB + HSB.

Without intervention, in general H0 would eventually destroy
the quantum states we store in HS . To suppress this noise,
we could apply a time-dependent Hamiltonian HC(t) to the
system, which makes the total Hamiltonian H (t) = H0 +
HC(t). In the ideal case, we can control HC(t) perfectly and
reach very high strength (i.e., norm of the Hamiltonian), which
allows the ideal pulse

V (t) = Oδ(t − t0).

It applies a unitary operator e−iO to the system for an infinitely
small duration (we set h̄ = 1 in this work). A very simple
DD scheme for a qubit (a two-level system S) is the XY4

sequence: It applies pulses of the Pauli matrices X and
Y alternatingly with equal time interval τd in between. A
complete cycle consists of four pulses XYXY , thus the total
time period of a cycle is Tc = 4τd . In the limit of τd → 0, the
qubit can be stored for an arbitrarily long time. The intuition
behind DD sequences is the average Hamiltonian theory. Let
UC(t) = T exp{−i

∫ t

0 dt ′HC(t ′)} be the total unitary applied
by HC(t ′) up to time t . In the interaction picture defined
by UC(t), the dynamics is governed by the Hamiltonian
H̃ (t) = U

†
C(t)H0UC(t). If the time interval τd between pulses

is much smaller than the time scale defined by the norm of
‖H0‖, it is reasonable to consider the average of H̃ (t) within
a cycle. The zeroth-order average Hamiltonian in Tc (with
respect to τd ) is

H̄ (0) = 1

Tc

∫ Tc

0
dt ′U †

C(t)H0UC(t).

For the XY4 sequences introduced above, it is easy to
compute H̄ (0) = 1

4

∑
σ∈{I,X,Y,Z} σH0σ . Since the mapping

O → ∑
σ∈{I,X,Y,Z} σOσ maps any 2 × 2 matrix to 0, by

linearity we know H̄ (0) = 0.
Here we are going to list several classes of DD sequences.

We will first explain how to concatenate two sequences, as
most long DD sequences are constructed in this manner. Given
two DD sequences A = P1 · · · Pm and B = Q1 · · · Qn, the
concatenated DD sequence A[B] is

A[B] = (P1Q1)Q2 · · ·Qn(P2Q1)Q2 · · ·Qn

· · · (PmQ1)Q2 · · · Qn.

As an example, when we concatenate the length-2 and length-
4 sequences XX and XYXY , we obtain IYXYIYXY . For
convenience, we will use CDD to denote these sequences. Note
that originally CDD is used to denote sequences generated
solely from recursively concatenating XYXY with itself.

We will use Pi to represent any Pauli matrix X, Y , or Z

and for i �= j , Pi �= Pj . The families of DD sequences can
then be listed as follows: DD4, length-4 sequences P1P2P1P2;
DD8, length-8 sequences IP2P1P2IP2P1P2; EDD8, length-
8 sequences P1P2P1P2P2P1P2P1; CDD16, length-16 con-
catenated sequences; DD4[DD4]; CDD32, length-32 con-
catenated sequences DD4[DD8] and DD8[DD4]; and
CDD64, length-64 concatenated sequences DD4[CDD16]
and DD8[DD8]. Longer DD sequences can again be obtained
by the concatenation of the ones listed above and in the ideal
situation they provide better and better protection against
the noise. However, with realistic experimental capability,
the performance usually saturates at a certain concatenation
level. Since at this moment we are only optimizing short DD
sequences, the listed ones are sufficient to provide a baseline
for our purpose. One important family we did not include here
is the Knill DD (KDD) [28], because it requires the use of
non-Pauli gates.

However, we cannot expect these requirements to be met
in all real-world experiments. The two major imperfections
that are often studied are the flip-angle errors and the finite
duration of the pulses. Flip-angle errors arise from not being
able to control the strength and time duration of HC(t)
perfectly, thus the intended pulse V (t) = Oδ(t) becomes
V (t) = (1 ± ε)Oδ(t). Also, since zero-width pulses Oδ(t)
are experimentally impossible, we must consider finite-width
pulses that approximate the ideal ones. In this paper we
will only consider the imperfection of finite-width pulses.
However, it is straightforward to apply our algorithm to pulses
with flip-angle errors.

B. Measure of performance

There are multiple ways to quantify the performance of
DD sequences. In practice, we choose different measures to
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suit the intended applications. Here we use the same measure
as in [24,29], which has the advantage of being (initially)
state independent and having a closed formula for numerical
simulation:

D(U,I ) =
√

1 − 1

dSdB

‖TrS(U )‖Tr,

where U represents the full evolution operator generated
by H (t), dS and dB are the dimensions of the system and
environment Hilbert space HS and HB , respectively, ‖X‖Tr =
Tr(

√
X†X) is the trace norm, and TrS(·) is the partial trace over

HS . The smaller D(U,I ) is, the better the system preserved its
quantum state after the time evolution. For example, the ideal
evolution U = IS ⊗ UB has the corresponding D(U,I ) = 0.

In experiments, it is very hard to evaluate D(U,I ), as we
often do not have access to the bath’s degree of freedom.
Instead, the performance of DD sequences is often gauged
by doing process tomography for the whole time duration
where DD is applied [25,30]. Although it is a different measure
compared to our choice above, the optimization procedure can
still be applied as it does not rely on the concrete form of
the measure. Moreover, for solid state implementations such
as superconducting qubits or quantum dots, a typical run of
initialization, applying DD sequences and measurements, can
be done on the time scale of 1 ms or much faster. Thus, it is
realistic that on the time scale of days we can gather a large data
set of DD sequences and their performance, which is needed
for our algorithm.

C. Recurrent neural networks

Sequential models are widely used in machine learning for
problems with a natural sequential structure, e.g., speech and
handwriting recognition, protein secondary structure predic-
tion, etc. For dynamical decoupling, not only do we apply
the gates sequentially in the time domain, but also the longer
DD sequences are often formed by repetition or concatenation
of the short ones. Moreover, once the quantum information
of the system is completely mixed into the environment, it is
hard to retrieve it again by DD. Thus, an educated guess is
that the performance of a DD sequence largely depends on the
short subsequences of it, which can be modeled well by the
sequential models.

Since our goal is not simply to approximate the distribution
of good dynamical decoupling sequences by learning their
structure but to sample from the learned distribution to effi-
ciently generate new good sequences, we will further restrict
ourselves to the class of generative sequential models. Overall,
these models try to solve the following problem: Given {xi}i<t ,
approximate the conditional probability p(xt |xt−1, . . . ,x1). As
a simple example, we can estimate the conditional probability
p(xt |xt−1) from a certain data set and use it to generate new
sequences.1 For more sophisticated problems (e.g., natural
language or handwriting), it is not enough to only consider the

1This idea can be at least dated back to Shannon [31], where this
model generated “English sentences” like “On ie antsoutinys are t
inctore st be s deamy achin d ilonasive tucoowe at . . ..”

nearest-neighbor correlations as simple models like Markov
chains of order one do.

The long short-term memory (LSTM) network, a variation
of the RNN, is a state-of-the-art technique for modeling longer
correlations [32] and is comparably easy to train. The core
idea of RNNs is that the network maintains an internal state
in which it encodes information from previous time steps.
This allows the model to, at least theoretically, incorporate all
previous time steps into the output for a given time. Some
RNNs have even been shown to be Turing complete [33]. In
practice, however, RNNs often can only model relatively short
sequences correctly due to an inherently unstable optimization
process. This is where LSTMs improve over normal RNNs,
as they allow for training of much longer sequences in a
stable manner. Furthermore, LSTMs, like all ANNs, are based
on matrix multiplication and the elementwise application
of simple nonlinear functions. This makes them especially
efficient to evaluate.

Algorithm 1. Optimization algorithm.

Input: Number of initial models to train: n

Number of models to keep: k

Percentage of data to keep: p

Set of possible topologies: M
Size of data: d

D ← generateRandomData (d)
D,〈ςs〉 ← keepBestData (D,p)
M ← trainRandomModels (n,D,M)
M ← keepBestKModels (M,k)
while 〈ςs〉 not converged do

M ← trainBestModels (D)
D ← generateDataFromModels (M,d)
D,〈ςs〉 ← keepBestData (D,p)

end
Output: 〈ςs〉,D,M

From the machine learning perspective, we treat the prob-
lem at hand as a supervised learning problem where we provide
the model with examples that it is to reproduce according
to some error measure. It is also possible to formulate our
problem in the framework of reinforcement learning. However,
since we only compute the performance of a whole DD se-
quence, there is no immediate reward when choosing a gate in
the middle of the sequence. Given the length of the sequences
we are optimizing, it is likely a reinforcement learning algo-
rithm will need help from certain (un)supervised learning, sim-
ilar to the way in [3]. A short introduction to machine learning,
LSTMs, and their terminology can be found in the Appendixes.
More exhaustive discussions can be found in [34–36].

III. ALGORITHM

The algorithm presented in this section is designed with
the goal in mind to encode little prior knowledge about the
problem into it, in order to make it generally applicable to
different imperfections in the experiment. Following this idea,
the method is agnostic towards the nature of the considered
gates, the noise model, and the measure of performance. To
implement this, the algorithm assumes that the individual
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gates are represented by a unique integer number such that
every sequence s ∈ G⊗Ls , with G denoting the set of unique
identifiers and Ls being the length of s, and it is provided with
a function f (s) to compute the score ςs of a given sequence s,
taking into account the noise model. The optimization problem
we want to solve is

min
s

f (s) = min
s

ςs .

By assumption, we have no information about f but can
efficiently evaluate it. We furthermore assume the set of
good sequences to exhibit common structural properties that
can be learned well by a machine learning model. So we
propose to solve it indirectly by training a generative model
m ∈ M to approximate the distribution of good sequences,
M being the set of possible models. That means we assume
st ∼ pm(st−1, . . . ,s1), with st being the gate at time t and pm

denoting the distribution learned by m. Then we want to find
an optimal m that ideally learns a meaningful representation
of the structure of good sequences. In this work we choose the
type of model to be the LSTM. We now tackle this surrogate
problem by alternatingly solving

max
m∈M

L(m|T ),

where L denotes the likelihood and T the training data, and
then sampling sequences from the model m to generate a
new T consisting of better solutions. The algorithm hence
consists of two nested optimization loops, where the inner
loop fits a number of LSTMs to the current data while the
outer loop uses the output of the inner loop to generate new
training data. This scheme of alternatingly fixing the data to
optimize the models and consecutively fixing the models to
optimize the data resembles the probabilistic model building
genetic algorithm [37] and to some extent the expectation-
maximization algorithm [38]. The method is shown in Algo-
rithm 1. Partial justification of this heuristic algorithm is given
in Appendix C. However, it is easy to see that the algorithm
will not always find the global optimum. For example, it is
conceivable that for certain problems the second to the 100th
best solutions share no common structure with the first one.
In that case, it would be unlikely for the machine learning
approach to find the optimal one. There is however likely
no universal method to bypass this obstruction, as unless we
know the best sequences already, it is impossible to verify that
they exhibit some structure similar to the training sets. This
obstruction seems natural since many optimization problems
are believed to be computationally hard. Thus, we should not
assume to be able to solve them by the above routine.

We will now explain the most important aspects of the
algorithm in more detail.

(a) Choice of LSTMs. The data we want to generate
in our application are of sequential nature. This makes
employing LSTMs an obvious choice as they pose one of
the most powerful models available today for sequential
data. Furthermore, the known well-performing families of DD
sequences are constructed by nested concatenations of shorter
sequences and hence show strong local correlations as well
as global structure. Long short-term memories and especially
models consisting of multiple layers of LSTMs are known to
perform very well on such data and should therefore be able

to learn and reproduce this multiscale structure better than
simpler and shallow models.

(b) Generation of the initial training data. The size d and
the quality, i.e., the percentage p of the initial data to be kept,
are the parameters that we can specify. The data are then
generated by sampling a gate from the uniform distribution
over all gates for each time step. The average score of the
initial data can then be used as a baseline to compare against
in case no other reference value is available. We would like
to point out that in the application considered in this work,
an alternative way to generate the initial data might be to use
the models trained on shorter sequences. This approach could
lead to an initial data set with much higher average score, but
at the price of introducing the bias from the previously trained
RNNs.

(c) Training of the LSTMs. To reduce the chance of ending
up in a bad local optimum, for each training set several different
architectures of LSTMs are trained (see Appendix D 2 for
detailed description of LSTMs). These models are indepen-
dently sampled M. More precisely, for the first generation of
models, we sample a larger set of n models from M and train
them. We then select the best k models and reuse them for all
following generations. While it might introduce some bias to
the optimization, this measure drastically reduces the number
of models that need to be trained in total. The training problem
is defined by assuming a multinoulli distribution over the gates
of each time step and minimizing the corresponding negative
log-likelihood −∑

t δst ,i log2 pm,i(st−1, . . . ,s1), where i is the
index of the correct next gate, pm,i is its predicted probability
computed by the LSTM m, and δst ,i = 1 if and only if st = i.
This error measure is also known as the cross entropy. To
avoid overfitting, we use a version of early stopping where we
monitor the average score 〈ςs〉pm

of sequences generated by
m and stop training when 〈ςs〉pm

stops improving. We employ
the optimizer Adam [39] for robust stochastic optimization.

(d) Selecting the best models. As we employ early stopping
based on the average score 〈ςs〉pm

, we also rank every trained
model m according to this measure. One could argue that
ranking the models with respect to their best scores would be
a more natural choice. This however might favor models that
actually produce bad sequences but have generated a few good
sequences only by chance. Using 〈ςs〉pm

is hence a more robust
criterion. It would of course be possible to also consider other
modes of the pm, such as the variance or the skewness. These
properties could be used to assess the ability of a model to
generate diverse and good sequences. We find, however, that
the models in our experiments are able to generate new and
diverse sequences, thus we only use the average score as a
benchmark for selecting models.

(e) Generation of the new training data. The selected
models are used to generate d new training data by sampling
from pm. This is done by sampling st from pi(st−1, . . . ,s1)
beginning with a random initialization for t = 1 and then using
st−1 as input for time step t . We combine the generated se-
quences with the previous training sets, remove any duplicates,
and order the sequences by their scores. We then choose the
best p percent for the next iteration of the optimization. This
procedure ensures a monotonic improvement of the training
data. Note that all selected models contribute equally many
data to strengthen the diversity of the new training data. A
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possible extension would be to apply weighting of the models
according to some properties of their learned distributions.
Note though that ordering the generated sequences by their
score is already a form of implicit weighting of the models.

IV. NUMERICAL RESULTS

A. Noise model and the control Hamiltonian

Throughout the paper we will use the same noise model as in
[24]. We consider a 1-qubit system and a 4-qubit bath, namely,
dim(HS ) = 2 and dim(HB) = 16. The small dimension of the
bath is for faster numerical simulation and there is no reason for
us to think that our algorithm would only work for a small bath
as the size of the bath enters the algorithm only via the score-
computation function. The total noise Hamiltonian consists of
(at most) three-body interactions between the system and bath
qubits with random strength

H0 =
∑

μ∈{I,X,Y,Z}
σμ ⊗ Bμ, (1)

where σμ is summed over Pauli matrices on the system qubit
and Bμ is given by

Bμ =
∑
i �=j

∑
α,β

c
μ
αβ

(
σα

i ⊗ σ
β

j

)
,

where i,j is summed over indices of the bath qubits and σ
α (β)
i

is the Pauli matrix on qubit i of the bath. We consider the
scenario where the system-bath interaction is much stronger
than the pure bath terms. More precisely, we set cμ

αβ ≈ 1000cI
αβ

for μ ∈ {X,Y,Z}. Apart from this constraint, the absolute
values |cμ

αβ | are chosen randomly from a range [a,b], where
we set b ≈ 3a to avoid too many terms vanishing in (1). The
result Hamiltonian has a 2-norm ‖H0‖ = 20.4.

For the control Hamiltonian, we consider the less explored
scenario where the pulse shape have finite width but no switch
time between them (100% duty cycle). In other words, the
control Hamiltonian is piecewise constant

HC(t) = Hk for kτd � t < (k + 1)τd,

where τd is a small time period with respect to the norm
of H0 and e−iHkτd ∈ {I,X,Y,Z}. This is a good toy model
for experimental settings whose DD performance is mainly
limited by the strength of the control Hamiltonian, but not the
speed of shifting between Hamiltonians. Since this regime is
less explored in theoretical studies, it is an interesting scenario
to explore via machine learning. Another restriction we put on
HC(t) is

HC(t) = −HC(T − t),

where T is the total evolution time. This condition ensures
UC(T ) = T exp{−i

∫ T

0 dt ′HC(t ′)} = I and it allows us to
apply the same code on the setting where the system has
more than one qubit. It is known that this family of symmetric
Hamiltonians can remove the first-order terms of τd in the
average Hamiltonian [22,40]. So, strictly speaking, this should
be counted as prior knowledge. However, when we compare
the known DD sequences with the numerically found ones, we
also use the symmetric version of the known DD sequences.
Thus, we perform the comparison on equal terms.

B. Numerical experiments

In the following we present the results of a number of
experiments we have conducted to evaluate the performance
of our method. We consider sequences consisting of 32, 64,
and 128 gates for varying values of τd . This translates to having
to optimize the distribution of the first 16, 32, and 64 gates,
respectively. To compute ςs , we use the figure of merit D as
defined in Sec. II A. Thus, a lower score is better. For M,
we consider models with two or three stacked LSTM layers
followed by a final softmax layer. The layers comprise 20
to 200 units where layers closer to the input have a higher
number of units. We allow for peephole connections and
linear projections of the output of every LSTM layer to a
lower number dimension [35]. The optimization parameters
are also randomly sampled from sets of reasonable values. We
choose the step rate to be in {10−1,10−2} and the batch size to
take values in {200,500,1000}. The parameters specific to the
Adam optimizer β1, β2, and ε, we sample from {0.2,0.7,0.9},
{0.9,0.99,0.999}, and {10−8,10−5}, respectively. We perform a
truncation of the gradients to 32 time steps in order to counter
instabilities in the optimization (see Appendix D 3). As we
have stated above, we also employ early stopping in the sense
that, for every optimization of a model, we keep the parameters
that generate the sequences with the best average score. The
algorithm was run until either the best known score was beat or
the scores converged, depending on the goal of the respective
experiment. We will now briefly list the concrete experiment
settings and discuss the results.

(i) Experiment E1: Length 32. In this first experiment, we
considered sequences of 32 gates with τd = 0.002. We let the
algorithm train n = 30 models initially and set the number of
models to be kept k to 5. We combined the data generated by
the LSTMs with the previous training set after each generation
and chose the best 10% as the new training data, consisting
of 10 000 sequences for each generation. We let every model
train for 100 epochs.

(ii) Experiment E2: Length 64. In our next experiment, we
tackled a more difficult scenario with 64 gates and a larger
τd = 0.004. We set n = 50 and k = 5. Again, we used the best
10% of both generated and previous data as new training data,
which consist of a total 10 000 sequences for each training set.

(iii) Experiment E3: Length 128. In the third experiment
we tried our method on even longer sequences of 128
gates with τd again being 0.004. Due to the very large
sequence space, we set the size of the training sets to 20 000,
again using the best 10% of sequences generated by the
selected models and the previous training set. The number
of epochs was increased to 200. We set n = 30 and k = 5.
Here we let the algorithm run until both the average and
the best score converged to examine its behavior in long
runs.

(iv) Experiment E4: Length 32 with random gates. Finally,
we tested the performance of Algorithm 1 in the case where
we replaced the Pauli gates {I,X,Y,Z} with ten randomly
chosen gates. More precisely, we chose each gate gj to be a
randomly generated single two-dimensional unitary operator
with eigenvalues 1 and −1, i.e., gj = U

†
j XUj , where Uj

is a random unitary. All other parameters were kept as in
experiment E1.
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TABLE I. Comparison of the results obtained in experiments E1,
E2, E3, and E4 to the best theoretically derived DD families. For
each experiment, the average and best score of the last training data
and the average score of the best model of the last generation are
shown. They are compared to random sequences and the two DD
classes that yield the best average and overall best score, respectively.
The best results are printed bold.

Sequences 〈ςs〉 min ςs

Experiment E2
EDD8 0.002398 0.002112
CDD32 0.053250 0.000803
last training set E2 0.000712 0.000381
best model E2 0.016692
random 0.341667

Experiment E3
EDD8 0.004793 0.004222
CDD64 0.031547 0.001514
last training set E3 0.000827 0.000798
best model E3 0.029341
random 0.44918

Experiments E1 and E4
EDD8 0.000151 0.000133
CDD16 0.010699 0.000074
last training set E1 0.000112 0.000070
last training set E4 0.007178 0.000082
best model E1 0.003089
random 0.125371

In Table I we compare the last training data and the
best model of the last generation of E1–E4 against the
two DD families that achieve the best average and minimal
scores for the given experiment, respectively. We also plot the
convergence of the training data of E3 and E1 with E4 in
the Figs. 1(a) and 1(b), respectively. In general, the results for
E1, E2, and E3 clearly show that our method outperforms
DD, achieving a better minimal score of the generated data in
a moderate number of iterations and with a relatively small
set of models. The results of E4 will be discussed below.
These findings indicate that our method converges to good
local optima and that the models are able to learn a meaningful
internal representation of the sequences that allows for efficient
sampling of good sequences. There is however a noticeable
gap between the scores of the training data and the models. A
possible remedy for this could be an increase of the training
data size or an adjustment of the model parameters in later
stages of the optimization to account for the change in the
structure of the data.

To assess the importance of LSTMs for the performance
of our algorithm, in experiment E3, we also ran a different
version of our method where we replaced the LSTMs by
simple 5/6-gram models, which only model and generate
sequences based on local correlations (see Appendix A 2
for the definition). The convergence plots in Fig. 1(a) show
that LSTMs are indeed superior to the simpler models. They
are able to improve the average and best scores faster and
ultimately let the algorithm converge to a better local optimum.
This advantage most likely results from the fact that the LSTM
models are able to leverage information about longer-range

(a) Experiment E3

(b) Experiments E1 and E4

FIG. 1. Convergence of the algorithm in (a) E3 compared to the
case where LSTMs are replaced by 5/6-gram models and (b) E1
compared to E4 as both consider the same problem setting. In (a) it
is clearly visible that LSTMs outperform the n-gram models, while
(b) reflects the physical knowledge that the Pauli unitaries are a better
choice than random gates. Note that the red (dark) crosses in (a) are
almost covered by the red (dark) circles. As a reference, we show the
score of the best DD sequence obtained from the known DD classes.

correlations in the data. These results hence justify our choice
of LSTMs as a machine learning model to optimize DD
sequences.

We also compared the results of experiments E1 and E4
to examine the importance of using the Pauli group as the
gate set. Figure 1(b) shows that while for E1 the average score
quickly becomes very good and the best score exceeds the best
known result after a few generations, in E4 the average score
of the data improves much slower and remains significantly
worse than that of E1. Although the best score exhibits a
much stronger improvement, it eventually converges to a value
slightly worse than that of the best theoretical DD sequence and
the one found in E1. This is expected since with the Pauli group
we can achieve first-order decoupling with DD sequences of
length 4, which is the shortest. On the other hand, with random
unitaries, in general it will take much longer sequences to have
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approximate first-order decoupling, during which the system
and environment can become fairly entangled.

Another interesting aspect to note is the rather strong
improvement of the average scores occurring in E3 and E1
between generations 8 to 10 and 2 to 3, respectively. These
jumps can be explained by the known existence of several
strictly separate regimes in sequence space that differ strongly
in their performance. The results indicate that our algorithm
is able to iteratively improve the learned distributions to
eventually capture the regime of very good sequences.

In order to verify that sampling the initial training data
from the distributions learned for shorter sequences is a viable
alternative to uniform sampling, we let the best model obtained
in E2 generate an initial data set for the problem setting of
E3. The obtained data were found to have an average score of
0.037 175, which is about one order of magnitude better than
the average of the initial training data generated by uniform
sampling.

V. CONCLUSION

We have introduced a method for optimizing dynamical
decoupling sequences that differs from previous work by the
ability to utilize much larger data sets generated during the
optimization. Its ability to efficiently generate large sets of
good sequences could be used along with other optimization
methods to cover their weaknesses or to perform statistical
analysis of these sequences. We showed that for certain imper-
fect control Hamiltonians, our method is able to outperform
(almost all) known DD sequences. The little prior knowledge
about DD we use is (i) choosing Pauli operators as pulses in the
sequences (see experiment E4 and its discussion), (ii) choosing
specific lengths for the DD sequences, and (iii) enforcing the
reversal symmetry, as discussed in Sec. IV A. However, we
do not need to initialize the data set in a specific way as
in Appendix C 5 a of [24], which actually contains a certain
amount of prior knowledge of DD. Also, our method does not
fundamentally rely on the prior knowledge stated above. It is
conceivable that the use of this prior knowledge can be lifted,
at the price of a possibly much slower optimization procedure.
For example, the KDD scheme helps to further increase the
performance of CDD sequences in some experiments [23].
Thus, an interesting question is when given the freedom of
applying non-Pauli gates and choosing variable lengths of the
sequences, whether our algorithm could discover a similar
strategy. Thus, a possible direction of future research is to see
how we can minimize the slowdown when not incorporating
any prior knowledge and whether we can obtain good DD
sequences with non-Pauli pulses.

While we have applied the algorithm to the case of quantum
memory and compared it to dynamical decoupling, it is of
general nature. It can in principle be applied to every problem
where the optimization of a sequence of gates with respect
to some well-defined figure of merit is desired and where it
is feasible to evaluate this performance measure for larger
numbers of sequences. However, due to the nature of the
underlying machine learning model, good results will likely
only be obtained for problems whose solution depends strongly
on local correlations in the sequences.
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APPENDIX A: ANALYSIS

1. Local correlations of DD sequences

As we suggested earlier, the reason we use RNNs as the
probabilistic model is that the performance of dynamical de-
coupling sequences heavily depends on their local correlations.
To illustrate this fact, we can count the frequency of length-2
(see Table II) (or length-3) subsequences from the training set
of the 30th generation in experiment 3. We can then compare
these statistics to the ones of the sequences generated by
the LSTM, which is trained based on the training set. We
can see indeed that the percentages match very well. To get
more detail about local correlations, we could also count the
frequency of length-3 subsequences (see Table III). Note that
since the table is based on the data sets in the late stage of the
optimization, the distribution of the subsequences are already
very polarized. However, we observe the same behavior (the
percentages matches well) in other experiments at different
stages of the optimization as well. However, RNNs do not
only take into account local correlations, as we show in Fig. 1
that they perform better compared to the n-gram models, which
we will introduce in the next section.

2. The n-gram models

n-grams are the simplest sequential models that treat the
sequences as stationary Markov chains with order n − 1.

TABLE II. Frequency of length-2 subsequences, from the training set and the set generated by the trained LSTM (given in parentheses) at
generation 30 of experiment 3. The total number of subsequences is around 1.2×106.

��������������Previous gate
Next gate

I X Y Z

I 0.00% (0.00%) 0.04% (0.08%) 0.15% (0.68%) 0.02% (0.08%)
X 0.05% (0.22%) 5.38% (5.04%) 30.53% (30.47%) 1.39% (1.26%)
Y 0.07% (0.20%) 30.17% (30.47%) 18.40% (18.61%) 5.84% (5.50%)
Z 0.01% (0.02%) 1.90% (1.68%) 5.75% (5.42%) 0.30% (0.27%)
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TABLE III. Frequency of length-3 subsequences started with gate X, from the training set and the set generated by the trained LSTM
(given in parentheses) at generation 30 of experiment 3. The total number of subsequences started with X is around 450 000.

��������������Second gate
Last gate

I X Y Z

I 0.00% (0.00%) 0.02% (0.05%) 0.12% (0.55%) 0.00% (0.01%)
X 0.00% (0.00%) 1.40% (1.22%) 11.99% (11.52%) 0.32% (0.32%)
Y 0.15% (0.47%) 44.79% (45.09%) 33.39% (33.54%) 4.11% (3.85%)
Z 0.01% (0.01%) 2.38% (2.14%) 1.05% (0.98%) 0.28% (0.26%)

Operationally, given a set of sequences, we first estimate the
conditional probability distribution

pxn,xn−1···x1 = Pr(Xt = xn|Xt−1 = xn−1, . . . Xt−n+1 = x1).

Note that we assume the conditional probability is independent
of t (hence stationary Markov chain). The estimation is done
by counting over the whole set of sequences. The generation of
new sequences based on the conditional probability pxn,xn−1···x1

is straightforward, as we can repeatedly sample from it
based on the previous n − 1 items. This behavior is different
compared to that of the RNNs, which have memory units that
can store information for an arbitrarily long time in theory.

3. Optimization without reusing data
from previous training sets

During the optimization processes in the main text, we
always reuse the data from previous training sets, in the sense
that we first add the new sequences generated by the models
to the training sets and then delete the worst sequences. An
interesting question is what will happen if we generate new
training sets completely from the trained models. In Fig. 2
we plot the counterpart of Fig. 1(a) with this modification (as
well as not deleting duplicated sequences from the training
set). We can see that for the LSTMs experiment, the final
minimum score gets slightly worse, which is 0.000 874.
However, the 5/6-gram experiments actually perform better
when not reusing data. While it seems counterintuitive, this
can be possibly explained by the fact that in the case of reused

FIG. 2. The 3- and 5/6-gram experiments without data reusage.
Otherwise, the experiments are done in the same way as in Fig. 1(a).

data with unique sequences the higher diversity of the data
might make it harder for the models to find local correlations,
which then in turn slows down the optimization. There is other
interesting information contained in the plot. For example, we
can see the minimum scores almost always decrease, which
implies that the LSTMs are able to learn new information about
good sequences in most generations.

4. Performance of the obtained sequences
with a larger heat bath

In the main text, all the numerical simulations are done on
a randomly generated noise Hamiltonian with the dimension
of the bath being dim(HB) = 16. The small dimension of the
bath is used in order to have a fast simulation. Here we test the
performance of some obtained sequences from experiment 2,
in the presence of a larger bath with dim(HB) = 128. Apart
from the change of dimension, the Hamiltonian H0 is again
randomly generated according to the description in Sec. IV A,
which has a 2-norm ‖H0‖ = 24.0. We then computed the
scores of the top 500 DD sequences in the last generation of
experiment 2. The results are shown in Table IV. While the best
score of the obtained sequences is worse than the best score
of CDD32, it is clear that, on average, the obtained sequences
still work fairly well. This also suggests that our algorithm
is potentially capable of adapting to the particular noise
Hamiltonian, as the learned sequences outperform known DD
families in experiment 2.

APPENDIX B: BEST SEQUENCES

We list here the best sequences we found in experiments 1–3
from the numerical results section. We denote the identity by I

and X,Y,Z refer to the respective Pauli matrices. Note that we
show only the first half of the complete sequence as the second
one is just the first half reversed. In experiment 1 we found
X,Y,X,Z,X,Y,X,Z,Z,X,Y,X,Z,X,Y,X; in experiment 2,
Z,Z,X,Z,Z,Z,X,Z,Z,X,Z,X,X,X,Z,X,X,X,Z,X,X,Z,X,

TABLE IV. Comparison between the scores of the top 500 DD
sequences in the last generation of experiment 2 and some DD
families for the larger bath dim(HB) = 128. The best score of the
500 sequences is worse than the best score of CDD32. However, it is
clear that, on average, the obtained sequences still work fairly well.

Sequences 〈ς〉 min ς

EDD8 0.002781 0.002203
CDD32 0.053753 0.000432
top 500 0.001081 0.000626
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X,X,Z,X,Z,Z,X,Z,Z; and in experiment 3, Z,X,Z,Z,Y,

X,Y,Z,Y,X,Y,X,Y,Y,X,Y,Y,Y,Y,X,Y,Y,Y,X,Y,Y,X,Y,X,Y,

X,Y,Y,Z,X,Z,Y,Z,X,Z,Y,X,Y,X,X,Y,X,Y,X,Y,X,Y,Y,X,

Y,Y,Y,X,Y,X,X,Y,X,X.

APPENDIX C: COMPARISON OF
OPTIMIZATION ALGORITHMS

In this appendix we will give a comparison between several
optimization algorithms applied to black-box problems. In
other words, the algorithm needs to optimize (minimize) the
objective function f only by looking at the values of f (x)
(without knowing the concrete formula of it). We are going
to look at the following types of algorithms: gradient-based
algorithms (when we can access the gradient of f ), e.g.,
Newton’s method, variants of gradient descent; Metropolis-
Hasting algorithms and its variants, e.g., simulated annealing;
and genetic algorithm and its variants, e.g., a probabilistic
model building genetic algorithm (PMBGA). The performance
of an optimization algorithm depends heavily on the class of
the problems it is applied to. (This fact is remotely related
to the no free lunch theorem for optimization). Thus, in the
following, we will use different objective functions to illustrate
the strong and weak points of those algorithms.

1. Gradient-based algorithms

To understand the idea of these algorithms, it is enough
to consider f : R → R defined on a single variable. The
simplest gradient descent for finding the minimum of f is
the following iterative algorithm: starting from a random
number x0 and successively computing xn+1 = xn − αf ′(xn).
Gradient-based algorithms perform well on functions with
nonvanishing gradients almost everywhere and very few local
minima and likely have a poor performance otherwise. For
example, the above algorithm would perform very well on
a simple function f (x) = x2, but much worse on the fast
oscillating function

f (x) = sin(8x) + 0.5 sin(4x)

+ 0.3 sin(2x) + 0.1 sin(x). (C1)

FIG. 3. Plot of the function (C1).

We plot the above function in Fig. 3. It is easy to see that we
can construct f (x) = ∑N

i=1 ai sin(2ix) such that the chance of
finding the global minimum is arbitrarily small.

2. Simulated annealing

Simulated annealing (SA) and its variants stem from the
Metropolis-Hastings algorithm. The main idea is constructing
a family of probability distribution p(x,T ) based on the
values of the objective function f (x), with the requirement
p(x,0) > 0 only when x is a global minimum of f . Then we
repeatedly sample from p(x,T ) while slowly decreasing T .
In practice, simulated annealing is also an iterative algorithm,
i.e., it chooses xn+1 based on xn. Since SA uses the Metropolis-
Hastings algorithm as a subroutine, there is a nonzero chance
to choose xn+1 such that f (xn+1) > f (xn). So, in principle,
SA could escape from local minima, which is an advantage
compared to gradient descent. Simulated annealing also works
for functions with discrete variables. As a trade-off, it is likely
to be slower compared to gradient descent when f has very
few local minima. Moreover, while SA has the mechanism to
escape from local minima, in practice it could work poorly on
functions with many local minima and high barriers between
them, e.g., the function (C1).

3. Genetic algorithms and beyond

In this section we will assume that f has the form
f : RN → R. A common feature in all versions of genetic
algorithms is that they maintain a population of solutions
{�xi,1 � i � M}, where �xi = (xi1, . . . ,xiN ). For the first gen-
eration, a number of M ′ > M solutions is randomly generated,
then we pick the �xi with the M smallest f (�xi) as the population.
To generate new potential solutions for new generations,
several different operations are introduced. In the original
genetic algorithm, the two such operations are crossover
and mutation. The effect of the mutation operation on a
solution �x is

(x1, . . . ,xj , . . . ,xN ) → (x1, . . . ,x
′
j , . . . ,xN ),

where x ′
j is a random number. The crossover operation acts on

two solutions �x and �y,

(�x,�y) → (x1, . . . ,xj ,yj+1, . . . ,yN ),

where the position j is picked randomly. Then we can use these
two operations to generate M ′′ new test solutions from the first
generation, combine them with the M old solutions, and pick
the top M solutions as the population of the second generation.
Later generations can be obtained by repeating these steps.

To illustrate the advantage of the (original) genetic algo-
rithm, we can consider the objective function f ,

f (�x) =
∑

j

fj (xj ).

In this case, if f (�x) is (relatively) small, then either∑k
j=1 fj (xj ) or

∑N
j=k+1 fj (xj ) is (relatively) small. Thus

the crossover operations serve as nonlocal jumps, while the
mutation operations help to find local minimum. However, in
general, it is not clear for what kind of function f the inclusion
of the crossover operations could provide an advantage.
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It is easy to construct counterexamples such that the crossover
operations deteriorate the performance, such as

f (�x) = f (�xa,�xb) = ‖�xa − �xb‖,

where �xa and �xb have equal dimension and ‖ · ‖ is the
Euclidean norm. Clearly, in most cases, the crossover of two
good solutions will only produce inferior new solutions.

It turns out that the most important feature of genetic
algorithms is the use of a population. In comparison, other
optimization methods we mentioned previously only keep
track of the last test solution. If we are willing to believe
that good solutions of the function f have a certain structure
(thus partially dropping the black-box requirement of f ), it is
possible that we can identify this structure from the solutions in
the population and then generate new test solutions. This idea
has led to the so-called probabilistic model building genetic
algorithm and its variants [37,41]. The optimization algorithm
we introduced in the main text is also closely related to this
idea.

Instead of going through the details of these algorithms, we
will explain the idea using a simple example, as illustrated in
Fig. 4. Suppose that we want to minimize a function f (x,y)
with two variables defined on a finite region of R2 and prior
knowledge of f allows us to make the hypothesis h that all
points {(x,y)} with values f (x,y) < M exist in a certain region
A [e.g., the square in Fig. 4(a)]. By sampling random points
from the domain of the function, we can verify or refute the
hypothesis h. For simplicity, we assume that h is satisfied for
all sampled points and N of them is inside the region; then
the opposite hypothesis of an α fraction of points {(x,y)} with
values f (x,y) < M existing outside the region A will give
the observed data a likelihood of (1 − α)N . Thus, we can just
optimize f over the region A by ignoring a very small fraction
of the good solutions. It is easy to see that we can iterate
this process, as long as we can formulate a small number
of hypotheses such that one of them will describe the good
solutions correctly. Our algorithm in the main text resembles
this toy example. However, for functions in high dimension
and sophisticated generative models such as RNNs, it is hard
to give a mathematical justification like in the above example.

It is natural to concatenate the above process [see Fig. 4(b)].
Let S0 be the domain of f , and S1 be the points in region A.
By sampling enough points from S1, we might be able to
build a model and sample from a even smaller set S2 with the
good solutions (e.g., find a region B ⊂ A). This way we will
introduce a series of sets {Si}i�K that we can sample from.
Assuming that the order of these subsets satisfies |Si+1| <
1
2 |Si |, then in the ideal scenario the above iterative algorithm
would provide an exponential speed-up with respect to K .
However, it is worth pointing out that automatically building a
model from a data set is, in general, a difficult task (if possible
at all).

As another concrete example we can consider the objective
function (C1) and a routine that looks for the periodicity of
the data and then generates new test solutions accordingly.
After we go through multiple generations, it is likely that the
population would converge to the correct periodic subset that
has the minimum f (x).

S0

S1

S2

S3

A

(a)

(b)

FIG. 4. Outline of our algorithm: (a) demonstrates that if we can
model the distribution correctly, then we will be able to sample from
good solutions more efficiently [red (darker) points correspond to
smaller f (x,y)] and (b) illustrates the idea of concatenating the
step performed in (a) in order to achieve an exponential speed-up
compared to random search.

4. Summary

As seen in the discussion above, each of these optimization
methods has its strong and weak points. Thus different methods
are chosen depending on the prior knowledge we have on the
concrete problems. It should be emphasized that we should
not consider these methods as in a pure competition; instead,
they can be used in complement with each other. For example,
stochastic gradient Langevin dynamics (SGLD) [42] can be
viewed as a combination of gradient descent and annealing,
and in [43] it is mentioned that inclusion of the deterministic
hill climber (discrete version of gradient descent) can lead to
a substantial speed-up in the PMBGA.

APPENDIX D: MACHINE LEARNING

This section will give a brief overview over the subfield of
machine learning known as supervised learning and introduce
a model for time-series data, known as recurrent neural
networks. Furthermore, some aspects of the optimization of
this class of models will be elaborated on.
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1. Supervised learning

The field of machine learning can be divided into three
main subfields: supervised learning, unsupervised learning,
and reinforcement learning. These branches differ from each
other by the way in which the respective models obtain
information about the utility of their generated outputs.

In the case of supervised learning, it is assumed that for
every input that a model will be trained on, a “supervisor”
provides a target, corresponding to the desired output of the
model for the given input. These pairs of inputs and desired
outputs are then used to make the model learn the general
mapping between input and output.

More formally and from a Bayesian perspective, one
assumes to have a data set D of size N , consisting of several
tuples of independent and identically distributed observations
x ∈ Rl and corresponding targets y ∈ Rk such that

D = {
(xi,yi)

∣∣N
i=1

}
,

where xi and yi are instances of two random variables X

and Y , respectively. These random variables are assumed
to be distributed according to some unknown probability
distribution pgen, the so-called data-generating distribution

X,Y ∼ pgen(X,Y ).

The goal of any supervised learning method now is to ap-
proximate the conditional distribution pgen(Y |X) in a way that
allows for evaluation in some new observation x∗ /∈ {xi}|Ni=1.
Since pgen is not available, one resorts to fitting the empirical
distribution pemp given by D as a surrogate problem.

A typical way of deriving a concrete optimization problem
from this is to make an assumption regarding the form of pgen

and treating the model at hand as a distribution pM (Y |X,	)
of this kind, parametrized by the parameters of the model 	

that are also often called the weights of the model. Now the
fitting of the model can be perceived as a maximum-likelihood
problem and hence the supervised learning problem can be
formulated as

max
	

L(	|D) = max
	

∏
i

pM (yi |xi,	),

making use of the independent and identically distributed
assumption. A commonly employed trick to obtain a more be-
nign optimization problem is to instead optimize the negative
log-likelihood. As the logarithm is a monotonic function, this
transformation does not change the location of the optimum in
the error landscape, but turns the product of probabilities into a
sum over the tuples in D. This step then yields a minimization
problem, given by

min
	

− 1

N

∑
i

log2 pM (yi |xi,	),

which is also called empirical risk minimization (ERM).
These statements of the problem can now be tackled with
the optimization methods appropriate for the given model.
In the case of the RNN, gradient-based optimization is the
state-of-the-art approach and will be explained in Sec. V.

While it is obvious that fitting a model with respect to
pemp is identical to fitting it to pgen as long as every tuple
in D is only considered once, this is not necessarily true

anymore when considering each tuple multiple times. This
however is needed by many models in order to fit their
parameters to a satisfying degree. In order to prevent the model
from learning characteristics of the empirical distribution
that are not present in the data-generating distribution, a
phenomenon commonly known as overfitting, often some form
of regularization, is applied. This may be done by punishing too
large parameter values, stopping the training after performance
starts to decrease on some holdout data set or by averaging
over multiple models. Note that in the Bayesian picture some
penalty terms can be perceived as the logarithm of a prior
distribution over 	, hence turning the optimization problem
into finding the maximum a posteriori parameters.

2. Recurrent neural networks

In this section the recurrent neural network model will be
discussed. We will start with an introduction of the standard
version of the model and based upon this explain the advanced
version of the model employed in this work in a second step.

a. Standard RNN model

In many areas of application, the data can be perceived as,
often non-Markovian, discrete time-series data, such that an
observation xt ∈ Rl at some time t depends on the previous
observations xt−1, . . . ,x1 or with respect to the framework
introduced above,

Xt ∼ p(Xt |Xt−1, . . . ,X1).

While Markov chains have been the state-of-the-art approach
for this kind of data in recent decades, with the recent rise
of artificial neural networks, RNNs [44,45] have also gained
momentum and are now generally considered to be the most
potent method.

An RNN is defined by the two nonlinear maps st : Rl → Rh

and ot : Rh → Ro given by

st = fs(Uxt + Wst−1 + bs),

ot = fo(V st + bo),

where U ∈Rh×l , W ∈Rh×h, V ∈Ro×h, bs ∈R1×h, bo ∈R1×o,
and the trainable parameters of the models are constituted
by 	 = {U,V,W,bs,bo}. The nonlinear function fs is often
chosen to be tanh, the rectifier function given by

rect(x) = max(0,x),

or the sigmoid function given by

sigm(x) = 1

1 + e−x
.

The function fo must be chosen according to the distribution
that is to be approximated by the model. For the case
of a multinoulli distribution as assumed in this work, the
corresponding function would be the softmax, defined as

softmax(x)j = exj∑
k exk

,

the superscripts in this case denoting the single elements of
the vector x.
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FIG. 5. Standard model of a recurrent neural network shown for
three time steps.

The intuition behind this simple model is that it combines
its information about the input at a given time step with a
memory of the previous inputs, referred to as the state of the
network. The precise nature of this combination and the state
depends on the weight matrices U and V and the bias vector
bs . The combined information is then used as input of the
chosen nonlinear function fh to generate the next state. From
this state, the output ot is then computed as defined by W , bo,
and fo. The effect of an RNN acting on the sequence {xt } is
illustrated in Fig. 5.

From the above explanation, it is clear that the power of
the model depends strongly on the size of the hidden state
h. It should however also be noted that another effective way
of increasing the expressive power of an RNN is to construct
a composition of multiple functions of the form of st (see
Fig. 6). In the machine learning terminology, the respective
functions are called the layers of an artificial neural network
and the number of composed functions is referred to as the
depth of a network. The layers between the input and the
output are referred to as hidden layers. The common intuitive
reasoning behind stacking multiple layers is that it will allow
the network to learn a hierarchy of concepts, called features,
from the initial input data. Thereby, the features are assumed
to be of increasing complexity with every layer, as they are
based on a linear combination of the features learned by the
layer below. Apart from this intuitive reasoning, also more
rigorous work on the benefits of using at least one hidden layer
between input and output can be found in the literature [46–48].
This ansatz of increasing the power of neural network models
via deepening their architecture is publicly known as deep

ot−1 ot ot+1

xtxt−1 xt+1

……

FIG. 6. Illustration of an RNN with three hidden layers.

learning and has led to a drastic increase in success of machine
learning methods during the past decade. However, having a
composition of many state-computing functions of similar size
can slow down the optimization process. This is why, when
forming such a composition, each pair of functions is often
connected via a simple linear projection from the space of the
state of the earlier function onto some lower-dimensional space
that is then used by the following function. Note that while all
the above claims seem natural and lead to a good enough
performance for our paper, more benchmarking is needed to
really confirm them.

Now, in the case of supervised learning, one assumes to be
in possession of a set of time series x1, . . . ,xn that will be used
to let the RNN learn to predict series of this kind. The natural
way of doing this is to define the pairs (xi,yi) := (xt ,xt+1).
While in principle the model is capable of taking into account
all previous time steps, in practice it shows that optimization
is only feasible for a relatively short number of steps. This
is mainly due to the fact that the gradients that are needed to
optimize the parameters of an RNN tend to grow to infinity or
zero for higher numbers of steps. This will be discussed more
in depth below.

b. Long short-term memory networks

In order to improve upon the standard RNN, Hochreiter and
Schmidhuber introduced the long short-term memory network
[49], which provides a different way of computing the state of
an RNN. Hence the following set of equations can be perceived
as a replacement for st from the previous section. The main
advantage of the approach is that it drastically mitigates the
problem of unstable gradients by construction. It is defined by
the following set of equations:

it = sigm(Uixt + Wist−1 + bi),

ft = sigm(Uf xt + Wf st−1 + bf ),

ot = sigm(Uoxt + Wost−1 + bo),

c̃t = tanh(Uc̃xt + Wc̃st−1 + bc̃),

ct = ct−1 ∗ ft + c̃t ∗ it ,

st = tanh(ct ) ∗ ot , (D1)

where again xt is the input at time step t , st−1 is the
previous state of the network, and ct is the state of the cell.
In addition, Ui,Uf ,Uo,U c̃ ∈ Rh×l , while Wi,Wf ,Wo,W c̃ ∈
Rh×h, bi,bf ,bo,bc̃ ∈ R1×h, and ∗ denotes the elementwise
multiplication.

As it can be seen from the equations, the way in which an
LSTM computes the state is a bit more involved. If needed, it
may however just be treated as a black box and can be stacked
just in the same manner as it was described for the plain RNN
model. The general idea of an LSTM is to give the model a
higher degree of control over the information that is propagated
from one time step to the next. This is achieved by making use
of so-called gates that control the information flow to and from
the network and cell state. These gates, by taking into account
the previous state and the new input, output vectors of values
in [0,1] that determine how much information they let through.
In the equations given above, it is called the input gate, ft is
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FIG. 7. Long short-term memory model illustrated in a schematic
way. In addition to the diagram, the input gate i, the forget gate f ,
and the output gate o all depend on the current input xt and previous
state of the network st−1, as described in (D1).

referred to as the forget gate, and ot denotes the output gate.
Now, the mechanism works as follows.

(i) For a given time step t , the new input and previous
network state are processed by c̃t like for the standard RNN
and the output values are squashed to the interval [−1,1] to
yield candidate values for the next cell state.

(ii) The input gate it determines how to manipulate the
information flow from the candidate cell state. Likewise, the
forget gate ft determines how to affect the information flow
from the old cell state. The gated previous cell state and the
gated input are then added to form the new cell state ct .

(iii) Finally, the output gate ot determines what to output
from the new cell state. The new cell state is then also projected
onto the interval [−1,1] and put through the output gate to
become the network state.

The whole process is shown in Fig. 7.
Naturally, there exists a plethora of possibilities to adapt the

normal LSTM as explained above. One important enhance-
ment is commonly referred to as peepholes, which allows the
gates to incorporate the cell state via an extra term in the
sum, in addition to the input and the network state. One other
popular possibility introduced in [50] is the use of projection
layers between different time steps of LSTM. In this case, we
replace st−1 by rt−1 in the equations for it , ft , ot , and c̃t and
add the simple equation

rt = Wpst ,

where Wp ∈ Rk×h is the projection matrix. In this work we
have made use of both of these extensions of the normal LSTM.
For an exhaustive overview over the known variants of the
LSTM, we refer the interested reader to [35].

3. Optimization of RNNs

As the optimization problem described in the beginning
of this section cannot be solved analytically for the models
considered in this work, gradient-based approaches have
established themselves as the state of the art. However, in
the case of fitting the parameters of neural network models,
three main restrictions need to be accounted for.

(a) The number of parameters for neural network models
easily exceeds 100 000 and can for larger architectures go up
to several tens or even hundreds of millions. Hence, computing

the Hessian (or its inverse) explicitly is not tractable and so
one is limited to first-order or approximative second-order
methods.

(b) As the error function that is minimized is only a
surrogate error function, its global optimum is not necessarily
the optimum of the error function one actually wants to
minimize.

(c) For many real-world data sets, computing the gradient
of the complete sum of the error function over all samples is
not feasible. Hence, the sum is normally split up into smaller
parts called mini batches and these batches are looped over. A
complete loop over D is then called an epoch.

These restrictions have led to the rise of an own subfield
of machine learning that is concerned with the paralleliza-
tion of gradient computations in the mini batch case, the
approximation of second-order information, and the formal
justification for the splitting up of the error function. All of
the currently available methods are nevertheless extensions of
the simplest method for gradient-based optimization known as
steepest gradient descent: At iteration i in the loop over the
batches, the parameters 	 are updated according to

	i+1 = 	i − γ
∂E
∂	i

,

where E(D,	) is the respective error function and γ is called
the step rate. The most straightforward natural adaption is to
make γ depend on the iteration and slowly decrease it over
time, following the intuition that smaller steps are beneficial
the closer one gets to the respective optimum. In addition to
that, many methods employ some kind of momentum term
[51] or try to approximate second-order information and scale
the gradient accordingly [39].

Besides this, the size of the batches also has an influence
on the performance of the respective optimization method.
In the extreme case where each batch only consists of one
sample, the gradient descent method is known to converge
almost surely to an optimum under certain constraints [52]. As
picking individual samples for optimization can be perceived
as sampling from the empirical distribution to approximate
the overall gradient, this method is called stochastic gradient
descent. Using single data points however is computationally
inefficient and by definition leads to heavily oscillating opti-
mization, so it is common practice to resort to larger batches.
Following the ERM interpretation, batches B consisting of SB

samples are often used to compute an approximation of the
mean gradient over D given by〈

∂E
∂	i

〉
D

≈
〈

∂E
∂	i

〉
B

= 1

SB

∑
(x,y)∈B

∂E(x,y)

∂	i

,

where obviously

lim
|B|→|D|

〈
∂E
∂	i

〉
B

=
〈

∂E
∂	i

〉
D

.

This interpretation is used, e.g., by the recently proposed
algorithm Adam, which has been shown to yield very good
local optima while being very robust with respect to noisy
gradients and needing comparatively little adjustment of its
parameters. We have employed Adam for fitting the models
used in this work.
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While the approach to optimizing artificial neural networks
is well established, this does not change the fact that the
optimization problems posed by them are inherently difficult. It
is well known that the error landscape becomes less smooth the
more layers one adds to a network. This results in error surfaces
with large planes where ∂E

∂	
≈ 0 that are followed by short but

very steep cliffs. If the step rate is not adapted correctly, the
optimization procedure is very likely to get stuck in one these
planes or saddle points and to jump away from an optimum
in the vicinity of 	 if evaluated on one of the cliffs. The
phenomena of the frequent occurrence of very large or very
small gradients are referred to in the literature as the exploding
gradient or vanishing gradient problem, respectively. To get
a better understanding of why these problems exist, it is
instructive to examine how the gradients for a given model
are obtained.

As has been explained above, multilayer neural network
models are a composition of nonlinear functions Rik → Rok :
xk+1 = fk(Wkxk + bk), where Wk is the weight matrix, bk the
bias vector, x0 the input data, and xK the final output of the
network. From this definition it is clear that ok = ik+1. For
convenience, we define yk ≡ Wkxk + bk . In order to obtain
the gradient for a specific Wk or bk one must obviously make
use of the chain rule such that

∂E
∂Wk

= ∂E
∂xk+1

∂xk+1

∂yk

∂yk

∂Wk

= ∂E
∂xK

⎛
⎝ K−1∏

j=k+1

∂xj+1

∂xj

⎞
⎠∂xk+1

∂yk

∂yk

∂Wk

and
∂E
∂bk

= ∂E
∂xk+1

∂xk+1

∂yk

∂yk

∂bk

= ∂E
∂xK

⎛
⎝ K−1∏

j=k+1

∂xj+1

∂xj

⎞
⎠∂xk+1

∂yk

∂yk

∂bk

,

where ∂
∂Wk

is the shortcut of doing the derivative elementwise:[
∂

∂Wk

]
ab

= ∂

∂[Wk]ab

.

The same convention applies to ∂
∂bk

. As ∂
∂Wk

and ∂
∂bk

depend
on all the gradients of the later layers, this formulation yields
an efficient method of computing the gradients for all layers
by starting with the uppermost layer and then descending in
the network, always reusing the gradients already computed.
Together with the fact that many of the commonly used
nonlinearities have an easy closed-form expression of the
first derivative, this allows for fully automatic computation
of the gradients as it is done in every major deep learning
framework. This dynamic programming method of computing
the gradients is known in the literature as backpropagation.
The vanishing (exploding) gradient problem arises because
of the product

∏K−1
j=k+1

∂xj+1

∂xj
in the above equations. For

example, if one of the ∂xj+1

∂xj
≈ 0 in the product, then likely we

have ∂E
∂Wk

≈ 0, which leads to an ineffective gradient descent.

Similarly, if many of the terms ∂xj+1

∂xj
have large norms, then

W W W
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U U U
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x1 x2

o2o1

W W
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U U U
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FIG. 8. Illustration of how we truncate the gradient computation
for long sequences. Here we divide the sequences into two halves. As
the first step, we compute the gradient of the error function E(�x1,�o1)
with respect to the parameters U,V,W , while ignoring the other
half of the network. In the second step, we compute the gradient of
E(�x2,�o2), while treating the final state of the network st of the first
half as a constant. The final gradients are approximated by the sums
of these two constituents. Thus, we are able to avoid the instability
of computing gradients, but still capture the correlation between two
halves, since we feed the final network state st into the second half.

there is a possibility that ∂E
∂Wk

becomes too large, which often
causes the optimization method to jump out of a local optimum.

In the case of an RNN as defined in Sec. V, the above
generic equations for the derivative become a little more
involved, as in addition to the term for possibly multiple
stacked layers, a term accounting for states of previous times
has to be added. Nevertheless, at the heart of the problem,
it is still about computing derivatives of composite functions.
This slightly more involved backpropagation method is known
as backpropagation through time and can also be fully
automatized. Similar to the multilayer neural network models
mentioned above, the gradient computation of RNNs also has
these instability issues. As can be seen from Fig. 5, the same
matrix W is used in all time steps of an RNN. Thus, a tiny
change of W could affect the output ot drastically when the
time step t gets big. In other words, the derivative of the
error function E with respect to W could again become very
large or very small in certain situations. To deal with this
issue, we could truncate the number of time steps during the
computation, as described in Fig. 8. More discussion on this
topic can be found in Sec. 3.2 of [32].

APPENDIX E: TECHNICAL ASPECTS

For the implementation of this work, we have made use
of PYTHON with the numerical libraries NumPy, SciPy, and
TensorFlow [53–55]. All experiments were run on single
workstations with up to eight threads and a GeForce Titan
X. The runtime of the experiments varied, depending on the
optimization parameters, from a few hours to days.
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In this work we introduce the application of black-box quantum control as an interesting rein-
forcement learning problem to the machine learning community. We analyze the structure of the
reinforcement learning problems arising in quantum physics and argue that agents parameterized
by long short-term memory (LSTM) networks trained via stochastic policy gradients yield a general
method to solving them. In this context we introduce a variant of the proximal policy optimization
(PPO) algorithm called the memory proximal policy optimization (MPPO) which is based on this
analysis. We then show how it can be applied to specific learning tasks and present results of nu-
merical experiments showing that our method achieves state-of-the-art results for several learning
tasks in quantum control with discrete and continuous control parameters.

I. INTRODUCTION

As a result of collaborative efforts by academia and in-
dustry, machine learning (ML) has in recent years led to
advancements in several fields of application ranging from
natural language and image processing over chemistry
to medicine. In addition to this, reinforcement learning
(RL) has recently made great progress in solving chal-
lenging problems like Go or Chess [1, 2] with only small
amounts of prior knowledge which was widely believed
to be out of reach for the near future. Consequentially,
RL is nowadays thought to hold promise for applications
such as robotics or molecular drug design. This success
naturally raises the question of what other areas of ap-
plication might benefit from the application of machine
learning.

Quantum mechanics and especially quantum comput-
ing is of special interest to the machine learning com-
munity as it can not only profit from applications of
state-of-the-art ML methods but is also likely to have
an impact on the way ML is done in the future [3]. This
bidirectional influence sets it apart from most other ap-
plications and is a strong incentive to investigate possible
uses of machine learning in the field despite the compa-
rably steep learning curve.

One challenging and important task in the context of
quantum physics is the control of quantum systems over
time to implement the transition between an initial and a
defined target physical state by finding good settings for
a set of control parameters [4]. This problem lies at the
heart of quantum computation as performing any kind
of operation on quantum bits (qubits) amounts to imple-
menting a controlled time evolution with high accuracy
in the face of noise effects induced by the environment.
Apart from the relevance to quantum computation, the
analysis and understanding of the properties of quantum
control problems also is an interesting research problem
in its own right. However, for a given physical system

as implemented in a real experiment it is in general not
possible to express all influence factors and dependencies
of particles in mathematical form to perform an analyt-
ical analysis or gradient-based optimization of the con-
trol variables. Thus, physicists have for some time been
proposing automated solutions for these problems [5–9]
that are able to find good control parameter settings
while being as agnostic as possible about the details of
the problem in question. Unfortunately though, these ap-
proaches are in general based on tailored solutions that
do not necessarily generalize to other problems as they,
e.g. only consider discrete variables when the underlying
problem is actually continuous and are not always very
sample efficient.

In this work we improve over the status quo by intro-
ducing a control method based on recurrent neural net-
works (RNNs) and policy gradient reinforcement learn-
ing that is generic enough to tackle every kind of quan-
tum control problem while simultaneously allowing for
the incorporation of physical domain knowledge. More
precisely, we present an improved version of the recently
introduced proximal policy optimization (PPO) algo-
rithm [10] and use it to train Long Short-Term Mem-
ory (LSTM) [11] networks to approximate the probabil-
ity distribution of good sequences of control parameters.
We furthermore show how physical domain knowledge
can be incorporated to obtain state-of-the-art results for
two recently addressed control problems [8, 9]. While
our method is based on an analysis of the reinforcement
problem underlying quantum control, it can also be ap-
plied to other RL problems yielding the same structure.
Our contribution hence is threefold in that we firstly in-
troduce the general method, secondly demonstrate how
to successfully apply it to quantum control problems and
thirdly, by doing so, try to stimulate a more intense ex-
change of ideas between quantum physics to the broader
machine learning community to facilitate mutual benefit.

The rest of this work is structured as follows: in Sec-
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tion II, we provide a very brief introduction to quantum
control, followed by a discussion and analysis of the re-
inforcement learning problem posed by quantum control
in Section III. Building on the analysis, we present the
method in Section IV and subsequently introduce two
concrete quantum control problems in Sections V A and
V B respectively. We then present numerical results ob-
tained by our method for these problems and compare
them to those of existing solutions in Section VI. Finally,
we conclude with a discussion of the work in Section VII.

II. QUANTUM CONTROL

The time evolution of a physical system in quantum
mechanics is described by the Schrödinger equation

ih
δ

δt
|ψ(t)〉 = H |ψ(t)〉 (1)

whereH is the Hamiltonian, a complex Hermitian Matrix
describing the energy of the physical system, and h is
Planck’s constant [12]. Hereby, |ψ〉 is the Dirac notation
for a physical state which for finite dimensional systems
as we treat here corresponds to a complex column vector
of the same dimensionality as the Hamiltonian’s. The
conjugate transpose of a vector |ψ〉 then is denoted as 〈ψ|
such that 〈ψ,ψ〉 denotes the inner and |ψ〉 〈ψ| the outer
product. The Schrödinger equation yields the unitary
quantum time evolution

|ψ(t)〉 = e−itH/h |ψ(0)〉 . (2)

In a discretized time setting with time steps ∆t the evo-
lution for a total time T can thus be written as

|ψ(T )〉 = e−i∆tH/h
L |ψ(0)〉 (3)

where we define L = T/∆t. In quantum control we now
assume to be able to control the time evolution by ap-
plication of so-called control Hamiltonians H1, · · · , HC ,
which yields the controlled time evolution

|ψ(T )〉 =e−i∆t
∑C
i=1 ciLHi/h · · · (4)

e−i∆t
∑C
i=1 ci1Hi/h |ψ(0)〉 (5)

where the cit are time-dependent scaling constants for the
control Hamiltonians. This formulation however assumes
that we have full control over the system which due to
various kinds of noise or environmental effects will not be
the case. Hence we introduce a noise or drift Hamiltonian
H0, which we here assume to be time independent and
of constant strength, and obtain the final formulation

|ψ(T )〉 =e−i∆t(H0+
∑C
i=1 ciLHi) · · · (6)

e−i∆t(H0+
∑C
i=1 ci1Hi) |ψ(0)〉 (7)

where we set h = 1 for convenience.

Now that we have a well-defined notion of our control
problem, we need to state the actual goal that we aim to
achieve. Generally, starting from an initial state |ψ(0)〉 or
the corresponding density operator ρ(0) = |ψ(0)〉 〈ψ(0)|
we would like to obtain an evolution to target state |ψ∗〉
or ρ∗ = |ψ∗〉 〈ψ∗|. Hence we need to define some simi-
larity measure between the state we actually obtain after
evolving for time T and our ideal result. The easiest way
of doing this is simply to compute the overlap between
these states by

S(ψ∗, ψ(T )) = 〈ψ∗, ψ(T )〉 (8)

or

S(ρ∗, ρ(T )) = Trρ∗†ρ(T ) (9)

respectively for Hermitian operators and correspond-
ingly only using the real part Re(S(ρ∗, ρ(T ))) for non-
Hermitian ones [13].

Equipped with this metric, we can formally define the
problem we would like to solve as

max
{cit}

S(ρ∗, ρ(T, {cit}). (10)

This formulation is broad enough to capture every prob-
lem from synthesizing certain quantum gates over evolv-
ing from one eigenstate of a Hamiltonian to another to
storing the initial state in a quantum memory setting.

III. REINFORCEMENT LEARNING: WHY
AND WHAT?

As we have seen above, solving quantum control prob-
lems amounts to determining an optimal or at least good
sequence of principly continuous variables that describe
the influence we exert on the system at each discrete
time step. If a rigorous mathematical description of
the evolution dynamics is available, there exist methods
like GRAPE [13] or CRAB [14, 15] to obtain good solu-
tions. However, the gap between theory and experiment
also does not close in quantum mechanics and hence it
is reasonable to assume that the actual dynamics of a
real experiment will slightly differ from the mathematical
model due to various noise effects induced by the environ-
ment. As can for instance also be observed in robotics,
these slight differences between theory/simulation and
real world implementation might still have a significant
impact on the optimization problem to be solved. Addi-
tionally, it is clear that in general it is neither an inter-
esting nor feasible task to derive a proper mathematical
model for the effect of every influence factor in a real
experiment [8].

This shows that it is worthwhile to investigate ways
of optimizing such a control problem from a black box
perspective in the sense that we are agnostic about the
actual time evolution dynamics of the system and can
only observe the final results obtained by a chosen set
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of parameters. In fact, in the absence of a mathematical
model it is the only possible option to obtain information
after the end of an experiment as in quantum mechanics
a measurement during the experiment would in general
cause the wave function to collapse and hence destroy
the experiment without any way of determining what the
final outcome would have been. Hence the task we would
like to solve is to find a controller or at least find a good
sequence of control parameters based on the outcomes
of trial runs of a given experiment, which in quantum
control terminology corresponds to a closed-loop setting.

While one viable route to solving this problem would
be to use classical evolutionary or hill-climbing algo-
rithms or more advanced black-box methods such as
Bayesian optimization, another interesting option is to
fit a generative probabilistic model from which we can ef-
ficiently sample good sequences. This approach has two
advantages. Firstly, we can iteratively update the model
by fitting it to additional data we might acquire after
the initial fitting phase. Doing so allows it to improve
over previous results or make it adapt to changing condi-
tions, e.g. a change of the noise Hamiltonian after some
time. This is in contrast to pure optimization methods
which would have to start from scratch for every prob-
lem. Secondly, by examining the distribution over the
sequence space the model has learned and inspecting the
best sampled control sequences, it might be possible to
gain a better understanding of the underlying dynamics
of a system.

It is clear that the sequences of control parameters in a
quantum control problem should not be treated as i.i.d.
as a given choice of parameters ct at time t potentially
depends on all previous choices c1, · · · , ct−1 and thus we
have a conditional distribution p(ct|c1, · · · , ct−1). This
kind of distribution can successfully be learned by mod-
ern RNN variants, such as LSTM or Gated Recurrent
Unit (GRU) networks. This can for instance be seen
in natural language processing (NLP) problems, which
feature similar structure and where RNNs have led to
breakthrough results in recent years. Note that, with
this modelling decision, we still capture the full multi-
variate distribution p(c1, · · · , cT ) as by the factorization
rule of probabilities it holds that

p(c1, · · · , cT ) =
T∏

t=1

p(ct|c1, · · · , ct−1). (11)

Having decided on the class of models to employ, we
are left with the question of how to fit them. This is
non-trivial as we obviously can not hope to be able to
obtain gradients of real-world experiments and also can
not assume to have any a priori data available. Hence, we
must ‘query’ the experiment to obtain tuples of sequences
and results. Thereby we would naturally like to be as
sample efficient as possible and hence have to find an
intelligent way to draw samples from the experiment and
learn from them.

In a recent attempt to address this problem, an

evolutionary-style algorithm for training LSTMs was in-
troduced [9] that iteratively generates better data and
fits the models to that data, then uses sampling from
these models instead of the usual mutation operations to
generate new sequences. While the algorithm was able
to find better sequences than known in theory for the
considered control problem of quantum memory, it was
only demonstrated for a discretized version of the prob-
lem and there is room for improvement with respect to
the efficient use of sampleded sequences.

A more direct solution to this black-box optimization
problem would however be if we were able to simply ap-
proximate the gradient of the error function with respect
to the parameters of our model from the sampled data.
Being able to obtain an approximate gradient would al-
low us to optimize our model in a gradient descent fash-
ion and thus to leverage existing optimization methods
mainly used in superivsed learning. Indeed, this is a typ-
ical RL scenario which is commonly referred to as policy
gradient learning. In the following, we will thus show
how to solve the optimization task at hand by perceiving
the problem of black-box quantum control as an RL prob-
lem and tackling it with a state-of-the-art policy gradient
algorithm. To this end, we start by analyzing the partic-
ular reinforcement learning problem posed by black-box
quantum control.

As we only receive a result or measurement, from now
on also referred to as reward, after having chosen a com-
plete sequence of control parameters, we can perceive the
sequence c = (c1, · · · , cT ) as a single action of the RL
agent for which it receives a reward R(c). This approach
most clearly reflects the envisioned closed-loop control
scenario explained above. Modelling the sequences and
their respective results in this way then implies that our
Markov decision process (MDP) takes the form of a bi-
partite graph consisting of a single initial state s0 on
the left and multiple final states sc on the right that are
reached deterministically after exactly one action c. The
set of states S of this MDP is thus given by S = s0∪{sc}
while the set of actions A corresponds to A = {c} and
the transition probabilities are defined as Pc(s0, sc) = 1.
The reward R(c) of an action c is determined by the asso-
ciated value of the error function as defined in Section II.
We assume here that two different sequences always lead
to different final states of the system, which is the most
challenging conceivable case as equivalence classes in the
sequence space would effectively reduce the size of the
search space. This particular structure then implies that
the value function simplifies to

V (s0) = max
c
R(c) = R(copt) (12)

where copt is the optimal sequence and the Q-function

Q(s0, c) = R(c) (13)

is in fact independent of the state and equal to the reward
function R(c) as each sequence c is associated with ex-
actly one final state. Additionally, the number of actions
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|{c}| and hence final states xc is at least exponential in
the number of possible values of control parameters per
time step t and generally infinite. This learning setting
can be perceived as a multi-armed bandit [25] problem
but constitutes a special case as firstly we assume to be
only able to perform one action, i. e. generate one se-
quence, before receiving the total reward and secondly
the actions are not atomic but rather exhibit a structure
we exploit for learning.

While it is true that one could derive a different formu-
lation of the problem by considering the ct to be individ-
ual actions and using the discounted rewards of complete
sequences, this approach puts more emphasis on optimal
local behvaior of the agent when our goal clearly is to op-
timize the global performance, i.e. to generate the best
possible sequences of control parameters. However, for
this RL problem to be solvable the compositional struc-
ture of the actions c is in fact of critical importance as
we will discuss now.

In principle, the RL problem amounts to learning to
choose the best out of up to infinitely many possible ac-
tions which in general clearly is unsolvable for every al-
gorithm. So, why can we hope to achieve something with
an algorithm learning from trials in the introduced prob-
lem setting? The main reason for this is in fact that
we know that the actions the agent takes are not atomic
but concatenations of multiple sub-actions which have a
physical meaning. Nature as we perceive it seems to be
governed by simple underlying rules (or complex rules
that are at least approximated very well by simple ones)
which allows us to capture them with mathematical ex-
pressions. This in turn implies that there is much struc-
ture to be found in Nature and hence it is reasonable to
assume that likewise the desirable actions in our learning
problem share certain patterns which can be discovered.
More precisely, we conjecture that solving the particu-
lar problems we are tackling in this work requires less
abstract conceptual inference, which would still be out
of reach for todays machine learning models, and more
recognition of patterns in large sets of trials, i.e. con-
trol sequences, and hence in fact lends itself to treatment
via machine learning and especially contemporary RNN
models. Some empirical evidence for the validity of this
conjecture has recently been provided for the problem of
quantum memory [9] and for a problem related to quan-
tum control, the design of quantum experiments [6].

IV. THE LEARNING ALGORITHM

Having discussed the modelling of the control se-
quences and the RL problem, we will now introduce the
actual learning algorithm we employ. As we have seen
above, we can not perform direct optimization of R(c)
as we cannot access ∇R(c). However, it has long been
known that it is possible to approximate ∇ΘEc[R(c)]

since

∇ΘEc[R(c)] = Ec[∇ ln pΘ(c)R(c)] (14)

where Ec is the expectation over the sequence space and
pΘ(c) is the stochastic policy of the agent parameterized
by the weight vector Θ, which in this work corresponds
to an RNN. This insight is known as the likelihood ratio
or REINFORCE [16] trick and constitutes the basis of
the policy gradient approach to reinforcement learning.
From the physics point of view, the trick allows us to
take the gradient of the average outcome of a given ex-
periment with respect to the parameters of our stochas-
tic controller and perform gradient-based optimization
while being agnostic about the mechanisms behind the
experiment, i.e. model-free. In a sense we thus have a
way of taking a gradient through an experiment with-
out the necessity to mathematically model every vari-
able of influence and their interplay. From a different
perspective, this approach simply corresponds to maxi-
mizing the likelihood of sequences that are weighted by
their results, such that the agent has a higher incentive
to maximize the likelihood of good sequences. The ap-
proach can be refined by replacing the weighting by the
pure rewardR(c) with an approximation of the advantage
A(s, c) = Q(s, c)−V (s). This has been shown to improve
the convergence significantly and especially for continu-
ous control problems, policy gradient methods outper-
form Q-learning algorithms [10].

Despite such improvements, policy gradient ap-
proaches still suffer from slow convergence or catastroph-
icly large updates, which has led to the development
of improvements such as trust region policy optimiza-
tion [17] (TRPO). These methods however make use of
second-order information such as inverses of the Hessian
or Fisher information matrix and hence are very difficult
to apply in large parameter spaces which are common in
the deep learning regime. The underlying idea of such im-
provements thereby is limiting the magnitude of updates
to Θ by imposing constraints on the difference between
pΘ and pΘnew in order to prevent catastrophic jumps out
of optima and achieve a better convergence behvaior.

In an effort to strike a balance between ease of applica-
tion and leveraging the insights behind TRPO, recently
a novel policy gradient scheme called proximal policy op-
timization [10] (PPO) was introduced. One main novelty
hereby lies in the introduced loss, which is for a general
RL scenario given by

LCLIP (Θ) =Et[min(rt(Θ)At, (15)

clip(rt(Θ), 1− ε, 1 + ε)At)] (16)

where Et and At are the expectation over time steps and
the advantage at time t respectively, which both need to
be approximated. The term rt is defined as the ratio of
likelihoods

rt(Θ) =
pΘ(ct|st)
pΘold(ct|st)

(17)
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of actions ct in states st in our notation and we de-
fine clip(a, b, c) = min(max(a, b), c). The distribution
pΘ(ct|st) is a stochastic policy depending on parameters
Θ. Note that this generic formulation assumes multiple
actions ct per episode and thus does not yet apply to the
learning scenario discussed here.

The objective function poses a lower bound on the im-
provement induced by an update and hence establishes a
trust region around Θold. The hyperparameter ε controls
the maximal improvement and thus the size of the trust
region.

Now, the basic algorithm is defined as follows:

1. Obtain new set of trajectories, i.e. sequences, C, by
sequentially sampling from pΘ(ct|st).

2. Optimize LCLIP over C for K iterations.

3. Set Θold = Θ.

4. Repeat until convergence.

Note that there exists a straight-forward generalization
to the case of multiple agents but as we can not reason-
ably assume in our application to have access to multi-
ple identical experiments, we only consider the case of
one agent here. The algorithm was shown to achieve
state-of-the-art performance for several discrete and con-
tiouous control tasks, which makes it ideally suited for
the problems tackled in this work. However, we will
now introduce a few improvements tailored to our specific
reinforcement learning problem as defined in the previ-
ous section which we will for the sake of brevity from
now on refer to as memory proximal policy optimization
(MPPO).

Since in our problem we only consider episodes con-
sisting of one action c, the objective becomes

LCLIP1 (Θ) =Ec[min(r(Θ)A, (18)

clip(r(Θ), 1− ε, 1 + ε)A)] (19)

with

r(Θ, c) =
pΘ(c)

pΘold(c)
(20)

and pΘ(c) being parameterized by an LSTM, as discussed
above. A again denotes the advantage function. We have
omitted the dependence on c in L1 for the sake of clarity.
Since we know that in our problem setting it holds that
Q(c, s) = R(c), the advantage function becomes

A(c) = R(c)− V (c). (21)

It is worth noting that this implies that in our scenario
there is no need to approximate the Q-function as we can
access it directly. In fact approximating the Q-function
and hence R(c) would be equivalent to solving the opti-
mization problem as we could use the approximator to
optimize over its input space to find good sequences. The
quality of the approximation of A(c) consequentially only

depends on the approximation of V (c). While there ex-
ist many sophisticated ways of approximating the value
function [10, 18] in our case the optimal approximation
is given by

V̂ (c) = R(c∗) (22)

where c∗ is the best sequence we have encountered so
far. Since we do not know the best sequence and its
corresponding reward (at best we know an upper bound),
the reward of the best sequence found so far is the closest
approximation we can make. The optimal approximation
of the advantage A(c) hence is given by

Â(c) = R(c)−R(c∗). (23)

Since we need to store c∗ to compute the advantage ap-
proximation and are generally interested in keeping the
best solution, it is a natural idea to equipping the agent
with a memory M of the best sequences found so far.
We can then formulate a memory-enhanced version of
the PPO algorithm:

1. Obtain new set of trajectories, i.e. sequences, C, by
sampling from pΘ(c).

2. Update the memory of best sequences M

3. Optimize LCLIP1 over C ∪M for K iterations.

4. Set Θold = Θ.

5. Repeat until convergence

The memory sequences are treated as newly sampled se-
quences such that their weighting always is performed
with respect to the current values of Θold and Θ. This
ensures compatibility with the policy gradient frame-
work while the access to the best actions discovered so
far leads to a better convergence behavior as we will
see later. Note that, under the previously introduced
assumption, the best sequences share common struc-
tural properties. Maximizing the expected reward over
all sequences Ec[R(c)] is thus equivalent to maximizing
the expected reward over the sequences in the memory
Ec∈M [R(c)] which ensures relevance and stability of the
updates computed overM . This memory scheme further-
more is different from experience replay in Q-learning [19]
as only the best sequences are kept and reintroduced to
the agent. The relation between |C| and |M | thereby
is a new hyperparameter of the algorithm affecting the
exploration-exploitation dynamics of the learning pro-
cess.

Another factor that has a significant impact on the ex-
ploration behavior is the value of the scaling or variance
parameter of the probability distributions employed in
continuous control tasks, such as for instance the stan-
dard deviation σ of the univariate normal distribution
or the covariance matrix Σ in the multivariate case. It is
clear that a large variance induces more exploration while
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a small variance corresponds to a more exploitation-
oriented behavior. Over the course of training an agent
to find a good policy it is hence reasonable to start with
a larger variance and reduce it during the optimization
until it reaches a defined minimal value. However, while
the agent usually learns to predict the mean of the given
distribution, the variance parameter is currently often
treated as fixed or follows a predefined decay schedule
which does not account for the randomness in the train-
ing process. Utilizing the sequence memory, we propose
an improvement by introducing a dynamical adaptation
scheme for the variance parameters depending on the im-
provement of the memory M . More concretely, we pro-
pose to maintain a window Wi of the relative improve-
ments of the average rewards in memory

Wi =

[
R(Mi−l+1)−R(Mi−l)

R(Mi−l)
, · · · , (Mi)−R(Mi−1)

R(Mi−1)

]

(24)

where R(Mi) denotes the average reward over the mem-
ory in iteration i of the optimization and l is the window
length. At every l-th step in the optimization, we then
compute a change parameter

αt = 1 +
Wt−l −Wt

Wt−l
(25)

with Wt being the window average and multiply (possi-
bly clipped) the variance parameters by it. Note that we
assume here monotonic improvement of M and R ∈ [0, 1].
This scheme thus poses a dynamic adaptation of the vari-
ance parameters based on second-order information of
the improvement of the average reward of M . It follows
the intuition that if the improvement slows down, a de-
crease of the variance gives the agent more control over
the sampled actions and allows for a more exploitation-
oriented behavior. On the other side, when the improve-
ment accelerates, it appears reasonable to prevent too
greedy a behavior by increasing the uncertainty in the
predicted actions. The same scheme can furthermore also
be applied to parameters such as ε, which plays a similar
role to the variance.

In conclusion, extending the PPO training with a
memory of the best perceived actions prevents good so-
lutions of the control problem to be lost, gives the agent
access to the best available advantage estimate, improves
convergence and allows to dynamically scale the variance
parameters of respective distributions from which actions
are sampled. While we introduce this variant of the PPO
algorithm for our specific application, we believe that it
would generalize to other applications of reinforcement
learning.

V. APPLYING THE METHOD

In this section, we will now introduce two quantum
control scenarios that were recently explored via ma-

chine learning [8, 9]. We show how one can apply our
method to tackle some interesting learning tasks arising
in these control settings by leveraging physical domain
knowledge.

A. Quantum Memory

One particular instance of a quantum control problem
is the problem of storing the state of a qubit, i.e. a two-
level system used in quantum computation. This is, next
to quantum error correction, a very relevant problem in
quantum computation. Here we assume that our qubit
is embedded in some environment, called the bath, such
that the complete system lives in the Hilbert space

H = HS ⊗HB

with the subsripts S and B denoting the space of the sys-
tem and bath respectively. If we let this system evolve
freely, decoherence effects will over time destroy the state
of the qubit. Hence the question is how we can intervene
to prevent the loss of the state in the presence of the en-
vironment or, for computer scientific purposes, the noise
where we assume to have control over the qubit only.
From a quantum computing perspective, we would like
to implement a gate that performs the identity function
over a finite time interval.

Qubit states are commonly represented as points on
the Bloch sphere [4] and the effect of the environment on
the qubit can in this picture be perceived as some rota-
tion that drives the qubit away from its original position.
To counter this problem we must hence determine a good
rotation at each time step such that we negate the effect
of the environment. So, our goal is to dynamically decou-
ple the qubit from its bath by performing these rotations.
The rotation of a qubit is defined as

Rn(α) = e−i
α
2 nσ

with n being a unit vector specifying the rotation axis,
α denoting the rotation angle and σ the ‘vector’ of the
stacked Pauli matrices σ{x,y,z} [20]. Thus our controlled
time evolution operator per time step t becomes

U(nt, αt) = e−i∆t(H0+
αt
2∆tntσ⊗IB),

expressing that we only apply the rotation to the qubit,
but not the bath. The noise Hamiltonian H0 here reflects
the effect of the bath on the qubit and IB simply denotes
the identity of size of the dimensionality of HB such that
the Kronecker product yields a matrix of equal size to
H0.

One possible metric to quantify how well we were able
to preserve the qubit’s state is

D(U, I) =

√
1− 1

dSdB
‖TrS(U)‖Tr
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with U denoting the total evolution operator, I the iden-
tity and TrS is the partial trace over the system [21].

‖U‖Tr = Tr
√
U†U is the trace or nuclear norm. This dis-

tance measure is minimized by the ideal case U = IS⊗UB
with an arbitrary unitary UB acting on the bath. Thus,
the problem we would like to solve is a special instance
of quantum control and can be formulated as

min
{(nt,αt)}

D(U({(nt, αt)}, I).

Having introduced the quantum memory scenario, we
now turn to a description of possible reinforcement learn-
ing tasks in this context. We present three different for-
mulations of the setting which we will in the following
refer to as the discrete, semi-continuous and continuous
case. These formulations differ in the parametrization of
the rotation Rn(α) that is to be performed at each time
step.

Discrete case: It is known from analytical derivations
that the Pauli matrices σ{0,x,y,z} give rise to op-
timal sequences under certain ideal conditions [22,
23], where at each time step exactly one of the ro-
tations R{0,x,y,z} = e−i

π
2 σ{0,x,y,z} is performed. σ0

hereby denotes the identity. Hence, in the simplest
formulation we can define the problem as choosing
one of the four Pauli matrices at each time step.
This formulation then leads to a sequence space S
of size |S| = 4T being exponential in the sequence
length T . This is the formulation which was also
used in recent work on quantum memory [9].

Semi-continuous case: While the class of sequences
introduced above is provably ideal under certain
conditions, one might be interested in allowing the
agent more freedom to facilitate its adaption to
more adverse conditions. This can in a first step
be achieved by allowing the agent full control over
the rotation angle while keeping the discrete for-
mulation for the rotation axis. That means that
at each time step, the agent will have to choose
a rotation axis from σ{0,x,y,z} as before, but now
must also predict the rotation angle α ∈ [0, 2π].
As α can take infinitely many values, this formu-
lation of the problem now yields a sequence space
S of inifinite size, making it much harder from a
reinforcement learning perspective. To lighten this
burden we can make use of the fact that we know
that in principle a rotation around π is ideal. Thus,
we will interpret the output of the agent as the de-
viation from π ∆α ∈ [−π, π]. This should facilitate
learning progress even in the early training phase.

Continuous case: Finally, we can of course also allow
the agent full control over both the rotation angle
and axis. This formulation of the problem requires
the agent to predict a unit vector n ∈ R3 and a cor-
responding rotation angle α for each time step. It
is clear that without any prior knowledge it will be

very difficult for the agent to identify the ‘right cor-
ner’ of this infinite sequence space. We hence pro-
pose to again leverage the knowledge about Pauli
rotations being a good standard choice by having
the agent predict a Pauli rotation together with
the deviation in n and α. While for α we have
already seen how this can be easily achieved, n re-
quires slightly more insight. As is customary in
quantum physics, every state of a two-dimensional
particle |ψ〉 can be represented by choosing two an-
gles θ ∈ [0, π] and φ ∈ [0, 2π], yielding the three-
dimensional real unit Bloch vector

b =




sin θ cosφ
sin θ sinφ

cos θ


 .

We can hence use this formulation to parameter-
ize n by θ and φ. It is easy to see that the Pauli
rotations correspond to the unit vectors that equal
a one-hot encoding of the Pauli matrices such that
we obtain the following identities

θx = θy = φy =
π

2
and

φx = φz = θz = 0

with periodicity in π. We can now leverage this
knowledge by translating the Pauli rotation axis
chosen by the agent into its Bloch expression and
requring it to predict the deviations ∆θ and ∆φ.
In this way the agent has access to the full axis
space. As with the rotation angle, this formulation
has the effect that the agent starts learning from a
reasonable baseline.

B. Ground state transitions

Another scenario that was recently addressed in an anl-
ysis of the characteristics of the optimization problem
behind controlling systems out of equilibrium [8] is the
transition between ground states of different Hamiltoni-
ans. The considered class of Hamiltonians was thereby
defined to be the class of Ising Hamiltonians given by

H(J, g, h) = J

L−1∑

i=1

I⊗i−1 ⊗ σx ⊗ σx ⊗ I⊗L−(i+1)

+ g

L∑

i=1

I⊗i−1 ⊗ σz ⊗ I⊗L−i

+ h

L∑

i=1

I⊗i−1 ⊗ σx ⊗ I⊗L−i

where the σ{x,y,z} again denote the Pauli matrices and
L specifies the number of particles. In this setting we
furthermore set J = g = −1, leaving h as the only free
parameter specifing the strength of the magnetic field
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represented by σx. From a mathematical perspective,
the ground state |Emin(h)〉 of a given Hamiltonian H(h)
is then defined as the eigenvector of H(h) corresponding
to its lowest eigenvalue.

In the considered scenario we now choose the initial
and target states to be |ψi〉 = |Emin(hi)〉 and |ψ∗〉 =
|Emin(h∗)〉 respectively where hi 6= h∗ are particular
choices of h. The controlled time evolution operator is
then simply defined to be the one generated by H(h) as
given by

U(ht) = e−i∆t/hH(ht)

where we assume ht to be time dependent. The closeness
between the state resulting from the controlled time evo-
lution |ψ(T )〉 and the target state |ψ∗〉 is measured by
their squared overlap

S2(ψ∗, ψ(T )) = | 〈ψ∗, ψ(T )〉 |2,

similar to what was shown in Section II. We thus obtain
the optimization problem formulation

max
{ht}

S2(ψ∗, ψ({ht}))

representing the quantum control optimization prob-
lem.

Next, we will introduce some RL tasks arising in this
control scenario. Similarly to the the taxonomy intro-
duced above, we will thereby distinguish between a dis-
crete, a continuous and a constrained case. These cases
correspond to different domains of possible values for the
time dependent field strengths ht. All of them however
have in common that we assume a maximal magnitude
hmax of the field strength such that ht ∈ [−hmax, hmax]
holds. This is simply done to reflect the fact that in
real experiments infinite field strengths are impossible to
achieve.

Discrete case: Knowing that the potentially continu-
ous domain of our control parameter ht is up-
per and lower bounded by ±hmax, we can apply
Pontryagin’s principle to limit ourselves to actions
st ∈ {−hmax, hmax}. We thus obtain a reinforce-
ment learning problem where at each point in time
the agent has to make a binary decision. While this
is arguably the easiest conceivable scenario, the se-
quence space still is of size |S| = 2T .

Continuous case: Although we know from theory that
optimal sequences will comprise only extremal val-
ues of the control parameter ht, it is still interesting
to examine if the agent is able to discover this rule
by itself. In this case we hence allow the agent
to freely choose ht ∈ [−hmax, hmax] which again
presents us with a sequence space of infinite size.
Following our reasoning from the continuous quan-
tum memory case, we cast the problem as learning
the deviation ∆h ∈ [0, hmax] from ±hmax. Hence,

TABLE I. The best values of D(U, I) found by or method for
the discrete, semi-continuous and continuous quantum mem-
ory learning tasks together with baseline results. The refer-
ence values were taken from [9] and computed with the cor-
responding algorithm for T = 0.512 and ∆t = 0.002. Lower
values are better.

∆t = 0.002 ∆t = 0.004

T = 0.064 0.512 0.256 0.512

Ref. 7 · 10−5 2 · 10−4 4 · 10−4 8 · 10−4

Disc. 7 · 10−5 2 · 10−4 4 · 10−4 8 · 10−4

Semi-Cont. 6 · 10−5 2 · 10−4 4 · 10−4 8 · 10−4

Cont. 6 · 10−5 2 · 10−4 4 · 10−4 7 · 10−4

for each time t the agent must predict the devia-
tion ∆h and decide to which of the two extremal
values the deviation should be applied. This formu-
lation clearly allows the agent to predict any value
in [−hmax, hmax].

Constrained case: In the continuous case as defined
above, we know that the agent should ideally learn
to predict deviations of 0 to achieve sequences with
extremal values of ht. We can thus try to make
the problem more challenging by imposing an up-
per bound B < T |hmax| on

∑
t |ht|, representing

an upper limit of the total field strength. Imposing
such a bound is not an artificial problem as it could
for instance be used to model energy constraints in
real experiments. This constraint can easily be re-
alized by defining the reward of a sequence s to
be

R(s) =

{
S2(ψ∗, ψ(s)) if

∑
t |ht| ≤ B

0 else.

This constraint requires the agent to learn how to
distribute a global budget over a given sequence
where it can maximally allocate an absolute field
strength of |hmax| to each action st. As it is not
clear which values are optimal in principle for a
given bound B, instead of a deviation we here let
the agent directly predict the field strength ht.

VI. RESULTS

In this section we will now present numerical results
for the two application scenarios presented above to il-
lustrate the validity of our method and the usefulness of
the MPPO algorithm. As we did not have at our disposal
real physical experiments implementing these scenarios,
the results presented in the following are based numerical
simulations.
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T=0.256,∆t=0.004

T=0.512,∆t=0.004

T=0.512,∆t=0.002

FIG. 1. The best 10 sequences found for the discrete learning
problem with varying parameters of T and ∆t. It is clearly
visible how the best sequences for each setting share com-
mon structural properties and also exhibit recurring patterns
making them amenable to machine learning models.

Training iterations
6 · 10−5

1 · 10−4

2 · 10−4

3 · 10−4

D
(U
,I

)

|M|= 0

|M|= 1

|M|= 64

|M|= 256

|M|= 1024

|M|= 1024 local

FIG. 2. A comparison of the convergence behavior of the best
results sampled per iteration for different sizes of the memory,
no memory and a memory with the LCLIP loss applied to the
invididual ct for T = 0.064 and ∆t = 0.002. The conver-
gence becomes more stable with larger memory and updates
based on the entire sequences lead to convergence to better
sequences.

A. Quantum Memory

For the quantum memory scenario, we investigate the
performance of our algorithm for different lengths of
the discrete time step, total evolution times and across
the three formulations of the problem described above.
More concretely, we explore the method’s behavior for
a discrete time evolution with ∆t ∈ {0.002, 0.004}, T ∈
{0.064, 0.256, 0.512, 1.024} and a physical system consist-
ing of one memory qubit coupled to a bath of four qubits
with up to three-body interactions to allow for a compar-
ison with the baseline results [9]. We refer the interested
reader to this article for a more precise description of the
physical setup. While we ultimately would like to opti-
mize D(U(c), I) as defined above, we used 1−D(U(c), I)
as a reward signal to obtain an R(c) ∈ [0, 1]. We further-

more shifted the reward such that a uniformly random
policy obtains zero reward on average.

As the three learning tasks introduced for this scenario
differ in their action domains, we need to use a different
probabilistic modelling for each setting. For the discrete
case, we simply model each element ct of a sequence c by
a categorical distribution such that we have

p(c) =
∏

t

Cat(ct ∈ {I,X, Y, Z}|{pI,t, pX,t, pY,t, pZ,t})

for a complete sequence c. In the semi-continuous case we
employ a mixture-of-Gaussians distribution which yields

p(c) =
∏

t

∑

i∈{I,X,Y,Z}
pi,tN (ct = ∆α|µi,t, σt).

This can easily be generalized to the continuous case via
a multivariate mixture-of-Gaussians distribution with di-
agonal covariance matrix such that we obtain

p(c) =
∏

t

∑

i∈{I,X,Y,Z}
pi,tN (ct = {∆α,∆θ,∆φ}|µi,t, σtI).

Note that we have omitted here the dependence on the
weights Θ for the sake of brevity. As discussed in Sec-
tion III, we use an LSTM to parameterize these probabil-
ity densities. More concretely, we use a two-layer LSTM
and use its output as input to a softmax layer to pre-
dict the pi,t. From this output state and the relevant
parts of the output from the previous time step we also
predict the µi for ∆α in the semi-continuous case and
analogously for ∆θ and ∆φ in the continuous case. For
every deviation output we train an individual output unit
for each discrete rotation. For the semi-continuous and
continuous tasks, we scale the standard deviation σt and
PPO parameter ε over the course of the optimization us-
ing our introduced adaption scheme with a window size
of 10 and optimize the loss function with the Adam op-
timizer [24].

The scores D(U(c), I) of the best sequences found in
our numerical experiments are listed in Table I. They
clearly show that our method is able to achieve the same
or slightly better results as the baseline algorithm from [9]
for all considered settings and learning tasks. For the
semi-continuous case, we observe that for the setting in-
volving the shortest sequences slightly better sequences
than in the discrete case can be found. For longer se-
quences the performance is on par with the discrete se-
quences. The same in principle holds for the continuous
case with the exception of the results for T = 0.512 and
∆t = 0.004 being slightly better then for the other two
cases. Overall we can conclude that our method finds se-
quences several orders of magnitude better than those a
random policy generates, which are generally in the inter-
val [0.1, 0.5], showing that in all cases LSTMs trained by
the MPPO algorithm seem to perform quite well. We can
also see that the discrete sequences pose a strong base-
line that is hard to beat even with a fully continuous ap-
proach and in fact we observed the predicted deviations
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TABLE II. The best values of S2 obtained by our method for
the discrete, continuous and constrained ground state transi-
tion learning problems with reference values taken from [8].
Higher values are better.

T = 0.5 T = 1 T = 3

Ref. (L = 1) 0.331 0.576 1

Disc. (L = 1) 0.331 0.576 1

Cont. (L = 1) 0.331 0.576 1

Disc. (L = 5) 0.57 0.767 1

Cont. (L = 5) 0.57 0.768 1

Const. (B = 20) 0.313 − −
Const. (B = 30) 0.322 − −
Const. (B = 40) − 0.572 −
Const. (B = 50) − 0.577 −
Const. (B = 60) − 0.577 −
Const. (B = 120) − − 1

Const. (B = 140) − − 1

Const. (B = 160) − − 1

to converge to very small values. The results further-
more support the conjecture that good sequences share
common structure and local patterns that can be learned
which is also illustrated in Figure 1. Here, the best 10 se-
quences found during the training process in the discrete
case for three different settings are shown, illustrating
the high degree of structure that the best sequences ex-
hibit. The structural similarities become more apparent
with growing sequence length. Interestingly, in all cases
the best sequences only make use of two of the four Pauli
rotations and less surprisingly never use the identity ‘ro-
tation’. In Figure 2 we show the effect of different sizes of
the memory M on the convergence of the best sequences
in the discrete case for otherwise constant optimization
parameters. As can be seen, when not using a memory
or only storing the best sequence, the optimization di-
verges. For larger sizes of the memory, the algorithm
converges to better and better sequences, arriving at the
best sequence found for this setting with a memory of
1024 sequences. We also compared the performance of
our algorithm to updates computed not over complete
sequences but over the single control parameters ct as
done in the PPO algorithm for |M | = 1024. While also
the latter performs well, only the former converges to the
best sequence.

B. Ground state transition

In the ground state transition setting, we evaluate
our method for times T ∈ {0.5, 1, 3} with ∆t = 0.05
and an initial hi = −2, target h∗ = 2 as well as
|hmax = 4| to achieve comparability with the base-
line results [8]. For the discrete and continuous case,

T=0.5,B=20

3.0

1.5

0.0

1.5

3.0

T=1.0,B=40

3.0

1.5

0.0

1.5

3.0

T=3.0,B=120

1.2

0.6

0.0

0.6

1.2

FIG. 3. The 10 best sequences found for different values of
T and a maximal field strength B amounting to half of the
maximally possible. While the best sequences for T = 0.5
and T = 1.0 are very similar und use the maximal possible
absolute field strength, the best sequences for T = 3.0 use
much smaller pulses.

0.0
0.2
0.4
0.6
0.8
1.0
1.2

σ

Training iterations
0.35

0.40

0.45

0.50

0.55

0.60

R
(c

)

Best

Average

FIG. 4. The convergence the best and average reward per
iteration together with the dynamically adapted σ for the
constrained scenario with T = 1.0 and B = 60.

we consider systems of size L = 1 and L = 5 and
B ∈ {20, 30, 40, 50, 60, 100, 120, 140} with L = 1 for the
constrained case. Since the overlap S2 as defined above
already lies in the interval [0, 1], we used it directly as
reward function, again shifting it such that a uniformly
random policy achieved zero reward.

The probabilistic modelling of the sequences is similar
to the quantum memory case in that we use a categor-
ical distribution for the discrete case and a mixture-of-
Gaussians for both the continuous and constrained tasks.
Thereby, we model the probability density of the devia-
tions ∆ht in the continuous case and the predicted abso-
lute value of ht in the constrained case. The distributions
are parameterized in the same way as above, namely by
a two layer LSTM form whose output state both the dis-
crete probabilities and the means for both discrete cases
as predicted. The optimization is conducted as in the
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quantum memory scenario.
The results of our numerical experiments are listed in

Table II. As shown, our method was able to replicate
the baseline results from [8] both for the discrete and
the continuous formulation of the problem for a system
size of L = 1 and also performs well for larger systems
of L = 5 with both versions yielding generally the same
results. We indeed found the continuous version to con-
verge to predicting zero deviation as it was expected to.
For the constrained case we can see that our method con-
verges to sequences whose performance is surprisingly
close to the baseline results even when allowed to use
only half of the maximal absolute field strength. For
T = 3.0 the imposed constraints in fact seem to have
no negative effect as apparently already sequences with
a very small total field strength suffice to achieve per-
fect overlap. This is also illustraed by Figure 3 which
shows the best 10 sequences found during the training
process for T ∈ {0.5, 1.0, 3.0} and B set to half the max-
imal total field strength. While for the smaller two total
times the sequences are very similar and always make
use of the maximal field strength or apply no pulse at
all, for T = 3.0 only the general scheme of applying pos-
itive pulses first, then doing nothing and finally apply-
ing negativ pulses persists. The individual pulses that
are applied are very weak and and entire sequence typ-
ically only amounts to a total absolute strength of ∼ 6.
This phenomenon is likely caused by the fact that the
optimization problem in this case becomes significantly
easier for longer times [8]. In Figure 4 we display the
convergence of the best and average results sampled per
iteration together with the dynamic schedule for sigma
during the optimization. It can be seen that σ is dy-
namically increased when the convergence slows down,
decreased when it speeds up and finally converges to a
stable value as the optimization converges as well. In
other scenarios we also observed our adaption scheme to
perform similarly to a decayed annealing schedule.

VII. CONCLUSION AND FUTURE WORK

In this work we have tried to introduce quantum
physics and especially problems in (black-box or model-
free) quantum information and quantum control to a
broader audience in the machine learning community and
showed how they can be successfully tackled with state-

of-the-art reinforcement learning methods. To this end,
we have given a brief introduction to quantum control
and discussed different aspects of the application of rein-
forcement learning to it. We have argued that LSTMs are
a good choice to model the sequences of control parame-
ters arising in quantum control and shown how black-box
quantum control gives rise to a particular reinforcement
learning problem for whose optimization policy gradient
methods are a natural choice. As a recent and successful
variant of policy gradient algorithms, we have adapted
the PPO scheme for our application and introduced the
MPPO algorithm. We then went on to show how our
general method for treating black-box quantum control
can be easily combined with physical prior knowledge
for two example scenarios and presented numerical re-
sults for a range of learning tasks arising in this context.
These results showed that our method is able to achieve
state-of-the-art performance in different tasks while be-
ing able to address problems of discrete and continuous
control alike and provided evidence for the hypotheses
that machine learning is a good choice for the automated
optimization of parameters in experiments.

This work can also be understood to some extent as a
contribution to the debate about how much prior knowl-
edge is necessary for machine learning algorithms to per-
form well in real-world tasks. During the course of this
work, we have found it a necessary precondition for the
addressed problems in continuous domains to be solvable
to incorporate physical domain knowledge such as known
good rotation axes and angles. Without this information
a reinforcement learning agent would be required to at
least implicitly learn about certain laws of physics to not
be lost in the infinite action space of which only a neg-
ligibly small part results in good solutions. This clearly
is out of scope for current models and algorithms with-
out symbolic reasoning capacity and might remain so for
some time especially when the data collected by the agent
is very small compared to the search space.

Finally, interesting directions of future work would be
to apply the method to a real experiment and evaluate
its performance there as well as to develop a set of bench-
mark problems in quantum control to compare the dif-
ferent already existing algorithms on neutral grounds. It
would also be interesting to investigate which other prob-
lems of relevance yield reinforcement learning problems
similarly structured to the formulation presented in this
work.
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Neural-network quantum states have recently been introduced as an Ansatz for describing the wave
function of quantum many-body systems. We show that there are strong connections between neural-
network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network
states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann
machines are entangled plaquette states, while fully connected restricted Boltzmann machines are
string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the
underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body
quantum states. String-bond states also provide a generic way of enhancing the power of neural-network
quantum states and a natural generalization to systems with larger local Hilbert space. We compare the
advantages and drawbacks of these different classes of states and present a method to combine them
together. This allows us to benefit from both the entanglement structure of tensor networks and the
efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of
strongly correlated systems. While it remains a challenge to describe states with chiral topological order
using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network
quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state
exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a
chiral spin liquidwith better accuracy than entangled plaquette states and local string-bond states. Our results
demonstrate the efficiency of neural networks to describe complex quantumwave functions and pave theway
towards the use of string-bond states as a tool in more traditional machine-learning applications.

DOI: 10.1103/PhysRevX.8.011006 Subject Areas: Computational Physics,
Condensed Matter Physics,
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I. INTRODUCTION

Recognizing complex patterns is a central problem that
pervades all fields of science. The increased computational
power of modern computers has allowed the application of
advanced methods to the extraction of such patterns from
humongous amounts of data, and we are witnessing an
ever-increasing effort to find novel applications in numer-
ous disciplines. This led to a line of research now called
quantum machine learning [1], which is divided into two
main branches. The first tries to develop quantum algo-
rithms capable of learning, i.e., to exploit speed-ups from
quantum computers to make machines learn faster and
better. The second branch, which we consider in this work,

uses classical machine-learning algorithms to extract
insightful information about quantum systems.
The versatility of machine learning has allowed scientists

to employ it in a number of problems, which span from
quantum control [2–4] and error correcting codes [5] to
tomography [6]. In the last few years, we have also been
experiencing interesting developments for some central
problems in condensed matter, such as quantum phase
classification or recognition [7–10], improvement of
dynamical mean field theory [11], enhancement of quan-
tum Monte Carlo methods [12,13], or approximations of
thermodynamic observables in statistical systems [14].
An idea that received a lot of attention from the scientific

community consists in using neural networks as variational
wave functions to approximate ground states of many-
body quantum systems [15]. These networks are trained or
optimized by the standard variational Monte Carlo (VMC)
method, and while a few different neural-network archi-
tectures have been tested [15–17], the most promising
results so far have been achieved with Boltzmann machines
[18]. In particular, state-of-the-art numerical results have
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been obtained on popular models with restricted Boltzmann
machines (RBM), and recent effort has demonstrated the
power of deep Boltzmann machines to represent ground
states of many-body Hamiltonians with polynomial-size
gap and quantum states generated by any polynomial size
quantum circuits [19,20].
Other seemingly unrelated classes of states that are

widely used in condensed-matter physics are tensor-
network states. In 1D, matrix product states (MPS) can
approximate ground states of physical Hamiltonians effi-
ciently [21,22], and their structure has led to both analytical
insights over the entanglement properties of physical
systems and efficient variational algorithms for approxi-
mating them [23–25]. The natural extension of MPS to
larger-dimensional systems are projected entangled pair
states (PEPS) [26]; however, their exact contraction is #P
hard [27], and algorithms for optimizing them need to rely
on approximations. Another approach to define higher-
dimensional tensor networks consists in first dividing the
lattice into overlapping clusters of spins. The wave function
of the spins in each cluster is then described by a simple
tensor network. The global wave function is finally taken to
be the product of these tensor networks, which introduces
correlations among the different clusters. This construction
for local clusters parametrized by a full tensor gives rise to
entangled plaquette states (EPS) [28–30], while taking
one-dimensional clusters of spins each described by a MPS
leads to a string-bond states (SBS) Ansatz [31,32]. These
states can be variationally optimized using the VMCmethod
[31,33] and have been applied to 2D and 3D systems.
All these variational wave functions have been success-

ful in describing strongly correlated, quantum many-body
systems, including topologically ordered states. The toric
code [34] is a prototypical example, which can be written
exactly as a PEPS [35], an EPS [30], a SBS [31], or a short-
range RBM [36]. This shows that, in some cases, tensor-
network and neural-network quantum states can be related.
Indeed, it was recently shown that local tensor networks
can be represented efficiently by deep Boltzmann machines
[19,20,37]. However, not every topological state can be
easily represented by local tensor networks. A class of
states for which this is challenging are chiral topological
states breaking time-reversal symmetry. Such states were
first realized in the context of the fractional quantum Hall
(FQH) effect [38], and significant progress has since been
made towards the construction of lattice models displaying
the same physics, either in Hamiltonians realizing frac-
tional Chern insulators [39–44] or in quantum antiferro-
magnets on several lattices [45–48]. One approach to
describe the wave function of these antiferromagnets is
to use parton-constructed wave functions [49–52]. It has
also been suggested to construct chiral lattice wave func-
tions from the FQH continuum wave functions, the
paradigmatic example being the Kalmeyer-Laughlin wave
function [53]. Efforts to construct chiral topological states

with PEPS have been undertaken recently [54–58], but the
resulting states are critical. In the noninteracting case, it has
moreover been proven that the local parent Hamiltonian of
a chiral fermionic Gaussian PEPS has to be gapless [55].
In this work, we show that there is a strong relation

between restricted Boltzmann machines and tensor-net-
work states in arbitrary dimensions. We demonstrate that
short-range RBM are a special subclass of EPS, while fully
connected RBM are a subclass of SBS with a flexible
nonlocal geometry and low bond dimension. This relation
provides additional insights over the geometric structure of
RBM and their efficiency. We discuss the advantages and
drawbacks of RBM and SBS and provide a way to combine
them together. This generalization in the form of nonlocal
string-bond states takes advantage of both the entanglement
structure of tensor networks and the efficiency of RBM.
It allows for the description of states with larger local
Hilbert space and has a flexible geometry. Moreover, it can
be combined with more traditional Ansatz wave functions
that serve as an initial approximation of the ground state.
We then apply these methods to the challenging problem

of approximating chiral topological states. We prove that
any Jastrowwave function, and thus the Kalmeyer-Laughlin
wave function, can be written exactly as a RBM. Moreover,
we show that a remarkable accuracy can be achieved
numerically with much less parameters than is required
for an exact construction. We numerically evaluate the
power of EPS, SBS, and RBM to approximate the ground
state of a chiral spin liquid for which the Laughlin state is
already a good approximation [45], and we find that RBM
and nonlocal SBS are able to achieve lower energy than the
Laughlin wave function. By combining these classes of
states with the Laughlin wave function, we are able to reach
even lower energies and to characterize the properties of the
ground state of the model.
The paper is organized as follows: In Sec. II, we

introduce the variational Monte Carlo method and show
how it can be used to optimize both tensor-network and
neural-network states. In Sec. III, the mapping between
RBM, EPS, and SBS is derived, and its geometric impli-
cations are discussed. Finally, we apply these techniques to
the approximation of chiral topological states in Sec. IV.

II. VARIATIONAL MONTE CARLO WITH
TENSOR-NETWORK AND

NEURAL-NETWORK STATES

A. Variational Monte Carlo method

Given a general Hamiltonian H, one of the main
challenges of quantum many-body physics is to find its
ground state jψ0i satisfying the Schrödinger equation
Hjψ0i ¼ E0jψ0i. This eigenvalue problem can be mapped
to an optimization problem through the variational princi-
ple, stating that the energy of any quantum state is higher
than the energy of the ground state. A general pure quantum
state on a lattice with N spins can be expressed in the basis
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spanned by js1;…; sNi, where si are the projections of the
spins on the z axis, as

jψi ¼
X

s1;…;sN

ψðs1;…; sNÞjs1;…; sNi: ð1Þ

Finding the ground state amounts to finding the exponen-
tially many parameters ψðs1;…; sNÞ minimizing the
energy, which can only be done exactly for small sizes.
Instead of searching for the ground state in the full
Hilbert space, one may restrict the search to an Ansatz
class specified by a particular form for the function
ψwðs1;…; sNÞ depending on polynomially many varia-
tional parameters w. The VMC method [59,60] provides
a general algorithm for optimizing the energy of such a
wave function. One can compute the energy by expressing
it as

Ew ¼ hψ jHjψi
hψ jψi ¼

X
s

pðsÞElocðsÞ; ð2Þ

where s ¼ s1;…; sN is a spin configuration, pðsÞ ¼
½jψwðsÞj2=ð

P
sjψwðsÞj2Þ� is a classical probability distribu-

tion, and the local energy ElocðsÞ ¼
P

s0 hsjHjs0ifψwðs0Þ=
½ψwðsÞ�g can be evaluated efficiently for Hamiltonians
involving few-body interactions. The energy is therefore
an expectation value with respect to a probability
distribution p that can be evaluated using Markov chain
Monte Carlo sampling techniques such as the Metropolis-
Hastings algorithm [61,62]. The second ingredient required
to minimize the energy with respect to the parameters w
is the gradient of the energy, which can be expressed in a
similar form since

∂Ew

∂wi
¼ 2
X
s

pðsÞΔwi
ðsÞ�(ElocðsÞ − Ew); ð3Þ

where we have defined Δwi
ðsÞ ¼ f1=½ψwðsÞ�gf½∂ψwðsÞ�=

∂wig as the log-derivative of the wave function with respect
to some parameter wi. This is also an expectation value
with respect to the same probability distribution p and
can therefore be sampled at the same time, which allows
for the use of gradient-based optimization methods. At each
iteration, the energy and its gradient are computed with
Monte Carlo, the parameters w are updated by small
steps in the direction of the negative energy derivative
(wi ← wi − α½∂Ew=ð∂wiÞ�), and the process is repeated until
convergence of the energy. The VMCmethod, in its simplest
form, only requires the efficient computation of f½ψwðs0Þ�=
ψwðsÞg for two spin configurations s and s0, as well as the
log-derivative of the wave function ΔwðsÞ. More efficient
optimization methods can be used, such as conjugate-
gradient descent, stochastic reconfiguration [63,64], the
Newton method [65], or the linear method [66–68].
At this point, one has to choose a special form for the

wave function ψw. One of the traditional variational wave

functions for a many-body quantum system is a Jastrow
wave function [59,69], which consists, in its most general
form, of a product of wave functions for all pairs of spins:

ψwðsÞ ¼
Y
i<j

fijðsi; sjÞ; ð4Þ

where each fij is fully specified by its four values fijðsi; sjÞ,
si, sj ∈ f−1; 1g. Such an Ansatz does not presuppose a
particular local geometry of the many-body quantum state:
In general, this Ansatz can be nonlocal because of the
correlations between all pairs of spins [Fig. 1(a)]. A local
structure can be introduced by choosing a form for fij that
decays with the distance between positions i and j.

B. Variational Monte Carlo method
with tensor networks

In condensed-matter physics, important assets to sim-
plify the problem are the geometric structure and locality
of physical Hamiltonians. In 1D, it has been proven
that ground states of gapped local Hamiltonians have an
entanglement entropy of a subsystem that grows only like
the boundary of the subsystem [21]. States satisfying such
an area law can be efficiently approximated by MPS [22].
Matrix product states are one-dimensional tensor-network
states whose wave function for a spin configuration reads

ψwðsÞ ¼ Tr

�YN
j¼1

A
sj
j

�
: ð5Þ

(a) (b)

(c) (d)

FIG. 1. Geometry of Ansatz wave functions: (a) Jastrow wave
functions include correlations within all pairs of spins. (b) MPS in
2D cover the lattice with one snake. (c) EPS include all spin
correlations within each plaquette (2 × 2 on the figure) and
mediate correlations between distant spins through overlapping
plaquettes. (d) SBS cover the lattice with many 1D strings on
which the interactions within spins are captured by a MPS.
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For each spin and lattice site, the matrix Asi
i of dimension

D ×D, where D is called the bond dimension, contains the
variational parameters. Matrix product states can be effi-
ciently optimized using the density matrix renormalization
group (DMRG) [70], but the previously described VMC
method can also be applied [31,33] by observing that the
ratio of two configurations is straightforward to compute

and that the log-derivative with respect to some matrix A
s0k
k

is given by

Δ
A
sk0
k
ðsÞ ¼ δsk;sk0 ðA

sk
kþ1…AsN

N As1
1 A

sk−1
k−1Þ⊤

TrðAs1
1 …AsN

N Þ : ð6Þ

In some cases, this method is less likely to be trapped in a
local minimum than DMRG since all coefficients can be
updated at once. In addition, the cost only scales as OðD3Þ
in the bond dimension for periodic boundary conditions.
In higher dimensions, matrix product states can be

defined by mapping the system to a line [Fig. 1(b)]. The
problem of this construction is evident from Fig. 1(b).
Spins that sit close to each other might be separated by a
long distance on the line; the Ansatz thus fails to reproduce
the local structure of the state, which leads to an expo-
nential scaling of the computing resources needed with the
system size [71]. The natural extensions of MPS to 2D
systems are projected entangled pair states (PEPS) [26],
for which the wave function can be written as a contraction
of local tensors on the 2D lattice. While PEPS have been
successful in describing strongly correlated quantum
many-body systems, their exact contraction is #P hard
[27], and their optimization cannot rely on the standard
VMCmethod without approximations. In the following, we
instead consider other classes of tensor-network states in
more than one dimension for which the exact computation
of the wave function is efficient, which allows for the direct
use of the VMC method.
One approach consists in cutting a lattice in P small

clusters of np spins, or plaquettes, and constructing thewave
function exactly on each plaquette. The wave function of the
full quantum system is then taken to be the product of the
wave functions in each plaquette, in a mean-field fashion.
Choosing overlapping plaquettes allows one to go beyond
the mean field and include correlations between different
plaquettes [Fig. 1(c)]. The wave function of such an EPS
(also called a correlated product state) is written as [28–30]

ψwðsÞ ¼
YP
p¼1

C
sp
p ; ð7Þ

where a coefficient C
sp
p is assigned to each of the 2np (for

spin-1=2 particles) configurations sp ¼ sa1 ;…; sanp of the

spins on the plaquette p. Each Cp can be seen as the most
general function on the Hilbert space corresponding to the
spins in plaquette p. The accuracy can be improved by

enlarging the size of the plaquettes, and the Ansatz is exact
once the size of the plaquettes reaches the size of the lattice
(which can only be achieved on small lattices). Moreover,
once the spin configuration sp is fixed, the log-derivative of
the wave function with respect to the variational parameters
is simply

ΔC
sp
p
ðsÞ ¼ 1

C
sp
p
; ð8Þ

which is efficient to compute.
EPS are limited to small plaquettes since, for each

plaquette, the number of coefficients scales exponentially
with the size of the plaquette. However, one can generalize
this Ansatz by describing the state of clusters of spins by a
MPS, avoiding the exponentially many coefficients needed.
The lattice is now cut in overlapping 1D strings, which can
mediate correlations on longer distances compared to local
plaquettes [Fig. 1(d)]. The resulting Ansatz is a SBS [31]
defined by a set of strings i ∈ S (each string i is an ordered
subset of the set of spins) and a MPS for each string:

ψwðsÞ ¼
Y
i

Tr

�Y
j∈i

A
sj
i;j

�
: ð9Þ

The descriptive power of this Ansatz is highly dependent
on the choice of strings: For example, by using small
strings covering small plaquettes and a large bond dimen-
sion, it includes EPS, whereas a single long string in a
snake pattern includes MPS in 2D. In 3D, it has been used
by choosing strings parallel to the axes of the lattice [32].
Since the form of the wave function is a product of MPS,
the log-derivative with respect to some elements present
in one of the MPS is simply the log-derivative for the
corresponding MPS [Eq. (6)]. The VMC procedures for
optimizing SBS and MPS thus have the same cost. In
addition, the ratio of two configurations that differ only by
a few spins can be computed by considering only the
strings including these spins, which speeds up the compu-
tation considerably. Let us note that a SBS can be mapped
analytically to a MPS but that the resulting MPS would
have a bond dimension exponential in the number of
strings.

C. Variational Monte Carlo method
with neural networks

Recently, it was realized that the VMC method can be
viewed as a form of learning, which motivated the use of
another class of seemingly unrelated states for describing
the ground state of many-body quantum states: Neural-
network quantum states [15] are quantum states for which
the wave function has the structure of an artificial neural
network. While a few different networks have been inves-
tigated [6,15–17], the most promising results so far have
been obtained with Boltzmann machines [18]. Boltzmann
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machines are types of generative stochastic artificial neural
networks that can learn a distribution over the set of their
inputs. In quantum many-body physics, the inputs are spin
configurations, and the wave function is interpreted as a
(complex) probability distribution that the networks try
to approximate. Boltzmann machines consist of two sets
of binary units (classical spins): the visible units vi,
i ∈ f1;…; Ng, corresponding to the configurations of
the original spins in a chosen basis, and hidden units hj,
j ∈ f1;…;Mg, which introduce correlations between the
visible units. The whole system interacts through an Ising
interaction, which defines a joint probability distribution
over the visible and hidden units as the Boltzmann weight
of this Hamiltonian:

Pðv;hÞ ¼ 1

Z
eHðv;hÞ; ð10Þ

where the Hamiltonian H is defined as

H ¼
X
j

ajvj þ
X
i

bihi þ
X
i<j

cijvivj

þ
X
i;j

wijhivj þ
X
i<j

dijhihj;

and Z is the partition function. The marginal probability of
a visible configuration is then given by summing over all
possible hidden configurations:

PðvÞ ¼
X
h

1

Z
eHðv;hÞ; ð11Þ

and we take this quantity as the Ansatz for the wave
function: ψwðsÞ ¼ PðsÞ. The variational parameters are
the complex parameters of the Ising Hamiltonian. In the
case where there are interactions between the hidden
units [Fig. 2(a)], the Boltzmann machine is called a
deep Boltzmann machine. It has been shown that deep

Boltzmann machines can efficiently represent ground
states of many-body Hamiltonians with polynomial-size
gaps, local tensor-network states, and quantum states
generated by any polynomial-size quantum circuits
[19,20,37]. On the other hand, computing the wave
function ψwðsÞ of such a deep Boltzmann machine in
the general case is intractable because of the exponential
sum over the hidden variables, so the VMCmethod cannot
be applied to deep Boltzmann machines without approx-
imations. We therefore turn to the investigation of
restricted Boltzmann machines (RBM), which only
include interactions between the visible and hidden units
(as well as the one-body interaction terms that correspond
to biases). In this case, the sum over the hidden units can
be performed analytically, and the resulting wave function
can be written as (here we take the hidden units to have
values �1):

ψwðsÞ ¼ e
P

j
ajsj
Y
i

cosh

�
bi þ

X
j

wijsj

�
: ð12Þ

RBM can represent many quantum states of interest, such
as the toric code [36], any graph state, cluster states, and
coherent thermal states [19]; however, the possibility of
efficiently computing ψwðsÞ prevents it from approximating
all PEPS and ground states of local Hamiltonians [19].
On the other hand, since computing ψwðsÞ and its derivative
is very efficient, RBM can be optimized numerically via the
VMC method.

III. RELATIONSHIP BETWEEN
TENSOR-NETWORK AND

NEURAL-NETWORK STATES

While the machine-learning perspective that leads to the
application of Boltzmann machines to quantum many-body
systems seems quite different from the information-theoretic
approach to the structure of tensor-network states,we see that
they are in fact intimately related. It was recently shown that,
while fully connected RBM can exhibit volume-law entan-
glement, contrary to local tensor networks, all short-range
RBM satisfy an area law [72]. Moreover, short-range and
sufficiently sparse RBM can be written as a MPS [37],
but doing so for a fully connected RBM would require an
exponential scaling of the bond dimension with the size of
the system. In this section, we show that there is a tighter
connection between RBM and the previously introduced
tensor networks in arbitrary dimensions.

A. Jastrow wave functions, RBM, and
the Majumdar-Gosh model

Before turning to tensor networks, let us first consider
the simple case of the Jastrow wave function [Eq. (4)].
Boltzmann machines that include only interactions between
the visible units lead to a wave function

(a) (b)

FIG. 2. (a) Boltzmann machines approximate a probability
distribution by the Boltzmann weights of an Ising Hamiltonian on
a graph including visible units (corresponding to the spins sj) and
hidden units hi, which are summed over. (b) Restricted Boltz-
mann machines (here in 2D) only include interactions between
the visible and the hidden units.
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ψwðsÞ ¼
Y
k

eaksk
Y
i<j

ecijsisj ; ð13Þ

which has the form of a product between functions of
pairs of spins and is thus a Jastrow wave function. More
generally, semirestricted Boltzmann machines, including
interactions between visible units as well as between
hidden and visible units, are a product of a RBM and a
Jastrow factor.
Nevertheless, one may ask whether a RBM alone is

enough to describe a Jastrow factor. We first rewrite the
RBM as

ψwðsÞ ¼
Y
j

A
sj
j

Y
i

�
Bi

Y
j

W
sj
ij þ

1

Bi
Q

jW
sj
ij

�
; ð14Þ

where we have redefined the parameters with uppercase
letters as the exponential of the original parameters, thus
removing the exponentials in the hyperbolic cosine. This
form will be convenient for the numerical simulations
presented later. Since Jastrow wave functions are a product
of functions of all pairs of spins, let us show that a RBM
with one hidden unit can represent any function of two
spins. It then follows that a RBM with M ¼ NðN − 1Þ=2
hidden units, each representing a function of one pair of
spins, can represent a Jastrow wave function with poly-
nomial resources. We thus have to solve for a system of
four nonlinear equations with s1, s2 ∈ f−1; 1g and f the
most general function of two spins: ψwðs1; s2Þ ¼ fðs1; s2Þ.
This system is solved in Appendix A, which provides an
analytical solution for the parameters of the RBM to
represent the Jastrow wave function exactly, or to arbitrary
precision if fðs1; s2Þ ¼ 0 for some spins.
As an application, we use this result to write the ground

state of the Majumdar-Gosh model [73] exactly as a RBM.
The Majumdar-Ghosh model is defined by the following
spin-1=2 Hamiltonian:

H ¼ J
XN−1

i¼1

Si · Siþ1 þ
J
2

XN−2

i¼1

Si · Siþ2: ð15Þ

The ground-state wave function is a product of singlets
formed by neighboring pairs of spins:

jψi ∝
YN=2

n¼1

j↑2n−1ij↓2ni − j↓2n−1ij↑2ni: ð16Þ

This wave function can also be expanded in the computa-
tional basis as

ψðs1;…; sNÞ ∝
YN=2

n¼1

ð−1Þðs2n−1þ3Þ=2δs2n−1≠s2n ; ð17Þ

∝
YN=2

n¼1

fðs2n−1; s2nÞ: ð18Þ

Using the previous result, each function of two spins f can
be written as a RBM using one hidden unit, which leads to
a RBM representation of the ground states with M ¼ N=2
hidden units. We also find numerically on small systems
that a RBM using less than M ¼ N=2 has higher energy
than the ground state, which suggests that M ¼ N=2 could
be optimal.

B. Short-range RBM are EPS

Let us now turn to the specific case of RBM with short-
range connections (sRBM). This encompasses all quantum
states that have previously been written exactly as a RBM,
such as the toric code or the 1D symmetry-protected
topological cluster state [36]. Such states have weight
connections between visible hidden units that are local.
Each hidden unit is connected to a local region with,
at most, d neighboring spins. If we divide the lattice intoM
subsets pi, i ∈ f1;…;Mg, the wave function can be
rewritten as (we omit here the biases aj, which are local
one-body terms)

ψwðsÞ ¼
YM
i¼1

cosh

�
bi þ

X
j∈pi

wijsj

�
ð19Þ

¼
YM
i¼1

Csi
i ; ð20Þ

where si is the spin configuration in the subset pi. This is
the form [Eq. (7)] of an EPS [Fig. 3(a)]. For translational-
invariant systems, the short-range RBM becomes a
convolutional RBM, which corresponds to a transla-
tional-invariant EPS. The main difference between a
short-range RBM and an EPS is that the RBM considers
a very specific function among all possible functions of
the spins inside a plaquette; hence, EPS are more general
than short-range RBM. This also directly implies that the

(a) (b)

FIG. 3. (a) A locally connected RBM is an EPS where each
plaquette encodes the local connections to a hidden unit. (b) Once
expressed as a SBS, a fully connected RBM can be represented
by many strings on top of each other. Enlarging the RBM by
using noncommuting matrices to nonlocal SBS induces a
geometry in each string.
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entanglement of short-range RBM follows an area law.
The main advantage of short-range RBM over EPS is that,
because of the exponential scaling of EPS with the size of
the plaquettes, larger plaquettes can be used in short-range
RBM than in EPS. Since, in practice, for finite systems
it is possible to work directly with fully connected RBM,
we argue that EPS or fully connected RBM should be
preferred to short-range RBM for numerical purposes.

C. Fully connected RBM are SBS

Fully connected RBM, on the other hand, do not always
satisfy an area law [72] and hence cannot always be
approximated by local tensor networks. Nevertheless,
one can express the RBM wave function as (here, we also
omit the bias aj)

ψwðsÞ ¼
Y
i

cosh

�
bi þ

X
j

wijsj

�
ð21Þ

∝
Y
i

ðebiþ
P

j
wijsj þ e−bi−

P
j
wijsjÞ ð22Þ

∝
Y
i

Tr

 
ebiþ

P
j
wijsj 0

0 e−bi−
P

j
wijsj

!
ð23Þ

∝
Y
i

Tr

�Y
j∈i

A
sj
i;j

�
; ð24Þ

where

A
sj
i;j ¼

�
ebi=Nþwijsj 0

0 e−bi=N−wijsj

�
ð25Þ

are diagonal matrices of bond dimension 2. This shows that
RBM are string-bond states, as the wave function can be
written as a product of MPS over strings, where each
hidden unit corresponds to one string. The only difference
between the SBS as depicted in Fig. 1(d) and the RBM is
the geometry of the strings. In a fully connected RBM, each
string goes over the full lattice, while SBS have tradition-
ally been used with smaller strings and with, at most, a few
strings overlapping at each lattice site.

D. Generalizing RBM to nonlocal SBS

In the SBS language, RBM consists of many strings
overlapping on the full lattice. The matrices in each string
in the RBM are diagonal and hence commute, so they can
be moved in the string up to a reordering of the spins.
This means that each string does not have a fixed geometry
and can adapt to stronger correlations in different parts
of the lattice, even over long distances. This motivates us
to generalize RBM to SBS with diagonal matrices in which
each string covers the full lattice [Fig. 3(b)]. In the
following, we denote these states as nonlocal dSBS.

This amounts to relaxing the constraints on the RBM
parameters to the most general diagonal matrix and
enlarging the bond dimension of the matrices. For example,
taking the matrices

A
sj
i;j ¼

0
BB@

a
sj
i;j 0 0

0 b
sj
i;j 0

0 0 c
sj
i;j

1
CCA; ð26Þ

with different parameters a
sj
i;j for each string, lattice site, and

spin direction, leads to the wave function (here, D ¼ 3)

ψwðsÞ ¼
Y
i

�Y
j

a
sj
i;j þ

Y
j

b
sj
i;j þ

Y
j

c
sj
i;j

�
: ð27Þ

Note that even for 2 × 2 matrices, the nonlocal dSBS is
more general than a RBM since the coefficients in each of
the twomatrices corresponding to one spin are independent
from each other, which is not the case in the RBM.
Generalizing such a wave function to larger spins than

spin-1=2 is straightforward since the spin si is just indexing
the parameters. This provides a way of defining a natural
generalization of RBM that can handle systems with larger
physical dimension. For instance, this can be applied to
spin-1 systems, while a naive construction for a RBM with
spin-1 visible and hidden units leads to additional con-
straints, as well as to approximate bosonic systems by
truncating the local Hilbert space of the bosons.
A further way to extend this class of states is to include

noncommuting matrices. This fixes the geometry of each
string by defining an order and also enables us to represent
more complicated interactions. In the following, we refer to
SBS in such a geometry as nonlocal SBS. The advantage
of this approach is that it can capture more complex
correlations within each string while introducing additional
geometric information about the problem at hand.
However, it comes at a greater numerical cost than nonlocal
dSBS or RBM because of the additional number of
parameters. In practice, one can use an already-optimized
RBM or dSBS as a way of initializing a nonlocal SBS.
In some cases, the SBS representation is more compact

than the RBM/dSBS representation. Let us consider again
the ground state of the Majumdar-Gosh Hamiltonian,
which we previously wrote as a RBM with M ¼ N=2
hidden units. The ground state of the Majumdar-Gosh
Hamiltonian can also be written as a simple MPS with
bond dimension 3 and periodic boundary conditions, with
matrices [24]

Asn¼−1
n ¼

0
BB@

0 1 0

0 0 − 1ffiffi
2

p

0 0 0

1
CCA; Asn¼1

n ¼

0
BB@

0 0 0
1ffiffi
2

p 0 0

0 1 0

1
CCA;

ð28Þ
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or for open boundary conditions with

As¼−1
2n ¼

�
1

0

�
; As¼1

2n ¼
�
0

1

�
; ð29Þ

As¼−1
2n−1 ¼ ð 1 0 Þ; As¼1

2n−1 ¼ ð 0 1 Þ: ð30Þ

Since this state is a MPS, it is also a SBS with one string.
The RBM representation of the same state requires N=2
strings. In practice, the number of nonzero coefficients is
comparable since, in both cases, the representation is
sparse; however, for numerical purposes, a fully connected
RBM needs of the order OðN2Þ parameters before finding
the exact ground state, while a MPS or SBS with one string
will need OðNÞ parameters for both open and periodic
boundary conditions.
Another example is the AKLT model [74] defined by

the following spin-1 Hamiltonian in periodic boundary
conditions:

H ¼
XN
i¼1

�
1

2
Si · Siþ1 þ

1

6
ðSi · Siþ1Þ2 þ

1

3

�
: ð31Þ

Its ground state has a simple form as a MPS of bond
dimension 2. It can also be written as an exact RBM by
mapping the system to a spin-1=2 chain, but the number of
hidden units needed for an exact representation scales as
OðN2Þ in the system size [75]. We have numerically
optimized the spin-1 extension of a RBM with the form
Eq. (27) (see Appendix B for the details of the numerical
optimization) and found that, already for small sizes of the
chain, a much higher number of parameters is required to
approach the ground-state energy as compared to a SBS
with noncommuting matrices, which is exact with one
string of bond dimension 2 (Fig. 4). We also show in
Sec. IV that, in some other cases, the RBM needs less
parameters than a SBS to obtain a similar energy. This
demonstrates that both RBM and SBS have advantages and
that their efficiency depends on the particular model that is
investigated. It remains an open question whether there
exist MPS or SBS that can provably not be efficiently
approximated by a RBM (for which the RBM would need
exponentially many parameters).
To be able to use both the advantages of RBM (efficient

to compute, few parameters) and of SBS (complex repre-
sentation, geometric interpretation), one can use the flex-
ibility of SBS by including some strings that have a full
MPS over the whole lattice, some strings that include only
local connections and that will ensure that the locality of the
system is preserved, and some strings that have the form of
a RBM and that can easily capture large entanglement and
long-range correlations. In many cases of interest, an initial
approximation of the ground state can be obtained, either
by optimizing simpler wave functions or by first applying
DMRG to optimize a MPS. This initial approximation can

then be used in conjunction with the previous Ansatz
classes by multiplying an Ansatz wave function by the
initial approximation. For the resulting wave function,

ψwðsÞ ¼ ψ init
w ðsÞψSBS

w ðsÞ; ð32Þ

the ratio of the wave function on two configurations, as well
as the log-derivatives, depends only on the respective ratio
and log-derivatives of each separate wave function, making
the application of the VMC method straightforward. This
procedure has the advantage of reducing the number of
parameters necessary for obtaining a good approximation
to the ground state and making the optimization procedure
more stable since the initial state is not a completely
random state. Such a procedure provides a generic way to
enhance the power of more specific Ansatz wave functions
tailored to particular problems, as we demonstrate in the
next section. A similar technique has been used to construct
tensor-product projected states with tensor networks in
Ref. [76], and more generally, it can be used to project the
wave function of an initial reference state in a Fock space
and is thus also suitable to describe fermionic systems.

IV. APPLICATION TO CHIRAL
TOPOLOGICAL STATES

In this section, we turn to a practical application on a
challenging problem for traditional tensor-network meth-
ods, namely, the approximation of a state with chiral
topological order. While chiral topological PEPS have
been constructed, the resulting states are critical.
Moreover, the local parent Hamiltonian of a chiral fer-
mionic Gaussian PEPS has to be gapless [55]. In the

FIG. 4. Energy difference with the exact ground-state energy of
a spin-1 extension of a RBM [Eq. (27)] with D ¼ 2 and different
number of strings for the AKLT model on a spin-1 chain with
eight spins. A nonlocal SBS with noncommuting matrices and
one string is exact within numerical accuracy.
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following, we investigate if this obstruction carries on to the
tensor-network and neural-network states that we have
introduced previously.

A. RBM can describe a Laughlin state exactly

Let us consider a lattice version of the Laughlin wave
function at filling factor 1=2 defined for a spin-1=2
system as

ψLaughlinðsÞ ¼ δs
Y
k

χskk
Y
i<j

ðzi − zjÞ12sisj ; ð33Þ

where δs fixes the total spin to 0, the zi are the complex
coordinates of the positions of the lattice sites, and the
phase factor is defined as χskk ¼ eiπðk−1Þðskþ1Þ=2, ensuring
that the state is a singlet. This wave function is equivalent to
the Kalmeyer-Laughlin wave function in the thermody-
namic limit and has been shown to describe a lattice state
sharing the topological properties of the continuum
Laughlin states on several lattices [77–79]. In addition, it
can be written as a correlator from conformal fields, which
has enabled the exact derivation of parent Hamiltonians for
this state on any finite lattice [80].
The Laughlin wave function has the structure of a

Jastrow wave function, and we have shown in Sec. III A
that any Jastrow wave function can be written as a RBM
with M ¼ NðN − 1Þ=2 hidden units. It follows that RBM
and nonlocal SBS can represent a gapped chiral topological
state exactly. This is in sharp contrast to local tensor-
network states for which there is no exact description
known for a (noncritical) chiral topological state. This
difference is due to the nonlocal connections in the RBM
and Jastrow wave function, which allow them to easily
describe a Laughlin state. We note that a chiral p-wave
superconductor is another example of a gapped chiral
topological state that has been recently written as a
(fermionic) quasilocal Boltzmann machine [20].
However, the previous construction is not satisfactory in

the sense that the RBM requires a number of hidden units
scaling asOðN2Þ, which is too high for numerical purposes
on lattices that are not extremely small. We thus turn to the
approximate representation of the Laughlin wave function
using a RBM.

B. Numerical approximation of a Laughlin state

The lattice Laughlin wave function we consider has an
exact parent Hamiltonian on a finite lattice [80] defined as

Hparent ¼
2

3

X
i≠j

jwijj2Si · Sj þ
2

3

X
i≠j≠k

w̄ijwikSj · Sk

−
2i
3

X
i≠j≠k

w̄ijwikSi · ðSj × SkÞ; ð34Þ

where wij ¼ ½ðzi þ zjÞ=zi − zj� and Sj ¼ ðSxj ; Syj ; SzjÞ is the
spin operator at site j. We specialize to the square lattice

with open boundary conditions and minimize the energy of
different wave functions with respect to this Hamiltonian
by applying the VMC method presented in Sec. II B with a
stochastic reconfiguration optimization, which is equiva-
lent to the natural gradient descent [63,81,82] (details of the
numerical optimization can be found in Appendix B).
Results are presented in Table I.
We find that EPS with plaquettes of size up to 3 × 3 have

an energy difference with the Laughlin state of the order
10−2, which is better than a short-range RBM (denoted
sRBM) on 3 × 3 plaquettes and up to M0 ¼ 4 hidden units
per plaquette, while the energy of a fully connected RBM
with M ¼ 2N hidden units is within 10−5 of the energy of
the ground state. The resulting RBM uses much less hidden
units than would be required for it to be exact, yet it reaches
an overlap of 99.99% with the Laughlin wave function.
This result shows that the fully connected structure of the
RBM is an advantage to describe this state and that EPS can
be used instead of short-range RBM. Moreover, we have
found that EPS are easier to optimize numerically than a
short-range RBM: They are more stable since each coef-
ficient is considered separately, no exponentials or products
that lead to unstable behavior are present, and the deriv-
atives have a very simple form [Eq. (8)].

C. Numerical approximation of a chiral spin liquid

The previous results indicate that RBM might be useful
for approximating chiral topological states numerically, but
they are limited to relatively small sizes because of the
nonlocal nature of the parent Hamiltonian, which includes
interactions between all triplets of spins on the lattice.
In Ref. [45], a local Hamiltonian stabilizing a state in the
same class as the Laughlin state was obtained by restricting
Hparent to local terms and setting the long-range interactions
to zero. This leads to the Hamiltonian

Hl ¼ J
X
hi;ji

Si · Sj þ Jχ
X

hi;j;ki↺
Si · ðSj × SkÞ; ð35Þ

TABLE I. Energy per site difference with the ground-state
energy and overlap with the Laughlin state of different Ansatz
wave functions optimized with respect to the Hamiltonian Hparent
on a 6 × 6 square lattice with open boundary conditions. Note
that sRBM have M0 hidden units connected to all spins in each
plaquette of size 3 × 3, while RBM have M hidden units
connected to all spins of the lattice.

Ansatz ðEw − E0Þ=N jhψwjψLaughlinij
EPS 2 × 2 4.3 × 10−2 46.10%
EPS 3 × 3 2.2 × 10−2 75.79%
sRBM M0 ¼ 1 8.3 × 10−2 0.01%
sRBM M0 ¼ 2 3.1 × 10−2 46.32%
sRBM M0 ¼ 4 2.5 × 10−2 59.07%
RBM M ¼ N 5.8 × 10−4 99.7%
RBM M ¼ 2N 1.1 × 10−5 99.99%
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where hi; ji indicates indices of nearest neighbors on the
lattice and hi; j; ki↺ indicates indices of all triangles of
neighboring spins, with vertices labeled in the counter-
clockwise direction. We focus on the case J ¼ 1, Jχ ¼ 1 for
which the ground state of Hl has above 98% overlap with
the Laughlin wave function [Eq. (33)] on a 4 × 4 lattice. We
minimize the energy of different classes of states on 4 × 4
and 10 × 10 square lattices with open boundary conditions.
For optimizing wave functions with tens of thousands of
parameters, we use a batch version of stochastic reconfig-
uration, which optimizes a random subset of the parameters
at each iteration (see Appendix B). We consider several
Ansatz wave functions, including EPS with plaquettes of
size 2 × 2, 3 × 2, 4 × 2, and 3 × 3; local SBS covering the
lattice with horizontal, vertical, and diagonal strings and
increasing bond dimension; RBM with an increasing
number of hidden units; nonlocal SBS with diagonal
matrices (denoted dSBS) or with noncommuting matrices
of bond dimension 2, and different numbers of strings
covering the full lattice. We observe that, while the
optimization of EPS and SBS is particularly stable, the
optimization of RBM can lead to numerical instabilities
that are resolved by writing the RBM in the form presented
in Eq. (14). Since we use the same optimization procedure
for all Ansatz wave functions and since the required time
(and memory) to perform the optimization is mainly a
function of the number of parameters and of the accuracy,
we can compare the Ansatz classes by comparing how
many parameters are needed to obtain a similar energy.
We first focus [Fig. 5(a)] on a 4 × 4 lattice for which the

exact ground state can be obtained using exact diagonal-
ization. Local SBS have an energy higher than the Laughlin
state, and the energy is saturated with increasing bond
dimension, which means that the pattern of horizontal,
vertical, and diagonal strings is not enough to capture all
correlations in the ground state. While a large 4 × 4
plaquette would make EPS exact on this small lattice, this
would require 216 parameters. The energy of the Laughlin
state is already reached for 3 × 3 plaquettes. RBM with a
number of hidden units larger than N and nonlocal SBS
with a corresponding number of strings have lower energy
than the Laughlin state or the Jastrow wave function. When
the number of strings grows, the energy decreases even
further. On a larger 10 × 10 lattice [Fig. 5(b)], the exact
ground-state energy is unknown, but we can compare the
energy of the different Ansatz wave functions and observe
similar results. Only the Jastrow wave function, nonlocal
SBS, and RBM have an energy comparable to the Laughlin
state. Notice that nonlocal SBS have a constant factor
more parameters than a RBM for the same number of
strings. On the one side, this allows SBS to achieve better
energy than RBM with the same number of strings. On the
other side, this comes with the drawback that we can only
optimize fewer strings, and on the large lattice, we are
numerically limited to nonlocal dSBS with up to N strings.
We can conclude that RBM are particularly efficient in this

(a)

(b)

(c)

FIG. 5. Energy of Hl per site for different optimized Ansatz
wave functions on a square lattice. The number of parameters
(Np) is modified by increasing the bond dimensionD (local SBS,
Np ∝ D2), the size of the plaquettes (EPS, Np ∝ MP2

P, where
MP is the number of plaquettes and P is the number of spins in
one plaquette), the number of strings MS (nonlocal SBS and
dSBS, Np ∝ MS), or the number of hidden units Mh (RBM,
Np ∝ Mh). (a) The 4 × 4 lattice for which the energy difference
with the exact ground-state energy is plotted. (b) The 10 × 10
lattice for which the exact ground-state energy is unknown and
the reference energy of the Laughlin state is indicated as a black
line. (c) Optimization of wave functions that have been multiplied
by the Laughlin wave function on a 10 × 10 lattice. The original
RBM results are indicated for reference as grey crosses.
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example since they require significantly less parameters
than SBS for attaining the same energy. This has to be
contrasted with the previous examples of the Majumdar-
Gosh and AKLT models where the opposite was true.
Therefore, each class of states has advantages and draw-
backs depending on the model we are looking at. We note,
in addition, that a nonlocal SBS can be initialized with the
results of a previous optimization with a RBM, which could
provide a way of minimizing the difficulties of optimizing a
large number of parameters.
As we have previously noticed, we can also use an initial

approximation of the ground state in combination with the
previous Ansatz classes. In the case of the Hamiltonian Hl,
the analytical Laughlin wave function can be used as
our initial approximation in Eq. (32). We denote l-EPS
(resp. l-SBS, l-RBM) a wave function that consists of a
product of the Laughlin wave function and an EPS (resp.
SBS, RBM) and minimize the energy of the resulting states.
This allows us to obtain lower energies for each Ansatz
class [Fig. 5(c)]. Once the wave functions are optimized,
their properties can be computed using Monte Carlo
sampling. To check that the ground state is indeed in the
same class as the Laughlin state, we compute the topo-
logical entropy of some of the optimized states by dividing
the lattice into four regions (Fig. 6) and computing the

Renyi entropy Sð2ÞA ¼ − ln Trρ2A of each subregion using the
Metropolis-Hastings Monte Carlo algorithm with two
independent spin chains [83,84]. The topological entangle-
ment entropy is then defined as [85,86]

Stopo ¼ Sð2ÞA þ Sð2ÞB þ Sð2ÞC − Sð2ÞAB − Sð2ÞAC − Sð2ÞBC þ Sð2ÞABC;

ð36Þ

and it is expected to be equal to − ln 2 ≈ −0.347 for the
Laughlin state [87]. The results we obtain are presented in
Table II and provide additional evidence that the ground
state of Hl has the same topological properties as the
Laughlin state. The Hamiltonian Hl was recently inves-
tigated on an infinite lattice using infinite PEPS [88],
and further evidence was provided that the ground state is
chiral. The PEPS results suggest the presence of long-range
algebraically decaying correlations that may be a feature of
the model or a restriction of PEPS to study chiral systems.
The correlations on short distances agree with the corre-
lations that we can compute on our finite system [Fig. 7(a)],
but our method does not allow us to make claims about the
long-distance behavior of the correlation function. We also
observe that fully connected RBM cannot be defined
directly in the thermodynamic limit without a truncation
of the distance of the interaction between visible and hidden
units, thus transforming the RBM into a short-range RBM
(albeit of larger range than an EPS). In Ref. [72], it was
observed that the entanglement entropy of some specific
short-range RBM can be computed analytically from the
weights of the RBM. The method we use here works in
the general case and also for a fully connected RBM, but
it requires Monte Carlo sampling of the wave function.
The optimized RBM weights encode all of the information
about the wave function; thus, it would be interesting to
understand more precisely which quantities can be
extracted directly from them. Whether direct information
about the phase of the system can be obtained in this way
without requiring Monte Carlo sampling remains an
interesting open problem for future work.

V. CONCLUSION

We have shown that there is a strong connection between
neural-network quantum states in the form of Boltzmann
machines and some tensor-network states that can be
optimized using the variational Monte Carlo method:

FIG. 6. Partition of the lattice used to compute the topological
entanglement entropy.

TABLE II. Topological entanglement entropy (TEE) of the
analytical Laughlin state and optimized l-EPS, RBM, and l-RBM.

Ansatz TEE

Laughlin −0.339ð3Þ
l-EPS 3 × 3 −0.36ð1Þ
RBM M ¼ 4N −0.34ð1Þ
l-RBM M ¼ 4N −0.34ð1Þ

(a) (b)

FIG. 7. (a) The spin-spin correlation function between one
lattice site (in red) and all other spins on the lattice measured on
the optimized l-RBM with lowest energy reveals the antiferro-
magnetic behavior of the correlations. (b) Decay of the corre-
lations with the distance across the direction indicated in (a) as a
white solid line. The error bars are within dot size, and finite-size
effects can already be seen for the last point.
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While short-range restricted Boltzmann machines are a
subclass of entangled plaquette states, fully connected
restricted Boltzmann machines are a subclass of string-
bond states. However, these string-bond states are different
from traditional string-bond states because of their nonlocal
structure, which connects every spin on the lattice to every
string. This enabled us to generalize restricted Boltzmann
machines by introducing nonlocal (diagonal or noncom-
muting) string-bond states, which can be defined for larger
local Hilbert space and with additional geometric flexi-
bility. We compared the power of these different classes of
states and showed that, while there are cases where string-
bond states require less parameters than fully connected
restricted Boltzmann machines to describe the ground state
of a many-body Hamiltonian, there are also cases where the
additional parameters in each string make string-bond
states less efficient to optimize numerically. We applied
these methods to the challenging problem of describing
states with chiral topological order, which is hard for
traditional tensor networks. We showed that every
Jastrow wave function, and thus a Laughlin wave function,
can be written as an exact restricted Boltzmann machine.
In addition, we gave numerical evidence that a restricted
Boltzmann machine with a much smaller number of hidden
units can still give a good approximation to the Laughlin
state. Finally, we turned to the approximation of the ground
state of a chiral spin liquid and showed that restricted
Boltzmann machines achieve a lower energy than the
Laughlin state and the same topological entanglement
entropy. We argued that combining different classes of
states allows us to take advantage of the initial knowledge
of the model and of the particularities of each class. This
was demonstrated by combining a Jastrow wave function to
tensor networks and restricted Boltzmann machines, which
allowed us to get lower energies than the initial states and to
characterize the ground state.
Our work sheds some light on the representative power of

restricted Boltzmann machines and establishes a bridge
between their optimization and the optimization of tensor-
network states. On the one hand, the methods developed in
this work can be used to target the ground state of other
Hamiltonians, and it would be interesting to know whether
similar results can be achieved, for example, for non-Abelian
chiral spin liquids [89,90] or generalized to fermionic
systems of electrons in the continuum displaying the frac-
tional quantum Hall effect. On the other hand, we also
showed that some tools used in machine learning can be
rephrased in tensor-network language, thus providing addi-
tional physical insights about the systems they describe.
Matrix product states have already been used as a tool for
supervised learning [91,92], and our work opens up the
possibility of using not only restricted Boltzmann machines
but also string-bond states to represent a probability distri-
bution over some datawhile encoding additional information
about its geometric structure.
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Note added.—Recently, related independent work came to
our attention. Nomura et al. [93] combine RBM with pair-
product wave functions and apply them to the Heisenberg
and Hubbard models. Clark [94] constructs a mapping
between RBM and EPS/correlator product states.
Kaubruegger et al. [95] give further analytical and numeri-
cal evidence supporting the application of RBM to chiral
topological states such as the Laughlin state.

APPENDIX A: JASTROW WAVE FUNCTIONS
ARE RESTRICTED BOLTZMANN MACHINES

Let us show that a RBM with one hidden unit can
represent any function f of two spins. It then follows that a
RBM with M ¼ NðN − 1Þ=2 hidden units, each represent-
ing a function of one pair of spins, can represent a Jastrow
wave function. We parametrize f by its four values on two
spins s1, s2 ∈ f−1; 1g and solve for a system of four
nonlinear equations:

F11 ¼ A1A2

�
W1W2 þ

1

W1W2

�
; ðA1Þ

F−1−1 ¼
1

A1A2

�
W1W2 þ

1

W1W2

�
; ðA2Þ

F1−1 ¼
A1

A2

�
W1

W2

þW2

W1

�
; ðA3Þ

F−11 ¼
A2

A1

�
W2

W1

þW1

W2

�
; ðA4Þ

where we have set B1 ¼ B2 ¼ 1. The RBM is well defined
when all parameters are nonzero, and we change variables
by defining X ¼ W1W2, Y ¼ ðW1=W2Þ, A ¼ A1A2, B ¼
ðA1=A2Þ, obtaining a new set of equations:

F−1−1A2 ¼ F11; ðA5Þ

F−11B2 ¼ F1−1; ðA6Þ

X2 −
1

A
X þ 1 ¼ 0; ðA7Þ

Y2 −
1

B
Y þ 1 ¼ 0: ðA8Þ

We first suppose that the values Fsisj are nonzero. These
quadratic equations all have nonzero analytical solutions
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in the complex plane, which we denote A0, B0, X0, and Y0.
The original parameters are then the solutions of

W2
1 ¼ X0Y0; ðA9Þ

W2
2 ¼ X0=Y0; ðA10Þ

A2
1 ¼ A0B0; ðA11Þ

A2
2 ¼ A0=B0; ðA12Þ

which is again a set of quadratic equations with nonzero
analytical solutions. If F11 ¼ F−1−1 ¼ 0 (resp. F1−1 ¼
F−11 ¼ 0), the exact solution is given directly by
A0 ¼ 1, X0 ¼ i (resp. B0 ¼ 1, Y ¼ i). In the remaining
cases where some Fsisj are zeros, the equations do not
always have an exact solution, but the function can still be
approximated to arbitrary precision. This case corresponds
to strong restrictions on the part of the Hilbert space, which
is used to write the wave function, and these constraints
can also be imposed on the states directly by adding a
delta function to the wave function, which is equal to 1 only
when the constraints on the spins are satisfied. Having a
Markov chain Monte Carlo sampling that does not visit
these states then allows for a more efficient sampling.

APPENDIX B: OPTIMIZATION PROCEDURE

The goal is to minimize the energy Ew depending on
some vector of parameters w. We define f to be the energy
gradient vector at w. Expanding the energy to first order
around w leads to the steepest gradient descent, where the
variational parameters are updated at each iteration accord-
ing to w0 ¼ w þ γ, with a change of parameters given by
γ ¼ −αf. Here, α is a small step size. Expanding the energy
to second order instead would result in the Newton method
with a change of parameters given by

γ ¼ −αH−1f; ðB1Þ

where H is the Hessian of the energy. Small changes of
the variational parameters may, however, lead to big
changes in the wave function, especially in the case of
compact nonlocal representations like RBM in which each
parameter affects each part of the wave function. Taking
into account the metric of changes of the wave function
leads to the stochastic reconfiguration [63] method, which
is equivalent to the natural gradient descent [82] and
replaces the Hessian in Eq. (B1) by the covariance matrix
of the derivatives of the wave function, avoiding the
computation of the second-order derivatives of the energy.
The stochastic reconfiguration method can also be

viewed as an approximate imaginary-time evolution in
the tangent space of the wave function. Consider the
normalized wave function jψ̄0i and its derivatives

jψ̄0i ¼
jψ0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihψ0jψ0i

p ; ðB2Þ

jψ̄ ii ¼
jψ iiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihψ0jψ0i

p −
hψ0jψ ii
hψ0jψ0i

jψ0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihψ0jψ0i
p ; ðB3Þ

defining a nonorthogonal basis set Ω. Expanding the wave
function to linear order around some parameters w leads to

jψ̄ðw þ γÞi ¼
XNw

i¼0

γijψ̄ ii: ðB4Þ

To minimize the energy, one can apply the imaginary-time
evolution operator e−αH, which, expanded to first order for
small α, is 1 − αH. The change of coefficients γ is found by
applying this operator to jψ̄ðw þ γÞi and projecting in the
set Ω, which leads to the equation

−αhψ̄ ijHjψ̄0i ¼
XM
j¼1

hψ̄ ijψ̄ jiγj; ðB5Þ

which can be rewritten as

γ ¼ −αS−1f; ðB6Þ

where Sij ¼ hψ̄ ijψ̄ ji and fi ¼ hψ̄ ijHjψ̄0i. If we expand
these expressions as expectation values over the probability
distribution pðsÞ ¼ f½jψwðsÞj2�=

P
sjψwðsÞj2g, we obtain

fi ¼ hΔ�
i Eloci − hΔ�

i ihEloci; ðB7Þ

Sij ¼ hΔ�
iΔji − hΔ�

i ihΔji; ðB8Þ

where the local energy is defined as ElocðsÞ ¼P
s0 hsjHjs0if½ψwðs0Þ�=ψwðsÞg and the log-derivative of

the wave function as ΔwðsÞ ¼ f1=½ψwðsÞ�gf½∂ψwðsÞ�=∂wg. Finally, the complete algorithm is as follows:
(1) Using a Metropolis-Hastings algorithm, generate

samples of the probability p and compute stochastic
estimates for the expectation values hΔji, hEloci,
hΔ�

i Eloci, hΔ�
iΔji.

(2) Construct the vector f and matrix S.
(3) Update the parameters according to w ← w − αS−1f.
(4) Repeat the full procedure until convergence of the

energy.
In practice, we repeat the full procedure 1000 to 20 000
times until the energy is converged. To optimize a large
number of parameters, we randomly select a subset of the
parameters of size up to 10 000 at each iteration of the
algorithm and update only these parameters. This reduces
the computational cost associated with the operations
dealing with f and S. Moreover, we can avoid forming
the full matrix S by instead solving Eq. (B6) with a
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conjugate-gradient solver [81]. Numerical stability can be
achieved by adding a small constant ϵ to the diagonal
elements of the matrix S, rotating the direction of change
towards the steeped descent direction. We find that a
step size α of the order 1=

ffiffi
i

p
, where i is the iteration step,

works well in conjunction with a large stabilization at
the beginning, while a fixed step size can also be chosen
in conjunction with a small stabilization of the order
10−4 − 10−8 by performing several optimizations. At the
later stages of the optimization, the step size is lowered to
ensure that the energy is converged. Further improvements
are achieved by projecting the wave functions in a subset
of fixed total spin when it is conserved by the Hamiltonian
we consider [96]. The spin-flip symmetry can be enforced
in a RBM by choosing the bias bi ¼ 0.

[1] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd,QuantumMachine Learning, Nature (London)
549, 195 (2017).

[2] E. Zahedinejad, J. Ghosh, and B. C. Sanders, Designing
High-Fidelity Single-Shot Three-Qubit Gates: A Machine-
Learning Approach, Phys. Rev. Applied 6, 054005 (2016).

[3] M. August and X. Ni, Using Recurrent Neural Networks to
Optimize Dynamical Decoupling for Quantum Memory,
Phys. Rev. A 95, 012335 (2017).

[4] L. Banchi, N. Pancotti, and S. Bose, Quantum Gate
Learning in Qubit Networks: Toffoli Gate without Time-
Dependent Control, npj Quantum Inf. 2, 16019 (2016).

[5] G. Torlai and R. G. Melko, Neural Decoder for Topological
Codes, Phys. Rev. Lett. 119, 030501 (2017).

[6] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko,
and G. Carleo, Many-Body Quantum State Tomography
with Neural Networks, arXiv:1703.05334.

[7] E. P. L. van Nieuwenburg, Y.-H. Liu, and S. D. Huber,
Learning Phase Transitions by Confusion, Nat. Phys. 13,
435 (2017).

[8] J. Carrasquilla and R. G. Melko, Machine Learning Phases
of Matter, Nat. Phys. 13, 431 (2017).

[9] P. Broecker, J. Carrasquilla, R. G. Melko, and S. Trebst,
Machine Learning Quantum Phases of Matter Beyond the
Fermion Sign Problem, Sci. Rep. 7, 8823 (2017).

[10] L. Wang, Discovering Phase Transitions with Unsupervised
Learning, Phys. Rev. B 94, 195105 (2016).

[11] L.-F. Arsenault, A. Lopez-Bezanilla, O. A. von Lilienfeld,
and A. J. Millis,Machine Learning for Many-Body Physics:
The Case of the Anderson Impurity Model, Phys. Rev. B 90,
155136 (2014).

[12] J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, Self-Learning
Monte Carlo Method, Phys. Rev. B 95, 041101 (2017).

[13] L. Huang and L. Wang, Accelerated Monte Carlo Simu-
lations with Restricted Boltzmann Machines, Phys. Rev. B
95, 035105 (2017).

[14] G. Torlai and R. G. Melko, Learning Thermodynamics with
Boltzmann Machines, Phys. Rev. B 94, 165134 (2016).

[15] G. Carleo and M. Troyer, Solving the Quantum Many-Body
Problem with Artificial Neural Networks, Science 355, 602
(2017).

[16] Z. Cai, Approximating Quantum Many-Body Wave-
Functions Using Artificial Neural Networks, arXiv:1704
.05148.

[17] H. Saito, Solving the Bose-Hubbard Model with Machine
Learning, J. Phys. Soc. Jpn. 86, 093001 (2017).

[18] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, A Learning
Algorithm for BoltzmannMachines, Cogn. Sci. 9, 147 (1985).

[19] X. Gao and L.-M. Duan, Efficient Representation of
Quantum Many-Body States with Deep Neural Networks,
Nat. Commun. 8, 662 (2017).

[20] Y. Huang and J. E. Moore, Neural Network Representation
of Tensor Network and Chiral States, arXiv:1701.06246.

[21] M. B. Hastings, An Area Law for One-Dimensional Quan-
tum Systems, J. Stat. Mech. (2007) P08024.

[22] F. Verstraete and J. I. Cirac, Matrix Product States Re-
present Ground States Faithfully, Phys. Rev. B 73, 094423
(2006).

[23] F. Verstraete, V. Murg, and J. Cirac, Matrix Product States,
Projected Entangled Pair States, and Variational Renorm-
alization Group Methods for Quantum Spin Systems, Adv.
Phys. 57, 143 (2008).

[24] U. Schollwöck, The Density-Matrix Renormalization Group
in the Age of Matrix Product States, Ann. Phys. (Amsterdam)
326, 96 (2011).

[25] S. R. White, Density-Matrix Algorithms for Quantum Re-
normalization Groups, Phys. Rev. B 48, 10345 (1993).

[26] F. Verstraete and J. I. Cirac, Renormalization Algorithms for
Quantum-Many Body Systems in Two and Higher Dimen-
sions, arXiv:0407066.

[27] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac,
Computational Complexity of Projected Entangled Pair
States, Phys. Rev. Lett. 98, 140506 (2007).

[28] A. Gendiar and T. Nishino, Latent Heat Calculation of the
Three-Dimensional q ¼ 3, 4, and 5 Potts Models by the
Tensor Product Variational Approach, Phys. Rev. E 65,
046702 (2002).

[29] F. Mezzacapo, N. Schuch, M. Boninsegni, and J. I. Cirac,
Ground-State Properties of Quantum Many-Body Systems:
Entangled-Plaquette States and Variational Monte Carlo,
New J. Phys. 11, 083026 (2009).

[30] H. J. Changlani, J. M. Kinder, C. J. Umrigar, and G. K.-L.
Chan, Approximating Strongly Correlated Wave Functions
with Correlator Product States, Phys. Rev. B 80, 245116
(2009).

[31] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac,
Simulation of Quantum Many-Body Systems with Strings
of Operators and Monte Carlo Tensor Contractions, Phys.
Rev. Lett. 100, 040501 (2008).

[32] A. Sfondrini, J. Cerrillo, N. Schuch, and J. I. Cirac,
Simulating Two- and Three-Dimensional Frustrated Quan-
tum Systems with String-Bond States, Phys. Rev. B 81,
214426 (2010).

[33] A.W. Sandvik and G. Vidal, Variational Quantum
Monte Carlo Simulations with Tensor-Network States,
Phys. Rev. Lett. 99, 220602 (2007).

[34] A. Kitaev, Fault-Tolerant Quantum Computation by Any-
ons, Ann. Phys. (Amsterdam) 303, 2 (2003).

[35] F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac,
Criticality, the Area Law, and the Computational Power of

IVAN GLASSER et al. PHYS. REV. X 8, 011006 (2018)

011006-14



Projected Entangled Pair States, Phys. Rev. Lett. 96,
220601 (2006).

[36] D.-L. Deng, X. Li, and S. Das Sarma, Exact Machine
Learning Topological States, Phys. Rev. B 96, 195145
(2017).

[37] J. Chen, S. Cheng, H. Xie, L. Wang, and T. Xiang, On the
Equivalence of Restricted Boltzmann Machines and Tensor
Network States, arXiv:1701.04831.

[38] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimen-
sional Magnetotransport in the Extreme Quantum Limit,
Phys. Rev. Lett. 48, 1559 (1982).

[39] M. Levin and A. Stern, Fractional Topological Insulators,
Phys. Rev. Lett. 103, 196803 (2009).

[40] D. Sheng, Z.-C. Gu, K. Sun, and L. Sheng, Fractional
Quantum Hall Effect in the Absence of Landau Levels, Nat.
Commun. 2, 389 (2011).

[41] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Frac-
tional Quantum Hall States at Zero Magnetic Field, Phys.
Rev. Lett. 106, 236804 (2011).

[42] Y.-F. Wang, Z.-C. Gu, C.-D. Gong, and D. N. Sheng,
Fractional Quantum Hall Effect of Hard-Core Bosons in
Topological Flat Bands, Phys. Rev. Lett. 107, 146803
(2011).

[43] K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Nearly
Flatbands with Nontrivial Topology, Phys. Rev. Lett. 106,
236803 (2011).

[44] N. Regnault and B. A. Bernevig, Fractional Chern Insu-
lator, Phys. Rev. X 1, 021014 (2011).

[45] A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Local Models of
Fractional Quantum Hall States in Lattices and Physical
Implementation, Nat. Commun. 4, 2864 (2013).

[46] B. Bauer, L. Cincio, B. P. Keller, M. Dolfi, G. Vidal, S.
Trebst, and A.W.W. Ludwig, Chiral Spin Liquid and
Emergent Anyons in a Kagome Lattice Mott Insulator,
Nat. Commun. 5, 5137 (2014).

[47] Y.-C. He, D. N. Sheng, and Y. Chen, Chiral Spin Liquid in a
Frustrated Anisotropic Kagome Heisenberg Model, Phys.
Rev. Lett. 112, 137202 (2014).

[48] S.-S. Gong, W. Zhu, and D. N. Sheng, Emergent Chiral Spin
Liquid: Fractional Quantum Hall Effect in a Kagome
Heisenberg Model, Sci. Rep. 4, 6317 (2014).

[49] G. Baskaran, Z. Zou, and P. Anderson, The Resonating
Valence Bond State and High-Tc Superconductivity—A
Mean Field Theory, Solid State Commun. 63, 973 (1987).

[50] I. Affleck, Z. Zou, T. Hsu, and P.W. Anderson, SUð2Þ
Gauge Symmetry of the Large-U Limit of the Hubbard
Model, Phys. Rev. B 38, 745 (1988).

[51] X.-G. Wen, Projective Construction of Non-Abelian Quan-
tum Hall Liquids, Phys. Rev. B 60, 8827 (1999).

[52] W.-J. Hu, W. Zhu, Y. Zhang, S. Gong, F. Becca, and D. N.
Sheng, Variational Monte Carlo Study of a Chiral Spin
Liquid in the Extended Heisenberg Model on the Kagome
Lattice, Phys. Rev. B 91, 041124 (2015).

[53] V. Kalmeyer and R. B. Laughlin, Equivalence of the
Resonating-Valence-Bond and Fractional Quantum Hall
States, Phys. Rev. Lett. 59, 2095 (1987).

[54] T. B. Wahl, H.-H. Tu, N. Schuch, and J. I. Cirac, Projected
Entangled-Pair States Can Describe Chiral Topological
States, Phys. Rev. Lett. 111, 236805 (2013).

[55] J. Dubail and N. Read, Tensor Network Trial States for
Chiral Topological Phases in Two Dimensions and a
No-Go Theorem in Any Dimension, Phys. Rev. B 92,
205307 (2015).

[56] S. Yang, T. B. Wahl, H.-H. Tu, N. Schuch, and J. I. Cirac,
Chiral Projected Entangled-Pair State with Topological
Order, Phys. Rev. Lett. 114, 106803 (2015).

[57] D. Poilblanc, J. I. Cirac, and N. Schuch, Chiral Topological
Spin Liquids with Projected Entangled Pair States, Phys.
Rev. B 91, 224431 (2015).

[58] S. Yang, T. B. Wahl, H.-H. Tu, N. Schuch, and J. I. Cirac,
Chiral Projected Entangled-Pair State with Topological
Order, Phys. Rev. Lett. 114, 106803 (2015).

[59] W. L. McMillan, Ground State of Liquid He4, Phys. Rev.
138, A442 (1965).

[60] W.M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal,
Quantum Monte Carlo Simulations of Solids, Rev. Mod.
Phys. 73, 33 (2001).

[61] N. Metropolis, A.W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, Equation of State Calculations by Fast
Computing Machines, J. Chem. Phys. 21, 1087 (1953).

[62] W. K. Hastings, Monte Carlo Sampling Methods Using
Markov Chains and Their Applications, Biometrika 57, 97
(1970).

[63] S. Sorella, Generalized Lanczos Algorithm for Variational
Quantum Monte Carlo, Phys. Rev. B 64, 024512 (2001).

[64] S. Sorella, Wave Function Optimization in the Variational
Monte Carlo Method, Phys. Rev. B 71, 241103 (2005).

[65] C. J. Umrigar and C. Filippi, Energy and Variance Opti-
mization of Many-Body Wave Functions, Phys. Rev. Lett.
94, 150201 (2005).

[66] M. P. Nightingale and V. Melik-Alaverdian, Optimization of
Ground- and Excited-State Wave Functions and van der
Waals Clusters, Phys. Rev. Lett. 87, 043401 (2001).

[67] J. Toulouse and C. J. Umrigar, Optimization of Quantum
Monte Carlo Wave Functions by Energy Minimization, J.
Chem. Phys. 126, 084102 (2007).

[68] C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G.
Hennig, Alleviation of the Fermion-Sign Problem by Opti-
mization of Many-Body Wave Functions, Phys. Rev. Lett.
98, 110201 (2007).

[69] R. Jastrow, Many-Body Problem with Strong Forces, Phys.
Rev. 98, 1479 (1955).

[70] S. R. White, Density Matrix Formulation for Quantum
Renormalization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[71] S. Liang and H. Pang, Approximate Diagonalization Using
the Density Matrix Renormalization-Group Method: A Two-
Dimensional-Systems Perspective, Phys. Rev. B 49, 9214
(1994).

[72] D.-L. Deng, X. Li, and S. Das Sarma, Quantum Entangle-
ment in Neural Network States, Phys. Rev. X 7, 021021
(2017).

[73] C. K. Majumdar and D. K. Ghosh, On Next Nearest Neigh-
bor Interaction in Linear Chain. I, J. Math. Phys. (N.Y.) 10,
1388 (1969).

[74] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Rigorous
Results on Valence-Bond Ground States in Antiferromag-
nets, Phys. Rev. Lett. 59, 799 (1987).

[75] X. Gao (private communication).

NEURAL NETWORKS QUANTUM STATES, STRING-BOND … PHYS. REV. X 8, 011006 (2018)

011006-15



[76] O. Sikora, H.-W. Chang, C.-P. Chou, F. Pollmann, and Y.-J.
Kao, Variational Monte Carlo Simulations Using Tensor-
Product Projected States, Phys. Rev. B 91, 165113 (2015).

[77] A. E. B. Nielsen, J. I. Cirac, and G. Sierra, Laughlin Spin-
Liquid States on Lattices Obtained from Conformal Field
Theory, Phys. Rev. Lett. 108, 257206 (2012).

[78] H.-H. Tu, A. E. B. Nielsen, J. I. Cirac, and G. Sierra, Lattice
Laughlin States of Bosons and Fermions at Filling Frac-
tions 1=q, New J. Phys. 16, 033025 (2014).

[79] I. Glasser, J. I. Cirac, G. Sierra, and A. E. B. Nielsen, Lattice
Effects on Laughlin Wave Functions and Parent Hamil-
tonians, Phys. Rev. B 94, 245104 (2016).

[80] A. E. B. Nielsen, J. I. Cirac, and G. Sierra, Quantum Spin
Hamiltonians for the SUð2Þk WZW Model, J. Stat. Mech.
(2011) P11014.

[81] E. Neuscamman, C. J. Umrigar, and G. K.-L. Chan, Opti-
mizing Large Parameter Sets in Variational Quantum
Monte Carlo, Phys. Rev. B 85, 045103 (2012).

[82] S. Amari, Natural Gradient Works Efficiently in Learning,
Neural Comput. 10, 251 (1998).

[83] M. B. Hastings, I. González, A. B. Kallin, and R. G. Melko,
Measuring Renyi Entanglement Entropy in Quantum
Monte Carlo Simulations, Phys. Rev. Lett. 104, 157201
(2010).

[84] J. Wildeboer and N. E. Bonesteel, Spin Correlations and
Topological Entanglement Entropy in a Non-Abelian Spin-
One Spin Liquid, Phys. Rev. B 94, 045125 (2016).

[85] A. Kitaev and J. Preskill, Topological Entanglement
Entropy, Phys. Rev. Lett. 96, 110404 (2006).

[86] M. Levin and X.-G. Wen, Detecting Topological Order in a
Ground State Wave Function, Phys. Rev. Lett. 96, 110405
(2006).

[87] O. S. Zozulya, M. Haque, K. Schoutens, and E. H. Rezayi,
Bipartite Entanglement Entropy in Fractional Quantum
Hall States, Phys. Rev. B 76, 125310 (2007).

[88] D. Poilblanc, Investigation of the Chiral Antiferromagnetic
Heisenberg Model Using PEPs, Phys. Rev. B 96, 121118
(2017).

[89] M. Greiter and R. Thomale, Non-Abelian Statistics in a
Quantum Antiferromagnet, Phys. Rev. Lett. 102, 207203
(2009).

[90] I. Glasser, J. I. Cirac, G. Sierra, and A. E. B. Nielsen, Exact
Parent Hamiltonians of Bosonic and Fermionic Moore-
Read States on Lattices and Local Models, New J. Phys. 17,
082001 (2015).

[91] A. Novikov, M. Trofimov, and I. Oseledets, Exponential
Machines, arXiv:1605.03795.

[92] E. M. Stoudenmire and D. J. Schwab, Supervised Learning
with Quantum-Inspired Tensor Networks, Adv. Neural Inf.
Process. Syst. 29, 4799 (2016).

[93] Y. Nomura, A. Darmawan, Y. Yamaji, and M. Imada,
Restricted-Boltzmann-Machine Learning for Solving
Strongly Correlated Quantum Systems, Phys. Rev. B 96,
205152 (2017).

[94] S. R. Clark, Unifying Neural-Network Quantum States and
Correlator Product States via Tensor Networks, arXiv:
1710.03545.

[95] R. Kaubruegger, L. Pastori, and J. C. Budich, Chiral
Topological Phases from Artificial Neural Networks,
arXiv:1710.04713.

[96] D. Tahara and M. Imada, Variational Monte Carlo Method
Combined with Quantum-Number Projection and Multi-
Variable Optimization, J. Phys. Soc. Jpn. 77, 114701
(2008).

IVAN GLASSER et al. PHYS. REV. X 8, 011006 (2018)

011006-16


	Abstract
	Zusammenfassung
	List of Publications
	Contents
	List of Figures
	1 Introduction
	2 Quantum physics
	2.1 Quantum states
	2.2 Quantum systems
	2.3 Quantum control

	3 Tensor networks
	3.1 Basic concepts
	3.2 Matrix product states and operators
	3.3 Properties of matrix product states and operators

	4 Krylov methods
	4.1 Lanczos algorithms
	4.2 Connection to Gauss quadrature

	5 Machine learning
	5.1 Basic concepts
	5.1.1 Supervised learning
	5.1.2 Unsupervised learning
	5.1.3 Reinforcement learning

	5.2 Long short-term memory networks
	5.3 Restricted Boltzmann machines

	6 Discussion
	6.1 Tensor networks
	6.2 Machine learning
	6.3 Tensor networks and machine learning

	Bibliography
	A On the approximation of functionals of very large Hermitian matrices represented as matrix product operators
	B Towards a better understanding of the matrix product function approximation algorithm in application to quantum physics
	C Efficient approximation for global functions of matrix product operators
	D Using recurrent neural networks to optimize dynamical decoupling for quantum memory
	E Taking gradients through experiments: LSTMs and memory proximal policy optimization for black-box quantum control
	F Neural-network quantum states, string-bond states and chiral topological states

