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i 

Abstract 
 

Glucocorticoids (GCs) are used as powerful drugs in the treatment of various inflammatory 

and autoimmune disorders. However, their long-term effectiveness is associated with severe 

side effects including hyperglycemia, hyperlipidemia and obesity, which are hallmarks of the 

“Metabolic Syndrome”.  

 

GCs are steroid hormones and bind the glucocorticoid receptor (GR). GR acts as a ligand-

activated transcription factor and binds to DNA sequences known as glucocorticoid response 

elements. GR can activate or repress genes but the exact mechanism has not been fully 

explained. The metabolic side effects of steroid treatment are thought to be caused by the 

transcriptional activation of metabolic GR target genes. Performing ChIP-Sequencing in 

mouse livers, an E-Box motif bound by the bHLH transcription factor E47 was identified. Co-

occupancy of GR and E47 at promoters and enhancers of metabolic genes suggested a 

functional role for the factor in liver metabolism. Using mouse genetics, E47 mutant mice 

were shown to be protected from hyperglycemia and hepatic steatosis in vivo in response to 

GCs. This protective phenotype was caused by the impaired up-regulation of glucose and 

lipid genes necessary to exert GR’s full impact on hepatic metabolism. 

 

ChIP-MS was performed in wildtype and E47 mutant livers and revealed the Mediator 

complex and FoxO1 to be among the pool of GR-associated factors. In E47 mutant livers, 

GR was less efficiently bound to chromatin. Subsequently, recruitment of important 

coregulators such as Mediator to metabolic promoters and enhancers was diminished. In 

addition, human GR-regulated sequences revealed the E47 motif to be specifically 

associated with transcriptional activation by GR. This suggests a conserved function for E47 

in the regulation of certain human gene programs by GCs.  

 

The data presented here illustrates that crosstalk of GR and E47 is needed for adequate 

assembly of the transcriptional machinery and to regulate GR target gene expression. 

Targeting E47 might provide a new approach to separate the beneficial effects of GC 

treatment from the harmful metabolic side effects. 
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Zusammenfassung 
	

Glucocorticoide (GCs) gehören zu den am häufigsten verschriebenen Arzneimitteln für die 

Behandlung von entzündlichen Erkrankungen, z.B. Allergien und Autoimmunerkrankungen. 

Die Therapie ist jedoch mit Nebenwirkungen verbunden, welche häufig den Stoffwechsel 

betreffen. Hierzu gehören Hyperglykämie, Hyperlipidämie und Fettleibigkeit, die alle 

Kennzeichen des "metabolischen Syndroms" sind. 

 

GCs sind Steroidhormone und dienen als Liganden für den Glucocorticoid-Rezeptor (GR). 

Dieser bindet DNA-Sequenzen, die als glucocorticoid response elements bekannt sind. Bis 

heute sind die Mechanismen der Genaktivierung und Genrepression durch GR nicht 

vollständig entschlüsselt. ChIP-Sequencing in Mäuselebern identifizierte das E-Box Motiv 

des bHLH Transkriptionsfaktors E47. Das gemeinsame Binden von GR und E47 an 

metabolische Promotoren und Enhancern deutete darauf hin, dass E47 an der Modulation 

GR-Zielgenen beteiligt ist. In vivo Experimente zeigten, dass bei E47 Knockout Mäuse die 

charakteristisch auftretende Hyperglykämie und Fettleber nach GC-Behandlung weniger 

stark ausgeprägt war. Dies war auf die fehlende Hochregulation von Glukose-und Lipid-

Genen in der Leber zurückzuführen. Ein Hepatozyten-spezifischer E47 Knockout bestätigte 

die Ergebnisse und implizierte somit die Leber als das Zielgewebe für das Zusammenspiel 

von E47 und GR. Um das GR-Interaktom in Wildtyp- und mutanten Lebern zu untersuchen, 

wurde ChIP-MS durchgeführt. Komponenten des Mediator-Komplexes und FoxO1 wurden 

als GR-assoziierte Transkriptionsfaktoren in der Leber identifiziert. Mutante Lebern wiesen 

jedoch eine reduzierte Bindung von GR, FoxO1 und Mediator an metabolische Gene auf. 

Darüberhinaus war das Vorhandensein des E47 Motivs in einem zellbasierten Luciferase 

Reporter Screen mit humanen GR-regulierten Sequenzen spezifisch mit der 

Transkriptionsaktivierung durch GR verbunden.  

 

Zusammenfassend identifizierten die Daten E47 als einen neuen Co-Regulator von GR in 

der Leber, welcher für die Hochregulierung von GR-Zielgenen in der Leber benötigt wird. In 

der Medizin könnte E47 daher einen neuen Ansatz bilden, um die metabolischen 

Nebenwirkungen von den wichtigen anti-inflammatorischen Effekten zu trennen, um so eine 

sichere Behandlung durch Steroide zu ermöglichen. 
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Abbreviations 
	

°C  degree celsius 

µ   micro- (10)  

ACTH  adrenocorticotrophic hormone 

ANOVA  analysis of variance 

BCA   bicinchoninic acid  

bHLH  basic Helix-Loop-Helix 

bp   base pair  

BSA   bovine serum albumin  

cDNA  complementary DNA 

Cort  corticosterone 

CRH   corticotrophin-releasing hormone 

CT  threshold cycle 

DAPI   4',6-diamidino-2-phenylindole  

Dex  dexamethasone 

DNA   deoxyribonucleic acid  

DMEM   dulbecco’s modified eagle’s Medium 

DTT  dithiothreitol  

ECL  enzymatic chemiluminescence  

EDTA   ethylenediaminetetraacetic acid 

e.g.  exempli gratia 

Elisa  enzyme-linked immunosorbent assay  

FBS  fetal bovine serum  

GC  glucocorticoid 

GEO  gene expression omnibus 

GFP   green fluorescent protein h hours  

GO  gene ontology 

GR   glucocorticoid receptor 

GRE   glucocorticoid response elements 

H&E   hematoxylin and eosin  

HFD  high fat diet 
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IHC   immunohistochemistry  
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IP  immunoprecipitation 

LB   Luria-Bertani medium 

M   molar concentration 

min   minute  

MgCl2   magnesium chloride 

mRNA  messenger RNA 

NaCL   natrium chloride 

NaOH   natrium hydroxide  

OptiMEM  reduced serum media modification of Eagle's Minimum Essential Media  

PBS   phosphate buffered saline 

PCR   polymerase chain reaction  

PFA  paraformaldehyde 

pH   minus the decimal logarithm of the hydrogen ion activity in  a solution  

POMC   pro-opiomelanocortin 

qPCR  quantitative PCR 

RT-PCR  reverse transcriptase polymerase chain reaction  

RNA   ribonucleic acid  

rpm   revolutions per minute  

SCN   suprachiasmatic nucleus 

Sem  standard error of the mean 

SDS  sodium dodecyl sulfate  

SDS-PAGE sodium dodecyl sulfate poly- acrylamide gel electrophoresis  

Stdev  standard deviation 

TBS-T  tris buffered saline with Tween 20  

TF  transcription factor 

All gene names are indicated in italics. All proteins are written in regular font. Compounds 

and chemical elements are abbreviated according to common chemical nomenclature.  
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1. Introduction 
 

1.1 Glucocorticoid signaling in health and disease 

 

Glucocorticoids (GCs) were first discovered for their anti-inflammatory potential, when Philip 

Showalter Hench and colleagues administered 17-hydroxy-11-dehydrocorticosterone (at the 

time called “compound E”) to patients suffering from rheumatoid arthritis (Hench et al., 1949). 

Treatment with the compound, today known as cortisone, powerfully suppressed 

inflammation in all subjects and alleviated the symptoms of rheumatoid arthritis. This resulted 

in the Nobel Prize in Physiology or Medicine for Philip Showalter Hench, Edward Kendall and 

Tadeus Reichstein for the discovery of adrenal cortex hormones in 1950 (Burns, 2016).  

 

1.1.1 HPA axis and the physiological role of glucocorticoids 

 

Glucocorticoids are 21-carbon steroid hormones that regulate a large number of 

physiological actions throughout the body. By acting on nearly every organ, GCs respond to 

normal diurnal changes and situations of acute or chronic stress in order to maintain energy 

homeostasis (Sapolsky et al., 2000). The increased demand for systemic glucose to fuel 

brain and peripheral tissue is met by enhanced circulating GCs. In metabolic tissues, this is 

executed through increased gluconeogenesis in liver and by inhibiting insulin secretion from 

ß-cells (Patel et al., 2014). Besides their potent effects in immune cells permitting their use 

as anti-inflammatory drugs (see 1.1.2), the actions of GCs influence, among others, the 

nervous system, the cardiovascular and reproductive system, the respiratory system and 

neonatal growth (Sapolsky et al., 2000). 

 

Due to their broad physiologic impact on multiple organ systems, the process of adrenal GC 

synthesis and secretion needs to be tightly regulated (Fig. 1). As a major neuroendocrine 

circuit, the hypothalamic-pituitary-adrenal (HPA axis) is the focal point of signal integration for 

the secretion of GCs. Upon neurochemical signals, corticotrophin-releasing hormone (CRH) 

is secreted from the hypothalamus, which in turn acts on the anterior pituitary to activate pro-

opiomelanocortin (POMC) gene transcription to synthesize and secrete the POMC-encoded 

adrenocorticotropic hormone (ACTH) (Herman et al., 2016). ACTH then acts on the zona 

fasciculata of the adrenal cortex to produce adrenal GCs. Cortisol is the major active GC in 

humans and is synthesized de novo from cholesterol (Sprague et al., 1950). Cholesterol is 

first transported from cellular stores to the outer mitochondrial membrane and converted to 

the steroid precursor pregnenolone. This is followed by successive enzymatic modifications 

in a process called steroidogenesis and cortisol is subsequently released into the blood 



1. Introduction   
	

	

2 

stream to act on peripheral target tissues (Chung et al., 2011, Herman et al., 2016). In a 

classical negative feedback loop, GCs suppress the HPA axis. By inhibiting CRH gene 

expression at the level of the hypothalamus and inhibiting secretion of ACTH from the 

anterior pituitary, GCs essentially restrict their own production (Herman et al., 2016) (Fig. 1). 

 

 

 
Figure 1: Schematic representation of the HPA axis. 
Stress and diurnal rhythms activate the hypothalamus to produce and secrete the corticotrophin-releasing 
hormone (CRH). CRH then acts on the anterior pituitary and induces the secretion of adrenocorticotropic 
hormone (ACTH), which in turn signals the adrenal cortex to produce cortisol from cholesterol. Via a classical 
negative feedback loop, cortisol suppresses secretion of CRH and ACTH and regulates its own production. GCs 
have widespread physiological functions in the body. Picture modified from (Garabedian et al., 2017). 
 

 

In basal conditions, secretion of adrenal GCs changes with a robust circadian and pulsatile 

rhythm, which is characterized by circulating levels peaking at the onset of activity and 

throughout (daytime for diurnal animals and nighttime for nocturnal animals) (Herman et al., 

2016, Chung et al., 2011, Spiga et al., 2014) (Fig. 1). In addition, the HPA axis plays an 

important role for the body’s response to outside factors or “stressors” challenging 

homeostasis (Herman et al., 2016). During acute or prolonged stress activation of the HPA 

axis, synthesis and secretion of GCs from the adrenal cortex is induced in order to meet 

temporary increased energy demands and readjust homeostasis (Herman et al., 2016).  
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1.1.2 Clinical value of glucocorticoid therapy 

 

The discovery that sufficient amounts of synthetically derived GCs such as dexamethasone 

and prednisolone could be produced, spearheaded the evolution of the different GC 

treatment regimes. Estimates for prescription of oral GCs range between 1.2% of the adult 

US population (Overman et al., 2013). In this regard, GCs represent the most widely 

prescribed and effective medication for inflammatory and immune diseases worldwide. 

These range from short-term applications for skin rashes or seasonal allergies to long-term 

treatment of rheumatoid arthritis and asthma (Desmet and De Bosscher, 2017). The clinical 

success of GCs stems from their potential to effectively suppress inflammation in a variety of 

immune cells, depending on the disease model and the inflammatory stimulus. Macrophages 

represent the main target for the anti-inflammatory action of GCs, specifically in the case of 

septic shock and contact allergies (Kleiman et al., 2012, Tuckermann et al., 2007). As part of 

their potent immunosuppressive function, GCs can activate many anti-inflammatory genes. 

However, their dominant action lies in actively suppressing pro-inflammatory and immune 

genes. These include cytokines, chemokines, inflammatory enzymes and receptors as well 

as adhesion molecules important for cell migration to sites of inflammation. These genes are 

activated by pro-inflammatory transcription factors such as NF-κB and AP-1, which are 

attenuated by the action of GCs (Barnes, 1998, Beck et al., 2009a, Greulich et al., 2016). 

GCs are also prescribed after transplantation to prevent organ rejection and present an 

important part of chemotherapy regimes in the treatment of several hematological cancers, 

e.g. multiple myeloma, leukemia and lymphoma (Herold et al., 2006). This stems from their 

ability to induce apoptosis in many lymphoid cells, including thymocytes, monocytes and 

eosinophils, which complement their anti-inflammatory action (Necela and Cidlowski, 2004). 

 

1.1.3 Side effects of glucocorticoid use 
 

The initial enthusiasm for GCs in the 1950s and following years was quickly dampened when 

more and more side effects were reported. Rising circulating GC levels are the body’s 

anticipatory response to meet an increased energy demand in situations of stress (Sacta et 

al., 2016). Since this stress response is only intended to be short to readjust the energy 

balance, exogenous administration of GCs will ultimately become maladaptive. Due to the 

systemic and pleiotropic effects of GCs, arising complications are in most cases so severe 

that they lead to cessation of treatment. Side effects depend on the choice of GC, duration 

and dosage of treatment and mode of application. However, systemic use usually results in 

more severe side effects than topical use (Schacke et al., 2002).  
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In dermatology, GCs present the most widely used therapy for cutaneous conditions. When 

used topically, long-term application of hydrocortisone can induce skin atrophy as well as 

steroid acne and delay effective wound healing (Schacke et al., 2002). There are several 

side effects of GC treatment concerning the musculoskeletal system. By increasing protein 

breakdown and inhibiting protein synthesis, GCs directly affect muscle protein content and 

induce skeletal muscle atrophy (Rose and Herzig, 2013) (Patel et al., 2014, Schacke et al., 

2002). One of the most devastating side effects of long-term GC treatment is the 

development of osteoporosis. Throughout adult life, bone tissue is constantly replaced and 

remodeled by osteoclasts mediating bone resorption and osteoblasts mediating bone 

formation (Schacke et al., 2002). By suppressing osteoblast proliferation and increasing bone 

resorption, bone formation is affected and an overall loss of bone mineral density is induced 

(Frenkel et al., 2015). Long-term GC can have effects on the central nervous system by 

stimulating „steroid psychoses“ in previously stable patients or aggravate existing psychiatric 

problems including anxiety and depression (Schacke et al., 2002) (Fig. 2). Termination of GC 

treatment, on the other hand, can adversely affect the HPA axis itself. Due to the negative 

feedback response of GCs on the production and secretion of CRH and ACTH, atrophy of 

the adrenal cortex and secondary adrenal insufficiency are consequences, once exogenous 

GCs are withdrawn (Schacke et al., 2002).  

The physiological role of GCs lies in stimulating hepatic gluconeogenesis to provide energy 

for the brain and peripheral tissue under conditions of stress or nutrient deficiency. A 

persistent elevation of GCs therefore entails severe disturbances of glucose and lipid 

metabolism. Long-term GC treatment is an associated risk factor for developing 

hyperglycemia and insulin resistance in peripheral tissue. This state is called “steroid 

diabetes” and frequently allows a deteriorating condition in diabetic patients (Schacke et al., 

2002, van Raalte and Diamant, 2014). Treatment with GCs is linked to increased adiposity 

due to promoting pre-adipocyte differentiation (Geer et al., 2014, Vegiopoulos and Herzig, 

2007). The resulting weight gain and development of an obese phenotype is one of the 

features of prolonged GC treatment. On the other hand, GCs enhance lipolysis and de novo 

lipogenesis in peripheral adipose tissue. Elevated levels of circulating free fatty acids 

promote an overall state of dyslipidemia (Geer et al., 2014). GC treatment is also associated 

with intracellular lipid accumulation in the liver. The development of hepatic steatosis is due 

to the induction of genes involved in lipogenesis and triglyceride synthesis (Vegiopoulos and 

Herzig, 2007, Patel et al., 2014). Moreover, mobilized free fatty acids from increased lipolysis 

in adipocytes are taken up the liver and are incorporated and stored into triglycerides in lipid 

droplets (Wang et al., 2012). A persistent state of dyslipidemia has also been identified as 

one the main adverse effect on the cardiovascular system. Prolonged GC treatment 
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frequently leads to the development of hypertension in patients. Mechanisms by which GCs 

induce hypertension may include an increase in contractility of cardiac smooth muscle cells 

as well as an increase in extracellular volume (Schacke et al., 2002, Walker, 2007) (Fig. 2). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Side effects of glucocorticoid therapy. 
The long-term use of GCs for the treatment of chronic inflammatory diseases leads to burdening side effects due 
to GCs’ pleiotropic physiological effects in the body. Specifically in the case of long-term treatment and 
prescription of higher doses early cessation of treatment is often inevitable. Picture modified from 
<https://endo.wustl.edu/harris-lab/>, viewed May 2018. Individual cartoons taken from Servier Medical Art, 
licensed under a Creative Common Attribution 3.0 Generic License, <http://smart.servier.com/>.  
 

 

Many of the complications of GC excess are typical components of the Metabolic Syndrome, 

which presents as an array of associated metabolic disorders, including hyperglycemia, 

insulin resistance, obesity, dyslipidemia and hypertension. Mounting clinical evidence 

suggests a strong correlation between elevated GC activity and the development of the 

Metabolic Syndrome. In insulin-resistant patients, circulating cortisol levels are elevated, 

which is seen as an underlying cause of chronic hyperglycemia and systemic dyslipidemia 

(Rose and Herzig, 2013, Wang, 2005). This link is also exemplified in Cushing’s disease, an 
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endogenous overproduction of GCs. Here, tumors in the pituitary or ACTH-producing tumors 

result in a prolonged hypersecretion of GCs and sustained high levels of circulating GCs in 

the blood (Shibli-Rahhal et al., 2006). Patients suffering from Cushing’s disease present with 

central obesity, muscle wasting, hypertension, hyperglycemia, insulin resistance and the 

development of hepatic steatosis; an array of symptoms fatal if left untreated (Shibli-Rahhal 

et al., 2006). 
 
How glucocorticoids regulate systemic energy metabolism is still not fully understood. The 

challenge lies in the separation of the beneficial anti-inflammatory effects from the adverse 

side effects to eventually develop safer steroid drugs for the clinic. 

 

1.2 Cellular mechanisms of glucocorticoid receptor signaling 

 

Glucocorticoids bind to the Glucocorticoid Receptor (GR) and serve as small molecule 

ligands. GR belongs to a superfamily of ligand-activated transcription factors, the Nuclear 

Hormone Receptor family (NR) (Fig. 3). This superfamily comprises the classic steroid 

receptors including GR, the estrogen receptor (ER), the mineralocorticoid receptor (MR), the 

androgen receptor (AR) and the progesterone receptor (PR). GR and ER represent the 

founding members of the NR family since their complete cDNAs were the first to be isolated 

in the 1980s (Hollenberg et al., 1985, Green et al., 1986, Evans and Mangelsdorf, 2014).  

 
 
 

 
Figure 3: The superfamily of nuclear hormone 
receptors. 
Nuclear hormone receptors were clustered according to 
tissue distribution revealing the link to physiological 
pathways, e.g. reproduction, development, lipid and 
energy homeostasis. Picture modified from (Bookout et 
al., 2006). 
 

 

 

 

 

 

 

 

Among the other important members are the peroxisome proliferator activated receptors 

(PPARs), the liver X receptors (LXRs) and the thyroid hormone receptor (TR). Together, NRs 
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regulate key physiological processes, e.g. reproduction, metabolism, homeostasis, 

inflammation and development (Mangelsdorf et al., 1995, Evans, 1988, Evans and 

Mangelsdorf, 2014).  

 

1.2.1 The glucocorticoid receptor protein 

 

The human GR is encoded by the Nr3c1 gene located on chromosome 5q31–32 and 

comprises 9 exons (Oakley and Cidlowski, 2011). GR is a modular protein, which is 

characteristic of the nuclear receptor family. It contains a N-terminal transactivation domain 

(NTD), a central DNA-binding domain (DBD), and a C-terminal ligand-binding domain (LBD) 

(Fig. 4). Exon 2 encodes most of the NTD, exons 3 and 4 encode the DBD, and exons 5–9 

encode the hinge region (H) and LBD (Oakley and Cidlowski, 2011). The DBD and LBD 

domains are separated by a flexible region termed the hinge region (H). The DBD contains 2 

zinc finger motifs necessary for recognition and binding of target DNA sequences. The first 

zinc finger region contains amino acids, which contact specific bases and confer specificity to 

DNA binding. The second zinc finger region contains a stretch of amino acids, the D loop, 

which enables homodimerization of GR (Kumar and Thompson, 2005, Dahlman-Wright et al., 

1991).  

 

 

 
Figure 4: Schematic representation of the glucocorticoid receptor structure. 
The glucocorticoid receptor is composed of 3 domains: the N-terminal transactivation domain (NTD), the central 
DNA-binding domain (DBD), the hinge region (H) and the C-terminal ligand-binding domain (LBD). Regions 
involved in transcriptional activation (AF1 and AF2), dimerization, nuclear localization, and chaperone Hsp90 
binding are indicated in red. Numbers depict amino acids for human GR. Picture modified from (Oakley and 
Cidlowski, 2013). 
 

 

The NTD harbors a strong transcriptional activation function domain (AF1) important for 

interaction with multiple coregulators and components of the basal transcription machinery. A 

hydrophobic pocket required for ligand binding is located in the LBD. The LBD also houses a 

second, albeit small, activation function domain (AF2), which interacts with certain co-

activators and co-repressors in a ligand-dependent manner (Kumar and Thompson, 2005). 
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Two nuclear localization signal sequences located at the junction of DBD/hinge region and 

within the LBD ensure efficient transport into the nucleus (Kumar and Thompson, 2005, 

Oakley and Cidlowski, 2011). The traditional view that a single glucocorticoid receptor protein 

exists has been challenged in recent years with the discovery that alternative splicing and 

translation give rise to different receptor isoforms. The two most well known isoforms are 

termed GRα and GRβ and differ at the C termini. GRβ lacks the LBD domain and therefore 

cannot bind to glucocorticoids. It constitutively resides in the nucleus and was shown to 

function as a dominant-negative inhibitor of GRα (Oakley and Cidlowski, 2011).   

 

1.2.2 Gene regulation by GR: Activation versus Repression 

 

In the absence of ligands, GR primarily resides in the cytoplasm in a transcriptionally inactive 

state as part of a multiprotein complex that includes various chaperone proteins and 

immunophilins. Key components of this complex are the heat shock proteins 90 and 70 (Pratt 

and Toft, 1997). GCs diffuse through the cell membrane and are bound at the LBD domain of 

GR. This leads to a conformational change of GR resulting in the disassembly of the 

multiprotein complex. The nuclear translocation signals are exposed and enable nuclear 

translocation of the activated GR. Ligand-activated GR has two mechanisms of action: 

upregulation of genes (activation) versus downregulation of genes (repression) (Sundahl et 

al., 2015, Beck et al., 2009a, Vandevyver et al., 2013). However, the underlying mechanisms 

leading to activation versus repression are still unknown.  

 

Ligand-activated GR is known to interact directly with regulatory DNA sequences. These 

DNA sequences are located in promoters and enhancers of GR target genes, termed 

glucocorticoid response elements (GRE). The consensus GRE sequence is classically 

defined as inverted repeats (5‘-nGnACAnnnTGTnCn-3‘) comprising two 6-bp half sites and a 

3-nucleotide spacer (Lim et al., 2015, Starick et al., 2015, Greulich et al., 2016, Oakley and 

Cidlowski, 2011). GR can influence gene expression directly by binding as a homodimer to 

GREs (Dahlman-Wright et al., 1990), by interaction with other DNA-bound transcription 

factors or via “composite elements”. They present as a combination of GREs and other 

transcription factor motifs in close proximity (Glass and Saijo, 2010, Langlais et al., 2012) 

(Fig. 5). For GR-mediated repression, several additional mechanisms have been postulated. 

Suppression of pro-inflammatory stimuli is generally attributed to the inhibition of both AP-1 

and NF-κB family members by GR (Beck et al., 2009a, Glass and Saijo, 2010). Repressive 

scenarios also include binding of monomeric GR to other DNA-bound TFs, termed 

“tethering”, as opposed to the direct and sequence-specific DNA interaction of homodimeric 

GR (Vandevyver et al., 2013, Beck et al., 2009a). The competition for binding sites 



1. Introduction   
	

	

9 

overlapping with other transcription factors or the sequestration of important cofactors are 

among the other potential mechanisms previously described (Beck et al., 2009a, Sundahl et 

al., 2015, Vandevyver et al., 2013). In addition, the existence of a so-called negative GRE 

(nGRE) has been proposed to mediate transcriptional repression by direct DNA binding 

(Surjit et al., 2011, Beck et al., 2009a, Morrison and Eisman, 1993).  

 

Figure 5: GR can activate and repress genes via binding to DNA response elements. 
Ligand-activated GR translocates into the nucleus where it positively or negatively regulates target genes. GR 
activates gene transcription by binding as a homodimer to glucocorticoid response elements in promoters and 
enhancers of target genes or via composite elements together with other transcription factors (TFRE= 
transcription factor response element). How GR distinguishes between gene activation versus gene repression is 
not known, but regulatory polarity might be determined by yet unknown factors interacting with GR at promoters 
or enhancers of target genes. 
 

 

GR does not act in isolation but interacts with a repertoire of different transcription factors to 

assemble multiprotein complexes at promoters and enhancers of target genes. GRE-bound 

GR undergoes conformational changes and recruits coregulators and chromatin-remodeling 

complexes, e.g. histone-modifying enzymes. Recruitment of distinct coregulators ultimately 

enables chromatin remodeling and histone modifications and directly affects the assembly of 

the basic transcriptional machinery and the activity of the RNA polymerase II (Greulich et al., 

2016, Vandevyver et al., 2013).  

 

The therapeutic benefits of GC treatment are mainly explained via the repression of 

inflammatory genes, whereas the detrimental side effects are mostly ascribed to the dimer-
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mediated activation of metabolic genes (Beck et al., 2009a, Sundahl et al., 2015, Vandevyver 

et al., 2013). Since the intrinsic factors governing the positive versus negative transcriptional 

outcome by GR are still unclear, a more complex manner of GR-mediated gene regulation 

has been suggested. Regulatory polarity might rather depend on cellular environment, 

chromatin context, epigenetic regulators and the presence of other yet unknown interacting 

transcription factors (Greulich et al., 2016).  

 

1.3 Genomic GR action 

 

By binding to its genomic response elements, GR plays a central role in the regulation of 

gene expression. GR action is highly cell-type specific. While GR is widely expressed, the 

GR cistromes from different cell types show very little overlap in binding patterns (Grontved 

et al., 2013) (Fig. 6). A cistrome is defined as the sum of all binding sites of a transcription 

factor in a given cell type, which is represented by the ChIP-Seq data set. This emphasizes a 

tissue and context-specific gene regulation and suggests parameters outside the recognition 

sequence to be of importance.  

 

 
Figure 6: GR cistromes differ between 
cell types. 
GR ChIP-Seq data from Dex-treated liver, 
macrophages and brown adipose tissue 
(BAT) were compared. The top 5000 peaks 
of each data set according to peak strength 
were used for comparison. The limited 
overlap in GR binding events (cistromes) 
demonstrates tissue-specificity. ChIP data 
from macrophages taken from (Uhlenhaut et 
al., 2013). Data can be accessed from NCBI 
GEO (accession number: GSE31796). ChIP 
data from liver and BAT is unpublished. 
 
 
 
 
 
 

 
 
1.3.1 Direct GR signaling in liver and macrophages 
 

Tight regulation of distinct sets of target genes ensures proper control over two of GR’s 

signature functions: inducing gluconeogenesis in liver and suppressing inflammatory 

processes in immune cells. In liver, GR directly controls expression of the two main 

regulatory and rate-limiting enzymes in hepatic gluconeogenesis: phosphoenolpyruvate 
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carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc). Promoters of both genes harbor 

functional GREs. These have been extensively characterized over the past 20 years and 

serve as paradigms of GR-controlled transcriptional activation (Imai et al., 1990, Vander Kooi 

et al., 2005). In agreement with this, in liver-specific GR knockout mice the transcriptional 

activation of Pck1 and G6pc is diminished in response to prolonged fasting (Opherk et al., 

2004). In hepatic lipid metabolism, on the other hand, GR directly regulates the hairy and 

enhancer of split-1 (Hes1) gene. GR represses Hes1 expression by recruiting histone 

decacetylases to its promoter (Lemke et al., 2008). In liver-specific GR knockout mice, Hes1 

expression is derepressed and hepatic steatosis is ameliorated in a fatty liver mouse model 

(Lemke et al., 2008). Similarly, loss of hepatic Hes1 results in abnormal GR-mediated target 

gene regulation (Revollo et al., 2013).  

 

Macrophages represent the major targets for GR in the resolution of inflammatory processes. 

Here, the expression of anti-inflammatory genes, e.g. glucocorticoid-induced leucine zipper 

(Tsc22d3/ Gilz), dual specificity phosphatase/MAP kinase phosphatase 1 (Dusp1) or kruppel-

like factors 2 and 9 (Klf2, Klf9) is effectively induced by GR. GR’s crucial anti-inflammatory 

function, however, is executed through the repression of inflammatory genes. These include 

classic inflammatory cytokines such as interleukin 6 (Il6), interleukin 1 alpha/beta (Il1a/b) and 

other inflammatory mediators such as inducible nitric oxide synthase 2 (Nos2), the matrix 

metalloproteases 12 and 13 (Mmp12/13) and tumor necrosis factor (Tnf) (Uhlenhaut et al., 

2013, Kleiman et al., 2012).  

 

1.3.2 Role of the neighboring chromatin: endowing cell-specificity  
 

Motif enrichment analysis of ChIP-Sequencing data sets from GR in mouse livers identified 

several footprints of transcription factors to be significantly enriched together with GREs (Lim 

et al., 2015, Grontved et al., 2013, Phuc Le et al., 2005). These include CCAAT/enhancer 

binding protein (c/EBP), hepatic nuclear factor 4 alpha (Hnf4α), Hnf6 and the Forkhead factor 

family (Fox) (Fig. 7A). c/EBP was shown to be indispensable for GR to access and bind DNA 

in mouse livers, since disruption of c/EBP function interferes with recruitment and DNA 

binding of GR (Grontved et al., 2013). On the other hand, Hnf4α, Hnf6 and members of the 

FoxA family all hold important roles in liver development, which supports their role as 

lineage-determining pioneering factors (Fig. 7B). Hnf4α is essential for mammalian 

hepatocyte differentiation and maintenance of hepatic gene expression (Li et al., 2000, 

Hayhurst et al., 2001). Hnf6 controls the early migration of hepatoblasts and is responsible 

for the coordinated time-specific gene expression during liver development (Margagliotti et 

al., 2007, Beaudry et al., 2006). FoxA2 was previously shown to establish competency by 
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opening up closed chromatin in liver-specific genes. By occupying the albumin enhancer 

during hepatic differentiation from the gut endoderm, FoxA2 keeps the enhancer 

transcriptionally silent but accessible for binding of additional factors and subsequent gene 

activation (Gualdi et al., 1996). The crucial role of FoxA1 and FoxA2 in the onset of 

hepatogenesis is furthermore supported by knockout mouse models for both factors, which 

fail to develop a liver bud (Lee et al., 2005). Footprints of transcription factors Hnf6 and FoxA 

were also identified as most closely enriched to GREs in different cell lines (Lim et al., 2015, 

Starick et al., 2015). Apart from their crucial role in liver development, c/EBP (Park et al., 

1993), Hnf4α (Hall et al., 1995), FoxA2 (Wang et al., 1996) and FoxO1 (Hall et al., 2000) all 

have accessory functions in enabling efficient recruitment of GR to the Pck1 locus and 

facilitate its full induction (Chakravarty et al., 2005). 

 
 
 

Figure 7: Mechanism of cell-type specific gene regulation by GR.  
(A) Transcription factor binding motifs enriched together with with GREs in ChIP-Seq data in liver and 
macrophages are classified into lineage-determining factors (LDF) or co-occurring transcription factors (coTF). (B) 
LDFs bind to their motif in compacted chromatin and recruit histone demethylases/methylases and histone 
acetyltransferases to open chromatin and establish a cell-type specific enhancer landscape. Repressed 
chromatin is marked by tri-methylated H3K27, which is acetylated in open chromatin (H3K27ac). Active 
enhancers are marked by both acetyled H3K27 and monomethylated H3K4me1. GR can access open chromatin 
and bind to GRES upon signal integration. Together with other transcription factors binding their respective motif 
(TFRE) GR regulates target genes in a locus-specific manner. Picture modified from (Greulich et al., 2016). 
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In macrophages, binding site motifs of PU.1 (also known as Spleen focus forming virus 

(SFFV) Proviral Integration oncogene), c/EBP, the NF-kB subunit p65 and the AP-1 subunits 

c-Jun were identified and present possible binding partners of GR (Lim et al., 2015, 

Uhlenhaut et al., 2013) (Fig. 7A). PU.1 and c/EBP are indispensable for the development of 

the myeloid lineage (Heinz et al., 2010, Iwasaki et al., 2005). By “priming” for the myeloid 

lineage they establish the enhancer landscape specific to monocytes (Heinz et al., 2010, Jin 

et al., 2011). Suppression of inflammatory stimuli by GR is linked to the presence of co-

occurring transcription factor binding motifs for the NF-kB subunit p65 and the AP-1 subunit 

c-Jun. Studies in HeLa cells identified direct protein-protein interactions of GR with p65 and 

c-Jun (Ogawa et al., 2005, Diamond et al., 1990) and AP-1 was shown to be necessary for 

recruitment of GR to a subset of AP-1/GR composite elements in 3134 cells (Biddie et al., 

2011). This argues for a concurrent binding of all three factors at enhancers and a role of GR 

in inhibiting the downstream action of NF-kB and AP-1 in the resolution of inflammatory 

processes. 

 

In addition to incorporating sequence data into predicting genomic transcription factor binding 

sites, the epigenetic landscape of a given cell represents one of the major contributors of 

cell-type-specific responses. The majority of hormone-induced GR binding events occur at 

pre-existing accessible chromatin, with far less in de novo remodeled chromatin (Grontved et 

al., 2013, John et al., 2011, Biddie et al., 2011). Chromatin bound by transcription factors is 

associated with specific histone modifications at promoters or enhancers. Whereas active 

promoters are enriched for trimethylated H3K4 (H3K4me3) and acetylated H3K9 (H3K9ac), 

active enhancers show acetylation at H3K27 (H3K27ac) and monomethylation of H3K4 

(H3K4me1) (Heintzman et al., 2007). Metabolic genes, e.g. Pck1 and G6pc or inflammatory 

cytokines, e.g. Il6 and Il1a change their expression depending on the cell type. GR binds the 

enhancer and promoter regions of Pck1 and G6pc in liver (Grontved et al., 2013), but not in 

activated macrophages. In activated macrophages, the receptor binds the enhancers of Il6 

and Il1a (Uhlenhaut et al., 2013), but not in hepatocytes (Fig. 8). This differential binding is 

accompanied by changes in the epigenetic signature of the bound loci. Enhancers for Pck1 

and G6pc are acetylated at H3K27 and monomethylated at H3K4 in hepatocytes (Yue et al., 

2014), but not in activated macrophages (Ostuni et al., 2013). In macrophages, the Il6 

enhancer shows the same pattern of histone marks, but not in hepatocytes (Fig. 8). Since 

nearly a third of all GR-bound sites in hepatocytes and macrophages are enriched for 

H3K27ac and H3K4me1 (Grontved et al., 2013, Uhlenhaut et al., 2013, Ostuni et al., 2013, 

Yue et al., 2014), this highlights the requirement for open chromatin for GR to efficiently bind 

its target genes in liver and macrophages. 
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Figure 8: GR binds accessible chromatin in hepatocytes and macrophages. 
ChIP-Seq tracks for GR, H3K4me3, H3K4me1 and H3K27ac are shown in hepatocytes and LPS-activated 
macrophages. (A) In hepatocytes, GR binds the Pck1 promoter. Chromatin surrounding harbors the double mark 
of H3K4me1/H3K27ac for active enhancers and the additional H3K4 trimethylation mark (H3K4me3), indicating 
the proximity to the Pck1 promoter. In macrophages, this locus is not bound by GR and is void of any 
enhancer/promoter-specific histone marks. (B) In macrophages, the Il6 enhancer is bound by GR and harbors the 
double H3K4me1/H3K27ac histone mark for active enhancers. In hepatocytes this chromatin is not accessible for 
GR binding and is lacking these histone marks. Picture taken from (Greulich et al., 2016). 
 

 

The past years have shown that GR depends on the presence of lineage-determining 

pioneering factors to generate chromatin accessibility for binding to enhancers and 

promoters and to create cell-type specific hormone responses (Granner et al., 2015, Miranda 

et al., 2013). Deciphering the factors, which determine GR’s functionality as a transcriptional 

regulator at cell-type specific sites, will shed light on how the anti-inflammatory versus 

metabolic actions are defined. 
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1.4 The E protein family of basic helix-loop-helix transcription factors 

 

To gain insight into tissue-specific crosstalk involved in the transcriptional activation of 

metabolic programs in response to GCs, ChIP-Sequencing and motif analysis for GR in 

mouse livers was performed. In addition to motifs for Hnf4α, Hnf6 and Fox, an E-Box was 

found as specifically enriched near GREs in hepatic promoters and enhancers. This 

particular E-Box was predicted to be bound by the basic helix-loop-helix (bHLH) transcription 

factor E47.  

 

The basic helix-loop-helix (bHLH) proteins constitute a large superfamily of transcriptional 

regulators regulating many critical developmental processes including cell proliferation, cell 

differentiation and lineage determination. More specifically, they were identified to be key 

regulators of neurogenesis, myogenesis, hematopoeisis, and heart and pancreas 

development (Massari and Murre, 2000, Skinner et al., 2010, Jones, 2004). As dimeric 

transcriptional regulators, bHLH proteins commonly bind a consensus DNA sequence 

(CANNTG) called the E-Box. 

 

1.4.1 The E-Box: function and physiological relevance  
 

The E-box was originally discovered as part of a cis-acting DNA control element in the 

immunoglobulin heavy chain (IgH), known as the IgH intronic enhancer, and important for 

gene transcription (Ephrussi et al., 1985). These sites were present in both the heavy chain 

and light chain enhancers and shared a motif, which consisted of the core hexanucleotide 

sequence CANNTG (Ephrussi et al., 1985). After additional sites were discovered in B-cell 

specific promoter and enhancer elements it was subsequently named Ephrussi-box (E-Box) 

(Ephrussi et al., 1985, Massari and Murre, 2000, Staudt and Lenardo, 1991).  

 

In the following years, more and more E-Box sites were also identified in promoters and 

enhancers of genes governing muscle-, pancreas-, and neuron development. These findings 

quickly established their important role in mediating tissue-specific gene transcription. In 

myogenesis, the upstream enhancer of the muscle creatine kinase gene contains two E-Box 

elements, which are bound by MyoD for full muscle-specific enhancer activity (Lassar et al., 

1989) whereas multiple E-box regulatory sites have been identified in the insulin gene to 

drive pancreatic-cell-specific gene expression in a cooperative and tissue-restricted manner 

(Naya et al., 1995). Finally, E-Box elements constitute an essential part of the transcription-

translation feedback loop comprising the circadian clock (Munoz et al., 2002). Hao et al. 

initially showed that transcription from the period gene of Drosophila happens in a circadian 
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manner driven by an enhancer found 69 bp upstream of the transcriptional start site (Hao et 

al., 1997). An E-Box element within this enhancer drives high levels of mRNA expression of 

the period gene (Hao et al., 1997). It was later discovered that circadian E-Boxes share the 

feature of recruiting the two master transcription factors BMAL1/CLOCK. These bind to them 

and drive rhythmic gene expression under circadian control (Partch et al., 2014, Munoz et al., 

2002). Despite its brevity of merely 6 nucleotides and broad tissue distribution, the E-Box 

influences a large number of genes and is an integral part of tissue-specific gene expression.  

 

1.4.2 Structure and classification of bHLH proteins 

 

In 1989, Murre et al. reported two transcription factors E12 and E47, which arise from 

alternative splicing from E2A, to bind the original E-Box in the immunoglobulin kappa gene 

enhancer (Murre et al., 1989a, Sun and Baltimore, 1991, Henthorn et al., 1990). The E-Box 

site was critical for DNA binding of both factors and constituted a shared region of homology 

with MyoD, the myogenic differentiation factor, the Myc family of transcription factors, the 

Daughterless protein and the achaete-scute gene complex of Drosophila (Massari and 

Murre, 2000, Murre et al., 1989a). Analysis of the shared homology sequence revealed two 

alpha amphipathic helices (H) separated by hydrophobic residues frequently found in loops 

(L) and a number of conserved basic amino acid residues attached to one helix (basic 

region) (Fig. 9).  

 
 
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Structure of a bHLH transcription factor. 	
bHLH transcription factors are comprised of two alpha amphipathic helices (helix 1 and 2) and are separated by a 
hydrophobic loop. A string of conserved basic amino acid residues (b) mediates DNA binding. bHLH factors can 
homo-or heterodimerize facilitated by the two helices and the basic domain recognizes and binds E-Box 
sequences in the DNA. Picture modified from (Dennis et al., 2018). 
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Whereas the HLH part of the domain allows for dimerization with other HLH proteins, the 

basic region facilitates DNA binding. This motif was named basic helix-loop-helix (bHLH) 

motif and was recognized as the cognate recognition site for bHLH proteins (Murre et al., 

1989a, Massari and Murre, 2000, Murre et al., 1994). Using electrophoretic mobility shift 

assays, Murre et al. could show that different HLH proteins are able to bind to DNA as 

heterodimers with other HLH members and in some cases form weak homodimers (Murre et 

al., 1989b). A classification scheme was established and consists of seven classes based on 

a number of structural and functional criteria, e.g. dimerization profile, tissue distribution and 

DNA binding properties (Murre et al., 1994, Massari and Murre, 2000). In the following, E12 

and E47 were classified as the first bHLH factors and named E proteins for binding the 

original Ephrussi-box (Murre et al., 1989a). Table 1 shows an overview of the different 

classes of bHLH proteins and describes their structural properties.  

 

 
Table 1: Classification of bHLH proteins. 

Classes  Members Description/special features 
   

I E2A (E47, E12), Heb, E2-2, Daugtherless E-proteins; bind classical E-Box 

   
II MyoD, NeuroD/Beta2, MASH, Twist, 

Achaete, Scute  preferentially heterodimerize with E proteins 

   
III Myc, TFE3, SREBP1 Leucine zipper adjacent to HLH domain mediates 

dimerization 

   
IV Mad, Max Leucine zipper adjacent to HLH domain mediates 

dimerization 

   
V ID proteins (1-4) lack basic region and cannot bind to DNA, 

preferentially bind to E proteins 

   
VI HES, Hairy, Enhancer of split proline residue in basic region; CACG(C/A)G or 

the N-Box CACNAG; low affinity for E-Boxes 
   

VII Arnt, AHR, Hif1a, Clock, Period Pas domain adjacent to HLH domain mediates 
dimerization; ACGTG or GCGTG  

For Drosophila, proteins are italicized. Classes according to (Murre et al., 1994). Table modified  
from (Jones, 2004). 
 

 

1.4.3 E2A and the E proteins 

 

The family of E proteins comprises E2A (E12 and E47), E2-2, HEB and Drosophila’s 

Daughterless and their binding is restricted to the E-Box site (Murre et al., 1989b). By 

homodimerization, E proteins function as transcriptional activators. Heterodimers with class II 

bHLH proteins can function both as activators or repressors depending on the co-activators 

or co-repressors recruited (Kee, 2009). Homodimers preferentially bind the E-Box sequence 
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CACCTG. Heterodimers between E proteins and class II bHLH factors can bind both 

canonical and non-canonical E-box sites (Murre et al., 1989b, Kee, 2009, Massari and Murre, 

2000)(Fig. 10). Since E proteins are ubiquitously expressed, tissue-specific gene expression 

is facilitated through heterodimerization with the more tissue-restricted class II bHLH factors 

(Wang and Baker, 2015). E proteins can also bind to class V bHLH proteins (Table 1). 

Members from this group, the ID proteins, lack a basic region required for contact with the 

DNA. Heterodimers between E proteins and ID proteins are therefore unable to bind DNA 

(Massari and Murre, 2000, Kee, 2009).  

 
 

Figure 10: E proteins have different transcriptional modalities. 
E proteins bind as homodimers to E‐boxes in target genes and recruit co‐activators (CoA) (left). Heterodimers 
between E proteins and class II bHLH activate or repress gene expression depending on whether co-activators 
(CoA) or co-repressors are recruited (middle). Heterodimers between E proteins and ID proteins fail to bind DNA 
and do not activate gene transcription (right). Picture modified from (Kee, 2009). 
 

 

Consistent with its known role in activating expression of genes specific to the B and T-cell 

lineages, E2A preferentially functions as a transcriptional activator. The two encoded splice 

variants E47 and E12 only differ in their basic DNA binding region (Sun and Baltimore, 1991, 

Murre et al., 1989b). E2A null mutant mice display a high rate of postnatal lethality (Zhuang 

et al., 1994). Heterozygous mice survive but fail to generate committed B cell progenitors 

(pro-B cells) and display a partial block at the earliest stage of T-lineage development (Bain 

et al., 1997a, Zhuang et al., 1994, Bain et al., 1994). The full arrest of B cells occurs early 

and E47 and E12 each have distinct roles in B lymphopoiesis (Bain et al., 1997b, Beck et al., 

2009b). Both E47 and E12 null mice are viable and do not display any developmental growth 

defects (Beck et al., 2009b). They synergistically promote B lymphocyte maturation whereby 

deletion of E47 in mice results in a complete block in early B cell development (prepro-B 

cells) but not in E12 mutant mice (Beck et al., 2009b). At a later stage, a gradient of both 
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factors is needed for proper pre-B and immature B cells (Beck et al., 2009b). In 

hematopoiesis, ID2 and ID3 act as dominant regulators of dosage and activity of E47 and 

E12 thereby controlling lymphoid development (Lazorchak et al., 2005, Engel and Murre, 

2001, Murre, 2005). 

 

In vitro studies have demonstrated that E47 is involved in regulating cell-type specific 

pathways in differentiation and development. E47 was shown to interact with the class II 

bHLH proteins MyoD and plays an important role in muscle differentiation (Lassar et al., 

1991, Murre et al., 1989b). Moreover, E47 can heterodimerize with NeuroD/Beta2, another 

class II bHLH factor. NeuroD/Beta2 is a key regulator of pancreatic islet development and the 

insulin gene in β cells (Naya et al., 1997, Naya et al., 1995). NeuroD/Beta2 null mice display 

a reduced number of insulin-producing cells, fail to develop mature islets and die shortly after 

birth due to severe hypoglycemia (Naya et al., 1997). In transient transfection assays, a 

heterodimer between NeuroD/Beta2 and E47 can bind the insulin E-Box sequence and 

tissue-specifically activate the insulin enhancer. This implicates the NeuroD/Beta2:E47 

heterodimer as a part of the transcriptional complex which cooperatively activates the insulin 

gene (Naya et al., 1995). Moreover, E47 and its negative regulator ID3 have both been 

implicated as novel regulators of the adiponectin promoter mediated by the class III bHLH 

factor Srebp-1c (Doran et al., 2008). E47 and ID3 were shown to affect transcription of the 

adiponectin promoter, an adipocyte-derived cytokine, in a dose-dependent manner. In the 

undifferentiated state, binding of E47 is not detected since high levels of ID3 reduce its 

availability. Decreasing levels of ID3 in differentiating adipocytes correlate with rising 

adiponectin expression since E47 is now able to cooperate together with Srebp-1c and 

induce adiponectin expression (Doran et al., 2008, Rahmouni and Sigmund, 2008). 

Interestingly, knockout mouse models link some of the four ID proteins to the regulation of 

energy metabolism (Wang and Baker, 2015). Deletion studies of ID proteins alone or in 

combination result in phenotypical changes ranging from aberrant glucose and lipid 

metabolism, impaired adipocyte differentiation, cardiac defects to an elevated risk of 

atherosclerosis (Wang and Baker, 2015).  

 

The E-protein E47 is well known for its crucial involvement in the differentiation of B- and T-

cell lineages. Although the factor is expressed in many tissues, a role in liver metabolism has 

not been studied before this thesis. 
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2. Scope of the thesis 

The past years have revealed that tissue-specific gene regulation by GR depends on a large 

repertoire of interacting factors to generate accessibility to chromatin and influence gene 

expression. ChIP-Seq for GR in mouse livers identified the binding motif for the bHLH factor 

E47 to be specifically enriched near GREs.   

The underlying hypothesis for this PhD thesis was that co-occupancy of GR and E47 might 

play a role for the transcription of a subset of genes and that E47 could modulate GR-

dependent gene activation in hepatic lipid and glucose metabolism. Three specific aims are 

detailed as follows: 

1. Define the genome-wide binding profile of GR and E2A 

ChIP-Sequencing was performed to define genome-wide binding profiles for GR and E2A in 

liver. Gene ontology annotations of co-bound loci revealed functional pathways cooperatively 

affected by both factors.  

2. Characterize global and tissue-specific E47 knockout mouse models and the 

response to GC treatment and diet-induced obesity 

E47 plays a critical role in B cell development but has so far not been implicated in liver 

metabolism. Global and tissue-specific E47 mutant mice were metabolically phenotyped in 

response to GC treatment. How loss of E47 affects the response to different biological 

settings of excess GC levels presented a main objective of this thesis. 

3.  Mechanistically define the interaction between GR and E47 

It still remains elusive how GR differentiates between activation and repression depending on 

cellular context and tissue type. By binding together with GR at promoter and enhancer sites 

in liver, E47 possibly affects the assembly of transcriptional complexes needed to activate 

gene transcription. Deciphering the mode of crosstalk between E47 and GR will shed light on 

how GR tissue-specifically impacts gene regulation. 

In light of metabolic side effects upon GC treatment, mostly linking to gene activation, 

identifying the tissue-specific interactome of GR is of high significance. Elucidating the 

crosstalk between GR and E47 as a potential tissue-specific interaction partner might provide 

valuable insight into separating the beneficial from the harmful side effects and ultimately 

lead to the development of safer drugs.  
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3. Material and Methods  
 

3.1 Chemicals, commercial kits, antibodies and primers  

	
Table 2: List of chemicals and reagents. 

Chemicals and reagents Company/provider 
Agarose VWR Chemicals 

Bovine serum albumin  Sigma Aldrich 

Bradford Carl Roth GmbH 

Charcoal-stripped FBS Life Technologies GmbH 

Chelex Sigma Aldrich 

Complete Mini protease inhibitor Roche Applied Science 

Corticosterone Sigma Aldrich 

D-(+)-Glucose solution Sigma Aldrich 

Dapi Sigma Aldrich 

Dexamethasone Sigma Aldrich 

DMEM (high glucose ) cell culture medium Sigma Aldrich 

DMEM  (phenol red-free) cell culture medium Life Technologies GmbH 

dNTP Thermo Fisher Scientific GmbH 

Dynabeads M-280 sheep anti-rabbit IgG-10 Life Technologies GmbH 

Dithiothreitol  Serva Electrophoresis GmbH 

EDTA G-Biosciences 

Eosin Y Sigma Aldrich 

Eukitt quick hardening mounting medium  Sigma Aldrich 

Ethanol  AppliChem GmbH 

Fetal bovine serum  Sigma Aldrich 

Ficoll paque Life Technologies GmbH 

Formaldehyde (w/v) Thermo Fisher Scientific GmbH 

Fugene HD transfection reagent Promega 

Glycerol Carl Roth GmbH 

Glycine Sigma Aldrich 

GoTaq Green DNA Polymerase Promega 

Hematoxylin Gill no.3 Sigma Aldrich 

HEPES buffer Carl Roth GmbH 

Igepal (NP-40) Sigma Aldrich 

Isopropyl alcohol Merck Millipore 

Lipopolysaccharide from E.coli Sigma Aldrich 

Macrophage-SFM  medium Thermo Fisher Scientific GmbH 

Magnesium chloride  Carl Roth GmbH 

Methanol Sigma Aldrich 

Milk powder  Carl Roth GmbH 

Igepal (NP-40) Sigma Aldrich 

Oil Red O Sigma Aldrich 

Opti-MEM reduced serum medium Life Technologies GmbH 

Paraformaldehyde Sigma Aldrich 
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Penicilin/Streptomycin Sigma Aldrich 

Phosphate-buffered saline (PBS) Thermo Fisher Scientific GmbH 

Phosphatase inhibitor  Thermo Fisher Scientific GmbH 

Physiological saline (0.9%) B-Braun group 

Potassium chloride  Carl Roth GmbH 

Potassium hydroxide  Carl Roth GmbH 

Power SYBR Green Master mix Thermo Fisher Scientific GmbH 

Protein G-coupled Dynabeads Life Technologies GmbH 

Proteinase K Sigma Aldrich 

Rnase A (Dnase-free) AppliChem GmbH 

Roti-Mount Aqua  mounting medium Carl Roth GmbH 

RPMI cell culture medium Sigma Aldrich 

Sepharose A/G beads Biomol GmbH 

Sodium chloride  Sigma Aldrich 

Sodium dodecyl sulfate (20%) Sigma Aldrich 

Sodium pyruvate Sigma Aldrich 

Sucrose Carl Roth GmbH 

Triton-X AppliChem GmbH 

Trypsin (0.25%) EDTA Sigma Aldrich 

Tween-20 AppliChem GmbH 

Xylene AppliChem GmbH 

	

Table 3: List of commercial kits. 

Kits Company/provider 
Ambion DNase Treatment and Removal Kit Life Technologies GmbH 

Corticosterone Enzyme Immunoassay Kit  Arbor assay 

DNA Maxi Plasmid kit Qiagen 

Dual-Glo Luciferase kit  Promega 

High Sensitivity DNA Kit Agilent Technologies 

LabAssay Triglycerides Colorimetric Assay Wako Chemicals 

MinElute PCR Purification Kit Qiagen 

QIAquick Gel Extraction Kit Qiagen 

QuantiTect Reverse Transcription Kit  Qiagen 

QUBIT dsDNA HS kit Thermo Fisher Scientific GmbH 

RNeasy Extraction Mini Kit  Qiagen 

RNA 6000Nano Reagents Agilent Technologies 

KAPA Hyperprep Kit Kapa Biosystems 

KAPA Library Quantification Kit Kapa Biosystems 
 
 

Table 4: List of primary and secondary antibodies. 

List of antibodies Reference Provider 
anti-rabbit E2A sc-349X Santa Cruz Biotechnology 

anti-mouse E2A sc-133075 Santa Cruz Biotechnology 
anti-Foxo1a ab39670 Abcam 
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anti-rabbit GR 24050-1-AP Proteintech 

anti-rabbit GR 12041 Cell Signalling Technology 

anti-mouse GR sc-393232 Santa Cruz Biotechnology 

anti-rabbit IgG 2729 Cell Signalling Technology 

anti-rabbit Med1 A300-793A Bethyl Laboratories 

anti-Snrp70 ab83306 Abcam 

anti-rabbit Alexa 488 IgG A-21206 Life Technologies GmbH 

anti-mouse HRP-conjugates IgG2a 115035206 Dianova 

anti-rabbit HRP-conjuagted IgG sc-2317 Santa Cruz Biotechnology 
 

Table 5: Primer sequences for qRT-PCR. 

Abbreviation Forward primer (5'-3') Reverse primer (3'-5') 
Acacb CCTTTGGCAACAAGCAAGGTA AGTCGTACACATAGGTGGTCC 

Apoa4 CGTGGACCTGCAAGATCAGA TCTGCATGCGCTGGATGTAT 

Ccl2 TTAAAAACCTGGATCGGAACCAA GCATTAGCTTCAGATTTACGGGT 

Cyp2a22 GTCACTCGCCTCTGCAAAAC TGTACACTGGGCTTGGGAAC 

Cyp2c39 GAGGAAGCATTCCAATGGTAGAA TGTGAAGCGCCTAATCTCTTTC 

Dhcr7 AGCTTCAGGCAGGCACTTAG TGCTGGGATTTCGAAGCCAT 

Dhcr24 CTGAAGACAAACCGGGAGGG AAGATGGGGTTGTTGCCGAA 

E12 TGCAGGATGAGCAGTTTGGT GAGGCCTTTAAGGAGCTCGG 

E47 TTATCCGACTTGAGGTGCAG CTGGAGGAGAAGGACCTGAG 

Fasn  TGGATTACCCAAGCGGTCTG  AGTGTTCGTTCCTCGGAGTG 

Gck AACGACCCCTGCTTATCCTC CTTCTGCATCCGGCTCATCA 

Gilz ACCACCTGATGTACGCTGTG TCTGCTCCTTTAGGACCTCCA 

G6pc CGACTCGCTATCTCCAAGTG GTTGAACCAGTCTCCGACC 

Il6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC 

Igfbp1 TCGTGACCACTGAGCAACTG AGTTAGGAACTCGGGCATCG 

Pck1 CTGCATAACGGTCTGGACTTC CAGCAAACTCCCGTACTCC 

Per1 ACCAGGTCATTAAGTGTGTGC CTCTCCCGGTCTTGCTTCA 

Pparα AGAGCCCCATCTGTCCTCTC ACTGGTAGTCTGCAAAACCA 

Srebp-1c GGAGCCATGGATTGCACATT GGCCCGGGAAGTCACTGT 

U36b4 AGATTCGGGATATGCTGTTGGC TCGGGTCCTAGACCAGTGTTC 
	

Table 6: Primer sequences for ChIP qPCR. 

Abbreviation Forward primer (5'-3') Reverse primer (3'-5') 
Acacb  CAGGCAGCGAGCATTTCCTA TCTGATGCCCTTGTGCCTAC 

Apoa4 TCACTGGGGTGGAAAGAGGA CCTGAACAGAACTGAGGCCC 

Cyp2a22 AAGGCCATCATGTACCTGGC TGGCATGGATCTACAAAGGCT 

Cyp2c39 GGGTTACTCAACGATGCTCAA TTGTGATCAGGCATCACTGGC 

Dhcr7 CCTGCGTAGCTTGGTTTCCTA CAGAAGCTGGGCTATGACGG 

Dhcr24  CTGGATGCCCTGTGAGTTCTA ACAGGCATTCGCAAACATACT 

Gpam ACACACAAGGAGGAGTGCAG CACGGTTGCCCAATGAGTTA 

Hmgcr GGCCGCCAATAAGGAAGGAT GGAGACCGTTCGTGACGTAG 

Hmgcs1 TGGTCGGAGAACCTCTCACT CGAGAACAAGCCTGCCAATG 
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Igfbp1 CAGCACTTTCCACCGTTGAC GCAGCTCCAGAGTTAGGCAA 

Pck1 CAGGGCTGTCCTCCCTTCTA CTGTTGACCGAGGGTGTGTT 

nCtrl GCTGGCAGAATAGCATCCG TGATGAAGCACTCGTTGAGGC 
 

Acacb (Acetyl-Coenzyme A carboxylase beta), Apoa4 (Apolipoprotein A4), Ccl2 (C-C motif 

chemokine ligand 2), Cyp2a22 (cytochrome P450, family 2, subfamily a, polypeptide 22), 

Cyp2c39 (cytochrome P450, family 2, subfamily c, polypeptide 39), Dhcr7 (7-

dehydrocholesterol reductase), Dhcr24 (24-dehydrocholesterol reductase), E12 (transcription 

factor 3, splice variant E12), E47 (transcription factor 3, splice variant E47), Gck 

(glucokinase), Fasn (fatty acid synthase), Gilz (TSC22 domain family, member 3), G6pc 

(glucose-6-phosphatase catalytic subunit), Il6 (interleukin 6), Igfbp1 (insulin like growth factor 

binding protein 1), Pck1 (phosphoenolpyruvate carboxykinase 1), Per1 (period circadian 

clock 1), Pparα (peroxisome proliferator activated receptor alpha), Srebp-1c (sterol 

regulatory element binding transcription factor 1), U36b4 (large ribosomal protein) 

 

3.2 Animal experiments 

 

3.2.1 Transgenic mouse lines 

	

All animal procedures were approved by the relevant authorities - regional animal welfare 

committee of the state of Bavaria (2532-158-2014) and Berlin (LAGeSo Berlin, Reg 0103/11) 

- in accordance with Max Delbrück Zentrum and Helmholtz Zentrum München – Deutsches 

Forschungszentrum für Gesundheit und Umwelt (HMGU) guidelines for the care and use of 

animals. 

 

E47 knockout (E47-/-) and E47 floxed alleles (E47flx/flx) were bred on a C57BL/6 background. 

Both lines were generated by Kristina Schachtrup (Beck et al., 2009b) and kindly provided to 

us. For E47-/- mice, wildtype littermates served as controls. E47 floxed mice were crossed 

with hepatocyte-specific Albumin (Alb)-Cre mice obtained from JAX (B6.Cg-Tg(Alb-

cre)21Mgn/J) to generate Albumin-Cre x E47flx/flx mice; from here on specified as E47ΔLKO. 

Albumin-Cre negative floxed littermates served as controls.  

	

3.2.2 Housing and diets 

 

Mice were housed in a controlled SPF facility with a 12 hr dark/light cycle in groups of 4 

animals per cage. The cages were individually ventilated and the room was kept at 23°C with 

constant humidity. They were fed ad libitum with regulator chow diet (Altromin GmbH) or a 
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high fat diet (HFD; 58% kcal fat, Research Diets D12331) for a minimum period of 12 weeks. 

For all experiments, 10-16 week old males were used.  

	

3.2.3 Genotyping 

 

For genotyping of E47-/- mice and E47ΔLKO mice, DNA was extracted from ear punches. Ear 

tissue was digested in lysis buffer (50 mM Tris-HCl at pH8, 100mM EDTA at pH8, 100 mM 

NaCl, 1% SDS) containing Proteinase K (Sigma-Aldrich) at 56°C overnight. For extraction of 

DNA, 2M NaCl (Sigma-Aldrich) was added to the sample followed by ethanol precipitation. 1 

µl of this DNA was used as template for the genotyping PCR. The PCR reaction mix 

contained 12.5 µl GoTaq Green DNA polymerase master mix (Promega), 40 mM MgCl2 

(Carl Roth GmbH), 0.2 µM of each primer and was filled up to 25 ul with H2O. Table 7 

describes the PCR reaction, which was used for all genotyping procedures. Primers were 

produced by Eurofins Genomics.  

 
Table 7: Genotyping PCR reaction. 

Step Temperature (°C) Duration Cycles 
Initiation 95 5 min  
Denaturation 95 1 min  
Primer annealing 56 1 min 35x 
Elongation 72 1 min  
Final elongation 72 10 min  
 

For the E47-/- line, three primers were used in a single PCR reaction: 

 
Primer 1: ccagctgcacctcaagtcgg 
Primer 2: ggagagagcagtgggagac 
Primer 3: gccatgcagtttctaaagg 
 

PCR products were separated on a 2% agarose gel (VWR Chemicals). Wildtype mice 

revealed a PCR product of 200bp, homozygous mice (E47-/-) revealed a PCR product of 400 

bp whereas heterozygous mice (E47-/+) showed both products. 

 

For the E47ΔLKO line, two separate PCRs were performed. To genotype for the E47 gene 

locus, two primers were used: 

 
Primer 1: tgcagtgtggacaactgtgcc  
Primer 2: acatgcagtttggtctgtgcg  
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Wildtype mice revealed a PCR product of 700 bp. Mice homozygous revealed a band at 750 

bp and mice heterozygous showed both products. A second PCR was performed for the 

Albumin-Cre recombinase with three primers: 

 
Primer 1: cctgccagccatggatataa 
Primer 2: gttgtcctttgtgctgctga 
Primer 3: gaagcagaagcttaggaagatgg 
 

In Cre-positive mice, a 500 bp PCR product was detected. In Cre-negative mice, PCR 

products of 750 bp, 500 bp and 400 bp were detected. 

 

3.2.4 Supplementation of drinking water 

	

Dexamethasone (#D2915, Sigma Aldrich) and corticosterone (#27840, Sigma Aldrich) were 

either dissolved in H2O or EtOH and supplied in the drinking water of mice for 3 consecutive 

weeks at a final concentration of 10ug/mL (Dex) or 100 ug/ml (Cort). Mice received regular 

chow diet (Altromin GmbH) during the course of water supplementation. Once a week the 

water was changed to fresh water supplemented with either of the indicated compounds. 

	

3.2.5 Glucose tolerance test 

 

For a GTT, mice were fasted for 16 hrs overnight with free access to water. Glucose (20% D-

glucose; Sigma Aldrich) was administered by intraperitoneal injection at 2g/kg (dissolved in 

sterile physiological saline) and the injection volume was calculated based on the body 

weight of each individual mouse. Blood glucose levels were sampled from the tail vein using 

a handheld glucometer (AccuCheck Aviva, Roche Diagnostics). Blood glucose was 

measured at 0 (basal level before injection) and at 15, 30, 60 and 90 mins after 

intraperitoneal injection. 

	

3.2.6 Pyruvate tolerance test 

	

For a PTT, mice were fasted for 5 hrs during the day. Sodium pyruvate (#5280, Sigma 

Aldrich) was administered by intraperitoneal injection at 2g/kg (dissolved in sterile 

physiological saline) and the injection volume was calculated based on the body weight of 

each individual mouse. Blood glucose levels were determined from the tail vein using a 

handheld glucometer (AccuCheck Aviva, Roche Diagnostics). Blood glucose was measured 

at 0 (basal level before injection) and at 15, 30, 60 and 90 mins after intraperitoneal injection. 
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3.2.7 Dexamethasone suppression test 

 

For the dexamethasone suppression test, dexamethasone (#D2915, Sigma Aldrich) was 

dissolved in H2O and administered by intraperitoneal injection at a final concentration of 

1mg/kg. The injection volume was calculated based on the body weight of each individual 

mouse. Mice were sacrificed 6 hrs post injection and had free access to food and water 

during the course of the treatment. 

	

3.2.8 Body fat composition using Echo-MRI 

	

Body composition (fat and lean mass) was measured using quantitative nuclear magnetic 

resonance technology (EchoMRI, Houston, TX) before and after long-term Cort treatment to 

calculate changes in fat and lean mass gain. For the measurement, each mouse was placed 

in a tube inside the machine for approximately 30 seconds.  

 

3.3 Molecular biology techniques 

 

3.3.1 RNA isolation from tissue 

	

For RNA isolation, tissue was harvested after euthanasia of mice via cervical dislocation, 

snap-frozen in liquid nitrogen and stored at -80°C. Total RNA from tissue was isolated using 

the RNeasy Mini kit (Qiagen) according to manufacturer’s instructions. 

	

3.3.2 cDNA synthesis 

	

Total RNA from tissue was reverse-transcribed into cDNA (complementary DNA) with the 

QuantiTect Reverse Transcription Kit (Qiagen) according to manufacturer’s instructions. The 

total amount of RNA used for reverse-transcription was 1ug.  

	

3.3.3 Real-time quantitative polymerase chain reaction 

	

Real-time quantitative polymerase chain reaction (RT-qPCR) was performed using Power 

SYBR Green Master Mix (Life Technologies GmbH) in a ViiA 7 Real-Time PCR System 

(Thermo Fischer Scientific GmbH). The qPCR reaction contained 5 ul SYBR Green Master 

Mix, 0.9 ul H2O, 0.1 ul primer mix (1uM) and 4 ul of diluted cDNA. Samples were run on 384-

well plates as technical triplicates. The relative expression levels of each gene were 
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normalized to the housekeeping gene U36b4. RT-qPCR primers were produced by Eurofins 

and are listed in Table 5. 

 

3.3.4 Nuclear protein extraction from liver 

	

Lysis of liver tissue was performed using a tissue lyser (Qiagen) with 5mm steel beads 

(Qiagen) in cold cell lysis buffer (10 mM Hepes-KOH at pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 

0.5 mM DTT, 0.15% NP40, 1uM Dexamethasone) containing complete mini protease 

inhibitors (Roche Applied Science) and phosphatase inhibitors (Thermo Fisher Scientific). 

Cytosolic and nuclear fractions were separated by centrifugation for 20 min at 2700g at 4°C 

and the nuclear fraction was washed once with PBS. Nuclear lysis was performed in nuclear 

lysis buffer (420 mM NaCl, 20 mM Hepes-KOH pat H 7.9, 2 mM MgCl2, 0.2 mM EDTA, 0.5 

mM DTT, 0.1% NP40, 20% glycerol, 1uM Dexamethasone; complete protease and 

phosphatase inhibitors) and passed through a syringe for complete lysis. After incubation for 

1 hr at 4°C with rotation, nuclear extracts were obtained by centrifugation at maximum speed 

for 45min. Protein content was determined using Bradford reagent (Bio Rad) according to 

manufacturer’s instructions. 

	

3.3.5 Co-immunoprecipitation 

	

For each Co-immunoprecipiation (Co-IP), 300ug of nuclear extracts (see 3.3.4) were 

subjected to a pre-clearing by incubation with unblocked Dynabeads M-280 (Life 

Technologies GmbH) for 1 hr at 4°C with rotation. Pre-cleared nuclear extratcs were 

incubated in IP buffer (20mM Tris pH 8, 100mM KCl, 5mM MgCl2, 0.2mM EDTA, 20% 

glycerol, complete protease inhibitors) with rabbit anti-GR (3ug; #24050-1-AP, Proteintech) 

and rabbit anti-IgG (3ug; #2729, Cell Signaling) for 2 hrs at 4°C with rotation before 1%-BSA 

blocked Dynabeads M-280 were added for overnight immunoprecipitation. The next day, the 

IP-coupled beads were washed 5 times - twice with wash buffer (20 mM Tris at pH 8, 500 

mM KCl, 5 mM MgCl2, 0.2 mM EDTA, 20% glycerol) with addition of 1% Triton-X, twice 

without Triton-X and once with HEPES buffer (Carl Roth GmbH). Each wash step was 

performed for 5 min with rotation at 4°C. Proteins were eluted twice from washed beads 

using elution buffer (200mM DTT, 6x Laemmli loading buffer) at 37°C for 30 mins at 1000 

rpm shaking before eluates were combined.	
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3.3.6 Western Blot analysis 

	

Western blot of Co-IP samples (see 3.3.5) were boiled for 5 min at 95°C followed by 

separation on a 4-12% Bis-Tris gel (Invitrogen). After transfer to a PDVF membrane (Merck 

Millipore), membranes were blocked for 1 hr at room temperature in 5% milk/TBS-T (50 mM 

Tris-Cl, 150 mM NaCl, pH 7.6) supplemented with 1% Tween20 (AppliChem GmbH) and 

then incubated overnight at 4°C with mouse anti-GR antibody (1:1000; #sc-393232, Santa 

Cruz Biotechnology) and mouse anti-E2A antibody (1:500; #sc-133075, Santa Cruz). 

Incubation for 1 hr at room temperature with mouse HRP-conjugated anti-IgG2a secondary 

antibody (1:5000; #115035206, Dianova) was used to detect protein signal. Peroxidase 

activity was measured using HRP Western substrate (Merck Millipore) and visualized using 

high sensitive X-ray films (GE Healthcare) for chemiluminescence detection of proteins.  

 

Western blot for nuclear localization of GR was performed using nuclear extracts from Dex-

treated wildtype and E47-/- livers (see 3.3.4). For each sample, 8 ug of protein were loaded 

on a 4-12% Bis-Tris gel (Invitrogen) and Western blot was performed as described above. 

Overnight incubation of the membrane was performed using rabbit anti-GR antibody (1:2000; 

#12041, Cell Signaling technology). Incubation for 1 hr at room temperature with anti-rabbit 

HRP-conjuagted IgG secondary antibody (1:30.000; #sc-2317, Santa Cruz Biotechnology) 

was used to detect protein signal. Peroxidase activity was measured using HRP Western 

substrate (Merck Millipore) and visualized using X-ray films (CEA X-ray) for 

chemiluminescence detection of proteins.  

 

3.4 Tissue assays  

 

3.4.1 Elisa corticosterone measurement 

	

Blood was harvested from the heart of euthanized mice and collected in EDTA-coated 

microvette tubes on ice. Plasma was obtained after centrifugation at 1500g for 15min. 

Plasma corticosterone levels were measured by an enzyme immunoassay kit  (#K014-H1, 

Arbor assays) according to the manufacturers' instructions.  

 

3.4.2 Triglyceride measurement in plasma and liver 

	

Plasma was obtained as described in 3.4.1 Livers were harvested and 0.1g subsequently 

digested in EtOH / 30% potassium hydroxide (2:1, v/v) at 60°C. Digested samples were 

mixed with 1M MgCl2 at a ratio of 1.08:1 (volume of MgCl2:volume of sample) and incubated 
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on ice for 10 min followed by centrifugation for 30 min at max speed for separation. The 

supernatant containing extracted triglycerides was transferred to a new tube. Triglycerides 

were measured in liver and plasma samples by colorimetric assay (#290-63701, Wako 

Chemicals) according to the manufacturers' instructions.  

	

3.4.3 Immunohistochemistry for GR 

	

Livers were harvested and immediately fixed in 4% paraformaldehyde (Karatsoreos et al.) 

overnight at 4°C and cryoprotected in 30% sucrose. Livers were embedded in embedding 

media (Leica Biosystems) and sectioned on a cryostat (Leica Biosystems) at 6 µm. Antigen 

retrieval was performed on the sections in citrate-based buffer (pH 6) before blocking with 

PBS containing 0.1% Triton-X and 5% BSA for 1 hr. Incubation with rabbit anti-GR antibody 

(1:200; #12041, Cell Signaling) was done in blocking buffer at 4°C overnight followed by 

incubation with rabbit anti-IgG Alexa 488 antibody (1:250; #A-21206, Life Technologies 

GmbH) for 1 h at RT and final stain with DAPI. Stained slides were mounted in aqueous 

mounting medium (Carl Roth GmbH). A Zeiss AXIO Scope A1 microscope was used for 

image analysis at a magnification of 63x. 

	

3.4.4 Oil red O staining 

	

Liver tissue was harvested and immediately fixed in 4% PFA overnight at 4°C and 

cryoprotected in 30% sucrose. Sections of 6 µm were performed by cryostat (Leica 

Biosystems) and stained with Oil Red O solution (Sigma Aldrich) dissolved in isopropyl 

alcohol for 5 min followed by hematoxylin gill no.3 (#GHS332, Sigma Aldrich) staining for 15 

sec and repeated washing with H2O. Stained slides were mounted in aqueous mounting 

medium (Carl Roth GmbH). Brightfield microscopy was performed with a Keyence BZ-9000 

microscope at a magnification of 20x. 

	

3.4.5 Paraffin embedding of liver tissue 

	

Livers were harvested and immediately fixed in 4% PFA overnight at 4°C. For dehydration, 

PFA-fixed liver tissue was first placed in 70% EtOH overnight at 4°C and then dehydrated in 

increasing percentages of EtOH for 1 hr each (80%-100%) followed by 3 washes in xylene 

(AppliChem GmbH). Dehydrated liver tissue was then placed in paraffin and kept in an oven 

at 65°C overnight before being embedded in paraffin and cut in 6µm sections in a microtome. 
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3.4.6 Hematoxylin and Eosin staining 

	

For hematoxylin and eosin (H&E) stainings, liver tissue was embedded in paraffin as 

described in 3.3.8. Slides were first placed in xylene and then hydrated by passing through 

decreasing concentration of alcohol baths and water (100%, 96%, 70%). Staining with 

hematoxylin gill no.3 (#GHS332, Sigma Aldrich) and eosin Y (#HT110216, Sigma Aldrich) 

was each performed for 30 seconds followed by washing in tab water. Stained slides were 

dehydrated again in increasing concentrations of ethanol and cleared in xylene. Stained 

slides were mounted in non-aqueous mounting medium (Sigma Aldrich). Brightfield 

microscopy was performed with a Keyence BZ-9000 microscope at a magnification of 20x. 

	

3.5 Cell culture experiments 

 

3.5.1 Isolation of bone marrow-derived macrophages 

	

For isolation of bone marrow, mice were euthanized and hind legs were surgically removed. 

Total bone marrow was harvested using a 25G needle and washed in RPMI medium (Sigma-

Aldrich) with 2% FBS (Sigma-Aldrich). To lyse erythrocytes, ACK lysis buffer (151 mM 

NH4Cl, 10 mM KHCO3, 0.2 mM EDTA in H2O) was added and the pellet was repeatedly 

washed with PBS. Next, Ficoll-paque (GE Healthcare) was added to obtain monocytes 

through gradient centrifugation. The middle fraction containing purified monocytes was 

carefully transferred to a cell culture plate. For differentiation of monocytes, differentiation 

medium (DMEM medium, 30% L929 supernatant, 20% FBS, 1% Pen/Strep) was added for 5 

consecutive days. Differentiated macrophages were counted and seeded in Macrophage-

SFM medium (Thermo Fisher Scientific GmbH) supplemented with 1% Pen/Strep. 

Macrophages were either treated with 1uM LPS for 3 hrs, 1uM dexamethasone overnight or 

with a combination of both treatments. Macrophages were harvested and total RNA was 

isolated using the RNeasy Mini kit (Qiagen) according to manufacturer’s instructions. 

	

3.5.2 Switchgear luciferase reporter screen 

	

GR responsive human promoter/enhancer luciferase reporter constructs were obtained from 

Switchgear Genomics (“GR pathway”). The reporter constructs were transfected together 

with the expression vector for human GR - pcDNA3.1-human GR - and a CMX-LacZ plasmid 

expressing β-galactosidase (β-gal) for normalization of transfection efficiency. Each DNA-

transfection reaction contained: 
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50 ng luciferase reporter construct  

25 ng pcDNA3.1-human GR  

25 ng  CMX-lacZ  

 

Luciferase activity was measured in CV-1 cells (African green monkey (Cercopithecus 

aethiops)	 and run in triplicates. CV-1 cells were transfected using Fugene reagent 

(Promega) according to manufacturer’s protocol. The DNA-Fugene mix was prepared in 

100ul Optimem reduced serum medium (Life Technologies GmbH). After 24 hrs, medium 

was changed to PhenolRed free DMEM (Life Technologies GmbH) containing 10% charcoal-

stripped FBS (Life Technologies GmbH) and 1% Pen/Strep. Transfected cells were treated 

overnight with 100nM Dexamethasone, 100nM Cortisol or ethanol as control. To measure 

luciferase activity of transfected constructs and β-galactosidase (β-gal), a colorimetric assay 

was used as described in (Uhlenhaut et al., 2013). Relative luciferase activity was compared 

to vehicle and empty vector and clustered based on fold changes. Overrepresented motifs in 

up- and downregulated cis-regulatory sequences were identified using OTFBS based on 

TRANSFAC and aligned using T-Coffee; motif position weight matrices were generated 

using Weblogo.  

 

3.5.3 Luciferase reporter assays  

 

Reporter constructs from the Switchgear screen (3.5.2) were used for additional luciferase 

assays. Mutagenesis of the two predicted E47-binding sites for ATPB2 to TTGGCC from was 

performed by gene synthesis (Eurofins Genomics). CV-1 cells were seeded in high glucose 

DMEM cell culture (Sigma Aldrich) containing 10% FBS and 1% Pen/Strep in 96-well plates 

one day prior to transfection to reach a confluency of around 80%. Each DNA-transfection 

reaction contained: 

 

50 ng luciferase reporter construct  

25 ng pcDNA3.1-human GR and/or 

 pcDNA3.1-human E47 and/or 

 pCl human ID3 

25 ng  pRL-TK Renilla  

 

Reporter constructs were co-transfected with the pRL-TK Renilla luciferase control vector 

(Promega) to normalize for transfection efficiency. To ensure equal uptake of DNA within an 

experiment, the empty vector (pcDNA3.1) was co-transfected whenever DNA content 

needed to be adjusted. All transfection reactions were run in triplicates. Transfection was 



3. Material and Methods   
	

	

33 

performed using Fugene reagent (Promega) according to manufacturer’s protocol and the 

DNA-Fugene mix was prepared in 100ul Optimem reduced serum medium (Life 

Technologies GmbH). After 24 hrs, medium was changed to PhenolRed free DMEM (Life 

Technologies GmbH) containing 10% dialyzed FBS, 1% Pen/Strep and 1% sodium-pyruvate.  

Transfected cells were either treated with 1 µM Dexamethasone (#D4902‚ Sigma-Aldrich) or 

EtOH as control overnight. Luciferase activity was measured using the Dual-Glo luciferase kit 

(Promega) according to protocol. Luminescence signal was measured using a PHERAstar 

plate reader and normalized to renilla luminescence for each well. 

 

3.6 Next generation sequencing techniques 

 

3.6.1 ChIP-Sequencing  

 

For pellet preparation, livers were harvested, snap-frozen in liquid nitrogen and stored at -

80°C until use. For ChIP-Seq, 0.2g of frozen liver tissue was homogenized in lysis buffer 

(10mM Hepes-KOH, 10mM KCL, 5mM MgCl2, 0.5mM DTT) containing complete proteinase 

inhibitors (Roche Applied Science) using a TissueLyser (Qiagen) with 5 mm steel beads. 

Lysates were passed through a cell strainer and cross-linked in 1% formaldehyde for 15 min 

followed by quenching with 0.2M glycine solution for 5 min and final washing with PBS.  

 

Pellets were resuspended three times with IP buffer (150 mM NaCl, 5 mM EDTA at ph 7.5, 5 

mM Tris at pH 7.5, 1% Triton X-100, 0.5% NP40, complete mini protease inhibitors) and 

passed through a syringe (24G). The chromatin was sonicated in shearing buffer (50 mM 

Tris at pH8, 10 mM EDTA at pH8, 1% SDS, complete mini protease inhibitors) to a 0.1-1kb 

size using a bioruptor (Diagenode). Sonicated chromatin was centrifuged at 12.000 rpm at 

4°C for 10 min. Chromatin immunoprecipitation (IP) was set up in dilution buffer (167 mM 

NaCl, 16.7 mM Tris at pH 8, 1.2 mM EDTA at pH 8, 1.1% Triton X-100, 0.01% SDS, 

complete mini protease inhibitors) overnight at 4°C with rotation. For each IP, 8 ug of the 

following antibodies were used: rabbit anti-GR antibody (8ug; #24050-1-AP, Proteintech), 

rabbit anti-E2A antibody (8ug; sc-349X, Santa Cruz Biotechnology) and rabbit anti-IgG 

antibody (8ug; #2729, Cell Signaling). Sheared chromatin was kept as input control at -20°C 

overnight. The next day, chromatin was cleared by centrifugation at 3500 rpm for 20 min at 

4°C. 90% of each IP samples was incubated with 0.5%-blocked Dynabeads M-280 

(Invitrogen) for 6 hrs at 4°C with rotation. Coupled Dynabeads M-280 were washed six times 

with wash buffer (150 mM NaCl, 5 mM EDTA at ph 7.5, 5 mM Tris at pH 7.5, 1% Triton X-

100, 0.5% NP40) and once with TE-Buffer. Elution of IP samples from the beads was 

performed in elution buffer (105 mM NaHCo3, 1% SDS in H2O) for 15 min at 1000 rpm at 
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room temperature. For crosslink reversal, 200mM NaCl was added to the ChIP-chromatin as 

well as the input control and incubated at 65°C overnight followed by treatment with 0.05 ug 

RNAse A (AppliChem GmbH) at 37°C for 30 mins and treatment with Proteinase K solution 

(0.05 ug Proteinase K, 10mM EDTA at pH 8, 40 mM Tris at pH 7.5) for 2 hrs at 45°C. ChIP-

DNA and input were isolated with MinElute PCR Purification Kit (QIAGEN). DNA 

concentration was determined using QUBIT dsDNA HS kit (Thermo Fisher Scientific).  

 

Libraries were prepared using the KAPA Hyperprep Kit (#KK8504, Kapa Biosystems). 

Illumina compatible adapters were synthesized by IDT (Integrated DNA Technologies) and 

used at a final concentration of 68nM. Size-selection (360-610bp) of adapter-ligated libraries 

was performed using 2% dye free gels (#CDF2010, Sage Science) in a Pippin Gel station 

(Sage Science). qPCR was used to estimate library concentrations with the KAPA Library 

Quantification Kit (#KK4873, Kapa Biosystems). Library quality was verified using the Agilent 

High Sensitivity DNA Kit (Agilent) in a 2100 Bioanalyzer (Agilent).  

	

3.6.2 ChIP qPCR 

	

Sonication of chromatin and immunoprecipitation was performed as described in 3.6.1. For 

each IP, 3 ug of the following antibodies were used: rabbit anti-GR antibody (3ug; #24050-1-

AP, Proteintech), rabbit anti-Med1 (3ug; #A300-793A, Bethyl laboratories), rabbit anti-

Foxo1a (#ab39670, Abcam), and rabbit anti-IgG antibody (3ug; #2729, Cell Signaling). 

Sheared chromatin was kept as input control and precipitated in 3 volumes of EtoH at -20°C 

overnight. The next day, chromatin was cleared by centrifugation at 12.000 rpm for 10 min at 

4°C. 90% of each IP samples was incubated with 0.5% BSA-blocked Sepharose Protein A/G 

beads (Rockland Inc.) for 3 hrs at 4°C with rotation. Coupled Sepharose Protein A/G beads 

were washed four times with wash buffer (150 mM NaCl, 5 mM EDTA at ph 7.5, 5 mM Tris at 

pH 7.5, 1% Triton X-100, 0.5% NP40) by centrifugation at 500 rpm at 4°C. For isolation, 100 

µl of 10% Chelex (Sigma Aldrich) was added to the washed sepharose beads and vortexed. 

After boiling for 10 min, proteinase K is added and the beads are incubated for 30 min at 

55°C while shaking, followed by another round of boiling for 10 min. For elution, the bead 

suspension is centrifuged and the supernatant is collected twice after addition of another 100 

µl water. Precipitated input was centrifuged at maximum speed for 10 min and the pellet was 

dried and processed the same way. The ChIP-DNA and input DNA was purified using the 

MinElute PCR purification kit according to manufacturer’s instructions.  

 

ChIP-DNA was diluted accordingly and served as template for quantitative PCR (qPCR) 

using Power SYBR Green Master Mix (Life Technologies) in a ViiA 7 Real-Time PCR System 
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(Thermo Fischer Scientific). Each sample was run in technical triplicates on a 384-well plate. 

Fold enrichment was calculated over IgG using the raw CT-values:  (CT IP) - (CT IgG) = 

double delta CT (DDCT) = 2-DDCT. This normalization method divides the ChIP signal by the 

mock-antibody signal, representing the ChIP signal as the fold increases relative to the 

background signal. Primers for ChIP qPCR are listed in Table 6. 

	

3.6.3 ChIP coupled to mass spectrometry 

	

ChIP coupled to mass spectrometry (ChIP-MS) was performed in livers of Dex-injected 

E47ΔLKO and control littermates. ChIP was carried out as described in 3.6.1 with minor 

modifications. All IPs were done in three biological replicates. Chromatin was sonicated to an 

average size of 200bp. After overnight immunoprecipitation with rabbit anti-GR (5ug; #24050-

1-AP, Proteintech) and rabbit anti-IgG (5ug; #2729, Cell Signaling), antibody-bait complexes 

were bound by protein G-coupled Dynabeads (Life Technologies) and washed three times 

with wash buffer A (50mM HEPES pH 7.5, 140mM NaCl, 1% Triton), once with wash buffer B 

(50mM HEPES pH 7.5, 500mM NaCl, 1% Triton) and twice with TBS. Precipitated proteins 

were eluted with an on-bead digest (Hein et al., 2015). Beads were incubated for 30min with 

elution buffer 1 (2M Urea, 50mM Tris-HCl (pH 7.5), 2mM DTT, 20µg/ml trypsin) followed by a 

second elution with elution buffer 2 (2M Urea, 50mM Tris-HCl (pH 7.5), 10mM 

Chloroacetamide) for 5min. Both eluates were combined and further incubated over night at 

room temperature. Tryptic peptide mixtures were acidified with 1% TFA and desalted with 

Stage Tips containing 3 lavers of C18 reverse phase material and analyzed by mass 

spectrometry. Peptides were separated on 50‐cm columns packed in-house with ReproSil‐

Pur C18‐AQ 1.9µm resin (Dr. Maisch GmbH). Liquid chromatography was performed on an 

EASY‐nLC 1000 ultra‐high‐pressure system coupled through a nanoelectrospray source to a 

Q-Exactive HF mass spectrometer (Thermo Fisher Scientific). Peptides were loaded in buffer 

A (0.1% formic acid) and separated applying a non-linear gradient of 5–60% buffer B (0.1% 

formic acid, 80% acetonitrile) at a flow rate of 250nl/min over 105min. Data acquisition 

switched between a full scan and 15data‐dependent MS/MS scans. Multiple sequencing of 

peptides was minimized by excluding the selected peptide candidates for 25s. All other 

settings were set as previously described (Scheltema et al., 2014).	

	

3.6.4 RNA-Sequencing 

	

RNA-Sequencing (RNA-Seq) was performed in different tissues. For Cort-treated liver tissue 

and Dex-treated liver, skeletal muscle and white adipose tissue, RNA was extracted using 
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the QIAzol lysis reagent (Qiagen) according to the manufacturer’s instructions. This protocol 

is optimized for lysis of tissue with higher fat content. For Dex-injected liver tissue, RNA was 

extracted using the RNeasy minikit (Qiagen) according to manufacturer’s instructions. All 

samples for RNA-Sequencing were DNAse-treated using the Ambion DNase I kit (Thermo 

Fisher Scientific) according to manufacturer’s instructions. The quality of the RNA was 

verified using an Agilent 2100 Bioanalyzer with RNA 6000Nano Reagents (Agilent 

Technologies). Library preparation and rRNA depletion was performed using the Illumina 

TruSeq stranded/unstranded mRNA Library Prep Kit v2 chemistry in an automated system 

(Agilent Bravo liquid handling platform) starting with 1µg total RNA for each sample. 

	

3.7 NGS data analysis 

	

ChIP-Sequencing 

Libraries were subjected to NGS on an Illumina HiSeq4000. Reads were aligned to the 

mouse mm10 reference genome using BWA-MEM version 0.7.13 (Li and Durbin, 2010) and 

duplicates were removed using Picard Tools version 2.8.3 (http://picard.sourceforge.net/). 

Reads were filtered for uniquely mapped read pairs with samtools (Li et al., 2009) and 

downsampled to 18 mio (GR ChIP-Seq) or 22 mio (E2A ChIP-Seq) read pairs. To visualize 

the tracks, mapped reads were converted to bedGraph using HOMER version 4.9 (Heinz et 

al., 2010), filtered for called peak regions ±2kb and displayed on the UCSC genome browser. 

Peaks were called using MACS2 version 2.1.1.20160309 (FDR<0.05) (Zhang et al., 2008). 

Called peaks for GR and E2A were defined as overlapping if 50% of chromosomal peak 

position was intersecting. Gene Ontology analysis performed with GREAT (McLean et al., 

2010). Motif enrichment and read distribution analyses around GR peaks were conducted 

with HOMER.  

 

ChIP-MS 

Raw mass spectrometry data were analyzed with MaxQuant version 1.5.3.54 and Perseus 

version 1.5.4.1 software packages. Peak lists were searched against the mouse 

UniprotFASTA database (2015_08 release) combined with 262 common contaminants by the 

integrated Andromeda search engine. False discovery rate was set to 1% for both peptides 

(minimum length of 7 amino acids) and proteins. ‘Match between runs’ (MBR) with a 

maximum time difference of 0.7min was enabled. Relative protein amounts were determined 

by the MaxLFQ algorithm with a minimum ratio count of two (Cox et al., 2014). Missing 

values were imputed from a normal distribution applying a width of 0.2 and a downshift of 1.8 

standard deviations. Significant outliers were defined by permutation-controlled Student’s t-
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test (FDR<0.05, s0=1) comparing triplicate ChIP-MS samples for each antibody and 

biological condition. 	

 

RNA-Sequencing 

Libraries were sequenced on the Illumina HiSeq2500 or HiSeq4000. Sequencing quality was 

assessed with FastQC (http://www.bioinformatics.babraham.ac.uk/ projects/fastqc/). Reads 

were mapped to the mouse genome mm10 (Ensembl build 38.91) and reads per gene were 

counted using STAR version 2.4.2a (Dobin et al., 2013). Gene count normalization and 

differential expression analysis was performed using DESeq2 (Love et al., 2014). For gene 

annotation, biomaRt was used (Durinck et al., 2009). Functional enrichment according to 

gene ontology was carried out using Gorilla (Eden et al., 2009).  

 

3.8 NGS data deposition 

 

Scripts for ChIP-Seq and RNA-Seq analyses are deposited at github 

(https://github.com/FranziG/E47KO-liver). RNA-Sequencing data, normalized count data and 

DESeq2 output can be accessed via NCBI's Gene Expression Omnibus using the accession 

numbers GSE111877, GSE108688. NGS data and annotated peak files can be accessed via 

the NCBI's Gene Expression Omnibus using the accession numbers GSE111526 and 

GSE108689. ChIP-MS data files can be accessed at ProteomeXchange with identifier 

“PXD010157". 

	

3.9 Statistical analysis 

 

All tests were performed using statistical tools in Graph Prism 6 (GraphPad Software, San 

Diego, CA USA). For difference between two groups, unpaired two-tailed Student’s t-test was 

performed. Differences between more than two groups were assessed by 2-way ANOVA 

followed by Bonferroni’s multiple comparison test. For glucose and pyruvate tolerance tests, 

the area under the curve was calculated from the individual glucose excursion curves. All 

results are given as mean ± SEM unless otherwise specified. A P-value <0.05 was 

considered significant.  

	

3.10 Contributions from collaborations 

 

ChIP-MS was performed with Dr. Michael Wierer in the lab of Prof. Dr. Matthias Mann (Max 

Planck Institute, Munich, Germany). The Switchgear GR reporter screen was performed in 

the lab of Prof. Dr. Ronald Evans (Salk Institute of Biological Science, La Jolla, USA). 
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4. Results 
 

4.1 Genomic binding of GR and E2A  

 

4.1.1 Genome-wide binding profiles of GR and E2A overlap in liver 

 

The parameters defining chromatin-accessibility and tissue-specific gene regulation by GR 

are still largely unknown. ChIP-Sequencing (ChIP-Seq) for GR was performed in mouse 

livers, to identify novel factors influencing GR binding patterns. Wildtype livers were collected 

in the late afternoon. At this time-point, endogenous corticosterone levels begin to rise 

significantly. In response to prolonged periods of fasting during the day, GCs upregulate 

gluconeogenic gene programs in the liver (Opherk et al., 2004). ChIP-DNA was prepared 

and sequenced reads were aligned to the mouse mm10 reference genome (Supplemental 

Table 1). Bound regions (peaks) were called using MACS2 and identified 8794 peaks. Of 

these, 2753 peaks were reproducibly called between two biological replicates. As expected, 

GR binding was detected at known GR target promoters and enhancers, e.g. Pck1, G6pc, 

Per1 and Tat. 

 

Bioinformatic motif analysis was performed on the GR ChIP-sequenced DNA. Besides GRE 

as the top motif, other enriched consensus sites for transcription factors were identified, 

namely c/EBP, HNF4α, HNF6, FoxA and Stat5. These have previously been published to co-

localize together with GR at hepatic cis-regulatory elements (Greulich et al., 2016, Lim et al., 

2015) (Fig 11). Interestingly, a thorough look at motifs revealed the E-Box consensus motif 

CANNTG to be enriched near GR-bound sequences. This motif was predicted to recruit the 

transcription factor E47. The E-Box motif for E47 had also previously been found in GR-

bound fragments of mouse livers (Phuc Le et al., 2005). 
 

 

Figure 11: Hepatic cistrome for GR in 
wildtype liver.  
De novo motif analysis of the hepatic GR 
cistrome in wildtype livers is shown. The top eight 
enriched transcription factor consensus sites in 
ChIP sequences are shown for each factor and 
are ordered according to their p-value. 
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Expression levels of the E proteins E2A (E47 and E12), Heb and E2-2 as well as the Inhibitor 

of binding proteins were assessed to validate whether E47 might play a role in hepatic gene 

regulation. Robust levels of E2A mRNA was detected in wildtype mouse livers throughout the 

day and night cycle. Both Heb and E2-2 were detectable, while E2-2 had very low levels 

(Fig. 12). In addition, expression levels of all four ID proteins were assessed with high levels 

of Id2, robust levels of Id1 and Id3 and low expression of Id4 (Fig. 12). The fact that 

expression of all E protein and ID protein family members could be detected in liver, 

suggested a functional role for E47 in hepatocytes. 

 
 

 
Figure 12: Expression profiles of E proteins and ID proteins in mouse liver around the clock.  
A: RNA-Seq data from wildtypr livers at 6 time-points around the clock (ZT0= 7am; ZT12= 7pm). Expression of E 
proteins (A: E2A, Heb, E2-2) and ID Proteins (B: Id1, Id2, Id3, Id4) is displayed as mean Log2RPKM ±SEM, n= 4. 
Expression data from Quagliarini	et	al.	(manuscript	under	revision).	

 
 

4.1.2 GR and E2A converge on metabolic pathways  

 

To test the hypothesis that E47 co-localizes to GR-bound hepatic enhancers, ChIP-Seq for 

E2A was performed in the same wildtype livers. ChIP-DNA was prepared and sequenced 

reads were aligned to the mouse mm10 reference genome (Supplemental Table 1). Bound 

regions (peaks) were called using MACS2 and 4783 peaks were identified. Of these 1123 

peaks were reproducibly called between two biological replicates. Motif analysis of the E2A 

ChIP-sequenced DNA revealed the most prominent consensus binding sites to be shared 

between the two factors. Statistically overrepresented sites were c/EBP, HNF4α, FoxA, 

HNF6, AP-1, GRE and the nuclear receptor DR1 motif (Fig. 13A).  
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Figure 13: Overlapping binding of GR and E2A in liver converges on metabolic pathways.  
A: De novo motif analysis of the hepatic E2A cistrome in wildtype livers. The top eight enriched transcription 
factor consensus sites in ChIP sequences are shown for each factor and are ordered by p-value. B: Area-
proportional Venn diagram illustrates the overlap between the liver cistromes for GR and E2A. Numbers 
represent peaks identified in any of the two biological replicates.  
 

 

Cistromes for GR and E2A were compared and revealed a partial overlap of 2779 peaks 

(Fig. 13B). This confirmed that GR and E47 share a large number of binding sites in liver. 

Examples for commonly bound hepatic loci included glucose genes such as 

phosphoenolpyruvate carboxykinase 1 (Pck1), insulin-like growth factor-binding protein 1 

(Igfbp1) and glucokinase (Gck) or lipid genes such as 24-dehydrocholesterol reductase 

(Dhcr24), glycerol-3-phosphate acyltransferase (Gpam) and hydroxymethylglutaryl-CoA 

synthase (Hmgcs1) (Fig. 14).  

 

 

 
Figure 14: Co-occupancy of GR and E2A at metabolic promoters and enhancers.  
Representative ChIP-Seq tracks display co-occupancy of GR and E2A at exemplary sites of glucose genes and 
lipid genes (left) in liver. ChIP peaks represent NGS read coverage aligned to the genome (Supplemental Table 
1&2).  
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Interestingly, when functional annotation of these shared target genes was performed using 

GREAT pathway annotation tool, they linked to liver metabolism and metabolic disturbances 

(Fig. 15).  

 

 
Figure 15: Functional pathway annotation of co-bound loci. 
Functional annotation of shared GR-E2A target genes by GO analysis into pathways. Common ChIP peaks are 
annotated to the nearest coding gene and clustered into enriched pathways using GREAT pathway annotation 
tool.  
 

 

Here, cis-regulatory elements bound by GR and E2A are annotated to the nearest coding 

genes (by linear proximity) and are then clustered into enriched pathways. For GR and E2A, 

co-bound genes classified into pathways linked to e.g. regulation of lipid and fatty acid 

metabolism as well as regulation of glucose metabolism. Furthermore, these genes were 

specifically associated with metabolic diseases such as diabetes and hepatic steatosis (Fig. 

15). The link to glucose and lipid metabolism was specific to binding sites commonly shared 

with GR. On the other hand, pathway annotation of peaks specific for E2A clustered into 

pathways such as cellular amino acid processes and MAPK signaling pathways, whereas 

GR binding without E2A revealed its known link to lipid and carbohydrate metabolic 

processes (Fig. 16A&B). 

 

The data presented here shows that E47 co-occupies a subset of GR-bound cis-regulatory 

elements in mouse livers. These co-bound loci specifically link to genes important for glucose 

and lipid metabolism, supporting the notion that E47 is involved the transcriptional regulation 

of genes by GR. 
 

GO: Biological process FDR Q-value 

Carboxylic acid metabolic process 1.90e-39   
Steroid metabolic process 7.04e-21 
Fatty acid metabolic process 8.20e-17 
Regulation of glucose metabolic process 1.30e-16 
Regulation of lipid metabolic process 9.13e-15 
Examples: 

Gpam, Dhcr24, Gck, Foxo1, Apoc3, Irs1, Irs2, Elovl6  

Examples: 

Apoa4, Gck, Cd36, Serpina12, Apoc3, Hmgcr, Srebf2, Irs1     

GO: Disease ontology FDR Q-value 

Lipid metabolic disease 1.44e-19   
Fatty liver 1.10e-12 
Familial hyperlipidemia 2.54e-12 
Gestational diabetes 1.39e-9 
Metabolic syndrome 6.97e-6 
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Figure 16: Pathway annotation of GR and E2A-specific peaks. 
A: Analogous representation of E2A-specific occupancy and functional annotation of target genes. B: ChIP-
Sequencing tracks display GR-specific occupancy at hepatic promoters and enhancers and functional annotation 
of GR-specific target genes by gene ontology (GO) analysis.  
 

 

4.2 Characterization of in vivo loss of function mouse models 

 

4.2.1 E47-/- mice are resistant to Dex-induced hyperglycemia 

 

ChIP-Seq revealed the E47 motif to be enriched together with GR in liver and both factors to 

co-occupy a subset of metabolic genes. This prompted the hypothesis that E47 is needed for 

the transcriptional regulation of these metabolic target genes by GR. For this reason, one 

would expect an altered phenotypic response in vivo in response to GCs upon loss of E47. 

Besides its known role in B and T cell differentiation homozygous E47 knockout mice had 

previously not been assayed for a metabolic phenotype.  

 

Long-term GC-treatment in humans is known to result in hyperglycemia, frequently referred 

to as “steroid diabetes” (van Raalte and Diamant, 2014).  Similarly, after three weeks of Dex-

supplementation in the drinking water, wildtype mice displayed a mild hyperglycemia when 

subjected to a glucose tolerance test. Dex-treated E47-/- mice, on the other hand, showed 

significantly lower blood glucose levels over time after injection of the glucose bolus (Fig. 

17A).  
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Figure 17: E47-/- mice display improved glucose tolerance upon GC treatment.  
A: Glucose tolerance test i.p. (GTT) and pyruvate tolerance test i.p. (PTT) (B) of E47-/- and wildtype mice after 3 
weeks of Dex treatment in drinking water. Data were analyzed by ANOVA and Bonferroni’s multiple comparison 
test. Data are shown as mean ± SEM. Asterisks indicate significance, (*) P<0.05, n= 10 per genotype (GTT); n= 7 
(WT) & 9 (E47-/-) (PTT), i.p.= intraperitoneal. C: qRT-PCR of gluconeogenic genes in Dex-treated livers, 
normalized to U36b4; data are mean ± SEM (*) P < 0.05, Student’s t-test. n= 6 (WT) & 5-6 (E47-/-). 
 

 

Furthermore, a pyruvate tolerance test also resulted in lower values in E47-/- mice compared 

to their wildtype littermates, suggesting reduced hepatic gluconeogenesis (Fig. 17B) in 

response to GCs. In accordance with liver-specific GR mutant mice, which show an impaired 

transcriptional activation of gluconeogenic genes (Opherk et al., 2004), expression of the key 

GR target genes Pck1, Gck and Igfbp1 were diminished in E47-/- mice (Fig 17C).  

 

This protective effect was a specific response to Dex treatment, since both glucose and 

pyruvate tolerance was the same in untreated wildtype and E47-/- mice (Fig 18A&B). 

Moreover, E47-/- mice displayed similar body weight and a percentage of body fat compared 

to wildtype littermates (Fig 18C&D). Gene expression of E12, the alternatively spliced variant 

of E2A, was comparable in Dex-treated livers of E47-/- mice, excluding a possible functional 

compensation (Fig. 18E). 
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Figure 18: E47-/- mice are not affected metabolically in the basal state.  
A: Glucose tolerance test i.p. (GTT) and pyruvate tolerance test i.p. (PTT) (B) in untreated E47-/- and wildtype 
mice. Data were analyzed by ANOVA and Bonferroni’s multiple comparison test, n=9 (WT) & 15 (E47-/-)(GTT); n= 
6 (WT) & 7 (E47-/-) (PTT); data for PTT is shown as % of baseline glucose (timepoint 0). C: Body weight of 
untreated E47-/- and wildtype mice in grams. Data are mean ± SEM, n=7 (WT) & 9 (E47-/-). D: Fast mass shown 
as percentage of body weight (%bw) in untreated E47-/- and wildtype mice. Data are mean ± SEM, n=8 (WT) & 
11 (E47-/-). E: qRT-PCR of E47 and E12 expression in mouse livers after Dex treatment, normalized to U36B4. 
Data are expressed as mean ± SEM, (***) P<0.001, Student’s t-test, n=10 (WT) & 7 (E47-/-). 
	

 

4.2.2 E47-/- mice are protected from the development of hepatic steatosis 

 

In order to study disturbances in lipid metabolism in response to GCs, another protocol of GC 

treatment was used. Chronic administration of corticosterone (Cort), the rodent Cortisol, was 

previously shown to induce comorbidities of the Metabolic Syndrome, including hepatic 

steatosis (Karatsoreos et al., 2010, Fransson et al., 2013). After three weeks of Cort 

administered via the drinking water, wildtype mice developed as steatotic phenotype in the 

liver as seen by accumulation of lipid droplets on Oil red O and H&E stainings (Fig. 19A). In 

contrast, E47-/- mice showed a noticeably diminished accumulation of lipids (Fig. 19A). 

Consistent with the stainings in liver, measurement of liver and plasma triglycerides showed 

lower levels for E47-/- mice compared to wildtype mice (Fig. 19B).  
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Figure 19: E47 -/- mice are protected from Cort-induced hepatic steatosis.  
A: Liver sections (6um) stained with Oil Red O and hematoxylin and eosin (H&E) before and after Cort treatment 
for 3 weeks in drinking water. 20x magnification; representative image from n=3 per group. B: Measurement of 
liver and plasma triglycerides in mice treated with Cort for 3 weeks. Data are shown as mean ± SEM, n=6 (WT) & 
4-6 (E47-/-). 
	
	

Again, this effect was a specific response to GC treatment since untreated E47-/- and 

wildtype mice had comparable liver triglycerides, although plasma triglycerides were also 

lower (Fig. 20A). Apart from an overall state of dyslipidemia, obesity is a hallmark of the 

Metabolic Syndrome and Cort treatment was shown to result in increased central fat deposits 

in mice (Fransson et al., 2013, Karatsoreos et al., 2010). However, as measured by Echo-

NMR, fat mass gain upon Cort treatment was similar E47-/- and wildtype mice. This indicated 

that protection from metabolic side effects was restricted to the liver (Fig. 20B). 

 

 
Figure 20: E47-/- mice do not display dyslipidemia in the basal state.  
A: Measurement of liver and plasma triglycerides in untreated mice. Data are mean ± SEM, Liver: n= 10 per 
genotype; Plasma: n=3 (WT) & 4 (E47-/-); n.s.= not significant B: Fat mass gain shown as percentage of body 
weight (%bw) after 3 weeks of Cort treatment. Data are mean ± SEM, n=6 per genotype. 
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4.2.3 E47-/- mice display deregulated hepatic gene expression programs 

 

To gain mechanistic insight into the altered response to GCs, gene expression profiles in 

E47-/- livers, were analyzed by RNA-seq in Cort and Dex-treated mice (Supplemental 

Tables 3&4). Reads were mapped to the mouse genome mm10 and differential expression 

analysis was performed using DESeq2. In Dex-treated livers, 302 genes were differentially 

expressed, whereas in Cort-treated livers 914 genes were identified as differentially 

expressed (Fig. 21). The criterion for differential expression were defined as fold change of 

1.3 and a p-value <0.05. 

 

 
Figure 21: Livers of E47-/- mice reveal deregulated gene expression.  
A-B: RNA-Seq data from Dex-treated (A) and Cort-treated (B) wildtype and E47-/- livers was visualized in 
volcano plots (blue= down-; red=up-regulated, fold change=1.3, p-value<0.05). Volcano plots show the log2 of 
fold change of gene expression between the (Dex/Cort) treated E47 mutant group and control group versus log10 
of p-value from t-test. GO analysis of differentially expressed genes is shown below each volcano plot. For GO 
analysis a base mean cutoff >200 was used. C: qRT-PCR of differentially expressed liver genes after Dex 
treatment, normalized to U36B4. Data are mean ± SEM, (*) P < 0.05, Student’s t-test, n=5-7 (WT) & 4-7 (E47-/-). 
D: qRT-PCR of differentially expressed genes in livers after Cort treatment, normalized to U36B4. Data are mean 
± SEM, n=4 per genotype. 
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Gene ontology (GO) analysis of differentially expressed genes in mutant livers receiving Dex 

(Fig. 21A) or Cort (Fig. 21B) identified globally deregulated expression profiles. These linked 

to pathways involved in regulation of lipid, triglyceride and cholesterol metabolism. 

Interestingly, genes affected by loss of E47 were mainly downregulated. This argues for an 

inability of GR to efficiently activate its target genes when E47 is lost and underlines E47’s 

predominant role as a transcriptional activator. The differential expression of genes affected 

by the loss of E47 was confirmed by qRT-PCR. Among the genes showing reduced 

expression were e.g. Dhcr24 (24-dehydrocholesterol reductase) and Dhcr7 (7-

dehydrocholesterol reductase), which are involved in cholesterol biosynthesis. Other genes 

included Apoa4 (apolipoprotein A4), important for lipid transport and tissue uptake, and 

Acacb (acetyl-CoA carboxylase beta), which is the rate limiting enzyme catalyzing fatty acid 

synthesis (Fig. 21C&D). This is in accordance with the data from the in vivo loss of function 

mouse model showing protection from hepatic steatosis and reduced levels of circulating 

triglycerides (Fig. 19). Therefore, the genes affected by the loss of E47 in liver in response to 

Dex and Cort treatment might explain the observed phenotype of reduced lipid accumulation 

and gluconeogenesis. 

 

Importantly, RNA-Seq data from livers of untreated E47-/- only revealed very few changes in 

gene expression and failed to result in any functionally enriched pathways (Fig. 22A; 

Supplemental Table 5). This again demonstrated that altered gene expression upon loss of 

E47 is a GC-specific effect. Moreover, gene expression profiles in Dex-treated quadriceps 

muscle (Fig. 22B; Supplemental Table 6) and white adipose tissue (Fig. 22C; 

Supplemental Table 7) revealed no prominent differences in metabolic gene expression 

which could explain the improved glucose tolerance or reduced lipid droplet accumulation in 

liver. E47 had previously been reported to play a role in the regulation of adiponectin 

expression during development in vitro (Doran et al., 2008, Rahmouni and Sigmund, 2008). 

However, Adipoq mRNA levels in Dex-treated white adipose tissue were not significantly 

altered in E47-/- mice (Fig. 22D). 

 
 
The differential gene expression profiles from RNA-Seq in Dex- and Cort-treated livers 

support the in vivo data form E47 knockout mice. Loss of E47 results in a reduced metabolic 

gene expression, which would in turn protect from GC-induced side effects due to impaired 

upregulation of important gluconeogenic and lipid utilization genes. 
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Figure 22: Changes in metabolic gene expression are specific to GC-treatment in liver. 
A-C: RNA-Seq data from untreated mouse livers (A), Dex-treated skeletal quadriceps muscle (SM) (B) and Dex-
treated white adipose tissue (DeFuria et al.) (C) was visualized in volcano plots (blue= down-; red=up-regulated, 
fold change 1.3, p-value<0.05). Volcano plots show the log2 of fold change of gene expression between the (E47 
mutant group and control group versus log10 of p-value from t-test. GO analysis of differentially expressed genes 
is shown below each volcano blot. For untreated liver, GO analysis did not result in functionally enriched 
pathways. For GO analysis a base mean cutoff >200 was used. Liver: n=5 (WT) & 6 (E47-/-); SM: n=2 (WT) & 4 
(E47-/-); WAT: n=2 per genotype. D: Average number of normalized NGS read counts for Adipoq in Dex-treated 
white adipose tissue. Data are mean ±STDEV, n.s.= not significant, n=2 per genotype. 
 

 

Fasting in mice over a prolonged period of time induces a rise in glucocorticoids due to their 

physiological function in the body to maintain glucose homeostasis (Vegiopoulos and Herzig, 

2007). To examine whether the fasting-response mediated by GR is affected upon loss of 

E47, E47-/- mice and their wildtype littermates were fasted for a period of 16 hrs overnight. In 

the liver, expression levels of genes involved in the response to prolonged fasting were 

examined by qRT-PCR. Among these were gluconeogenic genes, e.g. Pck1, G6pc and Gck 

and genes important for lipid mobilization, e.g. Fasn and Srebp1c. Here, some 

gluconeogenic genes, e.g. Pck1, G6pc and Gck, showed a diminished expression in mutant 

mice in response to fasting (Fig. 23). This would point towards a mild fasting phenotype in 
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E47-/- mice. However, basal glucose levels were similar in untreated E47-/- and wildtype 

mice after overnight fasting and overall glucose tolerance was unchanged (Fig. 17A).  

 

 
Figure 23: Gene expression changes in response to 
fasting in E47-/- livers.  
qRT-PCR in livers of untreated fasted mice (16 hrs overnight), 
normalized to U36b4. Data are mean ± SEM (*) P<0.05, 
Student’s t-test, n=6 (WT) & 6-7 (E47-/-).  
 

 

 

 

Taken together, loss of E47 mildly affected the endogenous response to a state of prolonged 

fasting. This effect was, however, only observed on hepatic gene expression of 

gluconeogenic genes since fasting glucose levels were unchanged between in E47-/- mice 

and wildtype littermates. For the phenotypic difference of reduced hepatic gluconeogenesis 

to become apparent upon loss of E47, additional exposure to exogenous GCs is needed. 

This data again underlines the specific role, which E47 has in the regulation of GR target 

genes in liver in response to treatment with high levels of GCs. 

 

4.2.4 Immunosuppressive effects of Dex are retained in E47-/- mice  

 

Treatment with glucocorticoids is highly valued in the clinic for its important anti-inflammatory 

effects. This is due to GR’s potent transcriptional repression of pro-inflammatory genes and 

activation of anti-inflammatory genes. To test if immunosuppressive GC action was retained 

in the absence of E47, bone marrow-derived macrophages were isolated from wildtype and 

E47-/- mice. For a pro-inflammatory stimulus, macrophages were activated by LPS and then 

suppressed by treatment with Dex stimulus. Treatment with Dex resulted in the induction of 

GR targets, e.g. Per1 and Gilz and, more importantly, repression of inflammatory targets, 

e.g. Ccl2 and Il6 in both E47-/- and wildtype macrophages (Fig. 24). Of note, expression of 

E47 in macrophages is significantly lower than in other tissues and the GR cistrome in 

macrophages does not harbor E47 motifs near GREs (Uhlenhaut et al., 2013).  
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Figure 24: E47-/- mice remain responsive to the 
immunosuppressive effects of Dex.  
qRT-PCR of Dex target genes in macrophages from 
E47-/- and wildtype mice, normalized to U36B4. 
Macrophages were treated with LPS or LPS+Dex. Data 
are mean ± STDEV (**) P<0.01, (***) P<0.001, Student’s 
t-test, n=2 replicates per genotype.  
	

	

 

 

 

 

Glucocorticoids are secreted under the control of the hypothalamic-pituitary-adrenal (HPA) 

Axis. In a classical negative feedback loop, GCs can limit their own production (Chung et al., 

2011). To examine whether the HPA axis was intact in E47-/- mice, a Dexamethasone-

suppression test was performed. Here, an acute injection of a high dose of Dex is 

administered to assess the suppression of ACTH secretion by the pituitary as an integral part 

of the negative feedback loop. This test is commonly used as a first diagnosis of Cushing’s 

syndrome since effective suppression is absence in these cases. E47-/- mice displayed 

slightly elevated basal corticosterone levels, albeit not significant (Fig. 25).  

 
 

 

Figure 25: The HPA axis is functionally intact in E47-/- 
mice. 
Plasma corticosterone was measured in mice 6hrs after 
injection of 1mg/kg Dex or vehicle. Data are mean ± SEM, n=10 
(WT) & 11 (E47-/-), n.s.= not significant. 
 

 

 

 

However, in response to an acute injection of Dex, mutant mice suppressed endogenous 

corticosterone production equally well compared to wildtype mice as shown in Fig. 25. The 

slight hypercorticolism in the basal state might be explained by a minor compensatory 

mechanism of a general GC-affected pathway. However, this was not sufficient to result in 

classical symptoms of Cushing’s syndrome in the basal and untreated state.  

 

Taken together, the data showed that important anti-inflammatory effects of Dex are 

maintained in E47-/- mice and that regulation of the HPA axis remains intact. 
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4.2.5 Hepatocyte-specific loss of E47 implicates liver as the target tissue 

 

Data from RNA-Sequencing and metabolic phenotyping of global E47-/- mice strongly 

suggested a role for E47 in gene regulation of hepatic metabolism. Furthermore, the liver 

was implicated to be the target tissue for a potential crosstalk between E47 and GR and to 

mediate protection from hyperglycemia and hyperlipidemia. To confirm, liver-specific E47 

knockout mice were generated by crossing E47 floxed alleles with the Albumin-Cre line 

(specified as E47ΔLKO) and metabolically phenotyped in response to GC treatment. After 

three weeks of Dex supplementation in the drinking water, E47ΔLKO displayed improved 

glucose tolerance (Fig. 26A), as previously seen in global E47-/- mice.  Resistance to the 

development of steroid diabetes was again accompanied by a reduced expression of key 

gluconeogenic genes such as Pck1 and G6pc in livers of E47ΔLKO mice (Fig. 26B). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26: Liver-specific E47-/- mice are resistant to Dex-induced hyperglycemia.  
A: Glucose tolerance test i.p. (GTT) in Albumin-Cre x E47flox/flox (E47ΔLKO) and control mice after 3 weeks of Dex 
treatment. Data were analyzed by ANOVA and Bonferroni’s multiple comparison test. Data are shown as mean ± 
SEM. Asterisks indicate significance, (*) P<0.05, (**) P<0.01, (***) P<0.001, n=11 per genotype. B: qRT-PCR of 
gluconeogenic genes in livers on Dex normalized to U36b4. Data are mean ± SEM, (*) P<0.05, Student’s t-test, 
n=6 per genotype. 
	

	

Analogous to the global E47 knockout model, untreated E47ΔLKO displayed similar basal 

glucose tolerance, comparable body weight, slightly lower but not significant basal body fat 

mass and no compensatory expression of E12 in Dex-treated livers (Fig. 27A-D).  
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Figure 27: Liver-specific E47-/- mice are metabolically unaffected in the basal state.  
A: Glucose tolerance test i.p. in untreated E47ΔLKO and control mice. Data were analyzed by ANOVA and 
Bonferroni’s multiple comparison test and are mean ± SEM, n=11 per genotype. B: Body weight of untreated E47 

ΔLKO 
and control mice. Data are mean ± SEM, n=7 per genotype. C: Fat mass shown as percentage of body 

weight (%bw) in untreated E47ΔLKO and control mice. Data are mean ± SEM, n=7 per genotype. D: qRT-PCR of 
E47 and E12 expression in livers after Dex treatment, normalized to U36B4. Data are mean ± SEM, (***) 
P<0.0001, Student’s t-test, n=7 (Ctrl) & 5 (E47ΔLKO). 
 

 

The protective effect from GC-induced side effects was confirmed after treatment with Cort. 

Here, liver histology and measurements of liver and plasma triglycerides showed protection 

from hepatic steatosis and dyslipidemia in E47ΔLKO mice (Fig. 28A&B). By qRT-PCR, 

expression levels of gene important for lipid and cholesterol biosynthesis and utilization, e.g. 

Acacb, Dhcr7, Dhcr24, were examined. Consistent with data from global E47-/- mice, these 

genes were downregulated in livers of E47ΔLKO mice, thereby confirming the deregulated liver 

metabolism (Fig. 28C). Similar to E47-/- mice, liver-specific deletion of E47 had no impact on 

the increase of fat mass as measured by Echo-NMR (Fig. 28D). 
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Figure 28: Liver-specific E47-/- mice are protected from Cort-induced hepatic steatosis. 
A: Liver sections (6um) stained with Oil Red O and hematoxylin and eosin (H&E) before and after Cort treatment 
for 3 weeks. 20x magnification. B: Measurement of liver and plasma triglycerides in E47ΔLKO and control mice 
treated with Cort. Data are shown as mean ± SEM, n=4 per genotype. C: qRT-PCR of differentially expressed 
genes in livers after Cort treatment, normalized to U36B4. Data are mean ± SEM, (*) P<0.05, Student’s t-test, n=5 
per genotype. D: Fat mass gain shown as percentage of body weight (%bw) after Cort treatment. Data are mean 
± SEM, n=8 per genotype. 
	

 

Physiological effects of glucocorticoids and GR are widespread and extend beyond causing 

disturbances in hepatic metabolism (Schacke et al., 2002). Therefore, long-term treatment 

with a high dose of any glucocorticoid will likely have additional pathological changes. To 

elicit acute gene expression responses, E47ΔLKO were injected with a high dose of Dex and 

sacrificed one hour later (Fig. 29). This approach would also avoid secondary and indirect 

comorbidities of long-term treatment with steroids. The Dex-injected wildtype and E47 mutant 

livers were subsequently used for RNA-Sequencing. Reads were mapped to the mouse 

genome mm10 and differential expression analysis was performed using DESeq2 (Love et 

al., 2014). In Dex-injected livers, 208 genes were identified as differentially expressed using 

the criterion of fold change 1.3 and p-value <0.05. As an acute response to high availability 

of Dex, GO analysis of differentially expressed genes in short-term treated E47ΔLKO livers 

linked to lipid and fatty acid metabolic processes and cholesterol transport (Fig. 29; 

Supplemental Table 8). In this context, pathway annotations of genes coincided with the 

RNA-Seq data from global E47-/- mice (Fig. 22A&B). Among the genes differentially 

expressed in response to short-term Dex exposure were known metabolic genes, e.g. 

Apoa4, Cd36 and Srebp1c. 
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Figure 29: Acute Dex response on 
differential gene expression in 
E47 ΔLKO mice. 
RNA Seq data from 1 hr Dex-injected 
E47ΔLKO livers was visualized in a 
volcano plot (blue= down-; red=up-
regulated, fold change 1.3, p-
value<0.05). Volcano plot shows the 
log2 of fold change of gene expression 
between the E47 ΔLKO and control group 
versus p-value from the t-test. GO 
analysis of differentially expressed 
genes is shown below. For GO analysis 
a base mean cutoff >200 was used, (n=3 
per genotype). 
 
	

 

 

 

 

 

 

 
 
Importantly, the majority of differentially expressed transcripts from E47 mutant mice treated 

with either Cort or Dex (Fig. 21A&B, Fig. 29) were shown to be GR target genes (Fig. 30). 

Here, all transcripts with a nearby GR peak are defined as a target gene. Between 63% (Cort 

longterm) to 85% (Dex longterm and acute Dex) of transcripts expressed in E47 mutant livers 

could therefore be classified as bound and regulated by GR. Among the differentially 

expressed genes identified to harbor a GR peak were metabolic genes such as Dhcr24, 

Hmgcs1 Acacb, Gpam and Apoa4. This, once more, emphasizes the specific role of E47 in 

transcriptional regulation by GR in response to GCs. 

 
 
 

 
 
 
 
 
 
 
 
 
Figure 30:	Differentially expressed genes in E47 mutant livers are GR target genes.  
A-B: Percentage (A) and number (B) of differentially expressed genes in E47 mutant mice, which harbor a 
detectable GR ChIP peak nearby. RNA-Seq data from Fig. 21A&B and Fig. 29. 
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Taken together, metabolic phenotyping of hepatocyte-specific E47ΔLKO mice confirmed the 

preceding in vivo data from global E47 mutant mice. Loss of E47 affects GR-mediated 

hepatic metabolism, resulting in protection from GC-induced hyperglycemia and dyslipidemia 

and emphasizes the liver to be the focal point of E47 action. 

 
4.2.6 Loss of E47 does not affect progression of diet-induced obesity  

 

Many of the pathologies commonly seen with long-term GC-treatment or in Cushing’s 

patients resemble the Metabolic Syndrome including obesity, glucose intolerance and 

dyslipidemia (Wang, 2005). Since previous data linked E47 to lipid and glucose metabolism 

regulation by GR in response to GC treatment, the development of diet-induced obesity and 

its comorbidities was studied in the E47 mutant mouse models. 

 

Global mutant mice were fed a high-fat diet (HFD) for 12 weeks. At the end of the feeding 

regime, E47-/- mice showed improved glucose tolerance as seen in a glucose tolerance test 

(Fig. 31A). Whereas, obese wildtype mice revealed the expected excess accumulation of 

hepatic triglycerides, E47-/- mice had slightly lower liver triglycerides with no differences in 

plasma triglycerides (Fig. 31B). This was confirmed by Oil red O and H&E staining on liver 

tissue, since HFD feeding resulted in a prominent hepatic steatosis in wildtype mice (Fig. 

31C). Liver tissue of E47-/- mice also showed a diminished accumulation of lipids on Oil red 

O staining, but no difference in the presence of large lipid vacuoles on H&E staining (Fig. 

31C). Moreover, weight gain on HFD was comparable between both groups (Fig. 31D). 
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Figure 31: Metabolic phenotyping of HFD-fed E47-/- mice.  
A: Glucose tolerance test i.p. (GTT) of E47-/- and wildtype mice after 12 weeks of high fat diet (HFD) feeding. 
Data were analyzed by ANOVA and Bonferroni’s multiple comparison tests. Data are shown as mean ± SEM. n= 
9 per genotype; i.p.= intraperitoneal. B: Measurement of liver and plasma triglycerides in E47-/- and wildtype mice 
after 12 weeks of HFD. Data are shown as mean ± SEM, Liver: n=7 per genotype, Plasma: n=7 (WT) & 8 (E47-/-). 
C: Liver sections (6µm) were stained with Oil Red O and hematoxylin and eosin (H&E) after 12 weeks of HFD; 
20x magnification, brightfield microscopy, representative image from n=2 per genotype D: Body weight of E47-/- 
and wildtype mice in grams after 12 weeks of HFD. Data are mean ± SEM, n=9 per genotype. 
 

 

Overall, data from HFD-fed E47-/- mice revealed an attenuated development of some of the 

classical side effects seen with HFD feeding, in particular in the development of hepatic 

steatosis. 

 

As mentioned before, E47-/- mice have a complete lack of mature B cells and a partial early 

block in T-lymphocyte development (Beck et al., 2009b). A previous study had shown that 

obese mice lacking B cells (Bnull mice) or mice with depleted B cell reservoirs had an 

improved glucose tolerance and insulin sensitivity on HFD compared to obese wildtype mice 

(Winer et al., 2011). This was accompanied by a comparable body weight gain on HFD 

(Winer et al., 2011). In order to exclude the lack of mature immune cells as a factor for 

protection from HFD-induced comorbidities, E47ΔLKO were fed a HFD for 12 weeks. A 

glucose tolerance test showed no differences between E47ΔLKO and control littermates (Fig. 

32A). Liver as well as plasma triglycerides were equally elevated in E47ΔLKO and control mice 
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(Fig. 32B) which was also reflected in a similar accumulation of lipid droplets and 

development of a steatotic phenotype as shown on histological stainings of liver tissue (Fig. 

32C). In addition, E47ΔLKO and control mice showed the same body weight gain on HFD (Fig. 

32D).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figu
re 
32: 

E47ΔLKO mice are not protected from HFD-induced metabolic disturbances.  
A: Glucose tolerance test i.p. (GTT) of E47ΔLKO and control mice after 12 weeks of high fat diet (HFD) feeding. 
Data were analyzed by ANOVA and Bonferroni’s multiple comparison tests. Data are shown as mean ± SEM. n=9 
(Ctrl) & 6 (E47ΔLKO); i.p.= intraperionteal. B: Measurement of liver and plasma triglycerides in E47ΔLKO and control 
mice after 12 weeks of HFD. Data are shown as mean ± SEM, Liver: n=9 (Ctrl) & 6 (E47ΔLKO), Plasma: n=8 (Ctrl) 
& 5 (E47ΔLKO). C: Liver sections (6µm) were stained with Oil Red O after 12 weeks of HFD; 20x magnification, 
brightfield microscopy, representative image of n=3. D: Body weight of E47ΔLKO and control mice in grams after 12 
weeks of HFD. Data are mean ± SEM, n=9 (Ctrl) & 6 (E47ΔLKO).  
 

 

The data from HFD-fed mutant mice suggest that loss of E47 does not affect the 

development of diet-induced obesity and its metabolic abnormalities. Any observed partial 

protection from the development of hyperglycemia or hepatic steatosis seen in HFD-fed E47-

/- mice might be explained by the reduced inflammatory profile originating from the lack of 

mature immune cells. This was confirmed in E47ΔLKO mice, which fail to show any protection 

from diet-induced metabolic disturbances since they retain their full immune cell potential. 

Taken together, the role E47 plays in the regulation of metabolic genes in hepatocytes 

seems to be a specific response to high exogenous GC levels and does not reflect a general 

metabolic function of E47 in the liver. 
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4.3 Mechanistic insight into chromatin crosstalk between GR and E2A in liver 

 

4.3.1 GR’s interactome in liver is affected by loss of E47 

 

The ChIP-Seq data showed that GR and E2A bind and regulate a common set of target 

genes linked to glucose and lipid metabolism in liver. The genetic loss of E47 protected from 

steroid-induced side effects with diminished transcriptional activation of metabolic genes.  

This observation could potentially be explained by an impaired function of GR itself. In order 

to test this, nuclear localization of GR in Dex-injected E47 mutant livers was examined (Fig. 

33).  

 

 
Figure 33: Expression and nuclear localization of GR is unchanged in E47-/- livers.  
A: Immunofluorescence of GR in Dex-injected E47-/- and WT livers. Liver sections of 6µm were stained with α-
GR antibody, co-stained with DAPI and visualized using confocal microscopy, scale bar: 75 µm, magnification of 
63x. B: Western blot of nuclear extracts from Dex-treated WT and E47-/- livers. Immunoblot (IB) for GR and 
Snrp70. C: Co-immunoprecipitation of GR and E2A from liver nuclear extracts of WT mice treated with longterm 
Dex. 30% input and IP against GR and E2A are shown. Immunoblot (IB) for GR and E2A. 
	

 

By fluorescent immunostaining and confocal microscopy, nuclear GR was shown to be 

unaffected by the loss of E47 (Fig. 33A). In addition, protein levels of GR in nuclear extracts 

of Dex-treated wildtype and E47 mutant liver were comparable (Fig. 33B). The data 

confirmed that the phenotype could not be explained by a reduced expression or nuclear 

import of the GR itself. For this reason, protein-protein interaction studies were performed, to 

functionally characterize the role of E47 as a crucial part of the GR interactome in liver. 

Endogenous co-immunoprecipitation of GR from liver nuclear extracts revealed a weak band 

for E2A on Western blot indicating a putative physical interaction between GR and E2A (Fig. 

33C). This is supported by two predicted LXXLL motifs in the E2A protein sequence. LXXLL 
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motifs mediate interaction between nuclear receptors and transcription factors (Savkur and 

Burris, 2004). 

 

To purify the transcriptional complex assembled by GR in hepatocytes, ChIP coupled to 

mass spectrometry (ChIP-MS) for GR was performed in Dex-injected E47ΔLKO and control 

livers. Significantly enriched proteins in IP samples from control and E47 mutant liver 

samples were plotted as fold enrichment of GR versus the negative control IgG (Fig. 34). In 

control livers, GR was enriched together with c/EBPs, SRCs, HNF4α, RXR, FoxO1, Mediator 

subunits MED16 MED23 and MED24, chromatin remodelers and histone modifiers (Fig. 

34A). c/EBP, HNF4α, RXR and Fox factors are among the footprints identified in the present 

GR ChIP-Seq data set (Fig. 11) and have been published before to co-localize together with 

GR at hepatic cis-regulatory elements (Lim et al., 2015, Grontved et al., 2013, Phuc Le et al., 

2005). Interestingly, FoxO1 and the Mediator subunits MED16 and MED23 were not present 

anymore together with GR in E47 mutant livers (Fig. 34B). Peptide counts for the selected 

proteins shown below are listed in Supplemental Table 9. MED23, MED24 and MED16 are 

all components of the multisubunit Mediator complex. By facilitating interactions between 

gene-specific transcription factors and the RNA polymerase II machinery, Mediator enables 

transcription at target genes (Malik and Roeder, 2005). FoxO1, on the other hand, is part of 

the superfamily of Forkhead transcription factors and a direct transcriptional regulator of 

gluconeogenesis (Puigserver et al., 2003). 
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Figure 34: The GR interactome in liver changes upon loss of E47.  
A: ChIP-MS was performed for GR in Dex-injected wildtype livers and Dex-injected E47ΔLKO livers (B). Volcano 
plot showing selected significantly enriched proteins in GR IP samples versus IgG. P-values versus the log2 fold 
enrichment between GR over IgG are plotted. Pale blue: chromatin remodelers (GO Biol. Process); green: NR 
coregulators; dark blue: sequence specific DNA binding transcription factor activity (GO Mol. Function); dark grey: 
significant outliers derived by Fisher’s exact test (FDR<0.05, s0=1), n=3 per genotype. 
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4.3.2 E47 is needed for recruitment of GR and coregulators to target genes 

 

A potential molecular mechanism explaining the phenotype might be crosstalk of GR and 

E47 at certain hepatic loci. Close proximity of both factors would be needed to efficiently 

recruit and assemble a critical “mass" of transcriptional regulators required for the 

subsequent activation of gene expression. Loss of E47 in mutant livers therefore results in a 

reduced number of transcriptional regulators below a certain threshold to ensure sufficient 

transcriptional activation. In this regard, Mediator and FoxO1 both constitute important 

regulators of transcription. Of note, the phenotype could not be explained by reduced 

expression of either Mediator subunits, FoxO1, GR or the nuclear receptors LXRα and LXRβ 

in E47 mutant tissue (Fig. 35). The LXR receptors have been implicated before in mediating 

GC-induced side effects (Patel et al., 2011) (see Chapter 5.3).  

 
 

 
Figure 35: Expression of GR, Med1 and 
FoxO1 is unchanged in mutant livers.  
Number of normalized read counts for Med1, 
Med23, Med16, Foxo1, GR, Lxrα and Lxrβ from 
RNA-Seq data in untreated (UT), Cort or Dex 
treated or Dex-injected livers.  
 
 

 

 

 

 

 

 

 

Testing this hypothesis, ChIP-qPCR experiments for GR, MED1 and FoxO1 were performed 

on hepatic cis-regulatory elements in wildtype and E47 mutant livers. MED1 was chosen 

since it constitutes the core component of the Mediator complex. Promoter and enhancer 

sites of metabolic genes discussed above were selected. These loci are co-bound by GR 

and E2A in liver and were shown to have a diminished expression in E47 mutant livers in 

response to GCs (Fig. 21). Among these were Apoa4, Dhcr7, Dhcr24, Gpam, Hmgcr, 

Hmgcs1 or Pck1. 

 

For Dex-treated wildtype livers, a robust recruitment of GR to promoters and enhancers of 

shared target sites was found at all selected loci (Fig. 36A). Occupancy of GR was, however, 
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markedly decreased in E47 mutant livers. Interestingly, most of the sites also exhibited a 

reduced binding for MED1 (Fig. 36B) and, to some extent, FoxO1 (Fig. 36C). These 

included the same sites as for GR, namely Apoa4, Dhcr7, Dhcr24, Hmgcs1 and Pck1. For 

the Acacb locus, occupancy of MED1 and FoxO1 was not reduced. 
 

 

 
Figure 36: Loss of E47 results in reduced recruitment and binding of GR in Dex-treated livers. 
A: ChIP-qPCR in Dex-treated E47-/- and control livers shows binding of GR, MED1 (B) and FoxO1 (C) at 
metabolic promoters and enhancers. Data are shown as fold enrichment over IgG. A negative control region is 
displayed (nCtrl) (n=6 per genotype, data are mean ±SEM).  
 

 

Reduced occupancy of GR and coregulators such as FoxO1 and Mediator might therefore be 

the underlying mechanism explaining the phenotypic response of E47 mutant mice. This is in 

agreement with the data from the loss of function mouse models (see Chapter 4.2). 

Diminished activation of metabolic genes in liver, e.g. Pck1, Igfbp1, Gpam and Dhcr24, as 

seen in E47 mutant mice, would result in a reduced side effect profile upon GC treatment. 

Since protection from hepatic steatosis and dyslipidemia was examined with Cort treatment, 

additional ChIP qPCRs for GR and MED1 were performed in Cort-treated wildtype and 

mutant livers. Concordantly, promoters and enhancers of key genes involved in cholesterol 
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biosynthesis or fatty acid syntehsis, e.g. Dhcr7, Dhcr24, Acacb and Cyp2c39 showed 

reduced occupancy of GR and MED1 in E47 mutant livers (Fig. 37A&B).  

 

 
Figure 37: GR and MED1 show reduced occupancy at lipid sites in Cort-treated livers. 
A: ChIP-qPCR in Cort-treated E47ΔLKO and control livers shows binding of GR and Med1 (B) at metabolic 
promoters and enhancers. Data are shown as fold enrichment over IgG and was normalized to a negative control 
region (n=6 per genotype, data are mean ±SEM).  
 

 

These data strongly suggest that at a subset of hepatic cis-regulatory elements the presence 

of E47 is required for sufficient binding of GR itself. By allowing occupancy of GR, FoxO1 

and Mediator can be recruited and transcriptional activation of key metabolic genes is 

facilitated in response to GCs. Loss of E47, on the other hand, would markedly reduce 

binding of GR and its coregulators. Protection from GC-induced side effects, e.g. 

hyperglycemia, hepatic steatosis and dyslipidemia, might therefore stem from the attenuated 

expression of these metabolic target genes. 
 

4.4 Identifying features of GR regulation conserved in humans 

 

4.4.1 E47 and GR cooperate in the transcriptional activation of human GR targets 

 

To test whether the findings from the mouse model might be therapeutically relevant for 

human disease, a set of 162 human cis-regulatory elements were screened in a high 

throughput luciferase reporter approach. In this cell-based system, CV-1 cells were 

transiently transfected with human promoter and enhancer reporter constructs predicted to 

be regulated by GR. CV-1 cells are derived from kidney fibroblast and are non-steroidogenic. 
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to decipher the molecular action of GR. CV-1 cells were cultured in medium supplemented 
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with vehicle, Cortisol or Dexamethasone. Luciferase activity of reporters was measured and 

normalized to β-Gal activity for transfection efficiency. Fold change over empty vector with 

vehicle was calculated and reporter sequences were then classified into those responding 

with either activation or repression (or not responding) upon addition of GCs (Fig. 38). 

Supplemental table 10a&b lists clustered reporter sequences based on fold changes. 

Overrepresented motifs in up- and downregulated reporters were identified using a binding 

site prediction tool (OTFBS). Of the 162 human cis-regulatory elements tested, around 40 

were downregulated, while more than 80 were induced at least twofold by GCs (Fig. 38A). In 

both upregulated and downregulated reporter elements, classical GRE consensus 

sequences were enriched (Fig. 38B). 

 
 

 
Figure 38: The E47 motif is enriched near GREs in human cis-regulatory elements.  
A: Relative luciferase activity of 162 human reporter constructs regulated by GR was clustered into up- and 
downregulated reporters. Data from biological triplicates were normalized for transfection efficiency and to empty 
vector with vehicle. Reporters activated by GR plus ligand (Cort(isol) or Dex(amethasone)) appear red, repressed 
reporters appear blue. B: Motif analyses on corresponding DNA sequences show identical GRE consensus 
motifs in both activated and repressed reporters (UP & DOWN GREs). Upregulated reporter sequences are 
enriched for E47 consensus binding sites (UP E47). C: Luciferase assays of selected reporters from the screen 
were co-transfected with human GR and E47 expression vectors in CV-1 cells treated with Dex.  
Interestingly, the E-Box motif (CAGGTG) for E47 was significantly enriched near GREs in 

positive sequences (Fig. 38B). The E47 motif was specifically associated with transcriptional 
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activation by GR since it occurred in 47% of all GR-upregulated reporter elements. The 

presence of E47 near GREs in human cis-regulatory sequences suggests a possible 

conservation of E47 function in human GC responses. 

 

In order to validate the motif prediction, expression vectors for human GR and human E47 

were either transfected alone or together with selected reporter elements from the initial 

screen. In the presence of Dex, reporters only showed a robust induction of luciferase activity 

when both transcription factors were present (Fig. 38C). Next, the predicted E-Box motifs in 

selected reporters were mutated to TTGGCC. Activation of luciferase activity in the presence 

of both factors was now abolished demonstrating that GR requires binding of E47 to regulate 

the activation of human targets (Fig. 39A). Furthermore, an expression vector for the human 

E47 inhibitor ID protein ID3 was transfected together with GR and E47. By binding to E47, 

ID3 inhibits E47 from binding and activating its E-Box. As shown for the DPEP1 promoter, 

co-transfection of ID3 abrogated any induction of luciferase activity demonstrating that GR 

and E47 regulate human targets in a cooperative manner (Fig. 39B). 

	
 

 
Figure 39: Binding of E47 is needed for the transcriptional activation of human targets. 
A: The two predicted E-Boxes in the ATP2B3 regulatory element were mutated and a luciferase acitivty was 
measured. Data are shown as mean ± SEM, (***) P<0.001, Student’s t-test, n=3 replicates. B: The DPEP1 
reporter was co-transfected with expression vectors for human GR, human E47 and human ID3 in CV-1 cells. 
Cells were treated with vehicle or Dex and luciferase activity of transfected constructs was measured and 
normalized. Data are shown as mean ± SEM, (***) P<0.001, Student’s t-test, n=3 replicates; rel. luc. activity = 
relative luciferase activity. 
 

 

Taken together, the data from luciferase reporters suggests a conserved function for E47 in 

the transcriptional activation of certain human targets by GCs. The cooperative regulation of 

human targets could be of significance for translating these findings into the clinic. 
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5. Discussion 

 

5.1 The GR-E47 axis controls distinct aspects of hepatic metabolism 

 

This thesis identified the transcription factor E47 as a novel partner for GR in hepatocytes. 

E47 specifically cooperates in the transcriptional activation of metabolic gene networks in 

response to GCs. The loss of E47 in mutant mice therefore results in a protection from GC-

induced hyperglycemia, hyperlipidemia and hepatic steatosis. To determine the molecular 

basis for the observed phenotypic changes, RNA-Seq was performed in E47 mutant livers in 

response to GCs. Here, distinct gene networks were differentially expressed upon loss of 

E47 (Fig. 21). The majority of genes affected in response to Dex or Cort show reduced 

expression, which is in line with E47’s predominant role as a transcriptional activator. 

Deregulated genes can be clustered into pathways relating to lipid, triglyceride and 

cholesterol metabolism. Elevated circulating GC levels upon steroid treatment are known to 

cause lipid accumulation in the liver and whole-body dyslipidemia (Vegiopoulos and Herzig, 

2007). GR-controlled gluconeogenesis and resulting hyperglycemia has a well-established 

link to the upregulation of gluconeogenic genes, such as Pck1 and G6pc. However, the exact 

molecular mechanism of how GR controls other aspects of hepatic metabolism, e.g. lipid 

metabolism, remains to be clarified. In this regard, the collaborative interaction with 

partnering transcription factors and coregulators adds an additional layer of regulation to 

GR’s function in hepatic metabolism (de Guia and Herzig, 2015). Accumulating genomic and 

proteomic analyses have increased the pool of potential partners necessary for GR to 

regulate different gene networks in the liver (Phuc Le et al., 2005, Wang et al., 2012). In the 

ChIP-MS data presented here, several Mediator subunits, FoxO1, SRCs, c/EBPs, RXR and 

HNF4α were enriched together with GR in Dex-treated wildtype livers. In E47 mutant livers, 

the Mediator subunits MED16 and MED23 as well as FoxO1 were not present anymore (Fig. 

34B). Furthermore, ChIP qPCR in GC-treated livers revealed a diminished recruitment and 

binding of GR itself, MED1 and FoxO1 to enhancers and promoters induced by GCs upon 

loss of E47 (Fig 36&37). 

 

Mediator is a multisubunit complex comprising a head, middle and tail module. Most 

transcription factors are unable to directly interact with RNA polymerase II (Pol II). The 

Mediator complex fills this gap by acting as a bridging factor. By binding directly to the RNA 

Pol II, it integrates and relays signals from enhancer-bound transcription factors to the 

transcriptional start site (Kornberg, 2005, Youn et al., 2016). Here, the basal transcription 

machinery is assembled and consists of the RNA Pol II and general transcription factors, e.g. 

TFIIB, TFIID, TDIIE, TDIIF, and TFIIH, important for the initiation of transcription (Youn et al., 
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2016).  

 

MED1 constitutes a core component and was shown to directly interact with multiple 

transcription factors in liver including GR, PGC1α and nuclear receptors PPARα and PPARγ 

and have an essential function in the metabolic signaling of these factors (Jia et al., 2014). 

By binding directly to GR via both LXXLL motifs, MED1 has an established link to GR-

mediated transcription of genes in a ligand-dependent manner. Using a Med1-/- mouse 

embryonic fibroblast line, the authors show that MED1 is required for enhancing GR-

mediated gene transcription. Consequently, mutations in the LXXLL motif greatly reduce 

gene transcription by GR (Chen and Roeder, 2007). Interestingly, the requirement of MED1 

for initiation of transcription depends on different GR targets (Chen and Roeder, 2007). This 

selective gene function was also reported when levels of Med1 and Med14, another subunit 

of the tail module, were reduced via small interfering RNAs in an osteosarcoma cell line. 

Depending on the gene in question, either MED1 or MED14 are differentially required by GR 

to activate gene transcription (Chen et al., 2006). The above-mentioned in vitro studies 

demonstrate that MED1 holds an important co-regulatory role in gene expression mediated 

by GR and is used in a gene-specific manner. Liver-specific Med1 mutant mice are protected 

from the development of Dex-induced hepatic steatosis (Jia et al., 2009). Dex-treatment 

would normally repress enzymes involved in fatty acid oxidation. However, in liver-specific 

Med1 mutant mice, deficiency of MED1 results in normalized levels of these genes and a 

diminished occurrence of lipid accumulation in the liver (Jia et al., 2009).  

 

Besides MED1, knockout models for other distinct Mediator subunits have been described 

and revealed links to glucose and lipid metabolism. MED23 is a subunit of the tail module 

and was initially identified in the ChIP-MS data set as one of the factors lost in E47 mutant 

livers. In liver-specific Med23 knockout mice, glucose tolerance and the lipid profile is 

significantly improved. When challenged with a HFD diet, knockout mice are protected from 

diet-induced obesity. Moreover, ablation of Med23 using adenovirus-expressing shRNA 

significantly improves metabolic parameters such as glucose tolerance and plasma 

cholesterol and triglyceride levels in db/db mice (Chu et al., 2014). In Med23-deficient 

primary hepatocytes, this protective effect is mediated via a reduced recruitment of RNA Pol 

II to target genes of FoxO1, which subsequently attenuates their expression (Chu et al., 

2014). Thus, by affecting the transcriptional activity of FoxO1, loss of MED23 results in an 

improved glucose tolerance and lipid profile (Chu et al., 2014).  

 

With its crucial role in facilitating gene transcription, many of the distinct Mediator subunits 

have unveiled specificity for different transcription factors and pathways (Youn et al., 2016) 
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(Fig. 40). Modulation of individual subunits would therefore offer a mechanism for a tissue- 

and gene selective regulation. 

 
 

Figure 40: Graphical representation 
of the different Mediator subunits.  
The Mediator complex consists of a head 
module, a middle module, a tail module 
and a transiently associated kinase 
module. Mediator subunits discussed here 
are highlighted.  MED1 (in red) represents 
a core subunit likely situated between the 
middle and tail modules. Subunits 
highlighted in blue (MED14, MED16, 
MED23, MED24) are part of the tail 
module. The relative location of the 
subunits within the complex are based on 
previous publications but have yet to be 
precisely mapped. Picture modified from 
(Malik and Roeder, 2010) 
 

 

 

 

 

 

 

 

 

The ChIP-MS data revealed FoxO1 to be among the transcription factors enriched with GR 

but lost in E47 mutant livers (Fig. 34). The Fox consensus motif was also identified in both 

the GR and E2A cistromes presented here (Fig. 11) and is found among the footprints of 

transcription factors enriched with GREs (Lim et al., 2015, Grontved et al., 2013, Phuc Le et 

al., 2005). Although the previous datasets have shown occupancy of FoxA factors, it is 

entirely likely that FoxO1 recognizes this motif. A link between GR and FoxO1 has long been 

established in the upregulation of the Pck1 gene. Besides the GRE itself, the Pck1 promoter 

harbors a collection of binding sites for other transcription factors, among them FoxO1 

(Vegiopoulos and Herzig, 2007). Together with c/EBP, HNF4α, RXR and FoxA2, FoxO1 

exerts important accessory function in facilitating full induction of the Pck1 by enabling GR 

recruitment to the site (Hall et al., 2000, Chakravarty et al., 2005). 

 

FoxO1 is part of the superfamily of Forkhead transcription factors, which is implicated in a 

wide range of developmental processes and human diseases (Hannenhalli and Kaestner, 

2009). The FoxO factors FoxO1, FoxO3 and FoxO4 all play important roles in the 
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homeostasis of glucose signaling. Liver-specific deletion of FoxO1/3/4 collectively results in 

lower blood glucose levels and improved glucose and pyruvate tolerance (Xiong et al., 2013). 

FoxO1 is known as a key regulator of hepatic gluconeogenesis in response to insulin 

signaling (Puigserver et al., 2003, Gross et al., 2008). In the fasted state, FoxO1 promotes 

hepatic gluconeogenesis by up-regulating the expression of, the two key genes Pck1 and 

G6pc. Upon feeding, insulin is secreted from the pancreas and FoxO1 is phosphorylated. 

Phospohrylated FoxO1, in turn, is excluded from the nucleus and therefore unable to activate 

hepatic gluconeogenic gene expression (Puigserver et al., 2003). In situations of metabolic 

dysfunction, e.g. in diabetic patients, the significance of FoxO1 action becomes evident. 

Here, hepatic gluconeogenesis is inappropriately activated which is thought to be promoted 

by FoxO1 resulting in hyperglycemia and glucose intolerance (Gross et al., 2008). Liver-

specific deletion of FoxO1 results in an overall improvement of glucose metabolism. At birth, 

FoxO1 mutant mice show a drastic reduction of glucose levels, which is maintained upon 

prolonged fasting in adult life (Matsumoto et al., 2007). In fasted FoxO1 mutant livers, 

gluconeogenic gene expression is severely diminished (Matsumoto et al., 2007). This 

introduces the loss of FoxO1 or inhibition of FoxO1 in liver, respectively, as an appealing 

approach to undertake new therapeutic routes in the treatment of hyperglycemia and 

progression to diabetes (Matsumoto et al., 2007).  

 

The data from liver-specific FoxO1 mutant mice is in agreement with data from E47 mutant 

livers. Here, reduced binding of FoxO1 due to the loss of E47 results in attenuated 

upregulation of gluconeogenic GR target genes upon GC-treatment. E47 has previously 

been identified in a common pathway with FoxO1, albeit upstream of FoxO1 signaling since 

E2A binding sites in enhancer and promoter regions of the FoxO1 locus were identified 

(Welinder et al., 2011). These studies were performed in B cells, since the majority of what is 

known about E47 concentrates on its involvement in immune cell differentiation and 

maturation. Nevertheless, it coincides with the data presented here and suggests a potential 

role for E47 in FoxO1 function in liver. Interestingly, microarray analyses in a lymphoma cell 

line overexpressing E47 have also presented a possible role for E47 in the regulation of 

genes in lipid metabolism (Schwartz et al., 2006). Here, the expression of a subset of genes 

involved in lipid biosynthesis is induced by targeted expression of E47 (Schwartz et al., 

2006). 

 

Taken together, the interplay of GR, FoxO1 and E47 is likely responsible for the efficient 

activation of gluconeogenic and lipid gene programs in the liver. In the present model, GR 

requires E47 at a shared subset of cis-regulatory elements overlapping with FoxO1. 

Subsequent recruitment of the Mediator complex is needed for the transcriptional activation 
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of metabolic genes. In the absence of E47, occupancy of GR and FoxO1 at metabolic genes 

is reduced and loading of Mediator and the basal transcriptional machinery is also impaired. 

In response to GC treatment, E47 mutant mice would therefore be protected from hepatic 

steatosis and hyperglycemia due to diminished mRNA expression of these co-bound 

metabolic genes (Fig. 41). 

 

 
 
Figure 41: Modulation of hepatic GR function by E47. 
In wildtype livers, E47 binds together with GR at a subset of cis-regulatory elements, which are overlapping with 
FoxO1. As a response to GCs, the Mediator complex is recruited resulting in the transcriptional activation of 
certain metabolic genes. In E47 mutant livers, absence of E47 results in reduced binding of GR and FoxO1 
causing a reduction the recruitment of Mediator. Subsequently, mRNA expression levels of these metabolic 
genes are diminished. E47-/- mice are therefore protected from the development of GC-induced hyperglycemia 
and hepatic steatosis. Liver cartoon was taken from Servier Medical Art, licensed under a Creative Common 
Attribution 3.0 Generic License, <http://smart.servier.com/>.  

 

5.2 E47 and the specification of lineage   

 

The present thesis identified the E47 as a potentiating transcription factor for GR to activate 

metabolic gene programs in liver. Moreover, it was demonstrated that E47 needs to be 

present at distinct cis-regulatory sites to ensure GR and its co-regulators can efficiently 

access and bind in the genome. This argues for E47 to have a lineage-specific function and 

to determine chromatin accessibility for other factors.  

 

Genome-wide location analyses have unveiled that in most cases only a fraction of all 

potential binding sites for a given transcription factor in the genome are actually bound; the 

majority of binding sites remain unoccupied due to inaccessible DNA (Zaret and Carroll, 

2011). GR action is highly cell-type and locus-specific and GR relies on open and accessible 

chromatin in order to bind to its target genes (Grontved et al., 2013, Biddie et al., 2011, John 

et al., 2011). Comparing GR binding sites between different mouse cells shows that only a 

small proportion of GR-bound sites in liver can be identified in other cistromes and the 
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majority was indeed liver-specific (Grontved et al., 2013) (Fig. 6). In this context, the 

existence of lineage-determining transcription factors have long been known. Lineage-

determining factors change chromatin accessibility and “prime” the chromatin landscape for 

other signal-dependent factors to be directed to target sites in a tissue-specific manner 

(Zhang and Glass, 2013, Drouin, 2014). The pivotal role of these lineage factors lies in the 

“opening” of closed chromatin by binding first and recruiting chromatin-remodeling enzymes, 

e.g. histone acetylases, to establish a cell-type specific enhancer landscape (Greulich et al., 

2016). Once the cell-type-specific enhancer landscape is established, signal-dependent 

transcription factors such as GR and their associated partners can access their binding sites. 

Among the parameters to define where in the genome a transcription factor will likely bind 

are histone modifications, which render chromatin accessible. One such histone mark is 

H3K4 methylation, either monomethylation at enhancers or trimethylated at promoters 

(Heintzman et al., 2007). In addition, the presence of certain histone-acetylases, such as 

p300, at enhancers indicates whether this specific binding site will likely be bound by its 

transcription factor (Zaret and Carroll, 2011). Several lineage-determining factors have 

previously been identified. Among them are HNF4α, HNF6, c/EBP and the FoxA proteins, 

respectively. All factors were shown to be required for the development of the hepatocyte 

lineage (Park et al., 1993, Hall et al., 1995, Wang et al., 1996, Hall et al., 2000). In addition, 

their footprints have been found in different GR ChIP-Seq data sets (Lim et al., 2015, 

Grontved et al., 2013, Phuc Le et al., 2005)(Fig.11). FoxA1 is known to function as a lineage-

determining factor for members of the nuclear hormone receptor family. Binding of the 

estrogen receptor (ER) and the androgen receptor (AR), respectively, correlates with 

occupancy of FoxA1 in different cancer cell lines (Hurtado et al., 2011, Sahu et al., 2011). 

ChIP-Seq for ER identified the presence of FoxA1 sites at the majority of ER binding sites in 

the genome, demonstrating that FoxA1 regulates chromatin accessibility for subsequent 

recruitment of ER (Carroll et al., 2005).  

 

The E proteins E47 and E12 have a well-established function in the commitment to the 

lymphocyte cell lineage, specifically by favoring specification of B lymphocyte commitment 

and differentiation over the myeloid lineage (de Pooter and Kee, 2010). Indeed, E47 was 

reported to exert lineage-determining functions in the maturation of B cells (Heinz et al., 

2010). PU.1 together with c/EBP is essential for the development and “priming” of the 

myeloid lineage (Heinz et al., 2010, Iwasaki et al., 2005) (Heinz et al., 2010, Jin et al., 2011). 

Moreover, binding of PU.1 depends on the presence of other lineage-determining factors and 

occurs in the vicinity of these motifs (Heinz et al., 2010). In the case of B cell development, 

the presence of E47, EBF1, Pax5 and Oct2 was shown to be crucial in defining whether 

PU.1 can bind B cell-specific genomic sites (Heinz et al., 2010). Interestingly, in pro-B cells, 
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E2A binds together with EBF and FoxO1 in a synchronized manner to a wide range of 

different cis-regulatory sites (Lin et al., 2010). In addition, ChIP-Seq for FoxO1 in pro-B cells 

shows enrichment for composite E2A and FoxO1 sites and patterns of H3K4 

monomethylation (marking active enhancers), on the other hand, are heavily correlated with 

occupancy of E2A (Lin et al., 2010).  

 

E2A was also shown to interact and recruit histone acetylases, such as CBP, p300 and 

PCAF, in pre B-cells via its two N-terminal activation domains AD1 and AD2 (Bradney et al., 

2003). As ubiquitously expressed co-activators, CBP and its paralog p300 hold crucial roles 

in regulating gene transcription. They are recruited to enhancers and promoters through 

interactions with DNA-bound transcription factors and the basal transcription machinery and 

are able to catalyze acetylation of histones and facilitate gene transcription (Kalkhoven, 

2004). E47 and E12 bind directly to CBP/p300 through specific acetylation sites in AD1, 

which first enables recruitment followed by transcriptional activation (Hyndman et al., 2012b). 

Moreover, the histone acetyltransferase activity of CBP and p300 is significantly increased by 

direct association with specific residues in the transcriptional domain of E47/E12 (Hyndman 

et al., 2012a). This raises the possibility that E47 makes direct contact with enzymes 

involved in chromatin modification and underlines the factor’s decisive role in determining 

binding of associated factors.  

 

Taken together, E47’s previously described role as a lineage-determining factor in B cell 

development can likely be conveyed to its interaction with GR at specific target gene sites in 

liver. In this model, GR requires E47 for recruitment of CBP/p300 and its histone 

acetyltransferase function to define points of chromatin access. Chromatin accessibility 

would then enable GR and FoxO1 to occupy its sites in the DNA and, in a cooperative 

manner, recruit the Mediator complex and activate gene transcription.  

 

5.3 Anatgonism of E47: a new therapeutic avenue? 

 

Despite the 70 years since the discovery of GCs, novel aspects of GC-mediated gene 

regulation are continuously being uncovered (De Bosscher and Haegeman, 2009). Due to 

their powerful potential to dissolve inflammatory processes, GCs have become one of the 

most used drugs in the clinic nowadays. Unfortunately, so has the need to treat the severe 

side effects accompanying their long-term use. These frequently include the development of 

hyperglycemia, dyslipidemia, obesity, muscle wasting and osteoporosis (Schacke et al., 

2002). In the past decade, the therapeutic benefits of GC treatment have been attributed to 

the repression of inflammatory genes. On the other hand, activation of genes was made 
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accountable for the development of many of the side effects, specifically concerning the 

metabolism (Sundahl et al., 2015). For this reason, separating the two transcriptional 

mechanisms of action had taken center stage to improve the overall therapeutic ratio of 

synthetic GCs.  

 

One promising approach had previously been the development of compounds which would 

act as ligands or modulators for GR and largely favor the repressive function whilst exhibiting 

a reduced activating potential (Sundahl et al., 2015). Multiple of these compounds, frequently 

designated as dissociated compounds or selective GR agonists and modulators 

(SEGRAMs), have been reported in the past years (Schacke et al., 2007, De Bosscher, 

2010). Among the first generation of published dissociated GR ligands with a steroidal 

backbone was RU24858.  RU24858 exhibited promising dissociation in vitro in a rat asthma 

model with only a minor residual activating activity (Belvisi et al., 2001). However, it quickly 

became clear that in vivo RU24858 would still induce typical steroid side effects, e.g. 

induction of osteoporosis (Belvisi et al., 2001). The lack of success of selective steroidal GR 

agonists in vivo has led to a refocus towards non-steroidal GR modulators. This would 

largely bypass the possibility that derivatives are metabolized in a way that they behave 

similar to GCs (De Bosscher, 2010, Schacke et al., 2007). AL-438, as a modified progestin, 

was able to retain its ability to efficiently inhibit NFκB activated genes, e.g. Il6, in a rat asthma 

model in vivo (Coghlan et al., 2003). The compound exhibited a diminished induction of 

blood glucose, which is associated with activation of metabolic genes (Coghlan et al., 2003). 

Interestingly, AL-438 seemed to affect the association of GR with its different co-regulators. 

AL-438-activated GR was still able to interact with SRC2 (GRIP1) previously implicated in the 

suppression of inflammatory genes. However, association with PGC-1, a co-activator 

important for hepatic glucose metabolism, was attenuated (De Bosscher and Haegeman, 

2009). It is still unknown whether this specific cofactor association is selective and stringent 

enough to predict the side effect outcome (De Bosscher and Haegeman, 2009). In addition, 

more studies are needed to conclude whether the improved side-effect profile of AL-438 is 

present in other inflammatory models.  

 

It quickly became clear that the traditional model of a dissociated GR effect on different 

tissues, whether desired or detrimental, could not be attributed to the exclusive 

transcriptional outcome of either activation or repression. In this regard, the activation of 

many anti-inflammatory genes by GR, e.g. IκBα, Gilz, Dusp1 or Dusp14, constitutes an 

integral part of the receptor’s anti-inflammatory function (Beck et al., 2009a, De Bosscher 

and Haegeman, 2009). By eliminating GR-driven gene activation, this important component 

of the therapeutic action of GR in immune cells would be lost. Furthermore, a large number 
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of side effects do indeed result from GR-mediated activation of genes, e.g. hyperglycemia. 

However, many also arise due to GR’s repressive action, e.g. suppression of the HPA axis, 

and are often the results of a combination of both mechanisms, e.g. osteoporosis (Schacke 

et al., 2002). The fact that side effects are subjected to more than one mechanism 

underlines, once more, the complexity of pathways regulated by GR in different tissues. In 

the past, a clear separation of gene repression versus activation to reduce side effects has 

proven to be less successful. However, the selective modulation of GR action is still believed 

to provide an entry point into developing safer GC treatment (Sundahl et al., 2015). By 

focusing on cell-type specific factors defining the transcriptional complex at target sites, the 

“context-dependent” regulation of genes by GR needs to be considered when designing 

safer GC ligands (Beck et al., 2009a). 

 

A more tissue-selective modulation of GR signaling was suggested by combining 

administration of a steroid together with a compound, which is not directly targeting GR. This 

would alleviate a portion of GR-induced side effects without affecting its anti-inflammatory 

potential (Patel et al., 2017). The liver X receptors (LXRα and LXRβ) are also members of 

the nuclear hormone receptor family. They are activated by cholesterol metabolites and exert 

important functions in cholesterol metabolism and fatty acid synthesis (Patel et al., 2014, 

Patel et al., 2017). Importantly, GR and LXR are both involved in gluconeogenesis and the 

suppression of inflammation and share a common set of genes (Patel et al., 2017). Patel et 

al. had previously shown that Lxrβ-/- mice are protected from the development of commonly 

seen metabolic side effects, e.g. hyperglycemia, hyperinsulinemia and hepatic steatosis 

when treated with Dex (Patel et al., 2011). Importantly, Lxrβ -/- mice remain sensitive to the 

anti-inflammatory action of Dex. Prominent suppression of pro-inflammatory genes in LPS-

activated macrophages is retained arguing for an LXR-independent response to GCs in 

immune cells (Patel et al., 2011). Mechanistically, the authors demonstrated that LXR is 

required for efficient recruitment of Dex-activated GR to the Pck1 promoter. The Pck1 

promoter entails binding sites for transcription factors needed to facilitate full gene induction 

including FoxO1 and PGC1α (Chakravarty et al., 2005). In Lxrα/β-/- mice, prominent 

downregulation of Pck1 expression in liver is accompanied by equally diminished up-

regulation of Foxo1 and Pgc1α (Patel et al., 2011).  

 

On the basis of the Lxrβ null mice, Patel et al. speculated if the protective effect could be 

exploited therapeutically by inhibiting LXR exogenously (Patel et al., 2017). In this context, 

GSK2033 was introduced as a LXR antagonist. Treatment with GSK2033, a pan LXR 

antagonist, shows suppression of gluconeogenic genes in mouse livers when administered in 

combination with Dex. In accordance with data from Lxrβ -/- mice, co-administration of 
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GSK2033 with Dex results in a diminished recruitment of GR to the Pck1 promoter. 

Additionally, known accessory factors MED1, c/EBPβ and RNA Pol II also fail to efficiently 

bind to their respective sites in the Pck1 locus (Patel et al., 2017). More importantly, 

antagonism with GSK2033 is specific to LXRβ and has no effect on the expression of anti-

inflammatory genes in LPS-treated macrophages, therefore preserving the 

immunosuppressive effect of GC-treatment (Patel et al., 2017). 

 

Antagonism of LXRß demonstrates that dissociating the activation of gluconeogenic genes 

and repression of inflammatory genes by GR is feasible. Separation occurs in a tissue- and 

target gene-specific manner and exemplifies once again the requirement to view gene 

regulation by GR in its cell-type specific context. Interestingly, the protection from GC-

induced side effects in Lxrβ -/- mice mirrors the results from GC-treated E47-/- and E47ΔLKO 

mice. Similarly to LXR mutant mice, GR action in immune cells is also not affected by the 

loss of E47. Anti-inflammatory genes, e.g. Il6 and Ccl2, are effectively repressed in 

macrophages treated with Dex (Fig. 24). Both the GR and the E2A cistrome harbor the 

nuclear receptor DR1 motif, which constitutes the binding site for the retinoid X receptor, 

RXR. RXR was co-purified with GR in the present ChIP-MS data set from wildtype livers 

(Fig. 31) and is known to serve as a heterodimer partner for LXR. In addition, expression of 

both Lxrα and Lxrβ mRNA is not changed in E47 mutant livers (Fig. 35). By measures of 

affecting and essentially destabilizing the transcriptional complex assembled by GR at target 

genes, loss of E47 or LXRβ might therefore exert its beneficial effects via a comparable 

mechanism. GR, E47 and LXR might act within a shared transcriptional complex and overlap 

in the regulation of metabolic target genes such as Pck1 (Fig. 42).  

 

 

 
Figure 42: GR, E2A and LXR share binding sites in liver. 
ChIP-Seq tracks showing the overlapping binding of GR, E2A and LXR at the Pck1 locus in mouse liver. ChIP-
Seq for LXR was performed in female mouse livers treated with the LXR agonist T0901317 (Boergesen et al., 
2012). Data was obtained from NCBI GEO (accession number: GSE3526). 
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Analogous to using the LXR antagonist GSK2033 to selectively minimize GC-induced side 

effect profile, antagonizing E47 function could be a potential therapeutic approach. 

Interestingly, data from the human luciferase screen suggests a conserved function for E47 

in the transcriptional activation of certain human targets by GCs. Here, the ID proteins come 

into focus. By heterodimerization, E proteins are prevented from binding DNA since ID 

proteins lack a basic region. This way, ID proteins serve as endogenous inhibitors and 

impact gene regulation (Massari and Murre, 2000, Benezra et al., 1990, Kee, 2009). 

Modulation of dosage and activity of E2A via ID proteins, specifically ID2 and ID3, is 

important in determining B- and T-cell lineages (Lazorchak et al., 2005, Engel and Murre, 

2001, Murre, 2005). Moreover, knockout mouse models of some ID proteins results in an 

aberrant lipid and glucose metabolism (Wang and Baker, 2015). In this regard, preliminary 

data has shown that ID3 can be selectively overexpressed in liver via the tail vein using an 

adeno-associated virus vector system. Upon long-term Dex treatment, ID3-injected mice 

revealed a tendency towards lower blood glucose in a glucose tolerance test compared to 

control-injected mice. Here, the liver-specific inhibition of E47 using a virus system serves as 

a possibility of how activity of E47 could potentially be targeted and modulated exogenously.  

 

As a factor required for activation of lipid and glucose by GR in hepatocytes, E47 mutant 

mice are protected from GC-induced hyperglycemia and hepatic steatosis. Importantly, loss 

of E47 does not affect GR-mediated repression of immunogenic target genes. In this way, 

targeting E47 could potentially provide a new approach to tissue-specifically ameliorate side 

effects of long-term GC treatment without interfering with the beneficial anti-inflammatory 

effects of GCs. 

	



6. Concluding remarks and future perspective   
	

	

77 

6. Concluding remarks and future perspective 
 

In this thesis, I have identified a novel role for the bHLH factor E47 in hepatic metabolism in 

response to GCs.  

 

The conundrum how the action of a single receptor can lead to transcriptional activation 

versus repression of genes depending on the cell type is still unknown. With the wealth of 

genomic data on hand, it has become clear that gene regulation by GR is greatly influenced 

by a myriad of interacting transcription factors and coregulators that affect gene regulation. 

GR binding across the genome is highly cell-type specific. Using genomics and proteomics, I 

demonstrated that E47 is needed for GR and collaborating factors such as Mediator and 

FoxO1 to occupy its binding sites in hepatic enhancers and promoters. Consequently, loss of 

E47 protects mice from the development of GC-induced hyperglycemia, hepatic steatosis 

and dyslipidemia. As a lineage-determining factor for GR in liver, E47 facilitates chromatin 

access for GR and collaborating transcription factors at a subset of genes thereby shaping 

distinct hepatocyte and locus-specific GC responses. 

 

GCs are highly valued in the clinic for their immunosuppressive properties but their use is 

restricted by side effects, which are often linked to aberrant activation of metabolic gene 

expression in the liver. The therapeutic potential of targeting E47 to eliminate certain 

metabolic side effects would lie in the hepatocyte-specific modulation of the GC response 

while retaining important anti-inflammatory properties in immune cells. Since crosstalk 

between GR and E47 is conserved on several human promoters and enhancers, interfering 

with or abolishing expression levels of E47 might influence patient’s susceptibility to GC-

induced side effects or relieve the burden of Cushing’s disease. 

 

Developing novel GC treatment regimes with reduced adverse effects has proven to be 

difficult. Elucidating the distinct molecular mechanisms by which GR influences tissue-

specific gene expression and side effect progression presents a major step towards safer 

steroid treatment. 
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Supplement data 
 

Supplemental Table 1: ChIP-Sequencing raw reads. 

ChIP sample  # reads processed  # reads uniquely mapped (paired-end) 

GR replicate 1 36552517 29641799 
GR replicate 2 40180888 33246622 
E2A replicate 1 41481309 26052840 
E2A replicate 2 30346951 22700288 
	

	

Supplemental Table 2: GR ChIP-Sequencing peaks in liver. 
GR ChIP-Seq data from Dex-treated liver is shown. Selected peaks discussed above are listed. Data represents n=1. 
 
Peak Start End Annotation Distance to TSS Symbol Gene name 

chr2 173153073 173154459 Promoter (<=1kb) 0 Pck1 phosphoenolpyruvate carboxykinase 1, cytosolic 

chr2 155059312 155074497 Distal Intergenic 17653 Ahcy S-adenosylhomocysteine hydrolase 

chr4 106561038 106589113 Intron (uc008tyl.1/74754, intron 2 of 8) 4135 Dhcr24 24-dehydrocholesterol reductase 

chr5 114165518 114250758 Intron (uc008yzi.2/100705, intron 1 of 51) 7435 Acacb acetyl-Coenzyme A carboxylase beta 

chr6 5483351 5496278 3' UTR 10852 Pdk4 pyruvate dehydrogenase kinase, isoenzyme 4 

chr7 26931631 26939386 Distal Intergenic 21896 Cyp2a22 cytochrome P450, family 2, subfamily a, polypeptide 22 

chr7 143823167 143848410 Intron (uc009kqc.1/13360, intron 2 of 8) 10471 Dhcr7 7-dehydrocholesterol reductase 

chr8 109990436 109999804 Distal Intergenic 13841 Tat tyrosine aminotransferase 

chr9 46240844 46243458 Promoter (1-2kb) -1511 Apoa4 apolipoprotein A-IV 

chr11 7197787 7202546 Distal Intergenic -2711 Igfbp1 insulin-like growth factor binding protein 1 

chr11 5900821 5915135 Promoter (<=1kb) 0 Gck glucokinase 

chr11 120805958 120824547 Promoter (<=1kb) 0 Fasn fatty acid synthase 

chr11 101367716 101377903 Distal Intergenic -4982 G6pc glucose-6-phosphatase, catalytic 
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chr11 69098956 69109957 Promoter (<=1kb) 0 Per1 period circadian clock 1 

chr11 60199084 60220627 Distal Intergenic -3859 Srebf1 sterol regulatory element binding transcription factor 1 

chr11 110176821 110251776 Exon (uc007mdj.3/76184, exon 5 of 39) 6504 Abca6 ATP-binding cassette, sub-family A (ABC1), member 6 

chr13 96648962 96670936 Distal Intergenic -2888 Hmgcr 3-hydroxy-3-methylglutaryl-Coenzyme A reductase 

chr13 119690351 119702186 Intron (uc007rzu.1/245269, intron 2 of 3) 25793 Hmgcs1 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 

chr19 39510822 39568529 Promoter (<=1kb) 0 Cyp2c39 cytochrome P450, family 2, subfamily c, polypeptide 39 

chr19 55069734 55127216 Distal Intergenic -4413 Gpam glycerol-3-phosphate acyltransferase, mitochondrial 
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Supplemental Table 3: Genes differentially expressed in livers of Dex-treated E47-/- mice. 
Results from RNA-Seq in liver indicating the fold change (FC) in gene expression as log2 (log2FC). The top 50 up 
and downregulated genes (FC1.3; p-value<0.05 and selected genes discussed above) are listed. Data represents 
n=2 (WT) & 3 (E47-/-). 
 
Ensembl gene log2 FC p-value MGI (Mouse Genome Interactive) symbol 
ENSMUSG00000037411 -4,93 0,00 Serpine1 
ENSMUSG00000022376 -4,59 0,01 Adcy8 
ENSMUSG00000038665 -3,72 0,01 Dgki 
ENSMUSG00000026360 -3,14 0,01 Rgs2 
ENSMUSG00000032899 -3,13 0,01 Styk1 
ENSMUSG00000051439 -2,69 0,00 Cd14 
ENSMUSG00000026012 -2,49 0,00 Cd28 
ENSMUSG00000043013 -2,37 0,05 Onecut1 
ENSMUSG00000040111 -2,34 0,00 Gramd1b 
ENSMUSG00000041550 -2,26 0,01 Serpina5 
ENSMUSG00000105703 -2,19 0,00 Gm43305 
ENSMUSG00000009394 -2,19 0,00 Syn2 
ENSMUSG00000025909 -1,94 0,01 Sntg1 
ENSMUSG00000067279 -1,92 0,04 Ppp1r3c 
ENSMUSG00000028195 -1,89 0,00 Cyr61 
ENSMUSG00000092075 -1,88 0,02 Serpina4-ps1 
ENSMUSG00000038349 -1,86 0,00 Plcl1 
ENSMUSG00000033998 -1,80 0,00 Kcnk1 
ENSMUSG00000078922 -1,74 0,00 Tgtp1 
ENSMUSG00000059824 -1,72 0,00 Dbp 
ENSMUSG00000041567 -1,70 0,00 Serpina12 
ENSMUSG00000066477 -1,65 0,00 Gm16551 
ENSMUSG00000026628 -1,59 0,00 Atf3 
ENSMUSG00000006154 -1,58 0,02 Eps8l1 
ENSMUSG00000059743 -1,58 0,00 Fdps 
ENSMUSG00000020423 -1,54 0,00 Btg2 
ENSMUSG00000026475 -1,50 0,00 Rgs16 
ENSMUSG00000029381 -1,50 0,00 Shroom3 
ENSMUSG00000047109 -1,47 0,01 Cldn14 
ENSMUSG00000069892 -1,47 0,04 9930111J21Rik2 
ENSMUSG00000084996 -1,45 0,01 Gm11419 
ENSMUSG00000030256 -1,45 0,00 Bhlhe41 
ENSMUSG00000020649 -1,44 0,00 Rrm2 
ENSMUSG00000027954 -1,39 0,00 Efna1 
ENSMUSG00000051361 -1,38 0,04 6030498E09Rik 
ENSMUSG00000015451 -1,34 0,00 C4a 
ENSMUSG00000068877 -1,34 0,00 Selenbp2 
ENSMUSG00000021573 -1,34 0,01 Tppp 
ENSMUSG00000020205 -1,33 0,00 Phlda1 
ENSMUSG00000038530 -1,33 0,02 Rgs4 
ENSMUSG00000034936 -1,31 0,00 Arl4d 
ENSMUSG00000038415 -1,31 0,00 Foxq1 
ENSMUSG00000003541 -1,29 0,00 Ier3 
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ENSMUSG00000027313 -1,26 0,00 Chac1 
ENSMUSG00000019966 -1,26 0,01 Kitl 
ENSMUSG00000022351 -1,23 0,00 Sqle 
ENSMUSG00000089712 -1,22 0,02 Gm15889 
ENSMUSG00000028681 -1,22 0,01 Ptch2 
ENSMUSG00000058258 -1,20 0,02 Idi1 
ENSMUSG00000020937 -1,19 0,00 Plcd3 
ENSMUSG00000032080 -1,13 0,00 Apoa4 
ENSMUSG00000021670 -0,84 0,01 Hmgcr 
ENSMUSG00000058454 -0,77 0,01 Dhcr7 
ENSMUSG00000093930 -0,74 0,07 Hmgcs1 
ENSMUSG00000042010 -0,55 0,06 Acacb 
ENSMUSG00000024978 -0,46 0,01 Gpam 
ENSMUSG00000034926 -0,41 0,05 Dhcr24 
ENSMUSG00000020429 -0,23 0,46 Igfbp1 
ENSMUSG00000027513 -0,23 0,18 Pck1 
ENSMUSG00000041798 -0,06 0,80 Gck 
ENSMUSG00000078650 0,27 0,23 G6pc 
ENSMUSG00000068086 0,38 0,03 Cyp2d9 
ENSMUSG00000022821 0,38 0,04 Hgd 
ENSMUSG00000045193 0,39 0,04 Cirbp 
ENSMUSG00000027997 0,39 0,05 Casp6 
ENSMUSG00000089960 0,40 0,03 Ugt1a1 
ENSMUSG00000045374 0,41 0,04 Wdr81 
ENSMUSG00000039450 0,42 0,03 Dcxr 
ENSMUSG00000020919 0,44 0,04 Stat5b 
ENSMUSG00000021236 0,44 0,03 Entpd5 
ENSMUSG00000018427 0,44 0,04 Ypel2 
ENSMUSG00000073147 0,45 0,05 5031425E22Rik 
ENSMUSG00000069922 0,47 0,04 Ces3a 
ENSMUSG00000052632 0,47 0,03 Asap2 
ENSMUSG00000028863 0,48 0,04 Meaf6 
ENSMUSG00000000275 0,48 0,01 Trim25 
ENSMUSG00000056966 0,49 0,05 Gjc3 
ENSMUSG00000031788 0,49 0,04 Kifc3 
ENSMUSG00000037254 0,49 0,02 Itih2 
ENSMUSG00000066319 0,50 0,02 Rtp3 
ENSMUSG00000061353 0,51 0,03 Cxcl12 
ENSMUSG00000025260 0,51 0,02 Hsd17b10 
ENSMUSG00000024887 0,52 0,04 Asah2 
ENSMUSG00000052062 0,53 0,02 Pard3b 
ENSMUSG00000034837 0,53 0,04 Gnat1 
ENSMUSG00000042248 0,53 0,03 Cyp2c37 
ENSMUSG00000026489 0,53 0,02 Coq8a 
ENSMUSG00000031147 0,54 0,03 Magix 
ENSMUSG00000021884 0,55 0,01 Hacl1 
ENSMUSG00000101939 0,55 0,01 Gm28438 
ENSMUSG00000086628 0,56 0,01 Gm16157 
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ENSMUSG00000046532 0,57 0,04 Ar 
ENSMUSG00000032724 0,57 0,00 Abtb2 
ENSMUSG00000039202 0,57 0,01 Abhd2 
ENSMUSG00000027259 0,58 0,04 Adal 
ENSMUSG00000020038 0,59 0,02 Cry1 
ENSMUSG00000055116 0,59 0,02 Arntl 
ENSMUSG00000040706 0,59 0,03 Agmat 
ENSMUSG00000042453 0,59 0,02 Reln 
ENSMUSG00000026272 0,60 0,00 Agxt 
ENSMUSG00000036655 0,60 0,04 Colec11 
ENSMUSG00000039395 0,61 0,01 Mreg 
ENSMUSG00000020620 0,63 0,00 Abca8b 
ENSMUSG00000015357 0,63 0,00 Clpx 
ENSMUSG00000028150 0,65 0,02 Rorc 
ENSMUSG00000033318 0,66 0,01 Gstt2 
ENSMUSG00000010025 0,67 0,05 Aldh3a2 
ENSMUSG00000097729 0,68 0,01 2310015A10Rik 
ENSMUSG00000005677 0,68 0,01 Nr1i3 
ENSMUSG00000090555 0,69 0,01 Gm8893 
ENSMUSG00000023017 0,69 0,03 Asic1 
ENSMUSG00000005413 0,69 0,01 Hmox1 
    

 

 

Supplemental Table 4: Genes differentially expressed in livers of Cort-treated E47-/- mice. 
Results from RNA-Seq in liver indicating the fold change (FC) in gene expression as log2 (log2FC). The top 50 up 
and downregulated genes (FC1.3; p-value<0.05 and selected genes discussed above) are listed. Data represents 
n=4 per genotype. 
 
Ensembl gene log2 FC p-value MGI (Mouse Genome Interactive) symbol 
ENSMUSG00000040660 -6,38 0,00 Cyp2b9 
ENSMUSG00000028664 -4,10 0,00 Ephb2 
ENSMUSG00000050359 -4,05 0,00 Sprr1a 
ENSMUSG00000034634 -4,02 0,00 Ly6d 
ENSMUSG00000074254 -3,73 0,00 Cyp2a4 
ENSMUSG00000029816 -3,22 0,00 Gpnmb 
ENSMUSG00000029272 -2,99 0,00 Sult1e1 
ENSMUSG00000053168 -2,65 0,00 9030619P08Rik 
ENSMUSG00000067656 -2,53 0,00 Slc22a27 
ENSMUSG00000091867 -2,52 0,00 Cyp2a22 
ENSMUSG00000022947 -2,46 0,00 Cbr3 
ENSMUSG00000040809 -2,30 0,00 Chil3 
ENSMUSG00000004038 -2,19 0,00 Gstm3 
ENSMUSG00000020037 -2,16 0,00 Rfx4 
ENSMUSG00000106069 -2,15 0,00 Gm6135 
ENSMUSG00000045502 -2,09 0,00 Hcar2 
ENSMUSG00000035186 -2,00 0,00 Ubd 
ENSMUSG00000006398 -1,95 0,00 Cdc20 
ENSMUSG00000026691 -1,94 0,04 Fmo3 
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ENSMUSG00000074183 -1,93 0,00 Gsta1 
ENSMUSG00000049493 -1,88 0,00 Pls1 
ENSMUSG00000045934 -1,88 0,00 Mtmr11 
ENSMUSG00000074179 -1,87 0,00 Gm10639 
ENSMUSG00000037139 -1,86 0,01 Myom3 
ENSMUSG00000037419 -1,85 0,00 Endod1 
ENSMUSG00000049109 -1,85 0,01 Themis 
ENSMUSG00000049723 -1,82 0,00 Mmp12 
ENSMUSG00000032080 -1,81 0,00 Apoa4 
ENSMUSG00000021208 -1,79 0,00 Ifi27l2b 
ENSMUSG00000102813 -1,79 0,00 Gm37795 
ENSMUSG00000029188 -1,78 0,00 Slc34a2 
ENSMUSG00000031150 -1,75 0,00 Ccdc120 
ENSMUSG00000024640 -1,73 0,00 Psat1 
ENSMUSG00000041219 -1,68 0,00 Arhgap11a 
ENSMUSG00000092008 -1,67 0,03 Cyp2c69 
ENSMUSG00000002944 -1,60 0,00 Cd36 
ENSMUSG00000012187 -1,57 0,00 Mogat1 
ENSMUSG00000064246 -1,57 0,00 Chil1 
ENSMUSG00000027699 -1,56 0,00 Ect2 
ENSMUSG00000031271 -1,55 0,00 Serpina7 
ENSMUSG00000017002 -1,54 0,00 Slpi 
ENSMUSG00000028712 -1,52 0,00 Cyp4a31 
ENSMUSG00000028555 -1,51 0,00 Ttc39a 
ENSMUSG00000035385 -1,50 0,05 Ccl2 
ENSMUSG00000019577 -1,46 0,02 Pdk4 
ENSMUSG00000001228 -1,46 0,00 Uhrf1 
ENSMUSG00000040562 -1,45 0,00 Gstm2 
ENSMUSG00000035439 -1,43 0,00 Haus8 
ENSMUSG00000025003 -1,43 0,00 Cyp2c39 
ENSMUSG00000042010 -1,18 0,00 Acacb 
ENSMUSG00000093930 -1,03 0,00 Hmgcs1 
ENSMUSG00000034926 -0,59 0,00 Dhcr24 
ENSMUSG00000058454 -0,40 0,03 Dhcr7 
ENSMUSG00000020429 -0,33 0,54 Igfbp1 
ENSMUSG00000041798 -0,26 0,16 Gck 
ENSMUSG00000021670 -0,24 0,20 Hmgcr 
ENSMUSG00000078650 -0,06 0,79 G6pc 
ENSMUSG00000027513 0,21 0,16 Pck1 
ENSMUSG00000052921 0,38 0,00 Arhgef15 
ENSMUSG00000047867 0,38 0,02 Gimap6 
ENSMUSG00000024055 0,38 0,00 Cyp4f13 
ENSMUSG00000060036 0,38 0,03 Rpl3 
ENSMUSG00000004655 0,38 0,00 Aqp1 
ENSMUSG00000028776 0,38 0,00 Tinagl1 
ENSMUSG00000036819 0,38 0,00 Jmjd4 
ENSMUSG00000022091 0,38 0,04 Sorbs3 
ENSMUSG00000087141 0,39 0,00 Plcxd2 
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ENSMUSG00000030087 0,39 0,02 Klf15 
ENSMUSG00000027778 0,39 0,01 Ift80 
ENSMUSG00000024151 0,39 0,01 Msh2 
ENSMUSG00000031605 0,39 0,00 Klhl2 
ENSMUSG00000034522 0,39 0,04 Zfp395 
ENSMUSG00000027300 0,39 0,01 Ubox5 
ENSMUSG00000054252 0,39 0,02 Fgfr3 
ENSMUSG00000030067 0,39 0,00 Foxp1 
ENSMUSG00000072620 0,39 0,01 Slfn2 
ENSMUSG00000019966 0,39 0,03 Kitl 
ENSMUSG00000027332 0,39 0,01 Ivd 
ENSMUSG00000082536 0,39 0,01 Gm13456 
ENSMUSG00000043065 0,39 0,02 Spice1 
ENSMUSG00000057037 0,39 0,00 Cfhr1 
ENSMUSG00000007872 0,39 0,04 Id3 
ENSMUSG00000024440 0,40 0,03 Pcdh12 
ENSMUSG00000022708 0,40 0,00 Zbtb20 
ENSMUSG00000062619 0,40 0,00 2310039H08Rik 
ENSMUSG00000004748 0,40 0,00 Mtfp1 
ENSMUSG00000022353 0,40 0,01 Mtss1 
ENSMUSG00000020644 0,40 0,03 Id2 
ENSMUSG00000058396 0,40 0,00 Gpr182 
ENSMUSG00000022610 0,40 0,02 Mapk12 
ENSMUSG00000057842 0,40 0,01 Zfp595 
ENSMUSG00000086825 0,40 0,00 Gm15675 
ENSMUSG00000021134 0,41 0,00 Srsf5 
ENSMUSG00000006464 0,41 0,03 Bbs1 
ENSMUSG00000101397 0,41 0,00 Mug-ps1 
ENSMUSG00000060301 0,41 0,00 2610008E11Rik 
ENSMUSG00000044469 0,41 0,05 Tnfaip8l1 
ENSMUSG00000024065 0,41 0,01 Ehd3 
ENSMUSG00000034911 0,41 0,00 Ushbp1 
ENSMUSG00000055862 0,41 0,00 Izumo4 
ENSMUSG00000031365 0,41 0,02 Zfp275 
ENSMUSG00000028381 0,41 0,00 Ugcg 
ENSMUSG00000031167 0,41 0,01 Rbm3 
ENSMUSG00000015656 0,42 0,01 Hspa8 
ENSMUSG00000030424 0,42 0,04 Zfp939 
ENSMUSG00000029471 0,42 0,01 Camkk2 
ENSMUSG00000021947 0,42 0,00 Cryl1 
ENSMUSG00000096971 0,42 0,03 4930556M19Rik 
ENSMUSG00000071711 0,42 0,01 Mpst 
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Supplemental Table 5: Genes differentially expressed in livers of untreated E47-/- mice. 
Results from RNA-Seq in liver indicating the fold change (FC) in gene expression as log2 (log2FC). The top 50 up 
and downregulated genes (FC1.3; p-value<0.05) are listed. Data represents n= 5 (WT) & 6 (E47-/-). 
 
Ensembl gene log2 FC p-value MGI (Mouse Genome Interactive) symbol 
ENSMUSG00000088246 -4,81 0,00 Gm25911 
ENSMUSG00000076258 -2,14 0,00 Gm23935 
ENSMUSG00000020037 -1,76 0,00 Rfx4 
ENSMUSG00000046229 -1,76 0,01 Scand1 
ENSMUSG00000096768 -1,51 0,00 Erdr1 
ENSMUSG00000024365 -1,43 0,00 Cyp21a1 
ENSMUSG00000097930 -1,40 0,00 C330002G04Rik 
ENSMUSG00000034674 -1,35 0,00 Tdg 
ENSMUSG00000076609 -1,09 0,01 Igkc 
ENSMUSG00000050097 -1,06 0,04 Ces2b 
ENSMUSG00000100075 -1,05 0,04 1700018L02Rik 
ENSMUSG00000025004 -1,01 0,04 Cyp2c40 
ENSMUSG00000038880 -1,01 0,02 Mrps34 
ENSMUSG00000027983 -0,98 0,00 Cyp2u1 
ENSMUSG00000106838 -0,97 0,01 1810017P11Rik 
ENSMUSG00000024430 -0,96 0,02 Cabyr 
ENSMUSG00000015451 -0,96 0,00 C4a 
ENSMUSG00000031637 -0,95 0,00 Lrp2bp 
ENSMUSG00000095098 -0,94 0,03 Ccdc85b 
ENSMUSG00000029725 -0,91 0,02 Ppp1r35 
ENSMUSG00000015337 -0,89 0,01 Endog 
ENSMUSG00000030431 -0,87 0,01 Tmem238 
ENSMUSG00000016356 -0,87 0,04 Col20a1 
ENSMUSG00000020308 -0,87 0,01 Tpgs1 
ENSMUSG00000092274 -0,86 0,03 Neat1 
ENSMUSG00000074657 -0,86 0,04 Kif5a 
ENSMUSG00000041731 -0,86 0,00 Pgm5 
ENSMUSG00000078570 -0,86 0,00 1110065P20Rik 
ENSMUSG00000033751 -0,84 0,02 Gadd45gip1 
ENSMUSG00000053175 -0,82 0,00 Bcl3 
ENSMUSG00000037583 -0,82 0,04 Nr0b2 
ENSMUSG00000070282 -0,81 0,00 3000002C10Rik 
ENSMUSG00000004814 -0,79 0,03 Ccl24 
ENSMUSG00000035711 -0,79 0,05 Dok3 
ENSMUSG00000069601 -0,78 0,00 Ank3 
ENSMUSG00000040264 -0,77 0,04 Gbp2b 
ENSMUSG00000069919 -0,76 0,00 Hba-a1 
ENSMUSG00000032077 -0,76 0,03 Bud13 
ENSMUSG00000024925 -0,74 0,01 Rnaseh2c 
ENSMUSG00000043251 -0,73 0,01 Exoc3l 
ENSMUSG00000053613 -0,73 0,03 Notumos 
ENSMUSG00000003378 -0,72 0,02 Grik5 
ENSMUSG00000086544 -0,72 0,03 Chn1os3 
ENSMUSG00000022010 -0,71 0,03 Tsc22d1 
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ENSMUSG00000074794 -0,71 0,04 Arrdc3 
ENSMUSG00000008035 -0,70 0,04 Mid1ip1 
ENSMUSG00000022129 -0,70 0,04 Dct 
ENSMUSG00000021495 -0,69 0,02 Fam193b 
ENSMUSG00000042293 -0,69 0,05 Gm5617 
ENSMUSG00000091337 0,38 0,04 Eid1 
ENSMUSG00000030247 0,38 0,01 Kcnj8 
ENSMUSG00000028173 0,39 0,01 Wls 
ENSMUSG00000056025 0,39 0,01 Clca3a1 
ENSMUSG00000029765 0,39 0,05 Plxna4 
ENSMUSG00000026678 0,39 0,02 Rgs5 
ENSMUSG00000029385 0,40 0,01 Ccng2 
ENSMUSG00000019806 0,40 0,01 Aig1 
ENSMUSG00000035273 0,40 0,00 Hpse 
ENSMUSG00000026728 0,40 0,04 Vim 
ENSMUSG00000029571 0,40 0,01 Tmem106b 
ENSMUSG00000052534 0,41 0,00 Pbx1 
ENSMUSG00000026768 0,41 0,02 Itga8 
ENSMUSG00000022146 0,42 0,04 Osmr 
ENSMUSG00000034926 0,42 0,00 Dhcr24 
ENSMUSG00000020467 0,43 0,02 Efemp1 
ENSMUSG00000028211 0,43 0,01 Trp53inp1 
ENSMUSG00000004631 0,44 0,04 Sgce 
ENSMUSG00000025887 0,44 0,05 Casp12 
ENSMUSG00000021335 0,44 0,02 Slc17a1 
ENSMUSG00000031561 0,44 0,05 Tenm3 
ENSMUSG00000027848 0,45 0,02 Olfml3 
ENSMUSG00000023915 0,45 0,01 Tnfrsf21 
ENSMUSG00000030249 0,45 0,01 Abcc9 
ENSMUSG00000086332 0,45 0,01 4930480G23Rik 
ENSMUSG00000025969 0,46 0,05 Nrp2 
ENSMUSG00000029309 0,46 0,02 Sparcl1 
ENSMUSG00000031278 0,47 0,02 Acsl4 
ENSMUSG00000019929 0,47 0,00 Dcn 
ENSMUSG00000030823 0,47 0,03 9130019O22Rik 
ENSMUSG00000029231 0,48 0,01 Pdgfra 
ENSMUSG00000014329 0,48 0,02 Bicc1 
ENSMUSG00000021943 0,49 0,04 Gdf10 
ENSMUSG00000021665 0,50 0,02 Hexb 
ENSMUSG00000019850 0,50 0,01 Tnfaip3 
ENSMUSG00000034573 0,50 0,02 Ptpn13 
ENSMUSG00000026303 0,50 0,04 Mlph 
ENSMUSG00000082292 0,50 0,04 Gm12250 
ENSMUSG00000032245 0,51 0,00 Cln6 
ENSMUSG00000041272 0,52 0,01 Tox 
ENSMUSG00000021573 0,52 0,01 Tppp 
ENSMUSG00000029167 0,52 0,01 Ppargc1a 
ENSMUSG00000060397 0,53 0,03 Zfp128 
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ENSMUSG00000054942 0,54 0,01 Miga1 
ENSMUSG00000027962 0,56 0,00 Vcam1 
ENSMUSG00000033107 0,56 0,01 Rnf125 
ENSMUSG00000011034 0,58 0,01 Slc5a1 
ENSMUSG00000041773 0,59 0,01 Enc1 
ENSMUSG00000029417 0,63 0,05 Cxcl9 
ENSMUSG00000027864 0,63 0,00 Ptgfrn 
     

 

Supplemental Table 6: Genes differentially expressed in muscle of Dex-treated E47-/- mice. 
Results from RNA-Seq in skeletal muscle indicating the fold change (FC) in gene expression as log2 (log2FC). 
The top 50 up and downregulated genes (FC1.3; p-value<0.05) are listed. Data represents n=2 (WT) & 3 (E47-/-). 
 
Ensembl gene log2 FC p-value MGI (Mouse Genome Interactive) symbol 
ENSMUSG00000030359 -4,91 0,01 Pzp 
ENSMUSG00000029368 -4,54 0,02 Alb 
ENSMUSG00000020609 -4,50 0,04 Apob 
ENSMUSG00000028011 -4,27 0,04 Tdo2 
ENSMUSG00000072849 -4,26 0,04 Serpina1e 
ENSMUSG00000027359 -4,23 0,04 Slc27a2 
ENSMUSG00000059481 -3,93 0,05 Plg 
ENSMUSG00000030895 -3,92 0,01 Hpx 
ENSMUSG00000022899 -3,82 0,00 Slc15a2 
ENSMUSG00000006522 -3,41 0,01 Itih3 
ENSMUSG00000026715 -3,39 0,00 Serpinc1 
ENSMUSG00000027249 -3,05 0,00 F2 
ENSMUSG00000032081 -2,56 0,02 Apoc3 
ENSMUSG00000038257 -2,39 0,00 Glra3 
ENSMUSG00000021922 -2,01 0,01 Itih4 
ENSMUSG00000076612 -1,79 0,02 Ighg2c 
ENSMUSG00000021453 -1,56 0,03 Gadd45g 
ENSMUSG00000053719 -1,50 0,00 Klk1b26 
ENSMUSG00000021135 -1,48 0,04 Slc10a1 
ENSMUSG00000034674 -1,45 0,00 Tdg 
ENSMUSG00000063320 -1,26 0,00 1190007I07Rik 
ENSMUSG00000035189 -1,24 0,02 Ano4 
ENSMUSG00000084803 -1,20 0,01 5830444B04Rik 
ENSMUSG00000032726 -1,12 0,03 Bmp8a 
ENSMUSG00000026622 -1,11 0,03 Nek2 
ENSMUSG00000031394 -1,10 0,02 Opn1mw 
ENSMUSG00000076441 -1,07 0,04 Ass1 
ENSMUSG00000025887 -1,03 0,00 Casp12 
ENSMUSG00000036902 -1,03 0,02 Neto2 
ENSMUSG00000042045 -1,02 0,02 Sln 
ENSMUSG00000056708 -0,99 0,00 Ier5 
ENSMUSG00000021815 -0,94 0,00 Mss51 
ENSMUSG00000097819 -0,92 0,04 Gm26813 
ENSMUSG00000019988 -0,90 0,00 Nedd1 
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ENSMUSG00000027313 -0,90 0,01 Chac1 
ENSMUSG00000098050 -0,83 0,00 Gm5345 
ENSMUSG00000020737 -0,80 0,00 Jpt1 
ENSMUSG00000070056 -0,80 0,00 Mfhas1 
ENSMUSG00000075330 -0,78 0,03 A930003A15Rik 
ENSMUSG00000043415 -0,77 0,04 Otud1 
ENSMUSG00000060639 -0,77 0,01 Hist1h4i 
ENSMUSG00000022144 -0,77 0,03 Gdnf 
ENSMUSG00000075232 -0,76 0,05 Amd1 
ENSMUSG00000097624 -0,70 0,02 Gm5091 
ENSMUSG00000011179 -0,69 0,04 Odc1 
ENSMUSG00000048489 -0,66 0,05 8430408G22Rik 
ENSMUSG00000102573 -0,66 0,02 Gm7265 
ENSMUSG00000024134 -0,65 0,01 Six2 
ENSMUSG00000047037 -0,64 0,03 Nipa1 
ENSMUSG00000032898 0,38 0,01 Fbxo21 
ENSMUSG00000034708 0,38 0,03 Grn 
ENSMUSG00000039831 0,39 0,01 Arhgap29 
ENSMUSG00000026463 0,39 0,01 Atp2b4 
ENSMUSG00000008540 0,39 0,04 Mgst1 
ENSMUSG00000033096 0,39 0,02 Apmap 
ENSMUSG00000032724 0,40 0,03 Abtb2 
ENSMUSG00000031503 0,40 0,01 Col4a2 
ENSMUSG00000040170 0,40 0,02 Fmo2 
ENSMUSG00000041828 0,40 0,05 Abca8a 
ENSMUSG00000060002 0,40 0,01 Chpt1 
ENSMUSG00000027952 0,40 0,04 Pmvk 
ENSMUSG00000032679 0,40 0,04 Cd59a 
ENSMUSG00000034780 0,41 0,04 B3galt1 
ENSMUSG00000002550 0,41 0,03 Uck1 
ENSMUSG00000066026 0,42 0,02 Dhrs3 
ENSMUSG00000031523 0,42 0,01 Dlc1 
ENSMUSG00000071657 0,42 0,05 Bscl2 
ENSMUSG00000065954 0,43 0,04 Tacc1 
ENSMUSG00000022194 0,43 0,04 Pabpn1 
ENSMUSG00000035863 0,43 0,04 Palm 
ENSMUSG00000040687 0,44 0,05 Madd 
ENSMUSG00000040147 0,44 0,02 Maob 
ENSMUSG00000001802 0,44 0,04 Lrp3 
ENSMUSG00000026796 0,44 0,01 Fam129b 
ENSMUSG00000026879 0,44 0,02 Gsn 
ENSMUSG00000027332 0,45 0,01 Ivd 
ENSMUSG00000020432 0,45 0,00 Tcn2 
ENSMUSG00000038065 0,45 0,03 Mturn 
ENSMUSG00000025213 0,45 0,04 Kazald1 
ENSMUSG00000031938 0,45 0,04 4931406C07Rik 
ENSMUSG00000020473 0,45 0,01 Aebp1 
ENSMUSG00000022261 0,45 0,05 Sdc2 
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ENSMUSG00000085348 0,46 0,03 Myhas 
ENSMUSG00000028944 0,46 0,03 Prkag2 
ENSMUSG00000021033 0,46 0,01 Gstz1 
ENSMUSG00000000957 0,46 0,05 Mmp14 
ENSMUSG00000026723 0,46 0,04 Trdmt1 
ENSMUSG00000028369 0,47 0,03 Svep1 
ENSMUSG00000033174 0,47 0,01 Mgll 
ENSMUSG00000006373 0,47 0,04 Pgrmc1 
ENSMUSG00000028494 0,47 0,03 Plin2 
ENSMUSG00000021792 0,47 0,00 Fam213a 
ENSMUSG00000029455 0,47 0,01 Aldh2 
ENSMUSG00000056427 0,47 0,00 Slit3 
ENSMUSG00000034353 0,47 0,04 Ramp1 
ENSMUSG00000018427 0,48 0,00 Ypel2 
ENSMUSG00000029009 0,48 0,03 Mthfr 
ENSMUSG00000004098 0,48 0,01 Col5a3 
ENSMUSG00000030737 0,48 0,00 Slco2b1 
    

 

 

Supplemental Table 7: Genes differentially expressed in adipose tissue of Dex-treated E47-/- 
mice.  
Results from RNA-Seq in white adipose tissue indicating the fold change (FC) in gene expression as log2 
(log2FC). The top 50 up and downregulated genes (FC1.3; p-value<0.05) are listed. Data represents n=2. 
 
Ensembl gene log2 FC p-value MGI (Mouse Genome Interactive) symbol 
ENSMUSG00000090015 -4,02 0,00 Gm15446 
ENSMUSG00000076609 -3,91 0,00 Igkc 
ENSMUSG00000057074 -3,07 0,00 Ces1g 
ENSMUSG00000034674 -2,28 0,00 Tdg 
ENSMUSG00000032315 -2,12 0,00 Cyp1a1 
ENSMUSG00000045613 -2,00 0,03 Chrm2 
ENSMUSG00000018486 -1,71 0,03 Wnt9b 
ENSMUSG00000062329 -1,58 0,02 Cytl1 
ENSMUSG00000020848 -1,54 0,00 Doc2b 
ENSMUSG00000086446 -1,46 0,02 Prkag2os1 
ENSMUSG00000030669 -1,45 0,00 Calca 
ENSMUSG00000049404 -1,40 0,00 Rarres1 
ENSMUSG00000105746 -1,36 0,03 Gm43595 
ENSMUSG00000030162 -1,35 0,00 Olr1 
ENSMUSG00000057606 -1,34 0,01 Colq 
ENSMUSG00000047168 -1,32 0,04 Gm6684 
ENSMUSG00000070465 -1,30 0,05 Gm9696 
ENSMUSG00000029304 -1,27 0,02 Spp1 
ENSMUSG00000028778 -1,26 0,00 Hcrtr1 
ENSMUSG00000067235 -1,25 0,02 H2-Q10 
ENSMUSG00000065987 -1,20 0,00 Cd209b 
ENSMUSG00000050368 -1,19 0,02 Hoxd10 
ENSMUSG00000039037 -1,18 0,00 St6galnac5 
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ENSMUSG00000028211 -1,14 0,00 Trp53inp1 
ENSMUSG00000045392 -1,12 0,00 Olfr1033 
ENSMUSG00000078915 -1,11 0,04 Hsp25-ps1 
ENSMUSG00000028687 -1,09 0,00 Mutyh 
ENSMUSG00000031981 -1,09 0,01 Capn9 
ENSMUSG00000007480 -1,07 0,05 Mc5r 
ENSMUSG00000081564 -1,07 0,02 Gm13717 
ENSMUSG00000027674 -1,03 0,02 Pex5l 
ENSMUSG00000034936 -1,00 0,00 Arl4d 
ENSMUSG00000079559 -0,98 0,00 Colca2 
ENSMUSG00000020108 -0,97 0,00 Ddit4 
ENSMUSG00000071036 -0,94 0,05 Gm10309 
ENSMUSG00000038068 -0,92 0,00 Rnf144b 
ENSMUSG00000092274 -0,91 0,00 Neat1 
ENSMUSG00000048376 -0,91 0,00 F2r 
ENSMUSG00000021356 -0,89 0,00 Irf4 
ENSMUSG00000063060 -0,88 0,00 Sox7 
ENSMUSG00000005686 -0,88 0,01 Ampd3 
ENSMUSG00000006221 -0,87 0,01 Hspb7 
ENSMUSG00000062609 -0,86 0,00 Kcnj15 
ENSMUSG00000005373 -0,86 0,00 Mlxipl 
ENSMUSG00000026358 -0,82 0,00 Rgs1 
ENSMUSG00000004951 -0,82 0,01 Hspb1 
ENSMUSG00000026890 -0,82 0,00 Lhx6 
ENSMUSG00000005950 -0,79 0,00 P2rx5 
ENSMUSG00000040035 -0,78 0,01 Disp2 
ENSMUSG00000019929 0,38 0,02 Dcn 
ENSMUSG00000027227 0,39 0,01 Sord 
ENSMUSG00000035413 0,39 0,03 Tmem98 
ENSMUSG00000033306 0,39 0,02 Lpp 
ENSMUSG00000053398 0,39 0,05 Phgdh 
ENSMUSG00000026365 0,39 0,03 Cfh 
ENSMUSG00000047528 0,40 0,04 Als2cr12 
ENSMUSG00000035133 0,40 0,03 Arhgap5 
ENSMUSG00000005973 0,41 0,03 Rcn1 
ENSMUSG00000001663 0,41 0,02 Gstt1 
ENSMUSG00000019768 0,42 0,02 Esr1 
ENSMUSG00000073565 0,42 0,04 Prr16 
ENSMUSG00000040037 0,42 0,01 Negr1 
ENSMUSG00000020102 0,43 0,03 Slc16a7 
ENSMUSG00000032549 0,44 0,02 Rab6b 
ENSMUSG00000089783 0,45 0,04 Gm454 
ENSMUSG00000026674 0,45 0,00 Ddr2 
ENSMUSG00000037731 0,46 0,05 Themis2 
ENSMUSG00000023224 0,47 0,03 Serping1 
ENSMUSG00000022150 0,47 0,00 Dab2 
ENSMUSG00000031375 0,48 0,03 Bgn 
ENSMUSG00000020241 0,48 0,05 Col6a2 
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ENSMUSG00000033107 0,48 0,04 Rnf125 
ENSMUSG00000002980 0,49 0,03 Bcam 
ENSMUSG00000029417 0,49 0,03 Cxcl9 
ENSMUSG00000025742 0,49 0,02 Prps2 
ENSMUSG00000061119 0,50 0,05 Prcp 
ENSMUSG00000094786 0,50 0,04 Gm14403 
ENSMUSG00000024909 0,50 0,01 Efemp2 
ENSMUSG00000021097 0,50 0,01 Clmn 
ENSMUSG00000089774 0,50 0,00 Slc5a3 
ENSMUSG00000052698 0,51 0,03 Tln2 
ENSMUSG00000019899 0,52 0,03 Lama2 
ENSMUSG00000025492 0,52 0,03 Ifitm3 
ENSMUSG00000029059 0,53 0,01 Fam213b 
ENSMUSG00000017466 0,53 0,02 Timp2 
ENSMUSG00000032038 0,53 0,05 St3gal4 
ENSMUSG00000028270 0,53 0,01 Gbp2 
ENSMUSG00000031093 0,53 0,03 Dock11 
ENSMUSG00000029869 0,53 0,04 Ephb6 
ENSMUSG00000026389 0,54 0,01 Steap3 
ENSMUSG00000031451 0,54 0,03 Gas6 
ENSMUSG00000021416 0,54 0,01 Eci3 
ENSMUSG00000001473 0,55 0,01 Tubb6 
ENSMUSG00000051748 0,55 0,02 Wfdc21 
ENSMUSG00000031367 0,55 0,02 Ap1s2 
ENSMUSG00000000753 0,55 0,04 Serpinf1 
ENSMUSG00000021185 0,56 0,01 Dglucy 
ENSMUSG00000031342 0,57 0,03 Gpm6b 
ENSMUSG00000032232 0,57 0,01 Cgnl1 
    

 

 

Supplemental Table 8: Genes differentially expressed in livers of Dex-injected E47 ΔLKO mice. 
Results from RNA-Seq in liver indicating the fold change (FC) in gene expression as log2 (log2FC). The top 50 up 
and downregulated genes (FC1.3; p-value<0.05 and selected genes discussed above) are listed. Data represents 
n=3 per genotype. 
 
Ensembl gene log2 FC p-value MGI (Mouse Genome Interactive) symbol 
ENSMUSG00000103560 -2,66 0,00 Gm38070 
ENSMUSG00000043013 -1,81 0,00 Onecut1 
ENSMUSG00000047797 -1,62 0,01 Gjb1 
ENSMUSG00000038599 -1,56 0,00 Capn8 
ENSMUSG00000050663 -1,36 0,00 Trhde 
ENSMUSG00000055866 -1,34 0,00 Per2 
ENSMUSG00000067144 -1,19 0,00 Slc22a7 
ENSMUSG00000092274 -1,14 0,00 Neat1 
ENSMUSG00000078687 -1,14 0,01 Mup8 
ENSMUSG00000094114 -1,06 0,00 Gm21967 
ENSMUSG00000035686 -1,03 0,02 Thrsp 
ENSMUSG00000068877 -0,99 0,00 Selenbp2 
ENSMUSG00000060560 -0,94 0,04 Ces4a 
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ENSMUSG00000027313 -0,91 0,02 Chac1 
ENSMUSG00000035451 -0,84 0,02 Foxa1 
ENSMUSG00000021573 -0,84 0,00 Tppp 
ENSMUSG00000090015 -0,84 0,03 Gm15446 
ENSMUSG00000031441 -0,83 0,00 Atp11a 
ENSMUSG00000041827 -0,82 0,01 Oasl1 
ENSMUSG00000028838 -0,82 0,04 Extl1 
ENSMUSG00000031530 -0,81 0,02 Dusp4 
ENSMUSG00000034220 -0,81 0,01 Gpc1 
ENSMUSG00000047394 -0,81 0,01 Odf3b 
ENSMUSG00000031822 -0,80 0,03 Gse1 
ENSMUSG00000079494 -0,80 0,00 Nat8f5 
ENSMUSG00000020205 -0,78 0,01 Phlda1 
ENSMUSG00000042834 -0,78 0,01 Nrep 
ENSMUSG00000102095 -0,77 0,00 C730036E19Rik 
ENSMUSG00000054793 -0,77 0,04 Cadm4 
ENSMUSG00000036006 -0,76 0,03 Fam65b 
ENSMUSG00000041417 -0,76 0,00 Pik3r1 
ENSMUSG00000034640 -0,75 0,00 Tiparp 
ENSMUSG00000097750 -0,74 0,03 Gm4673 
ENSMUSG00000030124 -0,74 0,03 Lag3 
ENSMUSG00000086231 -0,74 0,01 Rapgef4os3 
ENSMUSG00000079484 -0,73 0,02 Phyhd1 
ENSMUSG00000034645 -0,73 0,04 Zyg11a 
ENSMUSG00000038894 -0,72 0,03 Irs2 
ENSMUSG00000073940 -0,72 0,02 Hbb-bt 
ENSMUSG00000073940 -0,72 0,02 Hbb-bt 
ENSMUSG00000073940 -0,72 0,02 Hbb-bt 
ENSMUSG00000032860 -0,72 0,02 P2ry2 
ENSMUSG00000079243 -0,72 0,04 Xirp1 
ENSMUSG00000063171 -0,71 0,01 Rps4l 
ENSMUSG00000053175 -0,71 0,01 Bcl3 
ENSMUSG00000031661 -0,70 0,03 Nkd1 
ENSMUSG00000034584 -0,70 0,00 Exph5 
ENSMUSG00000019947 -0,69 0,03 Arid5b 
ENSMUSG00000040127 -0,69 0,00 Sdr9c7 
ENSMUSG00000032080 -0,45 0,05 Apoa4 
ENSMUSG00000078650 -0,23 0,26 G6pc 
ENSMUSG00000093930 -0,14 0,72 Hmgcs1 
ENSMUSG00000020429 -0,11 0,69 Igfbp1 
ENSMUSG00000021670 -0,07 0,78 Hmgcr 
ENSMUSG00000042010 -0,04 0,87 Acacb 
ENSMUSG00000058454 -0,03 0,86 Dhcr7 
ENSMUSG00000041798 -0,01 0,98 Gck 
ENSMUSG00000034926 0,13 0,17 Dhcr24 
ENSMUSG00000027513 0,18 0,23 Pck1 
ENSMUSG00000024222 0,39 0,02 Fkbp5 
ENSMUSG00000045854 0,39 0,05 Lyrm2 
    



Supplement   
	

104 

ENSMUSG00000037172 0,40 0,03 E330009J07Rik 
ENSMUSG00000024863 0,40 0,01 Mbl2 
ENSMUSG00000022629 0,40 0,00 Kif21a 
ENSMUSG00000006445 0,40 0,02 Epha2 
ENSMUSG00000027999 0,40 0,03 Pla2g12a 
ENSMUSG00000020865 0,43 0,00 Abcc3 
ENSMUSG00000074170 0,43 0,05 Plekhf1 
ENSMUSG00000040557 0,43 0,04 Wbscr27 
ENSMUSG00000031765 0,43 0,03 Mt1 
ENSMUSG00000027508 0,43 0,02 Pag1 
ENSMUSG00000022091 0,43 0,04 Sorbs3 
ENSMUSG00000032349 0,44 0,02 Elovl5 
ENSMUSG00000039745 0,44 0,01 Htatip2 
ENSMUSG00000058135 0,44 0,01 Gstm1 
ENSMUSG00000070690 0,45 0,00 5830473C10Rik 
ENSMUSG00000028195 0,45 0,04 Cyr61 
ENSMUSG00000022637 0,46 0,02 Cblb 
ENSMUSG00000019806 0,46 0,04 Aig1 
ENSMUSG00000020451 0,46 0,04 Limk2 
ENSMUSG00000024254 0,47 0,02 Abcg8 
ENSMUSG00000020023 0,47 0,00 Tmcc3 
ENSMUSG00000038578 0,47 0,05 Susd1 
ENSMUSG00000025915 0,48 0,01 Sgk3 
ENSMUSG00000050188 0,49 0,03 Lsm10 
ENSMUSG00000024962 0,49 0,03 Vegfb 
ENSMUSG00000050947 0,49 0,03 Amigo1 
ENSMUSG00000030237 0,49 0,01 Slco1a4 
ENSMUSG00000023963 0,49 0,01 Cyp39a1 
ENSMUSG00000040505 0,50 0,03 Abcg5 
ENSMUSG00000042429 0,53 0,05 Adora1 
ENSMUSG00000026839 0,53 0,02 Upp2 
ENSMUSG00000000385 0,54 0,02 Tmprss2 
ENSMUSG00000041238 0,54 0,02 Rbbp8 
ENSMUSG00000056978 0,57 0,03 Hamp2 
ENSMUSG00000072949 0,57 0,00 Acot1 
ENSMUSG00000053411 0,58 0,05 Cbx7 
ENSMUSG00000003134 0,58 0,00 Tbc1d8 
ENSMUSG00000005268 0,59 0,00 Prlr 
ENSMUSG00000060807 0,59 0,00 Serpina6 
ENSMUSG00000030852 0,60 0,00 Tacc2 
ENSMUSG00000002944 0,60 0,02 Cd36 
ENSMUSG00000060470 0,61 0,04 Adgrg3 
ENSMUSG00000026956 0,64 0,02 Uap1l1 
ENSMUSG00000037325 0,64 0,02 Bbs7 
ENSMUSG00000022089 0,64 0,00 Bin3 
ENSMUSG00000034774 0,64 0,05 Dsg1c 
ENSMUSG00000027487 0,65 0,00 Cdk5rap1 
ENSMUSG00000019232 0,65 0,01 Etnppl 
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Supplemental Table 9: ChIP-MS peptide counts in wildtype and E47 mutant liver. 
Peptide read counts for each biological replicate determined by the MaxLFQ algorithm. Selected proteins 
discussed above are shown. Data represents n=3 per genotype. 
 
  WT _IgG WT _GR E47-/- _IgG E47-/-_GR 
Replicates 1 2 3 1 2 3 1 2 3 1 2 3 
Nr3c1 (GR) 1 0 2 38 37 31 1 1 1 39 40 38 

Cebpa 0 0 0 3 2 2 1 1 1 2 3 2 

Cebpb 0 0 1 7 6 5 0 0 1 7 7 7 

Rxra 0 0 0 17 15 5 1 0 1 17 16 17 

Hnf4a 1 3 2 8 6 5 3 3 2 9 8 9 

Ncoa1 0 0 0 2 3 0 0 0 0 3 3 2 

Ncoa2 0 0 0 5 4 0 0 0 0 8 4 5 

Ncoa3 0 0 0 5 5 0 0 0 0 6 5 4 

Foxo1 0 0 0 2 2 0 0 0 0 2 0 1 

Med16 0 0 0 2 2 2 0 0 0 2 1 2 

Med23 0 0 0 2 3 0 0 0 0 3 1 1 

Med24 0 1 0 6 5 1 0 0 0 7 6 6 
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Supplemental Table 10a: Relative luciferase values of reporter screen. 
Luciferase value for each reporter sequence was compared to vehicle and empty vector. Average of triplicates are shown. 
 

Plate Well GR + EtOH GR + Dex GR + Cort Gene symbol Gene description 

1 H05 0,12 0,05 0,06 NO_ANNOTATION Homo sapiens beta-2-microglobulin 

1 D02 0,07 0,08 0,05 CAST1 

 1 F02 0,24 0,09 0,09 OBSCN obscurin 

2 D10 0,06 0,09 0,09 SEPX1 

 1 A11 0,17 0,10 0,07 WNT5A Wnt 5A 

1 H03 0,14 0,12 0,16 MEST mesoderm specific transcript homolog 

1 F04 0,15 0,13 0,13 HDAC7A 

 2 A01 0,40 0,15 0,16 WNT5A Wnt 5A 

1 G06 0,60 0,15 0,19 FLJ44861 

 1 F11 0,14 0,18 0,18 CD160 CD160 molecule 

1 F08 0,53 0,19 0,19 NO_ANNOTATION 

 1 F06 0,29 0,19 0,18 FMOD fibromodulin 

1 G03 0,35 0,22 0,33 MEST mesoderm specific transcript homolog 

2 D07 0,08 0,23 0,20 PSMA6 proteasome subunit, alpha type, 6 

1 D05 0,30 0,24 0,32 NO_ANNOTATION PTPRN2 

2 C10 0,83 0,25 0,23 NO_ANNOTATION 

 2 A02 0,26 0,25 0,26 HSP90AB1 heat shock protein 90kDa alpha class B1 

1 A09 0,28 0,25 0,18 RAB11A RAB11A, member RAS oncogene family 

1 D08 0,19 0,26 0,25 NCOA1 nuclear receptor coactivator 1 

2 E04 0,16 0,27 0,21 ZFP36L1 ZFP36L1-prom 
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1 D03 0,52 0,39 0,27 MYO18A 

 2 D05 0,53 0,41 0,40 COMT catechol-O-methyltransferase 

1 E03 2,32 0,42 0,42 IFNE1 interferon epsilon 1 

1 E10 0,08 0,46 0,58 NO_ANNOTATION 

 2 E02 1,00 0,47 0,48 AMPD3 AMPD3-altprom2 

1 D07 1,06 0,49 0,43 IL9R interleukin 9 receptor 

2 E06 1,13 0,55 0,53 CCL2 CCL2-prom 

1 B06 0,19 0,55 0,45 COMT catechol-O-methyltransferase 

1 H04 0,20 0,56 0,28 SERPINA1 serpin peptidase inhibitor, clade A 1 

1 A03 1,21 0,59 0,49 TXN thioredoxin 

2 D06 2,29 0,59 0,68 SMURF2 SMAD specific E3 ubiquitin protein ligase 2 

1 G11 0,35 0,59 0,48 SRPK2 SFRS protein kinase 2 

1 A10 0,43 0,60 0,47 CHIC2 cysteine-rich hydrophobic domain 2 

2 G04 2,04 0,65 0,58 MEST mesoderm specific transcript homolog 

2 F03 0,19 0,66 0,75 TSC22d3 CHR7_P0902-R2 

1 D06 1,30 0,66 0,34 RBM protein 33 

 1 E04 0,82 0,67 0,45 NO_ANNOTATION 

 1 A08 0,81 0,69 0,62 IER2 immediate early response 2 

1 H02 0,66 0,70 0,69 UGCG UDP-glucose ceramide glucosyltransferase 

1 A02 0,77 0,72 0,40 BRD2 bromodomain containing 2 

2 A03 0,20 0,77 0,83 GLUL glutamate-ammonia ligase 

2 C07 3,03 0,89 0,95 NO_ANNOTATION 
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2 A11 4,19 0,90 1,00 SERPINA1 serpin peptidase inhibitor, clade A 1 

2 G01 1,29 0,91 0,98 TXN thioredoxin 

2 C04 0,58 0,92 1,15 RNF10 ring finger protein 10 

1 H07 2,66 0,95 0,91 RP11-85L21.3 

 2 C08 4,77 1,03 1,24 AC084398  Damage-regulated autophagy modulator  

1 F01 1,89 1,04 1,35 FAM55A 

 1 F03 0,59 1,04 1,13 PMM2 phosphomannomutase 2 

1 G02 1,02 1,06 1,16 PHGDH phosphoglycerate dehydrogenase 

2 C05 2,51 1,09 1,09 NO_ANNOTATION 

 2 E11 2,57 1,09 1,28 FAM117B ALS2CR13_b 

2 G05 1,36 1,14 1,00 IGFBP1 insulin-like growth factor binding protein 1 

1 A05 0,87 1,15 1,08 IDH1 isocitrate dehydrogenase 1 (NADP+) 

1 B04 1,09 1,21 1,35 MEST mesoderm specific transcript homolog 

2 C03 4,28 1,22 1,36 ENC1 ectodermal-neural cortex 

1 A04 1,05 1,23 0,39 HSP90AB1 heat shock protein 90kDa alpha  1 

1 F07 1,55 1,24 1,07 GIMAP8 GTPase, IMAP family member 8 

2 A05 1,33 1,26 1,14 ATP6AP1 ATPase, lysosomal accessory protein 1 

2 B05 1,83 1,27 1,03 SERPINA1 serpin peptidase inhibitor, clade A 1 

2 A06 1,18 1,28 1,10 MTCH2 mitochondrial carrier homolog 2 

1 E11 0,93 1,28 0,99 NO_ANNOTATION 

 2 E09 3,09 1,29 1,11 EDN1 EDN1-prom 

1 B02 2,20 1,31 1,31 TPST2 tyrosylprotein sulfotransferase 2 
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2 C11 2,86 1,33 1,45 RABGGTB 

 1 G09 0,19 1,38 1,07 SERINC3 serine incorporator 3 

1 A01 1,15 1,39 1,09 RNF11 ring finger protein 11 

2 G08 7,27 1,39 1,63 CKS1B CDC28 protein kinase regulatory subunit 1B 

2 F08 1,20 1,48 1,31 HSP90AB1 heat shock protein 90kDa alpha B1 

2 D08 0,85 1,56 1,12 B2M beta-2-microglobulin 

1 H09 1,55 1,57 1,65 IDH1 isocitrate dehydrogenase 1 (NADP+) 

2 F09 9,31 1,70 2,17 PLA2G2E phospholipase A2, group IIE 

1 H10 1,63 1,74 1,58 TTN titin 

2 D09 0,16 1,75 0,76 B2M beta-2-microglobulin 

2 A04 1,31 1,75 1,47 MKNK2 MAP kinase interacting ser/thr kinase 2 

1 H01 2,12 1,83 1,92 CPS1 carbamoyl-phosphate synthetase 1 

2 D02 1,94 1,87 1,81 NO_ANNOTATION 

 1 F10 0,78 1,97 2,24 NO_ANNOTATION 

 1 C05 0,34 2,05 2,65 CYP3A43 cytochrome P450, family 3 A43 

2 B03 2,99 2,13 1,99 GH1 growth hormone 1 

2 A09 4,79 2,19 2,31 KRT6E keratin 6C 

2 D11 0,98 2,31 2,32 SLC19A2 SLC19A2-prom 

2 A08 2,57 2,39 2,72 NO_ANNOTATION NBEAL2 intron 

1 A06 1,31 2,70 1,67 MKNK2 MAP kinase interacting ser/thr kinase 2 

1 B08 5,45 2,78 2,40 WNT5A Wnt 5A 

2 E05 2,21 2,81 3,57 MT2A MT2A-prom 
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1 E01 6,04 2,97 2,40 FLJ45803 AP002448.3 

1 F05 10,85 3,29 3,40 LAMA3 laminin, alpha 3 

1 A07 3,73 3,39 2,91 TPST2 tyrosylprotein sulfotransferase 2 

1 E02 7,17 3,45 3,19 RGL1 ral guanine nucleotide dissociation stimulator-like 1 

2 B06 7,07 3,58 5,82 HSP90AB1 heat shock protein 90kDa alpha B 1 

2 E10 2,09 3,59 4,51 PER1_b PER1_b 

1 H06 3,95 3,60 4,12 PFKL phosphofructokinase, liver 

1 G08 7,29 3,85 4,13 FNTA farnesyltransferase, CAAX box, alpha 

2 F10 2,09 4,16 4,22 CHIC2 cysteine-rich hydrophobic domain 2 

2 G06 13,24 4,50 5,02 MEST mesoderm specific transcript homolog 

2 D01 5,71 4,63 4,17 DPEP1 dipeptidase 1 (renal) 

1 E09 2,65 4,74 1,26 ATP2B3 ATPase, Ca++ transporting, plasma membrane 3 

1 G10 3,54 4,87 4,21 GBF1 golgi-specific brefeldin A resistance factor 1 

1 G01 1,88 5,29 5,12 YIPF5 Yip1 domain family, member 5 

1 E06 0,48 5,50 3,52 NO_ANNOTATION Unc119b exon 

1 B10 12,39 5,51 5,23 AS3MT arsenic (+3 oxidation state) methyltransferase 

2 F11 9,21 5,57 5,47 CAT catalase 

1 B03 1,38 5,81 5,46 CPS1 carbamoyl-phosphate synthetase 1 

2 A10 4,77 5,94 5,33 ADH1C alcohol dehydrogenase 1C gamma  

1 D10 11,70 6,05 5,02 CYBASC3 cytochrome b, ascorbate dependent 3 

2 F02 9,03 6,08 5,67 HBS1L HBS1L 

2 B04 1,59 6,10 5,38 RNASE2 ribonuclease, RNase A family, 2  
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2 F04 12,73 6,39 5,23 LCN2 LCN2 

1 B11 3,41 6,51 4,99 RAB11A RAB11A, member RAS oncogene family 

2 G03 9,85 6,62 4,99 IGFBP1 insulin-like growth factor binding protein 1 

2 B08 0,57 6,67 6,17 NO_ANNOTATION 

 2 E03 43,27 6,69 7,76 AMPD3-prom AMPD3-prom 

2 G09 18,57 6,96 9,30 MEST mesoderm specific transcript homolog 

2 G07 8,27 7,52 6,59 RAB11A RAB11A, member RAS oncogene family 

2 E08 14,74 7,98 8,14 IDH1-prom IDH1-prom 

2 B09 5,21 8,45 7,66 Rgr 

 1 C10 12,98 8,46 6,25 MECP2 methyl CpG binding protein 2 

2 D04 10,38 9,15 8,45 IGFBP1 insulin-like growth factor binding protein 1 

2 C09 2,02 9,23 10,93 PREPL prolyl endopeptidase-like 

1 D11 17,51 9,55 9,22 NO_ANNOTATION Bmp8a locus 

2 E01 1,25 10,09 8,80 SRGN-prom SRGN-prom 

2 A07 10,30 10,76 9,27 C10orf108 

 1 E08 21,35 11,83 11,06 LCN6 lipocalin 6 

2 B01 17,34 12,01 11,77 HPS4 Hermansky-Pudlak syndrome 4 

2 F06 2,77 12,21 14,53 GLUL GLUL 

2 G02 12,44 12,28 8,13 ADM adrenomedullin 

1 E05 6,10 12,52 14,13 MARK3 MAP/microtubule affinity-reg. kinase 3 

1 D09 22,55 12,62 7,29 PPP2R2A protein phosphatase 2 B, alpha isoform 

1 D01 13,10 12,62 13,27 ENAM enamelin 
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1 G05 23,74 12,67 10,64 NO_ANNOTATION 

 2 B07 20,12 13,19 13,56 HERPUD1 homocys-ind., ER stress-ind., ubiquitin-like 1 

2 B11 24,05 13,61 13,27 SCD 

 1 H11 11,90 14,12 11,06 RNF11 ring finger protein 11 

1 H08 12,03 15,01 16,28 C1R complement component 1, r 

1 G04 16,69 17,92 20,90 BIRC6 baculoviral IAP repeat-containing 6 

1 B01 1,79 18,57 13,55 GNMT glycine N-methyltransferase 

1 C07 19,69 19,43 21,35 NO_ANNOTATION DPEP1 first intron 

1 B09 10,57 19,86 20,14 BRD2 bromodomain containing 2 

2 C01 7,89 19,98 18,71 DIXDC1 DIX domain containing 1 

2 F07 11,74 20,79 14,44 ANP32E ANP32E 

1 C09 22,12 20,79 19,00 SMYD4 SET and MYND domain containing 4 

1 F09 24,92 21,90 23,02 PPP2R2C protein phosphatase 2, B, gamma  

1 B07 16,50 22,38 18,09 CKS1B0 CDC28 protein kinase regulatory subunit 1B 

2 C06 1,97 22,85 18,41 NO_ANNOTATION 

 2 B02 22,30 24,21 32,43 CKS1B CDC28 protein kinase regulatory subunit 1B 

1 C11 48,67 26,85 29,66 NO_ANNOTATION BAHCC1 intron/exon 

2 C02 38,65 28,67 26,47 WNT5A Wnt 5A 

2 F01 2,19 28,80 27,44 SNTA1 SNTA1 

1 B05 22,62 28,97 25,63 MKNK2 MAP kinase interacting ser/thr kinase 2 

2 F05 59,42 29,48 30,34 PHLDA1 PHLDA1 

1 D04 2,45 31,44 37,36 NKPD1 NTPase, KAP family P-loop domain containing 1 
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1 G07 13,98 31,85 34,31 Stox2 

 2 E07 15,16 39,49 31,16 SDPR-prom SDPR-prom 

2 D03 1,97 40,45 28,85 SLC38A4 solute carrier family 38, member 4 

1 C08 40,72 49,42 49,30 MICAL1 microtubule ass. monoxygenase, calponin & LIM domain 1 

1 C02 10,99 55,78 49,45 SMYD4 SET and MYND domain containing 4 

1 C06 50,92 108,12 81,84 ITSN1 intersectin 1 (SH3 domain protein) 

1 C04 36,94 122,93 116,44 C8orf46 

 2 B10 44,95 160,40 208,27 NO_ANNOTATION upstream of C20orf62 

1 C01 194,03 221,04 168,45 IER2 immediate early response 2 

1 C03 68,90 310,18 266,15 BAIAP2 BAI1-associated protein 2 

 
(+-2fold) 

   >2fold down 
   >2fold up 
   no change 
   E47 sites close to GREs 
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Supplemental Table 10b: Reporter sequences with E47 motifs close to GREs. 
 

Plate Well E47 motif  GRE motif 
2 B03 626 + agaaacaggtggggtc 791 + tgggcacaatgtgtcctga 

2 A09 729 + tgatccaggtgtgatc 385 + caggcccattgtgttctgc 

2 A08 127 + ggaaccaggtgtactc 127 + 652 + aggacactctgtcctt 

1 A06 955 + gcacccaggtgcactc  1412 - tggcacagctgttcct 39 + aagctcccctgtgttctat 

1 B08 268 - gcgcccaggtgccccc   

1 A07 460 + aattacaggtgagcag 1131 + aatcacaggtgtgagc   
2 B06 927 + aagagcaggtggccaa   

2 E10 706 + tacctcaggtgatccg 168 - ggaacatcatgttctc 

1 H06 447 - aggagcaggtgcccag   

2 D01 494 + ggcagcaggtggccgg 748 + gaggccaggtgtgtgc  430 - caggaaccctgtgttctct 

1 E09 719 - acacacaggtggccgg 1053 - agcaggtgtttcg 231 - ggggctctctgtgttctgg 

1 E06 801 + ggcatcaggtgctgct 739 + aggacagtgtgtcctg 

1 B10 266 + ttaaccaggtgtggtg   

2 A10 1364 + gtttacaggtgcacag   

1 B11 236 - catttcaggtgctatc    

2 G07 236 - catttcaggtgctatc 375 + aaagatgttgt  

2 E08 423 - gattacaggtgcacac   

2 D04 816 - tttaacaggtggcaac   

1 D11 147 - gacctcaggtgatcca 470 - tcagcacagtgtgttctgg 

2 A07 519 + tcaaacaggtgcatgg  205 - agcacacactgttctg 

2 F06 534 + tacctcaggtgatctg 234 - tgcacactttgtccta  785 - ggaacacattgttctc 

1 E05 451 459 + aggctcaggtgtgcag 737 + caagtactctgtgttctct 

2 B07 155 - caccccaggtgtcagt   

2 B11 453 - gacctcaggtgattcg   
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1 H11 213 + ctcaacaggtgtgtga  286 - cagtccaggtgataga   

1 H08 653 - gaccacaggtggtggt  839 + accagcaggtggcacc   

1 G04 792 + atagtcaggtggtcaa   933 + ttggaacaatgtgtcctct 

1 B01 983 - aatagcaggtgagcgc   

1 C07 395 - 450 - 505 - 560 - 615 - 869 - 930 + caggaaccctgtgttctct 

2 F07 1239 + cattacaggtgcccac   

1 C09 1033 - caattcaggtgtcact 599 + aggacagaatgtcctc 

1 F09 425 - agtctcaggtgatgac 58 + agaacactctgtgctt 

2 B02 1335 + ggtttcaggtgttctg    

1 C11 746 - aagggcaggtgtggga  582 - ccggctcactgtgtccttc 

2 F01 177 + gacctcaggtgatcca  219 + gaatacaggtgtgagc   

1 B05 121 + aatgccaggtgctggg 273 + tccagcccctcttga 

1 G07 339 - 410 + 638 - 859 - 794 + caggctctctctgttcttt 

2 E07 207 + gagaacaggtgtgcca   

1 C08 210 + agacacaggtgccgga  581 + gcgaccaggtggtgca 844 - agtacacaatgttctc 

1 C06 420 + accgccaggtgcttct  991 - aatatcaggtgcaaat 191 - ggcactggatgttctt  684 + agaacagtttgttctc 

2 B10 626 + cttaccaggtgccagg  26 + agaacaaagtgtccta 454 + ggtacagtatgtcctc 

1 C01 586 - tttaccaggtgtgtct  1052 - ggcagcaggtgcactc   

1 C03 943 + tctctcaggtgtgacg 716 + ctggtacgttgtgttctta  81 - cgcacaatttgttctg 
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