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Abstract: 1,3-Dithiane-protected enones (enone dithianes)
were found to undergo an intramolecular [2++2] photocy-
cloaddition under visible-light irradiation (l = 405 nm) in the
presence of a Brønsted acid (7.5–10 mol%). Key to the success
of the reaction is presumably the formation of colored
thionium ions, which are intermediates of the catalytic cycle.
Cyclobutanes were thus obtained in very good yields (78–
90%). It is also shown that the dithiane moiety can be
reductively or oxidatively removed without affecting the
photochemically constructed ring skeleton.

Among all photochemical reactions, the [2++2] photocy-
cloaddition is undoubtedly of the greatest synthetic impor-
tance.[1] This reaction enables the simultaneous construction
of two C@C bonds and up to four stereogenic centers. In this
regard, it parallels the thermal [4++2] cycloaddition, the Diels–
Alder reaction, which allows for a similarly high increase in
complexity. In the case of a [2++2] photocycloaddition, the
newly formed ring is a strained four-membered ring (cyclo-
butane), which offers multiple options for further function-
alization.[2, 3] The photochemically excitable component of
a [2++2] photocycloaddition is frequently a cyclic a,b-unsatu-
rated carbonyl compound, and its olefinic double bond can
react with a suitable alkene either inter- or intramolecularly.
Embedding the double bond in a cyclic compound avoids
deactivation in the excited state by E/Z isomerization.
Conjugation to the carbonyl group allows for direct long-
wavelength excitation, for example, at labs = 300–350 nm with
cycloalkenones (enones; Scheme 1).[4]

We recently showed that the long-wavelength absorption
of typical enones becomes more intense upon complexation
by a Lewis acid.[5] This observation is in agreement with
earlier studies that reported on a similar behavior for
coumarins and other a,b-unsaturated b-aryl-substituted car-

bonyl compounds.[6] The reason for the intensity increase is
a bathochromic shift of the strong short-wavelength pp*
absorption.[5c] As a consequence of the high absorption cross-
sections of such Lewis acid/enone complexes, [2++2] photo-
cycloaddition reactions can be rendered enantioselective in
the presence of a chiral Lewis acid.[5, 7, 8]

When searching for substrates that exhibit a negligible
long-wavelength absorption but would potentially show
a strong bathochromic shift upon activation by an acid, we
tested enones upon transformation of their carbonyl groups
into 1,3-dithianes (enone dithianes). The putative thionium
ions that were expected to be formed upon protonation could
potentially be excited in the visible region (labs> 380 nm),[9]

and would thus be suited to undergo a Brønsted acid
catalyzed [2++2] photocycloaddition (Scheme 1). Possible
background reactions should be completely avoided. We
now report initial results of our studies.

In a first set of experiments, the UV/Vis spectra of cyclic
S,S-acetals derived from 3-(4-pentenyl)-cyclohex-2-enone
were recorded. As expected, no significant absorption was
observed at wavelengths of l+ 300 nm. The spectrum of
dithiane 1a[10] is depicted as a representative example in
Figure 1 (dotted line). Upon addition of bis(trifluorometha-
nesulfonyl)imide Tf2NH (Tf = trifluoromethanesulfonyl) as
a Brønsted acid, the solution of 1a turned yellow, and a strong
long-wavelength absorption with a maximum at labs = 356 nm
was observed that stretched into the visible region. The
absorbance reached saturation after addition of 12.5 equiv of
the Brønsted acid. Assuming full conversion of the dithiane,
the value for the molar decadic absorption coefficient e was
calculated as 23900m@1 cm@1.

Scheme 1. Upon coordination of a Lewis acid to an enone, an onium
ion is formed, which strongly absorbs at labs = 300–350 nm (top). Can
a thionium ion that absorbs in the visible region (labs>380 nm) be
formed upon protonation of a 1,3-dithiane (bottom)?
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As the absorption of the putative thionium ion partially
lies in the visible region, it was attempted to induce a reaction
with light of l+ 380 nm in the presence of a catalytic amount
of a Brønsted acid. To this end, light emitting diodes (LEDs)
were employed as the light source, which exhibit a sharp
emission band.[11] To our delight, at l = 398 nm, 1,3-dithiane
1a was indeed converted into product 2a in an intramolecular
[2++2] photocycloaddition upon addition of 10 mol% Tf2NH
(Table 1, entry 1). The dithiane turned out to be clearly
superior to the corresponding 1,3-dithiolane, which did not
undergo a reaction under the same reaction conditions.[12]

When testing further acids, the strong Brønsted acids
HOTf (entry 2), C6F5CHTf2 (entry 5), and imide 3 (entry 6)

were found to perform well while a weaker acid (camphor-
sulfonic acid, CSA; entry 3) and the Lewis acid B(C6F5)3

(entry 4) delivered unsatisfactory results. The absence of
a reaction with CSA correlates with the fact that there was no
long-wavelength absorption to be detected in the UV/Vis
spectrum of 1a even upon addition of 40 equivalents of this
acid (see the Supporting Information).

It was then unambiguously established that the reaction
was indeed light-induced (entry 7). As imide 3 exhibited the
strongest rate acceleration, the catalyst loading was lowered
for this acid. Even at a loading of 7.5 mol %, the reaction was
complete after 3.5 hours (entry 8), and it was possible to apply
light of a longer wavelength (l = 405 nm) without a deterio-
ration in yield (entry 9). These conditions were subsequently
employed for the reaction of other dithianes 1 (Table 2).

The d-dimethylated analogue 1b of enone dithiane 1a
reacted as smoothly as the parent compound (entry 1).
Compound 1c, which is dimethylated in the side chain, was
somewhat less reactive, and a longer irradiation time and
a higher catalyst loading were required to guarantee full
conversion (entry 2). The reaction of dithiane 1d to the highly
strained cyclobutene 2d is a remarkable transformation that
proceeded in very high yield (entry 3). With cyclopentenone
dithiane 1e, it was already observed by visual inspection that
the bathochromic shift that occurs upon Brønsted acid
addition[14] is not very extensive, and the reaction was
therefore conducted at l = 366 nm (entry 4). The reactions
of the chiral substrates 1 f–1 i were again conducted under
visible-light irradiation (l = 405 nm), and the yields were very
high in all cases (entries 5–8).

As anticipated, a stereogenic center in d-position led to
poor facial differentiation, and product 2 f was isolated as
a mixture of diastereomers (d.r. = diastereomeric ratio;
entry 5). The asymmetric induction by a stereogenic center
in g-position, however, is excellent, and product 2g (entry 6),
as well as product 2h (entry 7), was formed in diastereomeri-
cally pure form. Owing to 1,3-allylic strain,[15] the [2++2]
photocycloaddition of substrate 1 i also proceeded with high
facial diastereoselectivity (entry 8). In most instances, the
relative configurations were unambiguously assigned by one-
and two-dimensional NMR spectroscopy and NOESY experi-
ments (see the Supporting Information). For product 2g,
however, a crystal structure was required to determine the
relative configuration beyond any doubt (Figure 2). The
configuration of product 2h was assigned in analogy to that
of 2g.

It is well established that dithiane moieties can be
removed reductively or oxidatively,[16] and with the tricyclic
products 2 of the [2++2] photocycloadditions, the cleavage also
proceeded without any complications. The reductive desul-
furization[17] was exemplarily performed with product 2b and
delivered the volatile hydrocarbon 4[18] in 75% yield
(Scheme 2). Upon treatment of product 2a with
[bis(trifluoroacetoxy)iodo]benzene,[19] ketone 5 was obtained
in 84% yield. The cleavage can also be used to generate the
respective ketones without isolation of the intermediate
dithiane photoproducts. In the case of substrate 1j, for
example, it turned out to be impossible to separate product 2j
from minor impurities. Consequently, the dithiane moiety was

Figure 1. UV/Vis spectrum of compound 1a in CH2Cl2 as the solvent
(c =0.5 mm) without Brønsted acid (gg) and after addition of various
equivalents of Tf2NH (cc).

Table 1: Optimization of the reaction conditions for the Brønsted acid
catalyzed [2++2] photocycloaddition of 1,3-dithiane 1a to cyclobutane 2a.

Entry Catalyst[a] Loading [mol%] l [nm] t[b] [h] Yield[c] [%]

1 Tf2NH 10 398 2.5 88
2 HOTf 10 398 3.0 81
3 CSA 10 398 26.0 –[d]

4 B(C6F5)3 10 398 22.0 44
5 C6F5CHTf2 10 398 5.5 86

6 10 398 1.5 86

7 3 10 –[e] 3.5 –[d]

8 3 7.5 398 3.5 86
9 3 7.5 405 3.5 85[f ]

[a] All reactions were performed on 0.1 mmol scale with an LED lamp
(7 W power output, emission at the indicated wavelength)[11] as the light
source.[13] Cooling bath: acetone/dry ice. [b] Irradiation time. [c] Yield of
isolated product. [d] No reaction. The starting material was recovered.
[e] Without irradiation. [f ] The reaction was successfully performed
under almost identical conditions (c =20 mm, 16 h, 10 W, 93% yield) on
a larger scale (1.6 mmol).
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removed oxidatively, and the pure product 6 was isolated as
a mixture of the two diastereomers cis-6 and trans-6
(Scheme 3).

The [2++2] photocycloaddition of the Z-configured sub-
strate 1j proceeded in a stereo-unspecific fashion, that is,
without retention of the double-bond configuration. The ratio
of the two diastereomeric cyclobutanes was already deter-

mined prior to cleavage of the dithiane group to be 67:33 by
GC analysis. This finding supports the notion that the reaction
proceeds via triplet 1,4-diradical 8,[20] in which free rotation
about the indicated single bond is feasible (Scheme 4). As
illustrated for substrate 1j, the excitation thus proceeds via
thionium ion 7, which undergoes ring closure to intermediate
8 upon intersystem crossing (ISC). The strong absorption of
the thionium ion (Figure 1) indicates that a pp* singlet state
(S1) is populated upon excitation.[21]

Table 2: Brønsted acid catalyzed [2++2] photocycloaddition of various
dithianes 1[10] under visible-light irradiation.

Entry Substrate[a] t[b] [h] Product Yield[c] [%]

1 5 80[d]

2 22 78[e]

3 24 86[e]

4 21 78[d,f ]

5 24 90[e,g]

6 21 89[e,h]

7 24 79[e,h]

8 6 85[d,i]

[a] All reactions were performed on 0.1 mmol scale with an LED lamp
(7 W power output, l =405 nm)[11] as the light source.[13] Cooling bath:
acetone/dry ice. [b] Irradiation time. [c] Yield of isolated product.
[d] Catalyst (7.5 mol%). [e] Catalyst (10 mol%). [f ] Irradiation at
l = 366 nm. [g] 60:40 d.r. [h]+95/5 d.r. [i] 90:10 d.r.

Figure 2. Confirmation of the relative configuration of product 2g by
crystal-structure analysis.

Scheme 2. Reductive (2b!4) and oxidative (2a!5) removal of the
dithiane moiety in the products 2 of the [2++2] photocycloaddition.

Scheme 3. Combination of the [2++2] photocycloaddition with oxidative
cleavage of the dithiane group to obtain ketones 6 directly from
substrate 1 j.

Scheme 4. Proposed mechanism for the Brønsted acid catalyzed [2++2]
photocycloaddition, exemplarily shown for substrate 1 j.
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The configuration of the C=S double bond in 7 remains
unclear but the sensitivity of the reaction towards steric
hindrance at the terminal end of the olefinic double bond
provides circumstantial evidence for the depicted Z configu-
ration. The dithiane group also points towards the cyclo-
butane ring in the reaction products (see Figure 2), which
indicates that the carbon chain at the sulfur atom is somewhat
biased towards this orientation.

In conclusion, we have shown for the first time that
derivatives of cyclic enones can undergo a [2++2] photocy-
cloaddition under visible-light irradiation. The resulting
dithianes 2 offer several options for chemical functionaliza-
tion. The most important result of this study, however, seems
to be the fact that catalytic amounts of a Brønsted acid are
sufficient to render an otherwise photochemically inaccessi-
ble reaction pathway viable. We are convinced that the
strategy of catalytic chromophore activation will enable
further transformations to be performed with visible light
that have thus far only been possible upon UV irradiation.
Moreover, the use of chiral 1,3-dithianes[22] or chiral Brønsted
acids[23] might allow to achieve enantioselectivity with meth-
ods that cannot be applied to the classic [2++2] photocycload-
dition of enones.
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