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“The story so far: In the beginning the Universe was created. This has made a lot of
people very angry and been widely regarded as a bad move.”

Douglas Adams (1952–2001)
The Restaurant at the End of the Universe, 1980





Abstract

Internally coupled ears or ICE for short is an anatomical hearing adaptation found in over
half of the extant terrestrial vertebrates. All lizards and most frogs, birds and crocodilians are
equipped with some form of internally coupled ears. In its simplest form, ICE corresponds to
an acoustic coupling of the eardrums through an air-filled chamber known as the interaural
cavity. The vibration of one eardrum in response to an external sound stimulus creates an
internal pressure wave that propagates through the interaural cavity and drives the opposite
eardrum. In this doctoral dissertation, a mathematical analysis of the eardrums and the
connecting passages as well as the direction-dependent cues in the form of time and amplitude
differences between the ears, reveal the role played by ICE in sound localization. On the
basis of the geometry of the interaural cavity and the elastic properties of the two eardrums
confining it at both ends, the mathematical and physical principles underlying hearing through
ICE are reviewed and analytical expressions for eardrum vibrations as well as the pressures
inside the internal passages in response to an external pressure are derived. Given sound
pressure inputs of equal amplitude and a small direction dependent phase (or time) difference
at the ears, the emergence of highly directional hearing cues is demonstrated. In the first
portion of the thesis, with an emphasis on lizards as ICE archetypes and in conjunction
with the novel piston approximation for the eardrum vibrations, the role of the tympanic
fundamental frequency in segregating the hearing range into a low- and high-frequency
regimes is demonstrated. Moreover, by exploiting the physical properties of the coupling, we
describe a concrete method to numerically estimate the eardrum’s material properties solely
through measurements taken from alive animals. In the second portion, the role played by
ICE in underwater hearing in the fully aquatic frog Xenopus laevis as well as the implications
of an interaural coupling at higher frequencies in the barn owl Tyto alba is analyzed. In
both animals the interaural cavity is augmented by a secondary air-filled chamber which is
modeled as a Helmholtz resonator. It is shown that, while the resonator improves underwater
hearing sensitivity and directionality in Xenopus, it improves high-frequency directional cues
in the barn owl by negating the effects of the interaural cavity resonances. The ICE-like
amplitude-difference magnification at low-frequencies in the barn owl is also established.





Table of contents

List of figures xi

List of tables xiii

1 Introduction 1
1.1 Tympanic hearing and its evolution . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Azimuthal sound localization and binaural hearing . . . . . . . . . 4
1.2 The ICE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Mathematical ICE Model 13
2.1 Components of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 The middle ear . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Interaural Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 Head model and sound input . . . . . . . . . . . . . . . . . . . . . 21

2.2 Derivation of the mathematical model . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Tympanic vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Cavity Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.3 Vibration of coupled membranes . . . . . . . . . . . . . . . . . . . 40

2.3 Simplified ICE models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.1 Circuit equivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.2 Mechanical equivalent . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Hearing and Sound Localization 53
3.1 Interaural transmission gain . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Membrane vibration velocity . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Membrane-vibration pattern . . . . . . . . . . . . . . . . . . . . . 58
3.3 Internal time and level differences . . . . . . . . . . . . . . . . . . . . . . 60



x Table of contents

3.3.1 Internal time difference - iTD . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Internal level difference - iLD . . . . . . . . . . . . . . . . . . . . 63
3.3.3 iTD/iLD transition . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Role of the membrane-response function Λ . . . . . . . . . . . . . . . . . 65
3.5 Volume dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.1 Critical volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6 Estimating the eardrum’s fundamental frequency and damping coefficient . 69
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 ICE-like Systems 79
4.1 Eardrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.1 Xenopus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.2 Barn owl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Interaural cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.1 Cavity pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.2 The Helmholtz resonator . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.3 Γ± coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Sound input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4 Coupled eardrum vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.1 Xenopus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5.2 Barn owl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Summary and Outlook 123

6 Frequently Used Abbreviations 125

References 127

List of Publications 139



List of figures

1.1 The eardrum or tympanic membrane . . . . . . . . . . . . . . . . . . . . . 2
1.2 Vertebrate ear evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Independent vs. coupled ears . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 ITDs and ILDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 The Jeffress model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Realizations of ICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Close-up of the gecko head and eardrum . . . . . . . . . . . . . . . . . . . 15
2.2 Extracolumellar position and gecko head cross-section. . . . . . . . . . . . 16
2.3 Tympanic membrane model . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Second order lever construction . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Extracolumellar flection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Spatial representations of ICE . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Acoustic head model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 Infinitesimal membrane element . . . . . . . . . . . . . . . . . . . . . . . 26
2.9 Forces on vibrating membrane . . . . . . . . . . . . . . . . . . . . . . . . 27
2.10 Circular membrane eigenmodes . . . . . . . . . . . . . . . . . . . . . . . 30
2.11 Anuran eardrum vibration pattern . . . . . . . . . . . . . . . . . . . . . . 31
2.12 Sectorial-membrane eigenmodes . . . . . . . . . . . . . . . . . . . . . . . 33
2.13 Piston approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.14 Equivalent circuit model . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.15 Equivalent mechanical model . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Membrane frequency response . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Interaural transmission gain . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Decibel vibration velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Vibration velocity – Polar plot . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Vibration pattern: Experimental vs calculated . . . . . . . . . . . . . . . . 59



xii List of figures

3.6 iTD frequency and direction dependence . . . . . . . . . . . . . . . . . . . 62
3.7 iLD frequency and direction dependence . . . . . . . . . . . . . . . . . . . 63
3.8 iTD/iLD transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.9 Volume dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Xenopus eardrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Acoustic radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Avian eardrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Xenopus and barn owl interaural cavities . . . . . . . . . . . . . . . . . . . 87
4.5 Modified ICE interaural cavities . . . . . . . . . . . . . . . . . . . . . . . 88
4.6 Tympanic cavity geometries . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.7 Flow across abrupt change in cross section . . . . . . . . . . . . . . . . . . 93
4.8 Helmholtz resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.9 Acoustic head model - Xenopus & barn owl . . . . . . . . . . . . . . . . . 102
4.10 Xenopus experiment vs model . . . . . . . . . . . . . . . . . . . . . . . . 105
4.11 Xenopus eardrum vibration amplitude . . . . . . . . . . . . . . . . . . . . 106
4.12 Xenopus iLD spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.13 Xenopus iLD volume dependence . . . . . . . . . . . . . . . . . . . . . . 108
4.14 Xenopus iLD direction dependence . . . . . . . . . . . . . . . . . . . . . . 109
4.15 Xenopus iTD spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.16 Xenopus iTD volume dependence . . . . . . . . . . . . . . . . . . . . . . 111
4.17 Xenopus power absorption . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.18 Cavity volume vs. resonance . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.19 Barn owl eardrum vibration amplitude . . . . . . . . . . . . . . . . . . . . 115
4.20 Barn owl iLD spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.21 Barn owl iLD direction dependence . . . . . . . . . . . . . . . . . . . . . 118
4.22 Barn owl iTD spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



List of tables

2.1 Functions and variables used in the ICE Model . . . . . . . . . . . . . . . 24

3.1 System parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Numerical parameters needed for estimating f0 and α . . . . . . . . . . . . 74
3.3 Estimated f∗ and η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Material and geometrical parameters used for Xenopus and the barn owl. . . 104

6.1 List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125





Chapter 1

Introduction

The perception of external stimuli, be it sight, smell or sound, is a fundamental trait of
all living organisms and one that is essential to their survival. Among these stimuli, the
perception of sound has distinct advantages. First, it is omnidirectional, i.e., the listener need
not be oriented towards a source in order to be able to hear it. Second, the wavelength of
sound is typically much longer than that of visible light and thus, unlike light, is not hindered
by small objects. For this reason, one can typically hear a sound source behind an obstacle
before being able to see it. For this reason, being able to hear confers the obvious advantage
of being able to react to approaching threats without having to be able to see them. To hear
the sound emanating from a particular source, an animal first needs at least one appropriate
receiver sensitive to sound stimuli propagating through the surrounding medium, be it earth,
water or air. Among terrestrial vertebrates that hear in air, the most common organ dedicated
to receiving sound is the eardrum or tympanic membrane, which vibrates in response to an
external sound stimulus. In humans, the eardrum is a thin flexible membrane located at the
end of the external auditory meatus, or ear canal opening at the side of the head, while in
animals such as the Tokay gecko, for example, the eardrum is located rather superficially.
Figures 1.1a and 1.1b illustrate the position of the eardrum in humans and the Tokay gecko,
along with some of the accompanying components relevant to hearing being explicitly shown
in the case of the former.

In order to appropriately react to a sound source and thus fully exploit the sense of
hearing, it is imperative for an animal to be able to accurately judge the location of the
source. In contrast to visual stimuli, the ability to hear a sound source does not by itself
entail the ability to assess its location or, in other words, the ability to localize a sound
source. In certain specific cases, the information from one ear provides sufficient directional
information. Vertical sound localization, for example, is can be achieved through the use of
only one ear. In order to accurately localize in the azimuth, however, the animal would need
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(a) Human (b) Gecko

Fig. 1.1 Figure (a) shows the positions of the human eardrum or tympanic membrane and the
main middle- and inner ear components. The eardrum is situated at the end of the external
auditory canal and is connected via the ossicles - malleus, incus and stapes - to the cochlea.
The cochlea converts the received auditory stimulus to neuronal signals which are transmitted
to the brain via the cochlear nerve; figure adapted from Chittka and Brockmann [1]. The
gecko eardrum (b) on the other hand is located fairly superficially and can be easily made
out on the side of the head (marked by arrows). The vibrations of the eardrum are now
transmitted to the cochlea by a single middle-ear bone, the columella. Figure adapted from
Christensen-Dalsgaard et al. [2].

to simultaneously rely on information from both the ears. The spatial separation of the ears,
as well as the differing paths taken by sound waves to reach the opposite ears often result
in inherent directional differences between the individual sound inputs at both the ears. In
either case, the animal must first convert the mechanical signal of sound into electrochemical
signals that can be processed by its nervous system. Directional information can then be
extracted from the resulting electrochemical signals via neuronal computations.

The quality of information available in this manner, as well as the strategies to efficiently
process it, however, vary greatly among animals. In several animals, the directional informa-
tion available to the animal via the two eardrums is limited owing either to their small size,
or to limited neuronal power and often to both. In this thesis, we study a specific adaptation
that overcomes the aforementioned problems – a physical coupling of the eardrums on their
internal side through air-filled cavities in the animal’s skull – a system referred to as internally
coupled ears or ICE. Our goal is a quantitative and qualitative analysis of the role played by
the ears, as well as the interaural coupling between them in generating and improving the
directional information available to the animal. In the present chapter we briefly introduce
some concepts relevant to hearing and sound localization in general, and ICE in particular.
We begin by briefly reviewing the mechanism of tympanic hearing and its evolution as well
as the directional information generated by both ears. Although the goal of the thesis is
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an acoustic and mechanical analysis of ICE, we will also give a very brief introduction
to the neuronal representation of directional information. We will then provide a concise
introduction into the current state of research in ICE. Finally, we will end the chapter with a
brief outline of the structure of the present dissertation.

1.1 Tympanic hearing and its evolution

In its essence, a tympanic hearing system consists of two eardrums or tympanic membranes
situated on either side of the head, which serve as the primary receivers of auditory stimuli in
the form of sound pressure waves. Tympanic membranes are generally very thin, light and
flexible, making them especially compliant to sound pressure waves in air, which typically
have very small amplitudes. For example, normal conversations between people have an
amplitude of 60 dB in decibels, which corresponds to a pressure amplitude of .02 Pa or
roughly 2×10−7 times atmospheric pressure. In mammals, the vibrations of the tympanic
membrane are transmitted via the middle ear bones or ossicles [3] namely, the malleus,
incus and stapes (see Fig. 1.1a), to the inner ear, where the cochlea conducts a spectral
decomposition of the input into its constituent frequency components. In non-mammalian
vertebrates, on the other hand, the vibration of the tympanic membrane is transmitted to the
cochlea via a single middle-ear bone – the columella [4]; cf. Fig. 1.1b.

The ancestors of most terrestrial (land-living) vertebrates that survive today including
amphibians, turtles, lizards, crocodilians, birds and mammals independently developed a
tympanic hearing system adapted to sound pressure in air around the early triassic, i.e., ca.
250 million years ago, over a period of tens of millions of years [6, 7]; Fig. 1.2. It has also
been suggested that the appearance of hearing organs sensitive to sound in air correlated with
the evolution of sound production in insects [8]. In Fig. 1.2, an apparent distinction between
the mammalian and non-mammalian terrestrial vertebrates has been emphasized – while in
the former, the ears are independent or acoustically isolated from each other, most of the latter
seem to be equipped with some form of a connection between the ears or, in other words, with
internally coupled ears or ICE; Figs. 1.3a and 1.3b. By acoustic isolation we mean that, sound
waves originating on the internal side of one ear cannot travel to the opposite ear. As is often
the case, there are exceptions to the rule. A form of interaural coupling has been observed in
mammals like the platypus and talpid moles [9], while non-mammals like snakes [10] and
turtles [11] have hearing organs that are acoustically isolated. Nonetheless, the species with
ICE, estimated to be more than 15,000 [12], are overwhelmingly non-mammalian.
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Fig. 1.2 The evolution of tympanic ears in vertebrates. Tympanic ears evolved independently
in the major tetrapod groups at least five times in anurans (frogs), lepidosaurs (e.g. lizards),
archosaurs (e.g. birds and crocodilia), testudines (turtles) and mammals. In most cases
tympanic ears appeared around the Triassic and the approximate origins are indicated by
orange blotches. The figures above the evolutionary trees show the heads of the animals
along with a cross-section representing the schematic configurations of the respective middle
ears. The major groups with internally coupled ears or ICE, i.e, frogs, lizards, crocodilians
and birds, have been indicated separately by the overhead black bar. Snakes, turtles and
mammals do not fall under the category of animals with coupled ears. Figure adapted from
Schnupp and Carr [5]

1.1.1 Azimuthal sound localization and binaural hearing

As mentioned at the start of the chapter, frequency specific modifications to the sound
reaching the eardrum are made by the external ear or pinna, as well as the head and torso in
humans and other mammals, depending on the direction (elevation and azimuth) of a sound
source [13, 14]. Thus, directional information in the form of monaural sound localization
cues can be extracted from the response of a single ear. Monaural refers to the fact that,
the cue is derived from a single ear. In general, the sound input to a single ear does not by
itself contain enough directional information to fully localize a source. On the other hand, as
the ears of most animals are spatially separated by virtue of being on opposite sides of the
head, the inputs they receive differ from each other. Moreover, as the differences in inputs
usually depend on the sound source direction, they can also be used as directional hearing
cues to localize the source. In contrast to monaural cues, those obtained by simultaneously
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(a) Independent ears (b) Coupled ears

Fig. 1.3 Animals utilizing tympanic membranes can be broadly divided into two categories,
those with independent ears (a) and those with coupled ears (b). Animals with independent
ears typically have very narrow eustachian tubes (compare Fig. 1.1a) coupling the eardrums
such that the eardrums are acoustically isolated from each other. In animals with coupled
ears, wider eustachian tubes along with opening in to the mouth cavity or pharyngeal cavity
allow the propagation of sound waves from one eardrum to the other. As a result of such
an interaural coupling, sound waves can travel from one ear to the other. Barring a few
exceptions, mammals belong to the category of animals with independent ears, whereas
non-mammalian vertebrates have coupled ears.

comparing the inputs from both ears are referred to as binaural cues. Given sound inputs
from a single source presented to two spatially separated ears, two binaural cues are of
particular importance with respect to sound localization in the azimuth,

• the phase or, equivalently, the time difference between the inputs known as the interau-
ral time difference (ITD) [15, p. 140] and,

• the amplitude or level difference between the inputs, known as the interaural level
difference (ILD) [15, p. 155]

The notion that the position of a sound source can be determined by the interaural time and
level differences is known as the duplex theory, first postulated by Lord Rayleigh [16, 17].

Typically, ITDs are reliable sound localization cues at low frequencies, where the ampli-
tude of the sound wave is much longer than the interaural distance; Fig. 1.4a. If the distance
between the ears, or the interaural separation is L, the maximal ITD between the ears at
low frequencies is approximately L/c, where c is the speed of sound in the medium. For a
typical adult human head, the separation between the ears is around L = 22 cm, such that
the maximum ITD between the ears is around 660 µs for sound with a speed of c = 340 m/s
in air. When the sound wavelength becomes comparable in length to, or smaller than the
distance between the ears, the head becomes a sizable obstacle to the propagation of sound
waves, such that an “acoustic shadow” is formed on the side farther away from the source;
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(a) Interaural time difference (b) Interaural level difference

Fig. 1.4 An illustration of the frequencies at which (a) the interaural time difference (ITD)
and (b) the interaural level difference (ILD) are reliable cues for sound localization. At low
frequencies (≲ 1.5 kHz), where the sound wavelength is longer than the separation between
the ears, the phase difference or, equivalently, the time difference between the inputs to the
ears is a reliable cue for sound localization. The ITD, represented by an equivalent phase
difference between sinusoidal sound inputs at the left (L, red) and right (R, blue) ears, is
illustrated in the inset. At higher frequencies (≳ 1.5 kHz), the animal’s head is a sizable
obstacle to the propagation of sound, resulting in an acoustic shadow and amplitude or level
differences between the inputs to the ears which, in turn, provide information regarding the
location of a source. In nature, however, sounds are complex and contain both high and low
frequency components, often requiring the simultaneous utilization of both ITDs and ILDs.

Fig. 1.4b. As a result, the amplitude of the sound input on the side closer to the source would
be higher than on the opposite side. At these frequencies, the interaural level difference
becomes a more reliable cue for sound localization. Moreover, at frequencies higher than
3 kHz, ambiguities corresponding to phase differences larger than 2π makes the ITD an
unreliable cue. The transition between the frequency regimes corresponding to ITDs and
ILDs occurs around 1.5 kHz, where the sound wavelength is roughly equal to the head width.
In practice, however, the sounds present in nature are often very complex and will have both
high and low frequency components. The auditory system would thus need to simultaneously
use information from both ITDs and ILDs to localize a sound source [18, p. 177]. Note that
the ITDs and ILDs in the form defined so far can only distinguish objects on the left from
objects on the right and cannot distinguish sources in the front from those behind.
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Neuronal representation of ITDs and ILDs

The present thesis deals primarily with the acoustical aspects of sound localization and a
detailed analysis of the subsequent neuronal processing is beyond its scope. Nonetheless,
a very brief introduction to the neuronal representation of ITD and ILD cues will help put
the results of the following chapters into perspective. The vibrations of the eardrum that
are transduced to the oval window of the cochlea via the middle ear bone(s) (cf. Figs. 1.1a
and 1.1b), set the fluid in the inner-ear into motion. The cochlea of all vertebrates are equipped
with hair cells that convert the mechanical energy of the fluid motion into electrochemical
signals appropriate for neuronal processing [19]. The basic building block of neuronal
processing is, of course, the neuron. A neuron consists of three parts: dendrites that collect
inputs from other neurons, the soma that processes inputs and the axon that transmits output
signals to other neurons. For our limited purposes, we can ignore the finer details of neuronal
processing and consider the neuron to be a single unit that responds or “fires” based on a
pre-defined computation on a specific number of inputs.

The processing of interaural time difference cues is carried out by neurons that are
excited by simultaneous inputs originating from both ears, which are referred to as excitatory-
excitatory or EE neurons [20]. As the neuron is excited by inputs from both ears, it is referred
to as a binaural neuron. The strength of the response of the neuron is determined by the
timing of the inputs such that, the response is strongest for the most precisely synchronized
inputs. Sound localization using such neurons is conventionally explained by means of
the Jeffress model [21], in which the neurons are arranged along two axonal delay lines,
such that each neuron receives an input from both ears and is tuned to a particular ITD and
consequently, a particular direction; Fig. 1.5. As the neurons are sensitive to synchronized
inputs, they are also referred to as coincidence detector neurons. By comparing Figs. 1.4a
and 1.5 we can conclude that, as the input is closer to the right ear, the neurons left of center
receive synchronized inputs and their resultant excitation leads to a localization of the sound
source. Effectively, a Jeffress circuit forms a map of ITDs which facilitates a fast localization.
Experimental evidence from birds provides strong evidence for the presence of such a delay
line arrangement [22, 23].

The neuronal processing of interaural level differences, in contrast, is modeled in terms
of a central binaural neuron that is excited by an input originating from one ear and inhibited
by an input from the other, in other words, an excitatory-inhibitory or EI-neuron [24]. In
essence, a neuron on the left side of the head would be excited by an input from the left ear,
while it would be inhibited by an input from the right ear, such that the strength of excitation
or inhibition depends on the strength of the corresponding input. Conversely, a neuron on
the right side would be excited by an input from the right ear and inhibited by one from the
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Fig. 1.5 A simplified representation of the Jeffress model. The coincidence detector or EE
neurons, represented by the letters A-E, simultaneously receive inputs from both ears. They
respond or “fire”, when both their inputs are precisely synchronized. For example, when the
sound reaches the left ear first, the inputs reaching the rightmost neuron is synchronized due
to the input from the left ear being delayed. In contrast, a sound from directly in the front
would result in the synchronization of the neuron in the middle.

left ear. Thus, a simple binaural comparison of the response of the left and right neurons
would provide an animal with directional information. It has been suggested [25, 26] that the
directional response of neurons in the gecko’s midbrain can be explained by the response of
EI neurons [27]. For the case of Fig. 1.4b, the acoustic shadow would lead to a weaker input
to the left ear as compared to the right ear. As a result, the neurons on the right side of the
head would receive a stronger excitatory input from the right side than an inhibitory input
from the left side, thus enabling a localization of the sound source.

The “small animal” problem

When the wavelength of sound is much larger than the head size, acoustic shadowing effects
are negligible and the interaural level difference between the ears all but vanishes. In addition,
the interaural time difference is far too small to be a reliable directional cue. For example,
the Tokay gecko, with its interaural separation of around 2 cm, would have a maximal ITD
of around 64 µs between the inputs to its ears. Small animals lacking a pinna, like the Tokay,
would therefore be at a disadvantage as they can neither generate sufficient monaural cues,
nor can they rely on the binaural cues available through the external sound inputs at their ears
[28]. In addition, smaller non-mammalian vertebrates often lack the sophisticated neuronal
hardware of mammals, making them unable to exploit the limited hearing cues available
to them solely from the external inputs. Nevertheless, animals like the Tokay gecko and
other similarly sized lizards are able to localize sounds at low frequencies [25, 26]. As we
will subsequently see, the resolution to the so-called “small animal” problem comes from
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connection between the ears or, in other words, the interaural coupling between the ears,
mentioned earlier in Sec. 1.1.

When the eardrums are solely driven by the external sound pressure from a source, i.e.
the ears are independent, the internal time and level differences would be informationally
identical to the interaural time and level differences. On the other hand, if one eardrum also
feels an internal pressure dependent on the response of the opposite eardrum, i.e. the ears are
coupled as in ICE, the internal and interaural differences are no longer identical. Thus, in
contrast to the ITD and ILD which can be determined directly from external sound inputs, the
actual hearing cues available to the animals with coupled ears, determined from the eardrum
vibrations, are the internal time and level differences, or iTD and iLD for short. Thus, for
animals with independent ears, the iTD and iLD are equivalent to the interaural time and
level differences.

1.2 The ICE model

The resolution to the “small animal” problem comes from the interaural cavity that essentially
forms an air-filled connection between the eardrums, that we introduced in Section 1.1.
Apart from the lizards, several other terrestrial vertebrates including most frogs [29–31],
crocodilians [32–34] and birds (eg. barn owls [35], chickens [36], budgerigars [37] and quails
[38]) possess a hearing system where the eardrums or tympanic membranes are functionally
coupled by anatomical (usually air-filled) connections through the skull; cf. Fig. 1.2. As
a result, a signal arriving at one eardrum can propagate through these connections and
influence the vibrations of the opposite eardrum, resulting in an acoustic coupling. The
different interaural cavity configurations found in nature are illustrated in Figs. 1.6a to 1.6c
for frogs, lizards and birds, respectively. A system conceptually similar to ICE has also been
observed in the field cricket Gryllus bimaculatus [39], albeit with a more elaborate interaural
connection with branches directly receiving acoustic stimuli without a tympanic membrane,
or other sound receiving apparatus as an interface. A remarkable exception, in which an
interaural connection and, consequently, directional hearing is achieved through a simple
mechanical coupling rather than an acoustic coupling of the sound receiving organs has been
observed in some parasitic flies [40]. In the present thesis, however, we limit ourselves to the
vertebrates with a closed, air-filled interaural connection as the archetypes of ICE.

The theory of internally coupled ears had its origins in the so-called pressure-difference
receiver principle, used to explain sound localization in locusts by Autrum [42, 43], which was
later expanded upon by Michelsen [44]. Furthermore, the directional behavior of pressure-
difference ears was also found to be analogous to the directionality of pressure-gradient
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(a) Frog (b) Lizard (c) Bird

Fig. 1.6 Realizations of ICE in different terrestrial vertebrates like (a) frogs, (b) lizards and
(c) birds. The interaural cavity for frogs and lizards is illustrated through coronal slices, while
the bird is shown in a transverse slice as a dorsal view from above. The tympanic membranes
TM (or eardrums) bound the interaural cavity and are indicated by red lines. Also indicated
in the lizard diagram are the columellae, which transfer the eardrum vibrations from the
eardrum to the inner ear (open circles) situated near the brain, indicated by a large filled
circle. Figure taken from van Hemmen et al. [41].

microphones [45]. A review of the evolutionary aspects of ICE can be found in [46] and [47],
while that of its mathematical treatment can be found in [48]. A mathematical treatment of
internally coupled ears, referred to as the ICE model, was first presented by Vossen [49, 50],
where a simple system consisting of circular membranes representing the eardrums, and a
cylindrical canal representing the air-filled cavity between them was shown to generate the
necessary interaural coupling to explain eardrum vibration data obtained via laser vibrometry
in the Tokay gecko, Gekko gecko and the common house gecko, Hemidactylus frenatus. In
the present dissertation, we will extend Vossen’s work in order to construct a more general
theory of ICE. In particular, we are interested in the directional and frequency behavior of
the response of the coupled eardrums, as well as of the iTD and iLD cues generated from
them. Moreover, the dependence of the resulting expressions on the system’s geometrical
and material parameters will also be clarified.

1.2.1 Outline

The present study of internally coupled ears will divided into two conceptual parts. Chapters 2
and 3 will comprise the first portion, where we will first generalize Vossen’s [49, 50] treatment
of the ICE model and then analyze the response of the system, as well as the hearing cues
generated by it. In Chapter 2, we will introduce our generalized version of the mechanical ICE
model in a way that will emphasize the role played by the individual components of the model
as well as their material and geometrical properties. In Section 2.1, the eardrums, interaural
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cavity and the head model for the sound input will be introduced as the main components
of ICE and the exact expressions for the direction and frequency dependent vibrations of
the eardrums will be derived by means of the piston approximation in Section 2.2. As in
Vossen’s development of the theory of internally coupled ears, we will also assume that the
inputs to the ears have limited inherent directional information in the form of a small phase
difference, and thereby stress the role played by the interaural coupling in the enhancement of
hearing cues. In addition, we will also provide simplified descriptions of ICE in Section 2.3,
based on lumped electrical and mechanical elements. Chapter 3 will deal with the directional
hearing cues generated by the system of internally coupled ears and their dependence on
the input frequency, as well as on the material and geometrical parameters of the system. In
particular, the dependence of the postulated [50] low-high frequency segregation of hearing
cues in ICE on the eardrum fundamental frequency f0 will be established in Section 3.3.
The internal time and level differences (iTD & iLD) will be formally defined in Chapter 3.
Moreover, in Section 3.6, a numerical procedure to estimate membrane parameters from a
live animal, by only using the properties of the directional cues will be presented. These
chapters will correspond to a “definitive” description of ICE as a low-frequency terrestrial
hearing adaptation for small animals. In order to test our theory against experimental data,
we will focus on two lizards – the Tokay gecko and the water monitor Varanus salvator.

The second part, comprised of Chapter 4, will extend the definition of ICE to animals that
do not fit the mold of the preceding two chapters. In contrast to the lizards of Chapters 2 and 3,
which are terrestrial animals that use ICE as a low frequency hearing adaptation, Chapter 4
will focus on the African clawed frog Xenopus laevis – a fully aquatic animal, and the barn
owl Tyto alba – a bird that hears at frequencies far higher than those of typical animals with
ICE. Based on the results of Chapter 2, the eardrum and interaural cavity of both animals
will be modeled in parallel in Sections 4.1 and 4.2, respectively. In particular, a modified
mathematical description accounting for the unique Xenopus eardrum will be derived in
Section 4.1, while stressing its adaptation to an underwater environment. The common
thread tying the two vastly different species together, i.e. an additional air-filled chamber
attached to the interaural cavity will be modeled in Section 4.2.2. Finally, in Section 4.5 the
directional behavior of both animals’ eardrums, as well as the directional internal time and
level differences defined in Chapter 3 will be analyzed. In particular, the implications of the
additional air-filled chamber will be stressed for underwater hearing in Xenopus, as well as
for high-frequency hearing in the barn owl. Moreover, in this chapter we will also model
the variation of the cavity resonance with volume, which was numerically estimated for
arbitrary cavity shapes by Vossen et al. [50]. Thus, in contrast to the two chapters preceding
it, Chapter 4 will introduce a modified theory of ICE which will extend its applicability
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to underwater, as well as high-frequency hearing, as opposed to terrestrial, low-frequency
hearing.



Chapter 2

Mathematical ICE Model

In Chapter 1 we briefly introduced the concept of internally coupled ears, or ICE, as a unique
adaptation that facilitates sound localization in animals that hear at frequencies where the
wavelength is several times larger than their head size; Section 1.2. The coupling between
the ears or, in other words, the interaural coupling serves to enhance sound localization
cues in the form of time differences between the eardrum vibrations. Moreover, ICE can
also generate directional amplitude differences between the eardrums even in the absence
of amplitude differences between the incoming sound inputs. Through ICE, the notion of
pressure-difference ears, i.e., ears driven by both an external and internal pressure [42, 44],
has been expanded into a general theory describing sound-localization in the Tokay gecko and
the common house gecko Hemidactylus frenatus [49, 50]. In the present and the following
chapters, we will generalize the concept of ICE in order to explain the sound localization
ability of a much larger group of animals. Our aim is a quantitative understanding of ICE
which first requires a thorough mathematical analysis of the different components involved
in the system.

The goal of the present chapter is to first describe the material and geometrical properties
of the anatomical components relevant to ICE and, subsequently, to derive expressions for
the coupled eardrum vibrations in response to an external stimulus. The anatomical system
consists of two main parts – the eardrums which serve as the primary sound receivers and
an interaural cavity, which is an air-filled chamber that generates the coupling between the
eardrum vibrations. Subsequently, we will model the sound input taking into account the
size of the head with respect to the incoming sound wavelength. Once the aforementioned
biophysical systems have been described, we can proceed with a mathematical analysis of the
different components in order to derive explicit expressions for the directional and frequency
dependence of the coupled eardrum vibrations, such that the roles played by the different
components are immediately apparent. Though the ICE theory to be explained is universal



14 Mathematical ICE Model

and far more general, in the present and following chapters we place a special emphasis on
lizards, particularly the Tokay gecko and the water monitor Varanus salvator, in order to
formulate a definitive description of ICE. The content of the present chapter has previously
appeared in Vedurmudi et al. [12] and, in more detail, in Vedurmudi et al. [48].

2.1 Components of the model

Although the exact form of the anatomical components can vary according to the animal
under consideration, a general physical theory can constructed to describe ICE across all
species. The ICE system and, hence, our model, has three primary components,

• the middle-ear system which consists of the eardrums, usually in the form of tympanic
membranes, including the mechanism to transduce sound to the inner ear,

• the air-filled interaural cavity which is responsible for the coupling that leads to the
modification and often enhancement of the hearing cues and, finally,

• the sound source and the animal’s head which gives us a mathematical expression for
the stimulus at the eardrums.

A clear description of the geometrical and material nature of the above components will
allow us to conduct a thorough quantitative analysis of the ICE model later in the chapter.
In doing so, we formulate a system that accurately describes how ICE functions across the
many species equipped with it.

2.1.1 The middle ear

The middle ear is the primary sound receiving apparatus in vertebrates capable of hearing.
As it serves to transmit sound energy from a source to the inner ear and, consequently,
the brain for neuronal processing, a consistent mathematical model describing its behavior
is an essential first-step in obtaining a quantitative understanding of sound localization
using internally coupled ears. As ICE-like systems are mostly restricted to non-mammalian
amniotes [41], we need not include the external ear comprising the pinna and the external
auditory meatus in our model, as it is an exclusively mammalian feature whose purpose is to
convey and amplify sound energy to the eardrum.

The main components of the middle ear of lizards are the eardrum, the columella, and the
extracolumella. The tympanum, or eardrum, is a thin membrane that separates the outer ear
from the middle ear and vibrates in response to external sound waves. The space on the deep
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(inner) side of the tympanum is the middle ear cavity; this cavity is linked, by the Eustachian
tube, to the larger midline pharyngeal cavity; cf. Fig. 2.2b. The eardrums, usually in the
form of tympanic membranes, vibrate in response to a pressure generated by an external
sound sources. In addition, they are usually bounded by an air-filled middle-ear cavity on
their deep (inner). As a result, the eardrums also feel an internal pressure generated by their
own vibrations. The eardrums are typically placed on either side of the head behind the eyes.
This can be seen in Figs. 2.1a to 2.1c for the leopard gecko – a typical animal with ICE. The
superficial nature of the placement of the eardrums is also directly apparent in the images.

TM

(a) Leopard gecko

(b) Close-up of the Leopard
gecko’s head

(c) Close-up of the
eardrum

Fig. 2.1 Top: The leopard gecko – a typical animal with ICE. The location of the eardrum
or tympanic membrane (TM) on the side of its head has been highlighted. Bottom Left:
Close-up of its head, where its eardrum as well as the embedded extracolumella (brighter
protrusion, top-left), can be discerned clearly. The vibrations of one of the eardrums excites
the air inside the cavity, which in turn influences the vibrations of the opposite eardrum and
vice versa. Bottom Right: Close-up of the eardrum. The lighter colored protrusion on the
top-left of the tympanum is the extracolumella, which transfers the eardrum vibrations, via
the columella, to the cochlea; cf. Figs. 2.6b, 2.3a, and 2.3b. Photograph courtesy of Prof.
Frieder Mugele (University of Twente).
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In effect, the eardrums separate the middle-ear cavity from the outside world. Unlike
humans, animals with ICE only possess a single middle ear bone, namely, the columella.
The columella functions as a transducer for the eardrum vibrations into the cochlea and is
attached to the eardrum via a cartilaginous extension known as the extracolumella which,
together, apply a significant load [51] on the eardrum surface. Moreover, in lizards [51], birds
[4] and crocodilians [52, p. 933], the extracolumella attaches asymmetrically to the eardrum
resulting in a pronounced deviation from a symmetric vibration pattern. The placement of
the extracolumella for the gecko can be seen on the left in Fig. 2.2a. The placement of the
eardrums, also known as the tympanic membranes, relative to the middle-ear cavity, the
columella and the connection of the latter to the inner-ear through the oval window is shown
in in Fig. 2.2b, which is a more detailed version of Fig. 1.1b.

1000.00 μm

(a) Gecko eardrum (b) Head cross section

Fig. 2.2 Left: Close-up shot of a Tokay gecko illustrating the scale and shape of the eardrum
(or tympanic membrane) and the extracolumella (yellow box). As the extracolumella is
embedded into the tympanic membrane, it picks up the membrane vibrations and transmits
them through the columella – see also Fig. 2.5 – to the cochlea. Courtesy of Prof. Zhendong
Dai (NUAA). Right: Cross-section of a lizard’s head. The Tympanic Membranes (TM) as
well as the air inside the Middle Ear Cavity (MEC) and Eustachian Tubes (ET) are excited
by incoming sound waves. Because of the large width of the Eustachian Tubes (ET), the air
inside the Pharynx (P) is also excited. The tympanic vibration drives the Columella (C) in
such a way that its lever construction transmits the vibrations to the Oval Window (OW), the
membrane at the entrance to the cochlea. The OW vibration excites the cochlear fluid, giving
rise to a frequency-dependent activation of the underlying auditory nerve fibers. The Round
Window (RW) is a membrane that serves to compensate the pressure within the fluid. Figure
taken from [25].
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(a) Gecko eardrum (b) ICE eardrum

Fig. 2.3 Left: Sketch of the eardrum of a Tokay gecko, taken from Manley [51]. “COL” is
the approximate position of the columella on the extracolumellar footplate. Dimensions in
millimeters. Right: The tympanic membrane in ICE. The lightly shaded region is modeled as
a linear-elastic membrane whereas the darkly shaded region (β < φ < 2π −β ) represents
the extracolumella, which together with the masses behind it is taken to be infinitely heavy;
see main text. The angle β corresponds to the breadth of the extracolumella and is estimated
from anatomical data.

The membrane-extracolumella-columella system functions as a second-order lever where
the internal and external pressures drive the membrane, which in turn causes a displacement
of the extracolumella. This is illustrated in Figs. 2.4a and 2.4b. This motion is transferred via
the columella to the inner ear or, to be more precise, the perilymphatic fluid of the cochlea
[53]. The cochlear hair cells transduce this fluid motion into electrochemical impulses, which
will be passed on to the brain via the auditory nerve; cf. Fig. 2.2b. . For frequencies that are
not too high (say, below 4 kHz), the extracolumella can be taken to move as a completely
stiff bar. It has been shown [54] that the extracolumella begins to flex at higher frequencies,
which is illustrated in Fig. 2.5. This flection reduces the columellar transfer efficiency and is
partly responsible for the poor high-frequency response of gecko middle ears, a feature also
observed in other non-mammalian vertebrates. In our current treatment, however, we assume
that the extracolumella behaves as a rigid plate as our frequencies of interest to auditory
processing are < 4 kHz.

In a previous treatment [50] of ICE, the tympanum was modeled as a clamped circular
membrane with asymmetrically attached sectorial load between −β < φ < β . This manifests
itself as an additional boundary condition at φ = β and φ =−β which has to be satisfied
via a numerical approximation of keeping the extracolumella straight. In other words, the
membrane would be constrained to vibrate with a profile that would best approximate a
straight line at the extracolumella boundary. While this method has the advantage of being
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(a) Columella motion (b) Second order lever

Fig. 2.4 Left: Sketch showing an exaggerated displacement of the tympanic membrane and
extracolumella driven by a sound pressure, resulting in the displacement of the columella
(COL, yellow rod) about the edge of the eardrum; cf. Fig. 2.3b. Right: Equivalent second-
order lever construction, where the extracolumella has been replaced by a single bar and the
columella by a load (L) close to the fulcrum (triangle). The force exerted by the eardrum
motion has been reduced to an cumulative point force at the opposite end of the bar in the
simplified lever construction.

able to quite accurately reproduce the complex vibration patterns of the eardrum, it does not
lend itself well to an analytical treatment of the coupled system. Furthermore, the constraint
applied in the previous analysis is artificial in the sense that it does not take into account the
mass of the attached extracolumella and columella.

Instead we take a slightly different path. The tympanic membrane will be modeled as
a rigidly clamped sectorial membrane with its vibrating part limited to β < φ < 2π −β

[12, 48]. This means that in addition to the radial boundary at atymp, we have a new set of
boundaries at φ = β and φ = 2π −β =−β where the membrane vibration is set to zero. This
is illustrated in 2.3. The membrane material will be assumed to be linear-elastic. As before,
the equations describing the vibrations of the membrane will consequently be linear 2nd-order
partial differential equations (PDE’s) to be derived in Section 2.2.1. We will effectively be
analyzing the average displacement of the membrane surface in order to calculate the hearing
cues.

2.1.2 Interaural Cavity

The interaural cavity (IAC) refers to the tympanic or middle-ear cavities and the air-filled
connection between them, that generates the acoustic coupling between the eardrums. In
general, the nature of the connection shows great variation both in size and shape among
animals with ICE. A consistent mathematical description of the qualitative and quantitative
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A

Fig. 2.5 Operation of the middle ear lever in Geckos reproduced from [54]. The inferior
process of the extracolumella (AC) hinges at point C. At low frequencies the extracolumella
is a stiff bar, but at higher frequencies the inferior process of the extracolumella begins to flex
as shown in the inset. The columellar footplate (B) is a piston that fits into the oval window
of the cochlea.

properties of ICE can nonetheless be achieved through an air-filled cylinder of length L,
commonly termed the interaural distance, obtained through direct measurement.

The single cylindrical canal system describes ICE in the majority of animals possessing
the system [12, 50]. Lizards [26] and most frogs [55] fall into this category, in which both
tympanic cavities open into wider spaces such as the pharyngeal or the buccal cavity via
the Eustachian tubes, resulting in a single continuous connection between the eardrums; cf.
Figs. 1.6a and 1.6b. On the other hand, in birds like the barn owl Tyto alba [56], and the
African clawed frog Xenopus laevis [57], the Eustachian tubes extend into a single narrow
canal independent of the mouth cavity; cf. Fig. 1.6c. We note, however, that, in spite of the
variation in geometry, the general physical principles discussed in this chapter apply to both
cases. The special cases of Xenopus and the barn owl, will be discussed in more detail in
Chap. 4.

In an earlier mathematical treatment of ICE [49, 50], the oral cavity was modeled as a
simple cylinder closed at both ends by rigidly clamped (baffled) circular eardrums. In the
aforementioned model (cf. Fig. 2.6a), the cylinder length is the interaural distance L and the
radius of the cylinder was taken to be equal to that of the eardrum, i.e., acyl = atymp, which
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resulted in a cavity volume

V0 = πa2
tympL , (2.1)

which was about an order of magnitude smaller than what is observed in nature. In the
present treatment of ICE, we improve upon the model by treating the cavity volume as a
variable parameter (see Fig. 2.6b) such that,

acyl =

√
Vcav

πL
. (2.2)

Thus, the effect of Vcav on the internal coupling between the two eardrums and, consequently,

(a) Interaural cavity [50] without vol-
ume correction.

(b) Interaural cavity [12] allowing vol-
ume correction with atymp < acyl

Fig. 2.6 The first model (a) is represented by a cylinder of radius atymp and length L closed at
both ends by sectorial membranes of radius atymp. The current model (b) accounts for the
volume of the interaural cavity and is instead represented by a cylinder of radius acyl > atymp
and length L. The bold arrows represent the direction conventions along the cylinder’s axis.
The darkly shaded v-shaped region corresponds to the extracolumella; see Section 2.1.1.
The membranes are driven both by an external sound pressure as well as by the internal
pressure inside the cavity (lightly shaded region). The membrane motion in turn moves the
extracolumella like a second-order lever, i.e. the load is situated between the effort and the
fulcrum; Figs. 2.4a and 2.4b. Finally, the extracolumella transduces the membrane vibration
via the columella to the cochlea; cf. Fig. 2.5.

its effect on the iTD and iLD can be directly analyzed. As we will see in Chap. 3, the
geometrical model illustrated in Fig. 2.6b explains the directionality of eardrum vibrations,
as well as the generation of directional hearing cues in the Tokay gecko and the monitor
lizard Varanus [12, 48] within their hearing ranges, i.e. < 4 kHz and < 2 kHz, respectively.

The exact nature of the internal coupling will be discussed in Sec. 2.2 where we perform
a thorough evaluation of the complete system. We will be working in a cylindrical coordinate
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system with x ∈ (0,L) being the direction along the cylindrical axis and (r,φ) the polar
coordinates in the plane perpendicular to it.

2.1.3 Head model and sound input

In realistic environments the acoustic fields experienced by animals are often very complex.
In addition to sound waves radiated directly from one or more sources, they also involve
waves reflected from objects in their immediate neighborhood. Most mammals possess
the neuronal power required to carry out the sophisticated signal processing needed to
derive useful information from these signals, whereas smaller animals with limited neuronal
power like geckos respond to simpler cues – usually the direct field from the nearest or
strongest source. We will therefore model our incoming input as a simple plane wave (or
equivalently, a pure tone) of a given frequency. As the ensuing mathematical description is
linear, more complex inputs can be represented as a combination of pure tones. The input is
specified in terms of its intensity, frequency, and direction. Such a stimulus can be generated
experimentally, for instance in an anechoic chamber using loudspeakers that are placed at
a distance from the animal that is large compared to the animal’s size and the wavelength
of the sound involved [2, 25, 26]. In other experiments, a similar stimulus has also been
provided by means of a headphone sealed to the ear [58].

At frequencies within the hearing range of animals with ICE, the sound pressure amplitude
on the outer surface of the eardrum can be taken as uniform. The spatial variation can be
safely neglected as the typical eardrum is less than 1 cm in diameter, while the sound
wavelength in air is around ∼ 7 cm at 5 kHz, which, for most animals with ICE, is well
outside the hearing range. For instance, the smallest sound wavelengths in the hearing range
of an adult water monitor Varanus is ∼ 170 mm (2 kHz, [59]) and is around ∼ 85mm (4000
Hz, [4]) for the smaller Tokay gecko.

In general, as a result of the diffraction of sound around the head and body of an animal,
there would be a difference in phase as well as amplitude between the sound at the two
ears. The exact variation depends on the size (and shape) of the animal, the direction and
the frequency of the incident wave. Nevertheless, because of the small interaural lengths
(relative to the stimulus wavelength) of many animals with ICE, certainly lizards and frogs,
the amplitude (or level) difference is negligible [60]. The phase difference, although small
in animals with ICE, is typically not negligible. In smaller animals, i.e., where the sound
wavelength λ is much larger than the interaural distance L, we can neglect diffraction effects
resulting in a phase difference which only depends on the distance between the ears. This
is illustrated in Fig. 2.7 for an incoming sound wave from a source whose distance from
the animal is much larger than the interaural distance. A sound wave has to travel an extra
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distance ∆ to reach the ear on the opposite side, here referred to as the ”contralateral“ ear,
compared to the ear on the same side as the source – the ”ipsilateral“ ear.

Fig. 2.7 The acoustic head model for ICE for head size (L) much smaller than wavelength λ .
Depending on the angle of the sound source θ , the distance between the sound source and
the Contralateral ear is longer than its distance from the Ipsilateral ear. The extra distance
traveled by the sound wave to reach the contralateral ear is ∆ = Lsinθ , which gives rise to a
phase difference k∆. The small head size of many of these animals lets us safely [60] neglect
diffraction effects on the phase and amplitude difference, which would have required us to
account for the fact that the sound wave would have to travel around the head to reach the
contralateral ear.

The sound source direction is quantified by an angle θ such that, positive values cor-
respond to ipsilateral sources and negative ones to contralateral sources. According our
convention, θ = 0◦ corresponds to sources directly in front of the animal and θ =±180◦ to
those directly behind. We have therefore chosen a coordinate system relative to the median-
sagittal plane or the head midline of the animal such that θ gives the angle of incidence of
the sound wave relative to this plane. For more complex auditory systems we would require
two angles (θ ,φ) with the second representing the elevation of the source, but this is not
needed for our current analysis. The terms ipsi- and contralateral also refer to the stimuli at
the respective ears; cf. Fig. 2.7.

We consider as our sound input a pure-tone signal of frequency f and amplitude p
emanating from a far-away source at a direction θ . The angular frequency is given by
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ω = 2π f and the wavenumber is given by k = ω/c, where c is the speed of sound in
the medium. As the sound wave reaching the opposite ear travels an additional distance
∆ = Lsin θ , the inputs to the ears have a small frequency and direction dependent phase
difference k∆. The sound inputs to both ears are given by [61, p. 154]

pex
0 = pexp(iωt)exp(ik∆/2), pex

L = pexp(iωt)exp(−ik∆/2) (2.3)

where, ∆ = Lsinθ . (2.4)

We will later see (cf. Chap. 3) that, through ICE, even animals with small interaural distance L
can obtain useful internal time and level differences. As ICE is usually a terrestrial adaptation,
c refers to the sound speed in air. As we will also deal with ICE in water in a later chapter
(cf. Chap. 4), we note that our definition for the sound inputs to the ear (2.3) is nevertheless
valid in both media for small animals.

2.2 Derivation of the mathematical model

We will now use the physical model for internally coupled ears described in the previous
section to derive an expression for the vibrations of the eardrum in response to the sound
inputs given in Eq.(2.3), as well as an expression for the pressure inside the interaural
cavity. Put in more precise terms, we will derive the steady-state response of the system
to a pure tone stimulus. In doing so, we will be neglecting transient effects. Our goal is to
accurately represent the functions and do so in such a way that the frequency and direction
dependence as well as the effects of coupling on the eardrum vibrations are apparent. Thus,
we will be able to analyze the resulting hearing cues in the next chapter. While deriving
the main functions of interest, we will also discuss the appropriate boundary conditions and
approximations that relate the membrane vibrations to the internal pressure. In Table 2.1 the
main functions used in the derivation below have been listed, together with their physical
interpretation. In order to motivate the derivation below, we start by briefly discussing the
final expression that relates the membrane vibrations to the sound inputs. This also serves
to clearly see the interplay between the terms corresponding to the membrane and to the
internal cavity. Given a pair of internally coupled eardrums of area Stymp = (π −β )a2

tymp

driven by the sound pressures given in (2.3), the displacement of its surface at a position
(r,φ) is given by

u0/L(r,φ ;ω, t) =
1
2

(
pex

L + pex
0

1+ΛtotΓ+
∓

pex
L − pex

0
1+ΛtotΓ−

)
Λ . (2.5)
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Table 2.1 Functions and variables used in the ICE Model

θ , ω , k Sound source direction, angular frequency and wavenumber
(k = ω/c) with sound speed c = 343 ms−1 in air.

p0/L, ∆
Sound pressure inputs to the two ears given the direction and
the phase difference between them.

umn(r,φ ; t), ωmn
Tympanic membrane eigenmodes and corresponding eigen-
frequencies.

u0/L(r,φ ; t), uave
0/L(t) Membrane displacement – full and average.

Λ(ω) Membrane frequency response.

ρM, dM, cM, atymp
Tympanic membrane density, thickness, wave propagation
velocity and eardrum radius.

β < φ < 2π −β
Extent of the vibrating part of the membrane. The remaining
sector corresponds to the extracolumella.

f0, α Membrane fundamental frequency and damping coefficient.

L, Vcav, Vtymp
Interaural separation, total cavity volume, tympanic cavity
volume.

acyl, Scyl Radius and cross section of the cylindrical cavity.

Jq, µqs,νqs
Order q Bessel function of the first kind, its sth zero and sth

extremum respectively.

pqs(x,r,φ), ζqs
Cavity pressure modes and corresponding axial wavenum-
bers.

p(x,r,φ ; t),
vx(x,r,φ ; t) Cavity pressure distribution and air velocity.

where

Λ =
∞

∑
m,n

umn(r,φ)
∫

dS umn

ρMdMΩmn
∫

dS u2
mn

, (2.6)

Λtot(ω) =
∫
Smem

dS Λ(r,φ ,ω) . (2.7)

Here Ωmn = ω2 −ω2
mn − 2iαω and the Γ± coefficients quantitatively relate the internal

pressures at pin
L , pin

0 the eardrums to the eardrum displacement uL, u0 such that

2 pin
L = Γ+

∫
Smem

dS (uL +u0)+Γ−

∫
Smem

dS (uL −u0) (2.8)

2 pin
0 = Γ+

∫
Smem

dS (uL +u0)−Γ−

∫
Smem

dS (uL −u0) (2.9)
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The integrals in Eqs.(2.6)&(2.7) are taken over the vibrating part membrane surface,

Smem = (r,φ) ∈ (0,atymp)× (β ,2π −β ) .

The membrane eigenmodes, denoted by umn, can be explicitly written down as

umn(r,φ) = sinκ(φ −β )Jκ(µmnr) , (2.10)

where κ[m] = mπ

2(π−β ) , m = 1,2,3, . . . and Jκ is the order-κ Bessel function of the first kind
with µmn × atymp being its nth zero. The remaining quantities are defined in Table 2.1.

For a solitary driving pressure pexp(iωt) on an individual membrane’s surface, Λ(r,φ) =
u(r,φ)/p is its frequency response and Λtot is the integral of Λ over the vibrating part of the
membrane surface Smem. The frequency dependence of both these terms is contained in
Ωmn which will be defined later; cf. (2.41). The coefficients Γ± effectively correspond to
the frequency response of the interaural cavity. In the following, we derive expressions for
the eardrum vibrations and cavity pressure in succession and use the results to finally derive
expressions for coupled membrane vibrations using appropriate boundary conditions.

2.2.1 Tympanic vibrations

As described in Sec. 2.1.1, the eardrum consists of two parts, namely, the tympanic membrane
and the attached extracolumella. The vibrating part of the eardrum or tympanum will be
modeled as a damped linear-elastic membrane. In order to be described as a membrane, the
membrane radius atymp should be much larger than its thickness dM. A typical criterion is
that, in order to be described as a membrane, the ratio atymp/dM should be greater than 80
[62]. This is certainly true for most animals with tympanic hearing as the tympanic diameter
is of the order of a centimeter, while the thickness is of the order of tens of microns. For a
Tokay gecko (atymp ≈ 2.6 mm, dM ≈ .01 mm), this gives us a ratio atymp/dM ≈ 260.

As the eardrum is modeled as having a (nearly) circular shape in ICE, we will be working
in polar coordinates denoted by a radial distance and angle (r,φ). We denote the pressure
difference across the eardrum surface by Ψ(r,φ ; t) and the transverse displacement at any
point on its surface by u(r,φ ; t), such that, u ≪ atymp. In other words, the membrane only
undergoes small deflections. Moreover, we also assume that the deflections are small enough
such that the gradients are also much less than unity, i.e., |∇u(r,φ)| ≪ 1. Finally, in our
derivation, we assume that the thickness dM and and density ρM are uniform over the
membrane surface.
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Fig. 2.8 Infinitesimal section of area r∆r∆φ on the surface of the vibrating membrane of
radius atymp. The shaded region corresponds to the extracolumella; cf. 2.3b. The element is
at a distance r from the center of the eardrum and at an azimuthal angle φ , such that φ = 0
corresponds to the midline of the extracolumella. We work in polar coordinates as we have
chosen the eardrum to have a nearly circular shape in our model.

The following derivation is based on Kreyszig [63, p. 575]. Let us consider a surface of
infinitesimal area r∆r∆φ on the membrane surface at a distance r from the center and at an
azimuthal angle φ ; cf. Fig. 2.8. The angle φ is chosen such that φ = 0 corresponds to the
midline of the extracolumella and the vibrating part of the membrane is limited to Smemb =

{r < atymp and β < φ < 2π −β}; cf. Sec. 2.1.1&Fig.2.3b. Given a uniform membrane
tension τ , the restoring forces act normal to each edge of the infinitesimal element along the
gradient of the membrane displacement u; cf. Fig. 2.9a. As the displacements and gradients
are small, the angle made by the gradient with the horizontal plane at any point is also
small. As a result the horizontal forces acting on opposite ends of the infinitesimal elements
cancel out. Denoting the angles made by the gradient at each edge by θr1, θr2, θφ1, θφ2 (see
Figs. 2.9a and 2.9b), the vertical component of the net forces at the radial edges are given by

τ(r+∆r)∆φ sinθr2 − τr∆φ sinθr1 ≈ τ(r+∆r)∆φ tanθr2 − τr∆φ tanθr1

= τ(r+∆r)∆φ
∂u
∂ r

∣∣∣∣
r+∆r

− τr∆φ
∂u
∂ r

∣∣∣∣
r
. (2.11)
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(a) (b)

Fig. 2.9 Forces acting on the displaced infinitesimal section from Fig. 2.8 due to the inherent
tension τ in the radial direction (b) and azimuthal direction (c).

Similarly, the vertical components due to the azimuthal edges are given by

τ∆r∆φ sinθφ2 − τ∆r sinθφ1 ≈ τ∆r tanθφ2 − τ∆r tanθφ1

= τ
∆r
r

∂u
∂φ

∣∣∣∣
φ+∆φ

− τ
∆r
r

∂u
∂φ

∣∣∣∣
φ

. (2.12)

In addition to the restoring force due to the membrane tension, we also add an empirical
damping term quantified by a coefficient α . The Newton’s equation for the infinitesimal
element driven by a pressure Ψ(r,φ ; t) can thus be written as,

ρMdMr∆r∆φ ü = Ψ(r,φ ; t)r∆r∆φ +

(
τ(r+∆r)∆φ

∂u
∂ r

∣∣∣∣
r+∆r

− τr∆φ
∂u
∂ r

∣∣∣∣
r

)
+

(
τ

∆r
r

∂u
∂φ

∣∣∣∣
φ+∆φ

− τ
∆r
r

∂u
∂φ

∣∣∣∣
φ

)
−2αρMdMr∆r∆φ u̇ .

,

(2.13)

where, the overhead dot denotes a derivative with respect to time. Dividing through the above
equation by the infinitesimal area term r∆r∆φ gives us

ρMdM(ü+2α u̇) = Ψ(r,φ ; t)+
τ

∆r

(
∂u
∂ r

∣∣∣∣
r+∆r

− ∂u
∂ r

∣∣∣∣
r

)
− 1

r
∂u
∂ r

∣∣∣∣
r+∆r

+
τ

r∆φ

(
∂u
∂φ

∣∣∣∣
φ+∆φ

− ∂u
∂φ

∣∣∣∣
φ

) .
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Finally, taking the limits ∆r → 0 and ∆φ → 0 allows us to rewrite the equation of motion for
the membrane element as an inhomogeneous wave equation

∂ 2u
∂ t2 +2α

∂u
∂ t

− c2
M∆(2)u =

1
ρMdM

Ψ(r,φ ; t) (2.14)

∆(2) =
∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂φ 2 . (2.15)

where ∆(2) is the 2D-Laplacian and cM is the wave-propagation velocity on the membrane
surface which is defined as (cf. Table 2.1)

cM =

√
τ

ρMdM
. (2.16)

Furthermore, Ψ(r,φ ; t) is the total pressure driving the membrane (on both the inner and the
outer surface). The tympanic membrane is fixed at its radial boundary r = atymp and, as a
consequence of the presence of the extracolumella, at φ =±β .

As a preliminary exercise, we first derive expressions for the free (i.e., Ψ = 0) and
force-driven vibrations of a circular membrane. We will then use our results to move on to
the sectorial membrane which corresponds to the tympanum loaded by the extracolumella.

Circular membrane

We consider a rigidly clamped circular membrane of radius atymp and solve for the membrane
displacement u(r,φ) at a point (r,φ) with r < atymp and 0 ≤ φ < 2π . Due to the absence of
the extracolumella, the membrane is only subject to the Dirichlet boundary condition

u(r,φ ; t)|r=atymp = 0 . (2.17)

We first determine the eigenmodes of an undamped circular membrane by solving (2.14)
for α = 0, Ψ = 0. We solve the resulting 2-dimensional Helmholtz equation by using a
separation ansatz [64, p. 187]

u(r,φ ; t) = f (r)g(φ)T (t) , (2.18)
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which results in the following set of equations,

d2g(φ)
dφ 2 +m2g(φ) = 0 (2.19)

d2T (t)
dt2 + c2

Mµ
2T (t) = 0 (2.20)

∂ 2 f (r)
∂ r2 +

1
r

∂ f (r)
∂ r

+

[
µ

2 − m2

r2

]
f (r) = 0 (2.21)

with separation constants µ and m. The first two equations are second-order ODEs, repre-
senting the dependence on azimuth φ and time t, that can be readily solved to give,

g(φ) = M cos mφ +N sin mφ (2.22)

T (t) = E exp(iωt)+Fe−iωt . (2.23)

In general, m can take any positive real value – a fact that will help us solve the sectorial
membrane problem. In the case of a full circular membrane, however, requirements of
continuity and smoothness in φ result in m taking integer values only.

The third equation (2.50) is known as the Bessel differential equation [65, p. 313] and its
general solution is given by

f (r) =CJm(µmr)+DmYm(µmr) . (2.24)

Jm and Ym are the order-m Bessel functions of the first and second kind, respectively. We
can set the coefficients Dm = 0, as the Bessel function of the second kind diverges at r = 0
[65] and we are seeking solutions that remain finite on the membrane surface. Imposing the
Dirichlet boundary condition (2.17) at the edges of the membrane effectively results in,

Jm(µatymp) = 0.

As the Bessel function Jm has a countably infinite number of zeros [66, p. 370], µ is
correspondingly constrained to a discrete set of values. In (2.26), the combination of
atymp and µmn corresponds to the nth zero of Jm and ωmn = cMµmn is the eigenfrequency of
the eigenmode indexed by (m,n). The circular membrane modes can thus be written as

ucirc
mn (r,φ ; t) =

(
Emneiωmnt +Fmne−iωmnt)ucirc

mn (r,φ) (2.25)

ucirc
mn (r,φ) = [Mmn cosmφ +Nmn sinmφ ]Jm(µmnr) . (2.26)
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As we will later see (cf. Chap. 3, the fundamental frequency f circ
0 , given by

f circ
0 = cMµ01/2π , (2.27)

is of particular relevance to generating hearing cues in ICE.
The spatial parts of the resulting eigenmodes umn also form an orthogonal set, i.e.,∫

S
dS ucirc

m1n1
ucirc

m2n2
= 0, if m1 ̸= m2 or n1 ̸= n2 , (2.28)

where the integral is taken over a disk of radius atymp. For later convenience we have
denoted the spatial part of the modes by omitting the time-dependence from the argument
of the function ucirc

mn (r,φ). The first few of these modes have been plotted in Fig. 2.10. This
symmetric vibration profile circular membranes does not agree well with that for lizards
due to the inherent asymmetry resulting from the embedded extracolumella (cf. Figs. 2.3a
and 2.3b), but does agree fairly well for many frogs since the footplate of their columella
is attached symmetrically to the middle of the tympanum [67]; see also Fig. 2.11. We also

+ve

ve-
0

rφ

(0,1) (1,1) (2,1)

(0,2) (3,1) (1,2)

Fig. 2.10 Eigenmodes of a full circular membrane with the characteristic numbers (m,n) of
the modes shown above each figure. Displacements into the surface of the paper are darkly
shaded while those out are lightly shaded (illustrated in the legend) . The eigenfrequency
increases from left to right and top to bottom. This kind of a vibration profile does not
agree well with that for lizards due to the asymmetry brought about by the embedded
extracolumella, but does agree fairly well for many frogs since the footplate of their columella
attaches symmetrically to the middle of the tympanum [67].
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note that a freely vibrating membrane can have time-dependent components that are both
forward- and backward-moving. The presence of a driving force, however, constrains the
time-dependent component in the steady-state.

Fig. 2.11 The above plots show the excitation patterns of an anuran (frog) tympanum for
different frequencies, as indicated. Unlike lizards, the extracolumella touches the circular
eardrum of frogs in the middle, hence not breaking its rotational symmetry. As a result,
the vibration patters are nearly rotationally invariant. The fixed, circular, border has been
indicated once by a solid (red) circle for 600 Hz. The dominant mode for 600 Hz is the
fundamental one (0,1), higher modes mix in as the frequency increases, corresponding nicely
to the Bessel function of the mode (0, 2); cf. Fig. 2.10. Plot courtesy of M.B. Jørgensen [67].

Sectorial membrane

In Section 2.1.1, we noted that in vertebrates there is a transducer for the membrane’s
vibrations in the form of a columella which attaches asymmetrically to the eardrum via the
extracolumella; cf. Figs. 2.2b and 2.3a. Consequently, the membrane cannot be modeled
as a full circular disk, but rather as a sector of a given angle. For such a membrane, the
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equation of motion of the vibrating part remains unchanged. However, as the extracolumella
effectively breaks the circular symmetry of the membrane surface, we now have a new set of
temporally fixed boundary conditions at the line of contact of the tympanic membrane with
the extracolumella (cf. Fig. 2.3a), in addition to the Dirichlet boundary condition at r = atymp;
see Eq. (2.17). In order to calculate the eigenmodes, we proceed from the definition in (2.26)
and determine the values that m is constrained to take based on the boundary conditions at
both edges of the extracolumella.

We also note that, because of the relatively large mass of the extracolumella as well as its
attached elements in comparison to the membrane, we can effectively model it as an infinitely
heavy sectorial plate of radius atymp and angle 2β . In other words, the vibrating part of the
membrane lies in the region β < φ < 2π −β ; see Fig. 2.3b. As a result, we require that the
membrane displacement goes to zero at φ = β and φ = 2π −β so that the φ part of (2.26)
takes the form sinκ(φ −β ). We therefore obtain the following set of orthogonal eigenmodes,

umn(r,φ ; t) =
[
Mmneiωmnt +Nmne−iωmnt]umn(r,φ) (2.29)

umn(r,φ) = sinκ(φ −β )Jκ(µmnr) , (2.30)

where, the azimuthal component is indexed by κ which is defined as a discrete function

κ[m] = 0.5 (m+1)π/(π −β ) m = 0,1,2, . . . . (2.31)

We see that the radial – r – part of the modes umn(r,φ) is given by the (fractional) order-κ
Bessel function of the first kind with µmn× atymp being its nth zero. The mode corresponding
m =−1 represents the trivial ”zero“ solution to the membrane equation. As in the case of
the circular membrane modes (2.28), the sectorial eigenmodes umn also form an orthogonal
set, i.e., ∫

S
dS um1n1um2n2 = 0, if m1 ̸= m2 or n1 ̸= n2 . (2.32)

The fundamental frequency f0 of the sectorial modes follows in a similar way to that of the
circular membrane modes (2.27)

f0 = cMµ01/2π . (2.33)

It should be apparent from the form of the above modes that, unlike in the case of the
circular membrane eigenmodes, these modes are no longer radially symmetric. The sectorial
shape of the membrane has important physical consequences and captures the complex
vibration patterns of a realistic membrane. For a circular membrane driven by a uniform
pressure, the asymmetric modes (with m ̸= 0) are suppressed. This holds in the case of
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frogs [68], where the extracolumella is attached to the middle of the tympanic membrane
and its rotational symmetry is not broken; see also Fig. 2.11. On the other hand, for the
sectorial membrane as in the case of lizards, the radial symmetry is broken explicitly by the
extracolumella. The first few of these modes are shown in Fig. 2.12. The vibrations of a
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Fig. 2.12 Eigenmodes of a sectorial membrane where the omitted region corresponds to the
extracolumella with β = π/25; cf. Fig. 2.3b. The eigennumbers are shown above each figure.
As in Fig. 2.10, displacements into the surface of the paper are darkly shaded while those out
are lightly shaded. The eigenfrequency increases from left to right and top to bottom.

sectorial membrane are discussed in more detail in [61, p. 87].

Undamped and damped vibrations

For a damped membrane with α > 0 in Eq. (2.14), the spatial part of the above eigenmodes
remains unchanged. The form of the time-dependent part T (t) as given by (2.18) is obtained
from the solution to the following ordinary differential equation,

d2hmn(t)
dt2 −2α

dhmn(t)
dt

−ω
2
mnhmn(t) = 0 . (2.34)

The above expression differs from the equation for the time-varying part of the pressure
(2.20) only in a first-order damping term. We therefore expect (2.34) to have exponentially
decaying solutions in time and look for them.
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As an ansatz, we assume hmn to take the form exp(iω̃mn) where ω̃mn can, in general, be a
complex number. This leads to a quadratic equation in ω̃mn with solutions

ω̃
2
mn −2iαω̃mn −ω

2
mn = 0 (2.35)

ω̃mn = iα ±ω
∗
mn (2.36)

where ω
∗
mn =

√
α2 +ω2

mn . (2.37)

We see that the new, now damped, eigenmodes possess both an exponential damping term
as well as a shift in the original eigenfrequencies. We require the membrane displacement
to remain finite as t → ∞. As exp(−iω̃mn) terms lead to vibration amplitudes that increase
exponentially as exp(αt) we can safely drop them. This then leads to

ũmn(r,φ ; t) = umn(r,φ)
[
Mmneiω∗

mnt +Nmne−iω∗
mnt
]

e−αt . (2.38)

The effect of membrane damping is therefore not only an exponentially decreasing damping
term, but also a shift in the eigenfrequencies of all the membrane eigenmodes. The general
solution is given by a linear combination of umn with the coefficients that are determined by
initial conditions. These could be, for instance, the membrane displacement and velocity at
t = 0.

Forced vibrations

For a periodically driven membrane, there are two components of the full solution corre-
sponding to forced vibrations. The first of these is the quasi-stationary-state solution which
oscillates with the same frequency as the input and does not depend on the initial conditions –
uss. The second of these is the transient solution that depends on the initial conditions but not
directly on the driving pressure – ut .

The quasi-steady-state solution is expressed as a linear combination of the spatial part
of the membrane eigenmodes defined in (2.30) with a time-component equal to that of the
driving pressure, exp(iωt),

uss(r,φ ; t) =
∞

∑
m=0

∞

∑
n=1

Cmnumn(r,φ)exp(iωt). (2.39)
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By substituting (2.39) into (2.14) with Ψ = pexp(iωt) we obtain

∞

∑
m=0

∞

∑
n=1

ρMdMΩmnCmnumn(r,φ)eiωt = pexp(iωt) (2.40)

Ωmn =
[
(ω2 −ω

2
mn)−2iαω

]
. (2.41)

Using the orthogonality of the eigenmodes, we can calculate the coefficients Cmn,

Cmn =
p
∫

dS umn

ρMdMΩmn
∫

dS(umn)2 (2.42)

with the integral this time being taken over the circular disk of radius atymp (or equivalently,
over the vibrating surface of the tympanum).

The transient solution is found by solving the membrane equation for Ψ(r,φ ; t) = 0
which, effectively, is the solution of the free damped membrane, i.e., a linear combination of
the eigenmodes given in (2.38),

ut(r,φ ; t) =
∞

∑
m=0

∞

∑
n=1

ũmn(r,φ ; t) . (2.43)

The complete solution is given by u = ut +uss and the coefficients Mmn and Nmn are deter-
mined by the initial conditions (at t = 0).

Quasi-Steady-State Approximation

The damping coefficient α is usually given in terms of the membrane fundamental frequency
( f0) and a quality factor Q as α = 2π f0/2Q. The eardrums in the animals we are concerned
with are generally underdamped, i.e., Q > 0.5, which results in damping coefficients that are
around ∼ 2700 s−1 for the Gecko lizards and around ∼ 400 s−1 for the larger Varanus; see
Tab. 3.1 in Chap. 3. As a result, the exponential decay of the transient vibration amplitude
allows us to safely assume that within a few time-periods of the input frequency, and even
far less for the Geckos, the transient vibrations of the forced membrane are gone. In our
subsequent derivations, we can safely neglect the transient parts of the membrane vibration.
The transient behavior can be dealt with in a more precise manner, by solving the pressure
differential equation with the vibrating membranes serving as time-dependent boundary
conditions. A rigorous mathematical treatment of coupled membrane vibrations is beyond
the scope of the present work, but has been treated in full elsewhere [69].
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2.2.2 Cavity Pressure

Given a cavity of arbitrary shape coupling the two eardrums, understanding the physics
of ICE formally reduces to finding an expression for the internal pressure at one eardrum
in terms of the internal pressure at the opposite eardrum. To do so, we first need to find
an expression for the pressure within the interaural cavity. At our frequencies of interest
(< 4 kHz) and given the small interaural sound propagation distances (< 10 cm), viscous
acoustic damping in air can be neglected so that we follow common acoustic models (e.g.
[70, p. 313], [71, p. 247]) and describe the air inside the cavity by linear acoustics in a
cylindrical coordinate system. In this approach, air moves due to a local pressure p(x,r,φ ; t)
obeying the 3-dimensional wave equation

1
c2

∂ 2 p(x,r,φ ; t)
∂ t2 = ∆(3)p(x,r,φ ; t) , (2.44)

where ∆(3) =
1
r

∂

∂ r
+

∂ 2

∂ r2 +
1
r2

∂ 2

∂φ 2 +
∂ 2

∂x2 (2.45)

is the 3-dimensional Laplacian in cylindrical coordinates with x denoting the dimension along
the cylinder axis, while c is speed of sound. The choice of cylindrical coordinates reflects the
circular cross section of the canal(s) comprising the interaural cavity in our treatment of ICE;
cf. Sec. 2.1.2. The acoustic wave equation results from a linearization of the Euler equations
in terms of small pressure and velocity fluctuations [72, pp. 538–541].

The complete solution must take into account the boundary conditions at and within
the cavity walls and the ones at the air-membrane interface. We also note that Eq. (2.44)
presumes through its boundary conditions that the animal’s mouth is closed, which is typical
for a waiting predator or prey.

General solution

In order to solve (2.44) for a particular frequency f with angular frequency ω = 2π f , we
use the following separation ansatz, similar to the one used in (2.18)

p(x,r,φ , t) = f (x)g(r)h(φ)exp(iωt) (2.46)

which after substitution into (2.44) leads to,

k2 f (x)g(r)h(φ)+ f (x)h(φ)
[

∂ 2g(r)
∂ r2 +

1
r

∂g(r)
∂ r

]
+ f (x)g(r)

1
r2

∂ 2h(φ)
∂φ 2 +g(r)h(φ)

∂ 2 f (x)
∂x2 = 0 .

(2.47)
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As always, k := ω/c is the wavelength of the sound wave at the given angular frequency
(ω = 2π f ). Before proceeding we should note that, in general, the time component of the
pressure also has a temporally backward-moving component, i.e., exp(−iωt). By making
the ansatz in (2.46), we have implicitly used the fact that the form of the input as given in
(2.3) constrains the pressure to only having a forward-moving component, i.e., exp(iωt).

The substitution exp(iωt) in (2.46) actually means that we are looking for the (countable)
eigenvalues of −∆ inside the cavity, in terms of ω2 with appropriate boundary conditions; see
below. Although this might look mathematically contradictory at first, we will soon see that
it is not. Making the ansatz of separation of variables and dividing (2.47) by f (x)g(r)h(φ)
gives the following set of separated ordinary differential equations (ODEs),

d2 f (x)
dx2 +ζ

2 f (x) = 0 (2.48)

d2h(φ)
dφ 2 +q2h(φ) = 0 (2.49)

∂ 2g(r)
∂ r2 +

1
r

∂g(r)
∂ r

+

(k2 −ζ
2︸ ︷︷ ︸

=:ν2
q

)− q2

r2

g(r) = 0 (2.50)

with separation constants q and ζ . The above equations are nearly identical to those in (2.19)
– (2.21). As before, the first two equations can be readily solved to give,

f (x) = exp(±iζ x) (2.51)

h(φ) = exp(±iqφ) . (2.52)

The third equation (2.50), i.e. the Bessel differential equation can be solved to give (cf.
Eq. (2.21))

g(r) =CqJq(νqr)+DqYq(νqr). (2.53)

Jq and Yq are the order-q Bessel functions of the first and second kind, respectively. We can
set the coefficients Dq = 0 as the Bessel function of the second kind diverges at r = 0 [65,
p. 313] and we are seeking solutions that remain finite on within the interaural cavity.

With the above solutions for f (x), g(r), and h(φ), we can write down a specific solution
to (2.44),

pq(x,r,φ) =
(
Aq exp(iζqx) + Bq exp(−iζqx)

)
p◦q(r,φ) (2.54)

p◦q(r,φ) = Jq(νqr/acyl)
(
Cq cosqφ +Dq sinqφ

)
. (2.55)
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The coefficients A, B, q, ζ and ν will be subsequently determined by the boundary conditions.
Through p◦q we denote the components of the eigenfunction in the radial and azimuthal
directions.

Pressure boundary conditions

In order to determine the coefficients in (2.55), we have to satisfy three sets of boundary
conditions,

• Continuity and smoothness in φ or equivalently h(0) = h(2π) and dh
dφ

∣∣∣
φ=0

= dh
dφ

∣∣∣
φ=2π

• Vanishing of the normal derivative at the cavity walls – dg
dr

∣∣∣
r=acyl

= 0.

• Equating the membrane velocity to the air velocity at the inner air-membrane interface.

The first set of requirements, as in the case of a circular membrane, is trivial and constrains
q to take integer values. The second and third are a result of the so called “no-penetration”
boundary-condition of fluid-mechanics. They arise from the fact that the cavity wall and the
eardrum are impermeable boundaries. This translates into the requirement that the normal
velocity function should vanish [73, p. 111]. The velocity function (v) is related to the
pressure by

−ρ
∂v
∂ t

= ∇p , (2.56)

where ρ is the density of air. This result emerges directly from the linearization of the Euler
equation

∂ ṽ
∂ t

+ ṽ.∇ṽ =− 1
ρ

∇P+ f . (2.57)

Assuming that the acoustic pressure can be described as a fluctuation p around a stationary
background (atmospheric) pressure P0 and that the fluid velocity v, as small fluctuations in a
quiescent fluid v0 = 0, we obtain

ṽ = v0 +v = v

P = P0 + p .

Neglecting the body forces due to gravity (f) gives us

⇒ ∂v
∂ t

+v.∇v =− 1
ρ

∇p . (2.58)

We can neglect the convection term (v ·∇v) as it is of second order in the extremely small v,
and thus arrive at (2.56).
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At the cylindrical cavity wall, the normal velocity is in the radial direction, and vanishes.
Substituting the expression (2.60) for the pressure into (2.56) leads to a Neumann boundary
condition for the pressure,

vr =− 1
iρω

∂ p(x,r,φ ; t)
∂ r

∣∣∣∣
r=acyl

= 0

⇒
∂Jq(νqr)

∂ r

∣∣∣∣
r=acyl

= 0 (2.59)

This constrains νq to a discrete set of values which correspond to the local minima and
maxima of Jq. This is in contrast to the Dirichlet boundary condition for the corresponding
Bessel equation describing the membrane vibrations (2.17). We therefore introduce an
additional index s which takes integer values such that νqs × acyl corresponds to the sth

extremum of the order-q Bessel function of the first kind. This results in (2.54) becoming a
set of modes indexed by (q,s) :

pqs(x,r,φ) =
(
Aqs exp(iζqsx)+Bqs exp(−iζqsx)

)
p◦qs (2.60)

p◦qs(r,φ) = Jqs(νqsr/acyl)
(
Cqs cosqφ +Dqs sinqφ

)
. (2.61)

Effectively, the modes are 3-dimensional waves propagating with wave numbers ζqs in
the x-direction and νqs in the radial direction. The wavenumber ζqs of the (q,s) mode is
related to the wavenumber k of sound in air as (cf. Eq. (2.50))

ζ
2
qs = k2 −ν

2
qs . (2.62)

As was the case with the membrane modes (2.32), the pressure modes defined through
Eqs. (2.54) and (2.59) form a discrete orthogonal basis inside the cylinder. This means that∫

Ω

dV pq1s1 pq2s2 = 0, if q1 ̸= q2 or s1 ̸= s2 (2.63)

where the integral is over the volume of the cylinder. This is a consequence of the fact that
for different q’s the trigonometric parts of the modes are orthogonal, whereas for the same q
the Bessel parts are orthogonal for different s’s. Expressed mathematically, this requirement
gives us ∫

dS fq1s1 fq2s2 = 0, q1 ̸= q2 or s1 ̸= s2 (2.64)

where dS = rdrdφ with the integral being taken over the disk of radius acyl. We can therefore
write the general solution to Eq. (2.44) as a linear combination of the orthogonal modes given
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in (2.60) :

p(x,r,φ ; t) =
∞

∑
q=0

∞

∑
s=0

pqs(x,r,φ)exp(iωt) (2.65)

where the individual modes pqs are defined in Eq. (2.54).
The first of these modes (corresponding to q = 0,s = 0) is of particular importance. Since

the first maximum of J0 occurs at r = 0, we have ν00 = 0 and, consequently, ζ00 = k. Thus,
the first propagating mode in the air-filled cavity is a plane wave that is constant in r and φ

and only propagates along the axis of the cylinder. Unlike the higher modes, which depend
on the radius r and polar angle φ , the plane wave mode is the same in all the sections of the
interaural cavity. The pressure, particle velocity and volume flow rate for the plane wave
mode are given by

p(x; t) = (Aeikx +Be−ikx)exp(iωt) , , (2.66)

v(x; t) =− 1
ρc

(Aeikx −Be−ikx)exp(iωt) and (2.67)

U(x; t) =−Scyl
1

ρc
(Aeikx −Be−ikx)exp(iωt) , (2.68)

where, as usual, Scyl is the area of cross section of the cylindrical canal.
The third and final set of boundary conditions at the internal air-membrane interface at

either end of the cylinder will be used to determine the remaining coefficients, Aqs and Bqs.
To do so, we first need to use the analytical expression for the membrane vibrations derived
in Sec. 2.2.1 as apply them as boundary conditions for the cavity pressure.

2.2.3 Vibration of coupled membranes

We can now move on to the analysis of the vibration of internally coupled membranes and
derive the expressions defined in (2.5). The analysis in this section is similar to the treatment
of the vibration of a circular membrane backed by a cylindrical air cavity closed at the
opposite end as given by [74]. The quantities of interest there were the eigenmodes of the
circular membrane, but we are primarily interested in the steady state vibration of sectorial
membranes that are internally coupled to each other as well as to external stimuli at both
ends.

It is convenient to first write down the main equations of the system based on our
previously derived expressions. A general expression for the quasi-steady-state vibrations of



2.2 Derivation of the mathematical model 41

the eardrums is given by a linear combination of the sectorial eigenmodes, (2.30),

u0/L(r,φ ; t) =
∞

∑
m=0

∞

∑
n=1

C0/L
mn umn(r,φ)exp(iωt) (2.69)

where 0 and L denote the x = 0 and x = L membranes respectively. Given the cavity pressure
distribution p(x,r,φ ; t) as given by Eq. (2.65), the driving pressure on either side of the
membrane equals Ψ0/L(r,φ ; t) = p0/Leiωt − p(0/L,r,φ ; t). Substituting these expressions
into (2.14) gives us the following set of equations,

∞

∑
m=0

∞

∑
n=1

ρMdMΩmnC0/L
mn umn(r,φ)exp(iωt) = Ψ

0/L(r,φ ; t) . (2.70)

The above equation is only valid on the vibrating part of the membrane surface, i.e., for
Smemb = {r < atymp and β < φ < 2π −β}.

As discussed in Subsection 2.2.2, the interaural cavity pressure satisfies the no-penetration
condition at solid boundaries. This means that at both ends of the cylinder, we equate the
velocity profile of air to the velocity profile of the circular surface including the membrane;
cf. Fig. 2.13a. As the membrane diameter is smaller than the cylinder diameter, we will
have to set the air-particle velocity to zero for r > atymp. Additionally, since the membrane
displacement is only in the x-direction, we need only calculate the x-component of the
velocity. Using the relation in Eq. (2.56) we get,

vqs(x,r,φ) = ζqs

(
Aqseiζqsx −Bqse−iζqsx

)
pqs(r,φ) (2.71)

vx(x,r,φ ; t) =
−1
ρω

∞

∑
q=0

∞

∑
s=0

vqs(x,r,φ)exp(iωt) (2.72)

and the exact boundary conditions are given by

vx(0,r,φ ; t) =

−iu0, (r,φ) ∈ Smemb

0, otherwise
(2.73)

vx(L,r,φ ; t) =

iu0, (r,φ) ∈ Smemb

0, otherwise
, (2.74)

where, according to our convention, membrane displacements outward from the cylinder are
taken as positive (in x) and those inward are taken as negative.
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Approximate boundary condition

As we have just seen, the exact boundary conditions would require us to set the air velocity to
be exactly equal to the membrane velocity. The membrane and cavity modes, while forming
orthogonal bases by themselves (2.63), are, however, not orthogonal to each other. In other
words, each membrane mode couples with every cavity mode and vice versa. Even in the
absence of the extracolumella with full circular membranes on either end of the cylinder, the
cavity and membrane modes have different boundary conditions. For the internal pressure,
these are Neumann boundary condition, whereas for the membrane, we have Dirichlet
boundary conditions (2.17).

Our way around this problem is to approximate the eardrum motion, and thus boundary
conditions (2.73) and (2.74). We do this by effectively replacing each sectorial membrane by
a circular piston [12] operating on the internal pressure p and moving with the membrane’s
average velocity u̇ave

0/L so that

uave
0/L =

1
πa2

cyl

∫
dSu0/L , u̇ave

0/L = iωuave
0/L (2.75)

vx(0,r,φ ; t) =−u̇ave
0 , vx(L,r,φ ; t) = u̇ave

L (2.76)

where we have in fact taken the average velocity of the entire cylindrical surface including
the eardrum; cf. Fig. 2.13b. Since the bare cylinder surface is solid and nonmoving, the
present approximation of averaging over the lateral faces of the cylinder only differs from the
average over the membrane surface by a factor. The exact mathematical justification for the
current procedure is beyond the scope of the present work and has been presented elsewhere
[69]. The piston approximation used in our derivation refers to the averaging of the tympanic
motion including the non-moving extracolumella non-moving part of the cylinder face and
thus, effectively, approximating the Neumann boundary condition for the internal cavity
pressure.

Physically, we can assume that air is locally nearly incompressible so that in the long-
wavelength domain we focus here in a local boundary variation on one or both faces (corre-
sponding to the membrane displacement) has the same effect as the average variation on the
left and right face from where it propagates through the cylinder representing the pharyngeal
cavity. As said in the caption of Fig. 2.13b, “In effect, it computes the net volume change,”
as confirmed mathematically [69]

∆Vcav = πa2
cyl(u

ave
L +uave

0 ) .
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Vxu0
Vx uL

. .

(a) Exact Membranes (b) Piston Approximation

Fig. 2.13 Above: Exact membrane boundary conditions. The velocity of air (vx) equals that
of the membrane (u0/L). Below: Piston approximation. The membrane is approximated by a
circular piston moving with the membrane’s average velocity and with boundary conditions
(2.76) applied to (2.44) and (2.56). The piston approximation refers to (2.44) and the
boundary condition for the pressure p in the 3-dimensional cavity, not to the motion (2.14)
of the eardrum itself. In effect, it computes the net volume change.

Given the modified boundary conditions (2.76), it is straightforward to calculate the
coefficients Aqs and Bqs in terms of uave

0/L. To do this we use the orthogonality of the cavity
modes (2.63) and the modal expansion (2.71), (2.72) of the air velocity. By multiplying
both sides of the boundary relations in (2.76) by pqs(r,φ) and integrating over the circular
surfaces at the ends of the cylinder, this results in a system of two linear equations for each
pair of Aqs and Bqs,

Aqs −Bqs =−Lqsρω
2uave

0 (2.77)

AqseiζqsL −Bqse−iζqsL = Lqsρω
2Save

L (2.78)

where Lqs =

∫
dSpqs(r,φ)

iζqs
∫

dSp2
qs(r,φ)

. (2.79)

We must now make use of the fact that the cavity pressure modes (2.60) integrate to 0
(i.e.,

∫
dSpqs = 0) unless q = 0 and s = 0. For q = 0 this is a consequence of the Bessel

functions integrating to zero while for q ≥ 1 this is due to the more obvious fact that the
integral of the trigonometric part from 0 to 2π is zero. That is,∫ aacyl

0
rJq(νqsr)dr = 0 , (2.80)∫ 2π

0

(
Aqs cosqφ +Bqs sinqφ

)
dφ = 0 . (2.81)

As a result we have Aqs = Bqs = 0 for all modes except the (0,0) mode. In other words, as a
result of the piston approximation, we only encounter plane wave modes inside the cavity.
We will subsequently omit the subscripts “00” for these coefficients. From the above linear
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equations, they are given in terms of the total membrane displacement as

A =− ρω2

2k sinkL

(
uave

0 e−ikL +uave
L

)
, (2.82)

B =− ρω2

2k sinkL

(
uave

0 eikL +uave
L

)
. (2.83)

We have also directly substituted ζ00 = k and simplified the expression for L00 in the above
expressions. These coefficients can now be substituted in place of the pressure into the
right-hand side of (2.70) so as to give

∞

∑
m=0

∞

∑
n=1

ρMdMΩmnC0/L
mn umn(r,φ) =

p0/L +
ρω2

k

(
uave

0/L cotkL+uave
0/L csckL

)
.

(2.84)

The time component exp(iωt) cancels on both sides of the equation. We note that the
right-hand side of the above equation system is independent of the spatial (r,φ) coordinates.

The above coupled system of equations can be considerably simplified by taking their
sum and difference to obtain a new set of decoupled equations. After some algebra, we have
the following set of “sum and difference” equations,

∞

∑
m=0

∞

∑
n=1

ρMdMΩmnC+
mnumn(r,φ)= p++

ρω2

k
uave
+ cot

kL
2

(2.85)

∞

∑
m=0

∞

∑
n=1

ρMdMΩmnC−
mnumn(r,φ)= p−−

ρω2

k
uave
− tan

kL
2

(2.86)

where the “plus” and “minus” have been defined as the sum and difference of the respective
“0/L” components. That is,

C+
mn =CL

mn +C0
mn, p+ = pex

L + pex
0 , (2.87)

C−
mn =CL

mn −C0
mn, p− = pex

L − pex
0 , (2.88)

uave
+ = uave

L +uave
0 =

∞

∑
m=0

∞

∑
n=1

C+
mnumn(r,φ) , (2.89)

uave
− = uave

L −uave
0 =

∞

∑
m=0

∞

∑
n=1

C−
mnumn(r,φ) . (2.90)

Thus it is apparent that the above system of equations is decoupled because the uave
± terms can

be expressed as a linear expansion of the respective C±
mn coefficients alone. Analogously to
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the calculation of the coefficients for the quasi-steady-state vibration in (2.40) and (2.42) we
can now use the orthogonality of the membrane modes umn to determine the coefficients of the
sum and difference vibrations in terms of the pressure and average membrane displacement,

C+
mn

∫
dS umn =

[
p++

ρω2

k
uave
+ cot

kL
2

]
Kmn

Ωmn
(2.91)

C−
mn

∫
dS umn =

[
p−− ρω2

k
uave
− tan

kL
2

]
Kmn

Ωmn
(2.92)

where Kmn =
(
∫

dS umn)
2

ρMdM
∫

dS u2
mn

. (2.93)

The integrals are over the vibrating part of the membrane surface Smem . The substitution
Kmn will simplify our calculations in the appendix for the estimation of membrane parameters.
The next step will be to sum both sides of (2.91) and (2.92) over all the membrane eigenmodes
(m,n). The left-hand sides of the equations give us

∞

∑
m=0

∞

∑
n=1

C±
mn

∫
dS umn = πa2

cylu
ave
± . (2.94)

Hence we obtain exact expressions for the average membrane displacements,

πa2
cylu

ave
± =

(pex
L ± pex

0 )Λtot

1+ΛtotΓ±
, (2.95)

where Λtot =
∞

∑
m=0

∞

∑
n=1

Kmn . (2.96)

We have thus shown how the quantities Λ, Λtot and Γ± first defined in (2.6), (2.7), (2.8)
and (2.9) emerge from our analysis. As stated earlier, the Γ± terms contain the effect of
the coupling through the air cavity and Λ is the frequency response of the membrane to a
pure tone of angular frequency ω . Qualitatively we can see that the information about the
membrane (atymp, cM, α) is contained within Λ whereas the properties of the interaural cavity
(Vcav, acyl, L) are contained in Γ±. That is, we have obtained the results first motivated in
(2.6)-(2.9),

Λ =
∞

∑
m,n

umn(r,φ)
∫

umn

ρMdMΩmn
∫

u2
mn

, Λtot =
∫
Smem

Λ(r,φ)dS , (2.97)

Γ+ =−ρc2

Vcav
kLcotkL/2 , Γ− =

ρc2

Vcav
kL tankL/2 ., (2.98)
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where, as before, Ωmn = ω2 −ω2
mn −2iαω . Subsituting the above expressions along with

(2.95) into (2.91) and (2.92) gives us the results mentioned at the start of this section,

u0/L(r,φ) =
1
2

(
pex

L + pex
0

1+ΛtotΓ+
∓

pex
L − pex

0
1+ΛtotΓ−

)
Λ(r,φ) , (2.99)

πa2
cyl uave

0/L(r,φ) =
1
2

(
pex

L + pex
0

1+ΛtotΓ+
∓

pex
L − pex

0
1+ΛtotΓ−

)
Λtot . (2.100)

Convergence of Λ

Since the membrane frequency response Λ(r,φ), or equivalently Λtot in (2.97), is the summa-
tion of an infinite number of eigenmodes, in order to proceed with a numerical analysis of our
model we first need to ensure that it converges to a finite value. Through the Cauchy-Schwarz
inequality we obtain

|Λtot| ≤ Stymp ∑
m,n

Kmn/|ρMdMΩm,n|< ∞ (2.101)

with Stymp as the tympanic area and Kmn as the coefficient defined in (2.93). The former
inequality is Cauchy-Schwarz, the latter is a general characteristic of the spectrum of the
two-dimensional Laplacian associated with the eardrum; cf. (2.14), (2.41), and Table 2.1.

We therefore need to approximate Λtot by choosing an appropriate mode cutoff based on
the hearing range of the animal and the high damping at their corresponding eigenfrequencies.
In our analysis we chose a cutoff of N = 30 modes. The basic method involves arranging
the modes in increasing order of eigenfrequency (or equivalently µmn). As a result, we can
express the summation over a single index. In general, for the frequency ranges of the animals
we are interested in, we need not calculate the summation beyond the first 30 eigenmodes.
At these frequencies, the damping sufficiently suppresses higher modes with respect to the
lower ones.

2.3 Simplified ICE models

Now that we have derived a geometrical ICE model based on the relevant anatomy of
animals with coupled ears, wherein the flexible eardrums or tympanic membranes are
coupled through a continuous air-filled cavity. With this knowledge at hand, we now present
simplified equivalent descriptions of the model by representing the various components
through equivalent lumped circuit or mechanical elements. Our goal is to obtain simplified
qualitative and quantitative models that mimic the results obtained in the present chapter. In
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particular, by presenting the simplified models with appropriate time-varying inputs, we will
obtain quantities mathematically similar to those we have derived so far. In doing so we will
effectively be exploiting the linearity of the ICE model.

2.3.1 Circuit equivalent

The results of ICE model can, in some cases, be reproduced by representing its components
through equivalent circuit elements such as impedances, current sources and voltage sources
that quantify the motion of the middle ear components. The method was used to describe the
interaural coupling in lizards [25, 26, 75] and was based on methods presented by Fletcher
[61, p. 164] and Zwislocki [76]. In such a model, the external sound inputs are represented by
voltage sources, while the rest of the system is represented by impedances whose numerical
values depend on the material and geometrical properties of the corresponding component.
In general, the impedance values thus determined can have both resistive and reactive
components. The circuit analog for the ICE model is illustrated in Fig. 2.14. For the
eardrum, the higher modes are neglected and the equivalent resistance RM, inductance LM

and capacitance CM of the eardrum are given by

RM =
ω0LM

Q
, LM =

ρMdM

πa2
tymp

and CM =
1

ω2
0 LM

, (2.102)

respectively. Recall that ω0 = 2π f0 is the angular fundamental frequency of the eardrum
and Q is its quality factor such that, the membrane damping is given by α = ω0/2Q; cf.
Sec. 2.2.1. For the interaural cavity pressure, its spatial variation between the eardrums is
neglected such that it is represented only by a capacitance CV which is defined in terms of
the cavity volume Vcav as

CV =
Vcav

ρc2 . (2.103)

The equivalent resistance RV and inductance LV are set to zero for the air-filled cavity.
Physically, the air inside the cavity is assumed to be globally adiabatic, as opposed to locally
adiabatic, when deriving the acoustic wave equation. The adiabatic equation of state is thus
used to determine the instantaneous pressure change inside the cavity from the instantaneous
volume change due to the eardrum motion which, after linearization, results in a uniform
pressure inside the cavity. The total impedance Z of both components is given by

ZM/V = RM/V + jωLM/V +1/ jω0CM/V . (2.104)
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The role of the “current” in the circuit is played by the integral vibration velocity of the
eardrums, which is defined in terms of the average membrane displacement (2.100) as

U0/L = iωStympuave
0/L , (2.105)

where Stymp is the surface area of the eardrum. The variables U0/L are referred to as the
“acoustic flow” and is equivalent to the volume flow rate of air at the eardrum interface, inside
the cavity. Requiring a conservation of acoustic flow at the branches, we apply Ohm’s law to

Fig. 2.14 The equivalent circuit model for ICE described using lumped elements. The
eardrums are represented by an impedance ZM which depends upon the fundamental fre-
quency f0 and the damping α . The equivalent impedance ZV represents the interaural cavity
and is only a function of its volume, the density of air and the speed of sound. The input
pressures pex

0 /L are represented by voltage sources which induce “currents” U0/L“ in each
arm of the circuit.

the circuit in Fig. 2.14 resulting in,

pex
L =ULZM +(UL +U0)ZV (2.106)

pex
0 =U0ZM +(UL +U0)ZV . (2.107)

Solving the above equations results in

2UL/0 =
pex

L + pex
0

ZM +2ZV
±

pex
L − pex

0
ZM

. (2.108)
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The above expressions are, in fact, qualitatively very similar to the expressions for the
average membrane displacements uave

0/L (2.100). The first term in the summation of the
membrane frequency response Λtot (2.97) is equivalent to an ”admittance“, or the inverse of
the impedance ZM

iωC0

ρMdM(ω2 −2iαω −ω2
0 )

=− 1
ZM

(2.109)

C0 =

∫
Smem

dS u2
01

(
∫
Smem

dS u01)
2
,

where u01 is the first membrane mode (2.30). The cavity ”plus“ coefficient Γ+ (2.98), on the
other hand, is equivalent to the impedance ZV in the f → 0 limit, while the cavity ”minus“
coefficient vanishes, i.e.,

lim
f→0

Γ+ =−ZV and lim
f→0

Γ− = 0 (2.110)

The ICE model Γ± coefficients are, effectively, corrections to the impedances that account
for the spatial variation of pressure inside the cavity.

2.3.2 Mechanical equivalent

A mechanical analog to the ICE model can be similarly constructed by using assumptions
similar to those for the electrical equivalent and representing the system by a modified
version of a well-known problem, i.e., the coupled vibration of two rigid masses coupled by a
massless spring [77, p. 35]. Firstly, the vibrating eardrums can be replaced by rigid objects of
mass mp, denoted by P1/2, attached to an infinitely heavy wall by means of springs of stiffness
κp and dashpots with damping coefficient b. As in the circuit analog, we neglect the spatial
variation of pressure between the eardrums and represent the effect of the cavity pressure by
means of a third spring of stiffness κcav coupling the rigid masses. The mechanical analog to
ICE is illustrated in Fig. 2.15.

The masses are subjected to time varying forces F1/2(t), such that their equations of
motions are given by,

mpü1/2 = F1/2(t)−κpu1/2 −bu̇1/2 −κcav (u1 +u2) , (2.111)

where u1/2 is the displacement of the respective masses and the overhead dot represents the
derivative with respect to time. For periodic driving forces differing by a small phase Φ of
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Fig. 2.15 The equivalent mechanical model for ICE described using a coupled mass-spring
system. Two rigid objects P1 and P2 (red) of mass mp representing the eardrums and the
attached middle-ear components are coupled by a spring of stiffness κcav, which represents
the air inside the interaural cavity. Each mass is also attached to a wall by means of a
spring of stiffness κp and a dashpot with a damping coefficient b corresponding to the
eardrum fundamental frequency and damping respectively. The masses P1/2 are driven by
time-dependent forces F1(t) & F2(t) representing the sound pressure.

the form

F1(t) = Fei(ωt−Φ/2), F2(t) = Fei(ωt+Φ/2) , (2.112)

the equations of motion can be decoupled by applying the sum-and-difference method used
in Sec. 2.2.3 to give

mpü+ = (F2(t)+F1(t))−κpu+−bu̇+−2κcavu+ (2.113)

mpü− = (F2(t)−F1(t))−κpu−−bu̇− . (2.114)

The steady state displacements uss can be readily obtained from the above equations to give

uss
1/2(t) =

cos ωt
−mpω2 + ibω +κp +2κcav︸ ︷︷ ︸

uss
+

∓ isin ωt
−mpω2 + ibω +κp︸ ︷︷ ︸

uss
−

. (2.115)

Moreover, by requiring the initial (at time t = 0) displacement and velocity of the masses
to be zero, the transient displacements utr can also be calculated. To do so, we follow the
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methods used in Sec. 2.2.1 and solve Eqs. (2.113)&(2.114) independently to give

utr
1/2(t) =

[
cosω

+
0 t +αtsinc ω

+
0 t

−mpω2 + ibω +κp +2κcav︸ ︷︷ ︸
utr
+

∓
isinω

−
0 t

−mpω2 + ibω +κp︸ ︷︷ ︸
utr
−

]
F e−bt/2mp , (2.116)

such that, u1/2(t) = uss
1/2(t)+utr

1/2(t). Where we have defined

ω
+
0 =

√
−(b/2mp)2 +(2κcav +κp)/mp, ω

−
0 =

√
−(b/2mp)2 +κp/mp (2.117)

as the (angular) resonance frequencies of the ”plus“ and ”minus“ components, respectively.
To summarize, in the mechanical analog to ICE, the flexible tympanic membrane is

replaced by a rigid mass with a natural frequency and damping provided by an externally
attached spring and dashpot, respectively. The parameters for the mechanical equivalent are
related to those of the ICE model as (cf. Table 2.1),

mp = ρMdMStymp, κM = mpω
2
0 , b = 2mpα , (2.118)

κcav =
ρc2S2

cyl

Vcav
. (2.119)

Where, as usual, Scyl = πa2
cylL is the radius of the cylindrical interaural cavity. Thus, as in the

circuit equivalent, the mechanical model is an approximation of the full ICE-model which
neglects the contribution of higher membrane modes, as well as the variation of pressure
within the interaural cavity.

Although the simplified models are analytically tractable, it should be stressed that the
ICE model is a more accurate description of the physics of hearing. In comparison to the
lumped element and the spring-dashpot method discussed in this section, the ICE model
using a cylindrical cavity coupling the eardrums has three main advantages, which are,

• by accounting for the effect of asymmetrically loaded extracolumella, we were able to
describe the membrane motion in spatial detail,

• as the model accounts for the spatial variation of pressure within the interaural cavity,
it is applicable over a wider frequency range and,

• the source of the external inputs and their nature are not obscured as they are in the
simplified models.
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2.4 Conclusion

In the present chapter, we have laid the mathematical groundwork for internally coupled
ears or, the ICE model. In Sec. 2.1.1, we described the eardrum which serves as the primary
receiver of external stimulus in ICE. The presence of a transducer of membrane vibrations in
the form of an asymmetrically attached extracolumella was accounted for by requiring the
ICE eardrum to have a sectorial shape; see Fig. 2.3b. The extracolumella was represented
by a non-moving sector of angle 2β . In Sec. 2.2.1, we derived general expressions for
the pressure driven motion of the eardrum, by treating its vibrating part as a linear elastic
membrane clamped at its circular boundary and at its point of contact with the extracolumella.
Through the use of a sectorial membrane, we also accounted for the asymmetry in its vibration,
resulting in markedly different vibration patterns; compare Figs. 2.10 and 2.12. The interaural
cavity was modeled in Sec. 2.1.2 as a cylindrical canal connecting the eardrums, with its
length equal to the interaural distance L, i.e. the distance between the eardrums in a realistic
animal. The cross section or, equivalently, the radius of the cylinder was calculated (2.1)
from L and by fixing the volume of the cavity Vcav. The radius thus determined was different
from the cylinder radius in a previous treatment of ice [50], where it was taken to be equal
to the eardrum radius, resulting in a much smaller cavity volume (2.1); compare Figs. 2.6a
and 2.6b. Analytical expressions for the pressure were derived in Sec. 2.2.2 by solving the
acoustic wave equation inside the cavity. The different nature of the boundary conditions
at the circular wall of the cylinder, i.e. Neumann as opposed to Dirichlet for the eardrum,
resulted in different modes for the cylindrical cavity; cf. Eqs. (2.60)&(2.61). The vibration
of coupled membranes and, consequently, the boundary condition for the pressure at the
tympanic membrane interface was dealt with in Sec. 2.2.3. The smallness of the tympanic
membrane vibrations relative to the length of the interaural cavity was then exploited to
motivate the piston-approximation, where the pressure boundary condition, or, equivalently,
the eardrum motion, was approximated by pistons moving with the average velocity of
the eardrums. The directional sound inputs defined in Sec. 2.1.3 were then used to derive
expressions (see Eqs. (2.99) and (2.100)) for the eardrum vibration driven by an external
and internal pressure. We concluded the chapter in Sec. 2.3 by presenting two simplified
models for ICE, namely, a lumped circuit model (see Fig. 2.14) with electrical components
corresponding to the cavity, eardrum and pressure, and a mechanical model (see Fig. 2.15)
which replaced the components with masses, springs and dashpots. The quantities derived in
this chapter will be used in the next chapter to analyze the directional and frequency behavior
of our system, including the resulting cues for sound localization.



Chapter 3

Hearing and Sound Localization

In the previous chapter, we derived a consistent geometrical model for internally coupled ears.
In particular, we now have analytical expressions for the membrane vibration amplitudes u0

and uL in terms of the membrane parameters as a function of direction and frequency (2.100).
Furthermore, the derived expressions (2.100) will be used to compare the ICE model with
experimental results. For the most part, we will be focusing on the Tokay gecko (Gecko) and
the water monitor (Varanus). Using parameters based on standard anatomical data (see Table
3.1) and an extracolumellar angle β=π/30(= 6◦), we get a membrane-vibration velocity of
cM = 5.4m/s for Tokay and cM = 2.0m/s for Varanus. The data for Tokay are based on values
from Christensen-Dalsgaard and Manley [25, 26], while those for Varanus are based on data
from Bruce Young and can be found in [12]&[48], where the results of the present chapter
have previously appeared. This difference in cM or, equivalently the fundamental frequency
f0 also results in considerable differences in the nature of their hearing cues. Nevertheless,
the ICE model adequately explains the generation of hearing cues in both species. In our
subsequent computations, we take the speed of sound in air to be c = 343 ms−1 and the
density of air as ρ = 1.206 kgm−3.

Table 3.1 System parameters

Parameter Gecko Varanus
Interaural distance L 22mm 16 mm
Eardrum radius atymp 2.6mm 2.6 mm
Membrane density ρM 1mg/mm3 1.2mg/mm3

Eardrum thickness dM 10 µm 30 µm
Cavity volume Vcav 3.5ml 2.0ml
Cylinder radius acav 6.6mm 6.3mm

Fundamental frequency f0 1.05kHz 0.4kHz
Damping coefficient α ≈ 2611 s−1 ≈ 350 s−1
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We begin the chapter by analyzing the frequency response of an individual eardrum in
the absence of an interaural coupling or, effectively, driven only by an external pressure. In
particular, we focus on the membrane frequency response Λ in order to motivate its essential
role in our model. We will then proceed to the vibration of coupled membranes, where
we will also directly compare calculated values with experimentally determined ones. We
will then focus on the directional information available to the animal from the vibration
amplitudes by means of internal time differences (iTD) and internal level differences (iLD),
defined as the time (or, equivalently, phase) and amplitude differences between tympanic
membrane vibrations, respectively. These will be contrasted with the interaural time and level
differences, which correspond to the time and amplitude differences between the external
sound inputs to the ears. Thus, by assigning numerical values to the the material properties
of the membrane, as well as to the geometry of the interaural cavity, we can analyze the
behavior of the hearing cues in greater detail.

Independent eardrum response

Before we compare our model with experimental data, we take a look at the frequency
dependence of a single membrane’s independent vibrations. In other words, we analyze the
frequency behavior of the eardrum by means of the eardrum frequency response Λ (2.97),
for the fictitious case where it is only subject to an external sound pressure on one side. The
frequency response of the real and imaginary parts of Λ are plotted in Figs. 3.1a and 3.1b. In
both cases the real part ℜ{Λtot} has a low-pass response, i.e., it is more or less frequency
independent up to the membrane eigenfrequency f0 and sharply drops to zero afterwards.
The imaginary part ℑ{Λtot}, on the other hand, has a band-pass response where it peaks close
to, but beyond f = f0 and falls off thereafter. The difference in the frequency behavior of Λ in
both cases is due to the lower damping of the Varanus eardrum. A higher damping coefficient
α results in a flatter frequency dependence of the real part ℜ{Λtot} and a sharper, narrower
peak in the imaginary part ℑ{Λtot}. The properties of ℜ{Λtot} and ℑ{Λtot} will be used
to estimate membrane parameters in Sec. 3.6. Moreover, as we will see in the subsequent
sections, the behavior of the hearing cues (time and level differences) mirrors that of the
membrane response.

3.1 Interaural transmission gain

In earlier literature on hearing in animals with internally coupled ears [2, 26], the effect of
interaural coupling on eardrum vibration was quantified by means of the so-called interaural



3.1 Interaural transmission gain 55

(a) Gecko (b) Varanus

Fig. 3.1 Real (ℜ) and imaginary (ℑ) part of the (integral) membrane-frequency response
(2.97) for the ICE Model description of the Tokay gecko (left) and Varanus (right). In both
cases, the response is dominated by the fundamental frequency f0 of the tympanic membrane.
The presence of local maxima in the response of Varanus is a result of its comparatively low
membrane damping. The higher damping coefficient α for the gecko eardrum results in a
flatter real part ℜ{Λtot}, while the lower damping in Varanus results in a sharper imaginary
part ℑ{Λtot}. The frequency at which the response becomes purely imaginary is denoted by
f∗ and will be discussed in more detail in Section 3.4. Compare with Figs. 3.6a and 3.6b.

transmission gain. This is defined as the response ratio of eardrum vibrations to unilateral
local stimulation. In other words, the ratio of the responses of both eardrums to an external
stimulus presented only to a single eardrum is calculated. Such a stimulus is achieved
by using, for example, a closely placed headphone at one ear, such that the opposite ear
effectively receives no external input. The contralateral eardrum is therefore driven solely by
the internal pressure set up by the vibrations of the ipsilateral one. A better understanding
of ICE could nevertheless be gained by instead studying the responses of both eardrums to
simultaneous and, therefore, realistic inputs separated by a small direction-dependent time
difference.

Without loss of generality, we can mathematically derive the transmission gain GT by
setting pex

0 = 0 and pex
L = pexp(iωt) in (2.100). The resulting ipsi- and contralateral eardrum

vibration amplitudes are then used to calculate GT ,

u0/L(r,φ) =
1
2

(
pexp(iωt)
1+ΛtotΓ+

∓ pexp(iωt)
1+ΛtotΓ−

)
Λ(r,φ) .

⇒ G−1
T =

(
u0

uL

)−1

= coskL+
Vcav sinkL
ρc2ΛtotkL

. (3.1)

The mathematical expressions for Γ± (2.98) allow us to reach the considerably simplified
formula of Eq. (3.1).



56 Hearing and Sound Localization

(a) Hemidactylus

(b) Tokay

Fig. 3.2 Top: Experimental and calculated transmission gain for Hemidactylus (common
house gecko). The transmission gain GT is defined as the response ratio of contra- and ipsi-
lateral eardrum vibrations under unilateral stimulation; see (3.1). The black lines correspond
to values experimentally determined by Christensen-Dalsgaard and Manley [26] and the
smooth solid (red) lines to values calculated to the ICE model. Left: Amplitude in decibels
and Right: phase in radians. Bottom: Calculated values of transmission gain for Tokay. The
values were experimentally measured by Christensen-Dalsgaard et al. [2] for five lightly
anesthetized specimens. All the presented experimental data have been gathered through
laser Doppler vibrometry measurements on the membrane surface.

In Figs. 3.2a and 3.2b the frequency dependence the phase and amplitude of the trans-
mission gain calculated through ICE have been plotted together with the experimentally
determined values for (a) Hemidactylus frenatus, the common house gecko, and (b) the Tokay
gecko. There is a fair agreement between calculated and experimental values. Moreover,
the results of our model also agree with the results for Hemidactylus from the previous
mathematical treatment of ICE [49, 50].

The minor discrepancy in Fig. Fig. 3.2b for Tokay can be explained using the fact
that there was a large size and hence weight variation (24–70 g) among the experimental
specimens [2]. Variations in size lead to similar variations in the membrane fundamental
frequency and can lead to considerable changes in the frequency behavior of the system. In
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the following sections we will see examples of this variation across two species when we
compare the frequency behavior for an adult gecko with that of a juvenile varanus.

3.2 Membrane vibration velocity

In order to compare our model with experimental results, we define the average vibration
velocity in dB re mms−1Pa−1, meaning the decibel velocity with respect to 1 mm/s for
an input pressure amplitude of 1 Pa as vdB = 20 log10|u̇ave

0/L|. Figs. 3.3a & 3.3b show the
respective frequency dependence of the membrane vibrations for ipsilateral θ = 90◦ and
contralateral θ =−90◦ stimuli for both Gecko and Varanus.
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Fig. 3.3 Top: Experimental and calculated vdB for ipsi- (θ = 90◦) and contralateral (θ =
−90◦) stimuli for Gecko. Bottom: Experimental and calculated membrane amplitude for
Varanus at θ =±90◦. The vertical dashed lines in the lower plots correspond to the higher
membrane modes for the Varanus. We thus see that not only at f0 but also at higher membrane
resonances does a less taut membrane with low α give peaks; compare Fig. 3.7b. The first
resonant peak (or trough) allows a straightforward mathematical specification of the first
extremum (max/min) for the iLD or equivalently the tympanic eigenfrequency f0 in the alive
animal. All experimental data presented were gathered through laser Doppler vibrometry.
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In the case of Gecko, the contralateral response has a minimum near f0, whereas the
spectral response of Varanus shows multiple peaks corresponding to higher membrane eigen-
frequencies. The occurrence of multiple peaks instead of a single one in the biophysically
relevant range of up to 2 kHz is due to the fact that the eardrum of Varanus is very un-
derdamped [much smaller α; cf. (2.14)], resulting in higher modes being less suppressed.
Nevertheless, the present ICE model explains the frequency behavior in both cases and allows
for a determination of the tympanic fundamental frequency in the alive animal.
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Fig. 3.4 Polar plots for the membrane vibration velocity in mm s−1for different frequencies
for Tokay (left) and Varanus (right). Positive angles correspond to ipsilateral directions
and negative angles to contralateral ones. The directionality of the system is immediately
apparent from the way in which ipsilateral directions result in higher vibration amplitudes,
even though the external inputs to the ears have the same amplitude. The above plots have
been generated using the expression given in (2.100) using the parameters from Table 3.1.
The input sound pressures have been assumed to have an amplitude of 60 dB SPL.

Figures 3.4a and 3.4b show the variation of the membrane-vibration velocity with di-
rection for different frequencies in Tokay and Varanus, respectively. For both animals, the
ipsilateral ear is on the right-hand side and corresponds to positive values for the angle in
degrees with respect to the rostral-caudal axis. In both cases, the eardrum has a markedly
higher vibration velocity for sounds coming from an ipsilateral than from a contralateral
direction.

3.2.1 Membrane-vibration pattern

The measured vibration patterns [51] are shown on the left in Fig. 3.5a. The amplitudes
were measured for eight locations on the membrane to find the pattern seen in the figure. At
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around 4kHz, the vibration pattern distinctly develops two maxima – something that would
not happen to a centrally loaded tympanum except at frequencies well beyond the hearing
range of Geckos (200 Hz to 3 kHz).

(a) Experiment (b) Calculated

Fig. 3.5 Left: Experimental membrane vibration patterns of the Tokay gecko dependent on
sound frequency varying from .25 kHz to 2 kHz, with the corresponding frequencies shown
above the membranes [51]. Right: Vibration pattern of one of the membranes in the ICE
model for an ipsilateral stimulus. In both cases we see a similar complex vibrational pattern
for the membranes, which becomes increasingly circularly asymmetric with increasing
frequency.

In order to compare our ICE model with the experimental results, we now plot the
response of one of the membranes to an ipsilateral stimulus. This is calculated by using
(2.100) and is illustrated in Figs. 3.5a and 3.5b (right) for the same frequency range as that
of the experimental data.

The asymmetric nature of our membrane vibration pattern is a result of the chosen geom-
etry. Mathematically, it is a result of the fact that a uniform pressure on the surface of a full
circular membrane only couples to the circularly symmetric J0 modes. The extracolumella,
however, breaks this symmetry and all the resulting eigenmodes couple with the pressure,
which offers a clear contrast to Fig. 2.11. As qualitative and semi-quantitative reproduction,
the present model is very strong but for a full quantitative analysis we would need to take
into account both the microstructure of the tympanum and the motion of the extracolumella
and has been dealt with elsewhere [59].
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3.3 Internal time and level differences

As we have seen in the previous section, the membrane vibration amplitudes are directional
by themselves. However, we will now show that the difference between the vibrations
between the left and right tympanum is more sensitive to the source direction θ . In the
following, we focus on three universal aspects of ICE:

1. the internal time difference (iTD), which for frequencies < f0 greatly exceeds the
interaural time difference (ITD) and forms a plateau from f = 0 onwards;

2. the internal level difference (iLD), which exhibits a pronounced maximum once the
iTD has strongly decreased; and

3. the fundamental frequency f0 of the tympanum segregating the iTD and iLD domain.

Both iTD and iLD also depend on the sound-source direction. Moreover, the directionality
of the hearing cues experienced by the animal directly reflect the nature of the stimulus.
Finally, it should be constantly borne in mind that what the animal actually “hears” is not the
interaural but the internal stimulus and the two may greatly differ; Sections 1.1.1 and 1.2.

It has previously [78] been shown that lizards have two distinct populations of cochlear
hair cells – one that responds to amplitude cues and the other to temporal cues. These two
hair-cell populations both project bilaterally, i.e., they innervate neurons in both the left and
right hemispheres, thus imparting a neuronal template to contrast both the amplitude and
temporal patterns [79] arising from the eardrum vibrations. It is well known that certain
neurons are sensitive to time differences between eardrum vibrations [5, 2, 46]. We refer to
this metric as the internal Time Difference (iTD), in contrast to the Interaural Time Difference
(ITD) as measured from the external inputs to the ears. The internal time and level differences
are the unique outcome of the interaction between the outside signal and the internal coupling
arising from the air-filled interaural cavity; cf. Figs. 1.6a to 1.6c. Furthermore, we follow
Jørgensen et al. [31] in postulating an algorithm for determining amplitude (level) differences.
More specifically, we assume that this is done by a neuronal subtraction of logarithmic
vibration amplitudes of the two membranes. The biological physics is that of hair-cell
response being governed by the (Weber-Fechner) logarithm of the amplitude whereas the
“subtraction” is that of excitation minus inhibition (E/I), which was briefly discussed in
Section 1.1.1. We refer to this subtraction as the internal Level Difference (iLD) and contrast
it with the Interaural Level Difference (ILD), i.e., the logarithmic amplitude difference
between the external sound inputs to both ears.
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3.3.1 Internal time difference - iTD

The internal Time Difference (iTD) corresponds to the actual time difference between left
and right membrane vibrations as experienced by the animal and is defined as

iTD = Arg(u̇ave
L /u̇ave

0 )/ω = Arg(uave
L /uave

0 )/ω , (3.2)

uave
L /uave

0 = (1+B)/(1−B) , (3.3)

where
B = i [(1+ΛtotΓ+)/(1+ΛtotΓ−)] tan(k∆/2) (3.4)

is direction-dependent through ∆ = Lsinθ (2.3). The above expressions can be easily derived
by using the expressions for uave

0 and uave
L from Eq. (2.100),

uave
L

uave
0

=
p+(1+ΛtotΓ−)+ p−(1+ΛtotΓ+)

p+(1+ΛtotΓ−)− p−(1+ΛtotΓ+)

=
1+ p−

p+
(1+ΛtotΓ+)/(1+ΛtotΓ−)

1− p−
p+
(1+ΛtotΓ+)/(1+ΛtotΓ−)

=
1+ i tan(k∆/2)(1+ΛtotΓ+)/(1+ΛtotΓ−)

1− i tan(k∆/2)(1+ΛtotΓ+)/(1+ΛtotΓ−)
. (3.5)

The last step follows from the fact that

p+ = pex
L + pex

0 = p(exp(ik∆/2)+ exp(−ik∆/2))

= 2pcosk∆/2 ,

p− = pex
L − pex

0 = p(exp(ik∆/2)− exp(−ik∆/2))

= 2ipsink∆/2 .

In contrast to the iTD, the interaural time difference (ITD), calculated from a given sound
input (2.3) is

ITD = Arg(pex
0 /pex

L )/ω = Lsinθ/c , (3.6)

viz., the time difference between the arrival of sound from a given source at both ears;
cf. Section 1.1.1. The ITD is independent of frequency and, for the parameters defined
in Table 3.1, it is ≈ 64 µs for θ = ±90◦ for Gecko and ≈ 45 µs for a young Varanus.
Figures 3.6a and 3.6b show the frequency and direction dependence of the internal time
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(a) Gecko

(b) Varanus

Fig. 3.6 Frequency and direction dependence of the iTDs for Gecko (top) and Varanus
(bottom). (a) For Gecko, the iTDs exhibit a plateau of iTD ≈ 3.5 ITD, up to about f = f0
and sharply fall thereafter. As indicated, the plateau is uniform, irrespective of the direction
θ . Due to the plateau, the iTDs can thus be effective low-frequency cues. (b) For Varanus,
the iTDs slowly increase up to f0 and then decrease; the discontinuity is an artefact of 2π

which corresponds to a loss of directional information in the iTD. The young animal can
therefore only exploit a restricted low-frequency range of iTDs (up to approximately 200 Hz),
nevertheless illustrating that the time dilation factor iTD/ITD can differ from 3 appreciably.

difference (iTD) for Gecko and Varanus, respectively. Experimentally, by measuring the
phase difference between the eardrum vibrations, one in fact measures the iTD.

In the case of Gecko, the iTDs have a low-pass response, i.e., they are more or less
constant up to a certain frequency and drop sharply thereafter, with iTD/ITD, = 1 at f ≈ f0.
From a neuronal-processing point of view, this is convenient as it mirrors the behavior of
the ITDs, but strongly increased by a factor of about 3.5 for 0 ≤ f ≲ 2

3 f0 in Gecko and an
astounding 15 for 0 ≤ f ≲ 0.2 f0 in Varanus; cf. Figs. 3.6a and 3.6b (left). The number 3.5
depends on the specific geometry of the internal cavity as found in many lizards, such as
Gecko, but it is not unique. An increase in the iTD by a factor of 3 has also been observed
in some birds [80]. Figure 3.6b illustrates its variation for Varanus. We refer to the ratio of
internal and interaural time difference as the time dilation factor, or TDF for short.
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3.3.2 Internal level difference - iLD

For the input (2.3), the internal Level Difference (iLD) is defined as the logarithmic difference
between the left and right (0/L) membrane amplitudes of (2.40), i.e.,

iLD =20Log10|uave
L /uave

0 |= 20Log10|u̇ave
L /u̇ave

0 | , (3.7)

(a) Gecko

(b) Varanus

Fig. 3.7 Calculated frequency and direction dependence of the iLDs for (a) Gecko (top)
and (b) Varanus (bottom). The location of the eigenfrequencies has been indicated by
dashed arrows. For Gecko, the iLDs peak close to f = f0 and decrease slowly thereafter.
They can therefore serve both as effective high-frequency hearing cues and as an efficient
means of determining f0 in alive animals. Clearly, the higher tympanic eigenmodes play no
role for tokay. For juvenile Varanus with small α and f0 ≈ 500 Hz, however, we see the
corresponding peaks of some (at least five) higher membrane eigenmodes.

As the left and right inputs (2.3) effectively have the same amplitude, the interaural level
difference (ILD) is identically zero, i.e.,

ILD = 20Log10|pex
L /pex

0 |= 0 . (3.8)
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For Gecko, the iLD has a band-pass like behavior. It is zero for both very low and high
frequencies and peaks close to the membrane eigenfrequency f0; cf. Fig. 3.7a. The iLDs
steeply increase across θ = 0◦ and attain a maximum/minimum at θ =±90◦. Under normal
circumstances, as in Gecko, the functional dependence is given by a sine. For Varanus,
Fig. 3.7b shows an iLD spectrum with multiple peaks near membrane resonances (i.e.,
eigenfrequencies), corresponding to a much lower damping (smaller α). Moreover, at the
fundamental membrane eigenfrequency f0, the directional response peaks at θ =±30◦. A
possible explanation of this deviating behavior is that the experiments were performed on
juvenile monitor lizards, suggesting that increased membrane damping and cavity volume in
adults should give similar results to those shown for the adult Gecko.

3.3.3 iTD/iLD transition

From the low-pass behavior of the iTDs and the high-pass behavior of the iLDs we can infer
that internal time differences may well work as effective cues at lower frequencies, whereas
internal level differences are most effective at higher frequencies. Unlike larger animals
where such a transition would rely on the fact that higher-frequency sound waves would have
a “shadow” on the contralateral eardrum due to diffraction [61, p .154] and Section 1.1.1,
the iTDs and iLDs in ICE are generated solely as a consequence of the internal coupling
between the eardrums.

frequency (kHz)

iT
D

/I
T

D iL
D

Fig. 3.8 Transition between the iTD and iLD frequency regimes for directions θ ̸= 0◦. At
lower frequencies iTDs work better as directional cues, e.g., with iTD/ITD ≈ 3 for adult
lizards, while at higher frequencies the iLDs become pronounced, even though for most
lizards the external ILD ≈ 0. The transition between the two kinds of cues is governed by
the eardrum’s fundamental eigenfrequency f0.
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In animals with ICE, the transition between the different frequency regimes is governed
by the fundamental frequency of the tympanic membrane f0; see Fig. 3.8. In other words,
instead of a segregation of the frequency regimes of hearing cues dictated by the size of the
head (see Figs. 1.4a and 1.4b), the transition between the use of hearing cues is dictated
by the properties of the eardrum. Despite the lack of an amplitude difference between the
inputs, the system uses small phase differences to generate frequency-dependent time (or
equivalently phase) and amplitude differences between the eardrums by using the internal
coupling and the mechanics of the membrane.

3.4 Role of the membrane-response function Λ

A parallel between the frequency response of the internal time and level differences (iTD and
iLD), and the membrane frequency response Λ(r,φ) (2.97) should be immediately apparent;
compare Figs.3.1a,3.1b and Figs. 3.6a, 3.6b, 3.7a and 3.7b. This similarity results from the
way in which we have defined the ratio of the complex vibration amplitudes (3.3), (3.4).
Furthermore, it explains the role of the membrane eigenfrequency as well as the damping α

in the generation of interaural cues. Put simply, the flat response of the iTD as well as the
magnitude and position of the iLD peak depend on f0 and α . While a low value of α will
result in a strong iLD close to f0, the TDF (iTD/ITD) will vary strongly with frequency up to
f0, as in the case of the young Varanus. Using our definition of B (3.3), the ratio between the
membrane vibration amplitudes can therefore be rewritten as,

uave
L /uave

0 =
exp(ik∆/2)+Λtot(Γ− cos k∆

2 + iΓ+ sin k∆

2 )

exp(−ik∆/2)+Λtot(Γ− cos k∆

2 − iΓ+ sin k∆

2 )
.

We now focus on the case where the sound source is at θ = π/2(= 90◦) and, subsequently,
∆ = L. This means that the sound source is on the same side as the L ear; cf. Fig. 2.7. The
ratio between the membrane vibrations can therefore be explicitly written down

uave
L /uave

0 =
exp(ikL/2)+ Λ̃tot(sinkL/2− icoskL/2)

exp(−ikL/2)+ Λ̃tot(sinkL/2+ icoskL/2)
,

=
exp(ikL/2)− iΛ̃tot exp(ikL/2)

exp(−ikL/2)+ iΛ̃totexp(−ikL/2)
,

= exp(ikL)
1− iΛ̃tot

1+ iΛ̃tot
. (3.9)
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We have used the definitions of Γ± from (2.98) and absorbed the factor ρc2kL/Vcav into Λtot

by defining

Λ̃tot = ρc2kLΛtot/Vcav . (3.10)

From Figs. 3.1a & 3.1b we can see that there is a frequency f∗ where the membrane response
becomes purely imaginary. Let us assume that at this point Λ̃tot = iη where η is a positive
real number which carries information about both the tympanic membrane as well as the
internal cavity. The ratio (3.9) reduces to

uave
L /uave

0 = exp(ikL)
1+η

1−η
. (3.11)

The right-hand side of the above equation is a phase factor multiplied by a real number.
The argument of the quantity kL is equal to the phase difference between the inputs to
the eardrums and, due to our definition of iTD (3.2), the resultant internal time difference
between the ears equals the interaural time difference. The corresponding values for f∗ can
be calculated numerically and are found to be around 1097 Hz for Gecko and around 402 Hz
for Varanus.

For directions other than θ = 90◦, a similar result can be obtained, but the exact value
of f∗ in this case would also depend on the cavity volume. It is only when the source is
fully ipsilateral/contralateral to an ear, that f∗ can be determined solely from the membrane
parameters.

3.5 Volume dependence

In the previous chapter, we defined the interaural cavity of the ICE Model in such a way
that the cavity volume Vcav can be treated as an independent parameter; see Sec. 2.1.2.
Effectively, Vcav determines the strength of the internal coupling and is convenient to use
in a mathematical analysis. In Figs. 3.9a & 3.9b, we see the frequency dependence of the
iTDs and iLDs (at source direction θ = 90◦) for different cavity volumes while keeping the
other system parameters fixed. The lower limit of possible cavity volumes for a cylindrical
interaural cavity is equal to that of a cylinder with a radius equal to that of the membrane,
i.e., acyl ≥ atymp, leading to a cross-sectional area of πa2

tympL; cf. Figs. 2.6a and 2.6b
and Eq. (2.2).

The volume dependence arises from the coupling parameters Γ± defined in (2.98) which
decrease with the volume as 1/Vcav. This means that as we let the volume go to infinity while
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(a) Gecko

(b) Varanus

Fig. 3.9 iTD and iLD frequency response for different cavity volumes for Gecko (top) and
Varanus (bottom). The sound source direction was chosen to be θ = 90◦. As we increase
Vcav, the iLDs become smaller and less sharp around f0. The iTDs on the other hand increase
with decreasing volume, but also result in a phase ambiguity of 2π close to f0. At an optimal
volume of ≈ 2.2 cm3 for the Tokay gecko and 6 cm3 for Varanus, we have an optimal
frequency response for both hearing cues.

keeping the interaural distance L constant (acyl → ∞), the eardrums vibrate as uncoupled
membranes driven by the sound pressures p0/L

u0/L(r,φ ; t) = Λ(r,φ)p0/L . (3.12)

Λ(r,φ) essentially gives us the frequency response of the membrane amplitude at a given
point (r,φ) on its surface.

For Gekko as well as for Varanus, the iLD goes to zero for small volumes. The iTD,
on the other hand, appears to increase. However, it loses its plateau which is important for
auditory information processing for low frequencies using time difference maps of the kind
described in Section 1.1.1, and develops a phase ambiguity of 2π close to f0. This means
that the eardrums vibrate with a phase difference of π and can no longer be used to localize
sound sources. Thus, both very small and very large volumes effectively break the coupling
between the membranes. For the Tokay, we find an optimal response, i.e., flat amplified iTDs
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at low frequencies and strong iLDs at higher frequencies for Vcav ≈ 2.2 cc. This could be due
to the fact that the assumed volume of 3.5 cm3 (cf. Table 3.1) is for an “empty” skull. A live
specimen would have a tongue and other organs inside the pharyngeal and mouth cavities
which would reduce the effective volume Vcav.

Rather more interesting is the fact that, for larger cavity volumes (≈ 6 cc), the frequency
response of the iLDs and iTDs of Varanus become similar to that of the Gekko; cf. Fig.
3.9b, solid (red) lines. The local iLD maxima corresponding to higher membrane modes
are suppressed and the iTD has a fairly smooth and flat response at lower frequencies. This
implies that the hearing system of an adult Varanus would me more effective at localizing
sound sources, than a juvenile lizard over a larger frequency range.

3.5.1 Critical volume

In Figs. 3.9a & 3.9b we see that for a certain value of Vcav a singularity appears for the iLD
close to f0 for a source direction θ = 90◦. A comprehension of what causes this singularity
to emerge is essential to a complete understanding of ICE. The physical explanation for this
apparent singularity is that at the critical volume the internal pressure at the contralateral
membrane cancels the external pressure at the frequency of maximal iLD response. As
a result, the contralateral membrane vibration velocity, or equivalently the displacement,
vanishes entirely, i.e. u0(r,φ ; t) = 0. Hence by definition the iLD is bound to diverge.

This result can be derived directly from the expression for the membrane displacement
(2.5). Rewriting u0 explicitly in terms of input pressure amplitude and direction gives us

u0(r,φ) =
1
2

(
2pcosk∆/2
1+ΛtotΓ+

− 2ipsink∆/2
1+ΛtotΓ−

)
Λ(r,φ) .

For a sound source closer to the L ear, the opposite 0 ear is on the contralateral side; see Fig.
2.7. We thus have ∆ = Lsinθ = L for θ = π/2 (= 90◦). The displacement can be rewritten
as

u0(r,φ) =
(

pcoskL/2
1+ΛtotΓ+

− ipsinkL/2
1+ΛtotΓ−

)
Λ(r,φ)

where the 1/2 has been absorbed into the brackets. As shown in Section 3.4, the frequency
where iT D = IT D, viz., f∗, is achieved when the membrane frequency response Λ (2.6)
becomes purely imaginary. As derived in (3.10) let us suppose that Λ̃tot( f = f∗) = iη , where
η is a real number and consider the case where Vcav = ρc2kLη so that the factor ρc2kLη

Vcav
in

the denominators beside the tan and cos becomes equal to 1. Using the definitions of Γ±
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(2.98) at f = f∗ we find

u0(r,φ) =
(

pcoskL/2
1− icotkL/2

− ipsinkL/2
1+ i tankL/2

)
Λ(r,φ) ,

=

(
ipsinkL/2

1+ i tankL/2
− ipsinkL/2

1+ i tankL/2

)
Λ(r,φ) ,

= 0 .

In the second equation we have multiplied and divided the first fraction by i tankL/2. It is
thus clear that for this cavity volume, the membrane displacement on the contralateral side
identically vanishes resulting in a singularity of the iLD, actually a trivial one. Nevertheless
we can safely use the term “critical” to denote this cavity volume Vcrit = ρc2kLη .

For the animal, Vcrit is not an optimal cavity volume to fully exploit interaural coupling.
This is mainly due to the fact that the iTD response starts to show a phase ambiguity on either
side of f∗; cf. Fig. 3.9a (right). The animal would be unable to distinguish between sources
on the left and the right and would therefore be better off by operating with a cavity volume
slightly above Vcrit, where a strong iLD is coupled with an unambiguous iTD response.

This is also a possible explanation of the differences observed in the generated hearing
cues for the juvenile Varanus when we compare it with Gecko. Given its other system
parameters, i.e., membrane eigenfrequency, damping, interaural separation, the volume of
2.0 cc in Varanus is well below its Vcrit of 6 cc.

3.6 Estimating the eardrum’s fundamental frequency and
damping coefficient

The fundamental frequency f0 and the damping coefficient α of the eardrum are important
quantities to auditory performance. The former to partitioning the auditory landscape, the
latter to determining the duration of transient response of the tympanum. In order to directly
measure the material properties of the eardrum, one would, in general need to excise the
tissue. The Young’s modulus of the Varanus eardrum has been measured using such a
procedure [59]. The material properties, including viscoelastic damping, were also measured
using similar methods for a dissected duck ear [81]. In contrast, we will now propose an
experimental and numerical procedure to determine both f0 and α from the results of the
present chapter, thereby only requiring vibrometry data from a live animal.

To determine both, we need two quantities from experimentally measured tympanic
vibration and hearing cues. As we see from Figs. 3.6a and 3.6b & Figs. 3.7a and 3.7b,
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the maximum of the iLD as well as the frequency f∗ at which iTD=iLD, for sound-source
directions θ =±90◦, the internal iTD equals the external ITD are experimentally accessible
and near f0. We can analytically estimate the location of the iLD maximum and determine
f∗ in terms of f0 by using the properties of the membrane frequency response Λ or, more
specifically, Λ’s integral over the membrane surface Λtot; cf. (2.97). An experimental recipe
follows at the end of this section. Λtot has been defined as

Λtot =
∫
Smem

dSΛ(r,φ) =
∞

∑
m,n

Kmn/Ωmn (3.13)

where

Kmn =
(
∫

umn)
2

ρMdM
∫

u2
mn

, Ωmn = (ω2 −ω
2
mn −2iαω) . (3.14)

We can now split Λtot into its real and imaginary parts,

ℜ{Λtot}=
∞

∑
m,n

Kmn(ω
2 −ω

2
mn)/[(ω

2 −ω
2
mn)

2 +4α
2
ω

2] , (3.15)

ℑ{Λtot}=
∞

∑
m,n

Kmn2αω/[(ω2 −ω
2
mn)

2 +4α
2
ω

2] . (3.16)

ℜ{Λtot} and ℑ{Λtot} have been plotted for Gekko and Varanus in Figs. 3.1a and 3.1b,
respectively. We see that, for a certain frequency f∗, ℜ{Λtot}= 0. In Sec 3.4 we have also
shown that exactly at f = f∗ the internal time difference iTD becomes equal to the interaural
time difference ITD. Furthermore, it is possible to measure the corresponding iLD at f∗.
Using the definition (3.11) of the membrane vibration-amplitude ratio at f∗ and recalling that
ρc2kLΛtot/Vcav

∣∣
f= f∗

= iη , we obtain

iLD| f= f∗ = 20log10

∣∣∣∣uave
L

uave
0

∣∣∣∣= 20log10
1+η

1−η

⇒ η =
10iLD/20 −1
10iLD/20 +1

. (3.17)

Thus, by measuring the iLD at f∗, we can calculate the imaginary part of the membrane
frequency response as well. We should also note here that η is a dimensionless quantity. The
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resulting non-linear equations in α and ωmn are given by

ℜ{Λtot}| f= f∗ =
∞

∑
m,n

Kmn(ω
2
∗ −ω2

mn)

(ω2
∗ −ω2

mn)
2 +4α2ω2

∗
= 0 (3.18)

ℑ{Λtot}| f= f∗ =
∞

∑
m,n

Kmn2αω∗
(ω2

∗ −ω2
mn)

2 +4α2ω2
∗
=

ηVcav

ρcLω∗
(3.19)

where ω∗ = 2π f∗ . We have also used the fact that k = ω/c. Given the above equations, the
problem boils down to calculating f0 = ω11/2π and α as the remaining eigenfrequencies are
related to the fundamental eigenfrequency by fmn/ f0 = ωmn/ω11 = µmn/µ11. Here µmn is
the nth zero of the order κ Bessel function of the first kind Jκ ; cf. (2.30).

Having determined f∗ as well as η through the corresponding iLD based on membrane
vibration amplitudes, it would be possible to use (3.18) and (3.19) to obtain estimates for f0

and α . This can be done by using standard iterative algorithms to find the roots of functions.
A common example is the Newton-Raphson method [82, Ch. 5]. For a real-valued function
f , in order to find an approximation for its roots x : f (x) = 0 we start with an initial guess of
x0. A better approximation for x is then given by

x1 = x0 −
f (x0)

f ′(x0)

xn+1 = xn −
f (xn)

f ′(xn)
.

To find a root for a system of two equations (x,y) : g1(x,y) = 0, g2(x,y) = 0 in two dimen-
sions, we would instead need to calculate the appropriate Jacobian matrix,

J =

(
∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

)
.

The corresponding iteration rule is given by(
xn+1

yn+1

)
=

(
xn

yn

)
−J−1

(
g1(xn,yn)

g2(xn,yn)

)
. (3.20)

In dimensions higher than 2, it is more feasible to multiply both sides of (3.20) by J and
to solve the resulting system. Since we only need to estimate two values, the inverse of
the Jacobian can be easily calculated. The relevant variables for our numerical problem are
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x = f0 and y = α and the corresponding equations are given by

g1( f0,α) = ℜ{Λtot}| f= f∗ = 0 (3.21)

g2( f0,α) = ℑ{Λtot}| f= f∗ −
ηVcav

ρcLω∗
= 0 . (3.22)

Furthermore, the derivatives needed to calculate the Jacobian are given by

∂ℜ{Λtot}
∂ f0

=
2
f0

∞

∑
m,n

Kmnω2
mn((ω

2
∗ −ω2

mn)
2 −4α2ω2

∗ )

|Ω∗
mn|

4 , (3.23)

∂ℜ{Λtot}
∂α

= 8αω
2
∗

∞

∑
m,n

Kmn(ω
2
∗ −ω2

mn)

|Ω∗
mn|

4 , (3.24)

∂ℑ{Λtot}
∂ f0

=
8αω∗

f0

∞

∑
m,n

Kmn(ω
2
∗ −ω2

mn)ω
2
mn

|Ω∗
mn|

4 , (3.25)

∂ℑ{Λtot}
∂α

= 2ω∗
∞

∑
m,n

Kmn((ω
2
∗ −ω2

mn)
2 −4α2ω2

∗ )

|Ω∗
mn|

4 . (3.26)

Where, Ω∗
mn = (ω2

∗ −ω2
mn −2iαω∗). The Newton-Raphson method converges quadratically

to the correct value of the root.
In order to simplify the estimation of the relevant parameters, it would be more prudent

to separate the dependence on the size of the membrane from terms that arise independently
in the mathematical analysis. Specifically, we aim to express the coefficients Kmn as given by
Eq. (3.14) in a way that the dimensional dependence of the membrane parameters is separated
from non-dimensional factors arising from the integrals of Bessel functions. Writing the
integrals in the numerator and denominator explicitly we obtain

∫
dS umn =

∫ 2π−β

β

sinκ(φ −β )dφ

∫ atymp

0
rJκ(µmnr)dr

=
1
κ
[1− cosmπ]

∫ atymp

0
rJκ(µmnr)dr

=
a2

tymp

κ
[1− cosmπ]

∫ 1

0
r̃Jκ(atympµmnr̃)dr̃ , (3.27)∫

dS u2
mn =

∫ 2π−β

β

sin2
κ(φ −β )dφ

∫ atymp

0
rJ2

κ(µmnr)dr

= (π −β )
∫ atymp

0
rJ2

κ(µmnr)dr

= (π −β )a2
tymp

∫ 1

0
r̃J2

κ(atympµmnr̃)dr̃ (3.28)



3.6 Estimating the eardrum’s fundamental frequency and damping coefficient 73

where r̃ = r/atymp. Recall that atymp ×µmn corresponds to the nth zero of Jκ . We have thus
separated the geometrical parameter atymp from the Bessel integrals in (3.27) and (3.28).
Furthermore, we see that the integral in (3.27) is non-zero (and equal to 2) only for odd
values of m as cosmπ = 1 for even m.

For κ[m] = 0.5 mπ/(π −β ), m = 1,3,5 . . ., we can rewrite Kmn

Kmn =
16
π2

Stymp

ρMdM
K̃mn ,

K̃mn =

(∫ 1

0
r̃Jκ(atympµmnr̃)dr̃

)2

m2
∫ 1

0
r̃J2

κ(atympµmnr̃)dr̃
. (3.29)

where Stymp = (π −β )a2
tymp is the surface area of the tympanum. The values of K̃mn for 20

modes are given in Table 3.2 and are arranged in a descending order of Kmn/µ2
mn, which is

the value of Λtot at f = 0. The K̃mn are independent of the size of the membrane and depend
only on the extracolumellar angle β .

Numerical calculations in experimental practice

In practice we would need to choose an appropriate cutoff for the membrane eigenmodes.
Ideally, we have to ensure that the last eigenmode has a frequency well above the hearing
range of the animal. In order to test our method for the numerical estimation of f0 and α , we
performed simulations for Gekko and Varanus while using the first 70 membrane eigenmodes,
with the 70th mode corresponding to an eigenfrequency of around 11.7 kHz and 4.45 kHz
for Gekko and Varanus, respectively; - well beyond the hearing range of either species. The
estimated values of f∗ and η are shown in Table 3.3. In a real-world experimental setup, these
values would correspond to those estimated from measured membrane vibration amplitudes
and phases.

We seek to test the accuracy of our method by assuming that the values calculated for 70
modes were obtained from a hypothetical experiment. This way we can test the performance
of the algorithm in case the experimenter only chooses a limited number of modes. To do so,
we would first need initial guesses for f0 and α . For the fundamental frequency we can take
f∗ itself as an initial guess for f0, as eyeballing the iTD plots tells us that the values are fairly
close to each other; cf. Figs. 3.6a & 3.6b. Based on the behavior of the membrane response
as shown in Figs. 3.3a & 3.3b, one can conclude that the system is overdamped for Gekko
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Table 3.2 Numerical parameters needed for estimating f0 and α

m n µmn ×atymp K̃mn
1 1 3.16602 .3833
3 1 4.56064 .04463
5 1 5.87051 .01583
7 2 6.30889 .02812
9 1 7.13348 7.822×10−3

11 2 7.79759 4.13×10−4

13 1 8.36586 4.56×10−3

15 2 9.21062 5.666×10−8

17 3 9.45094 .03299
19 1 9.57637 2.938×10−3

21 2 10.5742 3.541×10−5

23 1 10.7703 2.026×10−3

25 3 10.9788 4.775×10−3

27 2 11.9022 6.028×10−5

29 1 11.9512 1.467×10−3

31 3 12.443 2.01×10−3

33 4 12.5928 8.459×10−3

35 1 13.1214 1.103×10−3

37 2 13.2033 6.768×10−5

39 3 13.8616 1.135×10−3

Table 3.3 Estimated f∗ and η

Gekko Varanus
f∗ 1097.78 Hz 402.664 Hz
η 0.666 1.697

and underdamped for Varanus. The value of the damping in the former would be > ω∗/4
and < ω∗/4 in the latter, where ω∗ = 2π f∗.

Given an initial guess, we can calculate the values of ℜ{Λtot} and ℑ{Λtot} at these
values of f0 and α from Eqs. (3.18) and (3.19). The value of the Jacobian can similarly be
calculated by plugging these values into Eqs. (3.23)–(3.26) along with the values of K̃mn

given in Table 3.2. Thereafter one can iteratively use the Newton-Raphson method (3.20)
until a suitable convergence is reached.

The simulation was performed for Nmodes = 1, 2, 5, 10, 15, 20, and 25 modes. The
results of the simulation are presented in Table 3.4. For both Gekko and Varanus we see
that, with an increasing number of eigenmodes used, the values converge to the quantities
defined in Table 3.1. The slower convergence and apparent oscillation in α for Gekko is
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Table 3.4 Simulation Results

Gekko Varanus
Nmodes f0 (Hz) α (s−1) f0 (Hz) α (s−1)

1 1097.78 2490.72 402.664 347.637
2 1074.34 2589.08 401.074 349.942
5 1058.12 2611.35 400.333 350.108
10 1052.66 2612.18 400.108 350.046
15 1051.89 2612.09 400.077 350.034
20 1051.02 2611.87 400.041 350.02
25 1050.92 2611.84 400.037 350.018

Exact 1050 2611.45 400 350

due to the higher value of its damping, which causes a greater difference between f∗ and
f0. However, we must be careful while choosing initial guesses for Varanus as its lower
damping results in a larger number of extrema and roots, and a simulation might converge to
a point corresponding to a higher eigenmode. In practice, five modes are more than sufficient
for good convergence in both f0 and α . As a side remark, we need to emphasize that the
numbers behind the decimal point in Tables 3.3 and 3.4 are experimentally irrelevant, but
have been presented in order to demonstrate the accuracy of the numerical procedure.

Focusing on f0 in particular, as a rule of thumb one can take the location of the minimum
of the contralateral eardrum amplitude f∗, which is equivalent to the frequency of maximum
iLD, as the fundamental frequency f0; the error between f∗ and f0 is at most 5% [48].
Determining the damping coefficient α is slightly more involved. The procedure outlined
in Eqs. (3.18)–(3.29) gives us a systematic method to approximate α from the membrane
vibrations for an arbitrary number of modes. In Table 3.4, we see that assuming f∗ to be the
fundamental frequency, which is equivalent to assuming f0 = f∗, gives us a value of α with
an error of at most 5%. Taking into account the second mode further reduces the error to
within 1%. In fact, for the case of a single mode, the expression for α can be written down
explicitly by substituting ω0 = ω11 = ω∗ in (3.19) giving us

K11

2αω∗
=

ηVcav

ρcLω∗
. (3.30)

⇒ α =
ρcLK11

2ηVcav
=

8ρcL
π2Vcav

Stymp

ρMdM

K̃11

η
. (3.31)

We thus have (3.31) as an expression for the membrane damping coefficient α given only the
geometrical and material parameters (thickness and density) of the membrane and cavity and
η – the iLD measurement at a given frequency. Moreover, apart from the relative ease of
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measurement, the above expression would provide a reasonably accurate estimate for α from
a realistic eardrum.

3.7 Conclusion

In conclusion, the present chapter dealt with the frequency and directional behavior of the
quantities derived in Chap. 2 and the hearing cues generated by them, namely the internal
time and level differences (iTD & iLD). We began in Sec. 3.1, by comparing the transmission
gain, i.e. the relative response at one eardrum to an isolated input at the opposite eardrum,
derived using the ICE model to experimentally measured values. The results agreed with
values measured for the Tokay gecko and the common house gecko, Hemidactylus frenatus;
see Figs. 3.2a and 3.2b. In the subsequent analysis we included newer data from the Asian
water monitor Varanus salvator. The individual membrane vibration velocities of the coupled
system were compared to, and showed good agreement with experimentally measured values
in Sec. 3.2; cf. Figs. 3.3a and 3.3b. The directionality of the eardrum vibrations was further
illustrated through polar plots in Figures 3.4a and 3.4b. Furthermore, the vibration patterns
of the eardrum surface showed a characteristic asymmetry, agreeing with values measured
using laser vibrometry for the Tokay gecko; see Figs. 3.5a and 3.5b. The frequency and
direction dependence of the iTD & iLD, was discussed in Sec. 3.3 and the internal time
difference was found to be nearly flat at low frequencies, irrespective of the sound source
direction, and thus mirrored the behavior of the interaural time difference (ITD). Close to
the membrane fundamental frequency f0, the iTD sharply drops and thereafter becomes
equal to the ITD at higher frequencies, thus showing a low-pass frequency behavior. In other
words, at low frequencies, the time dilation factor (TDF), or the ratio of the internal and
interaural time difference, is independent of direction and frequency; see Figs. 3.6a and 3.6b.
In contrast, the iLD was found to show a band-pass behavior, where it rose sharply from
zero at low frequencies, peaking close to f0, and dropping sharply thereafter; see Figs. 3.7a
and 3.7b. Moreover, both the iTD and iLD were shown to be positive for positive values of
the direction θ , and vice versa. Thus, the eardrum fundamental frequency f0 forms a natural
segregation of frequencies at which iTDs and iLDs are dominant.

Interestingly, it was also found that the frequency behavior of the hearing cues showed
parallels to that of the membrane frequency response Λ, with the iTD corresponding to its
real part and the iLD to its imaginary part; cf. Figs. 3.1a and 3.1b & Sec. 3.4. The properties
of Λ therefore allowed us to estimate the transition frequency f∗ as the frequency at which
iTD=ITD. By comparing the results for Varanus and Tokay, it was found that the flatness of
the iTD response, as well as the peak of the iLD response strongly depend on α . As stated in
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Sec. 2.1.2, the cavity volume Vcav can be treated as an independent parameter in ICE. This
fact was used in Sec. 3.5 to analyze the dependence of the hearing cues, i.e. iTD and iLD, on
Vcav. It was found that, reducing Vcav ”strengthened“ the interaural coupling by increasing
the iTD and iLD, while simultaneously sharpening the latter’s peak until a critical volume
Vcrit was reached. It was thus shown that an animal with ICE would need a cavity volume
bigger than Vcrit to optimally exploit its interaural coupling. Finally, in Sec. 3.6, by using
the aforementioned properties of Λ, we devised an experimental and numerical procedure to
directly estimate f0 and the membrane damping α from the measured hearing cues in a living
animal with ICE. Finally, for the damping α a simple estimate, requiring only measured
values of membrane material and geometrical parameters, was also derived (3.31).





Chapter 4

ICE-like Systems

The theory of ICE was initially [49, 50] developed to explain the enhancement of sound
localization cues in terrestrial animals hearing at typically low frequencies. The previous
two chapters and Vedurmudi et al. [12, 48] dealt with constructing a mathematical and
geometrical model for internally coupled ears based on data from two extant lizards, the
Tokay gecko and the water monitor Varanus; cf. Chapters 2 and 3. In the present chapter, we
focus on animals equipped with ICE that utilize the interaural coupling in ways considerably
different from those of the lizards. In particular, we will focus on the fully aquatic African
clawed frog Xenopus laevis [57] and the barn owl Tyto alba [56] with its remarkably high
range of hearing frequencies. The “small-animal problem” associated with lizards in air
would be further exacerbated underwater, where the sound velocity (and thus the wavelength)
is approximately four times greater than in air, causing both ITD and ILD cues to be further
diminished. However, despite its small size, Xenopus communicates by underwater sound
and has a rich vocal repertoire [83–85]. Receptive females approach calling males [86] and
special adaptations for underwater hearing and sound localization would thus be of utmost
importance. Barn owls, which also possess an interaural coupling [56], use frequencies
between 3 and 9 kHz to locate prey [87] with a remarkably low localization error of less than
2◦ in azimuth [88]. Communication calls of adult barn owls, on the other hand, are limited to
frequencies below 3 kHz [89]. Although the barn owl interaural cavity was initially thought
to play no role in sound localization [90], it has since been shown that for a narrow band at
lower frequencies (1.5 to 3 kHz) there is sound transmission through the interaural canal
that induces considerable directionality in the eardrums [56]. Thus, while the barn owl can
utilize ICE for interspecific communication at lower frequencies, their high range of hearing
frequencies suggests that the resonances of their interaural cavity can play a significant role
in their hearing.
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The present chapter deals with the very different auditory problems faced by Xenopus
and the barn owl, albeit with remarkably similar solutions. In spite of serving very different
purposes with regards to sound localization, the interaural cavities of both animals share
geometric similarities and, as a result, can be described using similar physical principles.
A key similarity in the cavity geometry for both animals is the presence of a third air-filled
chamber medially connected to the interaural cavity. In the barn owl, the cavity of the
sphenoid bone [91] plays this role, whereas in Xenopus, the lungs themselves are directly
connected to the interaural cavity [57]. In this chapter, the medially connected cavity will
be treated as a Helmholtz resonator driven by the motion of air in the interaural cavity. The
acoustics of a Helmholtz resonator has previously been used [29, 92] to describe the middle
ear and mouth cavity of frogs with respect to terrestrial hearing. In the present chapter,
however, we will see how the Xenopus eardrum, as well as the medial connection to its
lungs are adaptations to its underwater environment. The central role played by the lung
volume in generating underwater iLD cues, as well as in improving hearing sensitivity at
frequencies relevant to the mating behavior of Xenopus will be demonstrated. Furthermore,
the interaural cavities of both animals are too narrow to be described using the cylindrical
model of Section 2.1.2. As a result, a modified description of the interaural cavity will also
be introduced. In the case of Xenopus, we will also introduce a different model to account for
the special construction of its eardrum. In contrast, the barn owl interaural cavity, along with
attached Helmholtz resonator will be shown to generate iLDs in the lower frequency region
of its hearing, while also improving iTDs for its higher hearing frequencies – in stark contrast
to the lizards. We will also see the importance of “tuning” the volume of the resonator with
respect to hearing and sound localization, in both Xenopus and the barn owl.

4.1 Eardrum

We will now describe the middle-ear systems of Xenopus and the barn owl. The majority of
the present section deals with Xenopus’s plate-like eardrum and its mechanical properties,
while accounting for the surrounding medium, i.e. water. As the barn owl eardrum is geared
to hearing in air, and is thus anatomically similar to those of most reptiles and birds, we will
limit ourselves to a brief recap of the eardrum vibrations derived in Section 2.2.1.

4.1.1 Xenopus

The Xenopus eardrum is unusual compared to those of other animals with ICE as well
as to those of other frogs [93]. Instead of a flexible tympanic membrane, they possess a
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cartilaginous tympanic plate behind the eye covered by skin and fatty tissue [94]. The plate
is suspended around its periphery in a cartilaginous annular membrane [95]; cf. Figs. 4.1a
and 4.1b. Rather than being deformed by an external sound stimulus like typical eardrums,
the tympanic plate moves as a whole within the thin annular cartilaginous ring [57]. The
pars media, or the shaft of the stapes is attached centrally to the tympanic plate and transmits
the vibrations of the tympanic plate to the inner ear via the columella; cf. Fig. 4.1b.

(a) Xenopus tympanic plate (b) Schematic model

Fig. 4.1 (a) Tympanic plate of Xenopus laevis after removal of the skin and fat layer. The
pars media of the stapes can be discerned through the cartilaginous disc. Scale bar denotes 5
mm; adapted from Mason et al. [95]. (b) Schematic (see inset) and motion of the tympanic
plate (thick/blue) driven by an external (pex) and internal (pin) pressure and displaced from
its resting position (dotted/blue). The tympanic plate also experiences a pressure (pr) due to
acoustic radiation into the water surrounding Xenopus. The restoring force, which is provided
by the tympanic annulus (dashed/red) has been quantified as a stiffness κ and is a function of
its Young’s modulus E and the geometry. The inertial mass of the system includes that of the
attached stapes and columella which are represented here in black.

We model the system of tympanic plate and annulus as a composite structure where the
tympanic plate plays the role of a pressure receiver whereas the cartilaginous annulus provides
a restoring force and thus, a natural vibration frequency to the system. Physically, this entails
calculating the force exerted by the annulus given a deflection u of its inner radius. As we
will see later in the present chapter, evolution has replaced the thin and decently flexible
tympanic membrane by a rather massive plate as an adaptation for underwater hearing. In
contrast to our earlier treatment (Sec. 2.1.1 and [12]) of eardrums as thin membranes, we
therefore model the motion of the annulus as the bending of a thin annular plate subject to a
small uniform deflection at its inner periphery. The deflection w of the surface of a circular
homogeneous Kirchoff-Love plate with a load q(r,φ) (Force/Area) acting on its surface is
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given by [96, p. 283]

Dm∆
2
(2)w = q(r,φ) (4.1)

∆(2) =
1
r

∂

∂ r
+

∂ 2

∂ r2 +
1
r2

∂ 2

∂φ 2 , (4.2)

where ∆(2) is the two-dimensional Laplace operator, here taken in polar coordinates. For
a plate of thickness h with Young’s modulus E and Poisson ratio ν , Dm = Eh3/12(1−ν2)

is its flexural rigidity. In our model, the cartilaginous ring is loaded only by the tympanic
plate along its inner edge. Moreover, as the loading is uniform and the annulus is modeled as
homogeneous, we can neglect the dependence of w on the angle φ .

The solution to (4.1) in the absence of a load on the surface of the annulus or, q(r,φ) = 0,
is given by

w(r) =C1
r2

4
(2logr−1)+C2 logr+C3

r2

2
+C4 . (4.3)

The coefficients C1−4 are to be determined by the boundary conditions at the inner and outer
radius, which we denote by a1 and a2, respectively. We first require the tympanic annulus to
be rigidly clamped at its outer edge, resulting in a deflection with vanishing rotation about the
horizontal edge. At the inner edge, the deflection of the ring w is fixed by the displacement
of the tympanic plate u. Furthermore, at the inner edge, the bending moment Mrr vanishes.
This gives us
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Applying the boundary conditions to (4.3) we obtain a set of linear equations for the coeffi-
cients C1−4, with solutions
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As the equation of motion is essentially linear, the above coefficients C1−4 are proportional
to the deflection u at the inner edge.

The restoring force F at the edge in response to the deflection or, equivalently, the shear
force [96, p. 53] of the annulus is given by

−F
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=
2DmC1

a1
. (4.11)

Comparing the above result with the expression for the coefficient C1 in (4.6), we see that
the restoring force F is linearly related to the deflection u through a coefficient of the form

κ =
16πDm
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so that F =−κu. In our model, the tympanic plate and annulus system therefore behaves as
a harmonic oscillator with a spring constant κ . For a plate of mass mp the resonant (angular)
frequency is given by ω0 = 2π f0 =

√
κ/mp. The inner radius a1 is equal to the radius of the

tympanic plate ap, while the width of the tympanic annulus aann can be used to set the outer
radius equal to a2 = ap +aann.

Let us take a tympanic plate of mass mp and area Sp driven by an external pressure
pex from the sound source and an internal pressure pin due to the interaural coupling; see
Fig. 4.1b. As a result of its vibrations, the tympanic plate also experiences a force fr due
to acoustic radiation into the medium – namely, water. The restoring force provided by
the cartilaginous ring is equivalent to that of a spring of stiffness κ . Let u0/L(t) be the
displacement of the tympanic plate from its mean position, with the subscripts 0/L denoting
the eardrums at x = 0 and x = L, respectively. The equation of motion of the plate is thus
given by

mp
d2u0/L

dt2 = Sp

(
pex − pin

)
+ fr −κu0/L −bu̇0/L (4.13)

where b is an empirical damping coefficient and, as usual, we look for quasi-steady-state
solutions of the form u0/Lexp(iωt). To do so, we now need to determine the radiative force
fr and internal pressure pin in terms of the displacement u0/L. Finally, after defining the
acoustic head model, we will obtain sound inputs in the form of an external pressure pex

which will be used to determine u0/L. Eq. (4.13) is structurally similar to equation for the
mechanical equivalent of the ICE model from Eq. (2.111); cf. Section 2.3.2. In the present



84 ICE-like Systems

derivation however, the origin of the spring constant from the tympanic annulus (4.12) has
been explicitly derived.

Acoustic radiation from the eardrum

As the external surface of the vibrating eardrum is continuously in contact with a fluid, i.e.
water, we must account for the influence of the latter on the eardrum vibrations. The pressure
field at a point r due to an arbitrary acoustic radiator vibrating with an angular frequency
ω = 2π f can be computed by treating each infinitesimal area element of the radiator as a
point source and integrating over the surface to give [97, p. 179]

pr(r) =
iρ0ω

2π

∫
S

v(r′)e−ikwR

R
dS , (4.14)

where ρ0 is the density of the fluid and R is the distance between the point r and the area
element dS at a point r′ on the acoustic radiator, while v(r′) is the vibrational velocity of
the radiator surface at r′. The wavelength kw = ω/cw is for sound waves in water with
propagation speed cw.

Let us now consider a circular piston of radius a vibrating harmonically with an angular
frequency ω = 2π f , while bounded on one side by a fluid of density ρ0 and sound speed c0.
Let the piston’s vibration amplitude in complex notation be uexp(iωt) so that its velocity is
v = iωu exp(iωt). As we are interested in the pressure on the surface of the piston itself, R
is the distance between dS and another element on the piston’s surface dS′; see Fig. 4.2. The
force on the element dS′ is given by

d fr =−ρ0ω2u dS′

2π

∫
S

e−ikwR

R
dS . (4.15)

The net force is calculated by integrating the above equation over dS′. The integral can
greatly simplified by using the acoustic reciprocity principle [97, p. 172], which states that
the pressure created at dS′ by a vibration at dS is equal to the pressure created at dS by a
vibration at dS′. We define the infinitesimal elements as

dS = RdϕdR, dS′ = r′dψdr′

and integrate dS over the circle of radius r′, i.e. R from 0 to 2r′ cosϕ and ϕ from −π/2 to
π/2. Thus the interactions within the circle of radius r′ have been accounted for. We then
integrate dS′ over the area of the piston, i.e., r′ from 0 to a and ψ from 0 to π; cf. Fig. 4.2.
Having calculated the interelement interaction once, we apply the reciprocity principle by
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multiplying the result by two and rewrite the integral (4.15) in the form

fr =−2ρ0ω2u
2π

∫ 2π

ψ=0

∫ a

r′=0

∫
π/2

ϕ=−π/2

∫ 2r′ cosϕ

R=0

e−ikwR

R
(RdRdϕ)(r′dr′dψ) . (4.16)

Fig. 4.2 Surface of a vibrating circular piston of ra-
dius a. As the piston is bounded by a fluid medium
on one side, it behaves as an acoustic source with
a characteristic pressure field in the half-space cor-
responding to the medium, including its own sur-
face. Consequently, each piston surface element
dS creates a pressure d p at the surface element dS′.
The total force on the piston can be calculated by
integrating over both elements using the acoustic
reciprocity principle.

As the eardrum radius is of the order of 5 mm and typical hearing frequencies are below 3
kHz, we can reasonably assume that kwa ≪ 1 and, as a consequence, exp(ikwR)≈ 1+ ikwR.
In the low-frequency limit fr then simplifies to the form

fr ≈ ωΓru with Γr = ρ0c0Sp

(
8kwa
3π

− i
(kwa)2

2

)
. (4.17)

The above derivation is equivalent to a low frequency approximation for the acoustic radiation
from a baffled circular piston [71, pp. 301–305]. The force exerted by the medium on the
piston is thus proportional to the density ρ0 and the sound speed c0 in the medium, as well
as to the amplitude u of vibrations. For low frequencies, the real part of Γr scales linearly
with frequency and is equivalent to an added mass of m0 = 8ρ0Spa/3π on the surface of the
piston. Taking a thickness dp and density ρp for the piston, we find that the relative added
mass is given by

m0

mp
=

8
3π

ρ0a
ρpdp

(4.18)

where mp is the piston mass. The density of air (ρair ≈ 1.2× 10−3 g/cc) is small relative
to that of living tissue, which has a density comparable to that of water. For example, the
density of the tympanic membrane and the cartilaginous tympanic annulus in humans was
found to be ≈ 1.2 g/cm3 [98]. As a result, at low frequencies and for small piston radii, we
can neglect fr relative to the force exerted by a sound wave in air. A piston vibrating in water,
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however, will be subjected to significant forces even at low frequencies. These forces will be
accounted for in our subsequent treatment of underwater eardrum vibrations.

4.1.2 Barn owl

In general, both reptiles and birds show significant variation in anatomical structure of their
middle-ears [4]. Nonetheless, they can functionally still both be described using the second-
order lever system (see Figs. 2.4a&2.4b) consisting of a tympanic membrane, extracolumella
and columella [27]; cf. Fig. 4.3. The barn owl eardrums are geared to terrestrial hearing and
will be described, as in the case of the lizards (see Fig. 2.3b and Section 2.2.1), as a circular
membrane asymmetrically loaded by the extracolumella; ref. Fig. 4.5b. Analogously to

Fig. 4.3 Schematic diagram of a typical avian mid-
dle ear. The various processes of the extracolumella
(E) are attached asymmetrically to the tympanic
membrane (T). The motion of the tympanic mem-
brane in response to a sound stimulus is transmitted
via the columella (C) to the inner ear (not shown).
Figure adapted from Manley and Gleich [99]. Com-
pare with the gecko ear Fig. 2.3a.

the lizard eardrum, the vibration of the barn owl eardrum is also best described by means
of a membrane frequency response Λ (2.97) such that for an input pressure pexp(iωt), the
membrane displacement of an independent eardrum is given by Λpexp(iωt). Recall that the
membrane frequency response is defined in terms of the membrane modes umn as

Λ =
∞

∑
m,n

umn(r,φ)
∫

umn

ρMdMΩmn
∫

u2
mn

, Λtot =
∫
Smem

Λ(r,φ)dS , (4.19)

where Ωmn = ω2 −ω2
mn − 2iαω . As usual, ρM and dM denote the membrane density and

thickness, while ωmn and α denote the eigenfrequency of the (m,n) mode and damping,
respectively; cf. Table 2.1.

4.2 Interaural cavity

The cylindrical interaural cavity described in Sec. 2.1.2 allowed us, essentially, to express the
cavity pressure as a single plane wave between the eardrums (2.66). While a general theory
of ICE can be developed this way, a cylindrical interaural cavity does not provide an accurate
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description of interaural coupling in all animals with ICE. Thus far, in our description of ICE,
although the volume of the interaural cavity Vcav was analyzed as an independent parameter
in Section 3.5, it cannot take arbitrary positive values and is bounded from below by the
volume of the cylinder V0 with radius atymp (2.1) and length L, where atymp is the radius of
the eardrum and L is the interaural distance. In other words,

Vcav ≥V0 , (4.20)

V0 = πa2
tympL . (4.21)

However, in animals like the African clawed frog Xenopus laevis and the barn owl Tyto alba,
the interaural cavity volumes are far too small to be described by such a cylinder. In both
cases, the interaural cavity becomes significantly narrower as one moves inwards from the
eardrum [56, 57]; cf. Figs. 4.4a and 4.4b.

(a) Xenopus (b) Barn owl

Fig. 4.4 (a) Dental cement cast of the middle ear cavities in Xenopus (above) and schematic
diagram of air filled cavities in a submerged Xenopus (below). The middle ear cavity (MEC)
consists of two tympanic cavities that taper into a shared Eustachian tube which is medially
connected to the lungs (L) through a recess (R) in the roof of the mouth. LAR denotes the
larynx and is not relevant to our present discussion. Adapted from Christensen-Dalsgaard
and Elepfandt [57]. In (a) we see a barn owl’s skull from below generated by using CT scans.
The interaural canal is the V-shaped structure (illustrated in green). The resulting length of
the interaural canal is longer than the physical distance between the eardrums. The opening
at the tip of the V-shaped structure into the mouth cavity is not shown. (adapted from Kettler
et al. [56], courtesy K. L. Willis and C. E. Carr, University of Maryland).

In order to account for this discrepancy, we now propose a modified description of the
interaural cavity. Instead of a single continuous cylinder, we separate the interaural cavity into
two tympanic cavities (TC) coupled by means of a narrow “internal” canal (InC). Effectively,
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(a) Xenopus (b) Barn owl

Fig. 4.5 (a) ICE model schematic for the air-filled cavities in Xenopus based on Fig. 4.4a. The
rigid cartilaginous tympanic plates (blue) are suspended in a flexible annular outer membrane
(red); cf. Figs. 4.1a and 4.1b. The precise mechanics of the eardrums will be discussed in
Section 4.1. The shallow tympanic cavities (TC) have a distinct taper in a direction away
from the tympanic plates and are connected through a narrow internal canal (InC). In (b),
we see the schematic interaural canal for the ICE model based on the three dimensional
reconstruction of Fig. 4.4b. The circular tympanic membranes are illustrated in red, with
the black sectors representing the extracolumella; cf. Fig. 2.3b. The cylindrical tympanic
cavity TC has a larger cross section than the internal canal (InC). The barn owl interaural
cavity length is greater than the interaural distance, L > 2LT +LC, while in Xenopus, they
are equal. In both cases the two “arms” of the internal canal join in the middle and open into
the lungs (LUN) for Xenopus and the sphenoid cavity (SC) for the barn owl, will be both be
modeled as a single Helmholtz resonator. Compare with the “regular” ICE interaural cavity
of Chapter 2; see Fig. 2.6b.

two shallow tympanic cavities of length LT are coupled by a narrow canal with a circular
cross section of radius aC and total length LC; see Figs. 4.5a and 4.5b. From the figures, we
can see that there are two main distinctions between the interaural cavities of the two animals.
Firstly, whereas for the Barn owl it suffices to model the tympanic cavity as a cylinder as
well, Xenopus’ tympanic cavity tapers sharply to join the interaural cavity and will thus be
modeled as a truncated cone. The geometrical model of the tympanic cavities for the barn
owl and Xenopus are illustrated in Figs. 4.6a to 4.6d. The second difference has to do with
the length of the internal canal. In Xenopus, the two branches or arms of the internal canal
can be assumed to be more-or-less horizontal, such that the total length of the interaural
cavity (internal canal + tympanic cavities) between the eardrums is equal to the interaural
distance, i.e., L = LC +2LT; cf. Figs. 4.4a and 4.5a. On the other hand, the barn owl internal
canal has a distinct V-shape (see Fig. 4.4b), such that the interaural distance is shorter than
the total length of the interaural cavity, i.e., L < LC +2LT; cf. Fig. 4.5b.
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In both animals, the internal canal is separated into two “arms” or branches (0/L) by a
medially attached air-filled cavity, although the anatomical origins of the cavities in both
species are different. In Xenopus, the air-filled cavity represents the lungs that are attached
to the canal at a recess in the roof of the mouth [57], whereas in the barn owl, the cavity
represented is that of the sphenoid bone [91]. In both cases, we will be treating the cavity as
a Helmholtz resonator [71, 100] medially attached to the internal canal. We distinguish the
internal canal (InC) from the interaural cavity, such that the former represents the narrow
air-filled connection between the tympanic cavities, whereas the latter denotes the entire
air-filled connection between the eardrums. Note that, in our model, the medially attached
cavity is treated separately from both the internal canal as well as the interaural cavity. The
presence of the Helmholtz resonator precludes the treatment of the internal canal as a a single
continuous cylinder. As we will see in Sec. 4.2.2, the presence of the medially connected
cavity will necessitate the introduction of appropriate junction requirements at the connection.
Thus, in our extension of ICE to Xenopus and the barn owl, the pressure in the two arms of
the internal canal will be treated independently.

Cavity volume: Given the cavity volume Vcav, the interaural separation L, the tympanic
cavity length LT and the radius of the tympanic membrane or eardrum atymp, we can determine
the length and LC, and radius of the cylindrical canal aC as dependent parameters, such that

aC =

√
Vcav −2VT

πLC
, (4.22)

where LC = L−2LT

is the total length of the two arms of the internal canal and VT is the volume of the tympanic
cavity. In this way, the volume of the ICE model interaural cavity can be varied to conform
to realistic cavity volumes as they occur in nature. Thus, in contrast to the cavity model
described in Chapter 2 (cf. Fig. 2.6b), the present treatment of ICE accounts for the case when
Vcav <V0 = πa2

tympL by making the connecting canal narrower than the tympanic radius. As
we will subsequently see in Sec. 4.5.2, we will also provide a physical explanation for the
variance of the cavity acoustic resonances with volume, which was numerically estimated by
Vossen [49] in the first mathematical treatment of ICE. In Sec. 2.2.2, the pressure and fluid
velocity at the junctions will be subject to continuity requirements. Note that Vcav refers to
the volume of the interaural cavity excluding the lungs/sphenoid cavity.
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Barn owl

(a) 3D model (b) Median slice
Xenopus

(c) 3D model (d) Median slice

Fig. 4.6 3D view and median slice of the modified ICE tympanic cavity (TC) model for the
barn owl (a)&(b) and Xenopus (c)&(b). As the total interaural cavity volume is “small”,
i.e. Vcav < V0, where V0 = πa2

tympL is the volume of the cavity corresponding to the first
mathematical model for ICE [49, 50]; cf. Fig. 2.6a, the tympanic cavity is treated separately
from the rest of the interaural cavity. For the barn owl the tympanic cavities are modeled as
cylindrical in shape, whereas the shape of the Xenopus tympanic cavity model is conical. In
both cases, the cavities of length LT transition into a narrow "internal" canal (InC) of circular
cross section with radius aC. Compare Figures 2.6a and 2.6b

4.2.1 Cavity pressure

In the present section we will show that, as in the case of the lizard, the pressure in the
interaural cavity can expressed in terms of coefficients Γ± (2.98) that relate the vibration
velocity of the eardrum derived in Section 4.1 to the pressure on its internal surface for
Xenopus, as well as for the barn owl. In order to derive Γ±, we therefore need expressions for
the internal pressures at the eardrum surfaces or, in terms of the tympanic cavity pressures,
p0

T(x = 0; t) and pL
T(x = L; t). As stated in the preceding section, the modified description of

the interaural cavity requires us to treat the pressure in the different components independently
of each another. For the barn owl, the cylindrical shape of both the tympanic cavity and the
internal canals allows us to use the expressions derived in Sec. Section 2.2.2 to describe the
internal sound pressure. Moreover, at our frequencies of interest, the variation in the radial
and azimuthal directions can be neglected. As a result, at a given frequency f = ω/2π , the
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pressure p and particle velocity v in the internal can be described by plane waves,

p0/L
C/T(x; t) = (A0/L

C/Teikx +B0/L
C/Te−ikx)exp(iωt) , (4.23)

v0/L
C/T(x; t) =

−1
ρc

(A0/L
C/Teikx −B0/L

C/Te−ikx)exp(iωt) . (4.24)

Recall that the pressure and particle velocity are related to each other via the linearization of
the Euler equation (2.58). The subscripts C/T refer to the internal canal and the tympanic
cavity, while the superscripts 0/L refer to the left and right halves of the system, respectively.
The expressions en Eqs. (4.23) and (4.24) are also valid for both the branches of the Xenopus
internal canal, as they are also cylindrical in shape. However, the conical geometry of the
Xenopus tympanic cavity, necessitates the calculation of a different expression for its internal
pressure.

Conical tympanic cavity

The propagation of acoustic waves in the conical tympanic cavity is modeled using Webster’s
horn equation [101, 102]. Here, as in the internal canal, the low frequencies allow us to
assume that the wave only propagates along the axis in the x-direction as a plane wave with
its wavefront perpendicular to the horn axis which represents the tympanic cavity (TC) in
Figures 4.6c and 4.6d. For a horn whose cross section varies with the axis as χ(x), the 3D
wave equation reduces to a 1D problem of the form [102]

1
χ(x)

d
dx

(
χ(x)

d p
dx

)
− 1

c2
d2 p
dt2 = 0 . (4.25)

The acoustic wave equation is identical to the horn equation for a constant cross section. As
in the case of the interaural canal, we seek pure tone solutions of the form p(x)exp(iωt).

Let the larger cross section of the tympanic cavity and that of the connecting canal
be Sp and SC , respectively. In a conical horn, the radius varies linearly along its axis or,
equivalently, the cross section varies quadratically. The relative variation of the horn cross
section with respect to the distance along the axis in the left and right tympanic cavities is
given by

χ0

SC
=

(LT + lT − x)2

l2
T

and
χL

SC
=

(lT + x−LC −LT)
2

l2
T

, (4.26)
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respectively. In the above equations we have defined lT = LT
√

SC/(
√

Sp −
√

SC), where LT

and LC are the lengths of the tympanic cavity and interaural canal, respectively; see also
Fig. 4.5a.

For a pure tone of frequency f = ω/2π , the spatial part of the solution to the horn
equation (4.25) in the left and right tympanic cavities is given by,

p0
T(x) =

A0
Teikx

2ik(LT + lT − x)
+

B0
Te−ikx

2ik(LT + lT − x)
and (4.27)

pL
T(x) =

AL
Teikx

2ik(lT + x−LT −LC)
+

BL
Te−ikx

2ik(lT + x−LT −LC)
, (4.28)

respectively. Finally, by using the pressure velocity relation obtained from the linearization
of the Euler equation (cf. Eqs. (2.56)&(2.57)), we can also find the particle velocity in the
left and right tympanic cavities,

v0
T(x) =

A0
Teikx

[
1+ iklT

√
χ0
SC

]
2ρck2(LT + lT − x)2 +

B0
Te−ikx

[
1− iklT

√
χ0
SC

]
2ρck2(LT + lT − x)2 , (4.29)

vL
T(x) =

AL
Teikx

[
−1+ iklT

√
χL
SC

]
2ρck2(lT + x−LT −LC)2 −

BL
Te−ikx

[
1+ iklT

√
χL
SC

]
2ρck2(lT + x−LT −LC)2 . (4.30)

Flow across junctions

The expressions derived in Eqs. (4.23), (4.24) and (4.27) to (4.30) give us complete expres-
sions for the internal pressure and particle velocity in the tympanic cavities and internal
canal for both Xenopus and the barn owl. Thus, the problem of calculating the internal cavity
pressure is reduced to finding expressions for the coefficients A0/L

T/C and B0/L
T/C. As stated,

in the start of the present section, we aim to derive coefficients Γ± that relate the internal
pressure at the eardrum surface to eardrum vibration velocity. The procedure can be greatly
simplified by expressing the tympanic cavity pressure coefficients on the left side, i.e., A0

T

and BL
T in terms of those on the right side, i.e., AL

T and BL
T. To do so, we will first need

to account the pressure and fluid particle velocity at the “junctions”, which are essentially
discontinuities in the cavity geometry –

1. The transitions between the tympanic cavity (TC) to the internal canal (InC), and

2. The three-way junction between the two arms of the internal canal and the Helmholtz
resonator representing the lungs.

In general, the flow of air across a tube with an abrupt change in cross section results in a
region of flow-separation and recirculation in the in the vicinity of such a junction and, as a
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result, mechanical energy losses [103]. In case of fluid flow across a junction with an abrupt
increase in cross section, the flow separates and a turbulent recirculating flow develops in
the region immediately after the expansion as the flow cannot immediately follow the sharp
bend in the pipe. see Fig. 4.7b. Similarly, in case of a sudden reduction in cross section,
there are regions of flow separation and recirculation at the entrance of the narrower pipe. see
Fig. 4.7a. The energy loss ∆E can be expressed in terms of the velocities v1/2 at the denoted
points in the flow using the Borda-carnot equation [103]

∆E = ξ
1
2

ρ(v2
1 − v2

1) . (4.31)

ξ is an empirical loss coefficient and has a value between zero and one. Through numerical

(a) Abrupt contraction (b) Abrupt expansion

Fig. 4.7 Flow through a canal across an (a) abrupt contraction and (b) abrupt expansion in
cross section. The case of an abrupt expansion results in a recirculating flow in the vicinity
of the change in cross section in the wider canal, while the case of an abrupt contraction
results in recirculating flows being generated in both canals. The above behavior is, however,
only significant at relatively high velocities. At typical flow velocities of linear acoustics (.02
Pa & .1 mm/s at 60 dB SPL), the region in which the recirculating flow takes place is small
compared to the dimensions of the canal. In such a case, it suffices to equate the flow rates at
points 1 and 2 in both (a) and (b).

simulations it is possible to show the emergence of vortices in the neighborhood of a sudden
change in the cross section [104].

However, realistic flows generated by sound sources in nature are associated with low
pressures and particle velocities (.02 Pa & 0.1 mm/s at 60 dB SPL). At these pressure
amplitudes, the region in which the recirculating flow that takes place is extremely small
compared to the size of the cavity. Moreover, the corresponding fluid flow velocities are of
the order of 0.1 mm/s resulting in negligible losses across the junction. We therefore proceed
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by requiring the pressure to be continuous across the junction and that the volume flow rate
is conserved [101, chap. 8]. Recall that, for a canal of cross section S, the volume flow rate
is given by S× v(x; t) (2.68).

Using the plane wave expressions for the pressure and velocity, we therefore can proceed
with the solution for the coefficients by equating the pressure and conserving the volume
flow at both the TC-InC junctions. Equating the pressure (cf. Eqs. (4.23), (4.27) and (4.28))
gives us

A0
TeikLT

2ik lT
+

B0
Te−ikLT

2ik lT
= A0

CeikLT +B0
Ce−ikLT , (4.32)

AL
Ceik(LT+LC)+BL

Ce−ik(LT+LC) =
A0

Teik(LT+LC)

2ik lT
+

B0
Te−ik(LT+LC)

2ik lT
. (4.33)

For Xenopus, the tympanic cavity tapers continuously to join the internal canal, such that the
area of cross sections at the transition are equal. Therefore, equating the volume flow rate is
equivalent to requiring the particle velocity (cf. Eqs. (4.24), (4.29) and (4.30)) be continuous
such that,

A0
TeikLT [1− iklT]

2k2l2
T

+
B0

Te−ikLT [1+ iklT]
2k2l2

T
= A0

CeikLT −B0
Ce−ikLT , (4.34)

AL
Ceik(LT+LC)−B0

Ce−ik(LT+LC) =
AL

Teik(LT+LC) [1− iklT]
2k2l2

T
+

BL
Te−ik(LT+LC) [1+ iklT]

2k2l2
T

, (4.35)

where, we have used a single axis for the entire length of the interaural cavity, such that the
junctions are present at x = LT and x = LT +LC along the axis.

For the barn owl, equating the pressure at the junctions gives us

A0
TeikLT +B0

Te−ikLT = A0
CeikLT +B0

Ce−ikLT , (4.36)

AL
Ceik(LT+LC)+BL

Ce−ik(LT+LC) = AL
Teik(LT+LC)+BL

Te−ik(LT+LC) . (4.37)

As the transition between the tympanic canal (TC) and the connecting internal canal (InC)
has an abrupt change in cross section, we need to equate the volume flow rate (2.68) the
junctions and not the velocities as in the case of Xenopus, which results in,

ST

(
A0

TeikLT −B0
Te−ikLT

)
= SC

(
A0

CeikLT −B0
Ce−ikLT

)
, (4.38)

SC

(
AL

Ceik(LT+LC)−BL
Ce−ik(LT+LC)

)
= ST

(
AL

Teik(LT+LC)−BL
Te−ik(LT+LC)

)
, (4.39)
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where, as usual, the subscript “T” refers to the tympanic cavities and “C” refers to the
connecting internal canal; cf. Figs. 4.6a to 4.6d. The direction convention introduced in
Chapter 2 (cf. Fig. 2.6b) holds here as well such that directions outward from the interaural
cavity are taken as positive. The axis of the interaural cavity is defined such that, x = 0
corresponds to the left eardrum and x = L to the right eardrum. Thus, Equations (4.32)
to (4.35) relate the coefficients of the tympanic cavity pressure to the internal cavity pressure
for Xenopus, whereas Equations (4.36) to (4.39) do the same for the barn owl. Effectively,
we now have four equations for the six coefficients A0/L

C , B0/L
C , AL

T and BL
T in terms of A0

T and
B0

T. In order to eliminate the four cavity pressure coefficients A0/L
C , B0/L

C , we now need to
account for the second junction in our model, i.e., the medially attached air-filled cavity.

4.2.2 The Helmholtz resonator

By analyzing the behavior of the medially attached lungs in the case of Xenopus and the
sphenoid cavity in the case of the barn owl, we will be able to find a relation between the
pressure in the left and right halves of the internal canal. In both cases, we treat the system
of air-filled cavity coupled to the interaural canal (cf. Figs. 4.5a and 4.5b) as a Helmholtz
resonator [105, p. 103]. In its essence, a Helmholtz resonator is an air-filled cavity of a given
volume with an opening in the form of a short and narrow neck; Fig. 4.8. At wavelengths that
are large compared to the dimensions of the resonator, the air inside the cavity essentially
behaves as a spring with a characteristic resonance frequency fH, which decreases with its
volume; the exact relation will be derived in the following. As we will see later in the present
chapter, this property of fH, which was initially used to identify the frequency components in
musical instruments [106, p. 44], plays a fundamental role in the sound localization ability
of both Xenopus and the barn owl; cf. Sec. 4.5 .

In our treatment of the attached cavity, we require the resonator to have a volume VH,
which joins the two arms of the internal canal through a cylindrical neck of length LH and
cross section SH (Fig. 4.8). The pressure and particle velocity at the mouth of the neck
determine the appropriate requirements at the junction with the internal canal. Analogous to
the junctions between the tympanic cavities and internal canals (Eqs. (4.32), (4.33), (4.36)
and (4.37)), we require the continuity of the pressure at the junction of the internal canal and
the Helmholtz resonator. Denoting the pressure at the mouth of the resonator by pout

H , we
have

pout
H = p0

C(LT +LC/2) = pL
C(LT +LC/2) . (4.40)

Moreover, analogously to Eqs. (4.34), (4.35), (4.38) and (4.39), the particle velocity vH of
air entering the neck of the Helmholtz resonator can be calculated by the conservation of the
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Fig. 4.8 Schematic for the Helmholtz resonator [105].
The resonating volume VH is connected to a narrow neck
of length LH and cross section SH. The velocity of air in
the neck of the resonator vH is given by the difference of
the flow velocities in the outgoing (vout) and incoming
(vin) canals. The resonating volume resists the move-
ment of air in the neck akin to a mass-spring system and
can be used to determine the pressure pH at the mouth
of the neck.

volume flow rate at the junction. The volume velocity of the air entering the resonator is thus
given by the difference between the incoming and outgoing flow velocities of the internal
canal (4.24) at the junction,

SHvH = SC (vin − vout) = SC
(
v0

C(LT +LC/2)− vL
C(LT +LC/2)

)
(4.41)

where SH is the area of cross section of the neck of the resonator; cf. Fig. 4.8. The
flow through the narrow and short neck can be assumed to be incompressible. Following
Hirschberg and Rienstra [105] the Bernoulli equation for incompressible flow through the
neck of the resonator gives us

ρ
dϕ

dt
+ pout

H = pin
H , (4.42)

where ϕ =
∫ out

in
v dx is the flow potential and pin

H is the pressure at the base of the resonator.

As we can neglect the variation of the flow velocity across the short neck length LH, we
can approximate the potential by ϕ ≈ vHLH. Assuming a uniform change in density ρ in

inside the resonator, a linearization of the adiabatic equation of state (PV γ =constant) gives
ρ in = pin

H/c2, where c is the speed of sound. The application of an integral mass conservation
law to a cavity volume of VH gives us

VH

c2
d pin

H
dt

=−ρSHvH . (4.43)
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After eliminating pin
H from Eqs. (4.42) and (4.43), we can relate velocity of air flow

through the neck to and the pressure at the mouth of the neck pout
H through

VHLH

c2SH

d2vH

dt2
+ vH =

−VH

ρc2SH

dpout
H

dt
. (4.44)

For a quasi-steady-state flow the time dependence can be expressed as a factor of exp(iωt)
and the above equations reduce to(

−k2VHLH

SH
+1
)

vH =
−ikVH

ρcSH
pout

H , (4.45)

where, as usual, k = ω/c is the wave number. Finally, we equate the pressure at the ends of
the outgoing and incoming canals to pH and substitute the expressions for vH from (4.41)
and the pressure from (2.66) into (4.45) to relate pressure and velocity on the left and right
halves of the interaural canal, which leads to the relation

ρc
(
v0

C(LT +LC/2)− vL
C(LT +LC/2)

)
=

−ikVHS−1
C

1− f 2/ f 2
H

p0/L
C (LT +LC/2) . (4.46)

The right-hand-side of the above equation follows from Eq. (4.40). We have also defined

fH = c/2π
√

SH/(LHVH) , (4.47)

as the resonant frequency of the Helmholtz resonator. At fH the connection between the
left and right halves of the interaural canal is effectively broken. From the above equation,
it should be clear that the resonance frequency fH is inversely proportional to the square
root of the resonator volume, such that in the absence of a resonator we have, VH → 0 and,
consequently, fH → ∞.

4.2.3 Γ± coefficients

Using the expressions at the junction with the Helmholtz resonator (4.40),(4.40) with the
pressure (Eqs. (4.32), (4.33), (4.36) and (4.37)) and velocity (Eqs. (4.34), (4.35), (4.38)
and (4.39) continuity relations for Xenopus and the barn owl, we obtain six linear equations
for both animals, such that six of the eight coefficients A0/L

C , B0/L
C and A0/L

T , B0/L
T can be

expressed in terms of the remaining two. Accordingly, the pressure coefficients of the right
tympanic cavity can be expressed in terms of the coefficients of the left tympanic cavity. This
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can be compactly written as (
AL

TeikL

BL
Te−ikL

)
= Mxen/owl

(
A0

T

B0
T

)
(4.48)

where Mxen/owl is a 2×2 matrix which depends on the geometry of the interaural cavity. The
superscripts “xen” and “owl” denote Xenopus and the barn owl respectively. For Xenopus,
the coefficients Mxen

i j of the matrix are given by

Mxen
11 =

eik2LT

[
(1+χH)(1+ ςxen)

2 eikLC −2χH (1+ ςxen)− (1−χH)e−ikLC

]
ς2

xen
, (4.49)

Mxen
22 =

e−ik2LT

[
(1−χH)(1− ςxen)

2 e−ikLC +2χH (1− ςxen)− (1+χH)eikLC

]
ς2

xen
, (4.50)

Mxen
12 =−Mxen

21 =
Q

ς2
xen

, (4.51)

where, Q= (1−χH)(1− ςxen)e−ikLC +χH
(
2− ς

2
xen
)
− (1+χH)(1+ ςxen)eikLC

where, for an input frequency f , we have defined

ςxen = 2iklT & χH =
1
2

ikVHS−1
C

1− f 2/ f 2
H
, (4.52)

where fH is the characteristic frequency (4.47) of the Helmholtz resonator of volume VH.
With some algebra, it can also be shown that the matrix M has a determinant equal to one, i.e.
Det Mxen = Mxen

11 Mxen
22 +(Mxen

12 )2 = 1. The corresponding matrix coefficients for the barn
owl are given by expressions similar to those for Xenopus, which read

Mowl
11 =

eik2LT
[
(1+χH)eikLC −2χHςowl − (1−χH)ς2

owle
−ikLC

]
(1− ς2

owl)
, (4.53)

Mowl
22 =

e−ik2LT
[
(1−χH)eikLC +2χHςowl − (1+χH)ς2

owle
−ikLC

]
(1− ς2

owl)
, (4.54)

Mowl
12 =−Mowl

21 =
−ςowl (1+χH)eikLC +2χH(1+ ς2

owl)+(1−χH)ςowle−ikLC

(1− ς2
owl)

, (4.55)

where

ςowl =
ST −SC

ST +SC
. (4.56)
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As in the case of Xenopus, Det Mowl = Mowl
11 Mowl

22 + (Mowl
12 )2 = 1. Setting ςex → ∞ for

Xenopus and ςowl → 0 for the barn owl is equivalent to requiring the tympanic and internal
canal cross sections to be equal, i.e., SC = ST. Furthermore, requiring the volume VH of the
Helmholtz resonator to vanish results in χH = 0 in both cases, which results in the matrix for
a cylindrical cavity

Mcyl =

(
eik(2LT+LC) 0

0 e−ik(2LT+LC)

)
. (4.57)

The above transformation matrix is equivalent to the plane wave expressions of Eqs. (2.66)
and (2.67) for a cylindrical volume of length 2LT +LC.

Using the matrix M we can now obtain the internal pressure pin at the left and right
eardrums. For Xenopus, this gives us

pin
0 = p0

T(0) =
A0

T
2ik(LT + lT)

+
B0

T
2ik(LT + lT)

, (4.58)

pin
L = pL

T(LT) =
AL

TeikL

2ik(LT + lT)
+

BL
Te−ikL

2ik(LT + lT)
(4.59)

=
1

2ik(LT + lT)
(1 1)Mxen

(
A0

T

B0
T

)
, (4.60)

whereas for the barn owl we have

pin
0 = p0

T(0) = A0
T +B0

T, (4.61)

pin
L = pL

T(LT) = AL
TeikL +BL

Te−ikL (4.62)

= (1 1)Mowl
(

A0
T

B0
T

)
. (4.63)

The coefficients A0
T and B0

T are to be determined by the boundary conditions at the eardrums.

Boundary conditions at the eardrums

At the boundary between the eardrums and the internal cavities, the boundary conditions
can once again be approximated through the piston approximation from Section 2.2.3 (cf.
Eq. (2.75)), where instead of equating the air particle velocity to the membrane vibration
velocity at every point on the membrane surface, we approximate the membrane by an
integral average. For Xenopus, the procedure is simplified further, as its eardrum moves as a
piston by definition; cf. Eq. (4.13). At the boundary with the eardrums moving with velocity
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u0/L, the the fluid particle velocity (4.29), (4.30) satisfy

− v0
T(LT) =

υ1A0
T

2ρck2(LT + lT)2 +
υ2B0

T
2ρck2(LT + lT)2 = iωu0 , (4.64)

vL
T(2LT +LC) =

eik(2LT+LC)υ2AL
T

2ρck2(LT + lT)2 +
e−ik(2LT+LC)υ1BL

T
2ρck2(LT + lT)2 = iωuL , (4.65)

υ1 =−1− ik(LT + lT), υ2 =−1+ ik(LT + lT). (4.66)

As in the case of the lizards (2.76), directions into the cavity are positive and those out of the
cavity are negative. The above equations can be used together with expressions for the internal
pressure, Eqs. (4.58) and (4.59), and the matrix Mxen (4.60) to eliminate the coefficients A0/L

T

and B0/L
T to express the internal pressure in terms of the eardrum displacement u0/L. We now

define sum and difference expressions analogous to Eqs. (2.87) to (2.90) such that,

u± = uL ±u0, pin
± = pin

L ± pin
0 , (4.67)

pin
± = Γ

xen
± u± , (4.68)

resulting, as before, in coefficients Γxen
± (2.98) that quantify the internal pressure generated

by the motion of the eardrums and are given in terms of the transformation matrix Mxen as

Γ
xen
± =−ik

ρc2

2
(υ2 −υ1)

±2+Tr
[(−υ2 −υ1

υ2 υ1

)
Mxen]

(υ2 υ1 )Mxen
(

υ2
−υ1

) , (4.69)

where Tr denotes the trace of a matrix, and 1 the identity matrix. For the barn owl, the
boundary conditions are equivalent to the piston approximation of Chapter 2 (cf. Eqs. (2.75)
and (2.76)) and, now in terms of the average displacements uave

0/L, read

−v0
T(LT) = A0

T +B0
T = iρcωuave

0 , (4.70)

vL
T(2LT +LC) = eik(2LT+LC)AL

T + e−ik(2LT+LC)BL
T = iρcωuave

L , (4.71)

Similar to Xenopus, the matrix Mowl (4.63) be used to calculate the coefficients,

Γ
owl
± =−ik

ρc2

ST

±2+Tr Mowl

(1 −1)Mowl
(

1
1

) , (4.72)

Using the matrix from Eq. (4.57) in the above expression results in the familiar Γ± coefficients
from Chapter 2; cf. Eq. (2.98).
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4.3 Sound input

The sound input to the eardrum for Xenopus is of a similar form to the one described for the
lizards in Section 2.1.3. However, we must account for the fact that the underwater speed of
sound cw and, consequently, the wavelength are 4.3 times higher. At 4 kHz, the upper limit of
Xenopus‘s hearing range [107], the underwater sound wavelength is around 37 cm, while the
animal’s interaural distance is approximately 2 cm [57]. As a result, the diffraction of sound
by the head and acoustic shadowing can be neglected for Xenopus’s entire hearing range. In
other words, the small head model of Figure 2.7 for the lizards holds in the present case as
well. Correspondingly, the sound inputs, which only differ in phase and not in amplitude, are
given by

pex
0 = pexp(iωt)exp(−ikw∆/2), pex

L = pexp(iωt)exp(−ikw∆/2), (4.73)

where ∆ = Lxen sin θ

is the additional distance traveled by the sound wave to reach the opposite ear (see Fig. 4.9a)
and kw = ω/cw is the now the wavenumber in water. The speed of sound in water is cw

is approximately 4.3 times the speed of sound in air c. For an interaural separation Lxen,
∆ = Lxen sin θ is the additional distance traveled by a sound wave to reach the opposite ear;
cf. Fig. 4.9a.

Barn owls, on the other hand, are larger than Xenopus and are entirely terrestrial. The
eardrums themselves are positioned at the end of canals, whose openings are asymmetric with
respect to a horizontal plane passing through the eyes [108, 109]. The interaural distance,
which in this case is between the openings of the ear canals, is approximately 5 cm (based on
Knudsen and Konishi [110]). As a result, the effective interaural distance Lowl is greater than
the horizontal separation between the eardrums; cf. Fig. 4.9b. In our model, we ignore the
vertical asymmetry as it does not contribute to the generation of azimuthal sound localization
cues. The inputs to the barn owl ear are thus given by

pex
0 = pexp(iωt)exp(−ik∆/2), pex

L = pexp(iωt)exp(−ik∆/2), (4.74)

where ∆ = Lowl sinθ

is the additional distance traveled by the sound wave to reach the opposite ear (see Fig. 4.9b)
and k = ω/c is now the wave number in air. At frequencies above 5 kHz (λ ≈ 6.8 cm),
the amplitude difference generated by the facial ruff would become significant [111–113].
However, we can safely neglect the amplitude difference between pex

0 and pex
L up to 3 kHz, as

hearing cues in this range are no longer generated by ICE, but by the inputs through the ears
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(a) Xenopus (b) Barn owl

Fig. 4.9 The acoustic head model for ICE in Xenopus (a) and the barn owl (b). For Xenopus,
the small head size approximation, i.e. Lxen ≪ λw approximation of Section 2.1.3 is still valid
(cf. Fig. 2.7), as underwater sound wavelengths are 4.3 times larger than in air for the same
frequency. As a result, sound travels extra distance ∆ = Lxen sinθ to reach the contralateral
ear, which gives rise to a phase difference kw∆. For the barn owl, as the eardrums are located
at the end of an external canal, the effective interaural distance Lowl is greater than the
physical separation between the eardrums. As a result, the extra distance traveled is now
∆ = Lowl sinθ , with a phase difference of k∆ in air.

themselves in the form of interaural time and level differences. As a result, at frequencies
above 3 kHz, we are more interested in the frequency behavior of the interaural cavity than
in the generation of iTD and iLD cues through ICE.

As a consequence of the chosen forms of the sound input, while the interaural level
difference (ILD) are zero for both animals (4.73), the interaural time difference (ITD)
depends on the medium such that for a direction θ

ITDxen = Lxen sinθ/cw ITDowl = Lowl sinθ/c . (4.75)

ILDxen = ILDowl = 0 . (4.76)

4.4 Coupled eardrum vibrations

Xenopus

Using the expressions for the radiative force (4.17), internal pressure (4.68) in terms of the
Γxen
± coefficients (4.69) and the external underwater sound input (4.73), we can rewrite the
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equations of motion for the eardrums (4.13) for quasi-steady-state solutions of the form
u0/L exp(iωt) such that

−mpω
2u± = Sp pex

± −
(
SpΓ

xen
± −ωΓr +κ + ibω

)
u± . (4.77)

The eardrum vibrations can be compactly expressed in terms of the “spring” constant
generated by the tympanic annulus κ (4.12) and damping b as

2u0/L =
Sp
(

pex
L + pex

0
)

1/Λxen +SpΓxen
+ −ωΓr

∓
Sp
(

pex
L − pex

0
)

1/Λxen +SpΓxen
− −ωΓr

, (4.78)

Λ
xen(ω) =

[
−mpω

2 +κ + iωb
]−1

, (4.79)

where Λxen is the frequency response for an independent Xenopus eardrum in the absence of
acoustic radiation and an internal pressure. In other words, for an external pressure of form
p exp(iωt), the displacement of the eardrum is given by SpΛ× p exp(iωt); compare with
Eq. (2.97).

Barn owl

For the barn owl, as the eardrums are instead driven by an external sound pressure in air
(4.74), the expressions for the average membrane displacements uave

0/L are almost identical to
those for the lizard eardrum (2.100), except for the cavity Γ± coefficients (4.72). In terms of
the membrane frequency response Λtot (4.19), the average displacements uave

0/L are given by

ST uave
0/L(r,φ) =

1
2

(
pex

L + pex
0

1+ΛtotΓ
owl
+

∓
pex

L − pex
0

1+ΛtotΓ
owl
−

)
Λtot . (4.80)

Hearing cues: The vibration amplitudes thus derived for both animals can now be used to
define the hearing cues of Chapter 3, i.e., the internal time (3.2) and level (3.7) differences
between the eardrum vibrations

iTD = Arg(uave
L /uave

0 )/ω iLD = 20Log10|uave
L /uave

0 | . (4.81)

4.5 Results

The material parameters for Xenopus and the barn owl are given in Table 4.1. For Xenopus,
the cavity volumes were chosen in accordance with typical adult values which range between
.04 and .07 cm3 [114], while the eardrum area agrees with anatomical measurements [95].



104 ICE-like Systems

The Young’s modulus of the tympanic annulus was taken to be similar to values for typical
hyaline cartilage [115]. For the barn owl, the values corresponding to cavity volume are
based partially on data from Kettler et al. [56] and the density and thickness of the eardrum
are based on typical avian eardrum values measured for a duck [81]. We again note that the
distance between the internal surfaces of the barn owl eardrums via the interaural canal is
LC+2LT = 40 mm, which is lesser than the effective interaural distance Lowl, but greater than
the physical “external” separation between the eardrums. The volume VH of the Helmholtz
resonator is variable in the case of Xenopus, as it is formed by the lungs and can be inflated
and deflated. Under normal conditions in nature, the volume of the lungs is between 1.0–2.0
cm3 while diving. In the barn owl however, as the resonator is formed by the cavity of the
sphenoid bone, it has a fixed value.

Table 4.1 Material and geometrical parameters used for Xenopus and the barn owl.

Parameter Xenopus Barn owl
Interaural distance Lxen = 20 mm Lowl = 50 mm

TC Depth LT 1.5 mm 2.0 mm
InC Length LC 17 mm 36 mm

Cavity Volume Vcav 53 mm3 1660 mm3

Eardrum area Sp = 35 mm2 Smem = 38.5 mm2

Eardrum mass mp = 5 mg –
Eardrum density – ρM = 1.2 mg/mm3

Eardrum resonance – f0 = 3.0 kHz
Eardrum thickness – dM = 20 µm

Annulus width aann = .4 mm –
Annulus thickness h = .11 mm –
Young’s Modulus E = 39.2 MPa –

Damping αp 6 ms−1 18.8 ms−1

Resonator neck length LH 4.3 mm 0.5 mm
Neck cross section SH 0.3 mm2 3.0 mm2

4.5.1 Xenopus

Eardrum vibration amplitude

In Figs. 4.10a and 4.10b we compare experimentally measured eardrum vibration amplitudes
with those obtained from our model for two cases, viz., when the lungs have a typical volume
of VH = 1.5 cm3 and when they are completely deflated, i.e., VH = 0 cc. Given the analytical
simplicity of our model, we see a much better agreement with experimentally determined
values for our chosen value of lung inflation, than with deflated lungs. Inflating the lungs
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increases the amplitude of vibrations in the lower frequency range (0.8-1.2 kHz). In the
1.5-2.0 kHz range, there is an increase in the directionality as the contralateral amplitude has
a markedly lower amplitude, although this happens at the cost of an overall reduced vibration
amplitude.

(a) Ipsilateral (b) Contralateral

Fig. 4.10 Experimentally measured (filled triangles) and model vibration velocities of the
Xenopus (a) ipsilateral and (b) contralateral eardrum underwater. The eardrum vibration
velocities have been measured [57] by using laser vibrometry and have been normalized w.r.t.
the input pressure. The solid (red) line corresponds to inflated lungs with a total volume
VH = 1.5 cm3 and the dashed (black) line corresponds to the case VH = 0 cc, i.e., absent or
fully deflated lungs. The sound-source direction is θ = 90◦. The contralateral amplitude
is significantly lower than the ipsilateral amplitude. As both plots show, the experimental
results can be explained only with inflated lungs, whose Helmholtz-resonator function has
been discussed in Section 4.2.2.

The influence of the lung volume on the eardrum vibration amplitude is further illustrated
for the underwater and air cases in Figs. 4.11a and 4.11b, respectively. On the whole, the
eardrum response is shifted to lower frequencies underwater relative to air. This is due to
the radiation of acoustic energy into the medium and is related to the reduction in pitch of a
plate vibrating in contact with water [116, 117], due to the increased effective mass of the
eardrum (4.18). In both cases, however, the inflation of the lungs results in higher vibration
amplitudes in the 0.8-1.2 kHz range, with the first peak corresponding to the Helmholtz
resonance of the lungs.

The second peak is a function of both the cavity geometry and the eardrum resonance
subject to the surrounding medium. Because of the difference in the surroundings, the
second peak occurs at a higher frequency in air than under water. The two-peaked spectrum
as well as its dependence upon lung volume is consistent with experimentally observed
values [57, 118]. The increased eardrum amplitude between 0.8-1.2 kHz agrees with peak
frequencies in adult-frog hearing [114]. The frequency region around 1 kHz is behaviorally
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(a) Underwater (b) In air

Fig. 4.11 Vibration velocity of the Xenopus eardrum (a) underwater and (b) in air for different
lung volumes. The pronounced underwater peaks and their shifts to lower frequencies as
compared to those in air are to be noted. The solid (blue) line corresponds to a volume of
2 cm3 and the dashed (red) line corresponds to deflated lungs, of total volume 0.1 cc. The
dot-dashed (black) line corresponds to absent lungs. In all cases the sound source is directly
in front of the animal, i.e., θ = 0◦ and iLD=0 as both ears thus receive the same input. The
units are decibel values with respect to a velocity of 1 mm/s with a sound input amplitude of
1 Pa. A significant portion of the Xenopus male advertisement call is concentrated around 1
kHz, which is consistent with the lower frequency peaks in (a) and (b) with inflated lungs.

relevant to Xenopus as a significant portion of the energy of the male advertisement call is
centered around 1 kHz [86].

Internal level difference

Figures 4.12a and 4.12b show the frequency dependence of the internal level difference or
iLD (4.81) between eardrum vibrations underwater and in air, respectively. In both cases, the
iLD is generated solely by the coupling through the interaural cavity, even though the inputs
to both ears have the same amplitude; cf. (4.73). The volume of the Helmholtz resonator VH,
which represents the air-filled lungs, was fixed at 1.5 cm3 in all cases, based on typical lung
volumes in a submerged Xenopus [57]. Underwater, we see a pronounced, albeit narrow, peak
at around 1.7 kHz for all three sound source directions with a maximum value for θ = 90◦.
A peak iLD at 1.7 kHz is consistent with the spectrum of the mating calls of a male Xenopus,
where the majority of the energy is concentrated in a band between 1.7kHz and 2.2 kHz [86].
Furthermore, by varying the lung volume the female can tune into the ‘mating’ frequency of
different males. The interaural level difference between the inputs to the ears, as in the case
of the lizards, is effectively zero (4.76).

Shallow water acts as a high-pass filter for underwater sound, i.e., below a certain cut-off
frequency, the sound pressure amplitude decreases exponentially with distance. For instance,
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in a pond of depth 0.5 m with a mud bottom – natural conditions for Xenopus [119] – the
cut-off frequency would be at least 1.0 kHz [120]. As a result, the enhanced hearing cues
around 1.7 kHz would be advantageous to Xenopus for long-range communication in shallow
water. In air, we see that the iLD is negative around 1.5 kHz and positive around 2.3 kHz.
A negative iLD physically means that the contralateral ear has a higher amplitude than the
ipsilateral ear and suggests that, at least in air, the iLD is a better hearing cue at frequencies
above 2 kHz.

(a) Underwater (b) In air

Fig. 4.12 Frequency dependence of the decibel internal level difference (iLD) of the Xenopus
eardrum (a) underwater and (b) in air. The directions shown are with respect to the ipsilateral
ear, where the positive angle corresponds to a sound source on the same side as the ear; cf.
Fig. 2.7. The solid (blue) line and the dashed (red) line correspond to θ = 90◦ and θ = 60◦,
respectively, while the dot-dashed (black) line corresponds to θ = 30◦; cf. Fig. 2.7. The
volume of the lung-related Helmholtz resonator is VH = 1.5 cm3 in all cases. In (a) the iLD
peak is concentrated in a narrow range around 1.7 corresponding to the dominant portion of
the underwater mating call spectrum of the male Xenopus.

Figures 4.13a and 4.13b exhibit the variation of the iLD spectrum with lung volume for
a sound source direction of θ = 90◦. Underwater, decreasing the lung volume increases
the peak iLD frequency, thereby providing a means to tune the animal’s hearing. In air,
the variation in the iLD spectrum upon decreasing the lung volume from 2.0 cm3 to 1.0
cm3 is negligible, with peak positive values at around 2.5 kHz. The iLDs for absent lungs
corresponding to a Helmholtz resonator volume of VH = 0.0 cm3 is also given. We see that
in air, the iLD performance is best in the absence of the lungs, whereas underwater the lungs
are essential to generating large (maximal) iLDs around 1.7 kHz. As Fig. 4.13a indicates,
reduction of the fully inflated volume even allows a fine tuning of the maximum. These two
facts strongly suggest that the lungs are essential to underwater sound localization.



108 ICE-like Systems

(a) Underwater (b) In air

Fig. 4.13 Frequency dependence of the interaural level difference (iLD) between the eardrums
for varying lung volumes VH (a) underwater and (b) in air. The sound source direction in all
cases is taken to be θ = 90◦. The inset in (a) shows the variation of the iLD peak with lung
volume where the maximum shifts in a window of around 100 Hz. As Fig. 4.13a shows, the
female can tune in to the male calls at about 1.7 kHz by varying the lung volume. However,
the influence of the lungs is negligible in air, suggesting that their influence on hearing is
primarily an underwater adaptation.

Using iLD for sound-source localization: The direction dependence of the iLDs for
different frequencies is illustrated in Figs. 4.14a and 4.14b. In general, ipsilateral (θ > 0◦)
iLDs are positive, whereas contralateral (θ < 0◦) iLDs are negative. The steep increase in
iLD around 0◦ is conducive to localizing sound sources directly in front of the animal. A
maximal iLD nearly always occurs at θ = 90◦ and the animal can localize a sound source
by rotating its head to perceive the steep transition at θ = 0◦. Furthermore, as opposed to
predator or prey behavior, where a fast reaction is essential, mating behavior is in general not
characterized by a narrow time window. Thus, the localization of the mating call through a
rotation of the head is feasible.

Internal time difference

The frequency-dependent iTD gain or time-dilation factor (TDF), defined as in Chapter 3
as the ratio of internal and interaural time difference (iTD/ITD) (4.81) has been plotted in
Figs. 4.15a and 4.15b for the underwater and air cases, respectively. Unlike in the case of
terrestrial animals with ICE, specifically, geckos where the iTD gain can be higher than 3
[12], Xenopus does not experience any significant iTD gain either underwater or in air. This
is due to the rigid-plate construction of the eardrum and the higher mass of the attached
middle-ear system, i.e. extracolumella & columella; see Section 4.1.1.

Figures 4.16a and 4.16b show that varying the lung volume does not improve the iTD
gain significantly either. Compared to interaural time differences (ITD) of around 58 µs in
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(a) Underwater (b) In air

Fig. 4.14 Direction dependence of the interaural level difference (iLD) between the eardrums
for for different frequencies (a) underwater and (b) in air. The lung volume VH is 1.5 cm3 in
all cases. By rotating its head, the animal can exploit the steep iLD increase around θ = 0◦

to localize the sound source. This is of particular relevance to mating behavior, as it is not
characterized by a narrow time window.

air and and 13 µs underwater, a moderate gain of around 1.5, corresponding to a maximum
iTD of 87 µs in air and 20 µs underwater, for nearly completely deflated lungs of volume
0.1 cm3 is also obtained. This is in stark contrast to the lizards, where we see a time dilation
factor of around 3.5 for Tokay and over 10 for a young Varanus; cf. Figs. 3.6a and 3.6b. Note
that realistic lungs volumes for Xenopus, however, are between 1.0-2.0 cm3 [57]. Our results
therefore suggest that, Xenopus cannot rely on time difference cues both underwater, and in
air and must solely rely on internal level differences for mating and their lateral line system
[121] for time-sensitive activities like predation.

Terrestrial vs. aquatic eardrums: Xenopus vs Xenopus2

In order to understand the specialization of the Xenopus eardrum in its aquatic environment,
we compare its behavior with the one of an eardrum belonging to a typical terrestrial animal
with ICE, as described for the Tokay gecko and Varanus in Chapter 2 (cf. Section 2.1.1) as
well as for the barn owl in the present chapter (cf. Section 4.1.2). In other words, we consider
a model of the eardrum as a thin, circular and linear-elastic membrane asymmetrically loaded
by an extracolumella. Subject to underwater sound, each eardrum – one at at x = 0 and the
other at x = L – feels a radiative pressure proportional to the average displacement uave

0/L of
its surface quantified by the coefficient Γr (4.17), such that uave

0/L is given by an expression
similar to Eq. (4.78),

2uave
0/L =

Stymp (pL + p0)

S2
tymp/Λtot +StympΓxen

+ −ωΓr
∓

Stymp (pL − p0)

S2
tymp/Λtot +StympΓxen

− −ωΓr
. (4.82)
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(a) Underwater (b) In air

Fig. 4.15 Frequency dependence of the time-dilation factor or iTD gain (= iTD/ITD) of the
Xenopus eardrum (A) underwater and (B) in air. The directions shown are with respect to the
ipsilateral ear, where the positive angle corresponds to a sound source on the same side as the
ear. In all cases the volume of the Helmholtz resonator originating from the lungs is taken to
be VH = 1.5 cc. In both media there is no significant amplification of iTDs, suggesting that it
is not a realistic hearing cue for the animal.

where Λtot is the membrane frequency response of the lizard eardrum of area Stymp defined
in Eq. (2.97).

In order to compare the behavior of the two eardrums, we postulate a hypothetical animal
Xenopus2 that has the same interaural cavity described in Sec. 4.2, albeit with flexible gecko-
like eardrums, as opposed to the actual rigid-plate construction of the natural Xenopus. The
instantaneous sound power absorbed by the eardrums in both cases is given by

PX1 = pex
0 u̇0 + pex

L u̇L , PX2 = pex
0 u̇ave

0 + pex
L u̇ave

L (4.83)

where “X1” refers to our model of Xenopus as it occurs in nature, whereas “X2” refers to the
fictitious Xenopus2 with a flexible eardrum.

Figures 4.17a and 4.17b show the absolute values (in dB re 1 nW) of the instantaneous
sound power absorption |PX1| & |PX2| with respect to frequency underwater and in air,
respectively. In Fig. 4.17a, we see peaks in the 2-2.5 kHz region in both cases, which is
driven by the Helmholtz resonance of the lungs. The rigid-plate construction, however,
absorbs more power than the flexible eardrum in the behaviorally relevant 1 kHz region
under water as well as in air; see Fig. 4.17b. The power absorption of the flexible-membrane
construction, however, only peaks below 400 Hz both under water and in air. This suggests
that the Xenopus eardrum is adapted to improve hearing in the 1 kHz frequency region in
both media. In passing, it is good to remember that Xenopus can tune the resonances of
Figs. 4.17a and 4.17b by varying its lung volume; Figs. 4.13a and 4.13b.
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(a) Underwater (b) In air

Fig. 4.16 Frequency dependence of the time-dilation factor (TDF) or iTD gain (=iTD/ITD) of
the Xenopus eardrums for varying lung volumes VH (A) underwater and (B) in air. Reducing
the lung volume leads to a marginal improvement on the TDF in both media, suggesting
that the animal cannot realistically use time-difference cues to localize sound sources. The
sound-source direction is θ = 90◦ in all cases.

4.5.2 Barn owl

Cavity resonance

Given the high hearing frequency range of the barn owl, it is likely that the acoustic resonance
of its interaural cavity plays a significant role in its hearing. An internal separation of 40 mm
((LC +2LT), cf. Table 4.1) between the barn owl’s eardrums of Fig. 4.5b give an estimated
first and second resonance frequencies of about 4.3 kHz and 8.6 kHz ( f1 = c/2(LC +2LT) &
f2 = c/(LC+2LT)) for a sound speed of c= 343 m/s at 20◦C, respectively. These frequencies
are certainly within the hearing range, in which the animal is capable of azimuthal sound
localization. Although the exact resonance frequency deviates slightly from this rough
estimate, we will subsequently see that the value still lies within the barn owl’s hearing
range. In previous treatments of ICE [49, 50], as well as in our description of ICE for lizards
(see Chapters 2 and 3), the interaural coupling was achieved through cylindrical acoustic
cavities. The resonances of cylindrical acoustic ducts, however, deviate from those of realistic
interaural cavities. For example, the resonance frequency of the interaural cavity of a Tokay
gecko skull with an interaural separation of 2.2 cm [25] was numerically estimated by Vossen
[49] to be around 3.2 kHz. On the other hand, the resonance frequency of a closed cylinder
of length L = 2.2 cm is around 7.7 kHz. As the barn owl interaural cavity narrows down
to around 3 mm in diameter at its center [56], there will likely be a similar deviation of its
resonance from that of a cylindrical cavity.

The resonance behavior of the interaural cavity can be seen most clearly through the
Γ± coefficients defined for the barn owl in Eq. (4.72). Using the definition of ςowl from
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(a) Underwater (b) In air

Fig. 4.17 Frequency dependence of the power absorption by Xenopus’ ICE system (dB re
nW) for a lung volume VH = 1.5 cm3 (A) underwater and (B) in air. The solid (blue) line
corresponds to Xenopus as it exists in nature with rigid-plate eardrums, whereas the dashed
(red) line corresponds to the fictitious Xenopus2 with thin, flexible, eardrums. In all cases
the sound-source direction is θ = 90◦. Compared to flexible “lizard-like” eardrums, the
rigid-plate eardrums absorb more sound power both underwater and in air in the behaviorally
relevant 1 kHz region, suggesting that the Xenopus eardrum is adapted to hearing underwater.

Eq. (4.56), the expressions for Γowl
± can be simplified into the form

Γ
owl
+ =−ρc2k

ST

(ST −SC tankLT tankLC/2)+ iχH (SC tankLT +ST tankLC/2)
(ST tankLT +SC tankLC/2)− iχH(SC −ST tankLT tankLC/2)

, (4.84)

Γ
owl
− =

ρc2k
ST

SC tankLT +ST tankLC/2
SC −ST tankLT tankLC/2

. (4.85)

In the absence of the Helmholtz resonator, we have χH → 0. Further setting SC → ST in
Eqs. (4.84) and (4.85) reduces the Γowl

± coefficients to

Γ
cyl
+ =−ρc2k

ST
cotk(LT +LC/2) and Γ

cyl
− =

ρc2k
ST

tank(LT +LC/2) ,

which are equivalent to the Γ± coefficients for the lizard defined in Eqs. (2.8) and (2.9),
but now for a cylinder of length 2LT +LC and cross section ST. It should be immediately
apparent, that our naive estimate for the resonance frequency, i.e. f = c/2(LC +2LT) and its
odd multiples correspond to Γ

cyl
− → ∞, whereas its even multiples correspond to Γ

cyl
+ → ∞.

Moreover, as the Γ± coefficients result from Neumann boundary conditions Eqs. (4.70)
and (4.71) the eardrum, their divergences correspond to the resonances of a closed cavity.

Estimating the resonances of the cavity: In order to exactly calculate the resonances of
the interaural cavity, we therefore seek the divergences of Γowl

± in the absence of the Helmholtz
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(a) Vcav <V0 (b) Vcav =V0 (c) Vcav >V0

(d) f ∗− vs SC/ST (e) f ∗+ vs SC/ST

Fig. 4.18 Interaural cavity shapes when the internal canal (InC) is narrower than (a), equal
in cross section to (b) and wider than (c) the tympanic cavities (TC); cf. Fig. 4.5b. (b)
corresponds to the interaural cavity used in a previous treatment of ICE [49, 50] and has
a volume V0 equal to a cylinder with a radius equal to that of the eardrum and a length
equal to the interaural distance. (a) and (c) correspond to volumes lesser and greater than
V0, respectively. In (d)&(e) we plot the continuous variation of the resonance frequencies
f ∗∓ (corresponding to the poles of Γ∓; cf. Eqs. (4.86) and (4.87)) of the interaural cavity
with the ratio of the cross section of the internal canal and tympanic cavity, i.e. SC/ST. The
resonance frequencies of the configurations in (a), (b) & (c) are indicated via vertical dotted
black lines, whereas the (horizontal) dashed red line denotes the resonance frequency of
a cylinder of length 2LT = LC =40 mm. From (d) and (e) we also see that the resonance
frequencies increase with SC/ST, and are bounded above by the resonances of the cylinder of
length LC = 36 mm.

resonator, i.e., VH = 0. To do so, we set the denominators in Eqs. (4.84) and (4.85) as well
as χH to zero, which results in the following transcendental equations for the resonance
frequencies f ∗±

Γ− −→ tank∗±LT tank∗±LC/2 = SC/ST , (4.86)

Γ+ −→ tank∗±LT +
SC

ST
tank∗±LC/2 = 0 , (4.87)

where k∗± =
2π f ∗±

c
.
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In Figs. 4.18a to 4.18c, we illustrate three different configurations for analyzing the depen-
dence of the cavity resonance of closed cavities on their volume. Fig. 4.18b corresponds
to a standard cylindrical interaural cavity of length L, similar to the one used by to model
the interaural cavity in the common house gecko and Tokay in an earlier treatment of ICE
[49, 50]; cf. Fig. 2.6a. Figure 4.18a corresponds to the interaural cavity of the barn owl,
where the internal canal is narrower than the tympanic cavities, whereas in Figure 4.18c, the
converse is true, i.e the internal canal is wider than the tympanic cavities. In Figs. 4.18d
and 4.18e, we graph the variation of the resonance frequencies f ∗± with the ratio of the
cross sections of the internal canal and tympanic cavities, SC/ST. We see that the resonance
frequency increases with a wider internal canal, implying that, the resonance frequency of
the barn owl interaural cavity occurs below that of a cylinder of the same length. For a
configuration based on the parameters from Table 4.1, the first two resonance frequencies
calculated from Eqs. (4.86) and (4.87) are

f ∗− = 3.37 kHz and f ∗+ = 7.06 kHz, (4.88)

which are considerably lower than our initial naive estimates of 4.3 kHz and 8.6 kHz.
Furthermore, our results are consistent with the numerical estimates of Vossen [49], where
a widening of the interaural cavity around its center led to an increase in the fundamental
frequency.

Setting the Γ± coefficients to infinity in Eq. (4.80) results in membrane vibrations that
are either fully out-of or in phase, respectively. Moreover, they do so with equal amplitude
regardless of the sound source direction. A consequence of this is that all directional
information contained in pex

0/L is lost. Such a complete loss of directional information, would
put a nocturnal predator like the barn owl at a great disadvantage in terms of prey localization.
However, the barn owl hears without any apparent difficulty at least up to 9 kHz [87], even
though both interaural cavity resonances are seemingly below this frequency. This apparent
discrepancy is resolved by requiring a finite volume of the Helmholtz resonator VH, which
results in a non-zero value for χH and, consequently, a non-zero denominator in Eq. (4.84).
The presence of the Helmholtz resonator thus immediately eliminates the “even” resonances
associated with Γ+. As a result, a medially attached Helmholtz resonator could be of great
advantage to the barn owl with regard to its hearing and sound localization. As we will
subsequently see, tuning the Helmholtz resonator such that fH = f ∗−, will also significantly
improve the generation of both iTD and iLD cues, as well as the hearing sensitivity close to
f ∗−.
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Eardrum vibration amplitude

Given the high hearing frequency range of the barn owl, both the resonances of the interaural
cavity f ∗± calculated previously can influence hearing in the animal. As the Helmholtz
resonator represents the cavity of the sphenoid bone, its volume cannot be voluntarily or
involuntarily varied by the animal, unlike in the case of Xenopus. However, as the choice
of the volume VH and thus the resonance frequency fH of the Helmholtz resonator as well
as its relation to the cavity resonances f ∗± has important consequences for the frequency
and directional behavior of the system, we will be treating it as a variable parameter in the
following. In Figs. 4.19a to 4.19c the frequency dependence average vibration velocities
iωuave

0/L of the eardrum for different directions are plotted for three cases:

1. without a medially attached Helmholtz resonator, i.e. VH = 0 or fH → ∞,

2. with a resonator such that fH = f ∗−, or VH ≈ 1.65 cc and,

3. with a “large” resonator such that fH = 0.7 f ∗−, or VH ≈ 3.4 cc.

(a) fH → ∞ (b) fH = f ∗− (c) fH = 0.7 f ∗−

Fig. 4.19 Vibration velocity of the barn owl eardrum for different sound source directions
θ (a) without, (b) with a medially attached Helmholtz resonator of resonance fH frequency
equal to the cavity resonance f ∗−, and (c) with a large attached resonator such that, fH = 0.7 f ∗−.
In all three cases, we see “dips” in the velocity corresponding to the resonance f ∗− of the
interaural cavity. However, when fH = f ∗−, the drops in velocity are limited to a narrower
frequency region, independent of the source direction. The second dip at f ∗+ is only present
when the Helmholtz resonator is absent and is eliminated by its presence, thereby improving
the animal’s hearing sensitivity around f ∗+. The solid (blue) line and the dashed (red)
line correspond to θ = 90◦ and θ = 60◦, respectively, whereas the dot-dashed (black) line
corresponds to θ = 30◦ The units are decibel values with respect to a velocity of 1 mm/s
with a sound input amplitude of 1 Pa.

In all three figures, we see pronounced drops in the vibration velocity of the eardrum
in the vicinity of the first resonance frequency of the interaural cavity f ∗−. However, in
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Fig. 4.19b, the frequency at which the drop in velocity occurs is independent of direction,
unlike in the other two cases. The reason for this is that, by setting fH = f ∗−, we have made
both Γ+ and Γ− diverge at f = f ∗−; cf. Eqs. (4.84) and (4.85). As a result, by effectively
“tuning” the volume of the resonator, the frequency region in which the hearing sensitivity
can be impaired has been reduced to a narrower band. The second drop in velocity in, which
corresponds to the second resonance of the interaural cavity f ∗+, is only present in the absence
of a medially attached resonator. A Helmholtz resonator with a finite volume constrains Γ+

to take a non-zero value, thereby effectively eliminating the second resonance; cf. Eq. (4.84).
The influence of the Helmholtz resonator can, however, be seen more clearly by analyzing
the resulting directional hearing cues, i.e., the internal time and level differences (iTD &
iLD).

Internal level difference

In a similar fashion to the eardrum vibration amplitude, the frequency dependence of the
internal level difference (iLD) between the eardrum vibrations (4.81) is plotted for a cavity
with Helmholtz resonance frequency fH → ∞ or, equivalently, volume zero in in Fig. 4.20a,
for a resonance frequency fH = f ∗− in Fig. 4.20b, and for a large cavity of volume VH ≈ 3.4
cm3 or fH = 0.7 f ∗− in Fig. 4.20c. As in the case of the vibration velocity, we see that the
choice of the Helmholtz resonator volume VH has important consequences for the generation
of sound localization cues. As in the case of the lizards, the interaural level difference
between the inputs to the ears is effectively zero; cf. Eq. (4.76).

In contrast to the case of the lizards Section 3.3, the peak iLD occurs well below the
chosen membrane resonance frequency f0 = 3.0 kHz. This is a consequence of the fact
that, due the geometry of the system, the cavity resonance is considerably lower than that
of a cylindrical interaural cavity. From Figs. 4.20b and 4.20c, we see that the presence of a
resonator generates considerable iLD cues between 1 & 2 kHz, which is consistent with the
observed low-frequency behavior of the interaural cavity [56], as well as with the range of
interspecific calls in the barn owl [89]. However, the case with a smaller cavity volume of
around 1.65 cc, such that fH = f ∗− generates much higher (≈ 12 dB) iLD cues, as compared
to the case with a cavity of volume of around 3.4 cc, such that fH = 0.7 f ∗−, suggesting that the
Helmholtz resonator volume can be optimized with respect to the interaural cavity volume.
As in the case of Xenopus, a smaller resonator volume results in a higher frequency peak for
the iLD. The presence of a tuned resonator also eliminates the sharp drop in the iLD at the
first cavity resonance f ∗− , as compared to the other two cases.

From Fig. 4.20a it can be discerned that, without a medially attached resonator, the iLD
for a source at 30◦ is higher than for those at 60◦ and 90◦. This can be seen more clearly in
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(a) fH → ∞ (b) fH = f ∗− (c) fH = 0.7 f ∗−

Fig. 4.20 Frequency dependence of the decibel internal level difference (iLD) between the
barn owl eardrums for different sound source directions θ (a) without, (b) with a medially
attached Helmholtz resonator of resonance fH frequency equal to the cavity resonance f ∗−,
and (c) with a “large” attached resonator such that, fH = 0.7 f ∗−. The directions shown are with
respect to the ipsilateral ear, where the positive angle corresponds to a sound source on the
same side as the ear; cf. Fig. 4.9b. The solid (blue) line and the dashed (red) line correspond
to θ = 90◦ and θ = 60◦, respectively, whereas the dot-dashed (black) line corresponds to
θ = 30◦. The resonance frequencies of the cavity are denoted by f ∗±. The presence of a
resonator results in considerable iLD cues between 1 & 2 kHz corresponding to the range
of the barn owl’s interspecific calls [56]. Furthermore, the “tuned” resonator in (b) removes
the sharp drop in the iLD at f = f ∗− as compared to (a)&(c) and thus improves the quality of
iLD cues.

Fig. 4.21a, where we plot the direction dependence of the interaural level difference between
the eardrum vibrations for different input frequencies, in the absence of a resonator. For
comparison, we also plot the direction dependence of the iLDs for the case with a cavity
with Helmholtz resonance at fH = f ∗− in Fig. 4.21b as well as for the case with a larger
resonator with a resonance frequency fH = 0.7 f ∗− in Fig. 4.21c. In all three cases we see a
sharp increase across 0◦, which becomes less pronounced with an increase in the resonator
volume. The presence of the resonator, however, generates iLD cues that are maximal at
90◦, i.e., with the source closest to the ipsilateral ear, similar to that for the Tokay gecko; cf.
Fig. 3.7a.

Internal time difference

In contrast to the lizards, barn owls are capable of neuronally processing time difference cues
to localize sound at frequencies up to 10 kHz [122]. Given their relatively large interaural
distance and the fact that they live in air, barn owls would have a maximal ITD of around 145
µs between their ears. On the one hand, we cannot expect a significant time dilation factor
or TDF (iTD/ITD) in our model for the entire hearing range, given that the fundamental
frequency of the tympanic membrane is 3 kHz; cf. Table 4.1. On the other hand, as shown
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(a) fH → ∞ (b) fH = f ∗− (c) fH = f ∗−

Fig. 4.21 Direction dependence of the decibel internal level difference (iLD) between the barn
owl eardrums for different sound source directions θ (a) without, (b) with a medially attached
Helmholtz resonator of resonance fH frequency equal to the cavity resonance f ∗−, and (c) with
a large attached resonator such that, fH = 0.7 f ∗−. The directions shown are with respect to the
ipsilateral ear, where the positive angle corresponds to a sound source on the same side as the
ear; cf. Fig. 4.9b. The solid (blue) line and the dashed (red) line correspond to a frequency
f = 1.0 kHz and f = 2.0 kHz, respectively, whereas the dot-dashed (black) line corresponds
to f = 3.0 kHz. In all cases there is a sharp increase across θ = 0◦, which becomes less
pronounced with an increase in VH. The directional behavior of the case fH = f ∗− (b), with
its maximum at θ = 90◦ makes it most conducive to sound localization.

earlier in this chapter, both the first and second resonances of the interaural cavity f ∗∓ lie
within this range; cf. Section 4.5.2. As a result, unlike in the case of the lizards, the influence
of the cavity resonance is bound to play a role in generation of iTD cues in the barn owl. As
in the case of the vibration amplitude and iLD, the TDF is plotted against input frequency for
different sound source directions in the absence of a Helmholtz resonator in Fig. 4.22a, for a
“tuned” Helmholtz resonator with frequency fH = f ∗− in Fig. 4.20b, and for a large cavity of
volume VH ≈ 3.4 cm3 or fH = 0.7 f ∗− in Fig. 4.20c.

In Figs. 4.22a and 4.22c, we see abrupt increases in the TDF in the vicinity of f ∗− which,
however, are absent in the presence of a “tuned” Helmholtz resonator with frequency fH = f ∗−
in Fig. 4.22b. The abrupt decrease in the TDF in the vicinity of f ∗+ is only present in the
absence of a resonator with finite volume, and is removed by the resonator as Γ+ (4.84)
no longer diverges at f ∗+ with a finite resonator volume. In addition, the TDF between f ∗−
and f ∗+ is no longer flat, but rather varies with both direction and frequency and is therefore
disadvantageous with respect to neuronal processing. Although the system does not generate
an amplification of time difference cues over the relevant hearing range, the presence of a
tuned Helmholtz resonator ensures a flat frequency dependence of the iTD independent of
the sound source direction, similar to the lizards at low frequencies (see Figs. 3.6a and 3.6b).
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(a) fH → ∞ (b) fH = f ∗− (c) fH = 0.7 f ∗−

Fig. 4.22 Frequency dependence of the time dilation factor (iTD/ITD) between the barn owl
eardrums for different sound source directions θ (a) without, (b) with a medially attached
Helmholtz resonator of resonance fH frequency equal to the cavity resonance f ∗−, and (c)
with a large attached resonator such that, fH = 0.7 f ∗−. With the resonator, there is an increase
in the iTD with respect to the interaural time difference (ITD). Unlike the case without a
resonator, however, the frequency dependence is flat, which is far more conducive to neuronal
processing. Moreover, the presence of the resonator eliminates the “jumps” associated with
the higher resonance f ∗+ of the interaural cavity, while a tuned resonator also improves the
iTD around the lower resonance f ∗−. The artifact between 5.0 and 6.0 kHz for θ = 30◦ & 60◦

in (a) corresponds to a change in phase from +π to -π and has no bearing on the iTD cues.

4.6 Conclusion

In the present chapter, a modified version of the ICE model from Chapter 2 has been
developed to explain the sound localization ability of the African clawed frog Xenopus
and the barn owl Tyto alba. Although the animals live in vastly different habitats and are
anatomically very different, they share one significant similarity. In addition to having an
interaural coupling between their eardrums, both animals have an air-filled cavity medially
attached to their interaural cavity. In Xenopus, the lungs are attached to the interaural cavity,
whereas in the barn owl the cavity of the sphenoid bone plays a similar role. In Section 4.1.1
we introduced the modified eardrum model for Xenopus, consisting of a rigid cartilaginous
plate suspended in a flexible ring. By treating the ring as a homogeneous Kirchoff-Love
plate, we were able to calculate the restoring force acting on the tympanic plate given a small
deflection (4.12). As Xenopus is primarily an aquatic animal, the influence of the surrounding
water was treated as an external force generated by the acoustic radiation resulting from
its own vibration; cf. Section 4.1.1 and Eq. (4.17). For the barn owl, we relied on the
anatomical similarities between the eardrums of most reptiles and birds and modeled its
eardrum as flexible and lizard-like, albeit with distinct material parameters; cf. Section 4.1.2
and Table 4.1. The interaural cavities modeled for both animals in Section 4.2 share marked
similarities. In both animals the interaural cavity is narrower in the middle than at the ears;
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cf. Figs. 4.4a and 4.4b. The interaural cavity was thus modeled in both animals as two
tympanic cavities (TC) connected via a narrower internal canal (InC); Figs. 4.5a and 4.5b. In
contrast to the barn owl tympanic cavity, which could be modeled as having a cylindrical
shape (see Figs. 4.6a and 4.6b), the Xenopus tympanic cavity has a distinct taper. As a
result, it was modeled as having a conical structure; Figs. 4.6c and 4.6d. The pressure inside
the Xenopus tympanic cavity was derived using Webster’s horn equation (see Eqs. (4.25),
(4.27) and (4.28)), whereas the pressure inside the barn owl tympanic cavity, as well as in
the internal canal for both animals was modeled as a plane wave in a cylindrical cavity;
Eqs. (4.23) and (4.24). The medially attached air-filled cavity was modeled in both cases
as a Helmholtz resonator of volume VH, attached to the internal canal via a duct of length
LH and cross section SH. By requiring the conservation of pressure and volume flow rate at
the junctions between the tympanic cavities and internal canals (Eqs. (4.32) to (4.39)), as
well as at the junction between the internal canal and the Helmholtz resonator (Eqs. (4.40)
and (4.41)) pressure at the internal surface of one eardrum was compactly expressed in terms
of the pressure at the internal surface of the opposite eardrum by means of 2×2 matrices
denoted by M (4.48), one for each animal. The properties of the matrices Eqs. (4.49) to (4.51)
and (4.53) to (4.55), were then used along with the boundary conditions for the pressure at
the eardrum surfaces to derive Γ± coefficients analogous to those derived for the lizards in
Chapter 2. By modeling the sound inputs for both animals based on their size and medium of
sound localization Eqs. (4.73) and (4.74), complete expressions for the directional coupled
eardrum vibration amplitudes as a function of frequency were obtained for both Xenopus
(4.78) and the barn owl (4.80).

Given external inputs to the ear with a small phase difference and no amplitude difference,
the model agreed with eardrum vibration velocities measured by using laser vibrometry;
cf. Figs. 4.10a and 4.10b. As shown in Fig. 4.12a, the model also generates significant internal
level differences (iLDs) between the eardrum vibrations. Underwater, the lung inflation is
essential to generating iLDs in the 1.7−2.0 kHz region, corresponding to the advertisement
calls of the male Xenopus. The peak iLD frequency also varied with lung volume, which
suggests that Xenopus could inflate its lungs to tune its hearing; Fig. 4.13a. Enhanced hearing
cues above 1.7 kHz would also be of advantage with regards to long-range communication
in shallow water, as the medium itself behaves as a high-pass filter with a cut-off frequency
of around 1.0 kHz at a depth of 0.5 m. On the other hand, lung inflation between 1.0−2.0
cm3 does not lead to significant iLD generation in air; cf. Fig. 4.13b. The presence of the
lungs also significantly increases vibration velocity at lower frequencies (0.8−1.2 kHz) in
both media and could thus improve hearing sensitivity at these frequencies, as illustrated
by Figs. 4.11a and 4.11b. On the other hand, even accounting for lung inflation, there were
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no significant internal time differences (iTDs) in both environments; see Figs. 4.15a, 4.15b,
4.16a and 4.16b. This suggests that the animal cannot use time difference cues to localize
sound, but is bound instead to use internal level differences (iLDs) as sound localization
cues. Finally, in Sec. 4.5.1, we compared the response of a Xenopus eardrum to that of a
Tokay gecko eardrum, a typical terrestrial animal with ICE; cf. Chapters 2 and 3. To this end,
we constructed a fictitious animal Xenopus2 with gecko-like eardrums coupled through the
Xenopus interaural cavity described in Section 2.2.2 and compared the instantaneous sound
power (4.83) absorbed in both cases. The rigid-plate eardrums absorbed more sound energy
from the medium, both under water and in air in the behaviorally relevant 1 kHz region; cf.
Figs. 4.17a and 4.17b. This suggests that Xenopus’ eardrum and the connection of its lungs
to the interaural cavity are adaptations to improve underwater hearing in the 1 kHz region
and to improve underwater sound localization in the 1.7 kHz range, respectively.

The presence of a medially attached Helmholtz resonator was also shown to have signifi-
cant effects in the generation of iTD and iLD cues in the barn owl as well. Given its larger
size and high frequency range of hearing (up to 10 kHz), the resonances of the interaural
cavity are bound to affect the animal’s hearing and sound localization. The resonance fre-
quencies f ∗− = 3.37 kHz and f ∗+ = 7.06 kHz, estimated, respectively, from the divergence
of the Γ∓ coefficients were both found to be within the animal’s hearing range. Moreover,
the variation of the resonance frequencies with the width of the internal canal was consistent
with numerically determined values [49]. The presence of a medially attached resonator
suppressed the effect of the higher resonance f ∗+, irrespective of the resonator volume;
Figs. 4.19a to 4.19c. Moreover, by “tuning” the volume of the Helmholtz resonator such that
its resonance frequency fH was equal to the first cavity resonance f ∗−, the influence of f ∗−
was limited to a much narrower frequency range, thereby improving hearing sensitivity in
the vicinity of the resonance frequency. For the iLDs, it was shown that, the presence of a
tuned resonator generates significant decibel level differences between eardrum vibrations
in the 1-3 kHz range, corresponding to the range of interspecific calls in the barn owl [56];
Figs. 4.20a to 4.20c. Moreover, tuning the resonator ensures that maximal iLDs are present
at 90◦, while generating iLDs of up to 12 dB at the same time; Figs. 4.20b and 4.21b. Unlike
lizards, which use iTDs as low frequency hearing cues, barn owls are capable of neuronally
processing iTDs at frequencies up to 9 kHz [122]. Although the interaural coupling cannot
generate a significant TDF beyond the fundamental frequency ( f0 = 3 kHz) of the eardrum
(see Section 3.3), the cavity resonances f ∗± can influence the iTDs. In the absence of the
Helmholtz resonator, there were abrupt increases and decreases of the iTD in the vicinity
of the resonances, corresponding to the eardrums vibrating either fully out-of- or in-phase
with each other; Fig. 4.22a. As in the case of the vibration amplitude, the presence of a res-
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onator nullified the effect of the second resonance f ∗+, irrespective of its volume; Figs. 4.22b
and 4.22c. From Fig. 4.22b, it can also be seen that a tuned resonator with fH = f ∗− also
improves the iTD around the first resonance of the cavity. Finally, a Helmholtz resonator
medially attached to the interaural cavity ensured a flat frequency dependence of the iTDs,
thereby making it more conducive to neuronal processing, similar to the case of the lizards
at low frequencies; cf. Figs. 3.6a and 3.6b. We conclude the chapter by stressing the subtle
difference between Xenopus and the barn owl, with respect to the notion of “tuning” the
Helmholtz resonator. In Xenopus, the tuning is an active process, as the lung volume can
be voluntarily varied by a live frog. For the barn owl, however, the volume of the sphenoid
cavity is only determined by the interaural cavity volume and cannot be actively controlled by
the animal. In contrast to the previous two chapters, the present chapter is thus an extension
of ICE to underwater and high-frequency hearing.



Chapter 5

Summary and Outlook

In this dissertation, a generalization of the mathematical theory of internally coupled ears
or ICE, first developed by Vossen [49, 50] for lizards, was presented with regard to a better
understanding of the material and geometrical parameters involved. In Chapter 2, complete
expressions for the coupled vibrations of the eardrums in response to an external sound
stimulus were derived, such that the influence of the material properties of the eardrums,
as well as the geometry of the interaural cavity were immediately apparent; Eqs. (2.99)
and (2.100). The derived expressions were then used in Chapter 3 to demonstrate the
emergence of directionality in the vibrations of the individual eardrums (see Section 3.2), as
well as the enhancement of directional hearing cues in the form of internal time and level
differences (iTD and iLD); see Section 3.3. The iTD and iLD were enhanced in comparison
to the small interaural time difference (ITD), and practically absent interaural level difference
(ILD) between the sound inputs to the ears given the small head size of the animals. The
role played by the fundamental frequency of the eardrum f0 in segregating the hearing cues
into a low-frequency iTD dominant region and a high-frequency iLD dominant region was
also established; see Section 3.3.3. Moreover, the dependence of both hearing cues on
the cavity volume was established in Section 3.5. The expressions derived in Chapter 2
and the results of Chapter 3 were then used to develop a numerical procedure to estimate
the eardrum material parameters from an alive animal; see Section 3.6. Chapters 2 and 3
constitute a “definitive” ICE model for a typical animal which uses internally coupled ears as
an adaptation for terrestrial low-frequency hearing.

The results of Chapters 2 and 3 were then extended to explain the unique hearing and
sound localization abilities of the clawed frog Xenopus and barn owl Tyto alba in Chapter 4.
The narrow interaural cavities of both animals are medially connected to an additional air-
filled chamber which was modeled as a Helmholtz resonator; see Section 4.2. In Xenopus,
this chamber corresponds to the lungs, while in the barn owl it is the cavity of the sphenoid
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bone. It was demonstrated in Section 4.5.1 that the inflated lungs improve hearing in the
behaviorally relevant 1 kHz range and increase iLDs around 1.7 kHz, corresponding to
the male advertisement calls; cf. Figs. 4.11a and 4.12a. In contrast, the system offered
neither any advantage to hearing in air, nor any to iTDs in air and water; Figs. 4.11b,
4.12b, 4.15a and 4.15b. The results indicate that, the lungs, in conjunction with the unique
plate-like construction of the Xenopus eardrum (see Section 4.1.1) are adaptations to its
underwater environment; also see Figs. 4.17a and 4.17b. In the barn owl, the Helmholtz
resonator was found to improve hearing and sound localization by negating the effects of its
interaural cavity resonances on both its eardrum vibrations and its iTDs at high frequencies;
Figs. 4.19a to 4.19c and 4.22a to 4.22c. In addition, the presence of a medially attached
cavity also enhanced the iLDs between 1.0 and 2.5 kHz, corresponding to its interspecific
calls; Figs. 4.20a to 4.20c. Thus an entirely new application of ICE to sound localization has
also been presented, as a contrast to the low-frequency terrestrial theme of Chapters 2 and 3.

Given the current state of research in ICE, and with regard to the terrestrial-underwater
distinction between the chapters of this dissertation, it is interesting to ask if an animal, say,
an alligator can have the best of both worlds, i.e., it is able to localize sound both underwater
and in air. As the speed of sound is different in both media, and as localization using time
differences is carried out through maps of the kind discussed in Section 1.1.1, the animal
cannot, in general, use the same map both in air and underwater. However, given the large
amount of time that alligators and other crocodilians spend hunting both underwater, and in
air, an iTD-map based sound localization system equally well adapted to both environments
would be highly advantageous. It was mentioned in passing in the introductory chapter of the
present work that crocodilians also have an air-filled interaural connection between their ears;
see Section 1.2. In contrast to the animals discussed so far, however, the interaural cavity
of crocodilians is composed to two parallel, i.e., one dorsal and one ventral canal with an
fleshy opening into the mouth cavity at the bottom of the ventral canal [32, 33]. Evidence
of directionality in the eardrum vibrations has been observed in the American alligator in
air [123, 124]. Taking these factors into account and, given their high amphibious hearing
sensitivity [125], it is tempting to speculate that crocodilians can localize sound in both
media, such that their underwater localization is governed by ICE, while in air they can rely
on the interaural time and level differences generated by their considerable size. Studying
the possible mechanisms that could to such a “hybrid” localization is therefore a natural next
step in the understanding of ICE.



Chapter 6

Frequently Used Abbreviations

Table 6.1 List of Abbreviations

ICE Internally coupled ears

TDF Time dilation factor

IAC Interaural cavity

TC Tympanic cavity

InC Internal canal

TM Tympanic membrane

ITD Interaural time difference

ILD Interaural level difference

iTD Internal time difference

iLD Internal level difference

cc Cubic centimeters
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