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Motivation

The study of phase transitions is at the very heart of condensed matter physics and
essential for many aspects of modern technology. Phase transitions are governed by
thermodynamics and kinetics, determining whether and how a transition occurs. The fun-
damental principle of thermodynamic stability is that a system strives for the lowest state
of free energy. As such, the change of a control parameter such as temperature, pressure
or magnetic field, may induce a spontaneous phase transition if the free energy of a new
state falls below the free energy of the current state. Two types of phase transitions with
fundamentally different transition kinetics may be distinguished, namely discontinuous
and continuous phase transitions, denoted as first-order and second order phase transi-
tions, respectively. While second-order phase transitions evolve by a continuous evolution
of states, with each state lower in free energy, first-order phase transitions occur via a
fluctuation-induced nucleation and subsequent growth [1-3]. This involves the formation
of an energetically costly interface surrounding the nucleus, imposing an energy barrier
which kinetically stabilizes the current state. The emergence of hysteresis, supercool-
ing, or superheating effects at a first-order phase transition is thus a manifestation of
kinetic stabilization and, in fact, sufficient to identify a phase transition as first-order [3]
Moreover, the presence of energy barriers in the phase transition allows the formation of
glasses and other kinetically arrested states. It must be noted that other aspects such
as disorder may itself affect or impose an energy barrier, as it is observed for example in
disorder-broadened first-order phase transitions [3-6]. In contrast to thermodynamically
stable states, kinetically arrested states are subject to relaxation effects due to thermal
agitation. The study of the relaxation dynamics may thus give access to the associated
energy scales.

Magnetic hysteresis shares many similarities with first-order phase transitions. The
magnetization process in bulk magnets is a nucleation and growth process of magnetic
domains and has been described by theories akin to those for first-order phase transitions
[7]. The presence of hysteresis itself is a clear indicator for long-lived non-equilibrium
states [8]. Analogous to first-order phase transitions, magnetic hysteresis is accompanied
by thermal relaxation effects which are commonly referred to as magnetic viscosity, with
first reports dating back to 1893 [9]. Magnetic viscosity is of utmost importance for
modern technology as it limits the stability of information stored in magnetic recording
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media [10, 11|. In this context, the relaxation arises from an Arrhenius type thermal
activation process across energy barriers, known as Néel-Brown relaxation in the field
of magnetism. Ultimately, the underlying physics is governed by Kramers escape rate
theory [11, 12|, which has applications in various fields of science including chemistry,
biology and even financial sciences[13-15|. Experimentally, the relaxation is often found
to follow a logarithmic dependence on time, arising from a broad distribution of activation
energies. Owing to the universality of the underlying physics, similar relaxation behavior
is found in a variety of systems including elastic deformations, dielectrics, superconductors,
spin-glasses, and ferromagnets |9, 16-25].

This thesis concerns with magnetic skyrmions, a noncollinear magnetic texture consist-
ing of nanometer-sized spin-whirls, which has attracted considerable interest due to its
potential for future spintronics applications. Due to the nontrivial topology of the spin
texture, magnetic skyrmions are robust against perturbations, prohibiting a continuous
transformation into a topologically trivial state, such as a ferromagnet. Based on the
nontrivial topology of the magnetic texture, the nucleation and annihilation of skyrmions
thus involves a first-order phase transition and is therefore subject to hysteresis, relax-
ation, and metastability. Using measurements of the magnetization, ac-susceptibility,
nonlinear ac-susceptibility, and specific heat we investigate the formation and decay of
skyrmion order, addressing the thermodynamic and kinetic stability of skyrmions.

This thesis is structured as follows. In Chapter. 1, we begin with brief introduction
of the nucleation and growth mechanism, magnetic viscosity and magnetocrystalline
anisotropy, which serves as a basis for the interpretation of experimental data presented
in later chapters. In Chapter 2 we provide a compact overview of the material class of cu-
bic chiral magnets, addressing the generic phase diagram, the skyrmion lattice, emergent
electrodynamics, topological stability and nucleation and annihilation of skyrmions. This
is followed by a specific introduction of Fe;_,Co,Si and CuyOSeOs, the chiral magnets
investigated during this thesis. In Chapter 3 we summarize the experimental methods,
techniques and analyses used throughout this thesis. In Chapter 4 we report a com-
prehensive study of a nonequilibrium skyrmion phase in the chiral magnet Fey5Coq 551,
addressing the stability and the underlying energetics of the metastable state. In Chap-
ter 5, we present an extensive study of the magnetic properties of CuyOSeQO3, focussing
on a second skyrmion phase and a tilted-concial phase, stabilized by cubic anisotropies.
In Chapter 6, we end this thesis with a summary and a brief outlook.




CHAPTER 1

Nucleation and Relaxation Kinetics

In this chapter we briefly introduce the nucleation and growth mechanism, the theory
of magnetic viscosity and magnetocrystalline anisotropy. This serves as a basis for the
understanding of the following chapters.

1.1 Nucleation and Growth

First-order phase transitions are a common phenomenon in nature. An archetypal example
of a first-order transition is the freezing of water or analogously the inverse process, the
melting of ice. It is well known that first-order phase transitions proceed via nucleation
and subsequent growth of thermal fluctuation induced embryos of the stable phase within
an unstable medium. In the following, we will attempt to give a brief introduction to
classical nucleation theory, the most common approach to describe the nucleation process
[26].

Let g, and gg be the free energy densities of the low and high-temperature state,
respectively, with g, < gg at low temperatures and gg < g, at high temperatures. The
mean field transition temperature, T}, is then defined as the intersection of g, and gg.
Starting in the S-state at high temperatures, the formation of a nucleus of volume V' of
the low temperature phase changes the total free energy by

AGV = V(ga — 95) = VAg (1.1)

and may lower the free energy as soon as the temperature falls below Ty,. The creation of
a nucleus, however, inevitably involves the formation of an energetically costly interface
between both phases with

AGs=S 0o (1.2)
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Figure 1.1: (a) Volume fraction, AGy, surface fraction, AGg and total free energy
contribution, AG, of a spherical nucleus as a function of radius, r. The
total free energy contribution reaches its highest value at the critical ra-
dius, r*. (b) Schematic of the nucleation rate as a function of temperature.
(c) Schematic of time-temperature-transformation diagram. Solid blue lines
mark a 1% and 99 % degree of transformation from the high-temperature
state to the low-temperature state. Red and green dashed line correspond to
a fast and slow cooldown. The high-temperature state is kinetically arrested
if cooled faster than the critical cooling rate, as illustrated by the dashed red
line.

where S is the surface of the nucleus and ¢ > 0 a specific surface energy density, e.g.,
the surface tension in liquid-solid transformations. Assuming, for the sake of simplicity,
a spherical nucleus with radius 7, the total change in energy reads

4
AG = AGg + AGy = 4rr? - g + gﬂ'r?’(ga —93) - (1.3)
surface —_—
volume

Shown in Fig. 1.1(a) are the volume fraction, AGy, surface fraction, AGg and the
total free energy contribution AG as a function of the nucleus radius. The free energy
reaches a maximum at a critical radius r*, with

AG" = — 1.4

3 Ag (14)
and corresponds to the thermodynamic energy barrier, depending on the thermodynamic
driving force. A second activation energy that must be considered is the kinetic activation
energy, (0, for the formation of the interfaces. It corresponds to the activation energy of
diffusion in structural transitions. The nucleation rate is then given by the sum of both
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activation energies [27], reading

O+ AG* 9] AG*
I =1 - | =1 - - . 1.
0 exp < T o exp | = n Jrexp |~ (1.5)
kinetic thermodynamic

A schematic of the nucleation rate as a function of temperature is shown in Fig. 1.1(b).
Close to the mean-field ordering temperature, the nucleation rate is small, owing to the
small thermodynamic driving force, yielding a sizeable thermodynamic energy barrier.
With decreasing temperature, the energy difference between both phases increases and
the thermodynamic energy barrier is reduced. As a result, the nucleation rate increases
notably. With decreasing temperature, the kinetic energy barrier gains in importance
and ultimately leads to a reduction in the nucleation rate towards low temperatures. As
a result, the phase transformation depends decisively on the cooling rate.

Shown in Fig. 1.1(c) is a schematic of a time-temperature-transformation diagram,
illustrating the cooling rate dependence. Solid lines indicate the temperature-dependent
time required to transform 1% or 99% of the high-temperature phase into the low-
temperature phase. A complete transformation would take place, if cooled sufficiently
slow, indicated with a green dashed line. The high-temperature phase, however, is arrested
if cooled faster than the critical cooling rate, shown as a dashed red line. In liquid to
solid transitions, this mechanism leads to the formation of structural glasses [3].

The critical cooling rate may vary drastically between different systems and depends
sensitively on the kinetic energy barrier, i.e., the diffusivity in structural transitions 28| In
strong glass formers, such as O-terphenyl, cooling at moderate rates is sufficient to arrest
the high-temperature state |3]. Metallic glasses, in contrast, require violent quenching of
the high temperature state (> 1 x 10° K/ min) [3].

As a final remark, the discussion so far concerned a homogeneous nucleation process,
that may occur anywhere throughout the sample. In contrast, the formation of nuclei
at defects or surfaces may reduce the thermodynamic energy barrier by decreasing the
surface between both phases and is known as heterogeneous nucleation. Heterogeneous
nucleation may occur earlier but is limited in location.

1.2 Magnetic Viscosity

Relaxation effects are observed in many areas of physics and often share a generic mech-
anism. A logarithmic relaxation as it is often found in magnetic relaxation experiments
is also found in elastic deformations, dielectrics, superconductors, spin-glasses and ferro-
magnetic fine particles [9, 16-25]. In ferromagnets it is termed "magnetic after effect"
("magnetische Nachwirkung") or magnetic viscosity and may be explained by a broad
but flat distribution of activation energies. In this section, we introduce the theory of
magnetic viscosity and show how the logarithmic relaxation arises naturally from a broad
but flat distribution of activation energies, which are triggered by a relaxation front ad-
vancing logarithmically in time. This section serves as a basis for the interpretation of
magnetic relaxation data, presented in a later chapter.




Chapter 1 Nucleation and Relaxation Kinetics

@ A exp(t/1(E) (b) A 0(E - EY)
1' 1 1
W m
Q relaxed =p» / unrelaxed a relaxed =3 | unrelaxed
At At
0 - r > 0 : : >
E(t) E (t+At) 0 E(t) E (t+At)
Energy Energy

Figure 1.2: Schematics of the advancement of the relaxation front (a) and the approxi-
mation (b) with time. Figure adapted from [24, p. 335].

In magnetic relaxation experiments, the magnetization is often found to follow a
logarithmic time dependence, that may be described by the relation

M(t) = K + SIn(t/to), (1.6)

with the magnetic viscosity constant S and material and experiment specific parameters
K and ty. This is the widely used magnetic viscosity relation. The divergence for t — 0
and t — oo, however, shows that Eq. 1.6 is necessarily an approximation. Moreover, a
change in % is indistinguishable from a shift in /. An enhanced approximation, especially
at short times, is given by

M(t) = M(0) + STn(1 + t/to), (1.7)

with M (0) corresponding to the magnetization at the starting time, and the time constant
to. Here, M(0) and tg have distinct roles but are still empiric parameters.

Following G. Bertotti, the emergence of a logarithmic time dependence may be under-
stood as follows |24, pp. 329-346|: The lifetime associated with an activation energy in
the interval £ — F 4+ dE may be written as

E
(8) = meap (7 ) (1)
where 7y represents attempt time. The change in magnetization may be expressed as
t
AM(t) = M(0) — M(t) = /Am(E) [1 —exp <_(E)>} n(E)dE, (1.9)
T
0

where 7(F) is given by Eq. 1.8. Here, Am(FE) corresponds to the change in magnetic
moment associated with the metastable units governed by the activation energy E and
n(FE) is normalized according to

o0

N = /n(e)dE (1.10)

0
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to the number of metastable units per unit volume N. Eq. 1.9 may be simplified by
introducing the effective energy barrier distribution,

Ey=—"-"/"" 1.11
p(E) = — Am) (1.11)
with the normalization condition
/p(E)dE =1. (1.12)
0
and the average magnetic moment per metastable unit
1 oo
(Am) = N/Am(E)n(E)dE. (1.13)
0
This gives
t
AM(t) = N (Am) |1 — /exp <—7_(E)> p(E)dE (1.14)
0

As 7(F) depends exponentially on F, this leads to a sharp cutoff around the Energy E*
for which 7(E) =t + 19 ~ t with

B () = ksTn(1 + Tto), (1.15)
depending logarithmically on time.

A schematic of the exponential in Eq. 1.14 as a function of energy is depicted in
Fig. 1.15(a). For E > E* the exponential is almost 1 corresponding to the unrelaxed
units. Conversely, for F < E* the exponential drops to zero corresponding to the units
that are relaxed. The transition occurs in an energy region of about kg7 with respect to
E*. Therefore, if the distribution is approximately constant in an energy region of the
order of kT, the exponential in Eq. 1.14 can be replaced by a step function 0(E — E*(t))
indicated in Fig. 1.15(b). The magnetic relaxation itself is triggered by the logarithmic
evolution of E* with time. With the definition of E*, the relaxation of the magnetization
may be written as

E*(t)
AM(t) = N (Am) / p(E)dE (1.16)
0

The relaxed magnetization, expressed in terms of the average value of the energy distri-
bution,

Pave(E) = — /p(E)dE (1.17)
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is given by

AM(E) = N (Am) pasg (E*)kpT In <1 + t) (1.18)

70

This means that whenever paye(E*) is flat one expects a logarithmic dependence on time.
Note that, experimentally it is difficult to determine the initial magnetization at ¢ = 0
due to the fact that changing the field or temperature as well as the measurement take
time. As a result one does not observe M(t) — M(0) but M(t + to) — M(to) instead,
representing

M(t) = M(0) + Sin(1 + t/ty), (1.19)

with tg > 79. This corresponds to the relaxation relation considered above (c.f. Eq. 1.7).

1.3 Magnetocrystalline Anisotropy
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Figure 1.3: (a) Magnetization curves of single crystalline iron. (b) Temperature depen-
dence of the anisotropy constants of iron. Graphs taken from [29, p. 199] and
[29, p. 228], respectively.

Magnetocrystalline anisotropy is the directional dependence of the magnetic properties
of a material in relation to its crystal lattice and was first discovered by K. Beck in 1918
in cubic Fe-Si steel single crystals [30]. Magnetic anisotropy is of utmost importance
in modern technology. Being a prerequisite for magnetic hysteresis in ferromagnets,
magnetic anisotropy plays an important role in magnetic memory data storage technology
and permanent magnets.

As an example, the field dependent magnetization curves for all major cubic axes of
single crystalline iron are shown in Fig. 1.3(a). The magnetic field required to saturate
iron is lowest in the (100) orientation and highest in the (111) orientation. The (100)
axis is therefore referred to as easy, the (111) as hard.
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Table 1.1: Directions of easy, medium, and hard magnetization in a cubic crystal |29,

p. 202]
K + + + - - -
Ky +ooto  —9/4K;to —9K;to —ooto 9/4|K;|to 9|Ki| to
“9/4K,  —9K, —0 9/4|K1|  9|K1| +o0
EASY (100)  (100) (111) (111)  (110) (110)
MEDIUM (110)  (111) (100) 110y (111) (100)
HARD  (111)  (110) (110) (100) (100 (111)

The orientation dependence may be described by an additional phenomenological
contribution to the free energy F, denoted as Funiso, taking the symmetries of the crystal
lattice into account. The free energy,

F= Fiso + Fanism (1-20)

is thus comprised of an isotropic and an anisotropic contribution. The anisotropy energy,
Flniso, is typically expanded in powers of the direction cosines of M relative to the crystal
axes. For cubic crystals, the allowed terms up to 6th order are given as

Faniso = Ko + Ky (MZM] + MZMZ2 + MZM?) + Ko(MZMIM?2) + ... (1.21)
with the direction cosines defined as
~ M.
M; = —-. (1.22)
M|

Higher order anisotropies can be neglected in most cases. The isotropic Ky constant does
not generate a direction dependency and is therefore ignored. The easy, medium and
hard axis of the system is thus determined by the values of K7 and K5, were six different
cases can be distinguished, summarized in Table 1.1.

Note that the expansion in direction cosines is ambiguous and different symmetry
equivalent definitions of the anisotropy energy can be used. E.g. an up to a constant
equivalent fourth order term is

K{ (M + M, + M?). (1.23)
K, and K7 are related as follows
K = —2K]. (1.24)

The anisotropy constants typically have a strong temperature dependence and vanish
at the transition temperature. This is shown for iron in Fig. 1.3(b). As a consequence,
the magnetic properties can change dramatically with temperature. Therefore, it is of
great interest to determine the anisotropy constants as a function of temperature.
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CHAPTER 2

Chiral Magnets

This chapter introduces the class of cubic chiral magnets which includes a variety of mate-
rials with different electronic properties, notably metals, semiconductors, and insulators.
Nonetheless, the magnetic properties show a remarkably universal behavior, which we
introduce in the following chapter. This chapter is organized as follows: We begin with
an introduction of the generic magnetic phase diagram in Sec. 2.1. Next, in Sec. 2.2 we
introduce the skyrmion lattice in bulk systems, followed by a brief introduction of the
emergent electrodynamics in Sec. 2.3. In Sec. 2.4 we address the concept of topological
stability, followed by discussion of the nucleation and annihilation mechanism of magnetic
skyrmions in Sec. 2.5. We complete the chapter with a discussion of the material specifics
of Fe;_,Co,Si in Sec. 2.6 and CusOSeOg in Sec. 2.7, respectively.

2.1 Generic Magnetic Phase Diagram

Cubic chiral magnets share a lack of inversion symmetry in their crystal structure, with
most known materials belonging to space group P213. The only exceptions so far are
the recently discovered 5-Mn type Co-Zn-Mn alloys crystalizing in space groups P4;32
or P4332 [32-34|. While containing a large variety of different material classes such as
metals (e.g. MnSi), semi-metals (e.g. Fe;_,Co,Si) or even insulators (e.g. CuaOSeOs),
cubic chiral magnets are exceptionally similar in their magnetic properties, resulting in a
generic phase diagram illustrated in Fig. 2.1.

The magnetic properties of these materials arise from a well-defined hierarchy of energy
scales formed by the ferromagnetic exchange, the Dzyaloshinskii-Moriya interaction, and
magnetocrystalline anisotropy, listed in decreasing order [35]. The magnetic properties
of cubic chiral magnets may be described elegantly in the framework of a phenomenolog-
ical Ginzburg-Landau theory. The free energy density may be expanded in terms of a
dimensionless order parameter vector field ¢, related to the magnetization as M = ug¢

11
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Figure 2.1: Generic magnetic phase diagram of the cubic chiral magnets with weak cubic
anisotropies. Schematics visualize the spin configurations of the individual
phases. The phase diagram comprises a helimagnetic state at low fields, a
conical state at intermediate fields, a field-polarized state at high fields and
low temperatures, and the skyrmion lattice state in finite fields, just below
the ordering temperature. Figure adapted from Ref. [31, p. 3].

with p = pg/f.u., i.e. one Bohr magneton per formula unit. The free energy density up
to fourth order in ¢ reads [31, p. 6]

J
[ =50+ 55 (67 = popdH + 5 [(V6,)* + (V6,) + (V6.)’] (2.1)
Zeeman Exc}; nge
+ D¢(Vx¢) + J;“b [(0202)% + (Oydy)? + (0:02)] +... , (2.2)
N————

Dzyaloshinskii-Moriya Exchange Anisotropy
where, the first and second term represent the mean-field Landau parameters with
r =1ro(1T — T¢) tuning the phase transition and u > 0 ensuring the stability of the system.
These terms are sufficient for a qualitative description of most magnetic properties. For
a quantitative description, however, additional terms might be necessary such as higher
order anisotropies, dipolar interactions, or thermal fluctuations.

On the largest scale, ferromagnetic exchange favors a parallel alignment of the spins,
while the Dzyaloshinskii-Moriya interaction, resulting from the lack of inversion symme-
try, favors a perpendicular arrangement of the spins. This results in long wavelength
modulated magnetic textures with a characteristic length scale given by the wave vector
|Q| = D/J |31, p. 33] and ultimately leads to a helical ground state in zero field, depicted
schematically in Fig. 2.1.

Due to cubic symmetry, several energetically degenerate helix orientations exist, leading

12
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Figure 2.2: Skyrmions in real space and order parameter space. Achiral Néel skyrmion
in real space (a) and order parameter space (b). Chiral Bloch skyrmion in
order parameter space (c) and real space (d). Figure adapted from Ref. [42].

to a multi-domain ground state with the propagation vectors either aligned along the
(100) or the (111) directions [36]. The exchange anisotropy, representing the leading
order gradient term of the cubic anisotropy, is sufficient to lift the rotational degeneracy
of the helical state in zero field, selecting either a (100) or (111) propagation [36]. As
a function of increasing magnetic field, the helices start to deform and transform into a
single domain conical state at the critical field H¢y. A further increase in field leads to
a closing-in of the spins into field direction, collapsing into a field polarized state at the
upper critical field Ho.

In a small temperature and field region in the vicinity of the ordering temperature, T¢,
a small phase pocket exists, hosting the skyrmion lattice phase. It was first discovered in
MnSi in 2009 using small-angle neutron scattering [37] and consists of a two-dimensional
triangular lattice of skyrmions in a plane perpendicular to the external magnetic field.
Almost twenty years earlier, inspired by vortex lattices in type-II superconductors, Bog-
danov and coworkers expanded the Bak-Jensen model of chiral magnets and showed that
skyrmionic solutions with skyrmions on a triangular lattice could be thermodynamically
stable in finite field ranges if uniaxial anisotropies are present [38-40|. The skyrmion
lattice phase in the cubic chiral magnets, however, turned out to be stabilized by thermal
fluctuations instead of uniaxial anisotropies. This is reflected by the existence of the
skyrmion lattice phase for all field directions relative to the crystal lattice [37, 41].

2.2 Magnetic Skyrmion Lattice

Skyrmions were first proposed in a theoretical model of nucleons by Tony Skyrme in
1962 [43]. Skyrme showed that nucleons could emerge as quantized topological soliton
solutions of the pion field. Since then, the concept has expanded into a wide variety
of fields in physics, such as astrophysics, string-theory, and condensed-matter physics
[37, 44, 45]. In the context of this study, we are concerned with magnetic skyrmions, a
whirling spin texture, in which stability and dynamic properties are strongly determined
by the non-trivial topology. The latter is reflected by the fact that it’s impossible to
continuously deform the topologically non-trivial texture of a magnetic skyrmion into a
trivial texture such as a ferromagnet.

The topology of a magnetic texture is characterized by its topological index, a quantized
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Chapter 2 Chiral Magnets

Figure 2.3: Illustration of the spin structure of a triangular skyrmion lattice. The spin
structure may be approximated as a superposition of three helical modulations
within a plane perpendicular to the external magnetic field. The propagation
direction of each helix is indicated as a black arrow. Figure from Ref. [46].

integer number also referred to as winding number or topological charge. It can be
understood by surjectively mapping the magnetic texture onto a unit sphere in order
parameter space [42]. The topological index that classifies these mappings is defined as:

n= %/M (0:M x 9,M) dx dy (2.3)
77

with n = #£1 in case of skyrmions. It counts the number of times, the magnetic texture
wraps the unit sphere.

A skyrmionic texture in real space, as shown in Fig. 2.2(a), is equivalent to a hedgehog
in order parameter space, shown in Fig. 2.2(b), completely wrapping the unit sphere once.
In contrast, topologically trivial magnetic textures, such as ferromagnets or helices, do
not entirely cover the unit sphere.

Aside from the achiral skyrmion, shown in Fig. 2.2(a), also called Néel skyrmion,
another topologically equivalent skyrmion exists, the so-called Bloch skyrmion. This
chiral skyrmion may be constructed by combing the hedgehog of Fig 2.2(b), as shown in
Fig 2.2(c), and projecting it back into real space (Fig 2.2(d)). Chiral skyrmions are the
prevalent type of skyrmions in cubic chiral magnets, the material class investigated in
this work.

In three-dimensional chiral magnets, skyrmions form tube-like magnetic structures,
where the two-dimensional spin structure is stacked ferromagnetically along a specific
direction, typically defined by the magnetic field. Similar to Abrikosov lattices in type-II
superconductors, the skyrmions arrange as two-dimensional triangular lattices, illustrated
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Figure 2.4: Typical measurement data of the skyrmion lattice, probed by small-angle
neutron scattering (SANS) [37, 47] (a), magnetic force microscopy (MFM)

[46] (b) and Lorentz force transmission electron microscopy (LTEM) [49, 50|
(c). Figure adapted from Ref. [31].

in Fig. 2.3. Due to its periodic arrangement, the skyrmion lattice may be described as
a series expansion in reciprocal space. To first order in ¢, the skyrmion lattice may
be approximated as a superposition of a ferromagnetic component and three helical
modulations at an angle of 120° within a plane perpendicular to the external magnetic
field. The propagation direction of each helix is indicated in Fig. 2.3 by a black arrow.
To accurately describe the field dependence of the spin texture, however, higher orders
are necessary [47, 48|.

Experimentally, the skyrmion lattice has been investigated with a variety of techniques.
Three prominent examples are shown in Fig. 2.4. The first detection of a skyrmion lattice
was reported in a seminal work of Miihlbauer and coworkers, using small-angle neutron
scattering on MnSi [37]. Scattering techniques, such as small-angle neutron scattering
(SANS), probe the skyrmion lattice in reciprocal space. The periodic nature reveals itself
as a sixfold scattering pattern, as shown in Fig. 2.4(a). Additionally, weak higher-order
scattering has been identified in MnSi in a subsequent high-precission SANS study [47].

The first real-space observation of a skyrmion lattice reported shortly afterwards was
by Yu and coworkers using Lorentz-transmission electron microscopy (LTEM) on thinned
Fe;_,Co,Si samples [50]. LTEM is a sensitive tool to probe the in-plane spin arrangement
but is limited to thin samples. A typical LTEM image is shown in Fig. 2.4(c). Another
real-space technique is magnetic force microscopy (MFM). MFM probes the out-of-plane
magnetization at the surface of a sample and in contrast to LTEM, it is not limited to
thinned samples. A typical MFM recording of a skyrmion lattice is presented in Fig. 2.4(b)
[46].
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Chapter 2 Chiral Magnets

2.3 Emergent Electrodynamics

A particular consequence of the topological nature of magnetic skyrmions is their emer-
gent electrodynamics. When a conduction electron travels through a slowly varying
topologically nontrivial magnetic texture, it’s spin continually adapts adiabatically to the
local magnetic environment, illustrated in Fig. 2.5(a). In doing so, the spin picks up a
geometric phase, the so-called Berry phase. The effects of the Berry phase pickup may be
elegantly described as an Aharonov-Bohm phase arising from a fictitious magnetic field
B™ acting on the electron [51]. Following Refs. [51-53], the emergent magnetic field
exerts a fictitious Lorenz force

F = —evg x B (2.4)

with vg being the conduction electron velocity, which leads to an additional contribution
to the Hall resistivity, the so called topological Hall resistivity[51, 52|

PP = PRoBE™ (2.5)

with the normal Hall constant, Ry, and the effective spin polarization ratio, P. The
emergent magnetic field BY™ is given by

B = &, & (2.6)

Here, ®g = h/e is the flux quantum of a single skyrmion and @ is the winding density
defined by
1 . . .
OF = —e,an - (0yn X Ox1), (2.7)
87
where €, is the antisymmetric unit tensor and 7 = M/|M| the magnetic unit vector.

The topological Hall effect was first measured by A. Neubauer and coworkers investi-
gating MnSi [51]. They detected a topological Hall resistivity of 4.5n€2 cm, as shown in
Fig. 2.5(b) and (c), thereby providing the first experimental evidence of the non-trivial
topological nature of magnetic skyrmions. Further measurements by Ritz and coworkers
on MnSi using hydrostatic pressure revealed an almost ten-times larger, generic topolog-
ical Hall resistivity in the zero-temperature limit, equivalent to an emergent magnetic
field of Beg = —13.15T [52|. They further showed that at elevated temperatures the
intrinsic Hall resistivity is suppressed by finite temperature effects [52]. Measurements
on nanostructured FeGe Hall bar devices revealed discretized steps in the topological
Hall signal, related to the creation or annihilation of single skyrmions, which not only
confirms the quantized nature, but also the feasibility of single skyrmion detection, a key
ingredient for future spintronics applications [55].

Another remarkable aspect of skyrmion lattices are spin-transfer torque effects. In
analogy to the magnetic structure exerting a force on the electron, the electron exerts
a counter-force on the magnetic structure. This effect is well-known from ferromagnets,
where spin-polarized currents are used to move magnetic domain walls and spin-transfer
torque is now widely used in commercial STT-MRAM memory devices [56-60].
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Figure 2.5: (a) Magnetic moment of the conduction electron adapting adiabatically to
the local magnetic environment. (b) Hall resistivity as a function of field
in MnSi in the temperature and field region around the skyrmion lattice
phase. Topological contributions of the skyrmion lattice is visible as a tiny
bump. (c¢) Topological contribution to the Hall resistivity as a function of
field. Figures reproduced from (a) Ref. [54] and (b), (c) Ref. [51].

Spin-transfer torque effects in skyrmion lattices were first observed by Jonietz and
coworkers. Using small-angle neutron scattering, they detected a rotation of the scat-
tering pattern when the applied dc current exceeded a certain threshold. In contrast to
ferromagnetic domain walls, however, the threshold current of 1 x 106 A m~2 is nearly six
orders of magnitude smaller, demonstrating the efficientcoupling of spin currents to the
magnetic texture. Due to the limitations of small-angle neutron scattering not being able
to detect translational movements of the skyrmion lattice, an additional small tempera-
ture gradient was applied causing gradients in the relevant forces, which in turn caused
tiny rotational torques only strong enough to rotate the unpinned skyrmion lattice.

A skyrmion lattice drifting with the velocity vq, were each skyrmion carries one quantum
—27h/q¢ of emergent flux, implies in analogy to Faraday’s law of induction, the emergence
of an electric field,

E° = vq x B°, (2.8)

which inherits the quantized nature of B¢ and has been confirmed in dc current biased
Hall-effect measurements [61].

2.4 Topological Stability

The topological classification of field configurations is a powerful concept, that has suc-
cessfully been applied to various fields in physics, including quantum field theory, liquid
crystals, superfluids and magnetic systems [37, 46, 62—66]. For the topological comparison
of field configurations, each field configuration is mapped from real space (or reciprocal
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space), S™, onto a target manifold constituting the order parameter space, S™, according
to f: 8™ — S™. In magnetic systems, the mapping corresponds to the vector field of
the magnetization M(r). If two mappings f and g, i.e. two magnetic textures, may be
continuously deformed into each other without resorting to the discreteness of the lattice,
then both mappings are homotopically equivalent and belong to the same homotopy
group m,(S™) [65].

Two different kinds of topological classifications may be further distinguished [46, 65, 67,
Supp.]

(i) Non-singular configurations or textures, with a non-vanishing order parameter
throughout the sample, such as sine-Gordon solitons or skyrmions, classified by
the homotopy group 74(S™) of order d, where d is the dimensionality of space
[65, 67, 68|.

(ii) Singular configurations or defects, with a vanishing order parameter at the core,
classified by the lower homotopy groups m,(S"") with lower order r, defined by the
dimensionality of the defect, d’, according to r =d —d' — 1 65, 67].

A two-dimensional magnetic vortex in an ideal easy-plane ferromagnet is a perfect
example of a singular topological defect. The rotation of the magnetization, M, by 27
when traveling around the core implies a vanishing magnetization within the core. The
topological classification of singular defects is achieved by mapping the order parameter on
a surface enclosing the defect to a sphere in order parameter space. For a two-dimensional
vortex, this implies a mapping of the order parameter on a path surrounding the vortex
to a 1-sphere.

In contrast, a skyrmion is a perfect example of a non-singular solitonic spin texture. It
is subject to a specific boundary condition, which is a constant magnetization at infinity,
Moo = const. The topological classification is realized by a stereographic projection of
the entire spin structure onto a 2-sphere.

As a word of caution, although from a topological point of view both types of non-trivial
field configurations contain an infinite energy barrier, the energy barrier in real physical
systems is always finite [65, 66, 69].

First, the description of physical systems by an order parameter field implies a finite
rigidity of the field, which in turn constrains the size of the energy barriers [66]. In
magnetic systems, this rigidity is referred to as spin wave stiffness and defines the energy
scale for a rupture of the continuous spin texture. This is corroborated, for example,
by studies of magnetic vortex core reversal processes or annihilation of single skyrmions,
where finite energy barriers, tightly linked to the spin-wave stiffness, were found [70-72].
Second, the energetic constraints in field configurations of restricted dimensionality, such
as Ising systems or easy-plane ferromagnets are always finite, albeit large and the escape
of the field configuration through restricted dimensions is possible. Third, the finite
dimension of real samples provides another destruction path — the surface. The nontrivial
defect may simply be pushed out through the surface. In small-scale systems, such as
nano racetracks, this is considered a major relaxation mechanism for magnetic skyrmions
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Figure 2.6: Schematic of monopole/antimonopole mediated skyrmion decay. Disintegra-
tion occurs either by pinching-off a single skyrmion tube (a) or coalescence
of two skyrmion tubes (b). Monopoles and antimonopoles are displayed as
red and blue dots, respectively. (a), (b) taken from Ref. [74].

[73]|. Fourth, the discretization of the atomic lattice may itself limit the applicability of a
continuum description.

2.5 Nucleation and Annihilation

Due to the topologically non-trivial structure, skyrmions cannot be created or destroyed
by continuous deformation of the spin structure. Instead, more complex processes are
involved. Theoretically, multiple pathways for the annihilation of skyrmions have been
identified These include [73, 75, 76]

(i) compression of the skyrmion with a final collapse of the core,
(ii) annihilation of the skyrmion at the surface, pushing it out sideways, and

(iii) disintegrating the skyrmion by means of a singular, hedgehog-like defect, a so-called
Bloch point.

The dominant mechanism depends on the dimensionality and the environment of skyrmions.
The first two mechanisms are believed to play an essential role in two dimensional systems
only [73]. In bulk systems, where skyrmions exist as tube-like spin whirls, the disinte-
gration by means of Bloch-points, is believed to be the dominant relaxation mechanism.
Here, two types of Bloch point mediated skyrmion decay may be distinguished: First, the
coalescence of skyrmion tubes (Fig.4.12(b)) and second, the rupture of skyrmion tubes
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(Fig. 4.12(a)). Since skyrmions carry a quantized emergent magnetic flux, Bloch points
unwinding the skyrmion act as monopoles or anti-monopoles of the emergent field, either
sourcing or sinking one quantum of the emergent magnetic flux [46]. Blue dots (anti-
monopole) and red dots (monopole) in Fig. 2.6(a) and (b) indicate the emergent magnetic
charge of the Bloch-point. The unwinding occurs as a two stage process, analogous to the
nucleation and growth process in ordinary first-order phase transitions: First, a single
(anti-)monopole is created at the surface or a monopole-antimonopole pair is created in
the bulk. Second, the (anti-)monopole moves towards the surface, removing a single
quantum of emergent flux. The direction of motion of (anti-)monopole is determined by
the sign of the emergent magnetic charge with monopoles moving in field direction and
antimonopoles against the field direction [46]. The driving force of the (anti-)monopoles
results from the difference in free energy density between metastable and stable state
Ayg. The transformation of a skyrmion line segment of length x leads to a change in free
energy AG « Ag-x and may be described as a line tension [72]. Furthermore, theoretical
studies of a single skyrmion within a helical environment have revealed an energy barrier
of Ep =~ 6J for the nucleation of monopole-antimonopole pairs in zero field [72].

The nucleation or annihilation of skyrmions inevitably involves the formation of inter-
faces between the two phases. In view of the tube-like structure of skyrmions, the interface
may be decomposed into a longitudinal and a radial contribution. The (anti-)monopoles
discussed previously represent the longitudinal interface, terminating the skyrmion tubes.
A second contribution arises from the radial adaption of the skyrmion spin texture to
the surrounding environment and may impose an additional energy penalty. This is
corroborated by the recent observation of the preferred formation of skyrmion clusters
within the helical and conical phase, which minimize the surface area between skyrmion
and non-skyrmion states |77, 78]. The radial interfacial energy is particularly important
in a conical environment, since the longitudinal modulation of the conical helix is clearly
incompatible with the rotational symmetry of a skyrmion. This leads to the formation of
an energetically costly spiraling interface surrounding the skyrmion [78, 79]. Moreover,
as shown in a recent preprint, the interfacial energy penalty reaches it’s largest value
at a magnetic field of 0.4 - Heo [80]. Since the skyrmion lattice state and the conical
state exhibit the smallest difference in free energy at the same magnetic field of 0.4 - Hco,
this may explain the exceptional stability of non-equilibrium skyrmion lattices within the
conical phase. Deleting a single skyrmion of a metastable skyrmion lattice at H = 0.4- Heo
thus requires the largest amount of interfacial energy while gaining the least amount of
free energy from the conversion of a volume fraction into the conical state [80].

2.6 Chiral Magnetism in Fe,;_,Co,Si

Fe1_;Co,.Si is a material that is particularly well suited for the study of nonequilibrium
skyrmion states. The electric and magnetic properties of Fe;_,Co,Si, a pseudo-binary
system of the paramagnetic insulator FeSi [81] and the diamagnetic metal CoSi [82], vary
substantially with the doping concentration, x. The substitution of Fe atoms with Co
atoms acts as electron doping, leading to an insulator-to-metal transition at = = 0.02 [83]
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Figure 2.7: (a) Cubic crystal structure of Fe;_;Co,Si. (b)-(d) Ordering temperature,
critical fields, and helix wavelength as a function of the doping concentration,
x, in Fe;_,Co,Si. Figure adapted from Ref. [31, p. 14].

and chiral magnetism in a wide doping range from 0.05 < z < 0.7 [84-86]. The variations
of the magnetic ordering temperature, critical fields and helix wavelength as a function
of x are shown in Fig. 2.7.

The ordering temperature, a measure of the exchange energy J o kpT;, reaches it’s
largest value of T, ~ 60K at a concentration of x ~ 0.5, as shown in Fig.2.7(b). The
helix wavelength,

27 J
A= 0 27‘(5, (2.9)
as shown in Fig.2.7(d), is determined by the ratio of J and D [31, 36, 87, 88| and varies
from more than 200nm above z =~ 0.7 down to 50nm at z ~ 0.25, where D is the
strongest in relation to J. This is consistent with the critical field,

Hey ~ JQZi o D?/J, (2.10)
fot
being the largest at x ~ 0.25 |31, 88, 89|.

A peculiar feature of Fe;_,Co,Si, is the formation of a metastable skyrmion lattice
under field cooling. It has been demonstrated early that field cooling across the skyrmion
lattice state using moderate cooling rates (=~ 10 K min™!) is sufficient for the skyrmion
lattice phase to survive as a metastable state down to lowest temperatures [90]. This
is illustrated in Fig. 2.8(a), (b) showing the magnetic phase diagrams obtained after
zero-field cooling and field cooling. Following zero-field cooling, the skyrmion lattice state
is confined to a narrow region below the ordering temperature. In contrast, following field
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Figure 2.8: Magnetic phase diagram of Feg 5Cog 551 with B || (110) after zero-field cool-
ing (a) and field cooling (b). We distinguish helical (H, green), conical (C,
grey), skyrmion lattice (S, red), paramagnetic (PM, white) and ferromagnetic
state (FM, white). (c) Typical spin configuration of the skyrmion lattice. (d)
Schematic of the coalescence of two skyrmions. A magnetic point defect carry-
ing a single quantum of emergent magnetic flux, a so called emergent magnetic
monopole, is situated at the merging point indicated with the black arrow. It
acts as a zipper merging two skyrmions together. (e)—(g) Typical MFM im-
ages of the metastable skyrmion lattice recorded at 10 K after field cooling in
B =20mT. With a successive reduction of field skyrmions (blue dots) start
to merge, forming elongated structures resembling a strongly unordered heli-
cal state. (h) Contour surfaces of typical spin configurations extracted from
Monte Carlo simulations, corresponding to the MFM measurement protocol.

cooling the skyrmion lattice extends down to lowest temperatures. Since the first discovery
in Fe;_,Co,Si, metastable skyrmion lattices have been reported in various other systems,
including MnSi, CuyOSeQO3, CogZngMny and CogZngMny [33, 34, 74, 91, 92|. In the 5-Mn
type materials, CogZngMny, and CogZngMny, field cooling across the stable skyrmion
lattice phase is sufficient to generate the non-equilibrium skyrmion lattice phase, similar
to Fe1_,Co,Si, while additional measures such as rapid quenching or electric fields are
neccessary in MnSi [74, 91] and CupOSeOg [93]. This is attributed to structural disorder,
prevalent in Fe;_,Co,Si and the S-Mn type chiral magnets.

The ability to create metastable skyrmion states is tightly linked to the topological
protection of the non-trivial spin structure, providing a finite energy barrier separating
the skyrmion state from trivial order (cf. Sec. 2.4). Microscopically, the transformation
of skyrmions into trivial magnetic states involves the creation of high-energy transition
states, which have been identified as hedgehog-like point defects, so-called Bloch points
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[46, 72]. The topological unwinding process has been studied in Fey5Cog5Si, using
magnetic force microscopy, numeric simulations, and theoretical calculations [46]. By
field cooling a Feg 5Cog 551 sample in an applied field of B = 20mT, Milde and coworkers
were able to stabilize the skyrmion lattice down to 10 K, where the enhanced magnetic
contrast enabled the detection with magnetic force microscopy. This allowed them to
track the evolution of the magnetic state as a function of field on the surface of the sample.
It is found that with a reduction of field, skyrmions disappear by coalescence forming
elongated structures, resembling strongly disordered helices, as shown in Fig. 2.8(e)—(f).
This process is mediated by Bloch points acting as zippers, merging two skyrmions. The
coalescence of two skyrmions is shown schematically in Fig. 2.8(d). In contrast, the
disintegration of skyrmions at high fields occurs by a Bloch point mediated pinch-off
of single skyrmion strings [72, 74, 94]. Since each skyrmion is associated with a single
quantum of emergent magnetic flux, Milde and co-workers realized that Bloch points
unwinding the skyrmion act as monopoles or anti-monopoles of the emergent field, either
sourcing or sinking one quantum of the emergent magnetic flux.

Lorentz transmission electron microscopy experiments on heavily thinned Feg 5Cog 551
samples revealed an Arrhenius-type exponential decay of the skyrmion lattice [95]. Sur-
prisingly, however, the exponential prefactor, 7y, the so-called attempt time exhibits a
strong field dependence as-well and leads to a drastic reduction of the lifetime of the
skyrmion lattice in field regions where a long lifetime is expected from the activation
energy alone. The experimentally observed attempt times vary largely, from ultra-fast
values of 1 x 10737 s to macroscopic timescales of 1 x 1072 s, as a result of entropic effects,
known as enthalpy-entropy compensation.

In conclusion, Fe;_,Co,Si serves as an ideal model system to study skyrmion lattices
far from equilibrium. Nonetheless, previous studies on Fe;_,Co,Si have been limited
in a number of ways. First, a detailed evaluation of the thermodynamic signatures of
the nonequilibrium skyrmion lattice state, such as the magnetization, is still missing in
literature, as well as a thorough analysis of the stability of the metastable state against
temperature and field. Most studies have only focussed on selected temperatures or
fields. A direct comparison with metastable skyrmion states reported in other materials
is therefore not possible. Secondly, the relaxation behavior and the underlying energetics
have so far been studied in heavily thinned samples only, where the low dimensionality
and the interfacial effects are known to alter the underlying energetics [50, 96, 97]. For
instance, the heavily thinned samples show a significantly reduced ordering temperature
(= 20%) compared to the bulk [95]. Moreover, previous studies have not been able to
quantitatively reproduce the theoretically predicted activation energies [72, 94, 95].

2.7 Chiral Magnetism in the Magnetoelectric Insulator
CUQOSEOg

The cubic chiral magnet CusOSeOs is the second material investigated in this thesis.
Cu08e0s3, discovered in 1976 [99], was the first insulating material in which a skyrmion
lattice [49, 100] was found. In contrast to the metallic chiral magnets MnSi, FeGe or
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Figure 2.9: (a) Crystal structure of CuzOSeO3. Two different Cu?* sites may be distin-
guished, either surrounded by a square pyramid (green) or a bipyramid (blue)
of oxygen atoms. (b) Crystallographic unit cell, containing four tetrahedra of
strongly interacting magnetic Cu?* ions. Ferromagnetic(red) and antiferro-
magnetic (blue) interactions between the Cu?* lead to a 3-up-one-down spin
arrangement in each tetrahedron. Interaction strength is indicated by the
thickness of the connecting lines and much weaker between different tetrahe-
dron. (c) The positions of the effective spins per tetrahedra (grey) correspond
to the Mn sites in MnSi. Figure (a) adapted from Ref. [49]. Figure (b), (c)
reproduced from Ref. [98].

Fe;_,Co,Si, CuaOSeOs has a more complex unit cell. The conventional cubic unit cell,
with a lattice constant of a = 8.928(3) A [99], depicted in Fig. 2.9(a), consists of 8 formula
units, resulting in 56 atoms instead of 8. Two different Cu?* sites may be distinguished,
either surrounded by a square pyramid or a trigonal bipyramid of oxygen ligands, in a
3:1 ratio [49, 101, 102].

Numerous measurements such as magnetization, high-resolution x-ray diffraction, neu-
tron powder diffraction and NMR identified a ferrimagnetic order below T, = 58.8 K as
the magnetic ground state [101, 103-105|. Bos, however, pointed out that ferrimagnetism
in zero field is incompatible with the symmetries of the point group P2:3 without a
reduction in symmetry of the crystal lattice [103, 106]. Nonetheless, no reduction in
symmetry could be found [103-105]. This ambiguity was resolved by Seki et. al. who
identified the ground state as a helical modulation, compatible with the symmetries [49].

The magnetic building blocks of CuaOSeO3 are two kinds of Cuy tetrahedra with either
strong or weak exchange coupling between the Cu?? ions, depicted in Fig. 2.9(b). Both
ferromagnetic and antiferromagnetic exchange is present according to DFT calculations
by Janson and coworkers [98]. The interaction strength, indicated by the thickness of the
connecting lines, is much weaker between Cu?* ions of different tetrahedra compared to
the strength of Cu?* ions of the same tetrahedron. Quantum-mechanical treatment of a
single tetrahedron yields a 3-up-1-down spin-triplet configuration with S = 1 separated
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by a large gap of A = 275K from the lowest-lying excitation [98]. The large excitation
gap allows the treatment of the spin configuration as an effective moment. The positions
of the effective triplets, shown in Fig. 2.9(c) as grey arrows, correspond to the Mn sites
in MnSi. It is the Dzyaloshinskii-Moriya interaction between these effective triplets that
leads to the helical ground state in CusOSeQOs.

In contrast to many other chiral magnets, the insulating nature of CusOSeOs, in
particular the large Mott gap, facilitates the investigation of magnetic properties using
optical transmission techniques [107]. This has been exploited in various spectroscopic
studies, ranging from microwave to optical frequencies [107-112].

In addition to chiral magnetic interactions, the cubic chiral space group P2;3 permits
piezoelectricity and piezomagnetism. A prerequisite for the occurrence of magnetoelectric
effects, however, are insulating electrical properties as the screening of electric fields by
conduction electrons prohibits the magnetoelectric coupling in bulk metallic systems.
Both requirements are met in CusOSeO3 and indeed magnetoelectric effects are observed
at the onset of magnetic order (49, 103, 113, 114] and, in particular, within the skyrmion
lattice phase [49, 114]. The electric field control of magnetic textures, most notably
skyrmions, is of great relevance for future applications, as it provides a Joule-heating free
control mechanism [115]. The effects of dc electric fields on skyrmion order in CuyOSeO3
that have been demonstrated include manipulation of the skyrmion lattice orientation
[116, 117] as well as enhanced or suppressed stability of the skyrmion phase [93, 118].

Given the similarity of the magnetic properties of CusOSeQO3 with other chiral magnets,
our recent discovery of two additional magnetic phases came as a major surprise [119].
Using small-angle neutron scattering (SANS), we have identified a second skyrmion phase,
and a tilted conical phase, emerging at low temperatures for fields along (100) only.

Shown in Fig. 2.10 are schematics of the intensity patterns in reciprocal space of all
five modulated magnetic structures and typical scattering images. Small colored spheres
illustrate the location of scattering intensity in reciprocal space. The scattering intensities
are located on the surface of a sphere, shown in blue shading, with a characteristic radius
|Q| =~ D/J (cf. Sec. 2.1). The crystallographic (100) orientations are visualized as
black arrows. The detection plane, probed by the SANS experiment, is illustrated as
a grey rectangle. The five different intensity patterns shown correspond to the well
established intensity patterns of the helical (green), conical (grey) and high-temperature
skyrmion (light red) state as well as the recently discovered tilted conical (dark grey) and
low-temperature skyrmion state (dark red). In this context it is important to note the
different orientations of the applied magnetic field and the detection plane with respect
to the crystallographic orientations.

The domain structure of the helical state leads to scattering intensity along all (100)
magnetic easy axes at a wavevector of £@), as shown in Fig. 2.10(al). Likewise, the single
domain conical state, as shown in Fig. 2.10(a2), is characterized by scattering intensity
at £@Q) along the direction of the magnetic field. It is important to note that when the
magnetic field is applied along a (100) axis, the conical intensity is indistinguishable from
one of the three helical domains. In contrast, the scattering intensity of the conventional
high-temperature skyrmion lattice, as shown in Fig. 2.10(a3), is located in a plane
perpendicular to the magnetic field and obeys a sixfold symmetry that, unlike the helical
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Figure 2.10: Schematics of the characteristic intensity patterns in reciprocal space
and typical scattering images of helical [(al), (b1l)], conical [(a2), (b2)],
high-temperature skyrmion [(a3), (b3)], tilted-conical [(a4), (b5)] and low-
temperature skyrmion order [(a5), (b5)]. The blue shaded sphere indicates
the characteristic length scale of the magnetic modulations. The grey plane
corresponds to the detection plane. Note the direction of field with respect to
crystal orientation and detection plane. Figure provided by Alfonso Chacon.

state, results from a single domain multi-q state.

The intensity patterns of the recently discovered tilted-conical state and the low-
temperature skyrmion state, are illustrated in Fig. 2.10(a4) and (a5), respectively. The
tilted conical phase is comprised of a conical modulation, tilted against the field direc-
tion, with the tilting angle increasing with field. In accordance with symmetry one
observes four equivalent domains, yielding, in total, eight diffraction spots. Similar to
the high-temperature skyrmion phase, the intensity of the low-temperature skyrmion
phase emerges in a plane perpendicular to the applied magnetic field. Unlike the high-
temperature skyrmion lattice, however, a ring of intensity instead of a sixfold pattern
is observed, suggesting that, despite being the ground state, long range order is not yet
fully developed. This is attributed to a weak effective anisotropy of the in-plane orienta-
tion of the skyrmion phase in the (100) orientation. It has been demonstrated that the
hexagonal scattering pattern may be recovered by tilting the sample slightly against the
field direction. This is attributed to a slight increase of the effective in-plane anisotropy
with tilting due to in-plane magnetic field components, locking the skyrmion lattice in
place.

The magnetic phase diagrams as determined by SANS are shown in Fig. 2.11(a)-

(d) and were inferred from temperature sweeps following three distinct temperature vs.
field protocols, namely zero-field cooled/field heated (ZFC/FH), field cooled/field heated
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Figure 2.11: Orientation and history dependence of the magnetic phase diagrams in-
ferred from small-angle neutron scattering. Three distinct temperature vs
field protocols may be distinguished, namely zero-field cooled /field heated
(ZFC/FH), field cooled/field heated and high-field cooled/field heated. (a)
Magnetic phase diagram for B || (111) following ZFC/FH. (b)—(d) Magnetic
phase diagram for B || (100) following ZFC/FH, FC/FH, and HFC/FH,
respectively. Figure adapted from Ref. [119].

(FC/FH) and high-field cooled/field heated (HFC/FH).

Shown in Fig. 2.11(a) is the magnetic phase diagram observed for B || (111) under
ZFC/FH. It resembles the generic phase diagram of the chiral magnets (cf. Sec. 2.1) with
the helimagnetic ground state, the conical state at intermediate fields, the field polarized
state at high fields and low temperatures, and the skyrmion lattice state at finite fields
and high temperatures just below T¢.

In contrast, the magnetic phase diagram of the (100) orientation, observed under
ZFC/FH, FC/FH and HFC/FH, as shown in Fig. 2.11(b)—(d), hosts two additional
magnetic phases, namely a low-temperature skyrmion phase and a tilted-conical phase.
The tilted conical phase emerges at the border of the conical to field-polarized transition,
corresponding to a temperature and field region in which strong dissipation effects have
been reported previously [120]. The second skyrmion phase emerges at low temperatures
and finite fields, disconnected from the conventional high-temperature skyrmion phase
and exhibits highly hysteretic phase boundaries. In all temperature vs field protocols,
the intensity of the low-temperature skyrmion phase emerges within the temperature and
field range of tilted-conical phase, but may exceed beyond as shown following ZFC/FH
and HFC/FH in Fig. 2.11(b) and (d), respectively.

The formation of the low-temperature skyrmion phase and the tilted conical phase
for field along (100) only demonstrates that cubic anisotropies must play an essential
role. The importance of anisotropies is further underpinned by free energy calculations
based on Ginzburg-Landau theory, including exchange, Dzyaloshinskii-Moriya, Zeeman
and dipolar interactions as well as cubic anisotropies. Using realistic quantitative values
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Figure 2.12: (a) Mean-field magnetic phase diagram as a function of ro and B for a cubic
anisotropy of K = 0.0004U. We distinguish conical, tilted conical, field-
polarized state (FP), triangular skyrmion lattice state (A-Sky), and square-
lattice skyrmion state ((J-Sky). Hatched region marks the metastable tilted
conical phase. (b) Field dependence of the free energy of various magnetic
states at rop = —1000D?/J for vanishing cubic anisotropy (dashed lines)
and easy (100) cubic anisotropy with K = 0.0004U (solid lines). An offset
function, Ey(B, K) B2, has been subtracted for clarity and the dashed
lines are further shifted vertically. Figure adapted from Ref. [119].

and including the lowest order conventional cubic anisotropy term,
—K/ (M, + M, + M) dV, (2.11)

the experimentally observed phase diagram may be reproduced. This is shown in
Fig. 2.12(a), presenting the mean-field phase diagram as a function of magnetic field, B,
and the Landau parameter, rg, tuning the distance to the ordering temperature, with large
negative values corresponding to low temperatures. Similar to the experiment, skyrmion
order is found at finite fields and low temperatures. The tilted conical phase, however, is
identified as a metastable state. This is further illustrated in Fig. 2.12(b), showing the
typical field dependence of the free energy of various magnetic states at low temperatures.
Dashed lines correspond to free energy calculations for vanishing anisotropy (K = 0),
while solid lines represent free energy calculations for finite cubic anisotropy with easy
(100) anisotropy.

For vanishing anisotropy, only a conical ground state at low fields and a field-polarized
state at high fields is found, consistent with literature [37]. In contrast, for sufficiently
strong cubic anisotropy, with K > K., a skyrmion ground states emerges. The critical
anisotropy constant expressed in units of energy density, K, . = K. - M2, reads

K
— 22— =0.07, (2.12)
o HIy M,
with the saturation magnetization, Mg, and the upper critical field, nglt, in case of

vanishing anisotropy. The term pgH, égtMs, proportional to the ratio D?/.J [88], represents
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the isotropic energy contribution necessary to transform the helimagnetic ground state
at B = 0 into the field polarized state, assuming a vanishing anisotropy. Therefore, when
the anisotropy energy along the (100) axis is larger than 7% of the isotropic energy, a
skyrmion phase may emerge.

In addition, at high fields, a metastable tilted conical phase is found, lower in energy
than the conical or field-polarized state but always higher compared to skyrmion order.
Unlike the skyrmion order, the transition from conical or field-polarized state into the
tilted conical state involves a second-order phase transition and thus occurs immediately
when the free energy of the tilted conical phase is lower, which may explain the phase
coexistence observed experimentally.

Theoretically, triangular and square lattices of skyrmions, as well as modulated skyrmion
textures (not shown), are found to be very close in energy. The ring-like scattering inten-
sities observed experimentally make it difficult to identify the underlying skyrmion lattice
structure unambiguously. Nonetheless, by tilting the sample slightly against the field
direction, the hexagonal scattering pattern has been recovered. Moreover, preliminary
results at high fields appear to be compatible with the square lattice arrangement.

In summary, strong magnetocrystalline anisotropies of the cubic chiral magnet CusOSeQOs3
yield two additional magnetic phases, that have not been observed in any other chiral
magnet, namely a low-temperature skyrmion phase and a tilted-conical phase. The un-
derlying generic mechanism may allow for similar observations in other materials if the
cubic anisotropy is sufficiently strong. Nonetheless, important questions remain. These
concern the thermodynamic signatures of the new phases and in particular the potential
differences between the low-temperature skyrmion phase and the conventional skyrmion
phase at high temperatures. In view of the highly hysteretic phase boundaries, the ques-
tion remains concerning the extent of the thermodynamically stable field range of the
low-temperature skyrmion phase. Either, the skyrmion order is thermodynamically stable
in a wide field region, as predicted by theory, yet unable to nucleate in most regions or it
is confined to a narrow field region but extends beyond it as a metastable state, implying
an incomplete theory.

2.8 Aims and Objectives of this Thesis

The overall purpose of the present study is the investigation of thermodynamically and
kinetically stabilized skyrmion order and is divided into two parts.

In the first part, presented in Chapter 4, we focus on a nonequilibrium skyrmion phase,
emerging under field cooling in the chiral magnet Fey5Cog55i. We seek to investigate
the stability of the nonequilibrium skyrmion phase against temperature and field and
aim to identify the underlying energetics. We report a comprehensive magnetization
and ac-susceptibility study of a nonequilibrium skyrmion lattice state in single crystal
Fej_,Co,Si. We find the metastable skyrmion lattice covering a significant portion of the
phase diagram, extending into the field polarized state and even negative magnetic fields.
The relaxation dynamics is studied with time-dependent magnetization measurements.
Using master curve scaling, we extract the distribution of activation energies in zero
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field. We find a barrier distribution consisting of a topological monopole-antimonopole
nucleation barrier superimposed on a broad distribution of activation energies, yielding
a skyrmion lattice state, stabilized beyond topological protection. We discuss, in detail,
the field dependence of the metastable skyrmion phase and provide a direct comparison
of nonequilibrium skyrmion lattice phases, where we identify generic behavior.

The second part of this thesis, reported in Chapter 5, focuses on a low-temperature
skyrmion phase, thermodynamically stabilized by cubic anisotropies. We aim to identify
the thermodynamic signatures of the low-temperature skyrmion phase and the tilted
concial phase, recently discovered in CusOSeOs3, and seek to gain further understanding
of the strong hysteretic effects associated with the low-temperature skyrmion phase.
Moreover, as cubic anisotropies are believed to play a key role in the stabilization of
these novel phases, we set out to quantitatively infer the cubic anisotropy constant. We
present a comprehensive study of the magnetic properties of single-crystal CuasOSeOs,
conducted in parallel with the neutron scattering study, reported in Ref. [119]. By
means of measurements of the magnetization, ac-susceptibility, and specific heat, we
track the influence of crystal orientation, cooling history and demagnetizing effects on
the formation of skyrmion order. We find clear thermodynamic signatures of both low-
temperature skyrmion phase as well as the tilted conical phase, restricted to the (100)
orientation only, confirming the observations of neutron scattering. Based on the extensive
data, we infer the magnetic phase diagram of CusOSeOg3 for magnetic fields along the
(111), (110), and (100) crystallographic orientation. Using two different temperature vs
field protocols we investigate the hysteretic effects associated with the low-temperature
skyrmion phase. We show that the strong dissipation effects reported earlier [121] originate
from the tilted conical phase and are accompanied by signatures in higher harmonics of the
ac-susceptibility. We further demonstrate the influence of demagnetizing fields on the low-
temperature behavior, showing that signatures of the low-temperature skyrmion phase
smear out and become undetectable at large demagnetizing field. From the magnetization
measurements, we quantitatively estimate the cubic anisotropy constant and demonstrate
how cubic anisotropies influence the energy landscape of chiral magnets. In addition, we
study the nucleation of the low-temperature skyrmion phase through first-order reversal
curve measurements and find compelling evidence that the low-temperature skyrmion
lattice phase requires the tilted-conical phase to lower the nucleation barrier.

In conclusion, the first part of this study provides valuable insights into the stabiliz-
ing kinetics of nonequilibrium skyrmion phases and as metastable skyrmions are a key
requirement for future spintronics applications, may contribute to the understanding of
the underlying energetics, whose knowledge is fundamental for the engineering of future
spintronic applications. The second part revisits the influence of cubic anisotropy on
chiral magnets and establishes cubic anisotropy as a novel stabilization mechanism for
skyrmion order, that has not been considered before.
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CHAPTER 3

Experimental Methods

This chapter describes the methods used in the experimental studies and analyses reported
in this thesis. Section 3.1 describes the characteristics of the samples investigated as part
of this study. The measurement techniques and the characteristics of the experimental
apparatus employed in this work are introduced in Sec. 3.2 and Sec. 3.3, respectively.
Details of the data analysis are presented in Sec. 3.4

3.1 Samples

The study of the non-equilibrium skyrmion lattice state reported in Chapter 4, was
conducted on a high-quality single crystal sample of Feg5Cog.55i. A cuboid sample was
cut from a large single crystal ingot, grown by optical float zoning. The sample dimensions
as determined with an optical microscope are 3.4 x 1.1 x 1.1mm?. A summary of the
sample characteristics is given in Tab. 3.1. The sample was oriented in field such that
B || (110), with the (110) axis corresponding to a short axis of the sample. This orientation
was chosen to match a neutron scattering experiment.

The study of the low-temperature skyrmion lattice in CuayOSeQOg, reported in Sec. 5,
was carried out on five samples of high quality. All samples were prepared from large
high-quality single crystal ingots, grown using a chemical vapor transport technique and
are of comparable high quality. Oriented cuboid samples were cut using a wire saw
and carefully grinded into the final dimensions. The majority of the data was collected
on two samples, namely VIT'G-1-19 ((100) orientation) and VIT'G-1-20 ((110) and (111)
orientation). Additional samples with different demagnetizing factors were investigated
to study the effects of dipolar interactions. The sample masses, dimensions, orientations
and demagnetizing factors are summarized in Table 3.1.
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Table 3.1: Dimensions (a, b, and ¢), orientation of the magnetic field B, applied along
the a dimension, corresponding demagnetization factors N and designation of
the Fep5Cog.551 and CusOSeOg single-crystal samples investigated as part of

this study.

Material Dimension Orientation N Sample
(a [mm| x bjmm]| x ¢[mm]|) B || (hkl) || a

Feo,5COQ.5Si 1.1 x34x1.1 <110> 0.07 OFZ58-3-1-6
Cup0SeO3  3.00 x 0.50 x 0.50 (100) 0.07 VTGI1-10-1
Cuy08eO3  1.85 x 0.86 x 0.78 (100) 0.18 VTGI-18-2
Cup0SeO3  0.86 x 1.85 x 0.78 (100) 0.39 VTGI1-18-2
Cup0SeO3  0.15 x 0.85 x 1.88 (100) 0.77 VTG1-18-3
Cup0SeO3  1.87 x 1.28 x 1.53 (100) 0.28 VTGI1-19
Cup0SeO3  1.76 x 1.27 x 1.74 (110) 0.29 VTGI1-20
Cup0SeO3  1.74 x 1.27 x 1.76 (111) 0.30 VTGI1-20

3.2 Experimental Techniques

In this section, we focus on the experimental techniques employed in the data acquisition
during this work, namely magnetization, ac-susceptibility, nonlinear ac-susceptibility and
specific heat measurements.

3.2.1 Extraction Magnetometry

Induction techniques are common methods to determine the magnetization of a sample.
Moving a magnetic sample through a pickup coil generates, according to Faraday’s law
of induction, an electromotive force

€emf X % (3.1)
proportional to the change in magnetic flux. Two common methods based on this principle
are the vibrating sample magnetometer and the extraction type magnetometer. In the
vibrating sample magnetometer, the magnetic sample is moved periodically through a
pick-up coil, generating a sinusoidal induction signal, proportional to the magnetization.
In extraction type magnetometers, the sample is moved at a high velocity through a
pick-coil. The magnetic moment is then determined by correlating the time-dependent
induction signal with a reference curve.

3.2.2 AC Susceptibility

AC-susceptibility measurements are another important tool in the arsenal of a solid state
physicist and are widely used in the study of magnetic materials and magnetic phase
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transitions. In ac-susceptibility measurements, a small time varying magnetic field
H,o(t,w) = Hye coswt (3.2)
is applied to the sample and the resulting time varying magnetic response

M(t,w) = M’ coswt + M" sinwt (3.3)
= H,c(x' coswt + X" sinwt) (3.4)

is detected. Here, ' and x” are the in-phase and out-of-phase components of the complex
susceptibility xac = X'+7-x”. In the zero frequency limit, x’ corresponds to the differential
susceptibility dM /dH but differs for higher frequencies due to dynamic effects. Because
of this, x is also referred to as dynamic susceptibility. The out-of-phase component, x”,
is related to dissipation processes, mainly electrical eddy currents, viscous relaxation
processes and weak field hysteresis [122]. Both eddy currents and viscous relaxation
processes manifest as a frequency dependence in x”. Contrary, the weak field hysteresis
is independent of frequency but depends on the ac amplitude instead. As a final remark,
viscous relaxation processes may also lead to quantitative differences between ' and
dM/dH.

Demagnetizing Effects

To determine the intrinsic properties of a magnetic material, demagnetizing effects must
be taken into account. These influence the internal magnetic field, the magnetic suscep-
tibility as well as the shape of the magnetization curve. To obtain the internal field, the
external applied field must be corrected by the demagnetization field Hy resulting from
the divergence of the magnetization vector on the surface:

Hint = Hext + Hg. (3.5)

For uniformly magnetized samples the demagnetizing field is linearly related to the mag-
netization M by the so called demagnetization factor NV, according to

Hy= —NM. (3.6)

The true internal susceptibility yi, and the measured susceptibility xext are related as
follows [123]:

Xext
- vt 3.7
Xin 1- NXext ( )
For nonzero frequencies the susceptibilities are complex quantities. Separating equation
3.7 into real and imaginary part results in

Xow: — N(X20 + X024)

N2(X2, + X021) —2N Xy + 17

1
" Xext
Xint = : (3.9)
MCTN2(2, 4+ X2 — 2N, + 1

Xgnt - (38)
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Figure 3.1: Even harmonic generation at the approach to saturation. (a) Schematic field
dependence of a soft ferromagnet. (b) Time dependent magnetic response
(solid red line) to an oscillating field of the form H(t) = 0.1 - Hg coswt + Hg
(dashed black line). The path of the oscillating magnetization as a function
of field is illustrated in the inset of (a). (c¢) Second harmonic susceptibility as
a function of field. (d) Fourier components of the magnetic response up to

fourth-order.

3.2.3 Nonlinear Harmonic Susceptibility

In general, the magnetic response of a sample to an external magnetic field

H(w,t) = Hyc + Hae cos wt

may be expressed as a Fourier expansion:

o0
M(w,t) = My + Z (M, cos nwt + M, sin nwt)

n=1

o0
= XdeHac + Hac Z (X7, cos nwt + X, sin nwt)

n=1
where
2
1
r = M (w, t) cos nwt dwt
Xn 71_HM/ (w,t) nwt dwt,
0
and
27
1
_— M (w, t) sin nwt dwt
= [ M
0

(3.10)

(3.11)

(3.12)

(3.13)
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Measuring higher harmonics can provide insightful information. The emergence of
a second harmonic as a function of temperature in zero field indicates a spontaneous
magnetic moment and thus a ferromagnetic transition [124]. In contrast, a peak in the
third harmonic as a function of temperature at zero field is a clear indicator for a magnetic
transition in general (e.g. paramagnetic to spin-glass) and is not limited to ferromagnetic
order [124].

Furthermore, deviations of the field dependence of the magnetization from the linear
behavior inevitably lead to higher harmonics. In the following, the approach to saturation
in a soft ferromagnet is used as an example to illustrate the emergence of even harmonics
in the ac-susceptibility. In this example, hysteretic effects are neglected. Fig. 3.1(a)
schematically shows the field dependence of the magnetization of a soft ferromagnet. The
magnetization increases linearly with field until saturation My is reached at a critical
field Hs. The application of a small sinusoidal magnetic excitation field, biased by Hg,
leads to a time-dependent magnetization (see Fig. 3.1(b)), where the magnetization
oscillates along the hysteresis curve around Hjy illustrated in the inset of Fig. 3.1(a) in
red. During the negative half cycle, the magnetization is not yet fully saturated resulting
in a response proportional to the excitation field. During the positive half-cycle, however,
the magnetization is saturated resulting in a constant response. The overall response,
shown in Fig. 3.1(b), is therefore strongly anharmonic and consist entirely of even higher
harmonics. A separation of M (t) in Fourier components up to fourth order is shown in
Fig. 3.1(d) for clarity. Measuring the 2nd harmonic susceptibility x2 as a function of
field thus leads to a graph as shown in Fig. 3.1(c). x2 is zero over the entire field range,
except for two peaks at the positive and negative saturation fields.

As an interesting fact, note that higher harmonics do not contribute to energy dissi-
pation. The energy dissipation per cycle, W, is calculated as the area enclosed by the
M-H loop

W = MO%M(w,t) dH (w,t) (3.14)
oo

= —,MOWHacy{ My + Z (M, cos nwt + M)/ sinnwt) | sinwt dt (3.15)
n=1

= —pomX] Hac (3.16)

and depends only on the imaginary part of the first harmonic x/.

3.2.4 Temperature vs. Field Protocols

In view of strong hysteretic effects associated with the magnetic properties of skyrmion
phases, four different cooling protocols, illustrated in Fig. 3.2(a)—(d), were used in this
work, namely

e Zero-field cooling (ZFC): (i) The sample was first cooled to the desired target
temperature in zero field. (ii) Subsequently, data was recorded in a field sweep with
increasing magnetic field from H = 0 to H > Hy (Fig. 3.2(a)).
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Figure 3.2: Schematics of all measurement protocols used, namely zero-field cooling (a),
high-field cooling (b), and field cooling across the skyrmion lattice state with
a subsequent field increase (c) or decrease (d), denoted as ZFC, HFC, FC+
and FC-, respectively.

e High-field cooling (HFC): (i) A large magnetic field was applied well above the upper
critical field Ho before cooling to the desired target temperature. (ii) Subsequently,
data was recorded in a field sweep under decreasing field from H > Heo to H < —Ho
(Fig. 3.2(b)). Note that due to symmetry, we do not distinguish between initial
high field cooling in positive fields or negative fields. In addition, we have carefully
checked that the behavior following HFC is equivalent to the behavior recorded
under decreasing field from well above Hco after initial ZFC. This applies to both
Feg 5Cog.551 and CusOSeO3. Therefore we refer to both as HFC.

e Field cooling (FC): (i) The sample was cooled to the target temperature across the
skyrmion lattice state in an applied magnetic field of B = 10mT. Typical cooling
rates were of the order ~ 5 Kmin~! if not otherwise stated. (ii) Data was then
recorded with increasing (Fig. 3.2(c)) or decreasing field (Fig. 3.2(d)), denoted as
FC+ or FC-, respectively.

Additionally, we have employed first-order reversal curve type measurements in the
investigation of the low-temperature skyrmion phase in CusOSeOs3. First order reversal
curves (FORC) are typically used to investigate the irreversible behavior of ferromagnetic
systems [125-127] and denote a special type of minor hysteresis loop. Fig. 3.3 schematically
explains the FORC measurement at the example of a hard ferromagnet. A single FORC
measurement is recorded in a two stage process and may described as follows:

(i) Starting in the saturated state, the field is reduced to a reversal field denoted as
BI‘QV'

(ii) Subsequently, data is taken while increasing the field until the saturated state is
recovered.

The magnetization is thus a function of two variables, the reversal field B, and the applied
field B. This process is then repeated for various reversal fields. Disparities between
FORC curves are then directly related to irreversible processes. In this context it should
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HoHint

Figure 3.3: Schematic illustrating the first-order reversal curve (FORC) protocol. (i)
From the saturated state, the field is reduced to a reversal field, Byey. (ii)
Data is taken while increasing the field again towards the saturated state.

be noted that unlike classical FORC analysis, we do not calculate a FORC distribution
from the measured magnetization curves.

3.2.5 Specific Heat Calorimetry

The most common method to determine the specific heat of a sample is the heat pulse
method. Here, a heating pulse is applied to a sample, weakly linked to a thermal bath,
and the resulting temperature response of the sample is measured. A block diagram is
shown in Fig. 3.4(a).

The temperature response is governed by a first order differential equation:

dT(¢)

Cdt

= Ky (T(t) — Toasn) + P(0). (3.17)
Here, C' = Cs + C}, is the combined heat capacity of the sample Cs and the platform Cj,
and K, is the heat conductance of the thermal link between platform and thermal bath.
The coupling between sample and platform is assumed to be perfect, yielding Ky = oc.
Moreover, the temperature of the platform, T, is thus equal to the temperature of the
sample. The temperature of the bath is denoted as T,.

Solving this differential equation for a step-like heat pulse P(t) = Py - 6(t) applied to
the platform leads to a temperature response of the form

T(t) = -2 [1 - e—%t] (3.18)

which in turn may be fitted to the measured temperature response to obtain C. This
equation is equivalent to the loading curve of a capacitor exposed to a constant voltage,
hence the name heat capacitance. For better convergence, it is helpful to fit the cooling
curve as well, where the heater is switched off again. To determine the heat capacity of
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Figure 3.4: (a) Block diagram of the specific heat setup. A sample with a specific heat Cy is
coupled via a heat link K to a platform with a specific heat C},. The coupling
between sample and platform is assumed to be perfect, giving Ky = oo. The
platform is weakly coupled to thermal bath T, via the heat link K. A heat
pulse P(t) is applied to the platform and the temperature response of the
platform T}, is measured. (b) Simulated temperature response (blue symbols)
and fit (red line) to the heat pulse shown in (c).

the sample the heat capacity of the platform has to be subtracted, which is measured
in a heat pulse experiment without a sample. A typical temperature response and the
fitted single-7 model are illustrated in Fig. 3.4(b), the corresponding heat pulse is shown
in Fig. 3.4(c). Note that the temperature rise has to be small for the assumption of a
constant specific heat during the heat pulse.

3.3 Experimental Apparatus

3.3.1 Quantum Design PPMS

The Quantum Design Physical Property Measurement System (PPMS) is a static flow
cryostat equipped with various measurement options. The available temperature range is
1.8 K to 400 K. During this thesis two PPMS cryostats one with a 9T the other with a
14 T superconducting magnet were used. Both superconducting magnets can be operated
in persistent mode, allowing for extremely stable magnetic fields.

3.3.2 Magnetization and AC Susceptibility Measurements in the PPMS

The ACMS-option enables the PPMS to measure the ac-susceptibility as well as the
dc-magnetization with the same hardware. It consists of a coil inset, a servo motor and
measurement electronics. The coil inset consists of a compensated ac-excitation coil and
a set of detection coils. Two single-turn low inductance calibration coils allow for the
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direct measurement of the instrumental phase shift for each data point, increasing the
precision of the susceptibility measurements.

The dc magnetization was measured by means of an extraction method with a sensitivity
range from 2.5 x 107%emu up to 5emu utilizing the servo motor to move the sample
through the detection coils. The ac-susceptibility works by applying a small sinusoidal
magnetic excitation field and measuring the response of the sample. By means of a
correlation method, the real and imaginary part of the magnetic response, denoted as '’
and x”, as well as higher harmonics up to the 10th order may be determined simultaneously.
The available frequencies and field strengths range from 10 Hz to 10kHz and 0.17 pT to
1.7 1T respectively.

The sample was mounted with GE-varnish and Teflon tape onto a Delrin sample holder
at the end of a sample rod. If not otherwise stated an excitation frequency of f = 911 Hz
and an excitation amplitude of B,. = 0.1 mT was used for the measurements.

3.3.3 Specific Heat Measurements in the PPMS

The HC-option provides the capability to measure the specific heat of a sample. The
sample is mounted on a 3 x 3mm? Al203 platform using Apiezon-N grease. The platform
is equipped with a resistive heater and a thermometer and is itself weakly coupled to
the thermal bath by thin platinum wires. By applying a small step like heat pulse and
recording the temperature response of the platform the specific heat may be determined.
The heat capacity is extracted automatically by fitting the temperature response curve.
Two models are available. The simple but fast single-7 model assumes perfect coupling
between sample and platform. The advanced two-r model models the finite thermal
coupling between platform and sample. The model resulting in the best fit is chosen
automatically.

3.4 Data Analysis

This section summarizes the analyses methods uses in this dissertation, namely master-
curve scaling and the extraction of magnetocrystalline anisotropies based on magnetic
work and critical fields.

3.4.1 Master Curve Scaling

The time-temperature superposition principle is a widely used concept in the field of glass
forming liquids and polymers and has also been successfully applied to superconductors,
spin-glasses and ferromagnets [128-133]. The basic concept behind time-temperature
superposition is that a change in temperature has the same effect as the advancement
of time by a specific amount. To be more precise, let G(¢,T) be a physical parameter
such as viscosity that depends on both time and temperature, then the time-temperature
superposition principle states that

G(t,T) = G(t/to, o), (3.19)
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Figure 3.5: Hlustration of master curve scaling with the scaling factor ¢ty underemphasizing
time (a), properly chosen (b) and overemphasizing time (c¢). Blue shaded line
segments show typical relaxation data as a function of T'In(t/ty + 1). Dashed
black line in (b) acts as a guide to the eye.

Here, ty acts as a shift factor rescaling the time axis. If the shift factor ¢g is known, the
prediction of long time behavior, at temperatures where measurements would require
experimentally inaccessible timescales, from measurements at different temperatures on
accessible timescales is possible. The combination of several measurements at various
temperatures to a single, smooth curve at a reference temperature is known as the master
curve scaling. Note that in general ¢y is not a constant, but may also be temperature-
dependent.

As shown in Sec. 1.2, the magnetic viscosity originates from a broad distribution
of activation energies which are triggered by a relaxation front, E = kgT In(t/tg + 1),
advancing linear in temperature but logarithmically in time. This allows us to construct a
master curve from relaxation data by determining the constant shift factor ¢g. In Sec. 4.2,
this concept will be applied to magnetic relaxation data of a metastable skyrmion lattice.

The construction is carried out according to the following protocol:

1. For each relaxation measurement subtract the magnetization value following zero-
field cooling at the corresponding temperature. This is necessary because the finite
remanence of the superconducting magnet leads to a non-vanishing magnetization
of the helical groundstate.

2. Correct for the temperature dependence of the magnetic moment by dividing
through the normalized saturation magnetization My(T)/Ms(T = 0). The sat-
uration magnetization is extracted from a temperature sweep at B = 9T, deep in
the field polarized state. This correction improves the results as the temperature
dependence breaks the time-temperature superposition principle. Note that this is
not a large correction, as the saturation magnetization reduces by approximately
10 % from 2K to 30 K.
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3. Plot as a function of T'In(¢/tg + 1) and vary the shift factor ¢y until all relaxation
measurements align to form a single, smooth curve.

The effects of the shift factor are illustrated in Fig. 3.5. A properly chosen shift factor is
illustrated in Fig. 3.5(b). A shift factor underemphasizing and overemphasizing time is
shown in Fig. 3.5(a) and Fig. 3.5(c), respectively.

3.4.2 Extraction of Cubic Anisotropy Constant from Magnetic Work

By determining the magnetic work required to drive the system into saturation from
magnetization curves, we are able to determine the anisotropy constants. The magnetic
work is defined as

W= /B dM (3.20)

and corresponds to the area between the ordinate and the magnetization curve in a
M (B) diagram illustrated in Fig, 3.6. The difference of magnetic work between different
orientations directly corresponds to the difference in anisotropy energy between them.
By measuring the magnetization curves of a cubic crystal in the three main axes, the
anisotropy constants K7 and Ky can be determined as follows: The anisotropy energy
for the three main axes is given by

Fip0 = Ko, (3.21)
K

Fiio =Ko+ Tl, (322)
K K

Fin=Ko+ = +—=— 3.23

111 o+ 3 + 97 ( )

with

Mg = (1 0 0), (3.24)

. 1

Muoz\ﬁ(l 1 0), (3.25)

. 1

Mip=—(1 1 1). (3.26)

V3
By equating the energies with the work in the corresponding directions and solving the
resulting system of equations one obtains:

Ko = Wioo, (3.27)
Ky = 4(Wi10 — Wigo), (3.28)
Ky =27(Wi11 — Wioo) — 36(W1i10 — Wigo). (3.29)

Care has to be taken to avoid common pitfalls. In addition to magnetocrystalline
anisotropy, other effects can also lead to magnetic anisotropy with shape and magnetoe-
lastic anisotropy being the most important ones.
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B

Figure 3.6: Magnetization as a function of field. Shaded area between ordinate and
magnetization curve corresponds to work done in magnetization.

Magnetoleastic anisotropy can be largely avoided by not straining the specimen. It is
however not possible to avoid shape anisotropy. Instead, the influence of shape anisotropy
must be eliminated by appropriate geometries and careful demagnetization correction.

Furthermore, the accuracy depends on the precise measurement of the magnetization.
During this work it has been shown that the magnetization value measured in the PPMS
reacts sensitively to the centering of the sample. Thermal expansion of the cryostat after
a change of temperature will lead to an off-centering of the sample and in turn to an error
in the magnetization measurement.This may be avoided by recentering the sample after
each change in temperature.

3.4.3 Extraction of Cubic Anisotropy Constant from Critical Fields

The effects of magnetocrystalline anisotropy on the critical fields of cubic chiral magnets
has been investigated by Grigoriev and coworkers|88] based on the Bak-Jennsen model for
chiral magnets|36]. The relations for the critical fields inferred in this work, will in-turn
allow us to determine the magnetic anisotropy constant.

The analysis, following Grigoriev and coworkers, may be summarized as follows [88]:
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Starting from a standard Bak-Jensen model,

J D
_ [ 43 2 _
’H—/d r[m(VM) + a2M (V x M)

Exchange Dzyaloshinskii-Moriya

1 K
— M- B+ —(M*+ M* + M?

a3 +a3( e+ My + M) (3.30)
—_——

Zeeman cubic anisotropy

- (VML + (V007 + (VALY .

2a

Exchange Anisotropy

including exchange interaction, Dzyaloshinskii-Moriya interaction, Zeeman interaction
and cubic anisotropies, the energy of a conical helix solution

M(r) = M {é sin o + (Aeik'r + A*e_ik'r) Cos oz} (3.31)

may be minimized with respect to the propagation vector, k, and the opening angle,
«. The first term represents the ferromagnetic component of the helix, the second term
represents the spiraling component perpendicular to the propagation direction. The
amplitude vector A is defined as A = (4 — ib)/2, with the unit vectors &, b and &
forming a right handed orthogonal frame.

Assuming a helical propagation aligned along the field direction, corresponding to the
conical state, yields

MH = ZKW(@H, ou) sin® o + | M AK? — %KW(GH, éu) | sin a, (3.32)

where 6y and ¢y represent the orientation of the magnetic field, H, in spherical coordi-
nates and A is the spinwave-stiffness. The cubic invariant W (0, ¢) is defined as

4 (100)
W (0, ¢n) =10C — 6= -1 (110) (3.33)
—8/3 (111)

with C = Y- ¢j. If K- W >0, Eq. 3.32 has a solution for sina = 0 at
J

MHey = Ak* + W (0n, ¢n) - K (3.34)

In contrast, if K - W < 0 the solution depends on the ratio of the Dzyaloshinskii-Moriya
interation and the cubic anisotropy. For MAk? > 14—8]K - W/, Eq. 3.32 has a solution for
sina =0 at

MSH02 = Ak? - ’W(9H> ¢H) ' K| (335)
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In contrast, for K - W < 0 and M Ak? < 118|K - W] the conical helix solution becomes
unstable at a finite opening angle

4 MAR2 1
aCQ_\/QHK-W\+7 (3.36)

with the corresponding critical field

2 1K -
Heo = sin aeo (Ak2 + L W|) (3.37)

3 2 Mg

Based on these relations, the anisotropy constant, K, may be inferred from measure-
ments of Hcy in two orientations. Assuming measurements of Hep of the (111) and (110)
orientations and a negative K constant, Eq. 3.34 yields
P - HY 3

= —ZM, (H3"' - HY"). (3.38)

K= MSW111 — Lo 5

By measuring Hce along (111) and (110) we are thus able to infer the cubic anisotropy
constant, K, as a function of temperature.
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CHAPTER 4

Nonequilibrium Properties of the Skyrmion Lattice in Feg5Coq5Si

In this section we report a comprehensive study of the magnetic properties of Feg 5Cog 551
focusing on the non-equilibrium skyrmion lattice state. Using magnetization and ac-
susceptibility, we investigate the stability and the underlying energetics of the metastable
skyrmion lattice as a function of time, temperature, and field.

This chapter is structured in five Sections. In Section 4.1, we present the results of
the extensive magnetization and susceptibility measurements, starting with a brief in-
troduction of the key features, followed by a detailed presentation of the magnetization
and susceptibility measurements. As a first main result, we report the cooling history
dependence of the magnetic phase diagram. In Section 4.2, we address the irreversibilities
and relaxation effects associated with the nonequilibrium skyrmion lattice. First, we
present typical magnetic relaxation data, recorded in zero-field, followed by an analysis
of the relaxation data based on a magnetic viscosity model. Next, we address irreversibil-
ities in the temperature dependence of the magnetic remanence. Finally, we infer the
distribution of activation energies using master curve scaling. The discussion of the
results is addressed in Section 4.3 and comprised of two parts. First, based on results
of the relaxation measurements, we demonstrate that the skyrmion lattice in zero-field
is stabilized beyond the topological protection. Secondly, we address the magnetic field
dependence of the metastable skyrmion lattice. In Section 4.4, we provide a comparison
of nonequilibrium skyrmion lattices in various chiral magnets. We end this chapter with
a summary in Section 4.5.

4.1 Magnetization and AC Susceptibility

The presentation of the magnetization and susceptibility data is organized as follows:
First, in Sec. 4.1.1, we introduce the key features of the magnetization and susceptibility
data. Next, we address the results of the field dependent magnetization measurements for
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Figure 4.1: Key features of the field dependent magnetization and susceptibility data
in Fep5Cop55i. (a) Magnetic phase diagram constructed from isothermal
magnetization and susceptibility measurements following zero-field cooling.
We distinguish the helical (H, green), conical (C, grey), skyrmion lattice
(SKX, red) and field polarized (FP, white) state. Magnetization (b) and
susceptibilities (c) as a function of field following ZFC at T" = 41 K. With
increasing field, the system transitions, in this order, through helical (green),
conical (grey), skyrmion lattice (red), conical (grey) and field polarized state
(white), indicated as colored shading of the background.

various temperatures and cooling histories in Sec. 4.1.2. We proceed with an an in-depth
presentation of the differential and ac-susceptibility data in Sec. 4.1.3. Finally, we present
the history dependent magnetic phase diagrams, inferred from the extensive dataset.

4.1.1 Key Characteristics of the Magnetization and AC Susceptibility

The magnetic phase diagram of Feg5Coq 551 inferred from isothermal magnetization and
susceptibility measurements after zero-field cooling is shown in Fig. 4.1(a). It resembles
the generic phase diagram as discussed in Sec. 2.1 featuring the helimagnetic ground
state (green), the conical state (grey) at intermediate fields and the field polarized state
(white) at large fields and low temperatures. The skyrmion lattice state (red) is seen as
a small phase pocket at finite fields just below the ordering temperature.

The magnetization and susceptibility as a function of field at T' = 41 K following ZFC
is shown in Fig.4.1(b) and Fig. 4.1(c), respectively. At this temperature the system passes
through all magnetic phases, marked by a dashed line in Fig. 4.1(a), thus allowing to
address all signatures of the individual phases. With increasing field, the system displays
transitions, in this order, between helical (green), conical (grey), skyrmion lattice (red),
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Figure 4.2: Typical magnetization data as a function of internal field recorded at T' = 2 K
following (a) ZFC (blue) and HFC (grey) as well as (b) FC+ (green), FC-
(red) and HFC (grey).

conical (grey) and field polarized state (white). The magnetization, shown in Fig. 4.1(b),
exhibits a nearly linear field dependence until saturation is reached. A slight decrease
of the incline at intermediate fields signals the skyrmion phase. Such small deviations
from the linear behavior, however, are best seen in the differential susceptibility, dM /dH
calculated from the magnetization, as shown in Fig. 4.1(c) (symbols).

As a function of increasing field, three distinct peaks are visible, denoted as H¢1, Hap
and H,s, respectively. H.; signals the helical to conical transition, whereas H,; and H,s
correspond to the conical to skyrmion lattice and skyrmion lattice to conical transitions,
respectively. Note that both the helical and the skyrmion lattice state display a reduced
susceptibility as compared to the conical state. The transition into the field polarized state
is accompanied by a rapid decrease of the susceptibility towards zero, with the critical
field H¢o defined as the point of inflection. The real part of the ac-susceptibility, x’, is also
shown in Fig. 4.1(c) (black line). With the exception of the transition regimes surrounding
H.i, H, and H,s, quantitative agreement between dM/dH and X is observed. The
imaginary part of the ac-susceptibility, x”, corresponding to the magnetic dissipation, is
shown in Fig. 4.1(c) as a blue line. Two large and broad peaks may be seen at H,; and
H, correlating with deviations between dM/dH and x’. These signatures indicate slow
relaxation processes and have been studied in detail in Fe;_,Co,Si and other related
compounds [134-137].

Four different cooling protocols were used to investigate the metastable properties
of Fep5Cop 551, namely zero-field cooling (ZFC), high-field cooling (HFC), and field
cooling (FC#). Specific details of the protocols may be found in Sec. 3.2.4. Typical
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isothermal magnetization data recorded at T' = 2 K, following each protocol, are shown
in Fig. 4.2(a), (b). The data is shown as a function of internal field, corrected for
demagnetizing effects. Colored symbols mark the critical fields, defined from susceptibility
data, as shown in Sec. 4.1.3. Following zero field cooling (blue), characteristic signatures
of the helical, conical and field polarized state are observed, consistent with literature
[135]. At low temperatures, the signatures are much more pronounced compared to
T = 41 K shown above. Initially, a slow but steady increase of M is observed. When
the critical field H.; is reached a reorientation of the helices towards the field direction
takes place, the so-called helical-to-conical transition, evident as a steep increase of the
magnetization around H¢;. With a further increase in field, the magnetization increases
linearly until the upper critical field H¢o is reached, at which the system enters the field
polarized state.

Following high-field cooling (grey), the conical phase is observed over the complete field
range —He < H < H¢o as the helical state at low fields is not recovered. The inability to
recover the helical state once the conical state has been reached has been observed before
in Fe;_,Co,Si |90, 135] and might be attributed to strong pinning effects, expected in
such a highly doped system where random site disorder is prevalent [138].

Significantly more complex behavior is obtained when the system is cooled in an applied
field (FC+, FC-) crossing through the skyrmion lattice phase, here B = 10 mT. In doing
so, the skyrmion lattice is stabilized down to lowest temperatures as a metastable state
[46, 90, 95, 135, 139]. Typical magnetization data following FC+ and FC- recorded at
T = 2K are shown in Fig. 4.2(f).

Following initial cooldown, an elevated magnetization relative to the ZFC and HFC
values is visible. This is consistent with the signatures of a stable skyrmion lattice
phase at higher temperatures, albeit much more pronounced. The magnetization curves
resulting from a successive increase (FC+, green) or decrease (FC-, red) of the magnetic
field deviate from both the ZFC and HFC curves in a broad field range. As the field
increases (FC+, green), the magnetization increases almost linearly albeit with a slower
rate compared to the HFC data and as a result intersects the HFC curve. Furthermore,
the magnetic field necessary to saturate the magnetization is significantly larger compared
to the ZFC and HFC curves, indicating the survival of the skyrmion lattice into the field
polarized field region up to H;; With a reduction in field the magnetization decreases
linearly, resulting in a finite remanence, Mg, as well as a finite coercive field Hg. This
indicates survival of skyrmions in negative fields as both helical and conical state have
vanishing remanence and coercitivity. At the field value of the helical to conical transition
at negative fields, —H}|, the excess magnetization rapidly collapses down to the conical

C
value, suggesting complete destruction of the metastable skyrmion state.

4.1.2 Temperature Evolution of the Magnetization

Having defined the key characteristics in magnetization of the metastable skyrmion lattice,
we will now discuss the evolution of these features as a function of temperature.

A summary of the cooling history dependent isothermal magnetization measurements
at various temperatures is presented in Fig. 4.3(a). The magnetization data is shown
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Figure 4.3: (a) Isothermal magnetization measurements at various temperatures following
HFC (grey), ZFC (blue), FC+(green) and FC- (red). Data is shown as a
function of internal field, shifted vertically for clarity. Colored symbols mark
the critical fields. (b),(c) Remanent magnetization My and coercitivity field
Hg¢ inferred from the FC- data as a function of temperature.
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as a function of internal field, corrected for demagnetizing effects. For clarity, the data
is shifted vertically. The FC+ /FC- data has been recorded following field cooling in an
applied field of B = 10mT. Note that due to demagnetizing effects, the corresponding
internal field varies with temperature.

Both the ZFC and HFC data show qualitatively identical behavior at all temperatures.
With increasing temperature, a reduction of the relevant field scales is observed. After
field cooling (FC+, green; FC-, red) a significant deviation from both the ZFC (blue) and
HFC (grey) curves may be seen, originating from the metastable skyrmion lattice state.
At the lowest temperatures, the metastable state is observed in an exceptionally wide
field range, extending into the field polarized state at positive fields up to Hag as well as
deep into the negative field region down to H. This is reflected in a considerably larger
field necessary to saturate the system at positive fields (FC+, green) compared to the
ZFC and HFC curves. With increasing temperature, the field region of the metastable
state narrows down significantly. At 40 K, no visual difference is observed between the
different cooling histories.

The remanent magnetization at B = 0 obtained after field cooling (FC-) is shown in
Fig. 4.3(b) as a function of temperature. The presence of a remanent moment shows that
a skyrmion carries a finite magnetic moment in zero field. In contrast, the helimagnetic
and conical state have no net magnetization in zero field. The remanent magnetization
exhibits a linear temperature dependence in a broad temperature range with

_3 UB -3 HB
My =9.1x10 E—T‘O.i’)xlO fu K (4.1)
but vanishes above T' =~ 35K. Below T ~ 7K, an enhanced remanence is observed,
approximately Am = 2 x 1073 ug/f.u. larger as expected from the linear dependence at
intermediate temperatures.
Similar behavior is observed in the coercive field Hc, as shown in Fig. 4.3(c). Below
T =~ 35K, a coercive field emerges, that is linear in temperature in a broad temperature
region. The temperature dependence of Hc¢ is given by

Hc=0.09mTK™ .7 —3mT (4.2)

Below T ~ 7K, an enhanced coercive field is observed, approximately 1 x 1073 mT above
the extrapolated value.

The cooling rate proves to be a critical parameter in the formation of the metastable
skyrmion state. It needs to be large enough to avoid crystallization of the conical ground
state. To study the cooling rate dependence in Fey 5Coq 551, the sample was field-cooled
across the skyrmion lattice phase with various cooling rates down to T' = 2K. Subse-
quently, the magnetization was measured as a function of increasing temperature in a
constant field of B = 10 mT. The results are summarized in Fig. 4.4(a), showing the re-
spective magnetization curves for three different cooling rates, namely 1 K minfl(purple),
10 Kmin~!(green) and 20 Kmin~!(red). For comparison, blue symbols show the magne-
tization following initial zero-field cooling. Comparing zero-field and field cooled data at
low temperatures, it is evident that the magnetization following field cooling is always
larger than the magnetization following zero-field cooling. The differences between ZFC
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Figure 4.4: Cooling rate dependence and remanence of the metastable skyrmion lattice
state. (a) Magnetization as a function of temperature at B = 10 mT following
FC to T = 2K with various cooling rates (1 K min~!(green), 10 K min~!(red),
20 K min~!(purple)). Data was recorded while heating. For comparison, blue
line shows zero-field-cooled / field-heated data at B = 10mT. (b) Difference
between field cooled magnetization and zero-field cooled magnetization of
panel (a). (c) Magnetization as a function of temperature at B = 0. Data
was recorded while heating with a sweep rate of 0.25 Kmin~!. Remanent
magnetization following FC with a cooling rate of 20 K min~! is shown in red.

For comparison, magnetization data following ZFC is shown in blue.

and FC data as a function of temperature are illustrated in Fig. 4.4(b), showing the
difference in magnetization AM = My — M, as a function of temperature. With
increasing temperature AM decreases and above T' = 40 K differences between all curves
are negligible. Comparing the field-cooled data, an increase in magnetization is observed
with increasing cooling rate. A sizable increase is seen with a cooling rate of 10 Kmin~!
compared to 1 Kmin~!. A further increase in the cooling rate to 20 K min~! however only
leads to a small increase in magnetization. This suggests that most of the sample volume
remains in the skyrmion lattice state at cooling rates above 10 K min~'. These results
are consistent with SANS measurements, which also showed a cooling rate dependence
[139].

Fig. 4.4(c) presents the remanent magnetization measured in a temperature sweep
following field cooling. After initial field cooling at B = 10mT with a cooling rate of
20 K min~!, the magnetization was measured in a temperature sweep from 2K to 55K
in zero field with a heating rate of 0.25 Kmin~!. The resulting magnetization curve
resembles the remanent magnetization measured in field sweeps, with an almost linear
temperature dependence in a broad temperature range and a step-like increase of the
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Figure 4.5: Isothermal susceptibility data. (a)—(c) Typical magnetization and suscepti-
bility data recorded in field sweeps at 7' = 2K (first column), 7' = 15K (b)
and T' = 35 K following ZFC (blue), HFC (grey), FC+ (green) and FC-(red).

remanten magnetization around 7' = 7 K. For comparison, blue symbols demonstrate the
measured magnetization following zero-field cooling.

4.1.3 Susceptibility

Having discussed the results of the magnetization measurements, we will now focus
on the susceptibility data. Fig. 4.5(a)—(i) displays field dependent magnetization and
susceptibility measurements at the three selected temperatures, notably 7' = 2K (first
column), T = 15K (second column) and 7' = 35K (third column) corresponding to
low, intermediate and high temperatures. Data was recorded following ZFC (blue), HFC
(grey) and FC (FC+ green, FC- red). The magnetization data is shown in the first row
(Fig. 4.5(a)—(c)), for comparison. The susceptibility data following ZFC and HFC is
shown in the second row (Fig. 4.5(d)—(f)) and following FC in the third row (Fig. 4.5(g)—
(i)). For a better comparison, the HFC susceptibility data is repeated in the third row
(Fig. 4.5(g)(1))-

We begin with a discussion of the ZFC and HFC data. Starting at T' = 2K, the
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differential susceptibility dM/dH, shown in Fig. 4.5(d) as blue symbols, displays the well
known behavior. Starting from H = 0T the system changes from helical to conical order,
followed by the field polarized state. This is seen in dM/dH as a reduced susceptibility
at low fields corresponding to the helical phase followed by a constant plateau in the
conical phase and a rapid decline of dM/dH down to zero when the field polarized state
is entered. The transition fields are marked as H¢; and H.a, respectively (c.f. Sec. 4.1.1).
The ac-susceptibility X’ (blue line) is in quantitative agreement with dM/dH except for
a small field range around H.; where slow relaxation processes prevail, attributed to
the helix reorientation process [134-137]. The HFC data (grey) shows a similar behavior
except for the missing helical phase at low fields, evident from the absence of the minimum
in the susceptibility around H = 0. This is a well known phenomenon in Fe;_,Co,Si
[46, 90, 135] and suggests a sizable pinning of the helices, possibly due to the prevalent
strong compositional site disorder [138].

At intermediate and high temperatures, shown here for the case of T' = 15K (Fig. 4.5(e))
and T' = 35 K(Fig. 4.5(f)), the qualitatively same behavior is observed for both ZFC and
HFC data. With increasing temperature, only the relevant field scales are reduced.

A markedly more complex behavior is seen when a metastable skyrmion-lattice state
is formed when field cooling across the stable skyrmion-lattice phase. Starting again at
T = 2K (Fig. 4.5(g)) the field dependent susceptibility differs significantly from that
following zero-field or high-field cooling. The susceptibility of the metastable skyrmion
lattice measured immediately after field cooling is well below the level of the conical
phase and resembles that of the helical phase although an enhanced magnetization is
observed (Fig. 4.5(a)). Comparing this with the behavior of the stable skyrmion-lattice
phase at high temperatures, we find that the susceptibility of the skyrmion-lattice is again
comparable to the helical phase (c.f. Fig. 4.1(c)).

With increasing field (green), both susceptibilities dM/dH and y’ remain well below
that of the conical state. At high fields approaching saturation the susceptibilities start
to decrease strongly. This is comparable to the decrease following HFC occurring in the
same field range. During the decrease around H =~ H.o, however, a divergence of the
susceptibilities is observed, where dM /dH rises above X’ and exhibits a prominent peak
denoted as H},. The divergent region extends well above H¢o deep into the field polarized
state up to H:Q, implying a direct transition from the skyrmion to the field-polarized
state. Likewise, with a reduction in field (FC-, red), both dM/dH and x’ remain below
the level of the conical state. At HY a sharp maximum appears in dM/dH resulting from
the collapse of the magnetization down to the value of the conical state (c.f. Fig. 4.5(a)).
Furthermore, it is preceded by a small shoulder marked as H,. The large peak observed
in dM/dH is absent in x’. Rather, x’ jumps directly to the conical level. Above H}; the
conventional behavior is observed with the characteristic field dependence of the conical
and the field polarized state at high fields, suggesting a complete destruction of the
metastable state. It is worth pointing out that H}; corresponds to the field scale of the
helical to conical transition at H.j, observed after zero-field cooling. The magnetization
value, however, is different compared to the magnetization following ZFC.

At T = 15K (Fig. 4.5(h)) several distinct differences may be observed in the field
dependence of the susceptibilities dM/dH and x’. Both H}, and H;Z decrease signifi-
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Figure 4.6: Magnetic phase diagram following ZFC (a), HFC (b) and FC (c). Phase
boundaries, extracted from susceptibility data, are marked as colored symbols.
The colormap reflects Ay = dM/dH — X', with dark colors corresponding to
large values.

cantely, with H, droping below H.,. Moreover, H}, shifts towards positive fields, away
from H} and develops into a distinct peak. Between H}; and HJ; both dM/dH and x/
do not track each other. dM/dH tracks approximately the susceptibility of the conical
state, while ¥’ remains on the level of the helical state. Note that an additional peak of
unknown origin emerges in between H} and H},, denoted as Hy.

At T = 35K (Fig. 4.5(i)) the behavior has changed once again. Both H, and H},
are further reduced with H, approaching H},. Simultaneously, HY, is shifted towards
positive fields, narrowing the field region of the metastable skyrmion lattice further. The
peak at H has reduced drastically and Hy has merged with H};.

Fig. 4.5(j) summarizes the evolution with temperature of the field dependent suscepti-
bilities following FC. Note that the logarithm of both dM/dH (colored line) and x’ (black
line) is plotted. The data is shifted by a constant offset for clarity. Generally, a smooth
evolution of the signatures discussed previously with temperature is observed. Both H};
and H}, evolve smoothly from H,; and H,o, the phase boundaries of the stable skyrmion
lattice phase. Furthermore, the viscous region surrounding H}, increases drastically at
low temperatures while the viscous region surrounding H}, shrinks. H, at negative
fields appears to be a hard field limit for the metastable state, below which it does not
survive. At T = 41 K signatures of the stable skyrmion lattice appear at both positive
and negative fields.
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4.2 Magnetic Irreversibility and Relaxation

4.1.4 Magnetic Phase Diagram

The large amount of data, collected at various temperatures and fields allows the construc-
tion of a magnetic phase diagram for each cooling history. The resulting phase diagrams
following ZFC, HFC, and FC are shown in Fig. 4.6(a)—(c), respectively. Colored symbols
mark the critical fields as defined in earlier sections. The phase diagram is shown with a
colormap of the difference of the susceptibilities defined as

Ax =dM/dH — . (4.3)

This helps to identify regions in the phase diagram in which relaxation effects occur.

The conventional phase diagram following ZFC is shown in Fig. 4.6(a). It resembles the
generic phase diagram of chiral magnets (c.f. Sec. 2.1) with the helimagnetic ground state
(H), the conical state at intermediate fields (C), the field polarized state (FP) at high
fields and low temperatures and the skyrmion lattice state (SkX) at high temperatures
just below T; and finite fields. A broad region of non-vanishing Ay is observed around
H.;. This frequency dependence is linked to the reorientation process of large domains
at H.i. Relaxation effects with finite Ay also exist in a narrow region surrounding the
phase boundary of the skyrmion lattice phase (c.f. Fig. 4.1(c)), but vanish elsewhere. At
Ho, for example, no relaxation signal appears as the transition into the field polarized
state involves a reversible rotation of the individual spins.

The phase diagram following HFC is shown in Fig. 4.6(b). It is equivalent to the ZFC
phase diagram (Fig. 4.6(a)), except for the missing helical phase at low temperatures.

A more complex phase diagram emerges after FC, with the metastable skyrmion lattice
covering a major part of the magnetic phase diagram (Fig. 4.6(c)). I may be clearly seen
that the phase boundaries of the metastable state (light red symbols) develop smoothly
from the phase boundaries of the stable skyrmion lattice phase (red symbols) at high
temperatures. Strong relaxation effects (non vanishing Ax) are observed at the phase
boundaries of the metastable state, extending up to H, ;2 at high fields and down to H; at
low fields. We will show in the following sections that within theses regions, the skyrmion
lattice is thermodynamically unstable but kinetically stabilized. In the following sections,
we will refer to these regions as the transition regimes.

4.2 Magnetic Irreversibility and Relaxation

In this section we will address the stability of the metastable skyrmion lattice state as
a function of time. Using time-dependent magnetic relaxation measurements we will
investigate the characteristic time and energy scales associated with the decay of the
skyrmion lattice in Sec. 4.2.1. We demonstrate that differences in dM/dH and y’ are
associated with relaxation effects evolving logarithmically in time. The relaxation data
is analyzed using a magnetic viscosity model. Sec. 4.2.3 demonstrates the irreversible
behavior of the remanent magnetization of the metastable state. In Sec. 4.2.4, we apply
so-called master curve scaling to the relaxation data which allows us to extract the
distribution of activation energies.
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Figure 4.7: Susceptibilities and magnetic relaxation data. (a) Differential susceptibility
dM/dH (symbols) and real part of ac-susceptibility x’ (lines) as a function
of internal field. Data is recorded at T' = 3K after field cooling across the
skyrmion lattice state. (b) Relaxation of magnetization as a function of time
at T = 3K and Hjyy = —7mT, Hyyy = 2mT and Hjyy = 18 mT. Initial
magnetization has been subtracted for clarity. Vertical dashed lines in (a)
mark fields in which the magnetic relaxation measurements were carried out.

4.2.1 Magnetic Relaxation

The transition from the metastable state to conventional order is characterized by a broad
field region in which sizable differences between dM/dH and x’ are observed. These
differences, as stated before, suggest the presence of slow viscous relaxation processes. To
investigate the relaxation process further, we have carried out time-dependent magnetic
relaxation measurements.

For these measurements the system was prepared in a similar fashion to the field
dependent measurements: First, the sample was cooled to the target temperature in
an applied field of B = 10mT across the skyrmion lattice state with a cooling rate
of 5Kmin~!. Subsequently, the field was changed to the desired target field and the
measurement was started immediately afterward.

Fig. 4.7(a) presents susceptibility data at ' = 3 K after field cooling across the skyrmion
lattice state. The differential susceptibility dM/dH (symbols) and the real part of the
ac-susceptibility x’ (lines) are shown as a function of internal field. At both high and
low fields, sizable differences between dM/dH and x’ may be seen. Typical magnetic
relaxation data at T = 3K and three different fields Hypy = —7mT (red), Hipy = 2mT
(grey) and Hipy = 18mT (green) are shown in Fig. 4.7(b). Vertical dashed lines in
Fig. 4.7(a) mark fields at which the magnetic relaxation measurements were carried out.
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Figure 4.8: Relaxation of the remanent magnetization (B = 0) after field cooling across
the skyrmion lattice state at various temperatures. (a) Remanent magne-
tization at selected temperatures as a function of time. Magnetization is
normalized to the initial value. (b) Remanent magnetization as a function
of temperature. (c) Difference of dM/dH and ' measured in field sweeps
following field cooling in 10 mT.

For a better comparison, the initial magnetization value was subtracted.

The relaxation data at Hi,, = 2mT (grey) was measured immediately after the cool-
down without a change of the applied magnetic field. Note that due to demagnetizing
effects an applied field of B = 10 mT here corresponds to Hipy = 2mT. On the timescale of
the experiment, no significant change in magnetization was observed, suggesting a stable
state. In contrast, the relaxation curves at Hij,, = 18 mT (green) and Hiy = —7mT
(red) show distinct changes as a function of time. As expected, the magnetization decays
towards the HFC magnetization value, resulting in an increase of M for Hijy = 18 mT
and a decrease of M for Hij,y = —7mT. Surprisingly, a logarithmic dependence of the
magnetization as a function of time is found, which we address in detail in the following
sections.

So far we have demonstrated that differences in dM/dH and x’ are indeed linked to
relaxation effects. We now focus on the relaxation in zero field, where a sizable remanence
is found following field cooling. As a reminder, Fig. 4.8(b) repeats the previously shown
remanent magnetization as a function of temperature. The remanent magnetization
exhibits a linear temperature dependence in a broad temperature range with a step-like
increase of My around T' = 7K. For comparison, the difference of dM/dH and X' is
shown in Fig. 4.8(c) with Hj, = 0 indicated as a white line. Comparing Fig. 4.8(b) and
Fig. 4.8(c), it is evident that the step-like reduction of the remanent magnetization occurs
when the system enters the temperature range where sizable differences between dM /dH
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Chapter 4 Nonequilibrium Properties of the Skyrmion Lattice in FeysCoq 5Si

and x’ prevail, and relaxation effects of the remanence are expected.

The relaxation of the remanent magnetization with time is shown in Fig. 4.8(a) for
various temperatures. The data is normalized to the initial magnetization value for better
comparison. Data are recorded continuously over a period of one hour. The relaxation
data is quite revealing in several ways. First, at 7= 2K, M (¢) is almost constant. With
increasing temperature, however, the relative relaxation rate increases significantly in
strength, indicating a thermally activated relaxation process. Secondly, a logarithmic
dependence of the magnetization on time is observed, that may be described by the
relation

M(t) = K + S - In(t/t) (4.4)

with the magnetic viscosity constant S and material and experiment specific parameters K
and tg. This is the widely used magnetic viscosity relation [18-22, 24| The divergence for
t — 0 and t — oo, however, shows that Eq. 4.4 is necessarily an approximation. Moreover,
a change in tg is indistinguishable from a shift in K. An improved approximation,
especially at short times, is given by

M(t) = M(0) + Sin(1 + t/ty), (4.5)

with M (0) corresponding to the magnetization at the starting time, and the time constant
to. Here, M(0) and to have distinct roles but are still empirical parameters.

4.2.2 Magnetic Viscosity

In the following, we will apply the viscosity model to the relaxation measurements.
Fitting the magnetic viscosity model of Eq. 4.5 to the relaxation data at B = 0 at various
temperatures, we obtain the initial magnetization M (0) and magnetic viscosity parameter
S. Both M(0) and S are shown as a function of temperature in Fig. 4.9(a) and Fig. 4.9(b)
as black symbols, respectively. M (0) reflects the behavior of the remanent magnetization
extracted from hysteresis loops (c.f. Fig. 4.3(b)). That is, a linear temperature dependence
below T' ~ 37K with a step-like jump of Mg around 7" = 7K. Above T =~ 37K, M(0)
is essentially zero. The most striking behavior, however, is seen in the temperature
dependence of the viscosity parameter S. With decreasing temperature, a sizable viscosity
coefficient, S, emerges around 7" = 37 K, precisely where the remanent magnetic moment
appears. From T =~ 30K down to T' = 10K, S remains at an approximately constant
value of S ~ 100 x 1076 ug/f.u.. Below T ~ 10K, a sharp peak appears with S almost
doubling in value, followed by a rapid decrease of S towards zero. That means when the
system enters the transition regime, a drastic increase in the decay rate occurs. Within
the transition regime, however, the decay rate is almost constant.

A similar analysis at an applied field of B = 30 mT yields a different result. The fitted
model parameters are shown in Fig. 4.9 as green symbols. Note that the corresponding
magnetization value following ZFC has been subtracted from the initial magnetization
M(0). As a function of increasing temperature, the initial magnetization is essentially
constant up to T' =~ 25 K and decreases linearly at higher temperatures. Above T' ~ 25K
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Figure 4.9: Model parameters of fitted relaxation curves at B = 0mT (black) and
B = 30mT (green) using the magnetic viscosity model of Eq. 4.5. Initial
magnetization M (0) (a) and magnetic viscosity parameter S (b) as a function
of temperature.

the fitted initial magnetization of B = 0 and B = 30mT are comparable. In contrast
to the zero-field data, the viscosity parameter increases linearly up to 7' = 30 K, before
dropping rapidly.

4.2.3 Irreversibility of the Remanent Magnetization

The remanent magnetization that is observed following field cooling shows an unusual
linear dependence on temperature and additionally exhibits logarithmic relaxation effects.
Two distinct mechanisms may be responsible for this peculiar temperature dependence.
It either shows the intrinsic temperature dependence of a skyrmion lattice in zero field,
or it results from an instantaneous decay of volume fractions of the metastable state with
temperature. To investigate this open question we have carried out first order temperature
reversal measurements according to the following protocol: First the sample was cooled
across the skyrmion lattice phase in an applied field of B = 10mT down to T = 2K
with a cooling rate of 20 Kmin~'. Then, the applied field was set to zero. Subsequently,
the magnetization was recorded while sweeping the temperature with a constant rate of
0.25 Kmin~'. To investigate the reversibility, the sweep direction was reversed at specific
temperatures.

The resulting magnetization data as a function of temperature is shown in Fig. 4.10.
Colored arrows indicate the sweep direction. The temperature dependent magnetization
curve shown in Fig. 4.10(a) corresponds to a temperature sweep from 7' = 2K to 7" = 55 K.
It resembles the temperature dependence of the remanent magnetization extracted from
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Figure 4.10: Irreversibility of remanent magnetization. (a)—(c) Remanent magnetization
as a function of temperature following FC. The sweep direction is indicated
with an arrow. For the temperature sweep measurements shown in green (b)
and purple (c), the sweep direction was reversed at T'= 20K and T'= 10K,
respectively. (d) Comparison of the temperature sweeps shown in (a)—(c) as
well as the temperature dependence of the magnetization at B = 9T, deep
within the field-polarized state.

field scans. That is a linear temperature dependence below T ~ 37K with a step-like
change of My around T' = 7K. A drastically different behavior is observed when the
sweep direction is reversed at an intermediate temperature as shown in Fig. 4.10(b) and
Fig. 4.10(c). Here, the sweep direction has been reversed at T'= 20K and 7' = 10K,
respectively. A comparison of all temperature sweeps is shown in Fig. 4.10(d).

For increasing temperature, both curves follow the magnetization of the conventional
temperature sweep curve, as expected. As the sweep direction is reversed, however, the
magnetization remains almost constant and does not track it’s previous path. A minor
increase of the magnetization with decreasing temperature is seen resulting solely from
the increase of the saturation moment with decreasing temperature. This is illustrated
in Fig. 4.10(d), showing the temperature dependence of the magnetization at a large
magnetic field of B = 9T, deep within the field polarized state.

This observation has two implications: First, the increase in temperature obviously
triggers part of the remanent magnetization to decay. Second, besides the fact that the
remanent magnetization is not recovered, additional relaxation is also not observed when
the temperature is reduced.

This may be understood by considering the theory of magnetic viscosity. As shown in
Sec. 1.2, the relaxation front, E*, depends linearly on temperature and logarithmically
on time. The resulting implications may be understood with the following Gedankenex-
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4.2 Magnetic Irreversibility and Relaxation

periment: Assuming that at time t after the beginning of the relaxation, the temperature
is changed instantaneously from T to T+ AT, we will observe a change in magnetization.
The change in M results from two individual contributions, a reversible and an irreversible
part: The reversible change in M results from the temperature dependence of the ordered
magnetic moment. This is indicated in Fig. 4.10(d), showing the saturated moment as a
function of temperature (black symbols) extracted from a temperature sweep at B = 9T.
With an increase in temperature, a clear decrease in magnetic moment is observed. This
process is completely reversible and does not involve an energy barrier and therefore
no relaxation. The irreversible contribution results from the linear dependence of the
relaxation front on temperature. A change in temperature 7' — T4+ AT implies a change
in the relaxation energy E* — E* + AFE. For AE > 0 this leads to an instantaneous
decay of the volume fractions related to the energy barriers in the interval [E*, E* + AE].
For AE < 0, however, the relaxation front is shifted back to lower energies. The volume
fractions in this energy interval have already decayed. As a result, the relaxation halts
until the advancement in time compensates for AFE.

Both situations may be observed in the temperature sweeps of Fig. 4.10. First, as a
function of increasing temperature, the relaxation front moves towards larger energies
driven by the increase in temperature and the advancement of time. The observed almost
linear decrease of M in a broad temperature range implies that the relaxation front
E* advances over a broad but flat distribution of activation energies. By reversing the
sweep direction, the relaxation front is forced towards lower energies due to the decrease
in temperature. At the same time, the advancement in time forces it towards larger
energies. The effect of temperature, however, dominates as the relaxation front advances
logarithmically in time.

4.2.4 Distribution of Activation Energies

In this section, we return to the magnetic relaxation data in zero field. We are going to
show that all relaxation measurements at different temperatures can be accounted for
in terms of a single master curve from which we are going to infer the distribution of
activation energies.

The relaxation front for E*, as discussed in Sec. 1.2, depends on both temperature and
time. As a result, relaxation measurements at different temperatures sample different
regions of the barrier distribution n(E). Relaxation measurements at low temperatures
sample only the low energy region of the barrier distribution. Due to the logarithmic
dependence on time huge experimentally inaccessible timescales would be required to reach
the high energy regions. These could easily exceed the age of the universe [24]. Relaxation
measurements at high temperatures, on the other hand, would require exceptionally fast
measurements to sample the low energy portion of the barrier distribution. This makes it
difficult, if not impossible, to observe the relaxation over the complete barrier distribution
at a single temperature. These difficulties may be overcome with the use of the time-
temperature superposition principle.

The time-temperature superposition principle allows for the creation of a single master
curve from relaxation measurements at various temperatures. It states that all relaxation
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Figure 4.11: (a) Master curve of the remanent magnetization as a function of energy.
A characteristic time tg = 1 x 10~ s is observed. Blue line segments cor-
respond to isothermal relaxation measurements at various temperatures.
For comparison, red symbols show a temperature sweep from T = 2K to
T = 55K with a sweep rate of 0.25 K min~! expressed as a function of energy
using the same ty. (b) Distribution of activation energies, inferred from the
master curve (blue). Note that for clarity, only the average gradient of each
relaxation measurement, corresponding to the viscosity coefficient, is shown.
Additionally, the distribution is also calculated from the temperature sweep
(red).

data will merge into a single smooth curve if plotted as a function of the relaxation
front energy E = kT In(t/tg + 1). This concept is heavily used in the field of polymer
physics and glass-forming liquids, amongst other areas, to extrapolate the viscosity in
experimentally unreachable parameter regions [140-142]. It has also been used in spin-
glasses, vortex matter and weakly interacting ferromagnetic single domain particle systems
to study the magnetic relaxation or magnetic viscosity (hence the name)[129, 131, 132]

Applying the concept of master curve scaling to the relaxation data in zero field, we
find that a master curve forms when a characteristic time of tg = 1 x 105 is chosen.
The master curve constructed from the relaxation data at B = 0 is shown in Fig. 4.11(a).
Each blue shaded segment corresponds to a relaxation measurement. The master curve
has been corrected for the temperature dependence of M. Details on how the graph is
constructed may be found in Sec. 3.4.1.

With the knowledge of g it is possible to express data recorded in a temperature sweep
as a function of the relaxation front energy, as well. This is shown in Fig. 4.11(a) with red
symbols corresponding to a temperature sweep from 7' = 2K to T' = 55 K at a sweep rate
of 0.25 Kmin~!. As expected, both curves are almost identical. There are however minor
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differences, as the temperature sweep data appears slightly larger. This may be explained
as follows. The elevated magnetization observed in the temperature sweep results from
a faster cooling rate of 20 Kmin~! during the initial field cooling of the temperature
sweep as compared to the 5 Kmin~! used for the relaxation measurements. As shown
in Sec. 4.1.2, this results in a larger remanent magnetization. Furthermore, between the
recording of the relaxation data and the temperature sweeps , the PPMS cryostat was
out-of-order with the superconducting magnet at room temperature. As a result, slight
differences arise due to the remanent field of the superconducting magnet that cannot
be avoided. Bottom line, the master curve can be constructed from temperature sweeps
when tg is known which has several advantages, such as more regular data spacing.

Having demonstrated master curve scaling, we will now show how the effective barrier
distribution may be inferred from the master curve. As shown in Sec. 1.2, the relaxation
of the magnetization obeys

B (1)
AM(t) = N (Am) / p(E)dE (4.6)
0

By taking the derivative of Eq. 4.6 with respect to E*, we obtain

E*
jg{ = d%* N (Am) /p(E)dE = N (Am) p(E*) x p(E™) (4.7)
0

This shows that the derivative of the master curve with respect to E* allows to infer
the distribution of activation energies. The numeric derivative of the master curve
is shown in Fig. 4.11(b). Red symbols correspond to the numerical derivative of the
master curve constructed from the temperature sweep with respect to E*. For clarity,
only the average derivative of each relaxation curve is shown as blue symbols. The
barrier distribution consists of a narrow peak at low energies followed by a broad and
flat distribution extending up to F ~ 1500 K ~ 35 - J with J ~ T, = 42.5 K. The narrow
peak is centered at F = 246 K ~ 5.8 - T, = 5.8 - J which is in exceptional agreement with
theoretical calculations of Schiitte and coworkers [72]. The implications of this will be
discussed in detail in the following section.

Note that the precise determination of ¢y is not critical in the low energy region.
Variations of ty have only minor effects on the position of the narrow peak. Increasing
or decreasing to by an order of magnitude only leads to a shift of AE ~ +15K. The
influence on higher energy regions is more pronounced.
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Figure 4.12: (a) Nonequilibirum phase diagram following field cooling (c.f. Fig. 4.6) Light
red shading indicates the temperature and field region of the thermodynam-
ically metastable skyrmion lattice. Within the yellow shaded transition
region, the skyrmion lattice is thermodynamically unstable but kinetically
stabilized. (b) Distribution of activation energies at B =0 (c.f. Fig. 4.11).

4.3 Discussion

The discussion of the experimental results is divided into two parts and proceeds as
follows. First, in Sec. 4.3.1, we focus on the relaxation behavior in zero field, where
we will show that the nonequilibrium skyrmion lattice is stabilized beyond topological
protection. Secondly, in Sec. 4.3.2, we discuss the field dependence of the nonequilibrium
skyrmion lattice.

4.3.1 Stabilization Beyond Topological Protection

The characteristics of the metastable state in zero field are of particular interest for
potential applications. Experimentally, we observe the metastable skyrmion lattice state
at H = 0 in an exceptionally wide temperature range, ranging from lowest temperatures
up to T' =~ 35 K ~ 0.8T,9. For temperatures between 7K < T < 35K, however, enhanced
relaxation effects are observed. Here the sample is located within the transition regime,
marked as a purple region within the phase diagram. Nonetheless, the metastable state
is still remarkably stable due to the logarithmic dependence on time. At T = 20K for
example, an exceptionally long time frame in the order of 1 x 10%°s would be required
for all skyrmions to relax!. This is more than twice the age of the universe.

!The time frame is estimated from the relaxation data, under the assumption that the relaxation remains
logarithmic at all times.
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4.3 Discussion

The effective distribution of activation energies at H = 0, as determined from relaxation
data in Sec. 4.2.4, is shown in Fig. 4.12(b). It consists of a large peak centered at
FE ~ 246K ~ 5.8J with J ~ kT = 42.5 K, followed by a broad shoulder extending up
to E ~ 1500K ~ 35 J.

The energetics of the unwinding process of a single skyrmion within a helical envi-
ronment at low fields have been studied theoretically by C. Schiitte and A. Rosch [72].
Using micromagnetic simulations based on the stochastic Landau-Lifschitz-Gilbert equa-
tion they predict an activation energy for the nucleation of monopole-antimonopole pairs
of Exip_amp = 5.8 J in zero field. Similar results have been found for Bloch points in mag-
netic vortex core reversal processes [70]. This may be understood easily by considering a
simple Heisenberg model on a cubic lattice with J being the Heisenberg exchange energy.
By nucleating a Bloch point, a magnetic spin configuration with a core of vanishing mag-
netization, we change the energy of the system by 6.J, a single J for each broken bond
between the spin at its six nearest neighbors. By comparing these theoretical predictions
with the experimentally determined effective distribution of activation energies we find
exceptional agreement of the peak energy with the predicted monopole-antimonopole
nucleation barrier, corroborating the theory.

Theoretically, a rapid decay of the metastable skyrmion lattice is expected as soon as the
lifetime associated with the nucleation energy barrier is reduced thermally to experimental
timescales. This occurs in our experiments at approximately 7"~ 7K in zero field and
correlates with the appearance of the divergence between dM/dH and ', marked as

21~ Surprisingly, the skyrmion lattice survives up to T' = 35K despite the thermal
energy exceeding the topological protection. This results from the broad distribution
of activation energies, extending up to £ = 1500K, almost six times the topological
nucleation barrier. Within this region and on experimentally probed timescales, the
skyrmion lattice is thermodynamically unstable but kinetically stabilized. In zero field,
the kinetic energy barriers dominate the energetics, yielding a skyrmion lattice stabilized
beyond topological protection.

The most likely origin of the broad distribution of activation energies is pinning of
(anti-)monopoles, arresting the transition in a transient state. (Anti-)monopoles, in
contrast to skyrmions, are particullarily sensitive to pinning due to their singular core
[46, 72]. With Fep5Cog5Si known to exhibit strong compositional site disorder, this
mechanism is more than likely [90, 138, 143]. This is further corroborated by results of
Wild and coworkers|[95], reporting an exponential decay of the metastable skyrmion lattice
in heavily thinned Feg 5Cog. 551 platelets using Lorentz transmission electron microscopy.
The activation energies inferred by Wild and coworkers of AE = 32meV ~ 370K at
B = 73mT and AF = 15meV ~ 175K at B = —2.6mT are comparable to the
nucleation barrier inferred in this thesis of AE ~ 246K at B = 0 (c.f. Sec. 4.2.4). The
exponential relaxation suggest further that the broad distribution is absent. Considering
that the length of skyrmion tube is of the order of the sample thickness, a reduction
in sample thickness reduces the distance that monopoles have to travel, which in turn
reduces the likelihood of monopoles to get trapped.

65



Chapter 4 Nonequilibrium Properties of the Skyrmion Lattice in FeysCoq 5Si

dM/dH
(@) 4o0pH, ®s
o H .Hcenter
c2 OH), —H_.
v Hal N 1.0_0 ° a2 al
A Hy, T o0 °
3 * I i (o} Q
vV Ha R eoo-o--o-o Sow
A Ha2 o
- . 0.0 :
E v Ha 10'
€ 2 A HaE T (K)
Ig ° Hcenter (C)
—Helix LB
0.4F —SkX
1 -FM
3
0.2
0 0 ) 1 ) )

0 0.2 0.4 0.6 0.8 1.0
H/Hc2

Figure 4.13: (a) Previously shown magnetic phase diagram following FC (c.f. Fig.4.6(c)).
The calculated center field Heenter = (Ha2 + Ha1) /2 of the metastable
skyrmion lattice state is shown as blue symbols. Blue dashed line cor-
responds to 0.4Hc. (b) Temperature evolution of the center field of the
skyrmion lattice state (blue symbols) and the width of the skyrmion lattice
state (red symbols) normalized to Hee. B = 0.4- H¢o is indicated as a dashed
blue line. (c) Field dependent free energy of various magnetic states relative
to the conical state. We distinguish a ferromagnetic state(black), a helical
state with B L k (green) and the skyrmion lattice state (red). Data taken
from Supplement of [37].

4.3.2 Nonequilibrium Magnetic Phase Diagram

We now turn to the magnetic field dependence of the metastable skyrmion lattice. The
metastable state, as depicted in Fig. 4.13(a), is bounded by the transition lines at H};(T)
and HY(T') at low and high fields, respectively. As stated before, H},(T) is associated
with the monopole-antimonopole nucleation barrier. Similarly, the decay at high fields
is expected to proceed via monopoles as well, with H}, tracking the nucleation barriers
at high fields. At these transition lines, the thermal energy reduces the field dependent
lifetime into experimentally probed timescales.

As a function of temperature, the transition lines appear to be centered around a
special field value, running in parallel to H.o. To confirm this observation, the calculated
center field

1
Hcenter = 5 ( ;1 + ;2) (48)

is shown in Fig. 4.13(b) as blue symbols, normalized to H.o . The center field is also
plotted within the phase diagram as blue symbols. From the graph in Fig. 4.13(b) it is
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Figure 4.14: (a) Magnetization at T' = 2K following HFC (grey), FC+ (green) and FC-
(red). Blue dashed vertical line indicates Heenter- (b) Magnetization value

as a function of temperature at the center field Heepter =~ 0.4Ho following
FC (blue) and HFC (grey).

obvious that the critical fields H}, and H}, are indeed centered around
Heenter ~ 0.4 - Hea. (49)

Comparing this result with theoretical calculations of the field dependent free energy, we
find that the energy of the skyrmion lattice with respect to the ground state is minimal
at 0.4 - Heo [37]. This is illustrated in Fig. 4.13(c), showing the calculated free energy
density of various magnetic states relative to the conical state.

Next we address the variations of the transition lines. The distance between the
transition line and the center field

Haa = 5 (HE — H3) (4.10)
is shown in Fig. 4.13(b) as red symbols with respect to Hco. With increasing temperature,
HAa, decreases proportional to the logarithm of the temperature or in other words, the
corresponding temperature increases exponentially as the magnetic field approaches the
center field Heenter- This compares with micromagnetic simulations of Schiitte and Rosch
[72] who found an exponential dependence of the nucleation rate on field according to
I’ < exp(—B/By) [72] They attribute this to a field dependence of the activation energy
and the attempt time.

Another surprising finding concerns the magnetization following FC at the center
field Mpc(0.4H2), shown in Fig. 4.14(b) as red symbols, normalized to the saturation
magnetization. It reveals an essentially constant value of Mpc(0.4Hco)/Ms = 0.5 as a
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function of temperature. For comparison grey symbols show the magnetization following
HFC at the same magnetic field Mypc(0.4Hc2), which surprisingly shows approximately
the same magnetization value as the FC. This implies that the intersection of both
magnetization curves occurs always at the center field. As an example, Fig. 4.14(a)
presents the magnetization curves at T' = 2K, with a dashed blue line marking 0.4 - Ho.
This implies that both states, skyrmion lattice and conical helix, posses the same Zeeman
energy at the center field, which might help in stabilizing the skyrmion lattice state.

4.4 Nonequilibrium Skyrmion Lattices in Chiral Magnets

In this section we compare the nonequilibrium phase diagram of Fey5Cog 551 with
metastable skyrmion lattices reported in other cubic chiral magnets. We discuss com-
mon features as well as differences. Since the first discovery in Fe;_,Co,Si, metastable
skyrmion lattices have been found in a variety of materials. To understand the generic
features of the metastable state, it is instructive to compare Fe;_,Co,Si with other
materials.

Typical phase diagrams hosting a metastable skyrmion lattice are presented in Fig. 4.15.
These belong to Feg5Cop5Si (Fig. 4.15(a)), inferred in this thesis, CogZngMny [34]
(Fig. 4.15(b)), MnSi [91] (Fig. 4.15(c)) and Cua0SeO3 93] (Fig. 4.15(d)). At first glance,
all phase diagrams look very similar despite the fact that all these materials have distinctly
different temperature and field scales. These generic properties may be summarized as
follows: (i) The metastable state is generated by field cooling across the skyrmion lattice
state. In case of MnSi and CusOSeQOj3, however, additional measures must be taken
which will be addressed below. (ii) The metastable state covers a major region of the
magnetic phase diagram, increasing in field range with decreasing temperature. (iii) The
metastable state is centered around =~ 0.4 - H.o, plotted within the phase diagram as a
dashed blue line. Blue symbols correspond to the center field H epter, calculated from the
upper and lower phase boundary.

The existence of such generic characteristics across vastly different materials is another
testimony of the generic nature of skyrmions in chiral magnets. Nevertheless, some
distinct differences are present. In both Feps5Cop5Si and CogZngMny the metastable
skyrmion lattice state can be formed simply by field cooling across the thermodynamically
stable skyrmion lattice state using moderate cooling rates (=~ 10K/ min), whereby in
MnSi (Fig. 4.15(c)), rapid quenching (2 400K/ min) of the stable skyrmion state is
neccessary|91]. The stable and metastable state are separated from each other by a small
temperature window in which fast relaxation rates prevail. It must be crossed as fast as
possible to prevent the disintegration of the skyrmion lattice.

Similarly, the metastable skyrmion lattice in CupsOSeOj3 is also separated from the
stable skyrmion lattice phase by a finite temperature window and moderate cooling rates
alone are not sufficient. Instead of rapid quenching, however, the magnetoelectric coupling
of Cua0OSeO3 has been exploited to generate the metastable state. By applying an electric
field of E = 30kV cm™! with E || B || (111), the stable skyrmion lattice phase extends
towards lower temperatures, covering the gap. This allows the skyrmion lattice to survive
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Figure 4.15: Phase diagrams hosting nonequilibrium skyrmion lattices in Fey5Coq 551
(a), CogZngMny (b), MnSi (c¢) and CusOSeO3 (d). We distinguish helical
(H), conical (C), field polarized (FP), skyrmion lattice (SkX) and nonequi-
librium skyrmion lattice (NEQ-SkX) state. Light red shading indicates the
nonequilibrium state. The transition region is indicated with yellow shading.
Blue symbols correpond to the calculated center field (H}, + H},)/2 of the
NEQ-SkX, the blue dashed line shows the theoretical value of 0.4- H.o. Data
in (b)-(d) taken from [34, 91, 93]

at moderate cooling rates. As soon as the critical range is surpassed, the electric field
may be removed without the metastable state disintegrating.

The phase diagram of Fey5Coqg 551 is most similar to that of CogZngMn,4. Note that
other definitions were used to define the phase boundaries in CogZngMny. The lower
phase boundary is comparable to H| used in this work, while H; can not be determined,
as differential susceptibility data dM/dH is not available. Analogous to Feg5Cog 551,
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we expect CogZngMny to be governed by a broad distribution of activation energies
as well. Both materials show a metastable skyrmion lattice in zero field over a broad
temperature range and in both materials, the skyrmion lattice survives at field cooling
with moderate rates. This is corroborated by the non-exponential relaxation behavior
reported for CogZngMny at high temperatures, just below the stable skyrmion lattice
phase [34].

Both, logarithmic and stretched exponential relaxation arise as an approximation of a
broad distribution of activation energies [144]. The logarithmic approximation, however,
implies that the thermally activated region of the barrier distribution is essentially flat.
This breaks down at high temperatures, where larger regions of the barrier distribution
are sampled and the finite curvature of the barrier distribution can not be neglected.

In contrast, for both MnSi and CupsOSeO3 the metastable state decays completely
at moderate cooling rates. Similar relaxation measurements in MnSi at temperatures
just below the stable skyrmion lattice phase reveal an approximately exponential decay
[91]. This suggests a narrow distribution of activation energies. In addition, rapid decay
occurs once the transition lines associated with the nucleation barrier are crossed. As
a result, the metastable skyrmion lattice is absent in a broad temperature region at
zero field, unlike Fey 5Cog.551 or CogZngMny. As discussed in the previous chapter, the
broad distribution of activation energies is connected to the pinning of (anti-)monopoles.
This is corroborated by the fact that both Fey5Cog 551 and CogZngMny exhibit strong
constitutional site disorder while MnSi and CusOSeQOs are relatively clean, defect free
materials.

This behavior shares many similarities with glass formers and ordinary first order phase
transitions, where the high temperature state can also be arrested if the cooling rate is
fast enough. In strong glass formers, such as O-terphenyl, cooling at moderate rates is
sufficient to arrest the high temperature state [3|. Metallic glasses, in contrast, require
violent quenching of the high temperature state (> 1 x 10 K/ min). The transformation
towards the low temperature state in glasses and ordinary first order phase transitions
occurs via a nucleation and subsequent growth process, which may be arrested thermally
if cooled fast enough and shares many similarities with the Bloch point mediated decay
of skyrmion lattices |72, 74].

Note that the structural disorder of glasses is not important for this discussion. It
is merely a result of the disordered nature of the arrested state, the liquid. The same
concepts also apply to structural transitions between two crystalline phases.

It has been recognized that lowering the diffusivity of the atoms, e.g. by doping,
decreases the critical cooling rate. The lower diffusivity essentially slows down the
timescales of the formation and growth of the interfaces between high-temperature and
low-temperature order|3]. Similarily the (anti-)monopoles represent the interface between
a sykrmion and conventional order. Decreasing the (anti-)monopoles mobility likewise
decreases the critical cooling rate.

In conclusion, once created, the metastable skyrmion states share a great amount of

similarity. Differences arise especially at the phase boundaries, where disorder extends
the lifetime and aids in the stabilization during the initial cooldown.
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4.5 Conclusions

Skyrmions are considered one of the most promising candidates for future spintronic
applications. A vast amount of research is focused on thermodynamically stable skyrmion
lattices albeit metastable skyrmion states are a necessity for most applications. To
date, the understanding of metastable skyrmion lattices is still lacking. Especially the
stabilization of said states remains one of the most challenging tasks for the engineering
of skyrmion based devices.

Motivated by the potential for future applications, we conducted a comprehensive study
of the cubic chiral magnet Fey5Co,Si, hosting a nonequilibrium skyrmion lattice state.
The nonequilibrium skyrmion lattice state is formed by field-cooling across the stable
skyrmion lattice phase at high temperatures, using moderate cooling rates in the order
of 10Kmin~!. Using extensive magnetization and ac-susceptibility measurements, we
investigated the stability of the nonequilibrium state against temperature and magnetic
field. The nonequilibrium skyrmion lattice is found to survive in a broad temperature
and field region of the magnetic phase diagram, consistent with previous reports [46, 90,
95, 135, 139|. The stability of the nonequilibrium state increases significantly towards
low temperatures, where it extends deep into the field polarized state as well as into the
negative field region. A comparison of Feg 5Coq 551 with other cubic chiral magnets hosting
a nonequilibrium skyrmion phase revealed a generic behavior of the nonequilibrium state.
The most notable observation is that the skyrmion phase is always centered around a
magnetic field value of 0.4 Heo, which corresponds to the magnetic field where the free
energy of the skyrmion phase is minimal with respect to the conical phase [37].

In addition, using time-dependent magnetization measurements, we have investigated
the relaxation behavior of the nonequilibrium state. Sizable relaxation effects of the
metastable state are only observed in two broadened bands in (H, T)-space at both low
and high fields, confining the metastable state. Moreover, the regions of sizable relax-
ation are accompanied by quantitative differences between the differential susceptibility,
dM/dH calculated from the magnetization and the real part of the ac susceptibility, x'.
The relaxation is found to follow a logarithmic dependence on time, similar to magnetic
viscosity in ferromagnets, and results from Arrhenius-type relaxations over a broad distri-
bution of energy barriers. We have successfully applied, for the first time, master curve
scaling to the relaxation measurements of skyrmion lattices, which allowed us to extract
the distribution of activation energies. The barrier distribution is comprised of a narrow
peak at E ~ 6J associated with the topological protection, superimposed on a broad
distribution, extending up to £ = 35.J. We attribute the broad distribution to pinning
of monopoles, resulting in a non-equilibrium skyrmion lattice state, kinetically stabilized
beyond topological protection.

In conclusion, although it has been known that defect pinning might stabilize the
skyrmion lattice, the extent was quite surprising. The remarkably robust stabilization
might offer an additional tuning parameter which has not yet been explored.
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CHAPTER b

Independent Skyrmion Phases and Tilted Conical Phase in Cus0SeQO3

In this chapter, we report a comprehensive study of the magnetic properties of single-
crystal CusOSeO3. Using magnetization, ac-susceptibility, nonlinear ac-susceptibility
and specific heat, we investigate the influence of crystal orientation, cooling history, and
demagnetizing effects. Particular emphasis is placed on the (100) orientation, where
recent neutron scattering experiments have identified a second skyrmion phase and a
tilted conical phase.

This chapter is organized as follows. We begin the presentation of the experimental
results, in Sec. 5.1.1, with a brief introduction of the designations and terminology used
throughout this chapter. This is followed by a presentation of the orientation and history
dependence of the magnetic phase diagram in Sec. 5.1.2. In Sec. 5.1.3, we present typical
magnetization and ac-susceptibility data following ZFC and HFC and provide a direct
comparison of the thermodynamic signatures with the scattering intensities observed
in neutron scattering. In Sec. 5.1.4, we present the results of nonlinear harmonic ac-
susceptibility measurements. In Sec. 5.1.5 we demonstrate the effects of demagnetizing
fields, followed by a presentation of selected specific heat data in Sec. 5.1.6. Finally, in
Sec. 5.1.7 we address the nucleation of the low-temperature skyrmion phase utilizing first-
order reversal curves. We begin the discussion of the results in Sec. 5.2.1 with a comparison
of typical magnetization data of MnSi, FeygCog2Si, and CusOSeQs, illustrating the
effects of cubic anisotropy. In Sec. 5.2.2, we quantitatively infer the magnetocrystalline
anisotropy constant from the experimental data. In Sec. 5.2.3 we discuss the peculiar
interplay of magnetocrystalline anisotropy and modulated magnetic structures. Finally,
in Sec. 5.2.4 we discuss our findings with regard to the nucleation of the low-temperature
skyrmion phase. We end this chapter with a conclusion in Section 5.3.
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5.1 Experimental Results

5.1.1 Designations and Terminology

Apart from the trivial paramagnetic and field polarized state, the phase diagram of
Cus0SeO3 exhibits five modulated magnetic structures, three of which are well known.
These are (i) the helical phase, (ii) the conical phase, and (iii) the high-temperature
skyrmion lattice phase. In addition, as recently shown, for magnetic fields along the (100)
direction at low temperatures two additional magnetic phases emerge, namely (iv) the
tilted conical phase and (v) the low-temperature skyrmion phase.

In consequence, eight phase boundaries may be distinguished as a function of magnetic
field. The designations and definitions of the phase boundaries are summarized in Ta-
ble 5.1. On account of strong hysteretic effects, we further distinguish between increasing
and decreasing field strength indicated by superscript u and d, respectively. As a final
remark, the low-temperature skyrmion phase always emerges within the field range of the
tilted conical phase. The substantial overlap of features of both phases does not allow to
unambiguously identify the magnetic field, where the low-temperature skyrmion phase

Table 5.1: Definitions of the transition fields between the various magnetic phases ob-
served as part of this study.

Field Phase Definition Direction
HY, HY  Helical Peak in dM/dH at low fields up / down
HY, HS  Conical Point of inflection in dM/dH at high fields up / down
HY, HY High- Peak in dM/dH up / down
temperature
skyrmion
HY, HY, High- Peak in dM/dH up / down
temperature
skyrmion

HY, HY  Tilted conical — point of inflection in x” towards low fields  up / down
HY, thz Tilted conical  point of inflection in x” towards high fields up / down

HY Low- peak in dM/dH at low fields down
temperature
skyrmion

HE, Low- shoulder in dM/dH at high fields up
temperature
skyrmion

74



5.1 Experimental Results

B|(111) B|(110) B | (100) dM/dH
zero-field cooling (a) zero-field cooling (c) zero-field cooling (e)|[lg °© He
e 60r i oH,
£ L-Sk ¢
\g G 4 < H,
E MH-SKX\ c  H-SkX > Ha
H oo & OOHOO?OOOQOO | > H,
0 <«H,
high-field cooling  (f)
| Ep g > H,
L-SkX . <H,
= TC ¢ Hskx3||W°
E 5
I.E ' 4
S H-SkX
2
0 20 20 800 20 20 800 20 20 60 0
T (K) T (K) T (K)

Figure 5.1: Magnetic phase diagrams extracted from magnetization and susceptibility
data for fields along (111), (110) and (100) axis. Diagrams are shown as a
function of internal field, corrected for demagnetizing fields. Phase bound-
aries are marked with colored symbols. We distinguish helical (H), conical
(C), tilted-conical (TC), field polarized (FP), high-temperature skyrmion (H-
SkX) and low-temperature skyrmion order (L-SkX). Grey colormap shows
differential susceptibility data dM/dH with dark colors corresponding to
large values. Red and green shading highlights helical and skyrmion order.
Data were measured in field scans following zero-field cooling (first row) and
high-field cooling (second row). The sweep direction of the magnetic field is
marked with a black arrow.

appears. As a result, HY} and Hsd2 are not listed in Table 5.1.

5.1.2 Magnetic Phase Diagrams

Considering the complexity of the magnetic phase diagrams, hosting five modulated
magnetic structures with significant hysteretic effects, it is instructive to start the presen-
tation of the results with the magnetic phase diagrams inferred from magnetization and
susceptibility data.

Fig. 5.1 presents the magnetic phase diagrams for field along all major crystallographic
directions, with the (111), (110) and (100) orientation shown in the first, second and third
row, respectively. The phase diagrams are shown as a function of internal field, corrected
for demagnetizing effects. The phase diagrams have been inferred from isothermal mag-
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netization and ac-susceptibility measurements. We distinguish between two measurement
protocols, namely zero-field cooling (ZFC, first row) and high-field cooling (HFC, second
row), with the sweep direction of the magnetic field indicated by a black arrow. The
phase boundaries are marked with colored symbols. The definition of the phase bound-
aries is given in the following sections. A colormap of the strength of the differential
susceptibility dM/dH is shown in the background of the phase diagrams, with dark colors
corresponding to large values. Both helical and skyrmion order are further highlighted
with green and red shading.

The magnetic phase diagrams of the (111) and (110) orientation (Fig. 5.1(a)—(d))
resemble the generic phase diagram of the cubic chiral magnets (c.f. Sec. 2.1) with the
helimagnetic groundstate, the conical state at intermediate fields, the field polarized
state (FP) at high fields and the skyrmion lattice state (HS) at finite fields and high
temperatures just below T.. A steady increase of both transition lines H.; and Hco
towards lower temperatures may be observed, with H.s increasing slightly steeper along
(111). Additionally, a distinct signature appears in dM/dH at the border between helical
and conical phase H.

The phase diagrams of the (100) orientation displays some similarities with the (110)
and (111) orientation. The high-temperature skyrmion phase appears, consistently with
the (110)and (111) orientation, at finite fields and high temperatures just below the
ordering temperature. Down to T' =~ 40 K, H.y increases monotonically. Following ZFC,
a signature of the helical to conical transition H.; may be seen that is however much
weaker and shifted towards lower fields. Also, the temperature dependence is almost
entirely linear in contrast to the curved temperature dependence of the (110) and (111)
orientations.

In addition, there are some significant differences. Below 40K the upper critical
field H.o starts to decrease with decreasing temperature. This is accompanied by the
emergence of the tilted-conical phase below T' ~ 30K ~ T./2 at the border between
conical and field-polarized state. Further, with the emergence of the tilted-conical phase,
a distinct signature appears in dM/dH. Signatures of the low-temperature skyrmion
phase appear below T' ~ 15K ~ T./4. The low-temperature skyrmion phase emerges
approximately in the field range of the tilted-conical phase but extends well beyond
it. The phase boundaries of the low-temperature skyrmion phase (light red circles) are
highly hysteretic, but the following statements always apply: First, the tilted-conical
phase always emerges first, followed by the low-temperature skyrmion phase. Second, the
tilted-conical phase always disappears first, followed by the low-temperature skyrmion
phase. As a result, for field scans with increasing field, the low-temperature skyrmion
order extends beyond the tilted-conical phase towards higher magnetic fields and for
decreasing fields beyond the tilted conical phase towards lower magnetic fields.

In conclusion, the emergence of a skyrmion lattice in the zero temperature limit clearly
shows that thermal fluctuations play no major role in the formation. Instead, the existence
of the low-temperature skyrmion lattice only along the (100) orientation identifies cubic
anisotropies as a crucial driving force for stabilization. This is further supported by
the anisotropies of the critical fields as compared to other cubic chiral magnets. A
quantitative comparison of the critical field scales H.; and Hco reveals that both are the
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largest along the (111) orientation, followed by the (110) orientation and smallest along
the (100) orientation, hereby identifying (100) as the easy magnetic axis, consistent with
the alignment of the helix propagations in zero field [49, 100].

One additional observation regarding H.; may be made: Albeit clear signatures of H;
appear following ZFC, they are absent following HFC which may be explained as follows.
In this configuration, one easy axis is parallel to the magnetic field while the others
are perpendicular to the field direction. Therefore, when the magnetic field is reduced
from the conical to the helical state only the (100) domain parallel to the field may be
populated, leading to a single domain helical state indistinguishable in the susceptibility
from the conical state.

5.1.3 Experimental Data

The following section presents the experimental results of the magnetization and suscep-
tibility measurements. The presentation is organized in three parts. First, in Sec. 5.1.3,
typical data following ZFC is shown, illustrating the orientation dependence of the key
features of magnetization and susceptibility. Subsequently, in Sec. 5.1.3, typical mag-
netization and susceptibility data following HFC are shown, demonstrating the strong
hysteretic effects associated with the low-temperature skyrmion phase. Finally, a com-
parison of selected susceptibility data with neutron scattering data is made. This serves
to justify the interpretation and definitions of the transition fields.

(a) Magnetization and Susceptibility under ZFC

Typical magnetization and susceptibility data for field along all major crystallographic
orientations, (111) (blue), (110) (green) and (100) (red), is shown in Fig. 5.2. The
data is recorded following ZFC and shown as a function of internal field, corrected for
demagnetizing fields.

It is instructive to start the presentation of the experimental data at high temperatures,
where the qualitative behavior is essentially isotropic. Fig. 5.2(a) presents the magnetiza-
tion data at a temperature of T' = 57.5 K, crossing the high-temperature skyrmion phase.
With increasing field, the system changes, in this order, from helical, conical, skyrmion
lattice, conical to the field polarized state. The magnetization increases almost linearly
before approaching the saturation above =~ 20mT. A slight decrease of the incline at
intermediate fields signals the skyrmion phase. Such small deviations from the linear
behavior, however, are best seen in the differential susceptibility, dM/dH, calculated
from the magnetization, as shown in Fig. 5.2(d)—(f) (symbols).

For magnetic field aligned along all three major axes, the susceptibility exhibits three
distinct maxima as a function of the increasing field. They represent, in this order,
the well-known characteristic signatures of the helical to conical, the conical to high-
temperature skyrmion and the high-temperature skyrmion to conical transition at H

cl>

H}, and H},, respectively. A rapid decline of the susceptibility at high fields marks
the transition into the field-polarized state, with the critical field HY, corresponding to

the inflection point. Both the helical and the skyrmion lattice state show a reduced
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Figure 5.2: Typical magnetization and susceptibility data for field along (111) (red),
(110) (green) and (100) (blue). Data is shown as a function of internal field,
following ZFC.

susceptibility compared to the conical state.

The real and imaginary part of the ac-susceptibility, ¥’ and x”, are shown as a black
and a colored line. With the exception of the the transition regimes surrounding HY,
HY and HY, quantitative agreement between dM/dH and y’ is found. In contrast,
X" shows distinct signatures only at HY,, HY, and H,ou but vanishes elsewhere. The
differences between dM/dH and X’ in combination with the dissipative signatures in x”
indicate slow relaxation processes related to domain formation and reorientation processes
[134-137|. Note that HY is slightly smaller along (100), while HY, is essentially isotropic.
Furthermore, the dissipative signal at HY is notably smaller for (100) compared to the
other directions.

The qualitative behavior remains isotropic at intermediate temperatures, as illustrated
in Fig. 5.2(b) for a temperature of 40 K. As a function of increasing field, signatures of
the helical, conical and field-polarized state are present. Apart from the missing skyrmion
phase, the behavior is equivalent to the response at high temperatures, and only the
field scales are increased. The corresponding susceptibility data is shown in Fig. 5.2(g)—
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(i). Albeit HY, is approximately equal for all orientations, HY is significantly smaller

for field along (100). One additional observation regards the susceptibility within the
conical phase. Neglecting cubic anisotropies, a constant susceptibility is expected in the
conical phase. Experimentally, however, we observe a slight concave curvature along
(111) and (110) and a convex curvature along (100). The difference in curvature shows
that compared to the isotropic case, additional energy is required to magnetize along
(111) and (110), while the energy requirement is reduced along (100).

Significant differences emerge at lower temperatures, where the behavior is highly
anisotropic. Shown in Fig. 5.2(c) is the magnetization at a low temperature of 2 K.
Initially, the magnetization increases with the same slope, regardless of orientation. A
sizable jump of M at low fields indicates the helical to conical transition of the (111) and
(110) orientation and is followed by a quasilinear increase towards saturation.

Markedly more complex behavior is seen for field along (100). With increasing field,
M shows a tiny signature at HY,, indicating the helical to conical transition, followed by
an approximately linear increase up to H{}. From H to H{, M exhibits a large, almost
vertical jump, followed by a quasilinear increase into saturation, with a slope comparable
to low fields. This behavior is reminiscent of the helical to conical transition observed
in the other directions. A comparison with neutron scattering, however, identifies these
signatures with the emergence of the tilted-conical and the low-temperature skyrmion
phase, as shown in a later section.

The corresponding susceptibilities are show in Fig. 5.2(j)—(1) For the (111) and (110)
orientation, the behavior is qualitatively equivalent to 40 K, albeit the signatures are
much more pronounced. In contrast, the (100) orientation shows a large peak in dM/dH
at high fields, originating from the jump-like increase in M, followed by a sizable shoulder.
Both signatures are not entirely tracked by Y/, suggesting relaxation effects. Surprisingly,
the imaginary part of the ac-susceptibility x”, measuring the magnetic dissipation, shows
a signature only between H{} and H,. The broad shoulder in dM/dH, albeit not tracked
by x’, shows no dissipation. The dissipative signal, as we will show in a later section, is
a key signature of the tilted conical state. As such, we use the inflection points at both
sides of the dissipative signal to track the phase boundaries of the tilted conical phase,
denoted as Hi; and Hio.

Finally, it may be noted that the susceptibility in the conical phase is much more curved
than at higher temperatures, suggesting an increase in strength of the cubic anisotropy
at low temperatures.

(b) Magnetization and Susceptibility under HFC

We now focus on the experimental data following HFC. This serves to demonstrate
the hysteretic effects that are particularly pronounced for the low-temperature skyrmion
phase. Fig. 5.3(a) presents magnetization data following HFC of all major crystallographic
orientations. The corresponding susceptibilities are shown in Fig. 5.3(c)—(e). The data
is recorded at 2 K and shown as a function of internal field, corrected for demagnetizing
fields. The magnetic field is swept from negative fields to positive fields, as indicated
by an arrow. Thus, data in negative fields demonstrates the behavior with decreasing
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Figure 5.3: Typical magnetization and susceptibility data for field along (111) (blue),
(110) (green) and (100) (red). Data is shown as a function of internal field,
following HFC.

field strength, whereas data in positive fields displays the behavior with increasing field
strength.

It is instructive to start the presentation with the magnetization data of the (111)
and (110) orientation, which shows, in essence, the behavior following ZFC. The ob-
servations may be summarized as follows: First, the magnetization is almost perfectly
point-symmetric with respect to the origin. Second, the experimental data displays signa-
tures characteristic of helical order at low fields, conical order at intermediate fields and
of the field polarized state at high fields, reminiscent of the familiar behavior of the chiral
magnets. Sizable, step-like changes of M signal the helical to conical transition at H¢p
and result in distinct maxima of dM/dH. Third, on closer inspection, minor hysteresis
may be observed at H.j, yet no hysteresis is seen at Hco, as expected.

Unlike the (111) and (110) orientation, the behavior of the (100) direction is notably
asymmetric. Starting at large negative fields, as a function of decreasing field transitions
from field polarized state across tilted-conical state to the low-temperature skyrmion state
and finally into the conical state are seen. The respective transition fields are marked as
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HY, HY and HY. With a further increase of field towards positive fields one observes
transitions from conical state into the tilted-conical state followed by the low-temperature
skyrmion state and finally the field-polarized state, marked as H{j, H¢, and HY,. This
resembles the behavior following ZFC, except for the missing helical phase at low fields.
At both HY and HY, the distinct signatures in dM/dH are not tracked in x’ and no
dissipative signal in x” is seen. Additionally, the phase boundaries of the tilted conical
phase show no noticeable hysteresis.

It is worth pointing out that independent of increasing or decreasing field, clear sig-
natures are only seen when leaving the low-temperature skyrmion lattice. Entering the
low-temperature skyrmion lattice occurs within the tilted conical phase. As such, the
features of both phases overlap. This issue will be addressed in a later section using
FORC measurements.

The pronounced asymmetry is further emphasized in Fig. 5.3(b), showing a full hystere-
sis loop. Sizable hysteretic effects between increasing and decreasing fields are observed
in the field range from Hg to Hg. With a reduction in field, the magnetization re-
mains longer in the saturated state, due to the absence of the low-temperature skyrmion
phase. Once the tilted-conical phase is crossed, the magnetization remains at an ele-
vated level down to Hgl. In contrast, with increasing field, the skyrmion phase appears
above the tilted conical phase, and the magnetization remains longer at a reduced value.
Thus, independent of the field direction, the tilted conical phase appears first, while the
low-temperature skyrmion phase vanishes last.

(c) Comparison with Small-Angle Neutron Scattering

The definition of the phase boundaries based on feature tracking may be justified by
comparison with neutron scattering data. Small-angle neutron scattering (SANS) probes
the magnetic structure in reciprocal space. Accordingly, the measured intensity patterns
reflect the symmetry and periodicity of the magnetic structure.

A comparison of the SANS data with corresponding susceptibility data is given in
Fig. 5.4. The SANS data originate from the study reported in Ref.[119] and were provided
by Alfonso Chacon. A quantitative comparison of the individual intensity profiles is not
possible since the scattering intensities are not rocked. For further technical details,
we refer to Ref.[119]. Great care was taken to allow for a direct comparison. Since
the neutron study was conducted on a spherical sample with a demagnetizing factor of
N = 1/3, a cuboid sample with a comparable demagnetizing factor has been chosen in the
magnetization and susceptibility study, namely VTG1-19 (c.f. Sec. 3.1). Data are shown
as a function of internal field, further eliminating the effects of sample shape. Due to the
lack of magnetization data of the spherical sample, the magnetization correction has been
calculated from a different sample, namely VT'G1-19 (c.f. Sec. 3.1), using the following
procedure: Starting from the magnetization curve of the reference sample as a function
of applied field, the demagnetization correction is applied, yielding the magnetization as
a function of internal field. Next, the demagnetization correction is inverted, using the
demagnetizing factor of the sphere (N = 1/3) yielding, again, the magnetization curve
as a function of applied field. As a result, we obtain a mapping from the external field
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Figure 5.4: Susceptibilities and SANS intensities as a function of internal field following
HFC (left column) and ZFC (right column). Schematics of the modulated
SANS intensities are shown on the left side.

scale used in the SANS study to the internal field scale.

Schematics of the intensity patterns in reciprocal space, characterizing the five mod-
ulated magnetic structures of CupOSeOs, are shown in Fig.5.4(al)-(a5). Small colored
spheres illustrate the location of scattering intensity in reciprocal space. The scattering
intensities are located on the surface of a sphere, shown in blue shading, with a charac-
teristic radius |Q| = D/J, resulting in first approximation from the competition between
exchange interaction J and Dzyaloshinskii-Moriya interaction D. The crystallographic
(100) orientations are visualized as black arrows. The detection plane, probed by the
SANS experiment, is illustrated as a grey rectangle. The five different intensity patterns
shown correspond to the well-established intensity patterns of the helical (green), conical
(grey) and high-temperature skyrmion (light red) state as well as the recently discovered
tilted conical (dark grey) and low-temperature skyrmion state (dark red). In this con-
text, it is important to note the different orientations of the applied magnetic field and
the detection plane with respect to the crystallographic orientations. For a thorough
explanation of the scattering intensities, please refer to Sec. 2.7.
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Shown in Fig. 5.4(b1)—(b4) is a comparison of SANS intensities associated with the
modulated magnetic structures and magnetic susceptibility data inferred within this thesis.
The data is shown as a function of internal field following HFC (left column) and ZFC
(right column) at a temperature of 2 K. The color coding used for the SANS intensities
corresponds to the colors used in the schematics.

When decreasing the magnetic field after HFC, scattering intensity of the tilted-conical
phase emerges simultaneously with the large dissipation signal in y” and a large peak
in dM/dH, spanning a comparable field range. The upper phase boundary of the tilted
conical phase thQ, defined as a point of inflection in " is in excellent agreement with
a point of inflection in the SANS intensity. In contrast, the lower phase boundary, thQ,
matches the peak of the intensity instead of the point of inflection towards low fields. One
may speculate if this is a result of slight imperfections in the demagnetization correction,
which is particularly sensitive in this field range due to the nearly vertical increase of M.

The scattering intensity of the low-temperature skyrmion phase emerges in between
H& and H? and extends far beyond the phase boundaries of the tilted conical state,
towards low magnetic fields. The emergence of the low-temperature skyrmion phase may
not unambiguously be associated with any signature in the susceptibilities, as signatures
in dM/dH tracking both tilted-conical and low-temperature skyrmion phase overlap.
On disappearing, however, a distinct peak in dM/dH emerges, marked as Hgl, without
signatures in the ac-susceptibility.

With a successive increase in magnetic field, scattering intensity of the tilted-conical
phase emerges again simultaneously with the large dissipation signal in x” and a significant
peak in dM/dH, spanning a comparable field range from H{ to H{%. Similarly, the
intensity of the low-temperature skyrmion phase emerges within the field range of the
tilted conical state. With a further increase in magnetic field, the intensity of the low-
temperature skyrmion lattice extends beyond the tilted conical phase towards higher
fields, correlating with a sizable shoulder in dM/dH. The edge of the shoulder, marked
as HY, precisely corresponds to the point of inflection of the scattering intensity.

In general, the behavior observed after ZFC is equivalent to the response at increasing
fields following HFC. One notable difference, however, is the observation of a helical
phase at low fields in both studies Following ZFC, a small peak, denoted as HY; appears
in dM/dH at the transition from helical to conical state and corresponds precisely with
the point of inflection in the helical intensity.

As a final remark, following HFC, helical intensity is seen in the SANS study whereas
signatures of the helical state are absent in both magnetization and susceptibility. A
small misalignment of the sample during the SANS study may explain this inconsistency
and is corroborated by the observation of a similar helical signature following HFC in the
magnetization data when a small misalignment was present (not shown).
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5.1.4 Higher Harmonics of the AC Susceptibility

A detailed introduction of higher harmonics may be found in Sec. 3.2.3.

Shown in Fig. 5.5 are the fundamental, second and third harmonic of the ac-susceptibility
at typical temperatures following HFC. Data are shown as a function of internal mag-
netic field with field along (110) (green, (a)-(f)) and (100) (blue, (g)-(1)). Here, rows
correspond to fundamental, second and third harmonic whereas columns correspond to
different temperatures.

We begin the presentation with field along (110) at a temperature of 2 K. Note that
only the positive half is shown, as the behavior at negative fields is equivalent. In this
context, we observe, with respect to the origin, a point symmetry for the even and
mirror symmetry for the odd harmonics of the susceptibility. The susceptibility at the
fundamental frequency, as shown in Fig. 5.5, shows the well-known behavior as reported in
previous chapters. At low fields, the helical phase reveals itself as a dip in the susceptibility,
followed by the conical phase between H.; and H.o and the field polarized state at high
fields, above Hcy. The second harmonics x5 and x4, as shown in Fig. 5.5(b), vanish over
the complete field range, except for a tiny positive peak in x/ at Heo. Note that this
signature appears without the emergence of a dissipative signal in x”. Similarly, the third
harmonics x4 and x4 vanish over the complete field range.

Additional signatures appear at high temperatures, when the system crosses through
the high-temperature skyrmion phase, as shown in Fig. 5.5(d)—(f) for a temperature
of 57.5K. Shown in Fig. 5.5(d)—(f) are fundamental, second and third harmonics at a
temperature of 57.5 K. At the phase boundaries of the high-temperature skyrmion phase,
H,1 and Hyg, two additional small peaks emerge in the second harmonic, x5, while the
third harmonic remains negligible.

Similarly, at the same temperature of 57.5K and field along (100) we observe qualita-
tively equivalent behavior. We observe sizable peaks at H,1, H,o and Hcs in the second
harmonic x5 and vanishing third harmonics. The signatures appear for both increasing
and decreasing field strength with a comparable size and shape. Further, the second
harmonic exhibits a point symmetry with respect to the origin.

In contrast, at low temperatures notably different signatures arise. At 2K, as shown
in Fig. 5.5(j), the linear susceptibility exhibits a strong peak in x’ at the border of the
field polarized state, accompanied by a sizable dissipative signal in x”. We note that the
ac-susceptibility shows no signatures of the low-temperature skyrmion phase.

The corresponding second harmonics, shown in Fig. 5.5(k), display a prominent peak
in the field range of the tilted conical phase for both increasing and decreasing fields. The
real part of the second harmonic, x4, is approximately twice as large as the imaginary
part, x5. Compared to the signature at Hco, as observed for 57.5 K, for example, the
signal is significantly stronger and has the opposite sign. Similarly, both x4 and x%
show a clear peak in the field range of the tilted-conical phase. The real part of the
third harmonic, x4, is approximately three times as large as the imaginary part, x4, and
extends significantly further into the high-field region. Moreover, the third harmonics
show a strong asymmetry with respect to the origin, not present for the second harmonic.

The signatures with decreasing field strength (negative fields) are almost twice as a large
compared to increasing fields (positive fields).
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Figure 5.5: Nonlinear harmonic susceptibility as a function of field at 2 K and 57.5 K. Data
is recorded following HFC with H || (110) (green, (a)—(f)) and H || (100) (blue,
(g)—(1)). Fundamental, second and third harmonics of the ac-susceptibility are
shown in the first, second and third row, respectively. The sweep direction is
marked with an arrow. Note that only the positive fields are shown for the
(110) orientation. Analogous behavior is observed at negative fields.
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Figure 5.6: Nonlinear harmonic susceptibility as a function of field at various tempera-
tures. Second (a) and third (b) harmonics of the ac-susceptibility for selected
temperatures Data is recorded as a function of field following HFC with
B || (100). For clarity, x5 and x4 are shifted by 120 x 1073 for T' < 25K and
60 x 1073 for T > 25K. x4 and x4 are shifted by 24 x 1073 for T < 25K
and 12 x 1073 for T > 25 K.
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The evolution with temperature of the unusual higher harmonics as seen the (100)
orientation is illustrated in Fig. 5.6. Data are shown as a function of internal field following
HFC. Overall, the large signatures observed at low temperatures in both second and third
harmonics develop smoothly with increasing temperature and vanish at approximately
30 K, consistent with the temperature regime of the tilted conical phase.

On closer inspection, the real part of the second harmonic, x5, becomes notably asym-
metric from 2 K to 10 K as the peak at positive fields gains in size. At 20 K, an additional
sharp peak, opposite in sign, emerges at the outer edge of the low-temperature signature
towards high fields. With a further increase in temperature, it evolves into the signature
characteristic of H¢s. Additionally, at 20K, the low-temperature signature reveals a
double peak structure at negative fields.

In comparison, the real part of the third harmonic, x4, as shown in Fig.5.6(b) decreases
notably in size from 2K to 10K, while the the imaginary part, x4, increases. Similarly
to the second harmonic, a sharp signature emerges at 20 K at the outer edge, opposite
in sign. With a further increase in temperature, however, the third harmonic vanishes at
approximately 30 K unlike the second harmonic, which shows a signature at Hco.

In summary, the strong higher harmonics are clearly connected to tilted conical phase,
with strong correlations in both temperature and field regime. As such, they only emerge
in the (100) orientation. Further, they sensitively depend on the field history, resulting
in asymmetry between increasing and decreasing fields. In literature, the emergence
of nonlinear susceptibility is reported in vortex matter, spin glasses and in particular
magnetic systems, where it is connected to domain wall dynamics. Still, the origin of the
harmonics in CusOSeO3 remains unknown.

5.1.5 Demagnetizing Effects

Finite samples are subject to demagnetizing effects that arise from the magnetic H-
field generated by the magnetization of the sample itself. The dipolar demagnetizing
field generated within the sample opposes the applied field, thereby reducing the total
internal field. As a function of applied field, the magnetization appears sheared towards
larger fields. In modulated magnetic structures additional, more subtle effects arise and
demagnetizing effects may stabilize or destabilize certain magnetic structures[145-148|.
As for CupsOSeQs, theoretical calculations have revealed that dipolar interactions play an
important role for the details of the magnetic phase diagram.

The effects of demagnetization on magnetization and susceptibility are illustrated in
Fig. 5.7. The data is shown as a function of applied field for both increasing (red) and
decreasing (blue) magnetic field. All data is recorded at a temperature of 2 K following
HFC and field along (100). The data is organized in columns with the demagnetizing
factor increasing from left to right, further indicated above each column.

Starting with a low demagnetizing factor of N = 0.07, as shown in Fig. 5.7(a)—(e),
we observe all previously discussed signatures, in particular the hysteresis in M, associ-
ated with the low-temperature skyrmion phase and the pronounced dissipation signature
of the tilted-conical phase. With increasing demagnetizing factor the steep incline of
magnetization within the tilted conical phase diminishes. This is accompanied by a
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Figure 5.7: Effects of demagnetization on magnetization and susceptibility for various
demagnetizing factors. All data is recorded at a temperature of 2 K following
HFC and field along (100). Data is shown as a function of applied field for

both increasing (red) and decreasing (blue) magnetic field.

drastic increase in the associated field scale and a smearing of the signatures with N.
Nonetheless, a dissipation signal characteristic of the tilted conical phase is observed up
to N = .77, the largest demagnetizing factor investigated. In contrast, the signatures
of the low-temperature skyrmion phase may no longer be seen at a large demagnetizing
factor of N = 0.39 and above. The absence of traceable signatures does not rule out
the existence of skyrmions and may solely result from the smearing of the signatures. In
particular, the non-ellipsoidal sample shape leads gives rise to a non-uniform distribution
of the demagnetizing field that is particularly pronounced at large demagnetizing fields
and may further broaden the signatures. Without additional microscopic information,
however, it is not possible to gain further insights into the low-temperature skyrmion
state at large demagnetizing factors.
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Figure 5.8: Magnetization (first row) and specific heat (second row) as a function of
internal field at 2 K for all major directions. Data were measured in a single
field sweep from positive to negative fields with data at negative fields mirrored
back into the first quadrant. Data measured with increasing field is shown
in blue, with decreasing field in orange. Colored shading of the background
indicates the magnetic phases. We distinguish helical (green), conical (grey),
tilted conical (dark grey), low-temperature skyrmion (red) and field-polarized
(white) state. Zero field value of C' has been subtracted.

5.1.6 Specific Heat

At low temperatures the specific heat mainly explores the magnetic structure and as such
may allow us to gain further insights. Given the nearly horizontal course of the phase
boundaries in B-T space as well as the pronounced signatures as a function of field, we
have opted for isothermal field dependent specific heat measurements.

Shown in Fig. 5.8 is a comparison of quasi-isothermal magnetization, M, and specific
heat, C, as a function of internal field for field along (111) (first column), (110) (second
column) , and (100) (third column). All data was measured at a temperature of 2K in a
single field scan following HFC, with data in negative fields mirrored back to positive fields.
We distinguish between increasing (red) and decreasing (blue) magnetic field strength,
indicated by colored arrows. Magnetization and respective specific heat were measured
on the same sample for each orientation. The specific heat values shown represent an
average of at least 15 successive measurements for each field value. A tiny heat pulse
of a few percents has been used .Further, a value of Cy ~ 13.2mJmol ' K~! has been
subtracted from the specific heat data, representing the specific heat in zero fields.

Comparable behavior is observed for both (111) and (110) orientation, as shown in
Fig. 5.8(a), (b) and Fig. 5.8 (¢), (d), respectively. The magnetization, as previously
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shown, shows the familiar behavior with the helical phase at low magnetic fields, followed
by the conical phase and the field-polarized phase at high fields. The transition fields
are marked as H.; and H.o, respectively. At H.i, a tiny hysteresis may be observed.
Similarly, the specific heat of both orientations displays three regions of distinct slopes,
which may be attributed to the helical, conical and field polarized state. The transition
fields agree exceptionally well with the magnetization data. In the helical phase, the
specific heat remains approximately constant as a function of field but declines linearly
within the conical phase and even more steeply within the field polarized state. The same
behavior is observed between increasing, and decreasing fields and hysteresis at H.; as
seen in the magnetization may not be resolved.

With field along (100) as shown in Fig. 5.8(e), (f), we observe a notably different
behavior, both in comparison with the other orientations and between increasing and
decreasing field. With increasing field (red), three distinct kinks are clearly visible in
the specific heat, associated with the critical fields H{}, H, and H, respectively. At
low fields, below H{, the specific heat is essentially constant, similar to the low field
behavior of the other directions. Note that unlike the (110) and (111) orientations, the
constant range corresponds to the conical and not the helical state. At H}j, the specific
heat drops rapidly and exhibits a step-like behavior similar to the magnetization albeit
in the opposite direction. From H{} to H}j, the specific heat drops sharply, coinciding
with a steep increase in the magnetization. From H{, up to HY, the rate of change,
dC/dH, reduces significantly, concurrent with a reduction in susceptibility dM/dH .
Moreover, above H} both dC/dH and dM/dH are reduced once again. In contrast,
under decreasing fields only two distinct kinks may be seen, associated with thl and
Hg,. This gives rise to sizable hysteresis in the field range from HY to HY%. However, no
signature of the low field phase boundary, Hsdl, of the low-temperature skyrmion lattice
is seen. Being already a subtle effect in the magnetization, this is most likely a sensitivity
issue.

In conclusion, only tiny differences in entropy are to be expected between the var-
ious magnetic states, arising as a function of field. Nonetheless, we have successfully
determined the field dependence of the specific heat along all major crystallographic ori-
entations. We observe suppression of the specific heat as a function of the field, which may
be attributed to a reduction of entropy. Furthermore, the specific field dependence ex-
hibits characteristics of the individual phases, in particular, the low-temperature skyrmion
and tilted conical phase, which are consistent with magnetization and susceptibility.

5.1.7 First-Order Reversal Curves

In standard magnetization and susceptibility measurements, the entry into the low-
temperature skyrmion phase may not unambiguously be determined, as the field re-
gion coincides with the tilted conical phase. Only the signatures when leaving the
low-temperature skyrmion phase, H§1 and HY, are clearly visible. By using first-order
reversal curves, however, we are able to determine the entry into the low-temperature
skyrmion phase accurately.

The FORC protocol, as described in detail in Sec. 3.2.4, may be summarized as follows.
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Starting in the saturated state in positive fields, the magnetic field is lowered to the
reversal field, B,,. Subsequently, data is taken while increasing the magnetic field back
towards the saturated state in positive fields. Repeating this process for various reversal
fields allows us to identify irreversible behavior.

Shown in Fig. 5.9(a) are magnetization curves, recorded following the FORC protocol.
All data is measured at a temperature of 2K with the magnetic field along the (100)
orientation and various reversal fields. For clarity a major hysteresis loop is plotted as
a black line, outlining the FORC data. In the field range from HY to HY%, at both
positive and negative fields strong irreversibilities are evident. This is further illustrated
in Fig. 5.9(b), showing an enlarged view of the irreversible region in positive fields. With a
reduction in reversal field, the magnetization initially tracks the descending branch of the
major hysteresis loop. On entering the field region of the tilted-conical phase, however,
the magnetization curve decreases and evolves towards the lower-lying ascending branch
of the major loop, which indicates the nucleation of skyrmions.

To better understand the influence of the reversal field it proves helpful to examine the
susceptibilities instead of the magnetization. Therefore, the corresponding differential
susceptibility, dM/dH , calculated from the magnetization as well as the real-part of
the ac-susceptibility, ¥’ are shown in Fig. 5.10(a). In view of the divergent behavior
of dM/dH in the tilted-conical phase, the logarithm of dM/dH and x’ is shown. The
imaginary part of the ac-susceptibility, x”, is shown in Fig. 5.10(b) and serves as an
indicator of the tilted conical phase. In the following, it will become clear that signatures
of the low-temperature skyrmion phase appear once the tilted conical phase is entered.

With a reduction of the reversal field By, initially no difference between dM/dH and
X' is observed. As soon as the reversal field is lowered into the field range of the tilted-
conical, however, clear differences between dM/dH and x’ emerge. This is achieved for
the first time at a reversal field of B, = 65mT. Here, dissipative signatures appear in
X", indicating the tilted conical phase. In addition, a signature of the low-temperature
skyrmion phase emerges towards high fields, marked as H,. With a further reduction of
By, the signatures of the low-temperature skyrmion phase become more pronounced at
first and subsequently remain unchanged.

Until the reversal field reaches the field range of the tilted conical phase at negative
fields, a virtually unchanged behavior is observed. At a reversal field of B, = 55 mT first
signatures of the low-temperature skyrmion phase appear towards low fields, marked as
Hsl. Simultaneously, a dissipative signature emerges at negative fields, indicating the
tilted-conical phase.

In conclusion, this behavior unambiguously demonstrates that the low-temperature
skyrmion lattice nucleates only within the tilted conical phase.
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Figure 5.9: First order reversal curves of the magnetization at a temperature of 2 K with

field along (100). The black outline shows a conventional hysteresis loop.
From the saturated state at positive fields, the field is reduced to a reversal
field, Byev- Subsequently, data is taken while increasing the field back towards
the saturated state at positive fields. Irreversible behavior is seen in the field
range of the low-temperature skyrmion phase in between Hg; and Hgo at both
positive and negative fields. (b) Enlarged view of the irreversible region at
positive fields. The reversal field of each trace is marked with an arrow. Note
that the reversal field is given in units of applied field.
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Figure 5.10: Susceptibility data inferred from FORC measurements at a temperature of
2K with field along (100) for various reversal fields. The respective reversal
field is labeled on the right side of each trace. (a) Logarithm of differential
susceptibility, dM/dH, and real part of ac-susceptibility, x;. (b) Imaginary
part of the ac-susceptibility, x”.
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5.2 Discussion

The importance of magnetocrystalline anisotropies for stabilizing the low-temperature
skyrmion phase and the tilted-conical phase was highlighted in the recent neutron study
[119]. This understanding is further supported by the strong anisotropies of magnetization,
susceptibility, and heat capacity measured during this work. In the following, we will
discuss the effects of magnetocrystalline anisotropy in further detail.

This Section is organized as follows. In Sec. 5.2.1, we begin with a discussion of
anisotropy effects in field dependent magnetization measurements, comparing the behavior
of CupsOSeO3 with other chiral magnets. Next, in Sec. 5.2.2, we discuss in detail the
anisotropy effects of CusOSeO3. Moreover, based on the extensive magnetization data,
we extract the temperature dependence of the associated energies and ultimately infer the
temperature dependence of the cubic anisotropy constant. In Sec. 5.2.3, we address the
effective energy landscape arising from the interaction of a modulated magnetic structure
with the cubic anisotropy. Finally, in Sec. 5.2.4 we discuss the strong hysteretic effects of
the low-temperature skyrmion phase, focusing on the nucleation of skyrmions.

5.2.1 Anisotropy of the Magnetization

Compared to other cubic chiral magnets, CusOSeO3 has an unusually strong magne-
tocrystalline anisotropy. Nonetheless, effects of magnetocrystalline anisotropy are also
prevalent in other cubic chiral magnets, although not as pronounced.

The magnetization behavior of chiral magnets with vanishing anisotropy is based solely
on the rotation of the individual spins into the field direction, which without anisotropy
also corresponds to the propagation direction of the conical helix. This results in a
linear increase in magnetization until saturation and is comparable to the behavior of
a uniaxial ferromagnet with an easy-plane anisotropy, magnetized along the hard axis.
The slope is determined solely by the competition of Dzyaloshinskii-Moriya interaction
and ferromagnetic exchange. In contrast, non-vanishing magnetocrystalline anisotropy
results in orientation dependent deviations from the linear behavior.

A comparison of the magnetization behavior of CuoOSeO3 with two archetypal chiral
magnets, namely FepgCog2Si and MnSi, is given in Fig. 5.11. For a better comparison,
the magnetization and field axes are shown in units of the saturation magnetization, Mj,
and the upper critical field, Heo. The saturation magnetization, Mg, is determined at
fields well above H.o while the upper critical field, H.o, was selected for the direction
which shows the largest value. Of the three materials shown, CusOSeO3 displays the
strongest orientational anisotropy, and the magnetization as a function of field is clearly
nonlinear.

It must be emphasized that if the magnetization is rising faster along one direction com-
pared to other directions, this direction is favored by the magnetocrystalline anisotropy.
As a function of field, we observe two intersections of the magnetization of the (111)
and (100) orientation where the ordering of the magnetization changes. At very low
fields, the magnetization is essentially isotropic up to H¢; of the (100) orientation. With
a further increase in field, the magnetization of the (100) orientation rises above the
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Figure 5.11: Magnetization of CuayOSeOs, Feg gCog.2Si, and MnSi illustrating the effects
of magnetocrystalline anisotropy on the magnetization. (a) Magnetization
of Cup08SeOs3, exhibiting strong (100) easy axis anisotropy. (b) Magneti-
zation of FeygCog 251, exhibiting moderate (100) easy axis anisotropy. (c)
Magnetization of MnSi, exhibiting very weak (111) easy axis anisotropy.

magnetization of the other orientations, suggesting magnetocrystalline anisotropy favors
the (100) orientation. Surprisingly at H.; of the (111) orientation, the order changes and
the magnetization of the (111) orientation rises to the top, suggesting a favorable (111)
orientation at intermediate fields. At larger fields, at approximately Hy; the ordering
changes once again and the (100) orientation rises to the top, suggesting a favored (100)
orientation again. We note that this effect does not indicate a field dependence of the mag-
netocrystalline anisotropy constant. Rather, it is the result of the modulated magnetic
structure changing with field, which in turn changes the anisotropy energy contribution.

The magnetization of Feg §Cog 251, as shown in Fig. 5.11(b) resembles that of CupOSeOs,
albeit with less pronounced anisotropy. Similar to CusOSeQOgs, FeggCog.2Si exhibits an
easy (100) orientation. The H.; field, however, is located at much larger fields and is
almost isotropic, which might be related to strong disorder pinning, prevalent in the
series of Fe;_,Co,Si alloys. As a function of field FeygCog2Si shows a preferred (111)
orientation at intermediate fields and a favored (100) orientation at large fields. The
magnetization shows a single intersection of the (111) and (100) direction, with an elevated
magnetization in the (100) direction at magnetic fields above the intersection and an
elevated magnetization in the (111) direction at fields below, down to H.;. The second
intersection at low fields as seen in CuyOSeQOgs, however, is not observed, possibly due
to the large H.; value. Also, the signatures of the tilted-conical and low-temperature
skyrmion phase, the almost vertical increase of M followed by the step increase above,
are apparently absent.

MnSi, in comparison, is the perfect example of a very weak anisotropy, easy (111) axis
system. The field dependent magnetization, as shown in Fig. 5.11(c) is nearly linear,
and only minor differences between the various orientations may be observed, notably
at low and high fields. Similar to CuaOSeOg3 two intersections between the (111) and
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Figure 5.12: Magnetic work, W, critical fields and cubic anisotropy constant, K, inferred
from magnetization and susceptibility data following ZFC. (a) Temperature
dependence of the magnetic work expended to reach saturation for field along
(111) (red), (110) (green) and (100) (blue). (b) Difference in magnetic work
relative to the (100) orientation. (c¢) Orientation dependence of the critical
fields. (d) Cubic anisotropy constant, K, inferred from the magnetization
work (black) and critical fields (orange).

(100) magnetization may be seen, although barely visible. At low and high fields an
elevated magnetization in the (111) orientation may be seen and a barely visible elevated
magnetization in the (100) orientation at intermediate fields. Furthermore, the helical to
conical transition, H.1, occurs at a drastically smaller field compared to CuaOSeOs.

In summary, the effects of magnetocrystalline anisotropy yield a surprisingly complex
magnetization behavior as a function of field. The magnetocrystalline anisotropy is
undoubtedly the strongest in CusOSeO3, followed by FeggCog.2Si and weakest in MnSi.
Both Cuy0SeOs, FeggCopoSi have an easy (100) axis, while MnSi favors the (111)
orientation. The helical to conical transition, H.y, is smallest in MnSi and largest in
Feg.gCop.25i yet almost isotropic suggesting a disorder-driven effect.
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5.2.2 Magnetocrystalline Anisotropy

The magnetic anisotropy energy may be inferred quantitatively from the field dependent
magnetization data by means of the magnetic work,

My
W:/,U,OHdM, (5.1)

Mo

corresponding to the area between the ordinate and the magnetization curve in a M (B)
diagram. The magnetic work is related to the free energy density, dF, by the laws
thermodynamics, reading [24, p. 123]

AW =dF+  T&S — + SdT (5.2)

entropy production =~ magneto caloric effect

In isothermal conditions and assuming reversible behavior (76;S = SdT' = 0), the
magnetic work equals exactly the change in free energy from M; to Ms. Strictly speaking,
irreversible processes as they are found in the (100) orientation do not justify fully the
assumption of reversibility. Nonetheless, these energetic corrections are much weaker
compared to the anisotropy energy and will be ignored in the following.

The change in free energy

My
AF:/@F:AH+Aﬂ, (5.3)

Mo

is comprised of an isotropic contribution, A Fy, incorporating the exchange and Dzyaloshinskii-
Moriya interactions as well as an anisotropic contribution, AF)y, arising from the magne-
tocrystalline anisotropy. As a word caution, it should be noted that the sample geometry
itself may lead to anisotropic contributions to the free energy due to demagnetizing fields.
Great care has been taken to avoid such systematic errors. The magnetic work is therefore
always calculated after the demagnetizing field correction.

Shown in Fig. 5.12(a) is the magnetic work expended to saturate the magnetization
at various temperatures with the magnetic field aligned along the (111) , (110) and
(100) orientations. The magnetic work is calculated from field dependent magnetization
measurements following ZFC, starting in zero field with M; = 0 and ending in saturation
with Ms = M.

With decreasing temperature, below T, the magnetic work increases monotonically.
In the zero temperature limit, we find a magnetic work of W ~ 20 neV A_S, in excellent
agreement with DFT calculations, yielding AF = 23.8neV AP [149]. Towards low
temperatures, differences between the individual orientations may be observed, resulting
from the magnetocrystalline anisotropy. This is further illustrated in Fig. 5.12(b) showing
the difference in magnetic work between (111) and (100) as well as (110) and (100},
respectively. Differences arise below 40K, increasing monotonically with decreasing
temperature and are most pronounced between the (111) and (100) orientation. In the
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zero temperature limit, we find an energy difference of AW = 2neV A_S, approximately
one-tenth of the isotropic energy contribution.
Assuming a purely cubic anisotropy of the form

Fa = K(M; + M, + M), (5.4)

with M; = M;/|M]| the direction cosines of the magnetization vector, the anisotropy
constant K may be inferred from the energy differences, shown in Fig.5.12(b).

We refer to Sec. 3.4.2 for technical details. We note that in modulated magnetic
structures, Eq. 5.4 must be replaced by an integral over the magnetic unit-cell, as shown
in the following section. In the field polarized state, however, this is not necessary.

In a seminal study Grigoriev et al. have shown recently how cubic anisotropies affect the
upper critical field H¢o [88]. The upper critical field may be inferred by minimizing the free
energy, including ferromagnetic exchange, Dzyaloshinskii-Moriya, Zeeman interaction as
well as cubic anisotropies with respect to the opening angle of a conical helix propagating
along field. The upper critical field is then given by the magnetic field at which the opening
angle vanishes. In turn, the cubic anisotropy may then be determined by comparing the
upper critical field of two different orientations Considering the assumption of k || H, this
type of analysis prohibits comparisons of the (100) orientation due to the emergence of
the tilted-conical phase.

A surprising result of this study is that for sufficiently strong magnetic anisotropies the
conical helix becomes unstable at finite opening angles and a first-order transition into the
field polarized state is anticipated, with a vertical increase of the magnetization at this
transition. The experimentally observed tilted-conical phase, however, shows that the
first order transition is avoided by tilting against the magnetic field direction. Moreover,
more complex magnetic structures such as skyrmion lattices have not been considered.

Shown in Fig.5.12(c) is the orientation dependence of the critical fields H¢; and Hco as a
function of temperature. The critical fields are inferred from field dependent susceptibility
data following ZFC, with field along (111) (red), (110) (green) and (100) (blue). We note
that due to the emergence of the tilted-conical phase in the (100) orientation at low fields,
H, is replaced by Hio at temperatures below 30 K. With decreasing temperature, the
helical to conical transition, H.; increases monotonically for all orientations. Compared
to the (111) and (110) orientation, the H.; value of the (100) orientation is notably
smaller. The (111) and (110) orientations, however have an almost identical H.;. In
contrast, at high temperatures the upper critical field, Hco, is essentially isotropic but
diverges at temperatures below 40 K, with the (111) orientation showing the largest and
the (100) orientation, the lowest values.

The anisotropy constant, K, calculated from Hco in the (111) and (110) orientation
is shown in Fig. 5.12(d). We refer to Sec. 3.4.3 for details of the analysis procedure.
Overall excellent agreement between K inferred from the magnetization work and H.o is
observed, shown as black and orange symbols, respectively. At high temperatures, the
anisotropy constant is essentially zero. Below T =~ 40 K, however, a finite anisotropy
constant emerges, decreasing monotonically towards low temperatures.

Theoretically, an instability of the conical phase is expected if the anisotropy energy
in the (100) orientation exceeds 1/18 of the isotropic energy contribution, arising from
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the Dzyaloshinskii Moriya interaction [88]. This criterion is met at temperatures below
T ~ 25K, consistent with the emergence of the tilted-conical phase.

We note that within the accuracy of the estimate it is not possible to rule out a finite
K constant and a change in sign at temperatures above ~ 40 K. However, it is important
to emphasize that the easy axis of the magnetic helix in zero-field remains in the (100)
orientation at all temperatures. Deviations between the anisotropy constant inferred
from the magnetization work and the critical fields may further hint towards higher
order contributions. To resolve these questions, however, more specific measurements of
the magnetocrystalline anisotropy are necessary, using, for example, magnetic torque or
ferromagnetic resonance based methods on specially prepared isotropic samples, which is
beyond the scope of this study.

5.2.3 Effective Energy Landscape

The complex anisotropic behavior observed in chiral magnets as a function of field is
an effect of the cubic anisotropy, acting on a nonuniform magnetic structure. For what
follows, it proves helpful to review the effects of cubic magnetocrystalline anisotropy for
uniform magnetic structures, such as ferromagnets before turning towards the helical spin
texture.

Magnetocrystalline anisotropy is the directional dependence of the magnetic properties
of a material in relation to its crystal lattice and was first discovered by K. Beck in
1918 in cubic Fe-Si steel single crystals [30]. Phenomenologically, the magnetocrystalline
anisotropy may be described as an additional anisotropic contribution F to the total
free energy, which is typically represented as an expansion in direction cosines of the
magnetization vector,

N M,

M; = ™ (5.5)

The leading-order contribution to the magnetocrystalline anisotropy energy allowed by
the cubic symmetry is then given by the quartic term

1 (100)
Faniso = K (M + M, + M) =< 1/2 (110) (5.6)
1/3 (111)

with the anisotropy constant K.

Shown in Fig.5.13 is the energy surface of the quartic term of the cubic anisotropy
acting on a single spin for K = 0, K > 0 and K < 0. The size of the anisotropy energy
is encoded in the radius and the color, with red corresponding to large and blue to small
energies. For vanishing anisotropy, the energy surface is equivalent to a sphere indicating
the isotropic nature. This rotational degeneracy is lifted at finite values of K. For K > 0
as shown in Fig. 5.13(b), this gives rise to six energetically equivalent magnetic easy axes
along the (100) orientations, representing the orientations with the lowest anisotropy
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(a) (b)
[001]

Figure 5.13: Illustration of the three-dimensional energy surface associated the leading-
order cubic anisotropy term. The size of the anisotropy energy is encoded in
the radius and the color, with red corresponding to large and blue to small
energies. (a) Isotropic, spherical energy surface for vanishing anisotropy
constant K = 0. (b) Energy surface, associated with K < 0, leading to
easy (100) and hard (111) axes. (c) Energy surface, associated with K > 0,
leading to easy (111) and hard (100) axes.

energy. The highest magnetocrystalline energy is found along the eight (111) orientations,
representing the hard magnetic axes of the system.

Changing the sign of K reverses the hard and easy axes of the system. This is illustrated
in Fig.X showing the energy surface for K < 0. Here, the (111) orientations are the easy
magnet axes while the (100) orientations are the hard magnetic axes.

The effects of magnetocrystalline anisotropy on modulated magnetic structures are
non-trivial. As each spin is oriented differently, Eq. 5.6 must be replaced by an integral

Faniso = I{/V(J\Z;CL + M;} + Mf)dV (57)

capturing the individual contributions of each spin in the magnetic unit cell. The non-
trivial behavior is further complicated by field dependent changes of the spin arrangement,
which in turn change the energetic contributions to the free energy. In the following, we
will discuss the effects on a conical spin arrangement, which may help in understanding the
peculiar field dependence of the magnetization of chiral magnets. We assume a pristine
conical helix with a propagation vector £ and an opening angle «, defined as the angle
between the spins and the propagation direction.

Shown in Fig. 5.14 is the angular spin distribution of a conical helix at various helix
angles and orientations relative to the energy surface of the quartic anisotropy term with
K < 0. The spin distribution is illustrated by colored arrows with the helical propagation
aligned along [001] (first row, blue), [011] (second row, green) and [111] (third row, red).
Helix angles of a = 80°, @ = 55° and a = 10° are shown in the first, second and third
column, respectively. The energy surface of the quartic anisotropy term with K < 0 is
equivalent to the energy surface shown previously in Fig. 5.13(b), where (100) and (111)
correspond to the magnetic easy and hard axis, respectively. The size of the energy is

100



5.2 Discussion

a=80°

a =55°

a=10°

k|| [001]

(a2)

k || [001]

st

k || [001]

(b1) (b2) (b3)
T k || [011] k || [011] k || [011]
(c1) (c2) (c3)

k|l [111]

k| [111]

\

”’i

k|l [111]

.

(d) Effective Potential

L[OOl]

v\[om]

[100]

(e) Effective Potential

[001]

' [010]

[100]

(f) Effective Potential

[001]

[010]

[100]

Figure 5.14: Angular spin distribution of the conical helix relative to the energy surface
of the quartic cubic anisotropy term with K > 0. Spin distribution is shown
as colored arrows with the helical propagation k along [001] (first row, blue),
[011] (second row, green) and [111] (third row, red) and helical opening
angles @ = 80° (Ist column), @ = 55° (2nd column) and o = 10° (3rd
column) (d1)—(d3) Corresponding effective energy surface.

encoded in the radius as well as the color shading, with blue and red colors corresponding
to small and large energies, respectively.

Due to the non-colinear magnetic structure, the individual spins are arranged differently
and thus contribute different amounts to the total anisotropy energy. The total anisotropy
energy is thus obtained by integrating all individual contributions of the spins of a helix.
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Accordingly, an effective energy surface may be derived by varying the propagation
direction, which reflects the orientation dependence of the helix at a given opening angle.
The corresponding effective potential, ignoring a constant offset, reads

Kepp(a)(ds + gy + d2) (5.8)

with ¢; = ¢;/|q| the direction cosines of the helix propagation and an effective anisotropy
constant, K.s¢(«), depending on the opening angle a.. It is analogous to the conventional
cubic potential, but depends on the orientation of the helix instead of the spin.

The effective energy surface for the three opening angles o = 80°, & = 55° and a = 10°,
is shown in Fig. 5.14(d1)—(d3), respectively. At large opening angles, as shown by the
example of & = 80° in Fig. 5.14(d1), the energy surface exhibits a weak (100) easy-axis
anisotropy with hard (111) axes. By aligning along the (100) axis, the conical helix
gains the most energy since all helical spins are close to one of four easy (100) axes while
avoiding all hard (111) axes.

Surprisingly, at intermediate opening angles, illustrated in Fig. 5.14(d2) for a = 55°,
the easy and hard axes switch and a weak (111) easy-axis anisotropy is observed. This
results from the fact that at intermediate opening angles and propagation along (100)
all spins are very close to one of four (111) hard axes, resulting in a substantial energy
penalty which is avoided for other helix orientations.

At small opening angles, shown in Fig. 5.14(d2) for @ = 10°, the easy and hard axes
switch once again as the spins converge towards the field polarized state and the effective
energy surface approaches the conventional energy surface (c.f. Fig.5.13(b)).

The change of the effective anisotropy during the magnetization process is further
illustrated in Fig. 5.15, showing magnetization data and corresponding magnetic work.
Fig. 5.15(a) presents typical magnetization data, shown with Hj,; against M. The data
is measured at a temperature of 2K following ZFC with field along (111) , (110) , and
(100) . The magnetization features two intersections of the (111) and (110) orientations
with the (100) orientation. The magnetic work W (M) = [ B dM, inferred from the
magnetization data, is shown in Fig. 5.15(b), relative to the magnetic work of the (100)
orientation. It shows the difference in free energy between the various orientations as a
function of M. As a function of M it reflects the behavior of the effective anisotropy shown
in Fig. 5.14(d1)—(d3). In the limit of large M, close to the saturation magnetization, the
(100) orientation is clearly lowest in energy, identifying the (100) orientation as the easy
magnetic axis. Similarly at small values of M (M < 0.4up/f.u.), both (111) and (110) are
energetically larger than (100). At intermediate magnetization levels, however, the free
energy of the (111) and (110) orientation drops below the (100) orientation, equivalent to
a change of the effective anisotropy (change in sign of Kg) The magnetization interval in
which the inversion occurs corresponds to the magnetization interval of the tilted-conical
phase.

We note that, the magnetization work at very small values of M (M < 0.2up/f.u.) is
essentially isotropic and does not reflect the effective anisotropy landscape, as shown in
Fig. 5.14(d1). This is a result of the somewhat indirect control of the helix propagation
using the magnetic field. At low fields, the helix propagation is always aligned along
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Figure 5.15: Magnetization and magnetic work illustrating the field dependence of the
effective anisotropy. (a) Internal magnetic field as a function of magnetiza-
tion. (b) Magnetic work, inferred from magnetization data, relative to the
(100) orientation.

(100), and as such we do not probe the energy landscape. It is also helpful to note that
the magnetic work, calculated from the magnetization measures the change in free energy
relative to the initial state. Therefore, to accurately compare the free energy between
different orientations, we need to guarantee the same initial state. This is not possible
under HFC because, in the (100) orientation, the helical domains are not populated
equally, evident as the missing H.; transition.

In conclusion, the complex interplay between the conical helix and the cubic anisotropies
may be described by an effective cubic anisotropy. At intermediate fields, the sign of
the effective anisotropy constant changes, thus penalizing a helical propagation along the
(100) orientation. This is consistent with measurements of magnetic work, which show
an energetic disadvantage of (100) orientation at intermediate magnetic fields, where
the tilted-conical phase emerges. This might explain the tilting away from the (100)
orientation of the tilted-conical phase. It must be stressed, however, that in contrast to
the theoretical considerations the opening angle is controlled rather indirectly, using the
magnetic field. Furthermore, we have not considered harmonic distortions of the conical
helix, which might also play a role.

5.2.4 Nucleation of the Low-Temperature Skyrmion Phase

Finally, in this section, we will compile and discuss our findings regarding the nucleation of
the low-temperature skyrmion phase. As we have extensively shown, the low-temperature
skyrmion phase emerges in the (100) orientation only. Regardless of the temperature vs.
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field protocol, the tilted-conical phase always appears first, the skyrmion phase second.
Similarly, the tilted conical phase disappears first, the skyrmion second. Moreover,
FORC measurements have unambiguously shown that the low-temperature skyrmion
phase nucleates only within the field range of the tilted-conical phase, consistent with
neutron scattering. Unlike the high-temperature skyrmion phase, however, no dissipative
signatures are observed when leaving the low-temperature skyrmion phase, suggesting a
drastic reduction of the associated timescales. In addition, the phase boundaries of the
skyrmion phase are highly hysteretic, while no hysteresis is observed for the tilted-conical
phase. This may be understood by the fact that the phase transition into the tilted
conical phase is of second-order, and as such appears as soon as the tilted-conical phase
is thermodynamically stable. In contrast, a transition from trivial phases to a skyrmion
phase is always first order and in general accompanied by hysteresis.

Considering the wide hysteresis in the magnetic field and the coexistence of the LT-
skyrmion phase with the conical, tilted-conical and field polarized state, the question
arises how wide the thermodynamically stable field range of the low-temperature skyrmion
phase may be. Two limiting scenarios, compatible with the experimental phase diagram,
may be distinguished:

(i) The low-temperature skyrmion phase is thermodynamically stable only within the
narrow field region of the tilted-conical phase, but survives as a metastable state
within the conical and the field-polarized state.

(ii) The low-temperature skyrmion phase is stable in a much wider field region, extending
beyond the field range of the tilted-conical phase, yet nucleates only within the tilted-
conical phase.

Experimentally, the stabilization of the high-temperature skyrmion phase of CuyOSeO3
at low temperatures, covering a wide field range has already been shown [93, 119]. There-
fore, an exceptionally wide hysteresis is not unlikely. Theoretical calculations, however,
suggest that the skyrmion phase is stable in a much wider field range compared to the field
range of the tilted-conical phase [119]. This would imply a reduction of the nucleation
barrier within the tilted-conical phase compared to the conical or field-polarized state
and a number of factors may contribute to a reduction of the barrier.

It is well known, that for a nucleus to form the energy barrier resulting from the inter-
facial energy to the surrounding phase must be overcome [80]. The major contribution to
the interfacial energy results from the formation of Bloch points. In a conical environment,
however, the generation of a skyrmion requires the formation of a spiraling interface sur-
rounding the skyrmion, due to the incompatibility of the longitudinal modulation of the
conical helix with the rotational symmetry of a skyrmion|78, 79]. The formation of this
interface is energetically costly and may further increase the nucleation barrier. More-
over, the energy contribution increases with the length of the skyrmion nucleus. It has
been shown recently to affect the nucleation and may be responsible for the exceptional
stability of metastable skyrmions within the conical phase at low temperatures [80].

Finally, in contrast to the conical or field-polarized state, the tilted-conical phase is a
multi-domain state and thus forms domain walls. Topological defects naturally occurring
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in chiral domain walls may then act as nucleation seeds for heterogeneous nucleation
[80, 136].

In conclusion, given the experimental evidence in combination with theoretical calcu-
lations, the second scenario is more likely. Nonetheless, additional experiments such as
relaxation experiments may lead to further insights, as relaxation is only expected within
metastable states.
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5.3 Conclusions

In recent years, the cubic chiral insulator CuasOSeQOg attracted great scientific interest,
combining the skyrmion lattice phase with strong magneto-electric coupling [49, 93, 100,
108, 112-114, 150]. Our recent discovery of a second skyrmion phase at low temperatures,
disconnected from the conventional skyrmion phase at high temperatures and accompanied
by a tilted-conical phase has shed new light on the stabilization mechanisms of skyrmion
order [119]. Based on the observation of the formation of the novel phases only in the
(100) orientation and supported by theoretical calculations, cubic anisotropy has been
identified to play an essential role in the stabilization of the low-temperature skyrmion
phase [119].

Motivated by these results, we have conducted a comprehensive study of single-crystal
Cus0Se0g, focussing on the low-temperature skyrmion phase, thermodynamically stabi-
lized by cubic anisotropies and the tilted-conical phase. Using precision measurements
of the magnetization and ac-susceptibility, we have studied in detail the magnetic prop-
erties of Cua0SeO3 for magnetic fields along all major crystallographic orientations,
complemented by specific heat measurements at selected temperatures and magnetic field
orientations. We found clear thermodynamic signatures of a second skyrmion phase,
emerging at low temperatures at the border between conical and field polarized state,
accompanied by a tilted-conical phase.

Unlike the conventional skyrmion phase, emerging isotropically at high temperatures in
finite fields, the low-temperature skyrmion phase, and the tilted conical phase emerge for
field along (100) only. The phase boundaries of the low-temperature skyrmion phase are
highly hysteretic, consistent with a previous neutron scattering study [119]. In contrast
to the conventional skyrmion phase, the low-temperature skyrmion phase showed no sig-
natures of dissipation in the ac-susceptibility at the phase boundaries. The tilted-conical
phase, however, is associated with distinct dissipation effects and further accompanied
by strong higher harmonics of the ac-susceptibility. To study the effects of dipolar in-
teractions on the formation of skyrmion order, we investigated several different sample
shapes and found enhanced smearing of the signatures with increasing demagnetizing
factor. For large demagnetizing factors, we were thus unable to unambiguously identify
the somewhat subtle signature of the low-temperature skyrmion phase. The dissipation
signature of the tilted-conical phase, however, is found up to the largest demagnetizing
factor investigated. As a major result, we quantitatively estimated the cubic anisotropy
constant consistently from both magnetic work and critical magnetic fields. We found
a cubic anisotropy constant of K ~ —4neV A7 at low temperatures, vanishing above
temperatures of T' =~ 40 K.

In addition, we studied the nucleation of the low-temperature skyrmion phase through
first-order reversal curve measurements and found compelling evidence that the low-
temperature skyrmion lattice phase requires the tilted-conical phase to lower the nu-
cleation barrier. Finally, we have demonstrated how cubic anisotropies influence the
energy landscape of chiral magnets, which may aid the understanding of such complex
phenomena.
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Summary and Outlook

Magnetic skyrmions represent noncollinear spin textures, found in a variety of different
materials, consisting of nanometer-sized spin-whirls with particle-like properties. They
have sparked the interest of the scientific community based on a variety of exciting
properties ranging from emergent electrodynamics [61] including a topological Hall effect
[51, 52| and spin transfer torques [61, 151] to magnetoelectric effects [49, 114]. In this
study, we have addressed two critical issues related to magnetic skyrmions, namely kinetic
and thermodynamic stability.

We began with a brief introduction Chapter 1, addressing nucleation and growth,
magnetic viscosity and magnetocrystalline anisotropy. In Chapter 2, we provided a
compact overview of the material class of cubic chiral magnets, addressing the generic
phase diagram, the skyrmion lattice, emergent electrodynamics, topological stability and
the nucleation and annihilation of magnetic skyrmions. This was followed by a specific
introduction of Fe;_,Co,Si and CusOSeO3, the chiral magnets investigated during this
thesis. In Chapter 3, we summarized the experimental methods, techniques, and analyses
used during this thesis.

In Chapter 4, we conducted a comprehensive study on a non-equilibrium skyrmion
lattice state in bulk Feys5Cog 551, addressing the issue of stability and the associated
energetics of the metastable state. Using extensive magnetization and ac-susceptibility
measurements, we inferred the non-equilibrium phase diagram, hosting a metastable
skyrmion lattice in a major portion of the phase diagram. A comparison with nonequi-
librium skyrmion lattice states in other chiral magnets revealed a generic behavior of
the nonequilibrium phase diagram. In addition, to investigate the relaxation dynamics
and the associated energetics of the metastable skyrmion lattice, we conducted magnetic
relaxation measurements and found a slow logarithmic decay of the metastable state with
time. From the relaxation data, we inferred the distribution of activation energies in
zero field using master-curve scaling. The distribution of activation energies consists of
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a narrow peak at low energies, associated with the monopole-antimonopole nucleation
barrier, superimposed on a broad distribution, dominating the relaxation behavior. As
a result, the skyrmion lattice survives in a broadened band outside the thermodynam-
ically metastable phase boundaries, where the system is thermodynamically unstable
but kinetically stabilized beyond the topological protection. We suspect that the broad
distribution originates from pinning of (anti-)monopoles since Feg5Cog 5Si is known to
exhibit strong compositional site disorder.

The exceptional stabilization of the nonequilibrium skyrmion phase, attributed to
pinning of monopoles, may offer a new tuning mechanism for skyrmionic applications, not
considered before. However, further studies may be necessary to establish the microscopics
of the pinning mechanism. Moreover, the application of master curve scaling, not used
before in the context of skyrmions, to infer the barrier distribution has proven to be very
successful. Employing a similar analysis may allow further studies to infer the underlying
energetics in other materials and may enable a straightforward evaluation of external
effects such as electric fields, strain or even pressure on the formation of nonequilibrium
skyrmion phases.

In Chapter 5, we reported the results of a comprehensive study of the magnetic
properties of single-crystal CusOSeQOj3 utilizing measurements of the magnetization, ac-
susceptibility, and specific heat, in particular tracking the influence of crystal orientation,
cooling history and demagnetizing effects on the formation of skyrmion order.

We have successfully identified the thermodynamic signatures of the low-temperature
skyrmion phase as well as tilted-conical phase, consistent with the recent neutron study,
confirming the existence of these novel phases only within the (100) orientation. The low-
temperature skyrmion phase is found to be highly hysteretic, yet lacks signs of dissipation.
In contrast, the tilted-conical is linked to strong dissipation effects, further accompanied
by strong higher harmonic ac-susceptibility signatures. Based on the magnetic work as
well as the upper critical field Hc.o, we have quantitatively inferred the cubic anisotropy
constant as a function of temperature. Furthermore, using the example of a conical
helix, we have demonstrated the complex interplay of modulated magnetic structures
with cubic anisotropy, generic for all cubic chiral magnets. Using first-order reversal
curves, we find that the low-temperature skyrmion phase nucleates only within the field
range of the tilted-conical phase. Together with neutron scattering and ac-susceptibility,
this provides compelling evidence that the tilted-conical phase aids the nucleation of the
low-temperature skyrmion phase.

In summary, the formation of the low-temperature skyrmion phase and the tilted-
conical phase raises further questions, among other things concerning the dynamics of
these phases in the presence of strong cubic anisotropies, as well as magnetoelectric effects.
Moreover, analogous to the metastable skyrmion phase in Fe;_,Co,Si, which enabled the
study of the skyrmion decay by slowing down the timescales at low temperatures [46],
Cuy0SeO3 offers the possibility to study the inverse process, the nucleation, in the zero
temperature limit. Furthermore, the generic nature of the underlying mechanism may
allow for similar phenomena in other materials. Although the cubic anisotropies in the
materials reported so far appear to be weaker compared to CuyOSeQOs, they may play an
essential role in new materials or hydrostatic pressure experiments. A potential candidate
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worth revisiting might be MnSi under hydrostatic pressure. A short reevaluation of the
literature concerning the magnetization under hydrostatic pressure [52, 152] reveals a
peculiar field dependence, which suggests a significant increase in cubic anisotropy and
may play a more important role in the formation of the partial order and non-Fermi liquid
behavior than previously anticipated [153, 154].

Taken together, we have successfully investigated the thermodynamic and kinetic sta-
bilization of skyrmion order in cubic chiral magnets and have provided valuable new
insights into the underlying energetics.
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