Reliability analysis for runway overrun using subset simulation
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ABSTRACT: Runway overrun is one of the main accident types in airline operations. Nevertheless,
due to the high safety levels in the aviation industry, the probability of a runway overrun is small. This
motivates the use of structural reliability concepts to estimate this probability. We apply the physically-
based model for the landing process of Drees and Holzapfel (2012) in combination with a probabilistic
model of the input parameters. Subset simulation is used to estimate the probability of runway overrun
for different runway conditions. We also carry out a sensitivity analysis to estimate the influence of
each input random variable on the probability of an overrun. Importance measures and parameter
sensitivities are estimated based on the samples from subset simulation and concepts of the first-order

reliability method (FORM).

1 INTRODUCTION

The airlines organized in the International Air
Transport Association (IATA) carried about 3.6
billion passengers in 2012. Among these, 414
where Killed in an aviation accident (IATA, 2013).
Of the many accident types, runway excursion is
the most common one. There are several types of
runway excursions; one of the most critical one is
runway overrun (RWO) of a landing aircraft,
which is investigated in this paper.

The high safety requirements within the civil avi-
ation industry make a quantitative estimation of
the probability of a runway excursion important.
However, the already high reliability standards
within the industry hinder an estimation of acci-
dent probabilities with purely statistical methods.
In particular, it is difficult to investigate the effect
of individual factors on the probability of specific
accidents. This motivates the use of structural re-
liability concepts. This is demonstrated in this
paper, where we estimate the probability of run-
way overrun using a previously proposed physi-
cally-based model for the landing process (Drees
and Holzapfel, 2012).

A few authors proposed RWO models based on
regression e.g. (Kirkland, 2001, Hall et al., 2008,
Ayres Jr. et al, 2011). However, to the best of our

knowledge, structural reliability methods in
combination with a physically-based model have
not been applied previously.

In the next section a short outline to structural
reliability in general and subset simulation in
particular is given. This is followed by a summary
of the RWO model and the related probabilistic
model. Thereafter, the results of the reliability
analysis are presented for different runway con-
ditions. The influence of the individual input ran-
dom variables on the probability of a RWO is in-
vestigated through different importance and
sensitivity measures. In this context, FORM is
shortly explained, as some of its theory is applied.
The paper concludes with a discussion of the re-
sults.

2 STRUCTURAL RELIABILITY

In reliability analysis, X denotes a vector of ran-
dom variables that are the input to a model; X has
the joint probability density function f(x). The
response of the physical model as a function of X
is described by means of limit state functions
(LSF) g(x). For RWO, g(x) corresponds to the
stop margin of the aircraft, i.e. the length of the
runway minus the operational landing distance
(the distance actually needed to stop the aircraft).



A runway overrun corresponds to the event
g(x) < 0 and its probability can be written as:

Pr(RWO) = f £(%) dx )

g(x)=0

This type of problem is well known within the
field of structural reliability, which is concerned
with estimating probabilities of failure of engi-
neering structures (Rackwitz, 2001). As the inte-
gral in Equation (1) can in general not be calcu-
lated analytically, a number of methods for
efficiently solving this kind of problems have
been developed in the field of structural reliabil-
ity. The most prominent among these are the
first- and second-order reliability methods
(FORM and SORM) e.g. (Der Kiureghian, 2005),
the standard Monte Carlo simulation (MCS), and
advanced sampling methods like importance
sampling or subset simulation (SuS) (Au and
Beck, 2001).

Both FORM and SORM rely on finding the most
likely failure point (MLFP), i.e. the most likely re-
alization of X that leads to failure, here RWO.
These methods are based on optimization for
finding the MLFP. This may be critical if the
method is to be applied for the computation of
the probability of RWO in near-real time. For this
reason, we apply SuS, which is still relatively effi-
cient, but does not necessitate optimization.

2.1 Subset simulation (SuS)

The classical MCS approach provides an unbiased
estimate Pr of Equation (1) by generating ng
samples from the joint distribution f(x) and
evaluating g(x) for each of the samples. The es-
timated probability of failure is then:

1<
pF = _Z Ig(xi)so(xi) (2)
s

where I;,)<o(X;) is an indicator function, which
is 1 for g(x;) < 0 and 0 otherwise. This MCS ap-
proach becomes computationally unfeasible for
small probabilities of failure. For a desired coeffi-
cient of variation of the estimate 65, the required
number of samples is:
1-Pr(F)
S 7 83 _Pr(p) (3)

For a small probability of failure of Pr(F) = 1078
and a desired coefficient of variation of §5, = 0.1

approximately 10'° LSF evaluations would be
necessary. SuS proposed by (Au and Beck, 2001)

overcomes this problem by expressing the failure
event F as a sequence of nested events F;.

FcF,c-cF,=F
With these nested events the probability of fail-
ure can be rewritten as:

Pr(F) = Pr(R) | [ PresilFp) 4)

The probability of the first intermediate event,
Pr(F,), is not conditional on a previous interme-
diate event and can therefore be estimated with a
standard MCS. All other probabilities Pr(F;|F;_;)
in Equation (4) are conditional on a previous in-
termediate event, these conditional probabilities
are estimated using Markov Chain Monte Carlo
(MCMC) simulation procedures. In Figure the
MCMC approach is schematically shown for esti-
mating Pr(F,|F;). The grey points represent the
samples generated from f(x) in the initial MCS
step. Those samples x;, which are above the LSF
(shown here as a black line) are said to be in the
failure domain Fj, i.e. for them x; € F;. From each
of those m intermediate failure samples, a Mar-
kov Chain of length ng/m is generated (black
samples). In these chains a new candidate state is
generated conditional on the previous state of the
chain. Furthermore if the newly generated candi-
date state x’ fulfills the conditionx’ € F; it be-
comes the new state of the chain otherwise the
previous state is repeated. SuS is performed in
the uncorrelated standard normal space (U-
Space). The component wise Metropolis Hastings
algorithm, which was proposed by (Au and Beck,
2001) as a MCMC algorithm for SuS makes use of
this by generating the candidate states inde-
pendently for each dimension. The performance
of SuS thus becomes independent of the number
of dimensions of the problem.

In this paper we apply a MCMC algorithm pro-
posed by (Papaioannou et al., 2014) for use in
SuS. Like the algorithm of (Au and Beck, 2001)
this algorithm works in a component-wise fash-
ion and its performance is therefore also inde-
pendent of the dimensionality of the problem.
However, the generation of the pre-candidate
states is done, such that every pre-candidate state
is accepted.

Typically the intermediate failure events F; are
chosen adaptively, such that
Pr(Fy) = Pr(F,|F;) = -+ = Pr(Fp_1|Fa_2) = Ppo-
Often a value of 0.1 is chosen for p,. The final fail-
ure event F, = F is fixed and therefore its condi-



tional probability cannot be chosen a priori.
Equation (4) is then:

Pr(F) = po" 'Pr(F|Fy_1) (5)

As SuS is applied in U-space the random variables
X have to be transformed to U-space. Typically
the Nataf or the Rosenblatt transformations are
applied for this purpose (Hohenbichler and
Rackwitz, 1981). In the problem at hand one of
the random variables is defined conditional on
other random variables. For that reason the Ros-
enblatt transformation appears to be suitable.
This transformation is based on expressing the
distribution of every random variable conditional
on the previous random variables.
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Figure 1 Generation of samples conditional on a first inter-
mediate failure event. The new samples (black) are sam-
pled starting from a seed sample using a MCMC algorithm.
The grey samples were obtained by MCS in a previous step.

3 PHYSICAL MODEL OF RUNWAY OVERRUN
(RWO)

In this section, we briefly present the applied
RWO model. For a more detailed description, the
reader is referred to the original paper by (Drees
and Holzapfel, 2012). The RWO event can be de-
fined as the operational landing distance exceed-
ing the runway length (cf. Figure 2). The LSF can
therefore be written as:

g(x) = Stop margin(x)

The stop margin is the deterministic runway
length minus the operational landing distance,
which depends on a number of factors that are
modeled as random variables. The model is de-

rived from the equations of motion. The accelera-
tion of the aircraft in x-direction is:

1% =%[T—D —mg - siny — up(mg - cosy —
L)] (6)

where m is the mass of the aircraft, T is the pro-
pulsion force from the aircraft engines and D is
the aerodynamic drag. The term mg - siny - with
g being the constant of gravitation and y the
flight path angle - represents the contribution of
the runway slope to the acceleration. Finally, the
last term describes the influence of the friction
and brake forces. L denotes the aerodynamic lift
and py the friction coefficient, which depends on
the runway condition, on the brake force and on
the velocity of the aircraft.

Threshold Touchdown
I point

Aircraft
stops

| l |
o I
. At .

Runway length |
|

Operational landing distance | Stop margin |
|

Figure 2 Definitions

The drag force can be written as:

D=L W= V)25 Gy )
and the lift force as:

L=S W= V)5 G, ©)

p is the air density, Vk is the speed of the aircraft
and Vy, the speed of the surrounding air, such
that Vy —V,,, is the speed of the aircraft relative
to the wind speed. Furthermore, S is the refer-
ence area of the wings and Cj, respectively C; are
the drag and the lift coefficients.

Integrating equation (6) twice with respect to
time will yield the operational landing distance.
For practical reasons the operational landing dis-
tance is split in three parts. First the touchdown
distance, which is directly modeled as a random
variable; second the distance from the touch-
down point to the point where the pilot deac-
tivates the auto-brake system, which, in addition
to the environmental and technical factors, de-
pends on a number of human factors, e.g. the
point in time until the pilot starts braking and the



point in time when the spoiler is deployed. The
third part is the distance the aircraft travels from
the point of auto-brake deactivation to the final
stopping position. During a normal landing, the
aircraft will not stop completely on the runway
but exit the runway with slow velocity to the tax-
iways. However, it is assumed that in the case of a
critical landing, which is likely to result in a RWO,
this distance is traveled with maximum decelera-
tion efforts i.e. maximal braking forces.

3.1 Technical and human factors

The quantities in the differential Equation (6) are
influenced by environmental factors on the one
hand, and technical as well as human factors on
the other hand. The technical aspects are cap-
tured in the RWO model by allowing certain
technical components like the spoiler, the auto-
brake system or the engines to be either opera-
tive or inoperative with a certain probability. The
brake system can be operative, inoperative or de-
graded. In the scope of this paper we do not con-
sider any technical failures, thus all components
are considered to be fully operative. Further-
more, we assumed the flaps and slats to be in
configuration full, which is used in 96% of ap-
proaches (Drees and Holzapfel, 2012).

The friction coefficient between the tire and the
runway pr is a major factor influencing the decel-
eration of the aircraft. This friction coefficient is
mainly determined by the runway condition; we
differ between a dry and a wet runway in our cal-
culations.

The auto-brake system automatically applies a
brake pressure when the landing gear touches
ground. The magnitude of the applied pressure
depends on the setting of the auto-brake system.

For the scope of this paper, we compute RWO
probabilities for the auto-brake settings set to
medium.

In operational aviation, the times after touch-
down at which the spoiler and thrust reversers
are deployed and the times at which the braking
starts and ends can be obtained from operational
data. On the basis of this measured data, distribu-
tion models are selected. These models are sum-
marized in Table 1. Another factor, whose varia-
bility is influenced mainly by human actions, is
the touchdown point. A normal distribution, with
fixed standard deviation and a mean value (u;pp)
that is a function of the environmental conditions
is used for this. It was found from flight operation
data that pilots change their touchdown behavior
according to the required landing distance esti-
mate, which they calculate during the approach.
The required landing distance is thereby calcu-
lated from aircraft and runway specific character-
istics as well as from the flap setting, the head
wind, the temperature and the landing weight.

4 PROBABILITY OF ARWO

As a case study, we calculate the RWO probabili-
ties for an aircraft of type Airbus A320 landing on
runway EDDM 26L at the Munich airport (MUC).
The runway is 4000m long with a concrete sur-
face. We apply subset simulation using the MCMC
algorithm proposed in (Papaioannou et al., 2014).
The inter-sample correlation is initially chosen as
0.8. The intermediate thresholds were chosen
adaptively, such that at each simulation level
10% of the samples would lie in the intermediate
failure region. At each of the simulation levels,
1000 samples were generated such that consider-

Table 1 Random variables of the physical model. The pressure is the air pressure adjusted to the sea level. Approach speed
deviation is the deviation from the target approach speed. The mean value of the touchdown point depends on the calculat-
ed required landing distance, which again is a function among others of the headwind, the landing weight and the tempera-
ture. Abbreviations: weibull distribution (WBL), normal distribution (N) and generalized extreme value distribution (GEV)

Random variable Distribution model Mean Std. dev.
Landing weight [t] WBL(60.0,44.3) 59.3 1.69
Head wind [kts] N(5.4,5.8) 5.4 5.8
Temperature [°C] GEV(-0.26,7.9,6.5) 9.4 8.0
Pressure [hPa] N(1016,8.1) 1016 8.1
Appr. speed dev. [kts] GEV(-0.20,4.0,3.0) 4.7 4.2
Rev. deployment [s] Gamma(9.0,0.55) 5.0 1.7
Start braking [s] GEV(0.15,3.9,10.2) 13.1 6.4
Splr. Deployment [s] GEV(0.11,0.89,3.7) 4.3 1.3
End braking [s] N(25,5) 25 5
Touchdown point [m] N (urpp, 121.9) Urpp 121.9




ing the presented results in Table 2 7000 respec-
tively 8000 LSF evaluations were necessary for
each simulation run.

Table 2 Simulation results for different runway conditions
(dry and wet). For each simulation 1000 samples were
used per simulation level.

Runway condition Pr(RWO)
Dry 1.06E —7
Wet 7.03E — 8

The resulting probabilities are in the same order
of magnitude for the different runway conditions.
The fact that the RWO probabilities are smaller
for a wet runway than for a dry one may be coun-
terintuitive, as a wet runway reduces the friction
between the tire and the runway and thus also
the effectiveness of the braking procedure.

The explanation for this result is that the pilots
calculate the required landing distance according
to an approximate formula when approaching an
airport and adapt their landing behavior to the
result. In the model this is accounted for through
the mean value of the touchdown point. The infe-
rior grip of the tires is therefore compensated or
even overcompensated by an adapted touchdown
behavior, at least according to the model.

5 SENSITIVITY ANALYSIS

We conduct a sensitivity analysis to find the in-
fluence of the individual random variables on the
probability of a RWO. First importance measures
based on FORM are calculated. For the most im-
portant random variables, parameter sensitivities
are then calculated based on the samples from
subset simulation. In the following the concepts
of FORM, which are of major importance for our
purpose are introduced. For a deeper introduc-
tion the reader is again referred to the literature
e.g. (Der Kiureghian, 2005, Ditlevsen and Madsen,
2007). In a later section parameter sensitivities
are calculated using the samples from SuS.

5.1 Importance measures with FORM

FORM gives an approximation of Equation (1) by
substituting the LSF in U-space with a linear sur-
rogate model g; (u). The linearization of the LSF
is done in the design point i.e. the most likely fail-
ure point u* in U-space. The probability of failure
Pr(F) can then be approximated through the
probability of failure corresponding to the linear
surrogate model. With & being the standard

normal CDF and frogy the reliability index Pr(F)
can be approximated as:

ﬁF = ®(—Brorm ) )
With the reliability index being defined as:

Brorm = U’ (10)

The task of calculating the probability of failure
reduces thus to finding the design point u*. In
general the convergence of the optimization algo-
rithms, applied to find u* is the bottleneck in
FORM analysis.
A useful byproduct of the FORM analysis is the
normal vector of the linear approximation of the
LSF o (Der Kiureghian, 2005). The elements of
this vector can be interpreted as importance
measures of the standard normal random varia-
bles U; (Figure 3):

u;
a; = (11)

ﬁFORM

If a random variable U; is the only one influencing
Py its corresponding a; will have an absolute val-
ue of 1. If on the other hand U; has no influence
on Py its a; is 0. We can further distinguish be-
tween random variables of load type, which have
a positive ; and those, which are of capacity type
that correspond to a negative a;.

If the random variables in X are independent the
importance measures « of the transformed vari-
ables U are readily valid also in the original space
otherwise a transformation as described in (Der
Kiureghian, 2005) needs to be applied.

In the scope of this paper the FORM importance
measures are determined for a linear LSF fitted to
sample points as proposed in (Melchers and
Ahammed, 2004). Thus the optimization usually
necessary for FORM, which is a bottleneck espe-
cially in near-real time applications, is circum-
vented. Fitting a linear hyper-plane to a set of
points is a robust way to estimate the design
point according to (Melchers and Ahammed,
2004). As the linear LSF g;(u) should approxi-
mate the actual LSF as accurately as possible
mainly in the proximity of the design point/limit
state surface it is suggested to only use those
sample points wu, for which g,(u) =0 or
gi(uw) <0.

The sensitivity analysis is done in this paper for a
dry runway. A simulation run with 1000 samples
per simulation level was done to this end and the
samples from the last simulation step were used
to fit the linear LSF with the method of least
squares.



In Table 3 the FORM importance measures for the
problem at hand are summarized. The numbers
in brackets give the values for a linear LSF that
was fitted to sample points from a different simu-
lation run.

‘Head wind’, ‘Start braking’, ‘Touchdown point’,
‘Approach speed deviation’ and ‘Landing weight’
appear to be the random variable, having the
most influence. All of them are of load type except
head wind, which is of capacity type meaning that
a large head wind velocity reduces the probabil-
ity of a RWO.

o

Figure 1 Importance measures a of linear LSF approxima-
tion fitted to samples from a SuS run.

From Table 3 it becomes obvious that the linear
LSF depends on the points used for fitting. How-
ever the results show that the measures for the
variables with a large influence (i.e. > [0.1]) are
fairly similar in both runs while the variables that
have only a minor influence are in one case even
of different type (i.e. load or capacity) in the two
runs.

Table 3 FORM importance measures for the dry runway
conditions and a flap setting medium.

Random variable FORM measures

Landing weight [t] 0.116  (0.138)
Head wind [Kkts] —0.693 (—0.663)
Temperature [°C] 0.020  (0.010)
Pressure [hPa] 0.010 (0.002)
Appr. speed dev. [kts] 0.202 (0.179)
Rev. deployment [s] 0.037 (0.042)
Start braking [s] 0.650 (0.680)
Spir. Deployment [s] 0.019 (—0.013)
End braking [s] 0.004 (0.013)
Touchdown point [m] 0.204 (0.213)

Although the ‘Touchdown point’ is one of the
main influencing factors according to the FORM
measures one may expect it to have an even larg-
er influence. The reason for that is, that it was
modeled as a function with fairly low variability
and a mean, which is shifted according to the out-
come of other random variables.

In general it should be noted that the FORM im-
portance measures in Table 3 are dependent on
the distributions of the random variables. For ex-
ample from the fact that the pressure appears to
have only a minor influence in the case study at
hand it cannot be concluded that the pressure
may not be an important factor if one considers
different airports, where some of them are locat-
ed at high altitudes.

5.2 Sensitivity measures

For the random variables, which were found to
be important according to the FORM importance
measures, parameter sensitivities are calculated.
We calculate sensitivities of the probability of
failure with respect to the parameters of f(x), .
These sensitivities can be defined as:

9Py _ [ ofx(x,0) a2
08, Jyeozo 08

where fx(x,0) is the probability density function
of X with the parameters 0. 6; denotes the pa-
rameter with respect to which the sensitivity is
calculated. In the scope of this paper we consider
sensitivities with respect to the means p; and
standard deviations g; of the random variables X;.

Based on the calculated FORM approximation of
0 Pr(F)

the LSF, sensitivities of the form can be cal-

culated as described in (Der Kiureghian, 2005).
These approximate sensitivities can be calculated
based on a design point, which was obtained us-
ing an optimization algorithm. In a near real-time
context, where convergence of the optimization
algorithms may be critical this can be done also
based on a linear LSF fitted to samples, as already
described. Here we calculate the sensitivities
with respect to the mean values y; and standard
deviations o; directly from the samples obtained
from SuS. The parameter sensitivities can be
written as:

0P zn P-op; (13)

90~ Lu=y P, 00



Table 4 Elasticities of P, with respect to ; and o;, calculated following Equation (13) and (15).

Random variable g—; Zf: ;—: Zﬁf
Landing weight [t] 53.4 1.4
Head wind [kts] —-3.2 10.6
Appr. speed dev. [kts] 0.8 0.04
Start breakinng [s] 1.1 56.0
Touchdown point [m] = 1.0

where P; are the (un)conditional failure probabil-
ities corresponding to the intermediate failure
events i.e. P, = Pr(F;) and P; = Pr(F;|F;_,) for

i > 1. The derivative of the intermediate failure
probabilities can be estimated using the samples
obtained in subset simulation (Song et al., 2009):

dp;

FE (x0) a

1N 1 0fx(xk) _ ghi-1 1 0P

NZk:l [IFi (Xk) (fX(Xk) 90 j=1 P; 060 )] (14)

where I, (x,) denotes the indicator function,
which is 1 if X, € F; and 0 otherwise.

In Table 4 the elasticities €5, o are shown for the
five most important random variables according
to the FORM importance measures from Table 3.
Elasticities are defined as:

0 0P
EPp6 = P, 00

(15)

They describe the relative change of probability
of failure due to a relative change in the parame-
ter 6 and are in general easier to interpret than
sensitivities.

6 CONCLUDING REMARKS

Structural reliability methods have been applied
to estimate runway-overrun probabilities and
were shown to be suitable for this purpose. In
particular, the calculated sensitivities and FORM
importance measures support the interpretation
and further development of the model. With the
help of the FORM importance measures, one can
simplify the model by modeling the quantities of
minor importance deterministically. We have
found that the parameters ‘Temperature’, ‘Pres-
sure’, ‘Reverser deployment’, ‘Spoiler deploy-
ment’ and ‘End breaking’ may be modeled deter-

ministically without inducing a large error. This
does, however, not imply that the influence of
these quantities is small. It can only be concluded
that the uncertainty associated with the quantity
is not significant. The parameter sensitivities
were in this paper calculated based on the sam-
ples obtained with subset simulation. These pa-
rameter sensitivities describe the effect of a
change of the mean or standard deviation on the
probability of failure. We presented the parame-
ter sensitivities in the form of elasticities, which
are typically easier to interpret. From the results
it can be seen that the variables, which are of
main importance according to the FORM im-
portance measures, are the most sensitive ones
with respect to a change in the standard devia-
tion (i.e. the variability).

A physically-based RWO model in combination
with robust methods for reliability analysis could
be applied in real time or near-real time risk as-
sessment. A possible scenario would be an air-
craft approaching an airport and getting gradual-
ly better information on uncertain factors like
landing weight, head wind at the destination air-
port etc. Based on the calculated RWO probabili-
ties a pilot could decide on whether it is save to
land at the destination airport or to approach an
alternate airport.
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